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RÉSUMÉ

Cette thèse présente le développement de systèmes intelligents dans l’environnement du
jumeau numérique pour prolonger la disponibilité du système industriel et maintenir les
performances système souhaitées. Des algorithmes basés sur l’apprentissage automatique
(ML) ont été développés pour surveiller et détecter les performances de dégradation des sys-
tèmes physiques en ligne tout en analysant les données des capteurs du système. D’autres
algorithmes basés sur ML sont développés pour définir les actions capables de restaurer de
manière autonome les performances du système au niveau souhaité. Ces algorithmes ont été
développés pour fonctionner en ligne dans l’environnement du jumeau numérique et pour
déclencher et activer le module d’action autonome. Le module autonome coopère avec le
module de surveillance de la santé et l’action corrective est ajustée au système physique pour
formuler l’autonomie en boucle fermée.

Les systèmes de maintenance autonomes et numériques développés ont été mis en œuvre dans
différents systèmes industriels. Ces approches traitent de l’auto-guérison pour l’extension du
temps de disponibilité après une panne et avant une panne. Les algorithmes d’apprentissage
automatique sont appliqués à différents types de données, telles que des séries chronologiques
et des données numériques indépendantes du temps. La reconnaissance de modèles par anal-
yse logique des données (LAD) active le mécanisme d’auto-guérison et définit la cause de
l’échec qui doit être atténuée. L’intégration de Deep Reinforcement Learning (DRL) et de
LAD se traduit par un module autonome pré-défaillance qui ralentit la dégradation des ac-
tifs et augmente le temps de défaillance (T2F). La combinaison d’actions autonomes et de
principes de maintenance centrée sur la fiabilité (RCM) permet les actions de maintenance
numérique sur des systèmes dont les données de défaillance opérationnelle sont incertaines
ou indisponibles. Le déploiement des approches développées impacte les performances du
système et améliore sa disponibilité. Le mécanisme d’auto-guérison développé ralentit la
dégradation et prolonge le temps jusqu’à la défaillance d’un système. Les approches pré-
panne prolongent le temps de fonctionnement et e temps de défaillance (T2F) en moyenne
de 40% dans les systèmes industriels et de 35% dans les applications Electric-Bus.
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ABSTRACT

This thesis presents the development of intelligent systems in digital twin environment to
extend the industrial system’s uptime and to maintain the desired system performance. Ma-
chine learning (ML) based algorithms were developed to monitor and detect the degradation
performance of the physical systems online while analyzing the system’s sensor data. Other
ML-based algorithms are developed to define the actions that are able to autonomously re-
cover the system’s performance to the desired level. These algorithms were developed to run
online in digital twin environment, and to trigger and enable the autonomous action module.
The autonomous module cooperates with the health monitoring module and the corrective
action is adjusted to the physical system to formulate the closed-loop autonomy.

The developed autonomous and digital maintenance systems were implemented in different
industrial systems. These approaches address the self-healing for post-failure and for pre-
failure uptime extension. The machine learning algorithms are applied to different types of
data, such as time-series and numerical time-independent data. Logical Analysis of Data
(LAD) pattern recognition enables the self-healing mechanism and defines the cause of fail-
ure that is to be mitigated. The integration of Deep Reinforcement Learning (DRL) and
LAD results in a pre-failure autonomous module that decelerates the asset degradation and
increases the time to failure (T2F). Combining autonomous actions and Reliability Cen-
tered Maintenance (RCM) principals allows the digital maintenance actions on systems that
have uncertain or unavailable operational failure data. The deployment of the developed
approaches impacts the performance of the system and improves its uptime. The developed
self-healing mechanism slows down the degradation and extends the time to a system’s fail-
ure. The pre-failure approaches extend the uptime and the Time to Failure (T2F) on average
by 40% in industrial systems and 35% in Electric-Bus applications.

Keywords: Maintenance 4.0; Autonomous Machines; Uptime; Machine learning; Artificial
Intelligence; Digital Twin.
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CHAPTER 1 INTRODUCTION

It is crucial to maintain the uptime of machines. As technology is advancing more quickly
than ever, uptime improvement activities have become an urgent matter. With the Industry
4.0 revolution, systems are fully automated and connected to digital platforms. Therefore,
more variabilities are induced to physical machines, which could impact the reliability of the
machines. Additionally, it is difficult to conduct physical maintenance or repairs immediately
due to a lack of human resources. Thus, industrial machines need to be upgraded and
digitized to become autonomously maintained machines that could automatically extend
their performance and uptime.

1.1 Frontier of Knowledge

This section presents the basic concepts that support the development of the proposed au-
tonomous and self-healing machines. At the beginning, the terms for some basic concepts
are stated as follows:

• Robust system: a system that is capable of performing its intended function even in
the presence of noise. When its robustness continues for a specific amount of time, the
system is called a reliable system [5,6].

• Reliability: The probability that the system will survive under given conditions with-
out failing for a specific period of time [5, 7].

• Anomaly: An abnormal, irregular or inconsistent situation [8].

• Fault: A defect or imperfection that develops when physical degradation has occurred,
but this degradation is not severe enough to be termed as a failure [8].

• Failure: The event that occurs when a machine is not able to perform its required
function [8].

• Breakdown: A specific type of failure in which the machine or system’s component
is completely unable to function [8].

• Uptime: The time that a machine/system is in service and can perform its desired
function [8].
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• Stable system: The system that has an output response, which lies in an acceptable
boundary [9].

• Fault tolerance: The ability of a system to perform its function despite the presence
of a fault [6]. A popular fault tolerance mechanism is the redundancy of components [8].

• Self-awareness system: The system that is capable of monitoring its own degradation
and detecting its own anomalies [10].

• Self-healing system: A system that detects the causes of failure and that performs a
recovery action to return the system itself to the state that confirms its function, while
taking into consideration its degradation [5, 11].

• Autonomous system: A system that is capable of managing its state without de-
pending on external factors, an autonomic control finds a closed loop relation between
the sensor data collection and the system’s behavior [5].

• Digital Twin (DT): The model that emulates the physical machine in the cyber/digital
environment and has the capability of interacting with the real machine in the physical
environment [12–14].

By definition of self-healing in autonomic systems, it is capable of performing two main
functions, namely: (1) the detection of anomalies or failures, and (2) executing the recovery
actions that eliminate the cause of failure. These two functions are interconnected to close
the autonomic loop and clear a failure without disrupting the system.

1.1.1 Health Monitoring and Diagnosis

The health monitoring module is one of the limbs of an autonomously maintained machine.
This module detects and diagnoses the faults, while analyzing the machine’s sensor data
[5, 15, 16]. By deployment of the health monitoring module, the machine becomes a self-
awareness system [10,15]. It reads the online sensor data at each time t, and analyzes these
data to predict the instant of fault or failure and the Remaining-Useful-Life (RUL) of that
machine [16–18]. Once, the fault is detected, this module triggers the autonomous action
module [5, 10].

1.1.2 Self-healing and Autonomous Action

This is a machine-learning based module that analyzes the state of the machine and defines
the proper recovery action to take [16, 17]. The autonomous action module interacts with
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the physical machine and provides the automatic corrective actions to improve the machine’s
uptime [15, 17]. The performed action at time t is evaluated according to the updated
sensor data of the machine at time t+1. The autonomous actions include three types of
actions: Pre-Failure, Post-failure, and triggering for spare replacement. Both modules of
the autonomously maintained machine are developed in a Digital Twin environment [17].
Figure 1.1 depicts the integration diagram of the two autonomous machine’s modules and
the physical machine.

Figure 1.1 Diagram of Autonomous Maintained Machine Integration

1.2 Problem statement

According to the topics discussed in previous sections, the problem statement is formalized
and the following research questions will guide the research in this thesis:

• How can unseen/unexpected anomalies be detected, identified, and categorized?

• How quickly and accurately will the proposed approaches deal with fault detection and
recover the system before its breakdown?

• How can a self-healing mechanism be implemented? How could it be linked to the
failure cause?

• To what level can the self-healing approaches improve the operational performance of
the system?



4

• How could the unavailability of data impact the implementation of autonomous ma-
chines?

1.3 Research Objectives

The main objective of this research is to develop different approaches for self-healing and au-
tonomous uptime-improvement for the operating machines. The proposed machine-learning
and data-driven approaches integrate the capabilities of Digital Twin and Artificial Intelli-
gence (AI) to perform autonomous actions that mitigate systems in the pre-failure and post-
failure states. Online and real-time data is analyzed to predict and detect the anomalies
and performance degradation. The root cause analysis is performed to develop the corrective
actions that are executed through an autonomic closed-loop. This main objective is divided
into four sub-objectives as follows:

• Objective 1: Functional Failure and Anomaly Detection, Diagnosis, and
Prognosis.
This objective address the modeling and simulation of a diagnosis and prognosis health
assessment technique. The health assessment tool detects machine anomalies due to
normal and abnormal events such as normal degradation of electrical and mechanical
systems, and abnormal events such as anomalies and faulty events. This objective in-
cludes developing a machine learning tool that can be integrated into the DT online to
monitor performance degradation, which can be stopped and redressed if proper action
has proceeded.

• Objective 2: Develop a Self-healing Mechanism for Post-failures
This develops a DT self-healing mechanism that analyzes the controllable variables of
the machine to perform certain recovery actions autonomously. Modeling and simu-
lation of a proactive ML algorithm to be interconnected with the health monitoring
and detection module (objective 1) to provide online self-healing actions that are quick
enough to recover the machine status in post-failure status. Development of self-healing
mechanism that is easy to be integrated to the operating machines without additional
hardware requirements.

• Objective 3: Develop Pre-Failure approach to improve the systems perfor-
mance
Objective 3 involves developing an approach to monitor system performance’s degrada-
tion in Pre-Failure stage and continuously executes autonomous-actions that improve
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system performance. Machine-learning algorithms are developed to monitor the per-
formance degradation and define the penitential failure point of the system studied.
This approach addresses the best actions to take, considering Time to Failure (T2F)
extension, productivity, and smoothing the transition to slowdown the degradation rate
of the systems.

• Objective 4: Autonomous uptime-improvement Scheme
It Develops a general scheme to link failure analysis and autonomic actions to improve
the uptime of a system with data unavailability. This scheme models a closed-loop
relationship between the uptime of the system and its online operating conditions. The
scheme that is developed combines the system failure modes, symptoms, causes, and
different healing modes. It includes recommended autonomous actions to improve the
uptime of the systems studied.

1.4 Originality of The Research

This research develops novel approaches to enable autonomous maintained machines. To the
best of our knowledge, the following topics have not been discussed in the literature.

• Developing a novel self-healing mechanism based on the LAD Machine learning al-
gorithm to detect and define the failure root cause. This mechanism enables online
self-healing with interpretable fault-recovery actions.

• Developing a model-free approach that addresses the system performance and extends
its Time-to-Failure (T2F) in the pre-failure interval. A combination of Reinforcement
Learning (RL) and the LAD algorithm detects the potential failure point of the system
and executes continuous actions to increase the T2F and to keep the system operating
at an acceptable performance level.

• Developing an autonomous scheme to improve the uptime for electric buses with data
unavailability or data uncertainty. Extension of the Reliability Center Maintenance
(RCM) concept to include autonomous improvement actions. Adapting the Fuzzy-FTA
algorithm to analyze the failure of electric buses and to define the bus’s components
that have the potential to fail.

• Developing an approach that combines the Long-Short-Term-Memory (LSTM) and
Regression Adjustment for Multivariate (RAM). This approach enables the monitoring
and detection of anomalies for a robotic arm while the data variables are correlated
and unsupervised.
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• Developing a machine learning-based framework for the implementation of maintenance
4.0 in the aerospace industry. This framework addresses the cost-reduction of system
implementation and decreases the number of required sensors.

These are general points about the originality of this study: more detailed ones are stated in
each of the following chapters.
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CHAPTER 2 THESIS ORGANIZATION

2.1 Organization of the Thesis

Figure.2.1 illustrates the structure of the thesis to implement the autonomous up-time en-
hancement in industrial systems according to operational data. This thesis is divided into
eight chapters, as follows:

• Chapter One introduces the research problem and the general objectives.

• Chapter Two reviews the critical Literature and related research.

• Chapter Three is the current chapter and it shows the thesis organization and research
deliverable.

• Chapter Four addresses the detection of anomalies.

• Chapter Five develops a self-healing mechanism to recover the machine after the
incident of the fault.

• Chapter Six is a maintenance 4.0 framework, and it addresses the prediction of the Re-
maining Useful Life (RUL) for aircraft engines. Different machine learning algorithms
are developed to analyze the system run-to-failure data.

• Chapter Seven is a Pre-Failure approach to slowdown a system’s degradation and
increase the T2F. The developed approach is verified on a CNC machine.

• Chapter Eight studies a failure analysis for complex integrated systems that does not
have available operational data. The system is dismantled to its basic components to
defend the failure causes and system’s critical components. The proposed approach is
implemented in a wheel Motor Electric-Bus (W.M.E-Bus).

• Chapter Nine is a general scheme to develop and implement the autonomous correc-
tive approaches in the Digital Twin environment. This scheme tackles the unavailability
of operational data or data that contains uncertainty. Its objective is to improve the
uptime of complex integrated systems that have critical failure consequences. An auto-
nomic closed loop is developed to execute uptime improvement actions while monitoring
real operating conditions. The proposed scheme is verified on a W.M.E-Bus to increase
its uptime.
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• Chapter Ten provides a general discussion.

• Chapter Eleven is the conclusion and future work.

Chapter 5
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Figure 2.1 Thesis structure

2.2 Research Deliverable

The outcomes of this research are six articles that cover the four main objectives provided
in section 1.3, as follows:

1. Detection and Monitoring for Anomalies and the Degradation of a Robotic
Arm Using Machine Learning

• Published in: Advances in Automotive Production Technology–Theory and Ap-
plication. Springer Vieweg, Berlin, Heidelberg,2021.

• Abstract: Robotic arm performance varies due to normal and abnormal events.
Normal events may include degradation of equipment, motors, mechanical system
joints, and gears, while abnormal events may occur such as faulty episodes. In this
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paper, we address positional performance degradation that can be stopped and
redressed if suitable required action is achieved. The Tool Center Point (TCP)
position measurement devices are expensive, hence unavailable to every robot.
Some industrial processes are critically sensitive to target tool position such as
assembly, pin and past, and material handling. We propose a data driven ar-
tificial intelligence tool to detect anomalies and degradation of the robotic arm
for a positional health assessment without the need for special advanced sensors.
TCP deviation is predicted using deep machine learning models that train on a
time series of historical data of the robot’s performance. Statistical thresholds are
calculated to detect the robotic arm’s degradation and anomalies by performing
residual analysis. An alarm system is built by applying the proposed monitoring
tool online.

2. Autonomous self-healing mechanism for a CNC milling machine based on
pattern recognition

• Published in: Journal of Intelligent Manufacturing.

• Abstract: A sustainable and reliable machining process is the main goal of seek-
ing machine digitization. Artificial Intelligence (AI), and Cyber-Physical System
(CPS) combined with Artificial Intelligence are used for process control. This has
become more essential in the case of machining of high-cost aerospace materials
and critical product specifications. In this paper, a novel self-healing mechanism
was developed to recover a CNC machine from producing parts that do not con-
form to surface roughness’s specifications. The machine settings are reconfigured
autonomously and online to recover from the effect of tool wear and to keep
the surface roughness within the design specifications. The proposed self-healing
mechanism is based on a pattern recognition algorithm called Logical Analysis
of Data (LAD). This algorithm generates patterns that characterize the out-of-
specification state, and provides a corrective setting within the recovery patterns
of the within-specification state by using various distance approaches. The de-
veloped self-healing mechanism is composed of three modules: CPS model of the
CNC machine (module 1), classification into, out of, or within-specification states
(module 2), and a self-healing controller (module 3) that is activated if the state
of out-of-specification is found by module 2. The three modules are software. The
current hardware system of the machine is not altered. The proposed self-healing
mechanism is validated on CNC machines with a wide range of machining param-
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eters of feed rate from 20 mm/min to 700 mm/min and spindle speed from 10,000
RPM to 40,000 RPM. To validate the developed mechanism, a deep learning arti-
ficial model was developed on physical data to emulate the CNC milling machine
in a CPS simulation environment, and test runs were executed. The proposed
self-healing mechanism was evaluated under several simulation runs that covered
the ranges of CNC machine settings. The measure of performance of the proposed
mechanism is the out-of-specification clearing time. The validation runs show that
the proposed self-healing mechanism was able to clear the out-of-specification state
and to recover the within-specification state in less than three seconds, with the
best distance metric approach. The results of the time response for each test run
are reported.

3. Aircraft Engine Remaining Useful Life Prediction Framework for Industry
4.0

• Best graduate paper award, IEOM, Toronto 2019

• Abstract: This article proposes a Condition-Based Maintenance (CBM) approach
for aircraft engines and Remaining Useful Life (RUL) monitoring, and failure pre-
vention. Due to the unavailability of run-to-failure data, Turbofan Engine Simu-
lation data, obtained from NASA repository, is used to train and test our model.
Data Acquisition and Management system framework and planning are proposed
for online monitoring and RUL prediction. In practice, sensor measurements usu-
ally suffer from noise contamination, hence the prediction models are challenged
by noise contaminated data for both training and testing tasks. This is done to
assess their prediction ability in a similar condition of having noisy data. Lin-
ear and nonlinear prediction models are developed, with performance comparison
addressing both regression and classification problems. Models performance in-
dices consider both prediction accuracy and percentage of predictions before the
actual failure (PBAF). The proposed model considers continuous learning and im-
provement to account for any further operational changes that affect the model
prediction ability. This is reached by ingesting the model with the actual RUL
during the maintenance of the engine unit, and by comparing it to the predicted
one.

4. Deep Reinforcement Learning for Autonomous Pre-Failure Tool-Life Im-
provement
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• Accepted with minor reversion in: International Journal of Advanced Manu-
facturing Technology.

• Abstract: This paper develops an approach to improve a CNC machine’s tool
performance and slow down its degradation rate automatically in the Pre-Failure
stage. A Deep Reinforcement Learning (DRL) agent is developed to optimize the
machining process performance online during the Pre-Failure interval of the tool’s
life. The Pre-Failure agent that is presented in the proposed approach tunes the
feed rate according to the optimal policy that is learned in order to slow down
the tool’s degradation rate, while maintaining an acceptable Material Removal
Rate (MRR) level. The machine learning techniques and pattern recognitions are
implemented to monitor and detect the tool’s potential failure level. The pro-
posed mechanism is applied to a CNC machine when turning Titanium Metal
Matrix Composites (TiMMC). A CNC machine Digital Twin (DT) is developed
to emulate the physical machine in the digital environment. It is validated with
the physical machine’s measurements. The proposed pre-failure mechanism is a
model-free approach, which can be implemented in any machining process with
fewer online computational efforts. It also covers a wide range of cutting speeds,
up to 15,000 RPM. Deployment of the proposed machine learning approach for
the particular case study improves the tool’s Time to Failure (T2F) by 40% and
the MRR by 6%, on average, compared to the classical approach.

5. Failure Reasoning and Uncertainty Analysis for Wheel Motor Electric Bus

• published in: 26th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA). IEEE, 2021.

• Abstract: Wheel Motor Electric Bus (W.M.E-Bus) is a recent e-mobility tech-
nology, which has a complex system integration. Since the operational reliability
and life cycle data of such systems is scarce, it becomes impractical to plan for
maintenance and determine system-critical components. Moreover, E-Bus system
dismantling and assembling is a long time process especially for components near
to the its Power-system. In this paper, we propose a Fuzzy-logic fault-tree eval-
uation for the W.M.E-Bus system under uncertain failure data. The proposed
method indicates the critical components that significantly influence the system’s
failure uncertainty. At 10% failure rate uncertainty, control unit failure, including
the embedded software, is ranked the top critical failure mode with 1.8 Fuzzy
Importance Measure (FIM).
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6. Autonomous Uptime-Improvement for Electric-Bus in Digital Twin Envi-
ronment

• Submitted to: IEEE Transactions on Intelligent Transportation Systems

• Abstract: Autonomous and self-improvements systems rely on the historical oper-
ational data of these systems. With the lake of operational data, the development
of the self-improvement process becomes more challenging. This paper develops
an autonomous uptime improvement scheme for a system the unavailability or
uncertainty of the operational failure data. Fuzzy-Fault Tree Analysis (F-FTA) is
adapted to analyze the system failure with operational data uncertainty. Mean-
while, the Reliability Centered Maintenance (RCM) worksheets are developed to
define the uptime-improvement autonomous actions. The proposed scheme is ver-
ified on the Wheel Motor Electric Bus (W.M.E-Bus) drive system in Digital Twin
(DT) environment. It links the on-road Physical W.M.E-Bus driving condition to
the system failure and reliability estimation, which are in the digital DT environ-
ment. The Embedded Control Unit (ECU) transmits the W.M.E-Bus’s driving
cycle to be analyzed in the digital environment. Then, the improvement action of
derating percentage for the driving cycle is sent back to the E-bus to automati-
cally manipulate the driver’s pedal in the next driving cycle. In this particular case
study, the deployment of the proposed scheme increases the maximum allowable
W.M.E-Bus millage distance by 8603 miles when it reduces the driving cycle by
36 % on average. A detailed improvement analysis for different operating speeds
and RCM worksheets are reported.
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CHAPTER 3 CRITICAL LITERATURE REVIEW

3.1 Fault-Tolerant Control Systems

Fault-tolerant control (FTC) is a set of recent techniques that were developed to increase
plant availability and reduce the risk of safety hazards. It aims to compensate for fault effects
on the system during operation to maintain system stability regardless of the nature of the
fault. Fault-tolerant control merges several disciplines to achieve this goal, including online
fault detection, automatic condition assessment, and calculation of remedial actions when a
fault is detected [6, 9]. In FTC, a fault is defined as a deviation in the parameters of the
differential equations that modeled the system. Fault tolerance is defined as the ability of
the system to continue its function regardless of its faults [6, 9]. Passive FTC (PFTC) is
considered the traditional way of FTC, which is limited to a few faults that were defined
in the design phase of the machine. On the other hand, Active FTC (AFTC) consists of
a Fault Detection and Isolation (FDI) module in addition to a reconfiguration mechanism
[6, 9, 19]. AFTC has a more complex architecture, with a slower response time than PFTC.
However, it can accommodate various fault types. It is used to design an online controller to
tolerate faults in sensors, actuators, or system disturbances, and to achieve the stability of
the system [6,6,19]. The AFTC system is divided into four sub-systems: (1) a reconfiguration
controller, (2) an FDI module, and (3) a controller reconfiguration mechanism. The controller
mechanism selects the configured controllers, 1 to N, according to the FDI signal. Each
controller is previously configured to cover certain system stability rang under a certain
FDI signal condition. As system complexity and nonlinearity increase, Lyapunov equations
will become more complex to model, and they will need more computation time, as the
reconfiguration mechanism’s response time increases. AFTC takes a large computation time
online for fault estimation and reconfiguration mechanism. Moreover, AFTC is a complex
architecture [6, 9]. The reconfigured controller is built on traditional control theories and
nonlinear mathematical models. This means that the AFTC reconfiguration mechanism
does not learn from previous experience. Consequently, for the detection of new/undersigned
faults, they produce erroneous decisions [6, 19]. Also, for the FDI module, the accuracy
with a neural network is not guaranteed [20,21]. Finally, fault-tolerant control is considered
a reactive system that handles post-failures and does not address a machine’s degradation,
which needs an active system to consider the pre-failure status [5]. PFTC is limited to several
faults that have been defined in the design phase. If the incident fault is not included in the
previously designed ones, this may lead to a system breakdown. Both types of FTC have
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several industrial limitations. FTC is considered to be a reactive technique because it reacts
after the incident of failures [5].

3.2 Maintenance in Cyber-Physical Systems (CPS)

Maintenance 3.0 is aimed at reaching high equipment availability by avoiding the failure
occurrence. In that sense, it is a pre-failure action. It is based on condition-based mainte-
nance [5,22]. In Industry 4.0, the IIOT technologies lead to the development of cyber-physical
platforms, where equipment and devices are fully connected to a central network [16,23]. This
means that all of the machines are aware of their status as well as the status of other ma-
chines in the production line [16, 22, 23]. As such, more information is available online and
in real-time, and maintenance actions can be updated instantaneously to avoid failure. J.
Lee, et.al studied the Prognosis Health Management (PHM) of a saw-cutting machine that
implemented the five levels of CPS architecture [10,24,25]. This study developed a prognostic
tool for self-awareness. This tool detects anomalies due to saw blade degradation. The study
highlighted diagnosis and prognosis in the CPS environment. CPS research aims to have full
integration of the five levels of network control, data analysis, learning theories, simulation,
and visualization. It enhances the incorporation of engineering disciplines to achieve a fully
autonomous and efficient process [25]. In this thesis, we consider the digital environment of
the CPS to have a self-healing and auto-maintained machine.

3.3 Reliability Centered Maintenance (RCM)

Reliability and maintenance are based on the efficient definition and diagnosis of anomalies
and failures [26–28]. They are also based on finding the optimal actions of maintenance
or replacement time [29]. Reliability Centered Maintenance (RCM) is a concept that was
introduced to reduce failures caused by inadequate maintenance for several industries [30].
Maintenance is applied to ensure that the machine continues to perform as intended, while
RCM addresses modes of failure and their consequences and possible maintenance actions.
These actions are chosen to improve the maintenance function and minimize the influence of
failures because of inadequate decisions. The RCM approach identifies the potential causes
of failure, failure effects or consequences, and possible actions to prevent or reduce the risk
of failure [30]. Effects of machine failure and failure consequences consider human, environ-
mental, and operational risks. To prevent failure, the failure mechanism of each failure mode
is identified. One of the most common tools to clarify and understand failure causes is a
Fault Tree Analysis (FTA). FTA is a top-down approach that starts with anomalies at a
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top-level, then moves down until reaching the root causes or basic events level. In the middle
levels, there are logical combinations of intermediate events that lead to anomalies [29]. A
graphical representation of FTA leads to failure mode mechanism. Hence, the recommended
RCM actions become justifiable. It also shows the shortest way to prevent failure. In this
research, RCM concepts are used to reach objective 4.

3.4 Logical Analysis of Data (LAD)

LAD is a non-statistical supervised data mining method. LAD combines Boolean logic func-
tions and combinatorial optimization. It is capable of solving classification problems [31].
The idea of LAD was introduced by Peter L. Hammer in [20]. The advantage of LAD
over other classification methods is that it generates interpreted logical patterns for each
fault [20,21]. LAD has been used successfully in condition maintenance [20,21,31]. It shows
excellent performance in knowledge extraction for supervised and semi-supervised learning
problems. The cbmLAD software was used for condition-based maintenance by Yacout et
al. [32]. cbmLAD is also used in several applications and multiclass industrial fault diagnosis
and prognosis problems [20,21,31]. The main cbmLAD processes are (1) Data binarization for
labeled data, (2) pattern generation, and (3) classification with discriminant functions [32].
CbmLAD generates understandable and more interpretable and strong classifying patterns.
In this research, cbmLAD is used to obtain the interpretation patterns for the controllable
and uncontrollable variables of the machine. LAD does not require data pre-processing or
any statistical assumptions, which make it a general applicable tool for any kind of machine
or data. Moreover, cbmLAD does not require high computation, which makes it a robust
applicant to achieve objective 2 and 3.

3.5 Reinforcement Learning for Continuous Control

The standard RL consists of a decision taken in a discrete time step. At time step t, a
virtual agent receives state St, takes action at and finds the reward r [33, 34]. The RL
goal is to find the policy π that maximizes the expected state return J . Q-learning is
an off-policy algorithm that uses a greedy policy. The selected action is what maximizes
the returned Q-value. It is impossible to apply Q-learning to a continuous action space
environment, where to find the greedy policy, it is required to optimize action at at each
time step, which is difficult. The actor-critic approach is used to solve this issue with the
Deterministic Policy Gradient (DPG) algorithm [34]. The Critic is an action-value function
used to calculate the temporal difference (TD) error to criticize actions made. The actor
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is deterministic policy function used to choose action at given state S and it is updated
according to expected return J [33, 34]. A Deep Deterministic policy gradient (DDPG)
algorithm is an implemented deep Q-network on DPG to learn in large state and continuous
space. In off-policy algorithms, the exploration is independent of the learning process [35].
DDPG challenges the exploration policy µ′ with random noise [34]. DDPG was implemented
for set point tracking control of a complex chemical process with non-linearity and noise [33].
The implemented DDPG consisted of a double deep network to consider continuous action
needs. The environment was represented by mathematical differential equations. The reward
function is calculated as the difference between a set point and sensor measurement. DDPG
was developed as a toolbox for the speed control of various types of electrical motors [36].
The main items in an electrical rotating machine environment are an electric motor, motor
drive, and mechanical load. Electrical motors are categorized according to the type of power
supply, such as Alternating Current (AC) or Direct Current (DC) and theory of operations.
Each motor has a specific design of a motor’s drive. A.Traue, et.al (2019) implement the
DDPG to control the speed of DC and Permanent Magnet Synchronous motors environments,
including the motor drive with variable mechanical loads [36]. The main feature of DDPG
computing is its highest performance, with a continuous control environment [33,34]. DDPG
is a model-free, continuous environment, off-policy algorithm that uses a replay buffer that is
stored and updates states, actions and rewards for previous time steps during training [37].
In this research, DDPG is used to achieve objective 3 of optimal proactive self-healing action.
It learns and updates the algorithm, and provides a continuous action space [33,34].
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Abstract
Robotic arm performance varies due to normal and abnormal events. Normal events may in-
clude degradation of equipment, motors, mechanical system joints, and gears, while abnormal
events may occur such as faulty episodes. In this paper, we address positional performance
degradation that can be stopped and redressed if suitable required action is achieved. The
Tool Center Point (TCP) position measurement devices are expensive, hence unavailable to
every robot. Some industrial processes are critically sensitive to target tool position such as
assembly, pin and past, and material handling. We propose a data driven artificial intelli-
gence tool to detect anomalies and degradation of the robotic arm for a positional health
assessment without the need for special advanced sensors. TCP deviation is predicted using
deep machine learning models that train on a time series of historical data of the robot’s
performance. Statistical thresholds are calculated to detect the robotic arm’s degradation
and anomalies by performing residual analysis. An alarm system is built by applying the
proposed monitoring tool online.

Keywords: Robotic Arm, Position Health Assessment, residual analysis, machine learning.

4.1 Introduction

Industrial robots represent an important part of industrial manufacturing and ma-chining
process. They are critical to industrial processes, such as assembling, and are sensitive to
robotic arm tool displacement. A small displacement or deviation leads to line stop, product
reworking, and process down time. Robotic arms are challenged with significant variability
and positional uncertainties that frequently result in robot position failure. Malfunctioning
robots cost industrial plants more than 20K$/min [38]. Robotic arm position health as-
sessments have been addressed in the literature to solve displacement problems and enhance
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overall accuracy [38–41]. However, this requires highly accurate advanced measurements that
are difficult to be found in each manufacturing plant. Meanwhile, it is not easy to send these
robots to be calibrated every working day.
In recent years, researchers have worked to address fault detection of industrial robot arms.
Their work is categorized into two groups, a model-based [38,40,42,43] and historically-based
model [44, 45]. The model-based methods use mathematical equations to model the physics
of the robotic arm and errors in the inverse kinematic matrices. Manish Goel, et.al [40] used
a model-based method to study unified locked-joint failure. These authors considered one
type of manipulator fault of a locked joint. The robot arm was analyzed under a faulty state
over all feasible space the robot could reach. This method was used to model 2 Degrees of
Freedom (Dof) and 3 DoF simple robotic arms. However, this method needs significant com-
putational power, thus it is difficult to be applied to the online operation of a 6 DoF robot
arm. Guixiu Qiao, et.al 2017 [42] developed a mathematical model to detect the positional
error using an inverse kinematics model for a 6 DoF robot. This method has an industrial
limitation, since it requires the measurement and the recording of the robot feasible working
space using advanced 7-D measurements before operation. Yizheng Zhang, et.al 2019 [38]
used QR codes and an advanced camera to detect robotic arm joints that have had a failure
for pick-and-place experiments. The proposed method needs the presence of cameras, hence
a clean environment to obtain precise measurements.
The other detection methods are based on analyzing the robotic arm’s stored data. Costa,
Marcelo, et.al 2019 [44] developed a hybridization of a boosting classifier to detect joint fail-
ure for a 6 Dof industrial robot. They assumed that the data fit a lo-gistic distribution. This
proposed method was a failure detection approach, and it did not address the robot degrada-
tion anomalies. Qibo. Y, et.al 2020 [45], studied the fault diagnosis for ball screw industrial
robots. The current fault’s signature was characterized to diagnose two types of faults. The
developed diagnostic model used short-time Fourier trans-form (STFT) signal analysis and
logistic regression classifiers to detect a faulty state. STFT signal analysis outperforms the
wavelet decomposition. Current ball screw data consists of 20 samples for each fault and 20
samples for motor health status.
The main contribution points of this paper are: (1) the development of an online data-driven
positional health assessment tool for robotic arms. This tool monitors and detects displace-
ment anomalies regardless of measurements’ correlations. (2) The development of a time
series Artificial Intelligence (AI) model to predict robotic arm displacements before incident
or failures. (3) Cost savings, since the developed tool does not need special advanced dis-
placement measurements in a robot’s operational environment.
This paper is organized as follows: Section 2 contains the robotic arm data description. Sec-
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tion 3 is a summary of the proposed methodology. Section 4 presents the obtained results,
and the conclusion is summarized in Section 5.

4.2 Data Description

The proposed data-based method ingests a time-series data for a six degree of freedom robotic
arm with six joints. The robot has a payload of 5 kg. The speed of all joints is 180 o/S,
the tool speed is 1 m/s, and the repeatability is ± 0.1 mm. Table 4.1 shows the description
of input and response variables that were used for the proposed supervised learning model.
This robotic arm data is from laboratory data and was acquired by the National Institute of
Standards and Technology’s (NIST) with a frequency of 125 Hz for six position episodes [40].
The data response variables are the Tool Center Point (TCP) Cartesian coordinates (x, y,
and z) and it was measured with laser sensor that has an index of [55–57] in Table 4.1.

Table 4.1 Descriptions of data

Variable Index Variable name Variable type
1–6 Target joint [1–6] positions (angle) Setting
7–12 Actual joint [1–6] positions (angle) Measurement
13–18 Target joint [1–6] velocities (m/s) Setting
19–24 Actual joint [1–6] velocities (m/s) Measurement
25–30 Target joint [1–6] currents (m/s) Setting
31–36 Actual joint [1–6] currents (A) Measurement
37–42 Target joint [1–6] accelerations (m/s2) Setting
43–48 Target joint [1–6] torques Setting
49–54 Joint control [1–6] currents (A) Measurement
55–57 Actual Cartesian coordinates (x, y, z) of the TCP (m) Response

4.3 Methodology

4.3.1 TCP displacement prediction

We propose a deep Long Short-Term Memory (DLSTM) model to predict robotic arm tool
displacement, since the robot data is a time series. Our proposed DLSTM model consists of
two main Long Short-Term Memory (LSTM1, LSTM2) layers, two drop-out layers, and a Full
Connected dense Neural network (FCN) layer. The DLSTM prediction model architecture
is shown in figure 4.1. Its input is the robotic arm’s joint data variables that have an index
of [1 : 54] in Table 4.1 with time window 400 m sec (50 samples). Meanwhile, the output
is the predicted TCP displacement for the 51st sample in the next time window. It is the
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Euclidean distance given in equation 7.1 and it depends on the response variables that were
indicated in Table 4.1.

54x10x50

TCP predicted 
displacement

Anomaly 
detection 

RAM 
Residual µ, б

LSTM_2
100x400

LSTM_1
54x400

Dropout

FCN
Linear activation

50x1

Dropout

DLSTM model

TCP Target settings 

Figure 4.1 Schematic of the proposed DLSTM-RAM robotic arm anomalies detection.

TCPd =
√

(TCPx)2 + (TCPy)2 + (TCPz)2 (4.1)

Where, TCPd is the Euclidean distance from the robotic arm base joint, TCPx, TCPy, andTCPz

are the measured tool center point displacements for x, y, and z Cartesian coordinates, re-
spectively. This DLSTM prediction model eliminates the special need of TCPs for expensive
position sensors. It achieved high accuracy, as will be shown in the results section.
Figure 4.2 plots the robotic arm Tool Center Point displacement (TCPd) Auto-Correlation
Function (ACF). ACF is the correlation between TCPd observations as a function of time
lag between each observation and a prior one [46]. Response variables are corre-lated vari-
ables, as given in figure 4.2. ACF for TCPd was calculated with the Pearson’s correlation



21

coefficient, which is a value between [-1, 1] to describe the positive and negative correlation,
and zero ACF means zero correlation [46].

Figure 4.2 Tool center point displacement autocorrelation.

4.3.2 Multivariate Process Monitoring

Most of the industrial process has several output variables that affect process performance.
Accordingly, multivariate process monitoring was developed. This was an extension of uni-
variate quality control to avoid false alarms or failures of anomaly detection [47]. In multi-
variate, the monitoring data variables x is a matrix [p× n] given by [x1, x2, . . . , xp] , where
n is number of data points and p is number of data variables. In our case, p = 54 variables
while x is the data variables that have a variables index of [1 : 54] given in Table 4.1. The
monitoring variables means is µ = [µ1, µ2, . . . , µp] and the covariance matrix (Σ) is [p× p]
diagonal matrix of variables’ standard deviation. Therefore, the multivariate normal proba-
bility density function is given by equation 7.2.

f(x) = 1
(2π)p/2[Σ]1/2 exp(1

2(x− µ)Σ−1(x− µ)) (4.2)

The robotic arm TCP displacement response variable has a correlation, as shown by figure 4.2.
Regression Adjustment for Multivariate (RAM) data is effective with correlated variables [48].
The RAM control chart uses linear regression to predict response variables. RAM models
show the residual analysis of the predicted TCP position in comparison with the desired one.
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The residual error is the difference between the predicted TCP displacement and the target
value. The residuals are uncorrelated, even though the original TCP data was correlated
[47, 48]. In this paper, we develop a RAM and DLSTM prediction model (DLSTM-RAM)
for robotic arm monitoring. The proposed DLSTM-RAM model architecture is given by
figure 4.1. RAM model has inputs of TCP target settings and DLSTM predicted values
to detect the positional error anomaly with the internal parameters of residual mean and
standard deviation. The DLSTM-RAM internal parameters tuning and model capabilities
are discussed in results section.

4.4 results

Our DLSTM prediction model is trained with 200 training epochs, 10 input batches, 15206
training samples, and 481-validation samples. The training Mean Absolute Error (MAE)
loss was 52 x 10–4. Training ended at the 30th epoch when the model was trained with early
stopping. Early stopping is one of the methods that we used to prevent overfitting [49]. The
MAE was 27 x 10–4 with 30 epochs of training. Figure 4.3 depicts training and validation
MAE losses during training with early stopping, and it shows the leaning stability of the
proposed model. The lowest loss values were achieved at the 30th epoch. The proposed
model achieved testing MAE at 0.57% when it is tested with 8989 data samples. Figure
4.4 shows the predicted TCP displacement and the actual values with testing data. The

Figure 4.3 DLSTM prediction model training and validation losses with early stopping.

proposed model achieved testing MAE at 0.57% when it is tested with 8989 data samples.
figure4.4 shows the predicted TCP displacement and the actual values with testing data.
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For comparison, a linear regression model was designed with the same training and testing
data that we used for the DLSTM model. Table 4.2 represents the MAE of our proposed
model and the linear regression model for training and testing data.

Table 4.2 DLSTM model vs. linear regression prediction performance

DLSTM Linear Regression
MAE training (15241 samples) 27 x10-4 9 x10-3
MAE testing (8989 samples) 3.95 x10-2 13.98 x10-2

RAM detects the observation as an anomaly if the corresponding residual difference is more
than the upper control limit or less than lower control limit. The control limits are defined as
a residual(µ) ±3* the standard deviation of σ, which were calculated for the first 2000 samples
data samples. Figure 4.5 shows the RAM residual control chart with testing observation data
at rated speed and full payload. The number of anomaly points was 359 observations out of
6519 testing observations. The detected anomaly points are related to two positions out of
the six that formulate a complete robotic arm operational cycle. The chart in figure4.5 shows
a residual difference that is repeated periodically three times. Each one represents a repeated
robotic arm complete operation. Therefore, the anomalies are periodically repeated. Hence,
the robotic arm anomaly samples are affected by the same cause. For further research, more
analysis is needed to define the causes of these anomalies. The detection response time and
the proper self-healing actions requires more investigation. Self-adjustment actions can be
implemented during robot operations to clear the detected anomalies.

Figure 4.4 DLSTM model testing to predict the TCP distance.
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Figure 4.5 RAM Control chart for robotic arm testing data with rated speed and full payload.

4.5 Conclusion

This article presents a novel approach for robotic arm positional health assessments. Indus-
trial robots are confronted with several environmental and field variability challenges that
lead to robot failures. A combination of DLSTM-RAM models detects robotic arm TCP
displacement anomalies. Our DLSTM model outperforms the traditional quality chart pre-
diction model that uses a linear regression. It has lower MAE when testing approximately
10%. While the TCP sensor’s measurement is very ex-pensive and is not available to all
manufacturing plants, the proposed DLSTM-RAM detects position anomalies based on mea-
surements taken of indicators and flags an alarm signal without the need for additional special
sensors. DLSTM-RAM was tested and verified with data obtained from a robotic arm that is
working at rated speed and full payload. For further research, the DLSTM-RAM model will
be improved to include the position anomaly’s causes, and accordingly to perform self-healing
actions.
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Abstract
A sustainable and reliable machining process is the main goal of seeking machine digitiza-
tion. Artificial Intelligence (AI), and Cyber-Physical System (CPS) combined with Artificial
Intelligence are used for process control. This has become more essential in the case of ma-
chining of high-cost aerospace materials and critical product specifications. In this paper,
a novel self-healing mechanism was developed to recover a CNC machine from producing
parts that do not conform to surface roughness’s specifications. The machine settings are
reconfigured autonomously and online to recover from the effect of tool wear and to keep
the surface roughness within the design specifications. The proposed self-healing mechanism
is based on a pattern recognition algorithm called Logical Analysis of Data (LAD). This
algorithm generates patterns that characterize the out-of-specification state, and provides
a corrective setting within the recovery patterns of the within-specification state by using
various distance approaches. The developed self-healing mechanism is composed of three
modules: CPS model of the CNC machine (module 1), classification into out of, or within-
specification states (module 2), and a self-healing controller (module 3) that is activated if
the state of out-of-specification is found by module 2. The three modules are software. The
current hardware system of the machine is not altered. The proposed self-healing mechanism
is validated on CNC machines with a wide range of machining parameters of feed rate from
20 mm/min to 700 mm/min and spindle speed from 10,000 RPM to 40,000 RPM. To val-
idate the developed mechanism, a deep learning artificial model was developed on physical
data to emulate the CNC milling machine in a CPS simulation environment, and test runs
were executed. The proposed self-healing mechanism was evaluated under several simulation
runs that covered the ranges of CNC machine settings. The measure of performance of the
proposed mechanism is the out-of-specification clearing time. The validation runs show that
the proposed self-healing mechanism was able to clear the out-of-specification state and to
recover the within-specification state in less than three seconds, with the best distance metric
approach. The results of the time response for each test run are reported.
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5.1 Introduction

Industrial 4.0 technologies and digitization permit real-time monitoring and controlling of
machine malfunctions autonomously [50,51]. Since more information is available online and
in real-time, maintenance actions can be updated adaptively to avoid process/product fail-
ure [23]. Maintenance 4.0 is a concept that exploits the connectivity between facilities, data-
driven simulations, and AI techniques to develop unmanned self-healing machines [5,18,23].
Reliability and maintenance engineers have studied the concept of the biological immune
system and call it Engineering Immune System (EIS) [5, 52]. An EIS uses AI technologies
to change the classical maintenance strategy approaches that are based on the knowledge
of the mean time between failures (MTBF) to the knowledge of system degradation inci-
dences [53,54]. This change entails continuous monitoring of sensors’ readings and analytics
of degradation [26,55,56]. To add unmanned actions to an EIS, and to achieve Maintenance
4.0, the development of software and hardware modules is needed to obtain a self-healing
mechanism.
In optimization of the cutting parameters, the spindle speed and feed rate are kept constant
during machining process. They are adjusted before the beginning of the machining process
based on the workpiece requirements [53]. Optimization techniques have been applied to
determine the optimal design settings, including speed and feed, of the CNC machine ac-
cording to the condition of the cutting tool [57,58]. The genetic algorithm was used to tune
the design parameters of the CNC machine when turning AISI 4340 Steel under constraints
of productivity, cost, and product specifications [57]. Practical Swarm optimization was ap-
plied to high-speed milling machines to determine cutting speed and feed rate [59]. These
techniques are performed offline, and the machine is not adjusted online in response to the
natural phenomenon of a process’s degradation.
Fault-tolerant control (FTC) is a set of recent techniques that were developed to increase
the plant availability and to reduce the risk of safety hazards. FTC aims to compensate for
fault effects on the system during operation to maintain the system stability regardless of the
nature of the fault. Fault-tolerant control combines several disciplines to achieve this goal by
including online fault detection, automatic condition assessment, and calculation of remedial
actions when a fault is detected [6, 9]. In FTC, the controller acts passively, regardless of
the machine’s fault nature, if it does not have a fault detection module. Huang et. al [60]
designed a controller with a force estimator for a CNC milling machine to control the feed
rate and to maintain the forces in a specific range while the machine is subjected to noise
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uncertainties [60]. The paper addressed the online feed rate changes, but it is limited to
several faults that have been defined in the design phase. The operational faults that result
from the natural phenomena of degradation and the stochastic nature of the machining pro-
cess are not included. In [61], adaptive control is implemented as an active FTC to control
CNC milling forces online, by changing the feed rate when the measurement feedback forces
deviate from an assumed value. The authors consider the force deviation as the only effect of
tool wear. Sadek, et.al.2020 [62] presented a real-time tool-wear prediction to the adaptive
control system as a fault detection module to improve the drilling process performance. The
study is limited to one controlled variable; therefore, it has a limited recovery range, and
the product specification was not addressed. Z. W. et.al (2015) developed a data-driven self-
healing mechanism for a Fused Magnesium Furnace (FMF) [63]. Two software blocks were
added to the original FMF system to detect the abnormalities and to control FMF while
electrodes are degrading. The authors assume abnormality thresholds on the EMF’s current
measurement, regardless of the product specifications. To maintain the product specifica-
tion, a self-adjusting CNC milling process is implemented using feed-forward Neural Network
(NN) [53,64]. The model uses two interconnected NNs to predict the optimal feed rate. The
first NN predicts the tool wear using cutting force sensor measurements. The second NN
predicts the optimal feed rate, with the predicted wear of the first NN. The authors assume
an empirical relation for the predicted feed rate and wear to calculate the surface roughness
(Ra) and to choose the new machine settings. NNs are connected to sensors that measure the
forces and generate feed rate directly without an anomaly detection module. In this case, the
feed rate adjustment becomes very sensitive to the accuracy of the sensors’ measurements.
These are contaminated with noise, which is usually represented by a normal distribution
(i.e., mean ±3 SD). As such, synchronization is needed to adapt the sensor’s fluctuating mea-
surements to the real state of the milling process. In [65,66], variable online spindle speed and
feed rate were applied to high-speed milling machines to stabilize the product quality. These
solutions require adding special sensors to track the variation of Ra, and system stability
analysis is required to verify the new machining parameters. The neural network self-healing
provides an uninterpretable machine setting that is highly sensitive to the NN’s hyperparam-
eters tuning. Shaban, et.al (2017) provided an online alarm system that is triggered upon the
detection of a malfunction or a quality failure according to the patterns generated by LAD.
The results demonstrate that LAD outperforms the NN in detecting machine anomalies [20].
They linked the uncontrollable sensors’ measurements to failure by using pattern recognition.
During online processing, the fault is detected based on the current sensor’s measurements
and the extracted patterns of malfunction. They did not provide a self-healing mechanism
in case of fault incident.
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By definition the self-healing mechanism detects the system’s function-failures, and au-
tonomously executes recovery actions without disrupting its operation [5,15,63,67]. The func-
tion failure could be caused by either system anomalies and/or component failure [11,15,18].
In case of physical damage, the self-healing systems need to have a system redundancy
through the system’s connected redundant components to overcome the physical damage
without interrupting the system’s operation. [6,11]. With the capability of detecting system
anomalies or faults, the self-healing actions do not change the physical structure or the in-
terconnections of the system component [18,20]. It only allows the system to recover and to
continue its operation without disruption.
This paper introduces a new approach for an autonomous self-healing mechanism of CNC
milling operation based on the pattern recognition. The proposed self-healing mechanism
deals with product nonconformity faults and machining process anomalies. The main contri-
bution of this paper is the design of a self-healing mechanism that has the following properties:

1. It does not change the hardware of the machine.

2. It uses a pattern recognition algorithm to generate patterns that differentiate between
the within and out-of-specification states. This algorithm is not based on any empirical
formulation, but machine learning principles.

3. It is triggered to avoid producing products that do not conform to specifications, and
it is applied online.

4. It has a fault detection module to provide warnings once the product moves out-of-
specification

5. It is complemented by a synchronization module that is added to adjust the response
time.

Section 2 of the paper presents the mechanism of the self-healing system. Section 3 describes
the methodology used to build the self-healing mechanism, including the pattern generation
algorithm (LAD), the detection of an out-of-specification state, and distance approaches.
Section 4 demonstrates the implementation process that was built with a deep learning
artificial model to emulate the CNC milling machine. Section 5 presents the validation
process and the obtained results. Section 6 presents conclusion and future work.



29

5.2 The Self-healing Mechanism

In the context of autonomic systems, the self-healing module/component detects the system
malfunctions and performs corrective actions without disrupting the system. [5,15,63,67].The
proposed self-healing mechanism is developed to recover a machine from a state that would
lead to the production of out-of-specification products by changing the values of the con-
trolled variables of the machine. This is a dynamic mechanism that adapts to the actual
machine’s status online. The mechanism is composed of the closed-loop that is provided in
figure 5.1. This loop enables the self-healing mechanism to interact with the CNC machine
to prevent it from producing out-of-specification products. The mechanism includes three
modules. Module 1 is the CNC milling machine that will ingest the LAD algorithm with the
sensors’ measurements and the controllable variables’ settings of the machine. Module 2 is
the fault-detection module that will analyze the data, apply the LAD algorithm to generate
patterns that characterize the within and the out-of-specification status, and classify the
recent sensor’s readings’ levels as belonging to one of these two states. The patterns are gen-
erated by LAD and online modelled by IF-THEN-Rules. Each decision rule represents one of
the extracted patterns, which are generated by LAD. Module 2 provides online monitoring
and analysis of the product quality at each time step (t). In the case study of this paper,
Module 2 diagnosis the system status, and raises a fault flag for an out specification status.
The fault detection module works with the CNC machine’s model in synchronous mode, and
it reads the machine sensors’ values at each time step (t); therefore, the fault detection re-
sponse is dependent on the sensors’ measurement response time. Module 3 is the self-healing
module. If the out-of-specification fault is detected at time step (t), the Self-healing module
reads the current machining parameters, then finds the nearest recovery pattern from the
generated patterns based on a distance approach (r). To close the autonomic loop, the self-
healing actions are set on the CNC machine in Module 1. At the next time step (t+1), fault
detection Module 2 states whether the fault is uncleared. If so, a new loop of data ingestion
and analysis, pattern generation, and self-healing execution are taken. A synchronization
block is added to Module 3 to avoid the impractical oscillations of the new settings and to
stabilize the autonomic loop.

5.3 Materials and Methods

This section presents the LAD algorithm to generate the patterns, which are used to develop
the self-healing actions in Module 3, and to classify and detect the out-of-specification in
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1 2

3

Figure 5.1 CNC machine Self-healing closed-loop system

Module 2.

5.3.1 Logical Analysis of Data and pattern generation

Logical Analysis of Data (LAD) is a supervised data mining technique that combines Boolean
logic functions and combinatorial optimization to solve the classification problems [32]. LAD
generates explanatory logical patterns, which are defined by data features’ boundaries to
identify each state of the machine. Yacout et al. developed a cbmLAD software for condition-
based maintenance applications with LAD [32]. LAD generates patterns that segment the
state space into zones that belong to different classes. Pattern generation is the step of finding
the logical relation between the data’s features to characterize these zones. Each logical
relation represents a pattern, and each pattern covers a range of data observations within
a specific range of a feature values. cbmLAD utilizes a Mixed-integer Linear Programming
(MILP) algorithm to solve pattern generation problems that characterize positive (faulty)
Ω+ and negative (non-faulty) Ω− classes, in the case of two classes’ classification problem.
The MILP is given by the optimization problem 1, where a pattern’s index yi is zero if the
observation i is covered by pattern p, and 1 otherwise. In a matrix form, i is the data
observation number and j is the feature that is transformed into attributes of binary form
bj and bj+n ∀j ∈ [n, 2n] are the complementary values of bj. The decision variables are wj, a
binary index that takes the value 1 if the attribute j exists in the generated pattern, and zero
otherwise, d is the pattern degree that specifies the number of attributes in the generated
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pattern, and n is the total number of binary attributes.

min
i∈Ω+

∑
yi

s.t. wj + wn+j ≤ 1,∀j = 1, 2, ..n

2n∑
j=1

ai,jwi + nyi ≥ d,∀i ∈ Ω+

2n∑
j=1

ai,jwi ≤ d− 1,∀i ∈ Ω−

2n∑
j=1

wi = d

1 ≤ d ≤ n

wj, yi are binary, ∀i, j

(5.1)

The generated pattern is defined by the attribute bj when wj = 1 and by its complement
when wj+n = 1. cbmLAD solves the MILP model in 5.1 until all of the data observations
in the positive class are covered by at least one pattern, and then reruns it for the negative
class observations. In this paper, positive patterns are the patterns that indicate an out-of-
specification state, and negative patterns represent the within-specification zones.

5.3.2 Distance Metrics Approach

To find the pattern that changes the machine status from an out-of-specification status to
a within-specification status, two distance approaches are implemented to find the nearest
within-specifications pattern to the current pattern that is detected in Module 2 of figure 5.1.
These two approaches are point-to-point distance and point-to-distribution. Consequently,
the Self-healing module will automatically generate the new machine settings that are spec-
ified in the nearest within-specifications’ pattern observed at time (t+1) to the previous
existing settings at step (t).

Point-to-point (P2P) distance approach

The P2P distance equation is provided in Equation 7.2 [68,69], where the Dr
p is the distance

between the machine settings vector x at time step (t) and m is the mean vector of each
recovery pattern p. The point-to-point distance type r is the Manhattan distance if r = 1,
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and the Euclidean distance when r = 2. k is the index of the controllable variables.

Dr
p = (

2∑
k=1
|xk −mk|r )1/r (5.2)

Point to distribution (P2D) approach

To implement the P2D, the Mahalanobis Distance is used. It is calculated from the CNC
settings at the time step (t), at which point the out-of-specification status is detected. The
Mahalanobis distance Dr=3

p is calculated with Equation 3 [70,71], where x is the vector of the
machine settings at time step (t), m is the vector of mean values of each controllable variable
in the recovery pattern and Cov is the covariance [k × k] matrix of the controllable variables
in a recovery pattern. In this study, the P2D distance approach considers all possible settings
inside each recovery pattern, as they have the same priority while calculating the covariance
matrix Cov. The number of recovery settings to be considered in the calculation of the Cov

matrix influences the self-healing algorithm execution time, as shown in the appendix.

Dr=3
p =

√
(x−m)T cov−1(x−m) (5.3)

As an example of the implementation of this methodology, Table 5.1 shows a sample of ma-
chining data for a product’s delamination under different machining settings of spindle speed
[1500-12000] in RPM and feed rate [20-800] in micron/rev. The exit delamination is within-
specification when its value is lower than, or equal to, 1 and out-of-specification otherwise.
To build a self-healing module for this problem, the given data in Table 5.1 is ingested to
cbmLAD to generate the positive (faulty) and negative (corrective non faulty) patterns. In
this example, cbmLAD generates four corrective patterns, as given by Table 5.2.

Table 5.1 Example of CNC exit delamination data

v/f 20 60 100 200 400 600 800
1500 1.00 1.00 1.00 1.08 1.11 1.22 1.24
5000 1.00 1.00 1.05 1.05 1.06 1.14 1.17
8500 1.05 1.00 1.00 1.05 1.06 1.10 1.11
12000 1.00 1.00 1.00 1.04 1.06 1.04 1.07

When the delamination’s out-of-specification state is detected, the self-healing mechanism
selects the nearest recovery pattern according to the distance approach r. For example,
if the fault is detected when the machine settings were 8500 RPM and 600 micron/rev,
the self-healing mechanism calculates the distance between these faulty settings and each
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Table 5.2 cbmLAD Generated Negative Patterns for the delamination quality characteristic

N.o Spindle speed Feed rate Delamination
1 v < 5000 f < 200 Within-specification
2 v < 8500 f < 100 Within-specification
3 8500 < v < 12000 f < 200 Within-specification
4 v > 5000 20 < f < 200 Within-specification

of the four recovery patterns in Table 5.2. The nearest recovery pattern is the pattern
that has the shortest distance to the current faulty settings according to the distance ap-
proach r. In case of P2P, the mean of each pattern is equal to [m1, m2, m3, m4] where
m1 = [v1|min + v1|max−v1|min

2 , f1|min + f1|max−f1|min

2 ]. The mean values are m1= [3250,110], m2=
[5000,60], m3= [10250,110], and m4= [8500,110]. When r=1 the Manhattan distances are
equals to D1

1=75.76, D1
2= 63.56, D1

3= 47.33, and D1
4= 22.13. The shortest distance is D1

4

and it indicates the 4th recovery pattern, which is shown in Table 5.2, as the nearest recovery
pattern to the current faulty settings of [8500, 600], hence the self-healing selects the 4th

pattern to generate the corrective settings with a P2P distance approach.

5.3.3 Machining Monitoring and Fault Detection

Module 2 activates/deactivates the self-healing mechanism where it monitors the CNC ma-
chining process. At each time step (t), Module2 reads CNC machine sensors data and ana-
lyzes it to decide that the current machining status conforms to the required specifications.
Once an undesired machining performance is detected, Module 2 activates the self-healing
mechanism in module 3 of figure 5.1. In the case of multi-quality factors, Module 2 diagnoses
the fault type in addition to the instant of the detection.
In this paper, LAD is used to monitor the machining process and to detect the non-conformed
products. LAD outperforms other Machine Learning algorithms where it generates explana-
tory patterns that defines the fault and its causes [20, 21]. Each pattern is a logical relation
among the machine’s sensors (uncontrollable variables), the current measurement is said to
be covered by a pattern when it satisfies the pattern logical relation. In online mode, each
generated pattern is represented by an IF-Then-Rule and this rule defines the current ma-
chining status.
To explain the online implementation of Module 2, Table 5.3 shows the sensor data of the
example given in Table 5.1. It contains the product exit delamination and the corresponding
uncontrollable variable measurements of the forces x-direction Fx(N) and mean-temperature
Tmean(Co). For pattern generation, the data example in Table 5.3 are ingested to cbmLAD
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to extract the explanatory patterns that are capable to monitor and define the machining
process status. It is stated that the working piece conforms when its exit-delamination is
lower than or equal to one. Table 5.4 summarizes the generated patterns for the data example

Table 5.3 Delamination data example for uncontrollable variables

Fx/Tmean 100 150 200 250 300 350 400
10 1.00 1.00 1.00 1.08 1.11 1.22 1.24
20 1.00 1.00 1.05 1.05 1.06 1.14 1.17
30 1.05 1.00 1.00 1.05 1.06 1.10 1.11
40 1.00 1.00 1.00 1.04 1.06 1.04 1.07
50 1.07 1.00 1.00 1.03 1.05 1.05 1.05

in Table 5.3. Four patterns represent the conforming delamination product and another four
patterns for the out-of-specification product. Each pattern is a logical relation between the
forces Fx and mean-temperature Tmean, and it is bounded by a range of sensors’ measurement
values. In online mode at any time step (t), one of these logical relations is satisfied and its
related pattern is defined, then the current machining status is concluded. The innovation
aspect of this approach is the interpretable patterns that indicate the cause of receiving this
status. For example, if the sensor reading at a time (t) is [50 N , 230 Co] for Fx and Tmean

respectively. The product delamination is out-of-specification as this measurement is covered
by the 1st pattern of the non-conforming patterns. The high temperature is the main cause
to have this non-conformed working piece. To build module 2 that triggers the self-healing
mechanism for delamination out-of-specifications, the four non-conforming patterns in Table
5.4 are modeled by four If-Then-Rules.

Table 5.4 Extracted cbmLAD’s Patterns to characterize the product delamination based
uncontrollable variables

N.o Fx(N) Tmean(Co) Delamination
1 Tmean > 255 Out-of-specification
2 Fx > 45 Tmean < 120 Out-of-specification
3 15 < Fx < 25 Tmean > 175 Out-of-specification
4 25 < Fx < 35 Tmean < 125 Out-of-specification
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5.4 The implementation of the self-healing mechanism to a milling process

The proposed self-healing system in figure 5.1 is applicable to any machining process with
different materials and different quality factors. The developed mechanism is validated to
recovers the CNC machining faults with a wide range of controllable variables for feed rate
[20 mm/min - 700 mm/min], and spindle speed [10,000 RPM - 40,000 RPM]. This mecha-
nism can be applied to all engineering systems, which have controllable variables that can be
manipulated automatically.
In this paper, the self-healing mechanism is tested on a CNC machine while routing a carbon
fiber reinforced polymer material. The experimental data and the data collection procedures
are described in [20]. An example of the collected data is given in Table 5.5. The CNC milling
machine’s experimental raw data is defined by four controllable variables: feed rate f , speed v

, tool length , and depth of cut C, and sensors ‘measurements of forces, Fx, Fy, Fz, and mean
temperature Tmean. At the time of data collection, the surface roughness (Ra) is physically
measured on the product after machining time and it was categorized as within-specification
(0) or out-of-specification (1) according to the Ra value [20]. To emulate the developed self-
healing mechanism, we build and validate an artificial CNC milling machine model. Table
5.5 shows a sample of the experimental data. Each observation is classified based on the
value of produced surface roughness (Ra) value, whether it is within-specification or out-of-
specification. The collected data is imbalanced because it consists of 100 observations with
an out-of-specification Ra and only 8 observations that have within-specification values. To
balance the data, the AMSCO algorithm in [72], is applied to generate new observations
within the specification values of the Ra.
A deep neural network model is built to simulate the CNC milling machining process in
CPS. It has three inputs: the depth of cut C(mm), feed rate f (mm/min), and spindle speed
v (RPM), and four outputs, 3D forces (N) and the mean temperature (Co). To increase
the learning accuracy, we design more than 10,000 different NN architectures with different
layers that varied from one-layer models to five-layer models. The number of hidden neurons
varied from 2 up to 9 neurons. The best model architecture to be selected is the model that
achieves the lowest Mean Square Error (MSE) for unseen testing data.
The sensors’ measurement vector [Fx, Fy, Fz, Tmean] of the physical machine is the output of
the NN model, and we apply 10-folds cross-validation to find out the best NN model archi-
tecture. The NN modeling experiment’s details and the architecture that has the minimum
MSE for each combination of neurons and layers are given in figure 5.2. With the lowest
MSE of 311, the best NN architecture consists of four hidden layers with hidden neurons of
9, 6, 4, and 6 neurons for the 1st, 2nd, 3rd, and 4th layers, respectively.
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Table 5.5 Sample of The Experimental Raw Data (Shaban et al., 2017)

No v
X104 RPM

f
Mm/min C (mm) Tool length Fx(N) Fy(N) Fz(N) Tmean(Co) Ra fault

1 4 250 32 38 9.2 5.8 6.5 305.031 1
2 4 500 32 38 15.4 11.2 6.6 385.058 1
3 4 1000 32 38 25.5 20.5 11.5 437.552 1
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

13 4 250 32 31 9.3 5.8 6.4 231.178 1
. . . . . . . . . .
. . . . . . . . . .

25 4 1000 32 24 29.5 17.6 11.1 421.388 1
. . . . . . . . . .
. . . . . . . . . .

32 4 250 64 38 11.6 7.1 9.1 292.493 1
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

66 4 250 96 38 14.2 7.8 3.1 417.309 1
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

100 1 1000 96 24 79.5 96 49.1 405.448 1
101 4 250 32 32 18.4 5.7 3.2 305.491 0

. . . . . . . . . .

. . . . . . . . . .
107 2 250 64 24 24.2 11.2 6.1 220.27 0
108 3 250 96 24 23.2 8 4.9 281.012 0
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Figure 5.2 Minimum MSE per each model’s layers for unseen testing data

To build the NN model, we used the best NN architecture to be trained and tested on the
deep TensorFlow environment [73]. With the developed deep learning model, The Mean
Absolute Error (MAE) is 5.477 for training and 6.747 for testing (e.g. physical measure-
ment = model reading ± 6.747 Co). Figure 5.3 shows the uncontrollable variables’ values
of (a)Fx, (b)Fy, (c)Fz, and (d) Tmean obtained with the NN model versus the actual physical
measurements for testing data. Once the CNC machine has an out-of-specification Ra, the
proposed Self-healing algorithm produces a corrective action based on the recovery patterns
that are given in Table 5.6 to clear this fault. As a result, the faulty state is updated in the
next time step. To evaluate this interaction in the Cyber-Physical System (CPS), we devel-
oped an artificial CNC milling machine model and validated this model with the physical
raw data in Table 5.5.

5.4.1 Generation of The Recovery Patterns

The recovery pattern matrix contains patterns that are obtained with the software cbmLAD
[32] when the CNC machine product is within Ra specifications. These patterns define the
zones of controllable variables; the spindle speed, the feed rate, and depth of cut values
that would recover the machine from an out-of-specification status. These patterns are
extracted by using the Logic Analysis of Data (LAD) algorithm. Table 5.6 shows the six
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Figure 5.3 uncontrollable variables of (a)Fx, (b)Fy, (c)Fz, and (d)Tmean with the NN model
vs. actual physical testing data

recovery patterns in terms of the controllable variables that are generated by the cbmLAD
software [32] from the data shown in Table 5.5, columns 2 to 5. These patterns classify
the milling process according to the Ra values that are within-specifications. Two MILP

Table 5.6 Recovery Patterns for Machine controllable variables Generated by cbmLAD.

Pattern v (×104RPM) f(mm/min) C(mm)
1 v > 1.5 f < 375 C < 48
2 v > 3.5 f < 375 C < 80
3 v > 3.5 f < 750 C < 48
4 2.5 < v < 3.5 f < 375 C > 80
5 1.5 < v < 2.5 f < 375 C < 80
6 1.5 < v < 2.5 f < 750 C < 48

problems are solved by cbmLAD. First, the controllable machine’s settings that are shown in
Table 5.5, columns 2 to 5, are used to extract recovery (negative) patterns that are shown in
Table 5.6. The second problem is to detect the Ra’s fault within one of the positive patterns
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that are generated in terms of the uncontrollable variables. The values of these variables are
shown in columns 6 to 9 of the sensors’ measurements in Table 5.5.

5.4.2 Out of specification detection modeling

To eliminate additional hardware, the product quality monitoring and fault detection is
developed with using of the current machine sensor data. The fault detection module is
modeled the extracted patterns that generated by applying the Logical analysis of data
(LAD) algorithm to the CNC milling machine sensors’ data, which are shown in columns
6 to 9 in Table 5.5. These patterns segment the multidimensional space that is formed by
the forces and the temperature’s values into two zones: conformed or non-conformed Ra to
specifications. An observation of CNC machine sensors’ data is classified according to the
patterns generated by the uncontrollable variables of forces and temperature. To classify and
detect the nonconformity of the working piece online at each time step (t), each one of the
generated positive patterns is represented by an If-Then-Rule. The machine measurements
are forces (Fx, Fy, Fz) in Newton (N) and mean temperature in Celsius (Co). The fault
detection rules generated by the cbmLAD tool are as follows:

1. IF ( Fx > 24.7 N) THEN non-conformed Ra

2. IF (Tmean > 366.474 Co) THEN non-conformed Ra

3. IF (Fy > 5.75 N) AND (225.724 Co < Tmean < 361.878 Co) THEN non-conformed Ra

4. IF (Fx > 22.4 N) AND (Fy > 5.75 N) AND (Fz > 3.05 N) AND (190.028 Co < Tmean <

361.878 Co) THEN non-conformed Ra

5. IF (Fx > 18.15 N) AND (Tmean > 225.724 Co) THEN non-conformed Ra

6. IF (Fx > 14.9 N) THEN non-conformed Ra

7. IF (Fy >5.75 N) AND (Tmean < 203.86 Co) THEN non-conformed Ra

5.4.3 The Self-healing module

At each time step (t), the fault detection module reads the machine sensor’s measurements
and generates a fault flag signal in the case of non-conforming Ra. The fault flag signal is
transferred to the Self-healing module. In this case, the self-healing algorithm that is shown
in Table 5.7 uses the P2P or the P2D approaches to find the closest recovery pattern, out of
those that are shown in Table 5.6 in terms of feed and speed. This algorithm recovers the
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machining process from the out-of-specification state by returning it to within-specification
state, while minimizing the setting fluctuations to avoid process instability. According to
pattern selection, the self-healing actions at time (t+1) is a vector S= [vt+1, ft+1], whose
value is between the minimum values [vmin, fmin]p of the selected pattern p, and the maxi-
mum values of the vector [vmax, fmax]p.
In this implementation example, the developed Self-healing algorithm with the P2P distance
approach shows the same performance when using the Manhattan distance (r = 1) and the
Euclidean distance (r = 2) for all experiments. The difference between the results becomes
significant with a large number of variables [69]. In this study, we have only two controllable
variables, spindle speed and the feed rate, since the depth of cut (C) value is set according to
the design of the product before the machining process begins. Thus, the self-healing mech-
anism deals with it as a constant value while recovering the Ra from the out-of-specification
state. The self-healing actions are the recovery settings of feed rate (mm/min) and spindle
speed (RPM) at time step (t).

Table 5.7 Propose self-healing algorithm of the CNC Milling Process

Algorithm: Self-Healing Mechanism of CNC Milling Machine 
1. Load cbmLAD pattern matrix and record recovery class (-ve) patterns p ∈ 𝛺– 

2. Reorder recovery patterns matrix in ascending order according to C of each p ∈ 𝛺– 

3. -While (machine Running) do:

4. While (fault detected) do:

5. Case P2P distance

6. Calculate the distance between [vt, ft] and [vmean, fmean]p for distance type r ∈ [1,2].

7. Case P2D distance (r=3)

8. Calculate the Mahalanobis distance between [vt, ft] and pattern’s Cov

9. Select working patterns according to C.

10. Select pattern p* with the smallest distance Dp and according to distance case.

11. Set [vt+1, ft+1] where [vmin, fmin]p*  < [vt+1, ft+1] < [vmax,fmax]p*

12. END for each

13. END for each

The algorithm in Table 5.7 recovers the surface roughness (Ra) fault and provides online
automatic actions to ensure that it meets the product specifications. The input vector for
the Self-healing module contains the machine settings at a time (t) and the fault detection
signal, in terms of forces and temperature. Meanwhile, the output vector contains the recov-
ery settings of feed rate (ft+1) in mm/min and spindle speed (vt+1) in RPM. To save time
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during the online computation, the self-healing algorithm will be active only if there is a
detected fault. It is structured on the Ra recovery patterns in terms of controllable variables,
fault detection in terms of the force and temperature, and the distance metric approaches,
which will be discussed in the next section.

5.5 Validation of the Self-healing Mechanism

To validate the performance of the self-healing system, machine settings that were not used
in the training by the NN algorithm were chosen. These settings are listed in Table 5.8.
They represent the maximum and the minimum values that are allowed for the controllable
variables, which are the depth of cut, the feed rate, and the speed, according to the rec-
ommendation of tool’s supplier. The combination of these values leads to 27 observations
of settings. These observations are ingested to module 1 in figure 5.1 to find the estimated
class for each observation according to the seven patterns of If-Then-Rules that were shown
previously in the modeling of module 2.
Next, the performance of the self-healing algorithm is evaluated by using the SIMULINK
simulation environment, and the sampling frequency is 20 kHz. Seven settings out of the 27
initial observations lead to conforming Ra as shown in Table 5.8. These sets are excluded
from the next steps, since the objective is to simulate the self-healing mechanism by beginning
with a setting that will lead to out-of-specification states. Before simulating the autonomic
closed-loop in figure 5.1, the CNC machine is set with the initial settings listed in Table 5.8
for the 20 out-of-specification labels. In 4 settings, the P2D distance approach led to better
recovery time. These are settings 2,7, 8, and 9 from Table 5.8. In 9 settings, both approaches
led to comparable recovery times. These were settings 18 to 27 from Table 5.8. Finally, 7
settings let to better recovery time with the P2P approach. These are settings 3, 4, 6, 10, 11,
12, 15 from Table 5.8. In the following section, we present the synchronization mechanism
using setting 2, 7, 8 and 9. The results of the other settings are shown in the Appendix.

5.5.1 The Self-healing mechanism Synchronization

In the 2nd initial set, and with a P2P distance approach, the self-healing module receives
the Ra fault flag; then it starts to interact with the CNC machine model to adapt to the
nearest recovery settings of feed rate and spindle speed based on the recovery patterns in
Table 5.6. Figure 5.4.b and c present the actions of the P2P self-healing module to clear the
detected CNC milling Ra flag. Time (seconds) is on the x-axis, while the y-axis presents the
machine controllable variables of the depth of cutting C(mm), feed rate f(mm/min), and
spindle speed v(×104 RPM), respectively, and the detected fault flag is in figure 5.4.d.
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Table 5.8 The 27 Observations of the CNC machine’s Initial Settings with Fault detection
(module 2) response

Run N.o C
mm

f
mm/min

v
×103 RPM

Ra
Specifications state

1 32 100 10 Within
2 32 400 10 Out
3 32 700 10 Out
4 32 100 20 Out
5 32 400 20 Within
6 32 700 20 Out
7 32 100 40 Out
8 32 400 40 Out
9 32 700 40 Out
10 64 100 10 Out
11 64 400 10 Out
12 64 700 10 Out
13 64 100 20 Within
14 64 400 20 Within
15 64 700 20 Out
16 64 100 40 Within
17 64 400 40 Within
18 64 700 40 Out
19 96 100 10 Out
20 96 400 10 Out
21 96 700 10 Out
22 96 100 20 Out
23 96 400 20 Out
24 96 700 20 Out
25 96 100 40 Within
26 96 400 40 Out
27 96 700 40 Out

The red rectangles in figure 5.4.b and figure 5.4.c are 5 msecond time windows. They depict
the high fluctuating self-healing actions of feed rate and speed. The fault flag was not cleared
during the fluctuating period, at the same time the self-healing module generates new recovery
values every t= 5 µseconds. This fluctuation is not acceptable in a practical implementation,
because it causes instability in the machining operation, with the possibility of releasing
the Ra flag once again. To deal with this drawback, the proposed self-healing module and
the fault detection module is synchronized. In The case study of this paper, the machining
material is carbon fiber composites, and the thermocouple lead wire is the temperature
sensor as demonstrated in [74, 75]. The temperature sensor’s measurement increases with
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32 mm Constant depth of cut during 
recovery tine 

Instant of Ra fault detection Instant of Ra fault recovery  

Fluctuated speed setting

Fluctuated feed rate

Figure 5.4 Unsynchronized P2P-Self-healing algorithm actions while recovering from Ra
faulty state;(a) depth of cut, (b) feed rate, (c) Speed, and (d) fault detection flag.

time, and this increment is more rapid as the feed rate increases. At 250 mm/min feed rate,
thermocouple lead wire reads the value of the maximum temperature before 0.5 second [74];
consequently, we model the measurement sensors with a response delay of 0.5 second. We
use this 0.5 second delay to synchronize the Self-healing module 3 in figure 5.1, to the fault
detection module 2 and CNC machine module 1.
The Self-healing module actions of recovery feed rate and speed are synchronized to the fault
detection module by holding the values of the actions until the next update of the sensor
measurements and fault detection signal, and we adjust the synchronization block to 0.5
second. The P2P synchronized self-healing actions are presented in figure 5.5. The fault
detection signal is given in figure 5.5.a and is cleared after 1.5 seconds with the self-healing
action of adjusting the feed rate from 400 mm/min to 200.8 mm/min in figure 5.5.c, and the
spindle speed from 1×104 RPM to 1.94×104 RPM in figure 5.5.e. P2P distance approach
selects the 6th recovery pattern in Table 5.6 to clear the fault because it is the nearest pattern
to the feed’s actual setting. Consequently, the sensor reading of Fx goes from a value of 36.9
N to 16.6 N, as determined by figure 5.5.d. In figure 5.5.f, the mean temperature decreased
from 241 Co to 225.9 Co.
With the 2nd initial settings and the use of the P2D distance, the synchronized Self-healing
mechanism demonstrates faster recovery than the P2P approach. The P2D Self-healing
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Figure 5.5 P2P- synchronized Self-healing module interacting with CNC milling fault with
the 2nd initial setting.

algorithm selects the 1st recovery pattern in Table 5.6 as the nearest recovery pattern, as
shown by figure 5.6.b. The self-healing module takes 1 second to recover the CNC machine
and to clear the fault detection signal in figure 5.6.a. The Fx is the sensor’s reading that
activated the fault detection module, and its value decreased from 36.9 N to 19.4 N when
the recovery pattern was implemented, as shown in figure 5.6.d. Machining settings were
changed from 400 mm/min to 329.5 mm/min for the feed rate, and from 1×104 RPM to
2.08×104 RPM for the spindle speed.
Table 5.9 summarizes the evaluation of the synchronized self-healing mechanism for the initial
settings 2, 7, 8, and 9 before and after the recovery. We note that, for these 4 settings, the
P2D approach performs better than the P2P in terms of recovery time. Among the test-
runs in Table 5.8, the longest recovery time is 18 seconds and it is executed by the P2P
self-healing module with 7th,8th, and 9th initial settings. The detailed results of these runs
are in Appendix A. It should be stated that with this longest recovery time, the proposed
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Figure 5.6 P2D-synchronized Self-healing module interacting with CNC milling fault in set-
ting 2

Table 5.9 Summary of the Synchronized Self-Healing Mechanism for 2, 7, 8, and 9 Initial
Settings

N.o Distance
approach

Initial settings Sensors’ readings
Before recovery Final Recovery settings Sensors’ readings

After recovery Recovery
time (s)f

mm/min
v

×103 RPM Fx(N) Tmean(Co) f
mm/min

v
×103 RPM Fx(N) Tmean(Co)

2 P2P 400 10 36.9 241 200.8 19.4 ×103 16.6 225.9 1.5
P2D 329.5 20.8 ×103 19.4 254.4 1

7 P2P 100 40 16.9 285.5 499.3 35.6 ×103 18.3 280.8 18
P2D 308.2 31.3 ×103 15 243.5 3.5

8 P2P 400 40 17 284.6 499.3 35.6 ×103 18.3 283.5 18
P2D 308.2 31.3 ×103 15 243.5 3.5

9 P2P 700 40 22.5 331.7 499.3 35.6 ×103 18.3 283.5 18
P2D 308.2 31.3 ×103 15 243.5 3.5

self-healing mechanism still outperforms the classical approaches and improve the machining
process. In the classical techniques, the product surface roughness is measured offline after
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machining the part and if it is found to be non-conformed, this part has to be reworked.
In this case, the CNC machine is stopped to change its parameter before milling the next
products [20]

5.6 Conclusion

This article proposes a novel self-healing mechanism based on pattern recognition for an au-
tonomous CNC milling machine. The objective is to produce products that are within the
predefined specifications. In this paper, we apply the proposed mechanism to a milling process
of carbon fiber reinforced polymer material, where the product quality is defined by surface
roughness (Ra). The fault detection module is built on the pattern recognition of faulty ob-
servations, which are obtained from sensors’ readings of 3D forces and temperature at each
time step (t) and raises a flag when these readings exhibit patterns of out-of-specification
zones. Once a faulty state is detected, the self-healing mechanism changes the controllable
machine variables of feed rate and spindle speed to return to the within-specifications zones
of surface roughness. The proposed mechanism is achieved by building a Self-healing module
that interacts with the CNC machine and fault detection module in online operation. The
self-healing mechanism is based on P2P and P2D approaches that search for the nearest
patterns that are generated by solving a MILP of the Logical Analysis of Data (LAD), which
defines the within-specification zones for the controllable variables of feed and speed. The im-
plemented Self-healing algorithm uses the explanatory recovery patterns that are generated
by cbmLAD software [32] and the two distance approaches. To recover the CNC machine’s
faulty state, the corrective actions are set by manipulating the controllable variables, the feed
rate, and the spindle speed, at time step (t+1) based on the nearest recovery pattern to the
nonconformity machine settings at time (t). While the Self-healing module interacts with
the CNC machine, the forces and mean temperature measurements of the CNC machine are
reduced to the conformity ranges. Consequently, the fault detection module is cleared.
Synchronizing the Self-healing module with the fault detection module prevents the fluctu-
ation of Self-healing actions that lead to an unstable autonomic loop and instability of the
machinery process. Consequently, it would lead to the inability to clear a fault.
The proposed synchronized Self-healing module is evaluated with 27 initial machine settings
that cover the possible ranges of the CNC machine’s controllable variables. These settings
are initialized the CNC machine’s cyber model during its testing phase. Twenty runs out
of twenty-seven lead to out-of-specification Ra initial settings. The self-healing algorithm
with a Point-to-Distribution (P2D) distance approach shows three kinds of performance over
twenty simulation runs. In the first performance, the P2D-self-healing has faster fault
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recovery than the P2P-self-healing with four settings. Moreover, the P2D distance approach
selects different recovery patterns from the P2P approach. The maximum P2D-Self-healing
recovery time was 3.5 seconds. In the second performance, the P2D Self-healing module
has the same performance as P2P in nine runs out of 20-runs. In the third performance,
Self-healing selects the same recovery pattern either with P2D or P2P distance approaches,
yet, the P2D recovery time of the CNC machine out-of-specification Ra is slower than P2P.
The computation time of P2D distance depends on the number of corrective data points
used to calculate the pattern covariance matrix. This matrix is more accurate with more
corrective points, but it increases the computation time on the other side. Self-healing was
evaluated for all 27 runs with 1000 corrective points to calculate the P2D distance. When
the number of corrective samples decreases to 10 samples, the P2D Self-healing execution
time becomes faster and it performs the same as P2P Self-healing.
The Self-healing algorithm selects the corrective machine settings from a uniform distribution
of the spindle speed and feed rate values with the same priority over the recovery pattern
range. In future work, we will address the setting values that could achieve smooth machine
transitions, low energy consumption, and high productivity. In addition, the variations of
spindle speed affect the machining stability [65], a stability analysis is acquired to be added
to the self-healing algorithm. Moreover, the algorithm evaluation will be extended to cover
different working materials and machining types.
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Abstract
This article proposes a Condition-Based Maintenance (CBM) approach for aircraft engines
and Remaining Useful Life (RUL) monitoring, and failure prevention. Due to the unavailabil-
ity of run-to-failure data, Turbofan Engine Simulation data, obtained from NASA repository,
is used to train and test our model. Data Acquisition and Management system framework
and planning are proposed for online monitoring and RUL prediction. In practice, sensor
measurements usually suffer from noise contamination, hence the prediction models are chal-
lenged by noise contaminated data for both training and testing tasks. This is done to assess
their prediction ability in a similar condition of having noisy data. Linear and nonlinear pre-
diction models are developed, with performance comparison addressing both regression and
classification problems. Models performance indices consider both prediction accuracy and
percentage of predictions before the actual failure (PBAF). The proposed model considers
continuous learning and improvement to account for any further operational changes that
affect the model prediction ability. This is reached by ingesting the model with the actual
RUL during the maintenance of the engine unit, and by comparing it to the predicted one.
Keywords: Condition-based maintenance, Failure prediction, Engine Degradation, IoT, In-
dustry 4.0..

6.1 Introduction

Aircraft engine is a critical component. Its failure causes loss of lives. The traditional main-
tenance strategies, that are proposed by the designers, usually involve Reliability Centered
Maintenance (RCM). These strategies propose preventive maintenance tasks that are based
on reliability analysis of the operating systems. These strategies improve effectively the
reliability of the engine. However, the costs are high due to unnecessary maintenance or re-
placement actions. Condition-Based Maintenance (CBM) is used for cost minimization while
achieving reliability improvement. Online monitoring and data analysis lead to better main-
tenance planning and maintenance duration reduction. In addition to performing effective
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maintenance plans, airlines can achieve better consistency of flight scheduling.

CBM is a condition monitoring concept which is used to decide when the operating asset
requires maintenance [7, 76]. This provides a proactive scheduling for the maintenance pro-
cess. The CBM strategy begins with data acquisition from sensors’ readings, which are
analyzed to extract useful information about the system’s state [7]. The performance of
CBM is challenged by data cleanness and prediction models’ accuracy [7, 77]. Normally, an
engine condition should trigger maintenance actions within enough time before failure. Con-
sequently, efficient models that accurately predict the RUL are required while overcoming
the noise contamination problems [78]. Researchers proposed supervised learning prediction
models for aircraft engine degradation [27,77,79–83]. However, their models do not consider
continuous learning, hence there is no possibility for accuracy improvement or considering
any new events that the model was not trained for. In practice, industrial operations usually
have operational modifications that require continuous monitoring to avoid inaccurate predic-
tions [84]. The online monitoring of operating assets has become possible through Internet
of Things (IoT) technologies adopted by the Industry 4.0 paradigm. These give a chance
for sensors to transmit the captured engine data to a cloud database during operation [84].
The cloud storage of the data facilitates the engine monitoring even if the aircraft is in the
air. Hence, maintenance scheduling is achieved, and flight rescheduling is planned to avoid
conflicts. Our proposed framework consists of:

• Data acquisition and cloud storage platform

• RUL prediction model

In this paper, the data that is used for training and testing of the prediction models, is
obtained from NASA Prognostics Data - Turbofan Engine Degradation Simulation results
[78]. Simulation is used due to the difficulty of having run-to-failure real data for these
engines. This article is organized as follows: System planning, and framework layout are
presented in section 2. Data prepossessing and overview of the prediction models are given
in section3. Section 4 discusses the obtained results. Finally, section 5 presents our conclusion
and future works.

6.2 System planning and framework layout

The data represents simulation results for 100 engine units. It is provided by a text file of
26 columns and indexed into units, cycle time, three types of operational settings, and 21
sensors’ measurements. Each row is a snapshot of the data that is taken during a single
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operational cycle. Table 6.1 shows detailed description of sensors’ measurements. The actual
RUL for an operational cycle is the difference between the unit’s total life until failure, and
the current cycle’s number. It is calculated for the training and the testing data as the failure
cycle for each unit is given by its simulation results

The main objective for a condition-based maintenance strategy is to predict the number of
remaining operational cycles before failure, i.e the number of operational cycles after the
current cycle, during which the engine will continue to operate. However, this prediction
task is challenged by data contamination due to sensor noise. The measurements types are
summarized as follows:

• Temperature measurement

• Pressure measurement

• RPM measurement

• Air Mass flow measurement

A data acquisition system is needed for transfer and storage of the sensors’ measurements.
Aircrafts have data acquisition system with aviation Arinc429 standard [85]. It is used to
transfer data such as air data, radar altimeter data, and GPS data. The measurements are
used for engine operational control [86]. Our proposed system layout includes sensors’ mea-
surements data transfer to an onboard server as shown in Figure 6.1. The server is selected
with internet/cloud connecting feature; thus, it facilitates the engine remote monitoring and
RUL prediction, even when the aircraft is in operation.

6.3 Methodology

The methodology that is applied for model training and testing is performed using Scikit-
learn library for machine learning on Python 3.7. Python is an open-source general-purpose
programming language. The Scikit-learn is a free machine learning library that features
various classification and regression algorithms. The Python code loads the input data from
CSV file. The CSV file is developed from the raw text file using MS Excel.

6.3.1 Data prepossessing

The preprocessing of the data is an important step before training machine learning models.
Some problems within the data, such as correlated predictors, presence of outliers, missing
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Figure 6.1 Proposed system layout

Table 6.1 Descriptions of sensor signals

Index Predictor name Unite
1 Total temp fan inlet Ko

2 Total temp LPC outlet Ko

3 Total temp HPc outlet Ko

4 Total temp LPT outlet Ko

5 Pressure fan inlet psia
6 Total pressure in bypass psia
7 Total pressure HPC outlet psia
8 physical Fan speed RPM
9 physical Core speed RPM
10 Engine Pressure Ratio -
11 HPC outlet preasure psia
12 Fuel flow Ratio to "11" PPS/psi
13 corrected fan speed RPM
14 corrected Core speed RPM
15 bypass ratio -
16 Fuel air ration -
17 Bleed enthalpy -
18 Demand fan speed RPM
19 Demand Core speed RPM
20 HPT coolant bleed ibm/s
21 LPT coolant bleed ibm/s
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data instances, cannot be handled well by some machine learning techniques and may affect
their prediction capabilities. Hence, it is advisable to preprocess the data to improve the
performance of the models. The preprocessing applied here includes the following:

• Outliers detection and removal

• Removing highly correlated predictors

The outliers are detected by Box plot. The data instances that have a Z-score higher than
3 are considered outliers and are removed. Figure 6.2 depicts sensor 7 data as an example
for outlier removal. The data instance that is red colored has a Z-score greater than 3.
This instance is removed from the input data. The same procedure is applied for the other
predictors.

Figure 6.2 Box Plot for sensor 7 before (a) and after (b) removing the outliers

Figure 6.3.a shows the correlation matrix for the predictors. The matrix represents the
coefficient of correlation between each of the predictors and the others. This coefficient
ranges from -1 to 1. The sign defines the type of proportionality between the predictors. The
relationship is directly proportional for a positive coefficient of correlation, while is inversely
proportional for a negative one. Large absolute value of the coefficient of correlation, greater
than 0.95, shows high correlation. The values are color coded to aid visualization. Highly
correlated predictors, Setting 3, Sensor 1, Sensor 5, Sensor 10, Sensor 16, Sensor 18, and
Sensor 19, are removed from the input data before models’ training as shown in Figure 6.3.b.
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Figure 6.3 Correlation matrix for (a) all predictors, (b)removing highly correlated predictors

6.3.2 Prediction Models

To predict the RUL, both linear and non-linear models are explored including parametric
and non-parametric types. Different transformations for the output are tested in order to
select the best form for RUL prediction. The best form is selected based on the prediction
performance of the models. The performance is measured by the root mean square error
(RMSE) for predictions using the testing data. For this data, the best form for the output
is the inverse form, 1/RUL, for all the tested models. The input data is standardized to
eliminate the effect of the predictors data units on the prediction models. The explored
models include the following:

• Linear parametric:

– Multiple linear regression

– Ridge regression

– Partial least square regression (PLS)

• Non-linear parametric:

– Polynomial regression

• Non-linear Non-parametric:

– K-nearest neighbors (KNN)

– Random Forest (RF)

– Neural Networks (NN)
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Equation 6.1 presents the multiple linear model where yp is the predicted RUL value according
to the transformation that is applied for the RUL of training data,Xj is the jth predictor, P

is the number of predictors which is 17 for the input data after removing highly correlated
ones, and β0, βj are model parameters. The Ridge regression model is shown by Equation
6.2 where λ is the Ridge parameter. A value of 0.2 is selected for this parameter based on
the best performance for prediction. The polynomial model, degree 2, is given by Equation
6.3. This degree is selected to avoid the overfitting problem that the polynomial model
suffers from when the degree is high. The overfitting results in low training error, but high
test error and poor prediction ability. This problem is named as the bias-variance trade-off
in literature [87]. The Ridge and the PLS models are explored for their ability to control
and reduce the regression coefficients variance, hence improving the prediction performance.
The Ridge model involves shrinking the coefficients towards zero, while the PLS considers
dimensions reduction for the predictors [87].

The KNN regression model is given by Equation 6.4 where K is number of neighbors, and Fi

is inverse of the distance between two neighbors. yi is the RUL value, according to the applied
transformation, for ith nearest data point to the given X. The number of neighbors K is
selected to be 5 according to the best prediction accuracy found. This avoids the overfitting
problem as small K values are avoided. For the Random Forest model, the best parameters
for prediction performance using the testing data are 100 trees with a depth of 20. The
square root of predictor number is considered when looking for the best split. The Neural
Network model consists of three hidden layers with sizes of 10, 8, 4, and the activation is
rectified linear unit (ReLU). The size of hidden layers is selected to be between the size of
the input layer and the output layer as recommended in [88]. Model performance is assessed
by RMSE which is shown by Equation 6.5 [87].

yp = β0 +
p∑

j=1
(βjXj) (6.1)

yp = β0 +
p∑

j=1
(βjXj) + λ

p∑
j=1

β2
j (6.2)

yp = β0 +
p∑

j=1
(βjXj) +

p∑
j=1

(βjX
2
j ) (6.3)

yp = Fi∑K
i=1(Fi)

K∑
i=1

(yi) (6.4)
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N

∑
i

(yi − ypi)2 (6.5)

6.4 Results

The prediction of the RUL may have an error which results in a prediction of failure before the
actual failure, PBAF, or after the actual failure, PAAF, as shown in Figure 6.4. Both cases
are considered error from the point of view of RUL prediction. However, having a predicted
life which is beyond the actual life is worse than having a prediction which is shorter than
the actual life. For this, the performance of the models is measured not only based on the
value of error, but also based on the PBAF%. The best-case scenario, in this case, is having
the least possible value of error, along with the highest PBAF%.

6.4.1 Regression Method

The regression is done in this context to predict the value of the RUL. Figure 6.5 shows the
performance measurement of the selected models based on RMSE and PBAF%. As shown
in Figure 6.5, the Random Forest regressor is the most suitable over studied models with
the lowest RMSE and high PBAF%. The Neural Network regressor gives the highest RMSE
value among all models. The Neural Network yields the highest PBAF%, nearly 70%, while
the Random Forest yields fewer PBAF%, up to 58%.

Figure 6.6 shows the relative importance of predictors based on the Random Forest model
as the best model in this case. In Random Forest, the decrease of the Residual Sum of
Squares (RSS) at each split is recorded. The predictor that has the highest value of RSS
total reduction in all splits is the most important. The predictors importance gives better
understanding for the most important engine readings that are affected by the RUL of the

Figure 6.4 Positions of possible error in RUL within time axis
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engine. The figure shows that Static pressure at HPC outlet, Sensor 11, is the most important
predictor for RUL prediction. The Total pressure in bypass-duct, Sensor 6, has no importance
as shown in the figure. The physical sensor measurement is no longer required; hence the
amount of measurement data size are reduced accordingly.

6.4.2 Classification Method

Due to the less satisfactory results of the explored regression models, an alternative method-
ology is proposed which involves classification of 2 RUL classes instead of directly predicting
its exact value. The RUL values are transformed into percentages for each engine unit, then
a class is assigned for each data instance based on the RUL% value. This value is assigned
according to the desired maintenance strategy. For demonstration, the RUL% value that
differentiates the classes is arbitrarily selected to be 20%. The classes are as follows:

• Class 1: RUL is more than 20 %

• Class 2: RUL is less than 20 %

Three different classifiers are tested at different classification thresholds:

• logistic regression

• KNN classifier (5 neighbors)

• Random Forest classifier (Depth=8, 50 trees, Max features → “Sqrt”)

Figure 6.5 RMSE and PBAF% for the proposed prediction models
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Figure 6.6 Predictors relative importance based on Random Forest model

The number of neighbors in the KNN and both the depth and number of trees in the Random
Forest are selected according to the best class prediction performance found.
Figure 6.7.a shows both the error rate and the PAAF%. The error rate represents the
proportion of the false classifications obtained for the test data. The Random Forest classifier
gives the minimum error rate and PAAF%. Classification methods calculate the probability
of selection for each class and perform the selection according to its classification threshold.
This threshold affects the classification error rate and the percentage of false classification
in each class. The false classification in a certain class is changed when the threshold is
modified [87]. The PAAF% is not acceptable error type, and it is reduced by decreasing
the classification threshold as shown in Figure ??.b. Although the error rate has increased
for all classifiers, the Random Forest shows a promising result as the PAAF% is successfully
reduced to only 1.24% at 7.43% general error rate.

Figure 6.8 shows the execution time in seconds for different parts of the Python code that
is used for the application of our methodology. These times are based on 2.5 GHz Core-i5
CPU with 8 Gb of RAM. The data loading and preprocessing is shown in green bar. The
regression models are shown in blue bars. The classification models are shown in orange
bars. The Random Forest classifier takes less execution time for training as compared to the
Random Forest regressor. This is due to that the classifier has less depth and number of
trees than the regressor.
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Figure 6.7 Error rate and PAAF% at classification threshold of: (a) 0.5, and (b) 0.2

Figure 6.8 Execution times for different models using Python

6.5 Conclusion

This research proposed a framework for aircraft engine’s RUL prediction. This framework
included On-line remote monitoring and continuous learning with cloud connection facility.
The RUL prediction model parameters are meant to be updated every maintenance opera-
tion, which helps improving the accuracy and the predicting capabilities of the model. The
sensor noise problem was overcome by our model which affirms its robustness. This promotes



59

its ability to provide reliable predictions with real data that is normally contaminated with
noise. The input data were preprocessed before exploring the prediction possibility. The
preprocessing included outliers and highly correlated variables removal for reaching better
modelling performance. We studied both regression and classification methodologies for per-
forming RUL prediction. The Random Forest classifier showed promising results. It offers
safe and conservative condition-based maintenance. It could provide RUL classes predic-
tion, above/below a certain level. This was demonstrated at 20% level of RUL. The classes
prediction was achieved at only 1.24% PAAF% and 7.43% general error rate.
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Abstract
This paper develops an approach to improve a CNC machine’s tool performance and slow
down its degradation rate automatically in the Pre-Failure stage. A Deep Reinforcement
Learning (DRL) agent is developed to optimize the machining process performance online
during the Pre-Failure interval of the tool’s life. The Pre-Failure agent that is presented in the
proposed approach tunes the feed rate according to the optimal policy that is learned in order
to slow down the tool’s degradation rate, while maintaining an acceptable Material Removal
Rate (MRR) level. The machine learning techniques and pattern recognitions are imple-
mented to monitor and detect the tool’s potential failure level. The proposed mechanism is
applied to a CNC machine when turning Titanium Metal Matrix Composites (TiMMC). A
CNC machine Digital Twin (DT) is developed to emulate the physical machine in the dig-
ital environment. It is validated with the physical machine’s measurements. The proposed
pre-failure mechanism is a model-free approach, which can be implemented in any machin-
ing process with fewer online computational efforts. It also covers a wide range of cutting
speeds, up to 15,000 RPM. Deployment of the proposed machine learning approach for the
particular case study improves the tool’s Time to Failure (T2F) by 40% and the MRR by
6%, on average, compared to the classical approach.

Keywords: Degradation rate, Potential Failure, P-F Curve, Reinforcement Learning, Tool
performance.

7.1 Introduction

The integration of Artificial Intelligence (AI) in a Cyber-Physical System (CPS) is used to
establish autonomous and self-driven machining processes [23, 24, 89]. The machining pro-
cesses are usually associated with aspects of non-linear behavior and stochastic degradation
that result in the difficulty of predicting the life span of the tool, especially when dealing with
difficult-to-cut materials [21, 90]. There are many attempts in the literature to monitor the
tool wear and detect the machining’s tool failure. To achieve the highest possible material
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removal rates in machining, previous studies focused on offline optimization to schedule the
machine feed rate, assuming ideal machining conditions [57]. Despite the previous attempts,
an intelligent online system that can monitor and optimize the tool’s performance in real-
time is still needed. This paper fills this gap by offering a new approach that provides an
intelligent-based extension of Tool Time to Failures (T2F) while maintaining an acceptable
material removal rate level.
Offline mathematical optimizations were applied to the CNC machine processes to find the
static machining parameters that maximize productivity [91]. Feed rate scheduling opti-
mizations were developed to have a dynamic online feed rate setting [64, 90, 92]. One of the
limitations of these approaches is the usage of empirical equations that assume ideal machin-
ing conditions. Adaptive control (AC) techniques take into consideration the environmental
and sensor variations by mathematically estimating the forces at each time step, and then
comparing the estimated values with the actual sensor measurements [90]. As such, the CNC
machine controller’s parameters are changed to achieve the offline optimized feed-rate sched-
ule. The estimation of online forces requires large computational time. Stemmler, et.al [93]
developed a Model Predictive Controller (MPC) to minimize the production time online for
CNC milling machines. MPC is a model-based controller that predicts the values of the
forces and adjusts the feed rate online accordingly to minimize the machining time. The
MPC online optimization causes a processing delay, and thus, an additional signal processing
synchronization is added to the machine controller. Both MPC and AC require mathemat-
ical modeling to estimate the forces. These models assumed a new tool at the beginning of
cutting and ideal tooling conditions.
Shaban et.al studied tool wear monitoring for CNC machines to develop a failure alarm so-
lution that could avoid producing defective pieces [20, 56, 94]. The authors applied Logical
Analysis of Data (LAD) to detect the tool wear (VB) failure while monitoring the data of
the machining forces. Sadek et.al 2020 [62] developed an adaptive mechanism that linked
the tool wear monitoring to AC for a drilling machine. This mechanism is limited to two
speeds and two feed rate adjustment levels. Shaban et.al used the time to Failure (T2F) and
the Proportional Hazard Modeling (PHM) to obtain the optimal replacement time for the
CNC machine tool [95]. The authors defined the tool replacement time at different machine
settings using two types of analyses: tool availability and cost. The machining parameters
were static settings, and it was adjusted before running the machine. Taha et.al [16] devel-
oped a self-healing mechanism for a CNC milling machine. This mechanism dealt with the
CNC machine under fault and approved self-healing mechanism to the machine. The authors
used pattern-recognition machine learning to define the recovery patterns and each pattern
is bounded by corrective settings. The self-healing mechanism selects the recovery pattern
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according to distance calculations to the current machine’s faulty settings. From the selected
pattern, the corrective actions are randomly selected through a uniform distribution that is
bounded by the selected pattern zone. Table 7.1 provides a summary of many attempts in
terms of what was achieved and what needs to be addressed.

Table 7.1 Research Gaps

Achieved Open Issues

Offline optimal machining parameters
-Assuming ideal machining and environmental
conditions
-Static machining parameters

-Feed rate scheduling optimization
-Adaptive control was applied
to improve productivity

-Offline feed rate optimization
-Complex modeling and empirical equations
-Ideal tooling conditions

-Online optimization
-Sensor predictions

-Massive online computation
-Complex modeling
-Ideal tooling conditions

-Tool wear monitoring
-Failure alarm

-Passive system
- Correction mechanism was not addressed

-Adaptive correction mechanism
-Adding Tool wear monitoring
to adaptive control

-Limited action values (feed rate)
-Tool Time to Failure (T2F) was not addressed
-Limited spindle speeds (Two values)
-Discrete value adjustment

-Optimal Replacement.
-Tool Time to Failure (T2F)
-Different machining parameters

-Static Machining settings (non-variable)
-Correction mechanism was not addressed
-The failure detection module is time-independent

-Post-failure correction mechanism
-Dynamic online machine settings.
-Ease of implementation.

The study is missing the following:
-T2F and degradation rate optimization
-Optimal criteria to select the corrective settings
-Effect of corrective action on productivity

To fill the research gaps presented in Table 7.1, the main objective of this paper is to develop
an autonomous pre-failure mechanism that interacts with the CNC machine in the P-F
interval to extend the tool’s useful life. Figure 7.1 depicts the P-F curve, which is a conceptual
curve of degradation of any physical assets. The P-F curve has two main points that express
its name: the potential failure point (P), and the function failure point (F) [96]. Practically,
the degradation process is a stochastic phenomenon, and each tool has a unique P-F curve
[21,23].
This section presents the LAD algorithm to generate the patterns, which are used to develop

the self-healing actions in Module 3, and to classify and detect the out-of-specification in
Module 2.
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Fresh zone P-F zone

Figure 7.1 P-F Conceptual Curve

The proposed Pre-Failure approach has the following features:

1. Model-free adjustment mechanism for the CNC machine.

2. Continuous feed rate adjustment.

3. Time to failure extension and degradation rate slowdown.

4. Lower online computation efforts.

5. Applicable for wide ranges of machining parameters.

In this work, a model-free Deep Reinforcement Learning (DRL) is proposed for continuous
online feed rate adjustment. This approach is developed to add a tuning mechanism that
optimizes the tool performance and productivity in the P-F zone of the machine’s tool. The
approach has the capability to achieve the highest possible material removal rate while main-
taining an acceptable tool wear level. This approach can be implemented in any machining
process with less computational effort.
This paper is organized as follows: Section 2 describes the system layout and Pre-Failure
mechanism procedure. Section 3 contains the physical experiment and data review. Section
4 presents the proposed methodology. Section 5 describes the results of the implementation
and provides a discussion. Lastly, Section 6 concludes the paper.
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7.2 System Description

7.2.1 System Layout

Figure 7.2 shows the system layout of the online autonomic closed loop for the CNC machine’s
pre-failure mechanism. In the pre-failure mechanism, there are two main phases and four
modules. Phase 1 is the offline step for machine learning with Logical Analysis of Data (LAD),
which is indicated by module 1. The software used is cbmLAD, which was developed for
condition-based maintenance applications [32]. The cbmLAD is used to generate explanatory
patterns that define the online P-F zones in module 2. The tool data is labeled according
to the tool wear level V B as (a) new tool V B < V Bp, (b) Potential Failure (P-F) of the
tool V Bp < V B < V BF , and (c) Failure of the tool V B < V BF . The data of the time-series
forces are ingested into the cbmLAD to extract patterns that characterize the P-F zone.
The tool’s data is labeled as a failure when the tool wear level is more than, or equal to, a
predefined value V BF . The data in the potential failure zone is labeled in the same way, as
shown in section 4.1.
P-F zone monitoring in module 2 is based on online rules extracted from the cbmLAD’s
generated patterns. This module monitors the tool performance and detects the instant of
Potential failure and the tool failure. Module 3 represents the CNC machine in the Digital
environment. The developed CNC Digital Twin (DT) is proposed to work online and in
parallel with the physical machine. The DT model is supported by an artificial Neural
Network (NN) that reads the CNC machine settings of cutting speeds speed (v) and feed
rate f . It estimates the machine’s forces measurements [Fx, Fy, Fz] at each time step (t+1),
based on the sensor’s readings of forces at the time (t).

Module 4 is a Deep Reinforcement Learning (DRL) Pre-Failure agent that generates action
at+1 to adjust the feed rate ft+1 according to the optimal policy that the agent learned
in the training phase. In the online mode, module 2 reads the CNC machine forces sensor
measurements at time (t) and enables the Pre-Failure agent in Module 4 once the P-F zone is
detected. The Pre-Failure agent reads the CNC machine measurement of the radial force Fx,
the feed force Fy, the cutting Fz force, and the cutting speed v, at each time step. Accordingly,
the proposed DRL agent adjusts the feed rate ft+1 to slow down the tool degradation rate.

7.2.2 Pre-Failure Intelligent Mechanism Procedure

This section presents the design steps to achieve the research objective of having a tool Pre-
Failure mechanism for autonomous CNC machines. The proposed Pre-Failure mechanism
has five main steps, as follows :
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Figure 7.2 Autonomic closed loop to achieve Pre-failure Mechanism

1. CNC machine experimental data: the material-tool pair Time to Failure (T2F) data is
an essential process in order to improve the tool performance in the Pre-Failure stage.
In this paper, the raw T2F data is analyzed to monitor and detect the tool performance
degradation in the P-F zone. The developed CNC machine’s Digital Twin (DT) model
is validated and tested with the Physical raw data. These data were collected for the
process of turning Titanium Metal Matrix composite (TiMMC) material. The raw-data
collection experiment was fully described in [56]. The data is presented in Section 3.

2. Tool P-F zone monitoring: the tool performance degradation is studied by building
the tool P-F curve as the general one in figure 7.1. P-F curve shows the performance
degradation versus the lifetime of the tool. Section 4.1 presents the data analysis of tool
performance degradation and the proposed algorithm to define the tool potential failure
instant. It also includes a Logical Analysis of Data (LAD) and the online generated
patterns that monitor the P-F zone. By the end of section 4.1, Module 3 in figure 7.2
is achieved.

3. Deep Reinforcement Learning (DRL) Pre-Failure agent: This is the step of designing
the DRL agent (module 4 in figure 7.2). Section 4.2 explains the DRL for continuous
feed rate adjustment, and it defines the pre-failure agent objective and state vector
that describes the CNC machine status from the perspective of DRL. Section 4.2 in-
cludes a description of the agent’s architecture, training algorithm, and communication
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links to modules 2 and 3. The added value and machining improvement for the tool’s
performance are discussed and verified in the results in Section 5.

4. CNC machine Digital Twin (DT): The DRL’s environment is an essential part of Pre-
Failure agent learning. A Digital Twin model is developed to interact with the DRL
agent. The developed model lies on the collected experimental data, and it is validated
with the physical machine tool’s degradation. By the end of section 4.3, the CNC
machine’s digital module 3 in figure 7.2 is accomplished.

7.3 Review of the Experimental Data

The Proposed Pre-Failure algorithm will be implemented on a CNC machine during turning
Titanium Metal Matrix Composites (TiMMC), and all experimental data used in this study
is based on [56]. In the data collection phase, the experimental data was recorded under
different static machining parameters on a 5-axis Boehringer NG 200 CNC turning center [56].
The tool diameter was 1.6 mm, and the tool wear was measured with an Olympus SZ-X12
microscope. In [56], two design variables are included; feed rate f (mm/rev) and cutting
speed v (m/min). In terms of the machining outputs and experiment response, the forces
and flank wear V B (mm) are recorded. The experiment consisted of five runs, and at least
five replications for each run. A new tool was used for each replication. V B was measured
every two minutes until its value exceed the failure level of 0.2 mm. The raw experimental
data consists of 247 observations. A sample of the experimental data is given in Table
7.2. The observations indexed with (*) are the 1st observations of the tool’s failure in each
run-replication.

For example, figure 7.3 shows the radial forces of the experimental data provided in Table
7.2 for cutting speeds of 80 m/min. Figure 7.3 contains five replications of run 2 and run 4.
It should be stated from figure 7.3 that increasing the feed rate at the same cutting speed
leads to higher radial forces. Accordingly, the T2F becomes shorter when increasing the feed
rate.
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Table 7.2 A sample of experimental Raw Data

No Run-Rep t (s) v (m/min) f (mm/rev) Fx (N) Fy (N) Fz (N) V B (mm)
1 1-1 120 40 0.15 120.4 51.1 116.2 0.0525
2 1-1 240 40 0.15 126 50 109.4 0.06
: : : : : : : : :
: : : : : : : : :

59* 1-5 1560 40 0.15 452.1 74.5 162 0.2
60 2-1 20 80 0.15 85 32.7 83.2 0.035
61 2-1 40 80 0.15 86 34 84 0.0425
: : : : : : : : :
: : : : : : : : :

101* 2-5 270 80 0.15 780.9 138.6 191.7 0.3
102 3-1 30 40 0.35 113.1 42.8 171.5 0.04
103 3-2 60 40 0.35 118 46.7 176.7 0.0475

: : : : : : : : :
: : : : : : : : :

188* 3-6 1320 40 0.35 618.8 161.1 252.3 0.22
189 4-1 15 80 0.35 136.2 41.5 159 0.05
190 4-1 30 80 0.35 153 47 164.2 0.065

: : : : : : : : :
: : : : : : : : :

247* 4-6 120 80 0.35 880 224.8 293 0.25

Figure 7.3 Experimental radial forces Fx at cutting speed of 80 m/min and different feed
rates for different replications
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7.4 Materials and Methods

7.4.1 Tool Degradation Monitoring on PF curve

Tool Potential Failure Point (P)

The P-F curve presents the tool performance’s degradation against its operating time, and it
defines the potential failure point (P) and the functional failure point (F) [96]. The tool has
functionally failed when it exceeds the tool wear V B level that is recommended by the tool’s
manufacturer. The potential failure point (P) is the point at which the tool’s failure propa-
gation starts to increase, and it could be detected. In the P-F zone, the tool’s performance
has a significant deviation from its normal behavior when the tool is first installed. This
performance is observed by the machine’s sensor measurements of forces [56, 95]. P-F zone
is an important mode as maintenance activities take place in this time interval [56, 95,96].
In this paper, the knee point detection algorithm in [97] is adapted to define the potential
failure point (P) for tool performance degradation according to the experimental tool wear
data in Table 7.2. To plot the tool performance degradation P-F curve, an index that takes
values in the interval of [0,1] is developed. The Normalized Tool performance degradation
Index NTPI is given by NTPI = 1− 5× V B. It equals one with the new tool and zero at
the tool failure limit of V B = 0.2mm. Figure 7.4 shows an example of the P-F curve for a
tool operated at 40 m/min cutting speed and feed rate of 0.35 mm/rev. The potential failure
point (P) is detected at 560 sec, and the wear is 0.073 mm for this replication.
The knee detection algorithm [97] calculates the Euclidian displacement between all of the
points on the NTPI graph and the perpendicular point on an imaginary reference line.
This straight-line links the maximum and the minimum points of the tool performance,
given by the dashed line in figure 7.5. The potential failure point is a point on the NTPI

that has the maximum positive Euclidian distance. In figure 7.5, the red curve is the Eu-
clidian displacement between NTPI and the reference line. Figure 7.6 depicts the Nor-
malized Tool performance degradation Index NTPI and the potential failure (P) points
for all the runs and replications of the experimental data given in Table 7.2. The poten-
tial failure points are indicated by dashed lines. As the tool degradation is a stochastic
process, the detected potential points are not the same for all of the runs and replica-
tions. Table 7.3 summarizes the potential failure levels of the tool wear V B for each run
and replication for the cutting speed v1 = 40m/min and v2 = 80m/min and the feed rate
f1 = 0.15mm/rev and f2 = 0.35mm/rev. The average potential (P) tool wear over the col-
lected experimental data is 0.135 mm. Tool P-F zone is the pre-failure zone at which the
correction mechanism is needed.
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Figure 7.6 TiMMC Normalized Tool performance degradation Index NTPI for different runs
and replications of the experimental data in Table 7.2.

Table 7.3 Potential failure points of the CNC tool experimental data

P-tool wear (mm) Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Average
Run 1 (v1=40 m/min, f1=0.15 mm/rev) 0.135 0.165 0.2 0.15 0.145 - 0.159
Run 2 (v2=80 m/min, f1=0.15 mm/rev) 0.075 0.1 0.11 0.14 0.1 - 0.105
Run 3 (v1=40 m/min, f2=0.35 mm/rev) 0.073 0.16 0.168 0.2 0.073 0.14 0.1357
Run 4 (v2=80 m/min, f2=0.35 mm/rev) 0.2 0.158 0.108 0.077 0.2 0.095 0.1397

The average value of the potential tool failure 0.135 mm

Tool P-F zone online monitoring and detection

Logical Analysis of Data (LAD) is a non-statistical supervised data mining method. It
uses Boolean logic functions and combinatorial optimization for classification [31, 32]. The
advantage of LAD over other classification methods is to generate explanatory patterns for
each class, which maintains comparative performance in knowledge extraction for supervised
and semi-supervised classification problems. The patterns divide the multidimensional space
of features into zones that characterize the classes.
cbmLAD solves Mixed-integer Programming (MILP) optimization problems iteratively to
find the logical relationships among the input data features by generating patterns that
characterize each class of the tool’s life [28]. For each pattern, each feature is bounded by
a specific range of values. For a new data point, the pattern is satisfied if the value of
the measured features lies in its bounded range. In the one versus all (OVA) classification



71

technique, the cbmLAD generates patterns to characterize a specific class from the other
classes. From the tool P-F curve, the tool-life consists of three zones, as shown in figure 7.7:
(a) New-tool class, (b) Pre-failure class, and (c) Failure class. To detect the tool degradation
state, cbmLAD divides the classification problem into three sub-problems and finds each
class’ discrimination function ∆1, ∆2, ∆3.
For a new observation O, the OVA cbmLAD multiclass’s discrimination function ∆(O) is

New tool Class Tool Failure 
Class

Pre-Failure 
Class

Δ1 Δ3

Figure 7.7 OVA Technique for the Tool Degradation Performance Classes in Two-Dimensional
Space

given in Equation 7.1 as described in [28].

∆(O) = argimax[∆i(O)]

∆i(O) =
∑
Pj

wjαPj
(O), ∀i = 1, 2, 3 (7.1)

Where Pj is the jth pattern that covers the observation O where j is the number of the
pattern that belongs to the class i set of patterns. Wj is the pattern coverage weight, and
α is a binary index, which is 1 when the observation O is covered by pattern Pj, and zero
otherwise.
In this paper, the cbmLAD one versus all (OVA) technique is applied to solve a multi-
classification problem in order to find the tool’s state of degradation. In online mode at
each time step (t), the P-F monitoring and detection module 2 in figure 7.2 monitors the
time-stamped machine’s sensors [t, Fx, Fy, Fz] and checks whether the measured observation
is covered by any of the patterns that represent the pre-failure or failure zones. The Pre-
failure zone’s detection signals are used to activate or deactivate the Reinforcement Learning
RL module 4 in figure 7.2.
From Table 7.3, the potential failure V B level is 0.135 mm on average. The P-F zone is defined
when the tool wear is 0.135 ≤ V B < 0.2, and the failure level is V B > 0.2. The experimental
data is categorized into three main classes: (a) V B < 0.135, (b) 0.135 ≤ V B < 0.2, and (c)
V B ≥ 0.2 mm. According to the developed tool P-F curve, the data in Table 7.2 is identified



72

by the classes label and ingested to OVA cbmLAD to generate the tool life’s patterns. Table
7.4 presents the generated patterns that characterize the P-F and the failure classes.
The online P-F monitoring module 2 in figure 7.2 performs two main functions, (a) the
monitoring of the potential failure interval with ten patterns, and (b) the detection of failure
with five patterns. Each pattern in Table 7.4 is represented in a multidimensional zone in
the features space. At each time step (t), once the measured observation lies in a pattern
zone, a signal is sent to activate or deactivate the Pre-Failure agent module 4 in figure 7.2.
The P-F monitoring and detection module’s scanning cycle is synchronized with the machine
module 3 in figure 7.2 and with the pre-failure agent.

7.4.2 Deep Reinforcement Learning (DRL) Model

The standard RL is formalized as an agent that interacts with a system’s environment, then
receives the current system state and instant reward rt at time t [33,34]. The RL goal is to find
the optimal policy π∗ that maximizes the return from the state Rt = ∑∞

t=0 γrt(st, at), where
γ ∈ [0, 1] is the discount factor for future rewards and t is instant of the return [29,34]. The
expected return value of taking action (at) in the state st under a policyπ is called action-value
function or Q-function and it is equal to Qπ(st, at) = Ert,st+1 [rt(st, at) + γEat+1 [Qπ(st+1, at+1)]].
The optimal Q-value Q∗(st, at) = max(Qπ(st, at)) is the maximum returned value ∀st ∈ S and
∀at ∈ A , where S is the state space, and the action space A is limited to discrete actions [29,
34]. The optimal policy is obtained from the optimal Q-value when obtaining the action that
maximizes the returned Q-value; in mathematics, this is given by µ(s) = argmaxaQ(st, at)
[29, 34]. The Q-learning is an off-policy algorithm that uses a greedy policy. It learns the
optimal policy π∗ as it approximates the Q-function by the Q-network parameters θQ. The
optimal Q-function Q∗(st, at) is achieved by obtaining the optimal parameters θQ∗ at which
the training loss L(θQ) = Est,at,rt [(Q(st, at|θQ)− yt)2] is the minimum. yt is the target func-
tion with next time step state st+1, and it is calculated as yt = r(st, at) + γQ(st+1|θQ). For
the Q-learning stability, the target yt is calculated by another identical Q-network [34, 89].
Practically speaking, it is difficult to apply Q-learning to a continuous action space, and the
Q-algorithm is not capable of optimizing an infinite number of actions at each time step. The
actor-critic approach is used to solve this problem with the Deterministic Policy Gradient
(DPG) algorithm [34,89]. The critic is an action-value function Q(s, a|θQ) used to calculate
the temporal difference (TD) error to criticize actions made by the actor, and it is updated
based on the Q-function. The actor is a deterministic policy function µ(s|θµ) that chooses
action at given state st [34,89]. The actor’s network parameters θµ are updated according to
maximizing the action-value Q(s, a|θQ), and its training losses are ascending losses given by
∇QµJ ≈ Est [∇a.Q(s, a|θQ)|s=st,a=µ(st)∇Qµµ(s|θµ)|s=st ]. A Deep Deterministic policy gradient
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Table 7.4 Generated patterns of P-F and failure zones for the data of the time-stamped Force

Class Pattern t (sec) Fx (N) Fy (N) Fz (N)

Pre-Failure

1 102.5 < t 305.3 < Fx < 685.95 126.85 < Fx < 155.85 203.3 < Fz

2 - 305.3 < Fx < 542.3 117.25 < Fx < 174.5 Fz < 250.7
3 85 < t 341.35 < Fx < 507.85 Fy < 174.5 -
4 685 < t 271.2 < Fx < 605.4 71.3 < Fx < 174.5 175.25 < Fz < 250.7
5 t < 67.5 354.1 < Fx < 507.85 93.75 < Fy < 174.5 -
6 1085 < t 271.2 < Fx < 507.85 Fy < 174.5 -
7 805 < t 261.9 < Fx < 507.85 78.25 < Fy < 114.6 -
8 127.5 < t 316.1 < Fx < 507.85 Fy < 174.5 Fz < 190.25
9 t > 685 249.5 < Fx < 488.5 71.3 < Fy < 174.5 139.7 < Fz < 159.85
10 - 271.2 < Fx - 143.75 < Fz < 150.2

Class Pattern t (sec) Fx (N) Fy (N) Fz (N)

Failure

1 t < 327.5 Fx > 605.4 - -
2 1025 < t Fx > 542.3 - -
3 t < 112.5 Fx > 543.3 - -
4 127.5 < t < 327.5 Fx > 488.5 - Fz > 174.85

(DDPG) is an algorithm that implements the deep Q-network on the DPG algorithm. DDPG
approximates the Q-function and enables RL in systems that have continuous actions and a
large-dimension state [34,89]. DDPG is a model-free RL algorithm that uses a replay buffer
memory to update the system’s states, actions, and rewards during agent training [33,34]. In
this paper, the pre-failure agent is an adapted DDPG algorithm to achieve optimal proactive
and autonomous feed rate adjustment.

Pre-Failure Agent for Autonomous CNC Machine

In the current work, the CNC turning machine pre-failure agent action at is performed on
the feed rate ft mm/rev. At each time step t=1sec, the agent reads the machine sensor
data [Fx, Fy, Fz] and scans the P-F monitoring module signal. The agent generates actions
to decrease the tool’s degradation rate and keep a reasonable productivity limit in the P-F
zone, which is given in Equation 7.2.
In the training phase, the pre-failure agent interacts with the DT model of the CNC turning
machine, and it is rewarded for each action at → ft with the reward function rt. The rewarded
value depends on the tool degradation rate and productivity at each time step. The machine’s
productivity is represented by the Material Removal Rate MRR (mm3/min) in Equation 7.2.

MRR = f × v × d (7.2)

Where f is the feed rate in mm/rev, v is the cutting speed in m/min, and d is the cutting
depth in mm. The proposed pre-failure agent interacts with the CNC machine at a different
cutting speed, which varies from 25 m/min to 80 m/min. The agent’s actions are a wide
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range of feed rate adjustments from 0.025 mm/rev to 0.35 mm/rev.

Definition of the State: The classical RL algorithm is an extension of a Markov Decision
Process (MDP) and its assumption of time-independent states [29]. At each time step (t),
the RL agent receives state st and takes an action at → ft according to its learned policy [34].
To learn the optimal policy, the state is assumed to be time-independent, and it describes
the system status regardless of the system’s historical behavior. In many industrial system
applications, the MDP cannot fully describe a system in which the time-independent state
is useless in learning the optimal policy [34]. For example, in CNC machining, the instant
sensor measurement [Fx, Fy, Fz]t at time (t) cannot abstract the tool wear stage, as described
in section 4.1. Therefore, it is difficult to take a maintenance decision according to a time-
independent instant value of forces. To ensure that the RL agent has the full features to
describe the tool wear status, the RL state st is extended to include the cutting speed v

(m/min), forces measurement at the instant of potential failure detection [Fx, Fy, Fz]p, the
sensor measurement deviation at time t from its value when the tool is at the P-point[Exyz],
and the negative rate of forces [∆Fxyz]t over sampling time T. Pre-Failure agent’s state st is
given by Equations 7.3,9.1, and 9.2.

[Exyz]t = [Fx, Fy, Fz]p − [Fx, Fy, Fz]t (7.3)

[∆Fxyz]t = [Fx, Fy, Fz]t − [Fx, Fy, Fz]t+1

T
(7.4)

st = (v, [Fx, Fy, Fz]p, [Exyz]t, [∆Fxyz]t) (7.5)

RL agent Action: The feed rate optimization is the key factor in optimizing the CNC
machine tool’s performance, as indicated in section 3. At the same cutting speed v (m/min),
the tool’s degradation rate decreases while the feed rate f (mm/rev) is decreased, and this
decreases productivity. The pre-failure RL agent is designed to generate optimal and continu-
ous action at that adjusts the CNC machine feed rate at each time step (t). This action aims
at decreasing the tool degradation rate while keeping the productivity within an acceptable
limit. In practice, the adjustable feed rate range depends on the tool-material pair, and for
products in composite materials, it could be changed from 0.025 mm/rev to 0.35 mm/rev.

Reward Function: In RL, the reward function rt(st, ft, st+1) acts as the objective function
in mathematical programming. At each time t, the RL agent explores the action space A to
find the optimal action at that maximizes its reward according to the given state st. The
pre-failure agent reward function is designed to minimize the tool degradation rate and to
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keep the productivity level within acceptable limits. To maximize the tool Time to Failure
(T2F), the Pre-Failure agent is designed with a positive reward function rt(st, ft, st+1) given
by Equation 9.3. To keep the productivity level relatively high, the agent is rewarded only if
its action at minimizes the forces deviation |Exyz|t,which is the absolute difference between
the measurement forces [Fxyz] in the P-F zone and the detected potential failure forces [Fxyz]p
at t = tp point. The tool degradation rate increases when the deviation decreases. Equation
9.3 indicates the instant reward rt(st, ft, st+1) calculation at each time step t.

rt(st, ft, st+1) =

1 if |Exyz|t+1 ≤ |Exyz|t
0 o.w

(7.6)

Pre-Failure Agent Training

The Pre-Failure agent is an adapted DDPG algorithm, and its structure consists of the actor
and the Q-function/Critic deep NNs. The actor adjusts the CNC machine feed rate according
to the input RL state st and learned policy that is criticized by the Q-function network. To
improve the DDPG agent training performance, a random noise Nt ∼ N(0, std) is added to
the actor action [98]. The feed rate ft to be adjusted at time (t) equals to at = µ(st|θµ) + Nt,
where µ(st|θµ) is the output of the actor-network and θµis the parameters of the actor-
network. In the training phase, the hidden layer’s parameters of the Pre-Failure agent are
updated to minimize the losses function of critics and to maximize the negative losses of
the actor-network. To improve the learning stability, the target networks’ parameters are
updated with soft updates [98]; in other words, θ

′ ← τθ + (1− τ)θ′ , where the learning rate
τ is less than one.
The target network’s parameters are θQ′ and θµ′ for the critic and the actor. The pre-
failure agent’s full training algorithm is given in algorithm 1, and it is built and trained
on a deep learning Pytorch environment. The developed Pre-Failure agent architecture and
hyper-parameters are given in Appendix B.

7.4.3 Digital Twin (DT) for CNC Turning Machine

Recently, the development of Industrial IOT (IIOT), simulation modeling, and Artificial
Intelligence (AI) enable the digitalization of the machines, and the Digital Twin (DT) is
extracted as a new concept of Cyber-Physical Systems (CPS) [12, 23]. Digital Twin is a
model that emulates the Physical CNC machine in the cyber/digital environment, and it has
the capability of interacting with the real machine in the Physical environment [12–14]. DT
was developed for a system level, and in the case of a single machine, DT is developed on
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Algorithm 1 CNC machines’ Pre-Failure agent training
1: Initialize Critic Q(s, a|θQ), Actor µ(s|θµ)
2: Initialize target networks Q′, µ′

3: for each episode: do
4: Reads the cutting speed v.
5: for each K (min) steps in stimulation-Run: do
6: scanning cycle time t = k/T
7: switch Machine’s tool P-F monitoring: do
8: case New tool performance:
9: Adjust the feed rate to maximum f = fmax

10: case Tool in P-F zone:
11: [Fi]P = [Fi]tp , ∀(i) ϵ [x, y, z].
12: Execute feed rate ft ← µ(st|θµ) +Nt.
13: Interact with CNC DT, get [Fx, Fy, Fz]t+1.
14: Calculate st+1 = (v, [Fxyz]p, [Exyz]t, [∆Fxyz]t)

15: r(st, ft, st+1)=

0 if |Exyz|t+1 ≤ |Exyz|t
1 o.w

16: Set targets yt = rt + γQ′(st+1, µ′(st+1|θµ′)|θQ′).
17: Update Critic L = 1

N

∑
t(yt −Q(st, at|θQ))2.

18: Update actor ▽QµJ ≈ 1
N

∑
t▽a.Q(s, a|θQ)▽Qµ .µ(s|θµ).

19: Update θQ′ ← τθQ + (1− τ)θQ′ .
20: Update θµ′ ← τθµ + (1− τ)θµ′ .
21: if Tool worn then Break
22: end if
23: end for each
24: end for each
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the component level. Figure 7.8 shows the implementation of DT on machine tool manage-
ment. The digital environment contains physical data storage, data preprocessing, digital
simulation models, and artificial intelligent agents. The digital environment has three main
objectives: (1) monitoring the machine’s data forces (2) analyzing this data to abstract the
health status of the tool, and (3) taking action to improve the tool’s performance. There are

Figure 7.8 DT implementation on a machine’s tool management

three methods to model a Digital Twin: Multiphysics modeling using Finite Element Analy-
sis (FEA), Mathematical model-based, and/or Data-driven modeling [98]. In this paper, the
experimental data in Table 7.2 is used to build the machine DT, and a deep artificial Neural
Network (NN) is developed to act as a digital twin for the CNC turning machine. This model
emulates the CNC turning machine in the digital environment. The DT’s outputs are the
estimated radial force Fx, feed force Fy, and cutting force Fz measurements at each time step
t, and the model inputs are the cutting speed v (m/min) and the feed rate f (mm/rev), and
time step t (min).
To minimize the overfitting of the model, a rule of sum for the NN architecture design is
provided in Equation 9.4 [99, 100]. The numbers of hidden layers are limited to the number
of inputs Ni and number of outputs No, while the number of hidden neurons Nh for Ns

data observations is given by Equation 9.4 [99,100]. β is a scaling factor that represents the
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prevention of overfitting in the NN model and it takes a value from 2 to 10 [99,100].

Nh = Ns

β(Ni + No)
(7.7)

The developed digital model has three inputs [t, v, f ] and three outputs Fx, Fy,andFz. For
247 data observations, the number of hidden layers varies from 4 to 20 for β ∈ [2, 10]. One of
the model’s architectures is selected from more than 170 models’ architectures. The models’
hidden layers vary from single-layer to four-layer models, and each layer’s amount of neurons
changes from 4 to 20 neurons, and more five-layer models were added to the architecture’s
comparison. The best model is the model that has the lowest Mean Square Error (MSE)
for the unseen testing data. Table 7.5 demonstrates the lowest MSE Network’s architecture
among all of the models with the same number of layers. The best model architecture of
[14− 15− 18− 15] is selected. To build the CNC machine DT, this model is trained and
tested on a deep TensorFlow learning environment [73]. During the testing of the DT model,
the testing Mean Absolute Error (MAE) was ±12.8 (e.g., Digital Fx = physical Fx ± 12.8).
Figure 7.9 shows the DT model sensors’ reading detections versus the physical CNC turning
machine sensors’ reading for the unseen testing data of Fx, Fy, and Fz.

7.5 Analysis of the Results

This section analyzes the effects of the Pre-Failure agent on the tool performance and the
tool Time to Failure (T2F) compared to the standalone CNC machine at different cutting
speeds. The performance of the proposed Pre-Failure mechanism is measured by two key
indexes: the Tool T2F and the achieved MRR. The P-F monitoring module activates the
Pre-Failure agent in the P-F zone, and the agent is deactivated at the instant of tool fail-
ure. The closed-loop autonomy enables the Pre-Failure agent to adjust the optimal feed rate
according to the estimated machine’s forces at time (t+1). In online mode, the Pre-failure
agent interacts with the CNC machine every 1 second, and its sampling time T is selected
as T=60 sec.
The trained Pre-Failure agent is validated with the CNC Turing machine DT at different

Table 7.5 Lowest MSE NN models and their hidden layers and neurons

Layers 1 2 3 4 5
Layer # 1st 1st 2nd 1st 2nd 3rd 1st 2nd 3rd 4th 1st 2nd 3rd 4th 5th

Neurons 14 5 19 4 6 19 14 15 18 15 4 10 16 10 14
MSE 6.63E+04 6.44E+04 6.26E+04 5.53E+04 5.88E+04
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Figure 7.9 Sensor data of (a)Fx, (b)Fy, and (c)Fz with the CNC cyber model vs. experimental
physical testing data

cutting speed settings given in Table 7.6. In each run, the autonomic CNC machine is sim-
ulated until the tool failure is detected at VB=0.2 mm. The machine’s tool starts with a
maximum feed rate of 0.35 mm/rev and the Pre-Failure enters the machining process when
the P-F monitoring module 2 detects the potential-failure class and the instant of P point.
In Run I, the Pre-Failure agent increased the tool T2F by almost 27% over the standalone

CNC machine. Figure 7.10 illustrates the force measurements for the standalone CNC ma-
chine in solid lines, and the tool Time to Failure (T2F) is 31.433 minutes (1886 seconds).
With the implementation of the Pre-Failure agent on the CNC machine, the degradation rate

Table 7.6 Different speeds to validate the trained Pre-Failure agent

Simulation Run I II III IV V
Spindle speed V (RPM) 5000 7500 10000 12500 15000
Cutting speed v(m/min) 25.12 37.68 50.24 62.8 75.36
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of the machine forces decreases, which is indicated by the dashed (− · −) lines in figure 7.10.
The tool’s T2F increases to 40 minutes (2400 seconds).

Fx

Fz

Fy

Standalone T2F
31.433 min 

Pre-Failure T2F 
40 min 

P-F Zone
Tool Time to Failure (T2F)

1304 1886 2400

P-point 
21.733 min 

Figure 7.10 3D Forces Fxyz (N) at 5000 RPM of Run I for the standalone machine and the
Pre-Failure machine.

In the P-F zone, the Pre-Failure agent generates a continuous feed rate adjustment according
to the optimal trained policy in section 4.2. At a spindle speed of 5000 RPM, the adjusted
feed rate at each time-step (1 second) is given with the blue color in figure 7.11, while its
accumulated moving average is given in the orange color. At t=21.733 minute (1304 second,)
the tool’s potential failure point (P) is detected, then the feed rate is adjusted according to
the learned optimal policy. Cumulative Moving Average (CMA) at each time step is plotted
as the average of the Pre-Failure agent’s action up to the current time-step. The Pre-Failure
agent generates a variable feed rate at each second to maximize the T2F within the P-F zone.
The Pre-Failure agent keeps the productivity of the CNC machine at an acceptable limit,

as the minimum CMA feed rate is kept at 0.2665 mm/rev. The machine’s productivity index
is the Material Removal Rate MRR (mm3/min) in Equation 7.2. For a 0.2 mm depth of
cut and 25120 mm/min cutting speed, the change of the MRR with the Pre-Failure agent is
indicated by the green shaded area in figure 7.12. MRR% is the Pre-Failure agent’s overall
productivity MRRP F relative to the standalone machine MRRmaxfeed at the maximum feed
rate given by Equation 9.5. T2Fst is the standalone machine’s T2F, and T2FP F is the T2F
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Potential failure 
detection time 

1304

Figure 7.11 Pre-Failure feed rate adjustment at a spindle speed of 5000 RPM in Run I.

that includes the Pre-Failure agent.

MMR% =
∑T 2FP F

t=0 MMRP F∑T 2Fst
t=0 MRRmaxfeed

=
∑T 2FP F

t=0 f(t)
fmax × T2Fst

(7.8)

In Run I, the Pre-Failure machine productivity is almost the same as the standalone machine
with the maximum feed rate, and the MRR% equals 99.3%. The extension in T2F enables
the machine to produce more within the added time. Figure 7.12 shows that the Pre-Failure
added value MRR recovers the lost MRR.
Figure 7.13 concludes the extension of the tool’s Time to Failure (T2F) by the Pre-Failure

agent over the standalone machine. The tool’s added lifetime is high with relatively low
spindle speeds, and it is small with high speeds. The lowest T2F added time is 1.4 min
(37%) for the tool that works on 12500 RPM and the highest added time is 10.9 min (50%)
with 7500 RPM. At higher cutting speeds, the tool degrades faster, the P-F interval is smaller,
and the Pre-Failure agent has a smaller time to interact with the CNC machine environment.
In the meantime, the T2F added time adds more valuable MRR at high speeds, as stated in
figure 7.14. The Pre-Failure agent keeps the level of productivity high, as given in figure
7.14, while the tool deviation from the potential failure level is considered as discussed in
Section 4.2. The lowest Pre-Failure agent’s MRR% is 79%, which is achieved at a spindle
speed of 10000 RPM, as given in figure 7.14. At 10000 RPM, the tool T2F increases to
2.133 min (128 sec), and the added-value MRR with the Pre-Failure agent is lower than the
lost one due to a decrease in the feed rate value. Figure 7.15 depicts the T2F and MRR%
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agent 
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Lost
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Figure 7.12 Pre-Failure Agent Tool MRR VS. Standalone Machine

of the standalone machine at different static feed rates and a spindle speed of 10000 RPM.
The best standalone static feed-rate setting is 0.1745 mm/rev, which aims to increase both
MRR and T2F; the achieved MRR is 59% of that at fmax, and tool T2F is 19.12 min. The
proposed Pre-Failure mechanism outperforms the standalone machine with static settings,
and the online agent’s optimal policy achieves more T2F extension and MRR%, as given in
figure 7.13 and figure 7.14.
Implementation of the developed Pre-Failure agent improves the tool’s performance in the
P-F zone. The online optimal feed rate continuous adjustment adds on average of 5 minutes
to the tool T2F and 5% to the MRR over the classical machining system. The detailed
experimental results for each run in Table 7.6 are provided in Appendix C.

7.6 Conclusion

In this paper, the developed Pre-Failure approach improves the tool’s performance in the
Pre-Failure zone based on Deep Reinforcement Learning (DRL) during machining processes.
The proposed Pre-Failure agent increases the tool Time to Failure (T2F) while maintaining
the Material Removal Rate (MRR) at an acceptable limit. The machine tool’s P-F curves
and Logical Analysis of Data (LAD) are implemented to monitor and detect the potential
failure level of the machine’s tool. In the P-F zone, Pre-Failure model-free agent interacts
with the CNC machine and adjusts its feed rate according to the estimated machine’s forces
at time (t+1). This method decreases the tool’s degradation rate in the P-F zone before
the tool is worn out, at VB=0.2mm. The Pre-Failure mechanism also keeps the forces at
a relatively high level. To train the Pre-Failure agent, a machine Digital Twin (DT) was
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Figure 7.13 Tool T2F of the Pre-Failure and the Standalone machine for different RPMs

developed and validated with the physical machine data. The Pre-Failure agent is validated
at different spindle speeds, starting from 5000 RPM to 15,000 RPM. By implementing the
proposed Pre-Failure approach, the tool T2F increases over the classical machining approach.
The value-added time is high at relatively low spindle speeds. It was found that the maximum
added time is 10.9 minutes, which is achieved with 7500 RPM. Meanwhile, at 15,000 RPM,
the tool T2F equals 4.55 min, which is almost double the standalone machine. In the P-F
zone, the Pre-Failure agent adds more MRR that recovers the lost MRR due to decreasing
the adjusted feed rate to be lower than its maximum value. At high speeds, the added
MRR is higher than the lost ones. The Pre-Failure agent’s MRR reaches 138.04% of that
achieved with a static maximum feed rate under 15,000 RPM spindle speed. At 1000 RPM,
the Pre-Failure agent gets the lowest MRRR of 79%, relative to the standalone machine,
and it adds 12% of the tool T2F. However, the added time is not enough to recover the lost
MRR. The developed dynamic Pre-Failure agent outperforms the best static adjustment for
standalone machine runs at 10,000 RPM from the perspective of tool life and productivity.
The current work can be extended in the future by including electrical power consumption,
the material type, and other machining quality characteristics (e.g., surface roughness and
residual stresses).
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Figure 7.15 T2F and MRR% for a standalone machine at a spindle speed of 10000 RPM and
different feed rates
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Abstract
Wheel Motor Electric Bus (W.M.E-Bus) is a recent e-mobility technology, which has a com-
plex system integration. Since the operational reliability and life cycle data of such systems
is scarce, it becomes impractical to plan for maintenance and determine system-critical com-
ponents. Moreover, E-Bus system dismantling and assembling is a long time process espe-
cially for components near to the its power-system. In this paper, we propose a Fuzzy-logic
fault-tree evaluation for the W.M.E-Bus system under uncertain failure data. The proposed
method indicates the critical components that significantly influence the system’s failure un-
certainty. At a 10% failure rate uncertainty, control unit failure, including the embedded
software, is ranked as the top critical failure mode with a 1.8 Fuzzy Importance Measure
(FIM).

Keywords: Wheel Motor, Electric Bus, E-mobility, Fuzzy Logic, Fault Tree, Uncertainty,
Fault Reasoning.

8.1 Introduction

Electrified Mobility (E-mobility) is the potential solution to reduce global warming, as it saves
emissions and running costs. To achieve zero emissions by 2040, the public transportation
buses are planned to be fully electrified buses (E-Buses) [101]. Failures in electric buses’
driving system lead to road disasters [2, 102]. In these systems, parts replacement is a long-
time process, in which power voltage has to be discharged before starting the replacement
[103]. Since operational failure data are unavailable, reliability prediction and maintenance
planning are challenging tasks.
Embedded software is critical in E-Buses as its failure is related to safety [102]. Hence,
researchers address their failure in operation [4, 104]. Software Reliability Growth Models
(SRGM) are utilized to model the embedded software failure. The fitted model goodness
depends on the vehicle’s operational modes and design [4, 104]. Pre-failure software testing
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is proposed to eliminate operational embedded software failure [102].
Electrical motors are considered the main source of mechanical energy for the E-Bus wheels.
Prognostics and Health Management (PHM) concepts are implemented to analyze the motor
measurements such as current, temperature, and vibration [2,105]. In addition to reliability
analysis, DC/AC inverter fault-tolerant control techniques increase inverters’ availability.
PHM of electrical motors shows an accurate prediction of motor availability [106]. But, it
addresses either the motor or the inverter individually. The unavailability of inverter affects
the operation of electric motor and the E-Bus. Hence, researchers study the motor and its
inverter as one system of a motor control system [2,107]. However, the reliability analysis of
motor control systems does neither address uncertainties of the failure data nor embedded
control units. The main contributions of this paper are as follows:

• Pre-failure analysis of Wheel Motor Electric Bus (W.M.E-Bus) under uncertainty of
failure data.

• Definition of W.M.E-Bus system critical components.

• Definition of the W.M.E-Bus’s components that affect system’s uncertainty the most.

The W.M.E-Bus system is described in section II. Section III introduces the proposed method-
ology. The obtained results and discussion are presented in section IV. Lastly, the conclusion
is presented in section V.

8.2 system structure of Wheel Motor E-Bus

Wheel Motor E-Bus (W.M.E-Bus) system eliminates the differential unit between the two
wheels [107]. The two motors’ structure provides a symmetrical E-Bus’s mass distribution
[107]. The available W.M.E-Bus driving types are rear wheel drive, front wheel drive, or all
wheel drive. In our studied system, the W.M.E-Bus consists of a driving axle and a passive
axle. In figure 8.1, each wheel on the driving axle has a three Phase (3-ϕ) asynchronous
electrical motor that is powered by a 3-ϕ DC/AC inverter. On the source side, battery pack
supplies the DC power to the motor’s inverter through DC link. The Red lines are hot
voltage power lines. The green lines are the signal wires. The embedded control unit is a
Digital Signal Processing (DSP) board that contains the W.M.E-Bus software. It provides
the control signals to the 3-ϕ inverter, monitors battery’s State of Charge (SoC), and performs
the bus’s driver inputs of braking or accelerating. For monitoring and controlling the bus’s
wheels, motor speed and temperature signals are sent to the inverter and to the embedded
control unit.



87

Figure 8.1 The Wheel Motor E-Bus System Structure.

8.2.1 Building Fault Tree

Fault Tree (FT) is a graphical and logical representation of potential failure modes, and it is
implemented successfully in different applications [2]. It is proposed for pre-failure analysis
and to identify the logical link between the W.M.E-Bus system and its basic components.
Figure 8.2 shows the top three levels of the FT. The zeroth level is the top event of E-Bus
system failure. The 1st level of FT contains the main system items failure modes for the
embedded control unit, and the two wheels. In the 2nd level, middle failure causes of wheels’
failure modes are indicated as the motor failure or the inverter failure. The reliability model

Figure 8.2 Fault Tree for The Wheel Motor E-Bus System Main Items.
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for the embedded control unite is a series model. Its middle failure causes are given by figure
8.3. It indicates the basic components that have a high failure rate; main-PCB, main chipset,
and the embedded software operational failures as stated in Table 8.1.

Figure 8.3 Sub-Tree for The W.M.E-Bus Embedded Controller Failure Mode.

Each wheel failure could be caused by either the 3-ϕ electrical motor or the inverter. The
inverter failure mode is caused by either the inverter driving circuit, or sensing circuit. The
frequently failed basic components of Inverter’s driving circuit are Printed Circuit Board
(PCB), power switches (IGBTs), and Isolation optocoupler (IC) as given in Table 8.1. The
communication chipset, speed and temperature sensors are the basic events of the communi-
cation loop. Figure 8.4 depicts the 3-ϕ asynchronous motor’s three main items: the stator,
the rotor, and the bearing. These items are part of FT level 3. The bearing failure and
winding failure are the frequently failed basic components of the electrical motor [1, 105]

Figure 8.4 Sub-Tree for The E-Bus 3-ϕ Asynchronous Motor Basic Components.
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Table 8.1 Wheel Motor E-Bus System Components and Failure Rates [1–4]

Component Description Symbol Failure Rate/Mh
Embedded Controller PCB C1 3.06
Control unit Main chipset C2 0.31
Controller Other SMDs C3 0.072
Embedded software C4 17.6
Left inverter PCB failure L_i1 1.12
Left inverter IGBTs failure L_i2 0.085
Left inverter Optocoupler failure L_i3 0.243
Left inverter Other SMD’s failure L_i4 0.094
Left inverter communication IC failure L_ic1 0.0252
Left motor temperature Sensor failure L_ic2 0.22
Left motor Speed Sensor failure L_ic3 0.0375
Left motor Bearing seal failure L_m1 0.4465
Left motor Bearing failure L_m2 0.083
Left motor rotor winding failure L_m3 0.277
Left motor rotor shaft failure L_m4 0.0226
Left motor stator winding failure L_m5 0.277
Left motor Gear, spline failure L_m6 0.0385
Right inverter PCB failure R_i1 1.12
Right inverter IGBTs failure R_i2 0.085
Right inverter Optocoupler failure R_i3 0.243
Right inverter Other SMD’s failure R_i4 0.094
Right inverter communication IC failure R_ic1 0.0252
Right motor temperature Sensor failure R_ic2 0.22
Right motor Speed Sensor failure R_ic3 0.0375
Right motor Bearing seal failure R_m1 0.4465
Right motor Bearing failure R_m2 0.083
Right motor rotor winding failure R_m3 0.277
Right motor rotor shaft failure R_m4 0.0226
Right motor stator winding failure R_m5 0.277
Right motor Gear, spline failure R_m6 0.0385
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8.2.2 Fuzzy-Logic Analysis

The uncertainty in the W.M.E-Bus system’s failure analysis is caused by a lack of opera-
tional failure data. Fuzzy logic fault tree analysis is a powerful method that analyzes the
systems’ failure probability under uncertainties [108]. Fuzzy logic analysis follows three main
sequential steps [105,108]:

1. Fuzzification.

2. Application of the Fuzzy logic rules.

3. Defuzzification.

Fuzzification is the step of converting the basic components’ failure rate into fuzzy sets. For
simplicity, we used a triangular fuzzy set, [ai, bi, ci], to represent the failure rate of component
i. ai is the failure rate’s lower bound, and ci is the upper bound. bi is the middle value of
the failure rate which equals the reference failure rate value λi. The membership function of
this set, µi(r), is given by Eq. (8.1).

µi(r) =


r−ai

bi−ai
ai < r ≤ bi

ci−r
ci−bi

bi < r < ci , ∀(i)

0 otherwise

(8.1)

where r is the uncertain failure rate for each component, and i is the component index. The
input fuzzy set’s upper and lower bounds are calculated based on the uncertainty experts-
defined Error Factor (EF ). This factor represents the uncertainty of the W.M.E-Bus com-
ponent failure rate as given by Eq. (8.2) [108].

ai = λi(1− EF ) , ci = λi(1 + EF ) , ∀(i) (8.2)

Assuming a constant failure rate λi for the electrical systems, the input fuzzy set failure
probability matrix, [F (t)]30×3, is given by Eq. (8.3) [109] in which each row represents a
single component. In our system, the number of components is 30. In Eq. (8.3) [109], t is
the W.M.E-Bus system working hours.

[F (t)]i×3 = [1− e−ait, 1− e−bit, 1− e−cit] , ∀(i) (8.3)

The next step is the application of the Fuzzy logic rules according to the Fault Tree of the
W.M.E-Bus system. The top event’s reliability will be an exponential distribution, and its
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parameter is the sum of the basic events’ failure rate. Fuzzy logic rules are used to analyze
the fault tree and to find the top event fuzzy set, [F0(t)]1×3. According to our system’s fault
tree, as shown in figure 8.2, all relations are represented by OR logic gates. For N basic events
in an OR logic relations, and a triangular fuzzy sets, the fuzzy probability array, [F (t)OR]1×3,
is calculated by Eq. (8.4) [108,109].

[F (t)OR]1×3 = [1, 1, 1]− ΠN
i=1([1, 1, 1]− [F (t)]i×3), (8.4)

Accordingly, [F0(t)]1×3 = [F (t)OR]1×3 . For the 30 components of our W.M.E-Bus, at N = 30,
all the basic events are considered. [F0(t)]1,1, [F0(t)]1,2, and [F0(t)]1,3 are the lower, medium,
and upper bounds of the top event fuzzy probability using a triangular membership function.
Defuzzification is the last step of the fuzzy analysis. In this step, the top event fuzzy set
probability, [F0(t)]1×3, is converted into a deterministic value TE0(t). In the reliability con-
text, the centroid approach is the most common defuzzification method [108], as presented
by Eq. (8.5) for triangular fuzzy sets.

TE0(t) = 1
3

3∑
k=1

[F0(t)]1,k

= 1
3([F0(t)]1,1 + [F0(t)]1,2 + [F0(t)]1,3)

(8.5)

8.2.3 Fuzzy Uncertainty Analysis

There are two evaluation fuzzy factors to analyze the W.M.E-Bus system: the Fuzzy Un-
certainty Importance Measure (FUIM ) and the Fuzzy Importance Measure (FIM). FUIM
indicates the high impact basic components to the top event uncertainty. These components’
data must be operational data to minimize the top event uncertainties [108]. At certain t

working hours, FUIM is calculated by Eq. (8.6) for component i. [Q]1×2 is the top event fuzzy
[lower, upper] probabilities. [Qi]1×2 is the top event fuzzy [lower, upper] probabilities when
basic event i fuzzy set is a deterministic value with EF = 0. Di is the Euclidean distance
between [Q]1×2 and [Qi]1×2, and is given by Eq.8.7.

FUIM = Di([Q]1×2, [Qi]1×2) , ∀(i) = [1, 30] (8.6)

Di =
√

([F0(t)]1,1 − [F0(t)i]1,1)2 + ([F0(t)]1,3 − [F0(t)i]1,3)2, (8.7)

where [F0(t)i]1,1 is the lower bound of the top event fuzzy probability when basic event i
fuzzy set is a deterministic value with EF = 0. Similarly, [F0(t)i]1,3 is the upper bound. We



92

did not consider the top event middle value in calculating evaluation factors, as the middle
value of each basic components bi does not contain the uncertainty error factorEF . The
Fuzzy Importance Measure (FIM) identifies the critical W.M.E-Bus system’s components,
and it is given by Eq. (8.8). [Q1

i ]1×2 is the top event fuzzy [lower, upper] probabilities when
basic event i is fully unavailable, i.e. [F (t)]i×3 = [1, 1, 1]. [Q0

i ]1×2 is the top event fuzzy
[lower, upper] probabilities when basic event i is fully available, i.e [F (t)]i×3 = [0, 0, 0].

FIM = Di([Q1
i ]1×2, [Q0

i ]1×2) , ∀(i) = [1, 30] (8.8)

8.3 Results

The reliability of the W.M.E-Bus system is evaluated under uncertainty using fault tree in
figure 8.2 and Fuzzy logic reasoning with 10% uncertainty, EF = 0.1. Figure 8.5 represents
the top event Fuzzy output sets, [Lower, Medium, Upper], at various working hours. The
upper bound fuzzy output reaches the 0.8 failure probability before 25000 working hours.
Therefore, the low-risk decision prioritizes the upper bound of the fuzzy set in the defuzzifi-
cation step. The probability of failure for the top event reaches 0.8 at 62760 working hours.

Figure 8.5 Fuzzy probability Sets for different working hours.

Figure 8.6 shows the critical components of the W.M.E-Bus system at 10000 working hours
and 10% uncertainty, EF = 0.1, according to Eq. 8.8. With a 1.82 FIM value, Embedded
software failure is the most probable cause for W.M.E-Bus system failure. Moreover, the
critical components are the Embedded controller’s PCB (c1), Inverter’s PCBs (L_i1&R_i1),
and Motor seal Bearings (Lm1 & Rm1). Fuzzy uncertainties measurement (FUIM) factor
is calculated by Eq. 8.6 for the W.M.E-Bus system under 10000 working hours. Embedded
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Figure 8.6 Fuzzy Importance Measure at 10000 Working Hours.

software failure uncertainty is the highest factor that affects the W.M.E-Bus system fail-
ure uncertainty and its FUIM is 4.9E-4. For the hardware level, the control unit’ PCB is
the highest uncertainty-influenced basic component with FUIM value around 1.2E-4. Un-
certainties of the inverter PCBs’ data are the 2nd top basic components with 4.5E-4. The
uncertainty of Motor bearing failure data due to the seal leakage comes in the 3rd highest
FUIM factor. These are the basic components that their data uncertainty significantly affects
the W.M.E-Bus system’s availability. The failure rates of these components are required to
be well determined for more accurate system reliability analysis.

8.4 Conclusion

Wheel Motor Electric Bus (W.M.E-Bus) system structure is the potential heavy-duty electri-
cal vehicle candidate as it minimizes the system cost and mechanical complexity. Since the
system integrated E-Buses’ failure data are unavailable, the maintenance and replacement
suitable planning becomes a challenging task. We proposed a combination of fuzzy logic and
fault tree to analyze the W.M.E-Bus system reliability under uncertainties of failure data. At
10% failure data uncertainty and 10000 working hours, we found that the embedded software
was the most critical basic event of the Embedded control unit with an FIM index of 1.82.
The 2nd critical component was the embedded control unit’s PCB with FIM value of 1.57
and FUIM value of 1.2E-4. The 3-ϕ inverter’s PCB was the top second W.M.E-Bus critical
component with FIM around 1.55 and FUIM value of 0.45E-4. Moreover, Electrical Motor
important components were the bearing. In our future work, more W.M.E-Bus failure data
will be provided, and reference failure data can be updated. This study will be extended
to include the quality failures such as wiring connection failure. Downtime and cost will be
included to have more applicable maintenance planning.
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Abstract
Autonomous and self-improvement systems rely on the historical operational data of these
systems. With the lake of operational data, the development of the self-improvement process
becomes more challenging. This paper develops an autonomous uptime improvement scheme
for a system with either unavailability or uncertainty of operational failure data. Fuzzy-Fault
Tree Analysis (F-FTA) is adapted to analyze the system failure with operational data uncer-
tainty. Meanwhile, the Reliability Centered Maintenance (RCM) worksheets are developed
to define the uptime-improvement autonomous actions. The proposed scheme is verified on
the Wheel Motor Electric Bus (W.M.E-Bus) drive system in the Digital Twin (DT) envi-
ronment. It links the on-road Physical W.M.E-Bus driving conditions to the system failure
and reliability estimation, which are in the digital DT environment. The Embedded Control
Unit (ECU) transmits the W.M.E-Bus’s driving cycle to be analyzed in the digital environ-
ment. Then, the improvement action of derating percentage for the driving cycle is sent back
to the E-bus to automatically manipulate the driver’s pedal in the next driving cycle. In
this particular case study, the deployment of the proposed scheme increases the maximum
allowable W.M.E-Bus millage distance by 8603 miles when it reduces the driving cycle by
36 %, on average. A detailed improvement analysis for different operating speeds and RCM
worksheets are reported.

Keywords: Electric-Bus, Reliability, uptime, Digital Twin, Data uncertainty, RCM, Derat-
ing, E-mobility.

9.1 Introduction

Electrified Mobility (E-mobility) is a potential solution to tackle global warming, as it saves
emissions and running costs. Global EV outlook is an annual publication that identifies and
discusses the recent developments in electric mobility. Their report of 2021 stated that many
countries have planned to have a fully electrified transportation by 2040 [110, 111]. This
massive transient makes the maintainability and the uptime of the Eclectic-Bus an essential
requirement, especially for the complex integrated-system buses [111]. The part replacement
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of a Wheel Motor Electric-Bus (W.M.E-Bus) is a long-time process, where the high voltage
has to be discharged before starting the replacement [110]. The up-time extension activities
for this system are highly required by fleet management.
The combinations of Industrial 4.0 and Artificial Intelligence enable real-time monitoring
and increase the uptime of the E-Bus [16,23]. The implementation of these new strategies is
highly dependent on the accessibility of the historical operational data [17]. For the in-service
E-Buses, the full system connectivity and the run-to-failure data are still unavailable. This
paper fills this gap and provides the necessary structure for autonomous up-time improvement
while the system operational data are unavailable.The literature shows attempts to address
the E-Bus system failure analysis, and maintenance [2, 110,112]. Reliability Centered Main-
tenance (RCM) is a concept that was introduced to reduce failures specially those caused by
inadequate maintenance [30]. RCM was adopted in the passenger vehicle to avoid system
failures while creating a periodic replacement of the system’s components [112]. To get the
system’s state of failure, the system failure analysis must be added. Shu et.al 2019 applied
the Fault-Tree approach to study the reliability of a central-drive electric vehicle [2]. The
study assumed a certain failure data and the drive system was analyzed in the design stage.
Taha et.al 2020 [110] studied the failure criticality analysis for the W.M.E-Bus drive system
in the operating stage considering data uncertainty. These studies are passive approaches,
and neither the real operating condition of W.M.E-Bus nor self-improvement activities were
addressed. To fill this gap, this paper present a proactive approach that analyses the real
operating condition of the E-Bus in case of unavailability of data and provides uptime im-
provement’s actions.
Fault-tolerant control (FTC) was developed to increase system availability and reduce the
risk of safety hazards. FTC is intended to compensate for the fault effects on the system
during operation to maintain the system stability. To react to system malfunctions, FTC
includes online fault detection, automatic condition assessment, and the calculation of re-
medial actions when a fault is detected [113–116]. FTC is designed to recover the vehicular
drive system after having a pre-specified component failure, for example a speed sensor fail-
ure [113, 115], temperature sensor failure [116], or inverter switch failure [114]. FTC is a
post-failure reactive approach where it reacts to the system after a failure incident. Sama-
ranayake et.al 2018 developed a proactive Model Predictive controller (MPC) to address the
electrical motor degradation [117]. Firstly, MPC estimates the motor power losses that rep-
resented the motor degradation. MPC controls the supplied voltage to decrease the internal
losses [117]. Both FTC and MPC addressed a dedicated system component, and the system
integration is missed. To fills this gap, this paper develops a scheme to improve the reliability
of the W.M.E-Bus integrated drive system.
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Table 9.1 summarizes the successive research to improve the reliability of E-Bus and the
research gap that needs to be addressed. The proposed scheme in this paper fills those gaps
by presenting autonomous uptime-improvement for W.M.E-Bus systems with unavailable
operational data. This scheme links the on-road real driving condition of the W.M.E-Bus to
the system analysis and the proactive actions to increase the system up-time. The developed

Table 9.1 Summary of the W.M.E-Bus Drive System uptime Research Gaps

Achieved Need to be addressed
-Drive system analysis
-Combination of design failure data

-System analysis in operation mode
-System failure time and replacement time

-Power converter failure analysis under data uncertainty - Integrated System failure analysis
-Autonomous active approach

-Drive system failure analysis
-Failure data uncertainty
-System critical components definition

-Passive approaches
-A real operating condition
-autonomous corrections

-RCM Tasks worksheets. -Passive planning
-Integrated-System Failure analysis

-Reaction to the component failure.
-Tolerate the component’s failure

-Proactive approaches.
-System-integration needs to be addressed

-Proactive Motor degradation control
-Degradation improvement of electrical motor

- Integrated System Failure analysis and autonomous actions
-Real on-road operating condition.

scheme establishes the self-improvement activities of the W.M.E-Bus drive system in the
Digital Twin (DT) environment, and adds the following features:

• Analysis of the system failure while its operational data are uncertain or unavailable.

• Definition of the autonomous actions that improve the uptime of the integrated E-Bus
system.

• Proactive approach to extend the E-Bus uptime.

• On-road real operating conditions analysis of E-Bus and application of automatic ac-
tions to increase the bus allowable mileage.

This paper is organized as follows, Section 2 describes the Proposed scheme layout and its
main modules.Section 3 contains the methodologies that are proposed to develop a self-
improving system which lakes operational failure data. Section 4 shows the implementations
and verifications of the W.M.E-Bus. Section 5 presents the achieved results. Section 6 is the
conclusion and future work.
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9.2 Autonomous uptime-Improvement Scheme Layout in DT

The concept of autonomous available systems relays on two main functions: monitoring the
system health and performing improvement actions [16,17]. The autonomic loop is a closed-
loop that links these two essential functions of autonomy and enables the autonomous action
to be executed [16, 17]. The proposed implementation scheme of the autonomous uptime
extension in the Digital Twin (DT) is given in Figure 9.1. The digital environment contains
three modules as follows:

Figure 9.1 Autonomous uptime-Improvement Scheme for W.M.E-Bus In DT.

1. Database
The database is the historical data of the E-Bus system. These module includes the
fleet management data such as the maximum allowable mileage before performing main-
tenance process, the scheduled time for each bus-stops, and the realtime driving condi-
tion data [17,118]. In case of unavailability of the historical failure data, similar failure
data for the basic components of the system is involved with an uncertainty percent-
age [110,119]. To obtain the similar failure data, the common references are the IEEE
golden book for power system components [120], USA military handbook for electronic
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components [121], and US Navy reliability handbook for mechanical components [1].

2. System Health Monitoring.
In the health monitoring module (2), the conditional monitoring and diagnosis of the
system is performed [16]. In this module, the system failure is analyzed to evaluate
the health state of the system and its subsystems. In the application of this paper, the
health monitoring module is connected to the Database module (1) and to the physical
W.M.E-Bus to estimate system reliability at each time t. As the operation historical
data of the studied system are unavailable, the FTA analysis with failure data uncer-
tainty is proposed to Analyze the system failure-probability and reliability at a time t,
as explained in section 3.1.

3. Decision Making.
According to the analysis of the system reliability in module 2, the decision module
provides autonomous actions to improve system uptime. These actions are extracted
based the RCM’s worksheets to enable the autonomic closed-loop between Physical and
digital environments [109], as described in section 3.2. In the W.M.E-Bus, these actions
include changing of the driving conditions automatically, and isolating of the failed
components, as stated in section 4.2. The proposed scheme of the uptime improvement
is verified on a W.M.E-Bus drive system while monitoring and improving the driving
cycle autonomously.

9.3 Methodology

Reliability and maintenance are built on efficient definition and diagnosis of faults/anomalies
and failures. They address the optimal actions of maintenance or replacement time [30,109].
Reliability Centered Maintenance (RCM) is a concept that was introduced to reduce fail-
ures caused by inadequate maintenance for several industries [30]. Maintenance is applied to
ensure that the machine continues to perform as intended, while RCM addresses modes of
failure and their consequences and possible maintenance actions. These actions are chosen
to improve the maintenance function and minimize the influence of failures because of inad-
equate decisions. The RCM approach identifies the potential causes of failure, failure effects
and consequences, and possible actions to prevent or reduce the risk of failure [30]. There are
several tools to apply the RCM concept namely: Failure Mode and Effect Analysis (FMEA),
Consequence of Failure Analysis (COFA), and the Top-down approach of Fault-Tree Analy-
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sis (FTA) [30, 109]. To avoid a failure mode, RCM defines the proper tasks/activities to be
taken. RCM concept follows two main phases [30]: (1) Identifying the system components
and subsystems critical failure mode, (2) Specifying the RCM actions for each failure mode.
The 1st phase addresses the system and subsystem failure analysis, defines the possible causes
of the system failure, and estimate the system reliability at a time t. The system/subsystems
design has to satisfy the required safety and environment conditions. For example, in Wheel
Motor Electric-bus (W.M.E-bus), passenger safety is a requirement, and the reliability of
the bus is an operating criterion. In this paper, the Fault-tree is used to define and analyze
the W.M.E-Bus system/subsystems’ failure, causes, and estimate the E-Bus’s reliability at a
time t, as demonstrated by section 3.1.
The 2nd phase develops RCM worksheet that indicates the actions to be taken to mitigate
the causes of each failure mode. The RCM actions are categorized into pre-failure and post-
failure actions [30, 109]. This paper addresses the Pre-failure RCM actions that could be
autonomously executed to increase the W.M.E-Bus system’s uptime. Section 3.2 describes
the RCM’s actions selection criteria and the RCM’s worksheet structure.

9.3.1 System Health Monitoring and Failure analysis

As the in-field operational failure data of the W.M.E-Bus system are unavailable, this paper
develops an autonomous uptime-improvement scheme based on data uncertainty. The system
failure probability Fi(t) at time t is extracted by the Fuzzy Fault-Tree Analysis (FFTA)
algorithm for data uncertainty [110]. The FFTA algorithm has four main steps, as follows
[110]:

1. Building the system Fault-Tree and defining the basic components of each subsystem
i.
Fault-Tree is a top-down logical approach that presents the potential failure modes for
a system. The tree starts with the main system failure at the top level, then moves
down until reaching the root causes or basic events level. The middle levels represent
the subsystems, and there are logical combinations of intermediate events that lead to
system failure [110]. Figure 9.2 demonstrates a simple circuit example of two parallel
motors and its Fault-Tree. In this example, motors are connected to the DC source
through a switch. The main failure mode here is No-Rotation, which is indicated on
the top level of the tree. The intermediate events or the subsystems give the possible
causes for this failure mode, which are the failure of motors subsystem or power supply
failure. The basic event indicates the subsystem’s basic components, which are the root
causes that could lead to the main failure mode. In case of a lack of operational failure
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Figure 9.2 Fault Tree Example For No-Rotation Failure Mode In Simple Dual Motor circuit

data, the failure rate for each basic component is obtained based on similar reference
data as uncertain data. the proposed FFTA is a successive algorithm to analyze the
system’s failures under data uncertainty [110,122,123].

2. Fuzzification.
For basic component k, the uncertainty of the failure rate is represented by a fuzzy set
with a mathematical distribution. The uncertainty factor Efk for the kth component
is a factor that is used to define the fuzzy sets, and its value is obtained by an in-field
expert of the studied system [122, 123]. Figure 9.3 shows two examples of fuzzy-sets
for uncertain failure rate that is represented by a random variable xk: triangular dis-
tribution µtr(xk) = [ak, λk, ck], and Gaussian distribution µGaus(xk) = N(λk, σk], where
λk is the similar referenced failure rate. The mathematical formulas of the two fuzzy
sets are given in Equations (4) and (5) for triangular and Gaussian distribution respec-
tively [124].
The lower bound of the triangular fuzzy set is ak = (1− Efk)λk and the upper bound
is ak = (1 + Efk)λk. The standard deviation of the Gaussian fuzzy set is σk = Efk/3.

µtr(xk) = [ak, λk, ck] =


xk−ak

λk−ak
, ak < x < λ

ck−xk

ck−λk
, λk < x < ck

0 o.w

(9.1)
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Figure 9.3 Triangular and Gaussian distribution Fuzzy sets.

µGaus(xk) = N(λk, σk) = exp(−(xk − λk)2

2σ2
k

). (9.2)

To present the data uncertainties for the example given in Figure 9.2, for 10% un-
certainty and let λ1 = λ2 = 0.0001 Failure per hour (FPh), λ3 = 0.0000044 FPh, and
λ4 = 0.000002 FPh. Four fuzzy sets are required to represent the four basic events.
Each set is selected to be either a triangular or Gaussian fuzzy set. The triangular
fuzzy set is simpler for analytical solving and has finite upper and lower bounds [55].
The triangular fuzzy sets are x1 ∼ [a1 = 9× 10−5, λ1 = 10−4, c1 = 1.1× 10−4] for mo-
tor1, x2 ∼ [a2 = 9× 10−5, λ2 = 10−4, c2 = 1.1× 10−4] for motor2,
x3 ∼ [a3 = 39.6× 10−7, λ3 = 44× 10−7, c3 = 48.4× 10−6] for Battery failure,
and x4 ∼ [a4 = 1.8× 10−6, λ4 = 2× 10−6, c4 = 2.2× 10−6] for switch failure.

3. Applying of the Fault-Tree logic rules
The fuzzy rules are the logical operations that satisfy the interconnection relations of
the different levels of the system’s Fault-Tree. The “AND” and “OR” gates are the
most common logic gates used to build systems’ fault-tree [122]. The output failure
probability F (t)AND for k basic components/events that are connected in AND logic
relation is given in Equation (9.3) [122].

F (t)AND = AND{F1(t), F2(t), ....., Fk(t)}

= Πk
j=1Fj(t)

(9.3)

Meanwhile, the output failure probability F (t)OR at time t for k events/components
that formulates OR logic relation is given in Equation (7) [110,122].
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F (t)OR = OR{F1(t), F2(t), ...., Fk(t)}

= 1− Πk
j=1[1− Fj(t)]

(9.4)

The example given in Figure 9.2 is an electrical system and its components followed
an exponential failure distribution [30, 109]. Due to the uncertainty factor, the failure
probability of the kth basic components is a function of the stochastic random variable
xk, and it is written as xk ∼ [ak, λk, ck] for triangular sets. The failure Probability is
given by Fk(t) = 1− e−xkt. To apply the logic rules on the example in Figure 9.2 for
10000 working hours, the motors sub-system 1 failure is caused by motor1 AND motor2
failures. The failure probability of sub-system 1 is 1x3 vector, and it is calculated using
Equation (9.3) as:
F1(t = 10000)AND = Π2

k=1Fk(t = 10000)

=Π2
k=1[1− e−[ak,λk,ck]t]

= [0.935, 0.865, 0.889]

The sub-system 2 failure is the power failure, and its failure has two possible causes:
Battery failure OR switch failure. The failure probability based OR logic relation is cal-
culated using Equation (9.4) is given by: F2(t = 10000)OR = 1− Π4

k=3[1− Fk(t = 10000)]

=1− Π4
k=3e

−[ak,λk,ck]t

=[0.062, 0.056, 0.068]

The No-Rotation system failure is caused by failures of subsystem 1 OR subsystem 2.
For N = 2 subsystems and 10000 working hours, the system fuzzy set F (t = 10000)set

of the system failure is 1x3 vector, and it is calculated using Equation (9.4) as:

F (t = 10000)set = 1− Π2
N=1[1− FN(t = 10000)]

=1− [1− F1(t = 10000)AND][1− F2(t = 10000)OR]
=[0.061, 0.127, 0.1035]

4. Defuzzification
Defuzzification is the process of converting the system fuzzy set F (t)set into a determin-
istic crisp value F (t)sys that represents the system failure probability at a certain time
t. In the reliability context, the centroid approach is the most common defuzzification
technique [122]. The centroid is calculated as a center of the area under the system



103

fuzzy set µsys(x), as given in Equation (9.5) [30,109]. The failure rate of the integrated
system λsys is represented by random variable x in the system fuzzy set.

F (t)sys =
∫ ∞

−∞ xsysµsys(x) dx∫ ∞
−∞ µsys(x) dx

(9.5)

For the example given in Figure 9.2 the defuzzification of the No-Rotation system failure
is calculated using Equation (9.5) for triangular fuzzy set at 10000 working hours, as
1
3(asys + λsys + csys)|t=10000 = 0.1.
The system failure probability of the given example in Figure 9.2 at 10000 working hours
and 10% uncertainty is 0.1. The system reliability R(t)sys is estimated at a certain time
t and uncertainty factor Ef as R(t)sys = 1− F (t)sys. The estimated system reliability
of the example in Figure 9.2 at 10000 working hours and 10% uncertainty is 0.9.

9.3.2 Reliability Centered Maintenance (RCM) Activities.

The RCM activities are the actions that aim to avoid a failure mode and reduce the risk
of multiple failures. These actions are mainly characterized as Condition-Based and Time-
Based [30]. The condition-Based tasks are defined as Condition-Based Maintenance CBM
strategy, and it is relayed on the real condition of the system/subsystems while analyzing its
sensor data [30,55]. Time-Based tasks are the periodical planned replacement or restoration
of a component, and it is referred as the Preventive Maintenance strategy [30, 55]. Time-
directed tasks are suitable for systems/sub-systems that have low failure-variability and low
failure propagation [30].The condition-direct activities are the most effective for critical sys-
tems, yet the system’s operational and real-time data are a prerequisite [55]. Both RCM
maintenance tasks of Preventive actions and Condition-Based actions are physical tasks. The
human interaction plus repairing time are required to perform the maintenance task [125].
The developed scheme of this paper extends the RCM concept to include automatic actions
that are possible to mitigate failure modes autonomously and increase the system’s uptime.
Figure 9.4 depicts the developed logic-Tree tool that identifies RCM action for each failure
mode in Fault-Tree given in section 3.1. The selection of autonomous actions is specified by
the dashed line rectangle in the logic Tree of Figure 9.4. The RCM worksheet is a table that
contains mainly the RCM tasks to mitigate the failure mode or reduce its effects or conse-
quences. The worksheet is not limited to RCM tasks, and it could contain more information
to facilitate the implementation of RCM according to the studied system [109].
To improve the system’s uptime autonomously, nine columns RCM worksheet sheet is pro-
posed, and the columns are described as follows:
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RCM action cost 
Lower than 

Corrective 
Maintenance?

No

Yes

RCM action decrease 
the likelihood of 
multiple failures

 System component i ϵ K

Obvious Failure?

Condition-Based
Specify the Task & 

frequency 

High-failure 
variability ?

Time-Based
Specify the Task & 

frequency 

Failure’s consequences 
impact 

Safety/environment?

Design 
Change 

Failure’s 
consequences impact 

operation?

Periodic 
inspection

No

Yes

Yes

Autonomous 
mitigation ?

Define the Action & 
The autonomic 

closed-loop

Figure 9.4 Logic-Tree of the Developed RCM Autonomous Action’s selection.

1. Index: it indicates the index of the basic cause of failure, and it is the same index as
given to the basic component in Fault-Tree.

2. Component: it indicates the basic component name.

3. Failure mode: it includes the failure mode that is linked to that component.

4. Effects/Consequence: it identifies the consequences and effects of that failure mode.

5. Causes: it defines the possible cause of having this failure mode.

6. Detection: it indicates the detection criteria of the failure mode if it is available.

7. RCM Task: it identifies the possible actions to avoid that failure mode or reduce its
effect. The action type is selected for each basic component of the system according to
the selection logic tree given in Figure 9.4.

8. Frequency: it indicates how often this RCM action is carried out.

9. Autonomous Action: this column is developed to define the possibility of mitigating
the failure mode and increasing the system’s uptime autonomously.These actions are
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executed through the autonomic closed-loop between physical and digital environments.

For the example given in Figure 9.2, Table 9.2 demonstrate the possible RCM tasks
according to the worksheet logic. The system example consists of two sub-systems:
the motor failure sub-system and power failure sub-system. In this example, the cost
of proactive maintenance is assumed to be lower than the cost of the corrective main-
tenance plus the failure consequence for each failure mode. Deployment of proactive
maintenance tasks is assumed to decrease the likelihood of having multi-failure con-
sequences. The root cause of the motor subsystem 1 failure is over-current, and the
selected RCM action to mitigate this failure is a condition-directed action on a daily
basis, according to the logic criteria in Figure 9.4. Meanwhile, the autonomous RCM
action of discharging control is applicable to mitigate the battery’s low-voltage in sub-
system 2 while monitoring the battery discharging voltage. The switch failure could be
identified for the design change task when the cost of the corrective maintenance and
run to failure task are high, according to logic-tree criteria in Figure 9.4.

In the example given in Figure 9.2, Battery discharging control task is applicable to be
executed through the DT autonomic closed loop to prevent the system disturbance.
To improve the uptime of the W.M.E-Bus autonomously, this paper addresses the
RCM’s actions that could be controlled through an autonomic closed loop. Section 4
verifies the proposed methodology on the on-road operation of the W.M.E-Bus under
uncertainty of failure data.

9.4 Autonomous Scheme verification on Electric-Bus

The Wheel Motor Electric-Bus (W.M.E-Bus) drive systems consisted of Embedded Control
Unite (ECU), and each wheel has a DC/AC 3-phase power inverter, and a 3-phase induction
motor. Figure 9.5 shows the schematic diagram for the W.M.E-Bus drive system. The
ECU controls the drive system and provides the control signals to the DC/AC inverters.
It monitors the wheel motors’ sensors and performs the driver’s acceleration/deceleration

Table 9.2 Structure of the RCM Task worksheet

Index Component Failure mode Consequence/
Symptoms

Example
Possible
Causes

Detection RCM Task Frequency Autonomous action

1 Motor 1 Motor failure
No Rotation

Over current NA Current Monitoring Daily NA
2 Motor 2 Over current NA Current Monitoring Daily NA

3 Battery Power failure Low voltage NA Discharging
Control hourly Yes

4 Switch Wrong selection NA Change material Once NA
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decision [110]. The 3-phase DC/AC inverter controls the induction motor speed and charges
the battery in the motor’s regenerative braking mode [120]. the developed scheme in this
paper increases the reliability and uptime of the W.M.E-Bus’s drive system in Figure 9.5.
This system is categorized into six main subsystems, and each sub-system is dismantled
to its basic components using the Fault-tree analysis approach in section 3.1. A detailed
description of each basic component for the W.M.E-Bus drive system is given in [110]. Table
9.3 contains the W.M.E-Bus Subsystems, their indices, uncertain failure rate data in Failure
per 106 hours (FPMh) for each subsystem.

The given data in Table 9.3 are gathered based on the basic components in the schematic
of the W.M.E-Bus drive system in Figure 9.5, and the similar components in the literature
[1, 2, 4, 110,121].

9.4.1 Electric-Bus Drive System Health Monitoring

The Fuzzy-FTA (FFTA) approach is applied to analyze the system fault tree with the uncer-
tainty of component failure rate. Figure 9.6 is the top three levels of the W.M.E-Bus drive
system Fault-tree. It includes the subsystems that are given in Table 9.3. The lower levels
of the basic components of each subsystem are presented by the blue triangle in Figure 9.6,
and it is fully descried with its indices in Figure 9.7.

The uncertainty factor of the failure rate in the power electronics converters is between 10%
and 24% [110, 119]. In the case of unavailability of the operational data, the system failure
uncertainty is an expert-based factor [122, 123, 126]. Based on an expert recommendation
from an e-mobility maintenance center, the uncertainty factor for the W.M.E-Bus is 17 %.
This percentage is calculated as the difference between the designed allowable millage and
the real failure miles for the W.M.E-Bus sub-systems. In this paper, the fault-tree in Figure
9.6 is analyzed using FFTA with Gaussian distribution fuzzy sets and 17% uncertainty.

9.4.2 Electric-Bus Drive System Autonomous Actions

The autonomous actions list is defined using the same concept of the RCM actions logic-tree
in section 3.2. In this paper, the actions list addresses the actions that could be executed
automatically through an autonomic closed loop. The autonomous actions worksheet for the
W.M.E-Bus Drive system is built on the system Fault-tree given in Figure 9.6. The recent
IIOT technology and Digital Twin (DT)’s connectivity to the E-Bus enable these autonomous
actions to be carried out.
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Figure 9.5 W.M.E-Bus Drive System Schematic.

In this section, for each sub-system, the extracted autonomous actions from the worksheet
are discussed, and the full actions-list is given in Appendix C.

1. Embedded control Unite (ECU) Subsystem Failure.
It is a DSP control unit, and its potential failure causes are embedded software bugs or
the protection circuit component failure [110]. The autonomous action tackles the soft-
ware issues that are indexed by C.1 in the system’s Fault-Tree Figure 9.6. The software
version of the W.M.E-Bus’s ECU is automatically checked on daily bases. Once there
is an update of the manufacturer’s software database, DT updates the W.M.E-Buss’
ECU by Over-The-Air (OTA) software update [127].

2. AC/DC 3-phase Inverter Subsystem Failure
The power inverter sub-system failure is defined as a critical operational concern. This
failure causes a malfunction of the electrical motor and inverters sub-systems failure.
To increase the inverter’s uptime autonomously, the Switching frequency check is the
autonomous RCM action to mitigate the abnormal noise failure mode I.3 in Figure 9.7.
Switching frequency is one of the causes that create an unacceptable vibration noise
of the inverter, especially in the system integration of a different supplier [128, 129].
At each ECU software update, the compatibility of the inverter’s frequency is checked
autonomously.
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Table 9.3 W.M.E-Bus Drive system and subsystems Failure rate

No Driving System Components symbol (FPMh)
1 ECU failure C 3.44E-06

Left Wheel Subsystems
2 Inverter failure I1 1.54E-06
3 Sensor’s failure S1 2.83E-07
4 Bearing failure at 11000 rpm B1 1.74E-06
5 Mechanical-link failure G1 6.11E-08
6 Motor windings failure W1 3.00E-07

Right Wheel Subsystems
7 Inverter failure I2 1.54E-06
8 Sensor’s failure S2 2.83E-07
9 Bearing failure at 11000 rpm B2 1.74E-06
10 Mechanical-link failure G2 6.11E-08
11 Motor windings failure W2 3.00E-07

Figure 9.6 Top Three levels in the Fault-Tree of W.M.E-Bus Drive System.
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Figure 9.7 Fault-Tree’s Basic Level of the W.M.E-Bus Drive system.

3. Three-phase Induction motor’s Subsystem Failure
Motor failure could be caused by the winding, the bearing, or the mechanical link
sub-systems [110]. The worksheet in Appendix C includes the detailed RCM tasks for
each subsystem’s failure mode. From the perspective of autonomous improvement, the
wheel motor’s degradation is related to the internal mechanical and electrical power
losses of the motor that caused internal thermal stress [117]. Reducing the motor’s
power losses Plosses (Kw) at the operation leads to reducing the degradation rate of the
motor sub-system [117]. The autonomic loop is objected to decrease the wheel motor
power losses at each operating cycle to increase the system uptime. Equation (9.6) is
the losses over an operating cycle time Tcycle, and η is the motor efficiency according to
its manufacture. The wheel motor output Pout (kw) in Equation (9.7) is related to the
load torque Tload (Nm) and motor speed n(t) (RPM).

Plosses =
∫ Tcycle

0
(1
η
− 1)Pout dt (9.6)
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Pout = 2π n(t) Tload

60 (9.7)

With fully loaded W.M.E-Bus conditions, the bearing is the most affected subsystem
with the changing of the wheel motor speed [1,130,131]. Next section 4.3 links the real
operating cycles of a W.M.E-Bus to the system analysis to improve its uptime. The
full DT algorithm of the proposed scheme implementation is also included.

9.4.3 Electric-Bus Driving cycle

The driving cycle is a chart that plot the Electric-Bus speed versus running time, and it shows
the acceleration and deceleration behaviors of the E-Bus on a certain route. The FTP-75
city driving, HWFET highway driving, and SFTP US06 aggressive driving are the standard
driving cycles for testing light duties-vehicle in North America [132]. For heavy-duties,
WVU West Virginia University and EPA Urban schedule are the recommended standard
driving cycles [132]. In this paper, the developed approach is implemented on W.M.E-Bus
in operation, and a practical on-road driving cycle is used to analyze the drive systems and
their subsystems. Figure 9.8 shows an example of real on-road W.M.E-Bus driving cycle and
W.M.E-Bus speed V (t) is in mile/h. The electrical motor speed n(t) (RPM) is abstracted
by Equation (9.8), where the V (t) is the electric-bus (wheel end) speed in mile/h. The gear
ratio is G for the transmission gears from the motor to the wheel, and the wheel’s tire radius
is r (m). The motor speed n(t) (rpm) over the practical driving cycle is given in Figure 9.9.

n(t) = 60V (t)
2πrG

(9.8)

The average motor speed over the driving cycle in Figure 9.9 is 2353.95 RPM. The operating
speeds of the inverter-driven motors are influenced its failure analysis and consequently the
reliability analysis of E-Bus system. The bearing of the electrical motor is the main affected
motor component with the operating speed [1, 130, 131]. The bearing reference failure rate
λB (Failures/Mh) is given by Equation (9.9) [1,110]. Cenv is a multiplication factor that rep-
resents the bearing environmental condition (ex. Environmental temperature and lubricant)
this factor is calculated based on charts and table in [1]. In the case study of this paper, the
W.M.E-Bus works in the North America region and the environment multiplication factor
equals 1.716.

λB = λBE,BCenv (9.9)

λBE,B is the basic bearing failure rate (Failures/Mh) given by Equation (9.10), Where L10 is
the standard bearing life in (milion rev) [1]. Equation (9.11) indicates the operational failure
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Figure 9.8 On-Road Electric-Bus Drive Cycle with Bus speed in (mile/h).

Figure 9.9 Wheel Motor Speed (rpm) Over the Driving Cycle in Figure 9.8.

rate for the motor bearing λB)op (Failures/Mh.rpm). The developed formula in Equation
(9.11) establish the relation between W.M.E-Bus’s bearing failure rate and the operational
motor speed (rpm).

λBE,B = 2× 105[60 n(t)
L10

] (9.10)

λB)op = 120× 105 n(t) Cenv

L10
(9.11)

As the bearing failure rate has a direct relation to the wheel motor operating speed, the
operational reliability analysis of W.M.E-Bus depends on the bus driving cycle. The Proposed
algorithm in Figure 9.10 checks the daily W.M.E-Bus reliability and manipulates the driving
cycle for the next day.
In the form of the bus’s running miles, the operating time t (h) is converted to distances
d (mile) using the average of the nominal on-road driving cycle given in Figure 9.9. The
W.M.E-Bus drive system reliability at d (mile) is R(d) and the failure probability is F (d).
In the Digital Twin (DT), the failure and reliability analysis of the W.M.E-Bus system are
executed using the FFTA method in section 3. The proposed DT algorithm reads the W.M.E-
Bus driving cycle, and then estimate the system reliability.
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Figure 9.10 E-Bus Autonomous Uptime Improvement Algorithm.

In case of having lower reliability for example lower than 33%, the DT connects to the Bus’s
ECU to manipulate the average cyclic driving speed and improve the system’s reliability and
increase its uptime on the next day of operation. The critical reliability level is adjusted
according to the fleet management strategies. In the studied case given by Figure 9.9, the
W.M.E-Bus is inspected every 600 K mile which is equivalent to 33% system reliability and
67% failure probability. The simulation cycle time ∆T is selected to be one day (24-hour
service). The sub-systems failure uncertainty factor is obtained based on the maintenance
workshop of the W.M.E-Bus driving system and it could be updated with the ongoing physical
replacement tasks. The achieved uptime-improvements with the proposed algorithm are
indicated in the results section.

9.5 Result and discussion

The DT algorithm in Figure 9.11 is the implementation of the proposed scheme of autonomous
uptime-improvement for the Wheel Motor Electric Bus (W.M.E-Bus). This algorithm is
verified with Gaussian fuzzy sets to present the sub-systems failure data uncertainty and an
expert-based uncertainty factor of 17 %. For the studied case given in Figure 9.9, the 17
% uncertainty factor is obtained based on the difference between the real failure miles and
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designed one for the W.M.E-Bus drive system,

For W.M.E-Bus drive system analysis with 17% failure data uncertainties, Table 9.4 com-
pares the performance of the proposed Gaussian defuzzification method versus Mount Carlo
(MC) and Latin Hypercubic (LH) methods that sampled from a Gaussian distribution [124].
This comparison is carried out for the W.M.E-Bus drive system that runs on the conditions
of the on-road driving cycle in Figure 9.9, and the results are reported at a running mileage
of 400,000 miles. The proposed method of defuzzification of Gaussian fuzzy sets performs as
the LH sampling method with 100 samples and 17 % uncertainty factor.
Figure 9.11 shows the W.M.E-Bus system reliability in the blue line and failure probability

in the orange line. At 600,000 running miles, the reliability of W.M.E-Bus drive system
degrades to 33% with the nominal on-road driving cycle given in Figure 9.9.
To improve the system reliability during the operation, the proposed DT algorithm in Fig-

67 % failure 
probability

60
0K

 m
ile

Figure 9.11 FFTA W.M.E-Bus system analysis at the average cyclic speed of 15.11 mile/h.

ure 9.10 will change the controllable variable of the W.M.E-Bus; speed over the driving cycle
for the next operating day. Figure 9.12 shows the W.M.E-Bus drive system reliability at

Table 9.4 WME-Bus Analysis at 15 mile/h nominal average cyclic speed and 400K mile for
different uncertainty analysis techniques

Index Triangle
Defuzzification

Gaussian
Defuzzification

MC sampling [22]
100 samples

LHS sampling [22]
100 samples

Failure Probability 0.52662931 0.526646 0.53319864 0.52659089
System Reliability 0.48448179 0.484464 0.47791246 0.48451
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different operating driving cycle speeds. At the same running distance of 600,000 miles, the
reliability of the W.M.E-Bus drive system increases as the developed algorithm manipulates
the bus’s driving cycle and decreases the operating speeds.

In this case study, the allowable W.M.E-Bus mileage distance before performing the pre-

34 %

28.4 %28.2%

29 %

30.3 %

33.5 %

Figure 9.12 W.M.E-Bus Reliability analysis at different operating E-Bus speeds.

ventive maintenance is 600,000 miles. Figure 9.13 demonstrates the impacts of the proposed
scheme on the allowable W.M.E-Bus mileage distances at different operating average cyclic
speeds. At 33% system reliability, the allowable W.M.E-Bus’s mileage increases as the pro-

Figure 9.13 W.M.E-Bus Allowable Distance (mile) Versus Average Driving Cycle speed
(mile/h) at Same Level of Reliability.
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posed DT algorithm interacts with the ECU of the E-Bus and slowdown the bus’s driving
cycle. For example, changing operating speeds from 15.11 mile/h to 9.63 mile/h increases the
allowable bus’s mileage by 8603 miles over the 600,000 miles that is adjusted as the maximum
allowable millage for the studied case.

9.6 Conclusion

This paper proposed a scheme for the implementation of autonomous uptime-improvement
systems in a Digital Twin (DT) environment while the operational in-field data are unavail-
able. The Basics of the Reliability Centered Maintenance (RCM) is extended to develop a
DT scheme that is capable to improve the system uptime autonomously. The Fuzzy Fault
Tree analysis is developed to analyze the system reliability with uncertainty of data. The
proposed scheme is verified on Wheel Motor Electric Bus (W.M.E-Bus) drive system. To
overcome the unavailability of the operational data, the W.M.E-Bus drive system is disman-
tled to subsystems and basic components to analysis the system reliability. The developed
DT scheme links the uptime analysis with the real operating condition of the W.M.E-Bus
while using on-road driving cycle. The uptime-improvement of the W.M.E-Bus is measured
and compared to the existing inspection criteria, and the proposed scheme adds 8603 miles to
the maximum allowable mileage distance when derating the average operating speed by 36%.
In Future work, implementation of the decision making, Self-healing mechanism need to be
addressed. The developed scheme will extend to include operation cost, battery degradation,
and the DC power system.
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CHAPTER 10 GENERAL DISCUSSION

The fourth industrial revolution relays on digitized and fully connected machines. This digital
transformation and connectivity enable the observability and controllability of the machines.
According to these hypotheses, this thesis develops different intelligent approaches in a Digital
Twin (DT) environment to improve the machines’ uptime.

This thesis developed different approaches to implementing the self-healing and autonomously
maintained machine. Different industrial systems were studied with different types of data,
including time-series and time-independent numerical data. Several Machine Learning (ML)
algorithms were developed to analyze the system sensor data and monitor its degradation
state. These algorithms modeled the health monitoring module that detects, diagnosis, and
predict system failures. Another module is developed to act automatically online to increase
the uptime while manipulating the system settings. The integration of these two modules
formulates the closed-loop of the autonomous system.

The performance degradation of a system can be stopped if it is detected and suitable required
actions are applied. In the degradation monitoring process, the system’s faults/failures are de-
tected and diagnosed to trigger the self-healing mechanism. Integration of Long-Short-Term-
Memory (LSTM) and Regression Adjustment for Multivariate (RAM) detects the positional
anomalies of a robotic arm with correlated and unsupervised data variables. Meanwhile, in
the Pre-failure approaches, the monitoring module should include the Remaining Useful Life
(RUL) prediction or the Time to Failure (T2F) estimation of the system.

The logical Analysis of Data (LAD) pattern recognition technique enables the post-failure
self-healing mechanism. The online health monitoring module detects the instant of faults,
and it is modeled by the generated patterns when ingesting the uncontrollable variable data
to the LAD algorithm. Then, the self-healing module provides corrective settings to clear the
detected fault. The recovery patterns are generated when ingesting the controllable variable
data in the machine’s normal operation to the LAD algorithm. For fast recovery, Distance
approaches were the criteria of the self-healing module to select the nearest recovery pattern
to the machine’s settings at the instant of the fault.

Reinforcement Learning (RL) is a model-free approach and it has low online computation.
The combination of RL and LAD develops an online Pre-failure autonomous slowdown for
the system’s degradation. The online health monitoring module is modeled by the generated
LAD patterns when ingesting the run-to-failure time series data. This module is able to
monitor and detect the Pre-Failure interval of the system while tracking the P-F curve.
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Once, the Potential failure point is detected, the Pre-Failure RL module is activated and
generates continuous autonomous actions according to the trained optimal policy. These
actions increase the Time to Failure (T2F) while keeping the system performance at an
acceptable level.

With the lack of system operational data, Fuzzy Fault-Tree Analysis (FFTA) algorithm is
adopted to analyze the Electric Bus (E-Bus) with the uncertainty of system failure data. This
approach estimates the system failure system and defines its critical components. The con-
cept of Reliability Centered Maintenance is adopted and extended to enable the autonomous
uptime improvement for the E-Bus with the unavailability of data or data uncertainty. Inte-
gration of FFTA and RCM’s actions in a DT environment develops an autonomous scheme
that increases the E-Bus uptime according to the on-road real driving conditions.
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CHAPTER 11 CONCLUSION AND RECOMMENDATIONS

11.1 Summary of Works

This thesis has presented novel approaches to implementing autonomously maintained ma-
chines. The main objective of the research was uptime improvement. This thesis addressed
the Time to Failure (T2F) extension and self-healing mechanisms to improve the perfor-
mance of machines. The approaches developed in this thesis verified the two limbs of the
autonomous systems concept in maintenance: system health monitoring, detection, and di-
agnosis, and (2) autonomous improvement actions. The health monitoring and diagnostic
modules are developed for different systems/assets to provide a system degradation state to
the autonomous action module. According to this state, the proper autonomous action is
performed to increase the system uptime performance. In this thesis, supervised and non-
supervised machine learning algorithms were developed to build the health monitoring and
autonomous recovery modules. The impact of the autonomous module on system perfor-
mance is validated in different industrial systems.

The industrial data of the studied systems are an essential part of learning and developing
an autonomous system. The data variables have to cover the non-controllable variables of a
system to be fully monitored, and the setting variables of the system to fully controlled. The
data type defines the main objectives of the health monitoring and autonomous recovery
modules. For example, time-independent data of faulty and non-faulty observations are
useful in building a post-failure self-healing mechanism to recover the machine at the instant
of a fault. This mechanism is implemented on a CNC milling machine and it was capable of
recovering the machine from a non-conformation (faulty) state to a conformation (non-faulty)
state. The health monitoring module detects undesired performance (fault/anomalies) and
enables the self-healing mechanism to recover the machine. cbmLAD Pattern recognition
machine learning algorithm was a successful method to analyze this supervised data and to
develop the novel self-healing mechanism.

In another application, Time series run-to-failure data was used to develop a pre-failure tool
performance improvement approach. a tool degeneration state is monitored online and the
potential failure level is estimated. A deep RL agent is developed to slowdown the tool
degradation rate while manipulating the machine settings according to the optimal trained
policy. The implementation of this approach in the particular case study increased Time to
Failure (T2F) by 40% on average, compared to the classical approach.
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If the assets data is unavailable, the autonomous uptime improvement approach was devel-
oped on the basis of reliability Centered Maintenance (RCM) and failure analysis of uncertain
data. A novel scheme was developed to increase the uptime of the Electric-Bus (E-Bus) in
Digital Twin. The drive system of the E-Bus was analyzed to estimate its reliability, and
according to the real driving cycle, the autonomous action is performed to extend the allow-
able millage. Deployment of the developed structure could increase the maximum allowable
E-Bus millage by 8603 miles on average.

11.2 Future Work

In future research, the validation of physical hardware systems needs to be addressed. More
physical experiments needed to be conducted to verify the IIOT send/receive responses and
the implementation of real-world autonomous action . The self-healing mechanism developed
addressed the anomalies of the systems in the post-failure mode. To have a robust self-
healing mechanism, more analysis and experiments are required. The mechanism needs to
be extended to include the failure of sensors and actuators, for example having diagnostic
and availability prediction software for sensors and actuators.

A generalized autonomous healing approach for pre-failure and post-failure is needed, to
extend the feasibility of the health monitoring and the autonomous action modules while
using transfer learning. In this machine learning technique, the developed models could be
used to perform another application. Transfer learning enables the machine learning model to
train on one application and transfer the training knowledge to any other similar application.

Continuous online learning stimulates the explorations of new failures or new actions. The
incremental-learning AI modules enable continuous updating of the health monitoring and
autonomous action models. The autonomous action module could learn more action space,
and the health monitoring will train on more faults. Consequently, The autonomous modules
will be adaptable to any changes in the environment of the machine.
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APPENDIX A CHAPTER 3: SELF-HEALING MECHANISM
INTERACTIONS

A.1 P2D is better than P2P in recovery time
While running the 20 sets sequentially that are labeled as out-of-specification, we compared
the recovery time of the P2D and the P2P distance approaches. The P2D self-healing out-
performs the P2P and recovers the out-of-specification state of the CNC machine faster than
with P2P. This result was obtained when the initial settings were the 2nd, 7th, 8th, and 9th

that are shown in Table 5.8 and Table 5.9. This behavior happened in 4-runs out of 20
runs, which led to out-of-specification as shown in Table 5.8. In 9 settings out of the 20, the
recovery time was found to be the same for the P2D and the P2P approaches. In this case,
the selection of a recovery pattern does not affect recovery time. Finally, seven settings led
to a longer recovery time with the P2D than with the P2P. A.1.1 7th, 8th, and 9th Initial
Settings
These initial sets are different in feed rate and are common in 4×104 RPM spindle speed and
with a 32 mm non-variable depth of cut. The different feed rate settings led to different faulty
forces and temperature measurements for each initial set, as indicated in Table 5.8. In these
runs, P2D-Self-healing outperforms the P2P-Self-healing, and it recovers the CNC machine
Ra fault in 3.5 seconds as shown in Figures 6.a, 7.a, and 8.a. The P2D approach calculates
the distance to each recovery pattern by considering it as uniform distribution. The P2P
distance was calculated to a recovery pattern mean as a single point regardless of the other
corrective values inside the pattern. P2D-Self-healing selects the 3rd recovery pattern to be
the nearest pattern in the first 5 cycles, which is the same as P2P. Then, it selects the 1st

recovery pattern instead of the 3rd pattern at a time of 3 seconds, while the P2P-self-healing
recovers the Ra out-of-specification in 18 seconds with the 1st recovery pattern, as given in
Figures A.1.b, A.2.b, and A.3.b. In these initial sets, the P2P-Self-healing cleared the de-
tected fault with the corrective action of changing the initial settings to 499.3 mm/min feed
rate and spindle speed to 3.56×104 RPM. Consequently, the fault detection symptoms of the
force in the x-direction given in Figures A.1.d, A.2.d, and A.3.d, Fx were changed from the
values that cause a fault in each run to a normal value of 18.3 N. P2D-self-healing corrective
settings are 308.2 mm/min feed rate and 3.13×104 RPM spindle speed. As a result of changes
to the settings, the faulty force in the x-direction for each initial set, Fx was changed to 15
N as presented by Figures A.1.d, A.2.d, and A.3.d, and the mean temperature decreased to
243.5 Co, as given in Figures A.1.f, A.2.f, and A.3.f. A.2 P2D and P2P have the same
recovery time.
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Figure A.1 P2P-synchronized Self-healing (P2P & P2D) interacting with CNC milling fault
in the 7th run
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Figure A.2 Synchronized Self-healing (P2P & P2D) interacting with CNC milling fault in
the 8th run

In the runs of this behavior, the distance approaches of P2D and P2P do not affect Self-
healing performance, and it has the same fault recovery performance for the two approaches.
The performance equalizations exist in 9 runs out of the 27 runs that are indexed [18th − 27th]
with excluding the conformed settings 25th initial set. A.1.2 18th Initial Settings
In this run, we set the CNC machine initially with faulty settings of a non-variable 64 mm
cutting depth, a feed rate of 700 mm/min, and 4×104 RPM spindle speed. P2P and P2D
Self-healing select the 2nd recovery pattern to be the nearest pattern to the 18th initial set-
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Instant of Ra fault detection 

Instant of P2D fault Recovery
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Nearest P2D recovery pattern 
at 3 sec

Faulty Fx 
measurement Normal Fx measurement
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Faulty Temperature 
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Figure A.3 Synchronized Self-healing (P2P & P2D) interacting with CNC milling fault in
the 9th run.
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Corrective P2P 
Speed

Normal Temperature 
measurement with 
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Figure A.4 Synchronized Self-healing (P2P & P2D) interacting with CNC milling fault in
the 18th run.

tings, as identified by figure A.4.b. The self-healing module achieves the same fault recovery
time of 1 second for the two distance approaches, as given in figure A.4.a. The self-healing
corrective actions are 358.5 mm/min, 3.9×104 RPM with P2P self-healing, while P2D self-
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healing generates 367.2 mm/min and 3.7×104 RPM for the feed rate and speed, respectively.
The fault cause was the Fx sensor that has a high value of 26.8 N at the incident of the fault,
and with the self-healing action, it was reduced to normal values of 20.2 N, as depicted by
figure A.4.d. The mean temperature decreased from 355.3 Co to 297.4 Co with P2P, and to
290 Co with P2D, as presented in figure A.4.f. A.1.3 19th, and 20th Initial Sets.
The CNC machine’s initial faulty settings are 96 mm non-variable depth of cut, 1×104 RPM
spindle speed, and the feed rate is 100 mm/min for the 19th set and 400 mm/min for the
20th initial set. According to the depth of cut, the nearest possible recovery pattern to be
selected is the 4th pattern out of the recovery patterns in Table 5.6. Therefore, in these
runs, the distance approaches do not influence the self-healing module performance, and it
has the same self-healing corrective actions of 200.3 mm/min feed rate and 2.94×104 RPM
spindle speed with P2P and P2D self-healing, as recorded by figure A.5.c and figure A.5.e.
The Self-healing module clears the detected out-of-specification fault within 1.5 seconds, as
given in figure A.5.a. As the initial feed rate is different in the 19th and 20th initial sets, the
faulty measurements of forces and temperature are different for each initial set, as indicated
in figure A.5.d and figure A.5.e. CNC milling x-access force was the main fault indicator in
the 19th and 20th runs, and it decreased with self-healing actions to 24.0 N; while the mean
temperature changed to 294.4 Co, as exhibited in figure A.5.d and figure A.5.e.
In the 21st, 22nd, 23rd, 24th, 26th, and 27th runs, the self-healing with either P2P or P2D
has the same fault recovery time, and it clears the CNC machine fault in 1.5 seconds, as
mentioned in figure A.6.a. The depth of cut is the common setting in all these runs, and it is
96 mm; therefore, the 4th recovery pattern is the nearest possible pattern as in the 20th run.
The self-healing actions to recover the Ra fault are the same values of 200.3 mm/min for the
feed rate and 2.94×104 RPM for the spindle speed, as mentioned in figure A.6.c and figure
A.6.e. For all these 6 runs, the Fx is the main cause of the Ra fault and it activated the
1st IF-THEN detection rule in section 4.2. The faulty Fx sensor values were 69.9 N, 55.3 N,
41.8 N, 41.8 N, 40.7 N, 29.7N, and 28.1 N for the 21st, 22nd, 23rd, 24th, 26th, and 27th Runs
respectively, and it changed with a self-healing module to 24 N, as shown by figure A.6.d.
A.3 P2P is better than P2D in recovery time
This is the last kind of Self-healing performance, and it was in 7 runs out of the 27 runs.
However, P2D and P2P approaches select the same nearest recovery pattern in each run of
these 7 runs; Self-healing P2P outperforms P2D self-healing, and it recovers the CNC ma-
chine Ra fault in fewer time steps than with P2D distance. In the 3rd, 4th, and 6th runs,
P2P and P2D Self-healing selects the 6th recovery pattern to recover the out-of-specification
fault, as presented in figure A.7.3.b, figure A.7.4.b, and figure A.7.6.b, respectively. The P2D
self-healing recovers the Ra fault within 2.5 seconds, while the recovery time was 2 seconds
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Figure A.5 Synchronized Self-healing (P2P &P2D) interacting with the CNC milling Ra fault
in sets 19 and 20.
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Figure A.6 Synchronized Self-healing interaction with Ra fault in the 21st, 22nd, 23rd, 24th,
26th, and 27th runs.
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with P2P self-healing, as indicated in figure A.7.6. In the remaining 4 initial sets out of
the 27, the 5th recovery pattern is selected to be the nearest to clear the Ra faults in the
10th, 11th, 12th, and 15th runs, according to the P2P and P2D distance calculations. P2P
Self-healing clears the CNC machine fault within 1 second, while it is cleared in 1.5 seconds
with P2D, as given in figure A.8.

3rd Run Initial settings 4th Run Initial settings 6th Run Initial settings

3.a 3.b

3.a 3.b 4.a 4.b 6.a 6.b

3.c 3.d 4.c 4.d 6.c 6.d

3.e 3.f 4.e 4.f 6.e 6.f

Figure A.7 Synchronized Self-healing (P2P & P2D) interacting with the CNC milling fault
in the 3rd, 4th, and 6th runs.

The P2D Self-healing minimum execution time was 1.9 mseconds and it is achieved at the
12th run, while the maximum P2P execution time was 2 µseconds at the 15th run, as stated
in figure A.9. Hence, the P2D self-healing recovers the fault within the next fault detection
cycle of 0.5 seconds later than P2P-self-healing. The execution time of Self-healing with
P2D distance depends on the number of corrective sample points inside the recovery pattern,
which are sampled from the pattern range to calculate the covariance matrix (Cov). While,
P2D-self-healing would be more accurate with a higher number of samples, its exclusion time
would increase. The number of recovery samples used in all 27 runs was 1000 samples. When
we decrease the number of samples to 10 samples per recovery pattern, a P2D Self-healing
execution becomes small and almost equal to the P2P-Self-healing execution time. Moreover,
the fault recovery time gets faster, the same as with P2P self-healing, in these 7 runs as given
in figure A.9.
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10th Run Initial settings 11th Run Initial settings 12th Run Initial settings 15th Run Initial settings

Figure A.8 Synchronized Self-healing (P2P &P2D) interacting with the CNC milling fault in
the 10th, 11th, 12th, and 15th runs.
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APPENDIX B CHAPTER 5: PRE-FAILURE DRL AGENT

B.1 DRL Agent Parameters
The proposed pre-failure DDPG architecture consists of two deep actor-critic networks with
two hidden layers and the hyperparameters in Table B.1. The DRL performance depends
on its hyperparameters, and it is related to the environment/application dimension space
of actions and state [33, 34, 89, 133]. These hyperparameters are adopted from literature on
computer game applications that have the same data dimensions of actions and sensors as the
CNC turning machine [34]. Figure B.1 shows the developed Pre-Failure agent architecture.

Table B.1 DRL Pre-Failure agent hyperparameters

Hidden
neurons

Discount
factor

Batch
size

Learning rate
critic

Learning rate
actor

Target Update
rate

Memory
size

256/128 0.995 128 1e-4 1e-4 1e-3 1e6

Figure B.1 Pre-failure DDPG agent architecture for CNC tool performance

B.2 DRL Interactions for Different Runs
In this section, the detailed results of runs II,III,IV, and V are stated.
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B.2.1 Run II, the spindle speed is 7500 RPM
The Pre-Failure agent interaction in this run is demonstrated by figure B.2.
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Figure B.2 Pre-Failure agent interaction in Run II, the spindle speed is 7500 RPM
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B.2.2 In Run III, the spindle speed is 1000 RPM
The Pre-Failure agent interaction in this run is given by figure B.3.
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Figure B.3 Pre-Failure Agent Interaction in Run III, the spindle speed is 1000 RPM
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B.2.3 In Run IV, spindle speed is 12,500 RPM
The Pre-Failure agent interaction in this run is depicted by figure B.4.
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Figure B.4 Pre-Failure Agent Interaction in Run IV, spindle speed is 12,500 RPM
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B.2.4 In Run V, the spindle speed is 15000 RPM
The Pre-Failure agent interaction in this run is shown by figure B.5.
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Figure B.5 Pre-Failure Agent Interaction in Run V, the spindle speed is 15000 RPM
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APPENDIX C CHAPTER 7: W.M.E-BUSES’ RCM ACTION LIST

Table C.1 Full RCM actions worksheet for W.M.E-Bus.

Inx Sub-System Failure Mode
Effects/cons

equence
possible cause Detection

PM Task / healing- 
action 

Frequent
Autonomic 

loop
Ref 

ECU cannot

initialize

ECU cannot Over/under power voltage

initialize protection circuit SMD component

I.1
output Power 

failure 
high 

vibration 
IGBT failure (single limp)

Motor 
current

-Reconfigure the 
Inverter's switches

instant of 
failure

Yes  [10]

Over-current and overvoltage

caused an excessive heat generated by 
the spike in current (or) voltage

I.3
Abnormal 

noise
Noise

Motor-inverter integration 
computability  

Auditable
Vibration

Check inverter 
frequency

each 
software 
upgrade

Yes [32, 33] 

I.4
Improper

installation of
the Inverter 

The vehicle 
could not 

start

-Sub-System integration does not 
follow the user manual
- Improper cable selection -Inline fuse 
failure

Regular 
inspection

Time-direct inspection 
2-years

30000 mil
NA [6, 39] 

S.2
Temperature 
measurement 

failure 
[12] 

B.1
Motor's 
Bearing 

FLAKING/spa
lling 

Materials 
are split off 
from the 
smooth 
surface of 
the raceway 
or rolling 
elements 

- Excessive load
- Entry of foreign debris, water 
penetration
- Poor lubrication,
- Unsuitable bearing clearance
- Progression from rust
-High/Low speed
-Current leakage (pitting)

-Vibration 
sensor, if 
applicable

-Replace Bearing
-Improve lubrication
-Change Design
-Derate Operating 
Speed, if applicable

2-year
22000 mil

Yes
[15, 35, 36, 

40]

B.2
Motor's 
Bearing 

SCORING scratches 

-Excessive load. 
-Poor lubrication
-Particles are caught between surfaces 
with relative motion
- Inclination of inner and outer rings
-Shaft bending
-Speed too slow
-Rapid Change in rotation direction

-Vibration 
sensor, if 
applicable
-Motor 
current 
sensor, if 
applicable

-Replace Bearing
-Improve lubrication
-Change Design
-Check the operating 
speed
-Check driving behavior

2-year
22000 mil

Yes [15, 35, 36]

B.3
Motor's 
Bearing 

PEELING

cloudy spots 
appear on 
the surface 
along with 
light wear

-Unsuitable lubricant
-Entry of debris into the lubricant
- Rough surface due to poor 
lubrication
-Surface roughness of mating rolling 
part

-Vibration 
sensor, if 
applicable 

-Replacement  
-Improve lubrication
-Design change 

2-year
22000 mil

NA  [35, 36]

B.4
Motor's 
Bearing 

SMEARING

Surface 
damage, the 
appearance 
of nicks,  
grooves, 
smearing

-High speed and light load
- Sudden acceleration/deceleration 
-Improper lubricant 
- Entry of water

-Vibration 
sensor, if 
applicable

-Replace Bearing
-Improve lubrication
-Change Design
-Check the operating 
speed
-Check driving behavior

2-year
22000 mil

Yes [35, 36]

3-years
45000 mil

Yes

 [9, 11, 34]

2-years
30000 mil

NA  [25]

S.1

Sensors 

speed 
measurement 

-No signal
-vibration
-abnormal 
readings

-Motor out 

- signal/CAN cable failure (Broken, 
Noise, Shield)
-Connector failure(Rust, Broken)
-Sensor Failure
-Communication circuit failure 

No speed 
signal

Abnormal 
readings 

-Sensorless Motor 
Control 

-Time-direct inspection 

3-Ph DC/AC 
Inverter

I.2
Unintended 

motive power 
loss

Damages the 
components 
in the device

Motor 
current

Time-direct inspection 

daily Yes [31]

C.2
E-Bus 

shutdown
NA Time-direct inspection 1-Year NA [6, 38]

C.1

ECU

E-Bus 

shutdown
Software bugs

Regular 
inspection

automatic check new 
software and update
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Table C.2 Full RCM actions worksheet for W.M.E-Bus (continue and end).

Inx Sub-System Failure Mode
Symptoms/c
onsequence

possible cause Detection
PM Task / healing- 

action
Frequent

Autonomic 
loop

Reference

B.5
Motor's 
Bearing 

CAGE 
DAMAGE

Cage 
damage or 
deformation

-Poor mounting 
-Poor handling
-Excessive rotation speed, sudden 
acceleration, and deceleration
-Poor lubrication
-Temperature rise

-Vibration 
sensor, if 
applicable
-Motor 
current 
sensor, if 
applicable

-Replace Bearing
-Improve lubrication
-Change Design
-Check the operating 
speed
-Check driving behavior

2-year
22000 mil

 Yes [35, 36]

B.6 
Motor's 
Bearing 

SEIZURE

Melted/defor
med raceway
rings, rolling 
elements, 
and cage 

-Excessive load  
-Excessive rotational speed
-small internal clearance
-Entry of water and debris
-High speed
-High acceleration & deceleration

Temperatu
re sensor, 
if 
applicable

-Replace Bearing
-Improve lubrication
-Change Design
-Check the operating 
speed
-Check driving behavior

2-year
22000 mil

Yes [35, 36]

B.7
Motor's 
Bearing 

ELECTRICA
L EROSION

-High-
frequency 
Fluting 
occurs on 
the raceway 
surface

-Electrical potential difference 
between inner
and outer rings
-Electrical potential difference of a 
high
frequency.
-Motor earthing  

Motor 
shaft to 
ground 
current 

-Replacement
-Prevent current flow 
through the  bearings
-Insulation of the 
bearing.
-EMI filter & smooth 
inverter switching 
- Reducing Inverter 
switching frequency 

2-year
22000 mil

Yes [32, 40] 

W.1
Stator Inter-

turn fault 

W.2
Cage rotor 
broken bar 

W.3
wound  rotor 

Inter-turn fault 

M.2
Planetary 

gear breaking

-Fatigue
-Friction between teeth
-Misalignment

-Regular Inspection Yes

Motor's 
winding

Sub-system

-Vibration, -
Overheating

-Melted 
winding

Internal temperature stress Insulation 
failure 
Oil/Water leakage

-Motor 
current,  
Temp 
sensor  

-Monitoring the 
Degradation, if 
applicable
- Derating  at same load 
torque, if applicable
-Regular inspection 

1-year
30000 mil

Yes

[6, 15]

[13, 15, 41] 

M.1
Mechanical 

link 

Shaft 
E-Bus 
shutdown

-Rotor failure

 -Misalignment Vibration, 
if 
applicable

-Monitoring the 
Degradation, if 
applicable 1-year 15000 

mil

NA
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