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RÉSUMÉ

Cette thèse présente le développement de systèmes intelligents dans l'environnement du

jumeau numérique pour prolonger la disponibilité du système industriel et maintenir les

performances système souhaitées. Des algorithmes basés sur l'apprentissage automatique

(ML) ont été développés pour surveiller et détecter les performances de dégradation des sys-

tèmes physiques en ligne tout en analysant les données des capteurs du système. D'autres

algorithmes basés sur ML sont développés pour dé�nir les actions capables de restaurer de

manière autonome les performances du système au niveau souhaité. Ces algorithmes ont été

développés pour fonctionner en ligne dans l'environnement du jumeau numérique et pour

déclencher et activer le module d'action autonome. Le module autonome coopère avec le

module de surveillance de la santé et l'action corrective est ajustée au système physique pour

formuler l'autonomie en boucle fermée.

Les systèmes de maintenance autonomes et numériques développés ont été mis en ÷uvre dans

di�érents systèmes industriels. Ces approches traitent de l'auto-guérison pour l'extension du

temps de disponibilité après une panne et avant une panne. Les algorithmes d'apprentissage

automatique sont appliqués à di�érents types de données, telles que des séries chronologiques

et des données numériques indépendantes du temps. La reconnaissance de modèles par anal-

yse logique des données (LAD) active le mécanisme d'auto-guérison et dé�nit la cause de

l'échec qui doit être atténuée. L'intégration de Deep Reinforcement Learning (DRL) et de

LAD se traduit par un module autonome pré-défaillance qui ralentit la dégradation des ac-

tifs et augmente le temps de défaillance (T2F). La combinaison d'actions autonomes et de

principes de maintenance centrée sur la �abilité (RCM) permet les actions de maintenance

numérique sur des systèmes dont les données de défaillance opérationnelle sont incertaines

ou indisponibles. Le déploiement des approches développées impacte les performances du

système et améliore sa disponibilité. Le mécanisme d'auto-guérison développé ralentit la

dégradation et prolonge le temps jusqu'à la défaillance d'un système. Les approches pré-

panne prolongent le temps de fonctionnement et e temps de défaillance (T2F) en moyenne

de 40% dans les systèmes industriels et de 35% dans les applications Electric-Bus.
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ABSTRACT

This thesis presents the development of intelligent systems in digital twin environment to

extend the industrial system's uptime and to maintain the desired system performance. Ma-

chine learning (ML) based algorithms were developed to monitor and detect the degradation

performance of the physical systems online while analyzing the system's sensor data. Other

ML-based algorithms are developed to de�ne the actions that are able to autonomously re-

cover the system's performance to the desired level. These algorithms were developed to run

online in digital twin environment, and to trigger and enable the autonomous action module.

The autonomous module cooperates with the health monitoring module and the corrective

action is adjusted to the physical system to formulate the closed-loop autonomy.

The developed autonomous and digital maintenance systems were implemented in di�erent

industrial systems. These approaches address the self-healing for post-failure and for pre-

failure uptime extension. The machine learning algorithms are applied to di�erent types of

data, such as time-series and numerical time-independent data. Logical Analysis of Data

(LAD) pattern recognition enables the self-healing mechanism and de�nes the cause of fail-

ure that is to be mitigated. The integration of Deep Reinforcement Learning (DRL) and

LAD results in a pre-failure autonomous module that decelerates the asset degradation and

increases the time to failure (T2F). Combining autonomous actions and Reliability Cen-

tered Maintenance (RCM) principals allows the digital maintenance actions on systems that

have uncertain or unavailable operational failure data. The deployment of the developed

approaches impacts the performance of the system and improves its uptime. The developed

self-healing mechanism slows down the degradation and extends the time to a system's fail-

ure. The pre-failure approaches extend the uptime and the Time to Failure (T2F) on average

by 40% in industrial systems and 35% in Electric-Bus applications.

Keywords: Maintenance 4.0; Autonomous Machines; Uptime; Machine learning; Arti�cial

Intelligence; Digital Twin.
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CHAPTER 1 INTRODUCTION

It is crucial to maintain the uptime of machines. As technology is advancing more quickly

than ever, uptime improvement activities have become an urgent matter. With the Industry

4.0 revolution, systems are fully automated and connected to digital platforms. Therefore,

more variabilities are induced to physical machines, which could impact the reliability of the

machines. Additionally, it is di�cult to conduct physical maintenance or repairs immediately

due to a lack of human resources. Thus, industrial machines need to be upgraded and

digitized to become autonomously maintained machines that could automatically extend

their performance and uptime.

1.1 Frontier of Knowledge

This section presents the basic concepts that support the development of the proposed au-

tonomous and self-healing machines. At the beginning, the terms for some basic concepts

are stated as follows:

ˆ Robust system: a system that is capable of performing its intended function even in

the presence of noise. When its robustness continues for a speci�c amount of time, the

system is called a reliable system [5,6].

ˆ Reliability: The probability that the system will survive under given conditions with-

out failing for a speci�c period of time [5,7].

ˆ Anomaly: An abnormal, irregular or inconsistent situation [8].

ˆ Fault: A defect or imperfection that develops when physical degradation has occurred,

but this degradation is not severe enough to be termed as a failure [8].

ˆ Failure: The event that occurs when a machine is not able to perform its required

function [8].

ˆ Breakdown: A speci�c type of failure in which the machine or system's component

is completely unable to function [8].

ˆ Uptime: The time that a machine/system is in service and can perform its desired

function [8].
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ˆ Stable system: The system that has an output response, which lies in an acceptable

boundary [9].

ˆ Fault tolerance: The ability of a system to perform its function despite the presence

of a fault [6]. A popular fault tolerance mechanism is the redundancy of components [8].

ˆ Self-awareness system: The system that is capable of monitoring its own degradation

and detecting its own anomalies [10].

ˆ Self-healing system: A system that detects the causes of failure and that performs a

recovery action to return the system itself to the state that con�rms its function, while

taking into consideration its degradation [5,11].

ˆ Autonomous system: A system that is capable of managing its state without de-

pending on external factors, an autonomic control �nds a closed loop relation between

the sensor data collection and the system's behavior [5].

ˆ Digital Twin (DT): The model that emulates the physical machine in the cyber/digital

environment and has the capability of interacting with the real machine in the physical

environment [12�14].

By de�nition of self-healing in autonomic systems, it is capable of performing two main

functions, namely: (1) the detection of anomalies or failures, and (2) executing the recovery

actions that eliminate the cause of failure. These two functions are interconnected to close

the autonomic loop and clear a failure without disrupting the system.

1.1.1 Health Monitoring and Diagnosis

The health monitoring module is one of the limbs of an autonomously maintained machine.

This module detects and diagnoses the faults, while analyzing the machine's sensor data

[5, 15, 16]. By deployment of the health monitoring module, the machine becomes a self-

awareness system [10,15]. It reads the online sensor data at each time t, and analyzes these

data to predict the instant of fault or failure and the Remaining-Useful-Life (RUL) of that

machine [16�18]. Once, the fault is detected, this module triggers the autonomous action

module [5,10].

1.1.2 Self-healing and Autonomous Action

This is a machine-learning based module that analyzes the state of the machine and de�nes

the proper recovery action to take [16, 17]. The autonomous action module interacts with
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the physical machine and provides the automatic corrective actions to improve the machine's

uptime [15, 17]. The performed action at time t is evaluated according to the updated

sensor data of the machine at time t+1. The autonomous actions include three types of

actions: Pre-Failure, Post-failure, and triggering for spare replacement. Both modules of

the autonomously maintained machine are developed in a Digital Twin environment [17].

Figure 1.1 depicts the integration diagram of the two autonomous machine's modules and

the physical machine.

Figure 1.1 Diagram of Autonomous Maintained Machine Integration

1.2 Problem statement

According to the topics discussed in previous sections, the problem statement is formalized

and the following research questions will guide the research in this thesis:

ˆ How can unseen/unexpected anomalies be detected, identi�ed, and categorized?

ˆ How quickly and accurately will the proposed approaches deal with fault detection and

recover the system before its breakdown?

ˆ How can a self-healing mechanism be implemented? How could it be linked to the

failure cause?

ˆ To what level can the self-healing approaches improve the operational performance of

the system?
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ˆ How could the unavailability of data impact the implementation of autonomous ma-

chines?

1.3 Research Objectives

The main objective of this research is to develop di�erent approaches for self-healing and au-

tonomous uptime-improvement for the operating machines. The proposed machine-learning

and data-driven approaches integrate the capabilities of Digital Twin and Arti�cial Intelli-

gence (AI) to perform autonomous actions that mitigate systems in the pre-failure and post-

failure states. Online and real-time data is analyzed to predict and detect the anomalies

and performance degradation. The root cause analysis is performed to develop the corrective

actions that are executed through an autonomic closed-loop. This main objective is divided

into four sub-objectives as follows:

ˆ Objective 1: Functional Failure and Anomaly Detection, Diagnosis, and

Prognosis.

This objective address the modeling and simulation of a diagnosis and prognosis health

assessment technique. The health assessment tool detects machine anomalies due to

normal and abnormal events such as normal degradation of electrical and mechanical

systems, and abnormal events such as anomalies and faulty events. This objective in-

cludes developing a machine learning tool that can be integrated into the DT online to

monitor performance degradation, which can be stopped and redressed if proper action

has proceeded.

ˆ Objective 2: Develop a Self-healing Mechanism for Post-failures

This develops a DT self-healing mechanism that analyzes the controllable variables of

the machine to perform certain recovery actions autonomously. Modeling and simu-

lation of a proactive ML algorithm to be interconnected with the health monitoring

and detection module (objective 1) to provide online self-healing actions that are quick

enough to recover the machine status in post-failure status. Development of self-healing

mechanism that is easy to be integrated to the operating machines without additional

hardware requirements.

ˆ Objective 3: Develop Pre-Failure approach to improve the systems perfor-

mance

Objective 3 involves developing an approach to monitor system performance's degrada-

tion in Pre-Failure stage and continuously executes autonomous-actions that improve
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system performance. Machine-learning algorithms are developed to monitor the per-

formance degradation and de�ne the penitential failure point of the system studied.

This approach addresses the best actions to take, considering Time to Failure (T2F)

extension, productivity, and smoothing the transition to slowdown the degradation rate

of the systems.

ˆ Objective 4: Autonomous uptime-improvement Scheme

It Develops a general scheme to link failure analysis and autonomic actions to improve

the uptime of a system with data unavailability. This scheme models a closed-loop

relationship between the uptime of the system and its online operating conditions. The

scheme that is developed combines the system failure modes, symptoms, causes, and

di�erent healing modes. It includes recommended autonomous actions to improve the

uptime of the systems studied.

1.4 Originality of The Research

This research develops novel approaches to enable autonomous maintained machines. To the

best of our knowledge, the following topics have not been discussed in the literature.

ˆ Developing a novel self-healing mechanism based on the LAD Machine learning al-

gorithm to detect and de�ne the failure root cause. This mechanism enables online

self-healing with interpretable fault-recovery actions.

ˆ Developing a model-free approach that addresses the system performance and extends

its Time-to-Failure (T2F) in the pre-failure interval. A combination of Reinforcement

Learning (RL) and the LAD algorithm detects the potential failure point of the system

and executes continuous actions to increase the T2F and to keep the system operating

at an acceptable performance level.

ˆ Developing an autonomous scheme to improve the uptime for electric buses with data

unavailability or data uncertainty. Extension of the Reliability Center Maintenance

(RCM) concept to include autonomous improvement actions. Adapting the Fuzzy-FTA

algorithm to analyze the failure of electric buses and to de�ne the bus's components

that have the potential to fail.

ˆ Developing an approach that combines the Long-Short-Term-Memory (LSTM) and

Regression Adjustment for Multivariate (RAM). This approach enables the monitoring

and detection of anomalies for a robotic arm while the data variables are correlated

and unsupervised.
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ˆ Developing a machine learning-based framework for the implementation of maintenance

4.0 in the aerospace industry. This framework addresses the cost-reduction of system

implementation and decreases the number of required sensors.

These are general points about the originality of this study: more detailed ones are stated in

each of the following chapters.
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CHAPTER 2 THESIS ORGANIZATION

2.1 Organization of the Thesis

Figure.2.1 illustrates the structure of the thesis to implement the autonomous up-time en-

hancement in industrial systems according to operational data. This thesis is divided into

eight chapters, as follows:

ˆ Chapter One introduces the research problem and the general objectives.

ˆ Chapter Two reviews the critical Literature and related research.

ˆ Chapter Three is the current chapter and it shows the thesis organization and research

deliverable.

ˆ Chapter Four addresses the detection of anomalies.

ˆ Chapter Five develops a self-healing mechanism to recover the machine after the

incident of the fault.

ˆ Chapter Six is a maintenance 4.0 framework, and it addresses the prediction of the Re-

maining Useful Life (RUL) for aircraft engines. Di�erent machine learning algorithms

are developed to analyze the system run-to-failure data.

ˆ Chapter Seven is a Pre-Failure approach to slowdown a system's degradation and

increase the T2F. The developed approach is veri�ed on a CNC machine.

ˆ Chapter Eight studies a failure analysis for complex integrated systems that does not

have available operational data. The system is dismantled to its basic components to

defend the failure causes and system's critical components. The proposed approach is

implemented in a wheel Motor Electric-Bus (W.M.E-Bus).

ˆ Chapter Nine is a general scheme to develop and implement the autonomous correc-

tive approaches in the Digital Twin environment. This scheme tackles the unavailability

of operational data or data that contains uncertainty. Its objective is to improve the

uptime of complex integrated systems that have critical failure consequences. An auto-

nomic closed loop is developed to execute uptime improvement actions while monitoring

real operating conditions. The proposed scheme is veri�ed on a W.M.E-Bus to increase

its uptime.
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ˆ Chapter Ten provides a general discussion.

ˆ Chapter Eleven is the conclusion and future work.

Figure 2.1 Thesis structure

2.2 Research Deliverable

The outcomes of this research are six articles that cover the four main objectives provided

in section 1.3, as follows:

1. Detection and Monitoring for Anomalies and the Degradation of a Robotic

Arm Using Machine Learning

ˆ Published in: Advances in Automotive Production Technology�Theory and Ap-

plication. Springer Vieweg, Berlin, Heidelberg,2021.

ˆ Abstract: Robotic arm performance varies due to normal and abnormal events.

Normal events may include degradation of equipment, motors, mechanical system

joints, and gears, while abnormal events may occur such as faulty episodes. In this
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paper, we address positional performance degradation that can be stopped and

redressed if suitable required action is achieved. The Tool Center Point (TCP)

position measurement devices are expensive, hence unavailable to every robot.

Some industrial processes are critically sensitive to target tool position such as

assembly, pin and past, and material handling. We propose a data driven ar-

ti�cial intelligence tool to detect anomalies and degradation of the robotic arm

for a positional health assessment without the need for special advanced sensors.

TCP deviation is predicted using deep machine learning models that train on a

time series of historical data of the robot's performance. Statistical thresholds are

calculated to detect the robotic arm's degradation and anomalies by performing

residual analysis. An alarm system is built by applying the proposed monitoring

tool online.

2. Autonomous self-healing mechanism for a CNC milling machine based on

pattern recognition

ˆ Published in: Journal of Intelligent Manufacturing.

ˆ Abstract: A sustainable and reliable machining process is the main goal of seek-

ing machine digitization. Arti�cial Intelligence (AI), and Cyber-Physical System

(CPS) combined with Arti�cial Intelligence are used for process control. This has

become more essential in the case of machining of high-cost aerospace materials

and critical product speci�cations. In this paper, a novel self-healing mechanism

was developed to recover a CNC machine from producing parts that do not con-

form to surface roughness's speci�cations. The machine settings are recon�gured

autonomously and online to recover from the e�ect of tool wear and to keep

the surface roughness within the design speci�cations. The proposed self-healing

mechanism is based on a pattern recognition algorithm called Logical Analysis

of Data (LAD). This algorithm generates patterns that characterize the out-of-

speci�cation state, and provides a corrective setting within the recovery patterns

of the within-speci�cation state by using various distance approaches. The de-

veloped self-healing mechanism is composed of three modules: CPS model of the

CNC machine (module 1), classi�cation into, out of, or within-speci�cation states

(module 2), and a self-healing controller (module 3) that is activated if the state

of out-of-speci�cation is found by module 2. The three modules are software. The

current hardware system of the machine is not altered. The proposed self-healing

mechanism is validated on CNC machines with a wide range of machining param-
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eters of feed rate from 20 mm/min to 700 mm/min and spindle speed from 10,000

RPM to 40,000 RPM. To validate the developed mechanism, a deep learning arti-

�cial model was developed on physical data to emulate the CNC milling machine

in a CPS simulation environment, and test runs were executed. The proposed

self-healing mechanism was evaluated under several simulation runs that covered

the ranges of CNC machine settings. The measure of performance of the proposed

mechanism is the out-of-speci�cation clearing time. The validation runs show that

the proposed self-healing mechanism was able to clear the out-of-speci�cation state

and to recover the within-speci�cation state in less than three seconds, with the

best distance metric approach. The results of the time response for each test run

are reported.

3. Aircraft Engine Remaining Useful Life Prediction Framework for Industry

4.0

ˆ Best graduate paper award, IEOM, Toronto 2019

ˆ Abstract: This article proposes a Condition-Based Maintenance (CBM) approach

for aircraft engines and Remaining Useful Life (RUL) monitoring, and failure pre-

vention. Due to the unavailability of run-to-failure data, Turbofan Engine Simu-

lation data, obtained from NASA repository, is used to train and test our model.

Data Acquisition and Management system framework and planning are proposed

for online monitoring and RUL prediction. In practice, sensor measurements usu-

ally su�er from noise contamination, hence the prediction models are challenged

by noise contaminated data for both training and testing tasks. This is done to

assess their prediction ability in a similar condition of having noisy data. Lin-

ear and nonlinear prediction models are developed, with performance comparison

addressing both regression and classi�cation problems. Models performance in-

dices consider both prediction accuracy and percentage of predictions before the

actual failure (PBAF). The proposed model considers continuous learning and im-

provement to account for any further operational changes that a�ect the model

prediction ability. This is reached by ingesting the model with the actual RUL

during the maintenance of the engine unit, and by comparing it to the predicted

one.

4. Deep Reinforcement Learning for Autonomous Pre-Failure Tool-Life Im-

provement
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ˆ Accepted with minor reversion in: International Journal of Advanced Manu-

facturing Technology.

ˆ Abstract: This paper develops an approach to improve a CNC machine's tool

performance and slow down its degradation rate automatically in the Pre-Failure

stage. A Deep Reinforcement Learning (DRL) agent is developed to optimize the

machining process performance online during the Pre-Failure interval of the tool's

life. The Pre-Failure agent that is presented in the proposed approach tunes the

feed rate according to the optimal policy that is learned in order to slow down

the tool's degradation rate, while maintaining an acceptable Material Removal

Rate (MRR) level. The machine learning techniques and pattern recognitions are

implemented to monitor and detect the tool's potential failure level. The pro-

posed mechanism is applied to a CNC machine when turning Titanium Metal

Matrix Composites (TiMMC). A CNC machine Digital Twin (DT) is developed

to emulate the physical machine in the digital environment. It is validated with

the physical machine's measurements. The proposed pre-failure mechanism is a

model-free approach, which can be implemented in any machining process with

fewer online computational e�orts. It also covers a wide range of cutting speeds,

up to 15,000 RPM. Deployment of the proposed machine learning approach for

the particular case study improves the tool's Time to Failure (T2F) by 40% and

the MRR by 6%, on average, compared to the classical approach.

5. Failure Reasoning and Uncertainty Analysis for Wheel Motor Electric Bus

ˆ published in: 26th IEEE International Conference on Emerging Technologies and

Factory Automation (ETFA). IEEE, 2021.

ˆ Abstract: Wheel Motor Electric Bus (W.M.E-Bus) is a recent e-mobility tech-

nology, which has a complex system integration. Since the operational reliability

and life cycle data of such systems is scarce, it becomes impractical to plan for

maintenance and determine system-critical components. Moreover, E-Bus system

dismantling and assembling is a long time process especially for components near

to the its Power-system. In this paper, we propose a Fuzzy-logic fault-tree eval-

uation for the W.M.E-Bus system under uncertain failure data. The proposed

method indicates the critical components that signi�cantly in�uence the system's

failure uncertainty. At 10% failure rate uncertainty, control unit failure, including

the embedded software, is ranked the top critical failure mode with 1.8 Fuzzy

Importance Measure (FIM).
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6. Autonomous Uptime-Improvement for Electric-Bus in Digital Twin Envi-

ronment

ˆ Submitted to: IEEE Transactions on Intelligent Transportation Systems

ˆ Abstract: Autonomous and self-improvements systems rely on the historical oper-

ational data of these systems. With the lake of operational data, the development

of the self-improvement process becomes more challenging. This paper develops

an autonomous uptime improvement scheme for a system the unavailability or

uncertainty of the operational failure data. Fuzzy-Fault Tree Analysis (F-FTA) is

adapted to analyze the system failure with operational data uncertainty. Mean-

while, the Reliability Centered Maintenance (RCM) worksheets are developed to

de�ne the uptime-improvement autonomous actions. The proposed scheme is ver-

i�ed on the Wheel Motor Electric Bus (W.M.E-Bus) drive system in Digital Twin

(DT) environment. It links the on-road Physical W.M.E-Bus driving condition to

the system failure and reliability estimation, which are in the digital DT environ-

ment. The Embedded Control Unit (ECU) transmits the W.M.E-Bus's driving

cycle to be analyzed in the digital environment. Then, the improvement action of

derating percentage for the driving cycle is sent back to the E-bus to automati-

cally manipulate the driver's pedal in the next driving cycle. In this particular case

study, the deployment of the proposed scheme increases the maximum allowable

W.M.E-Bus millage distance by 8603 miles when it reduces the driving cycle by

36 % on average. A detailed improvement analysis for di�erent operating speeds

and RCM worksheets are reported.



13

CHAPTER 3 CRITICAL LITERATURE REVIEW

3.1 Fault-Tolerant Control Systems

Fault-tolerant control (FTC) is a set of recent techniques that were developed to increase

plant availability and reduce the risk of safety hazards. It aims to compensate for fault e�ects

on the system during operation to maintain system stability regardless of the nature of the

fault. Fault-tolerant control merges several disciplines to achieve this goal, including online

fault detection, automatic condition assessment, and calculation of remedial actions when a

fault is detected [6, 9]. In FTC, a fault is de�ned as a deviation in the parameters of the

di�erential equations that modeled the system. Fault tolerance is de�ned as the ability of

the system to continue its function regardless of its faults [6, 9]. Passive FTC (PFTC) is

considered the traditional way of FTC, which is limited to a few faults that were de�ned

in the design phase of the machine. On the other hand, Active FTC (AFTC) consists of

a Fault Detection and Isolation (FDI) module in addition to a recon�guration mechanism

[6,9,19]. AFTC has a more complex architecture, with a slower response time than PFTC.

However, it can accommodate various fault types. It is used to design an online controller to

tolerate faults in sensors, actuators, or system disturbances, and to achieve the stability of

the system [6,6,19]. The AFTC system is divided into four sub-systems: (1) a recon�guration

controller, (2) an FDI module, and (3) a controller recon�guration mechanism. The controller

mechanism selects the con�gured controllers, 1 to N, according to the FDI signal. Each

controller is previously con�gured to cover certain system stability rang under a certain

FDI signal condition. As system complexity and nonlinearity increase, Lyapunov equations

will become more complex to model, and they will need more computation time, as the

recon�guration mechanism's response time increases. AFTC takes a large computation time

online for fault estimation and recon�guration mechanism. Moreover, AFTC is a complex

architecture [6, 9]. The recon�gured controller is built on traditional control theories and

nonlinear mathematical models. This means that the AFTC recon�guration mechanism

does not learn from previous experience. Consequently, for the detection of new/undersigned

faults, they produce erroneous decisions [6, 19]. Also, for the FDI module, the accuracy

with a neural network is not guaranteed [20,21]. Finally, fault-tolerant control is considered

a reactive system that handles post-failures and does not address a machine's degradation,

which needs an active system to consider the pre-failure status [5]. PFTC is limited to several

faults that have been de�ned in the design phase. If the incident fault is not included in the

previously designed ones, this may lead to a system breakdown. Both types of FTC have
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several industrial limitations. FTC is considered to be a reactive technique because it reacts

after the incident of failures [5].

3.2 Maintenance in Cyber-Physical Systems (CPS)

Maintenance 3.0 is aimed at reaching high equipment availability by avoiding the failure

occurrence. In that sense, it is a pre-failure action. It is based on condition-based mainte-

nance [5,22]. In Industry 4.0, the IIOT technologies lead to the development of cyber-physical

platforms, where equipment and devices are fully connected to a central network [16,23]. This

means that all of the machines are aware of their status as well as the status of other ma-

chines in the production line [16, 22, 23]. As such, more information is available online and

in real-time, and maintenance actions can be updated instantaneously to avoid failure. J.

Lee, et.al studied the Prognosis Health Management (PHM) of a saw-cutting machine that

implemented the �ve levels of CPS architecture [10,24,25]. This study developed a prognostic

tool for self-awareness. This tool detects anomalies due to saw blade degradation. The study

highlighted diagnosis and prognosis in the CPS environment. CPS research aims to have full

integration of the �ve levels of network control, data analysis, learning theories, simulation,

and visualization. It enhances the incorporation of engineering disciplines to achieve a fully

autonomous and e�cient process [25]. In this thesis, we consider the digital environment of

the CPS to have a self-healing and auto-maintained machine.

3.3 Reliability Centered Maintenance (RCM)

Reliability and maintenance are based on the e�cient de�nition and diagnosis of anomalies

and failures [26�28]. They are also based on �nding the optimal actions of maintenance

or replacement time [29]. Reliability Centered Maintenance (RCM) is a concept that was

introduced to reduce failures caused by inadequate maintenance for several industries [30].

Maintenance is applied to ensure that the machine continues to perform as intended, while

RCM addresses modes of failure and their consequences and possible maintenance actions.

These actions are chosen to improve the maintenance function and minimize the in�uence of

failures because of inadequate decisions. The RCM approach identi�es the potential causes

of failure, failure e�ects or consequences, and possible actions to prevent or reduce the risk

of failure [30]. E�ects of machine failure and failure consequences consider human, environ-

mental, and operational risks. To prevent failure, the failure mechanism of each failure mode

is identi�ed. One of the most common tools to clarify and understand failure causes is a

Fault Tree Analysis (FTA). FTA is a top-down approach that starts with anomalies at a
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top-level, then moves down until reaching the root causes or basic events level. In the middle

levels, there are logical combinations of intermediate events that lead to anomalies [29]. A

graphical representation of FTA leads to failure mode mechanism. Hence, the recommended

RCM actions become justi�able. It also shows the shortest way to prevent failure. In this

research, RCM concepts are used to reach objective 4.

3.4 Logical Analysis of Data (LAD)

LAD is a non-statistical supervised data mining method. LAD combines Boolean logic func-

tions and combinatorial optimization. It is capable of solving classi�cation problems [31].

The idea of LAD was introduced by Peter L. Hammer in [20]. The advantage of LAD

over other classi�cation methods is that it generates interpreted logical patterns for each

fault [20,21]. LAD has been used successfully in condition maintenance [20,21,31]. It shows

excellent performance in knowledge extraction for supervised and semi-supervised learning

problems. The cbmLAD software was used for condition-based maintenance by Yacout et

al. [32]. cbmLAD is also used in several applications and multiclass industrial fault diagnosis

and prognosis problems [20,21,31]. The main cbmLAD processes are (1) Data binarization for

labeled data, (2) pattern generation, and (3) classi�cation with discriminant functions [32].

CbmLAD generates understandable and more interpretable and strong classifying patterns.

In this research, cbmLAD is used to obtain the interpretation patterns for the controllable

and uncontrollable variables of the machine. LAD does not require data pre-processing or

any statistical assumptions, which make it a general applicable tool for any kind of machine

or data. Moreover, cbmLAD does not require high computation, which makes it a robust

applicant to achieve objective 2 and 3.

3.5 Reinforcement Learning for Continuous Control

The standard RL consists of a decision taken in a discrete time step. At time stept, a

virtual agent receives stateSt , takes action at and �nds the reward r [33, 34]. The RL

goal is to �nd the policy � that maximizes the expected state returnJ . Q-learning is

an o�-policy algorithm that uses a greedy policy. The selected action is what maximizes

the returned Q-value. It is impossible to apply Q-learning to a continuous action space

environment, where to �nd the greedy policy, it is required to optimize actionat at each

time step, which is di�cult. The actor-critic approach is used to solve this issue with the

Deterministic Policy Gradient (DPG) algorithm [34]. The Critic is an action-value function

used to calculate the temporal di�erence (TD) error to criticize actions made. The actor



16

is deterministic policy function used to choose actionat given state S and it is updated

according to expected returnJ [33, 34]. A Deep Deterministic policy gradient (DDPG)

algorithm is an implemented deep Q-network on DPG to learn in large state and continuous

space. In o�-policy algorithms, the exploration is independent of the learning process [35].

DDPG challenges the exploration policy� 0 with random noise [34]. DDPG was implemented

for set point tracking control of a complex chemical process with non-linearity and noise [33].

The implemented DDPG consisted of a double deep network to consider continuous action

needs. The environment was represented by mathematical di�erential equations. The reward

function is calculated as the di�erence between a set point and sensor measurement. DDPG

was developed as a toolbox for the speed control of various types of electrical motors [36].

The main items in an electrical rotating machine environment are an electric motor, motor

drive, and mechanical load. Electrical motors are categorized according to the type of power

supply, such as Alternating Current (AC) or Direct Current (DC) and theory of operations.

Each motor has a speci�c design of a motor's drive. A.Traue, et.al (2019) implement the

DDPG to control the speed of DC and Permanent Magnet Synchronous motors environments,

including the motor drive with variable mechanical loads [36]. The main feature of DDPG

computing is its highest performance, with a continuous control environment [33,34]. DDPG

is a model-free, continuous environment, o�-policy algorithm that uses a replay bu�er that is

stored and updates states, actions and rewards for previous time steps during training [37].

In this research, DDPG is used to achieve objective 3 of optimal proactive self-healing action.

It learns and updates the algorithm, and provides a continuous action space [33,34].
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CHAPTER 4 ARTICLE 1: DETECTION AND MONITORING FOR

ANOMALIES AND THE DEGRADATION OF A ROBOTIC ARM USING

MACHINE LEARNING
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Abstract

Robotic arm performance varies due to normal and abnormal events. Normal events may in-

clude degradation of equipment, motors, mechanical system joints, and gears, while abnormal

events may occur such as faulty episodes. In this paper, we address positional performance

degradation that can be stopped and redressed if suitable required action is achieved. The

Tool Center Point (TCP) position measurement devices are expensive, hence unavailable to

every robot. Some industrial processes are critically sensitive to target tool position such as

assembly, pin and past, and material handling. We propose a data driven arti�cial intelli-

gence tool to detect anomalies and degradation of the robotic arm for a positional health

assessment without the need for special advanced sensors. TCP deviation is predicted using

deep machine learning models that train on a time series of historical data of the robot's

performance. Statistical thresholds are calculated to detect the robotic arm's degradation

and anomalies by performing residual analysis. An alarm system is built by applying the

proposed monitoring tool online.

Keywords: Robotic Arm, Position Health Assessment, residual analysis, machine learning.

4.1 Introduction

Industrial robots represent an important part of industrial manufacturing and ma-chining

process. They are critical to industrial processes, such as assembling, and are sensitive to

robotic arm tool displacement. A small displacement or deviation leads to line stop, product

reworking, and process down time. Robotic arms are challenged with signi�cant variability

and positional uncertainties that frequently result in robot position failure. Malfunctioning

robots cost industrial plants more than 20K$/min [38]. Robotic arm position health as-

sessments have been addressed in the literature to solve displacement problems and enhance
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overall accuracy [38�41]. However, this requires highly accurate advanced measurements that

are di�cult to be found in each manufacturing plant. Meanwhile, it is not easy to send these

robots to be calibrated every working day.

In recent years, researchers have worked to address fault detection of industrial robot arms.

Their work is categorized into two groups, a model-based [38,40,42,43] and historically-based

model [44,45]. The model-based methods use mathematical equations to model the physics

of the robotic arm and errors in the inverse kinematic matrices. Manish Goel, et.al [40] used

a model-based method to study uni�ed locked-joint failure. These authors considered one

type of manipulator fault of a locked joint. The robot arm was analyzed under a faulty state

over all feasible space the robot could reach. This method was used to model 2 Degrees of

Freedom (Dof) and 3 DoF simple robotic arms. However, this method needs signi�cant com-

putational power, thus it is di�cult to be applied to the online operation of a 6 DoF robot

arm. Guixiu Qiao, et.al 2017 [42] developed a mathematical model to detect the positional

error using an inverse kinematics model for a 6 DoF robot. This method has an industrial

limitation, since it requires the measurement and the recording of the robot feasible working

space using advanced 7-D measurements before operation. Yizheng Zhang, et.al 2019 [38]

used QR codes and an advanced camera to detect robotic arm joints that have had a failure

for pick-and-place experiments. The proposed method needs the presence of cameras, hence

a clean environment to obtain precise measurements.

The other detection methods are based on analyzing the robotic arm's stored data. Costa,

Marcelo, et.al 2019 [44] developed a hybridization of a boosting classi�er to detect joint fail-

ure for a 6 Dof industrial robot. They assumed that the data �t a lo-gistic distribution. This

proposed method was a failure detection approach, and it did not address the robot degrada-

tion anomalies. Qibo. Y, et.al 2020 [45], studied the fault diagnosis for ball screw industrial

robots. The current fault's signature was characterized to diagnose two types of faults. The

developed diagnostic model used short-time Fourier trans-form (STFT) signal analysis and

logistic regression classi�ers to detect a faulty state. STFT signal analysis outperforms the

wavelet decomposition. Current ball screw data consists of 20 samples for each fault and 20

samples for motor health status.

The main contribution points of this paper are: (1) the development of an online data-driven

positional health assessment tool for robotic arms. This tool monitors and detects displace-

ment anomalies regardless of measurements' correlations. (2) The development of a time

series Arti�cial Intelligence (AI) model to predict robotic arm displacements before incident

or failures. (3) Cost savings, since the developed tool does not need special advanced dis-

placement measurements in a robot's operational environment.

This paper is organized as follows: Section 2 contains the robotic arm data description. Sec-
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tion 3 is a summary of the proposed methodology. Section 4 presents the obtained results,

and the conclusion is summarized in Section 5.

4.2 Data Description

The proposed data-based method ingests a time-series data for a six degree of freedom robotic

arm with six joints. The robot has a payload of 5 kg. The speed of all joints is 180 o/S,

the tool speed is 1 m/s, and the repeatability is± 0.1 mm. Table 4.1 shows the description

of input and response variables that were used for the proposed supervised learning model.

This robotic arm data is from laboratory data and was acquired by the National Institute of

Standards and Technology's (NIST) with a frequency of 125 Hz for six position episodes [40].

The data response variables are the Tool Center Point (TCP) Cartesian coordinates (x, y,

and z) and it was measured with laser sensor that has an index of [55�57] in Table 4.1.

Table 4.1 Descriptions of data

Variable Index Variable name Variable type
1�6 Target joint [1�6] positions (angle) Setting
7�12 Actual joint [1�6] positions (angle) Measurement
13�18 Target joint [1�6] velocities (m/s) Setting
19�24 Actual joint [1�6] velocities (m/s) Measurement
25�30 Target joint [1�6] currents (m/s) Setting
31�36 Actual joint [1�6] currents (A) Measurement
37�42 Target joint [1�6] accelerations (m/s2) Setting
43�48 Target joint [1�6] torques Setting
49�54 Joint control [1�6] currents (A) Measurement
55�57 Actual Cartesian coordinates (x, y, z) of the TCP (m) Response

4.3 Methodology

4.3.1 TCP displacement prediction

We propose a deep Long Short-Term Memory (DLSTM) model to predict robotic arm tool

displacement, since the robot data is a time series. Our proposed DLSTM model consists of

two main Long Short-Term Memory (LSTM1, LSTM2) layers, two drop-out layers, and a Full

Connected dense Neural network (FCN) layer. The DLSTM prediction model architecture

is shown in �gure 4.1. Its input is the robotic arm's joint data variables that have an index

of [1 : 54] in Table 4.1 with time window 400 m sec (50 samples). Meanwhile, the output

is the predicted TCP displacement for the 51st sample in the next time window. It is the
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Euclidean distance given in equation 7.1 and it depends on the response variables that were

indicated in Table 4.1.

Figure 4.1 Schematic of the proposed DLSTM-RAM robotic arm anomalies detection.

TCPd =
q

(TCPx )2 + ( TCPy)2 + ( TCPz)2 (4.1)

Where,TCPd is the Euclidean distance from the robotic arm base joint,TCPx ; TCPy; andTCPz

are the measured tool center point displacements for x, y, and z Cartesian coordinates, re-

spectively. This DLSTM prediction model eliminates the special need of TCPs for expensive

position sensors. It achieved high accuracy, as will be shown in the results section.

Figure 4.2 plots the robotic arm Tool Center Point displacement(TCPd) Auto-Correlation

Function (ACF). ACF is the correlation between TCPd observations as a function of time

lag between each observation and a prior one [46]. Response variables are corre-lated vari-

ables, as given in �gure 4.2. ACF forTCPd was calculated with the Pearson's correlation
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coe�cient, which is a value between [-1, 1] to describe the positive and negative correlation,

and zero ACF means zero correlation [46].

Figure 4.2 Tool center point displacement autocorrelation.

4.3.2 Multivariate Process Monitoring

Most of the industrial process has several output variables that a�ect process performance.

Accordingly, multivariate process monitoring was developed. This was an extension of uni-

variate quality control to avoid false alarms or failures of anomaly detection [47]. In multi-

variate, the monitoring data variablesx is a matrix [p � n] given by [x1; x2; : : : ; xp] , where

n is number of data points andp is number of data variables. In our case,p = 54 variables

while x is the data variables that have a variables index of[1 : 54] given in Table 4.1. The

monitoring variables means is� = [ � 1; � 2; : : : ; � p] and the covariance matrix(�) is [p � p]

diagonal matrix of variables' standard deviation. Therefore, the multivariate normal proba-

bility density function is given by equation 7.2.

f (x) =
1

(2� )p=2[�] 1=2
exp(

1
2

(x � � )� � 1(x � � )) (4.2)

The robotic arm TCP displacement response variable has a correlation, as shown by �gure 4.2.

Regression Adjustment for Multivariate (RAM) data is e�ective with correlated variables [48].

The RAM control chart uses linear regression to predict response variables. RAM models

show the residual analysis of the predicted TCP position in comparison with the desired one.
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The residual error is the di�erence between the predicted TCP displacement and the target

value. The residuals are uncorrelated, even though the original TCP data was correlated

[47, 48]. In this paper, we develop a RAM and DLSTM prediction model (DLSTM-RAM)

for robotic arm monitoring. The proposed DLSTM-RAM model architecture is given by

�gure 4.1. RAM model has inputs of TCP target settings and DLSTM predicted values

to detect the positional error anomaly with the internal parameters of residual mean and

standard deviation. The DLSTM-RAM internal parameters tuning and model capabilities

are discussed in results section.

4.4 results

Our DLSTM prediction model is trained with 200 training epochs, 10 input batches, 15206

training samples, and 481-validation samples. The training Mean Absolute Error (MAE)

loss was 52 x 10�4. Training ended at the30th epoch when the model was trained with early

stopping. Early stopping is one of the methods that we used to prevent over�tting [49]. The

MAE was 27 x 10�4 with 30 epochs of training. Figure 4.3 depicts training and validation

MAE losses during training with early stopping, and it shows the leaning stability of the

proposed model. The lowest loss values were achieved at the30th epoch. The proposed

model achieved testing MAE at 0.57% when it is tested with 8989 data samples. Figure

4.4 shows the predicted TCP displacement and the actual values with testing data. The

Figure 4.3 DLSTM prediction model training and validation losses with early stopping.

proposed model achieved testing MAE at 0.57% when it is tested with 8989 data samples.

�gure4.4 shows the predicted TCP displacement and the actual values with testing data.
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For comparison, a linear regression model was designed with the same training and testing

data that we used for the DLSTM model. Table 4.2 represents the MAE of our proposed

model and the linear regression model for training and testing data.

Table 4.2 DLSTM model vs. linear regression prediction performance

DLSTM Linear Regression
MAE training (15241 samples) 27 x10-4 9 x10-3
MAE testing (8989 samples) 3.95 x10-2 13.98 x10-2

RAM detects the observation as an anomaly if the corresponding residual di�erence is more

than the upper control limit or less than lower control limit. The control limits are de�ned as

a residual(� ) ± 3* the standard deviation of� , which were calculated for the �rst 2000 samples

data samples. Figure 4.5 shows the RAM residual control chart with testing observation data

at rated speed and full payload. The number of anomaly points was 359 observations out of

6519 testing observations. The detected anomaly points are related to two positions out of

the six that formulate a complete robotic arm operational cycle. The chart in �gure4.5 shows

a residual di�erence that is repeated periodically three times. Each one represents a repeated

robotic arm complete operation. Therefore, the anomalies are periodically repeated. Hence,

the robotic arm anomaly samples are a�ected by the same cause. For further research, more

analysis is needed to de�ne the causes of these anomalies. The detection response time and

the proper self-healing actions requires more investigation. Self-adjustment actions can be

implemented during robot operations to clear the detected anomalies.

Figure 4.4 DLSTM model testing to predict the TCP distance.
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Figure 4.5 RAM Control chart for robotic arm testing data with rated speed and full payload.

4.5 Conclusion

This article presents a novel approach for robotic arm positional health assessments. Indus-

trial robots are confronted with several environmental and �eld variability challenges that

lead to robot failures. A combination of DLSTM-RAM models detects robotic arm TCP

displacement anomalies. Our DLSTM model outperforms the traditional quality chart pre-

diction model that uses a linear regression. It has lower MAE when testing approximately

10%. While the TCP sensor's measurement is very ex-pensive and is not available to all

manufacturing plants, the proposed DLSTM-RAM detects position anomalies based on mea-

surements taken of indicators and �ags an alarm signal without the need for additional special

sensors. DLSTM-RAM was tested and veri�ed with data obtained from a robotic arm that is

working at rated speed and full payload. For further research, the DLSTM-RAM model will

be improved to include the position anomaly's causes, and accordingly to perform self-healing

actions.
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Abstract

A sustainable and reliable machining process is the main goal of seeking machine digitiza-

tion. Arti�cial Intelligence (AI), and Cyber-Physical System (CPS) combined with Arti�cial

Intelligence are used for process control. This has become more essential in the case of ma-

chining of high-cost aerospace materials and critical product speci�cations. In this paper,

a novel self-healing mechanism was developed to recover a CNC machine from producing

parts that do not conform to surface roughness's speci�cations. The machine settings are

recon�gured autonomously and online to recover from the e�ect of tool wear and to keep

the surface roughness within the design speci�cations. The proposed self-healing mechanism

is based on a pattern recognition algorithm called Logical Analysis of Data (LAD). This

algorithm generates patterns that characterize the out-of-speci�cation state, and provides

a corrective setting within the recovery patterns of the within-speci�cation state by using

various distance approaches. The developed self-healing mechanism is composed of three

modules: CPS model of the CNC machine (module 1), classi�cation into out of, or within-

speci�cation states (module 2), and a self-healing controller (module 3) that is activated if

the state of out-of-speci�cation is found by module 2. The three modules are software. The

current hardware system of the machine is not altered. The proposed self-healing mechanism

is validated on CNC machines with a wide range of machining parameters of feed rate from

20 mm/min to 700 mm/min and spindle speed from 10,000 RPM to 40,000 RPM. To val-

idate the developed mechanism, a deep learning arti�cial model was developed on physical

data to emulate the CNC milling machine in a CPS simulation environment, and test runs

were executed. The proposed self-healing mechanism was evaluated under several simulation

runs that covered the ranges of CNC machine settings. The measure of performance of the

proposed mechanism is the out-of-speci�cation clearing time. The validation runs show that

the proposed self-healing mechanism was able to clear the out-of-speci�cation state and to

recover the within-speci�cation state in less than three seconds, with the best distance metric

approach. The results of the time response for each test run are reported.
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5.1 Introduction

Industrial 4.0 technologies and digitization permit real-time monitoring and controlling of

machine malfunctions autonomously [50,51]. Since more information is available online and

in real-time, maintenance actions can be updated adaptively to avoid process/product fail-

ure [23]. Maintenance 4.0 is a concept that exploits the connectivity between facilities, data-

driven simulations, and AI techniques to develop unmanned self-healing machines [5,18,23].

Reliability and maintenance engineers have studied the concept of the biological immune

system and call it Engineering Immune System (EIS) [5, 52]. An EIS uses AI technologies

to change the classical maintenance strategy approaches that are based on the knowledge

of the mean time between failures (MTBF) to the knowledge of system degradation inci-

dences [53,54]. This change entails continuous monitoring of sensors' readings and analytics

of degradation [26,55,56]. To add unmanned actions to an EIS, and to achieve Maintenance

4.0, the development of software and hardware modules is needed to obtain a self-healing

mechanism.

In optimization of the cutting parameters, the spindle speed and feed rate are kept constant

during machining process. They are adjusted before the beginning of the machining process

based on the workpiece requirements [53]. Optimization techniques have been applied to

determine the optimal design settings, including speed and feed, of the CNC machine ac-

cording to the condition of the cutting tool [57,58]. The genetic algorithm was used to tune

the design parameters of the CNC machine when turning AISI 4340 Steel under constraints

of productivity, cost, and product speci�cations [57]. Practical Swarm optimization was ap-

plied to high-speed milling machines to determine cutting speed and feed rate [59]. These

techniques are performed o�ine, and the machine is not adjusted online in response to the

natural phenomenon of a process's degradation.

Fault-tolerant control (FTC) is a set of recent techniques that were developed to increase

the plant availability and to reduce the risk of safety hazards. FTC aims to compensate for

fault e�ects on the system during operation to maintain the system stability regardless of the

nature of the fault. Fault-tolerant control combines several disciplines to achieve this goal by

including online fault detection, automatic condition assessment, and calculation of remedial

actions when a fault is detected [6, 9]. In FTC, the controller acts passively, regardless of

the machine's fault nature, if it does not have a fault detection module. Huang et. al [60]

designed a controller with a force estimator for a CNC milling machine to control the feed

rate and to maintain the forces in a speci�c range while the machine is subjected to noise
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uncertainties [60]. The paper addressed the online feed rate changes, but it is limited to

several faults that have been de�ned in the design phase. The operational faults that result

from the natural phenomena of degradation and the stochastic nature of the machining pro-

cess are not included. In [61], adaptive control is implemented as an active FTC to control

CNC milling forces online, by changing the feed rate when the measurement feedback forces

deviate from an assumed value. The authors consider the force deviation as the only e�ect of

tool wear. Sadek, et.al.2020 [62] presented a real-time tool-wear prediction to the adaptive

control system as a fault detection module to improve the drilling process performance. The

study is limited to one controlled variable; therefore, it has a limited recovery range, and

the product speci�cation was not addressed. Z. W. et.al (2015) developed a data-driven self-

healing mechanism for a Fused Magnesium Furnace (FMF) [63]. Two software blocks were

added to the original FMF system to detect the abnormalities and to control FMF while

electrodes are degrading. The authors assume abnormality thresholds on the EMF's current

measurement, regardless of the product speci�cations. To maintain the product speci�ca-

tion, a self-adjusting CNC milling process is implemented using feed-forward Neural Network

(NN) [53,64]. The model uses two interconnected NNs to predict the optimal feed rate. The

�rst NN predicts the tool wear using cutting force sensor measurements. The second NN

predicts the optimal feed rate, with the predicted wear of the �rst NN. The authors assume

an empirical relation for the predicted feed rate and wear to calculate the surface roughness

(Ra) and to choose the new machine settings. NNs are connected to sensors that measure the

forces and generate feed rate directly without an anomaly detection module. In this case, the

feed rate adjustment becomes very sensitive to the accuracy of the sensors' measurements.

These are contaminated with noise, which is usually represented by a normal distribution

(i.e., mean± 3 SD). As such, synchronization is needed to adapt the sensor's �uctuating mea-

surements to the real state of the milling process. In [65,66], variable online spindle speed and

feed rate were applied to high-speed milling machines to stabilize the product quality. These

solutions require adding special sensors to track the variation of Ra, and system stability

analysis is required to verify the new machining parameters. The neural network self-healing

provides an uninterpretable machine setting that is highly sensitive to the NN's hyperparam-

eters tuning. Shaban, et.al (2017) provided an online alarm system that is triggered upon the

detection of a malfunction or a quality failure according to the patterns generated by LAD.

The results demonstrate that LAD outperforms the NN in detecting machine anomalies [20].

They linked the uncontrollable sensors' measurements to failure by using pattern recognition.

During online processing, the fault is detected based on the current sensor's measurements

and the extracted patterns of malfunction. They did not provide a self-healing mechanism

in case of fault incident.
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By de�nition the self-healing mechanism detects the system's function-failures, and au-

tonomously executes recovery actions without disrupting its operation [5,15,63,67]. The func-

tion failure could be caused by either system anomalies and/or component failure [11,15,18].

In case of physical damage, the self-healing systems need to have a system redundancy

through the system's connected redundant components to overcome the physical damage

without interrupting the system's operation. [6,11]. With the capability of detecting system

anomalies or faults, the self-healing actions do not change the physical structure or the in-

terconnections of the system component [18,20]. It only allows the system to recover and to

continue its operation without disruption.

This paper introduces a new approach for an autonomous self-healing mechanism of CNC

milling operation based on the pattern recognition. The proposed self-healing mechanism

deals with product nonconformity faults and machining process anomalies. The main contri-

bution of this paper is the design of a self-healing mechanism that has the following properties:

1. It does not change the hardware of the machine.

2. It uses a pattern recognition algorithm to generate patterns that di�erentiate between

the within and out-of-speci�cation states. This algorithm is not based on any empirical

formulation, but machine learning principles.

3. It is triggered to avoid producing products that do not conform to speci�cations, and

it is applied online.

4. It has a fault detection module to provide warnings once the product moves out-of-

speci�cation

5. It is complemented by a synchronization module that is added to adjust the response

time.

Section 2 of the paper presents the mechanism of the self-healing system. Section 3 describes

the methodology used to build the self-healing mechanism, including the pattern generation

algorithm (LAD), the detection of an out-of-speci�cation state, and distance approaches.

Section 4 demonstrates the implementation process that was built with a deep learning

arti�cial model to emulate the CNC milling machine. Section 5 presents the validation

process and the obtained results. Section 6 presents conclusion and future work.
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5.2 The Self-healing Mechanism

In the context of autonomic systems, the self-healing module/component detects the system

malfunctions and performs corrective actions without disrupting the system. [5,15,63,67].The

proposed self-healing mechanism is developed to recover a machine from a state that would

lead to the production of out-of-speci�cation products by changing the values of the con-

trolled variables of the machine. This is a dynamic mechanism that adapts to the actual

machine's status online. The mechanism is composed of the closed-loop that is provided in

�gure 5.1. This loop enables the self-healing mechanism to interact with the CNC machine

to prevent it from producing out-of-speci�cation products. The mechanism includes three

modules. Module 1 is the CNC milling machine that will ingest the LAD algorithm with the

sensors' measurements and the controllable variables' settings of the machine. Module 2 is

the fault-detection module that will analyze the data, apply the LAD algorithm to generate

patterns that characterize the within and the out-of-speci�cation status, and classify the

recent sensor's readings' levels as belonging to one of these two states. The patterns are gen-

erated by LAD and online modelled by IF-THEN-Rules. Each decision rule represents one of

the extracted patterns, which are generated by LAD. Module 2 provides online monitoring

and analysis of the product quality at each time step (t). In the case study of this paper,

Module 2 diagnosis the system status, and raises a fault �ag for an out speci�cation status.

The fault detection module works with the CNC machine's model in synchronous mode, and

it reads the machine sensors' values at each time step (t); therefore, the fault detection re-

sponse is dependent on the sensors' measurement response time. Module 3 is the self-healing

module. If the out-of-speci�cation fault is detected at time step (t), the Self-healing module

reads the current machining parameters, then �nds the nearest recovery pattern from the

generated patterns based on a distance approach (r). To close the autonomic loop, the self-

healing actions are set on the CNC machine in Module 1. At the next time step (t+1), fault

detection Module 2 states whether the fault is uncleared. If so, a new loop of data ingestion

and analysis, pattern generation, and self-healing execution are taken. A synchronization

block is added to Module 3 to avoid the impractical oscillations of the new settings and to

stabilize the autonomic loop.

5.3 Materials and Methods

This section presents the LAD algorithm to generate the patterns, which are used to develop

the self-healing actions in Module 3, and to classify and detect the out-of-speci�cation in
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Figure 5.1 CNC machine Self-healing closed-loop system

Module 2.

5.3.1 Logical Analysis of Data and pattern generation

Logical Analysis of Data (LAD) is a supervised data mining technique that combines Boolean

logic functions and combinatorial optimization to solve the classi�cation problems [32]. LAD

generates explanatory logical patterns, which are de�ned by data features' boundaries to

identify each state of the machine. Yacout et al. developed a cbmLAD software for condition-

based maintenance applications with LAD [32]. LAD generates patterns that segment the

state space into zones that belong to di�erent classes. Pattern generation is the step of �nding

the logical relation between the data's features to characterize these zones. Each logical

relation represents a pattern, and each pattern covers a range of data observations within

a speci�c range of a feature values. cbmLAD utilizes a Mixed-integer Linear Programming

(MILP) algorithm to solve pattern generation problems that characterize positive (faulty)


 + and negative (non-faulty) 
 � classes, in the case of two classes' classi�cation problem.

The MILP is given by the optimization problem 1, where a pattern's indexyi is zero if the

observation i is covered by patternp, and 1 otherwise. In a matrix form, i is the data

observation number andj is the feature that is transformed into attributes of binary form

bj and bj + n 8j 2 [n; 2n] are the complementary values ofbj . The decision variables arewj , a

binary index that takes the value 1 if the attribute j exists in the generated pattern, and zero

otherwise, d is the pattern degree that speci�es the number of attributes in the generated
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pattern, and n is the total number of binary attributes.

min
i 2 
 +

X
yi

s.t. wj + wn+ j � 1; 8j = 1; 2; ::n
2nX

j =1

ai;j wi + nyi � d;8i 2 
 +

2nX

j =1

ai;j wi � d � 1; 8i 2 
 �

2nX

j =1

wi = d

1 � d � n

wj ; yi are binary; 8i; j

(5.1)

The generated pattern is de�ned by the attribute bj when wj = 1 and by its complement

when wj + n = 1. cbmLAD solves the MILP model in 5.1 until all of the data observations

in the positive class are covered by at least one pattern, and then reruns it for the negative

class observations. In this paper, positive patterns are the patterns that indicate an out-of-

speci�cation state, and negative patterns represent the within-speci�cation zones.

5.3.2 Distance Metrics Approach

To �nd the pattern that changes the machine status from an out-of-speci�cation status to

a within-speci�cation status, two distance approaches are implemented to �nd the nearest

within-speci�cations pattern to the current pattern that is detected in Module 2 of �gure 5.1.

These two approaches are point-to-point distance and point-to-distribution. Consequently,

the Self-healing module will automatically generate the new machine settings that are spec-

i�ed in the nearest within-speci�cations' pattern observed at time (t+1) to the previous

existing settings at step (t).

Point-to-point (P2P) distance approach

The P2P distance equation is provided in Equation 7.2 [68,69], where theD r
p is the distance

between the machine settings vectorx at time step (t) and m is the mean vector of each

recovery pattern p. The point-to-point distance type r is the Manhattan distance if r = 1,
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and the Euclidean distance whenr = 2. k is the index of the controllable variables.

D r
p = (

2X

k=1

jxk � mk jr )1=r (5.2)

Point to distribution (P2D) approach

To implement the P2D, the Mahalanobis Distance is used. It is calculated from the CNC

settings at the time step (t), at which point the out-of-speci�cation status is detected. The

Mahalanobis distanceD r =3
p is calculated with Equation 3 [70,71], wherex is the vector of the

machine settings at time step (t),m is the vector of mean values of each controllable variable

in the recovery pattern andCov is the covariance[k � k] matrix of the controllable variables

in a recovery pattern. In this study, the P2D distance approach considers all possible settings

inside each recovery pattern, as they have the same priority while calculating the covariance

matrix Cov. The number of recovery settings to be considered in the calculation of theCov

matrix in�uences the self-healing algorithm execution time, as shown in the appendix.

D r =3
p =

q
(x � m)T cov� 1(x � m) (5.3)

As an example of the implementation of this methodology, Table 5.1 shows a sample of ma-

chining data for a product's delamination under di�erent machining settings of spindle speed

[1500-12000] in RPM and feed rate [20-800] in micron/rev. The exit delamination is within-

speci�cation when its value is lower than, or equal to, 1 and out-of-speci�cation otherwise.

To build a self-healing module for this problem, the given data in Table 5.1 is ingested to

cbmLAD to generate the positive (faulty) and negative (corrective non faulty) patterns. In

this example, cbmLAD generates four corrective patterns, as given by Table 5.2.

Table 5.1 Example of CNC exit delamination data

v=f 20 60 100 200 400 600 800

1500 1.00 1.00 1.00 1.08 1.11 1.22 1.24
5000 1.00 1.00 1.05 1.05 1.06 1.14 1.17
8500 1.05 1.00 1.00 1.05 1.06 1.10 1.11
12000 1.00 1.00 1.00 1.04 1.06 1.04 1.07

When the delamination's out-of-speci�cation state is detected, the self-healing mechanism

selects the nearest recovery pattern according to the distance approachr . For example,

if the fault is detected when the machine settings were 8500 RPM and 600 micron/rev,

the self-healing mechanism calculates the distance between these faulty settings and each
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Table 5.2 cbmLAD Generated Negative Patterns for the delamination quality characteristic

N.o Spindle speed Feed rate Delamination

1 v < 5000 f < 200 Within-speci�cation
2 v < 8500 f < 100 Within-speci�cation
3 8500< v < 12000 f < 200 Within-speci�cation
4 v > 5000 20< f < 200 Within-speci�cation

of the four recovery patterns in Table 5.2. The nearest recovery pattern is the pattern

that has the shortest distance to the current faulty settings according to the distance ap-

proach r . In case of P2P, the mean of each pattern is equal to[m1; m2; m3; m4] where

m1 = [ v1jmin + v1j max � v1j min

2 ; f 1jmin + f 1j max � f 1j min

2 ]. The mean values arem1= [3250,110],m2=

[5000,60],m3= [10250,110], andm4= [8500,110]. When r=1 the Manhattan distances are

equals toD 1
1=75.76, D 1

2= 63.56, D 1
3= 47.33, and D 1

4= 22.13. The shortest distance isD 1
4

and it indicates the4th recovery pattern, which is shown in Table 5.2, as the nearest recovery

pattern to the current faulty settings of [8500, 600], hence the self-healing selects the4th

pattern to generate the corrective settings with a P2P distance approach.

5.3.3 Machining Monitoring and Fault Detection

Module 2 activates/deactivates the self-healing mechanism where it monitors the CNC ma-

chining process. At each time step (t), Module2 reads CNC machine sensors data and ana-

lyzes it to decide that the current machining status conforms to the required speci�cations.

Once an undesired machining performance is detected, Module 2 activates the self-healing

mechanism in module 3 of �gure 5.1. In the case of multi-quality factors, Module 2 diagnoses

the fault type in addition to the instant of the detection.

In this paper, LAD is used to monitor the machining process and to detect the non-conformed

products. LAD outperforms other Machine Learning algorithms where it generates explana-

tory patterns that de�nes the fault and its causes [20,21]. Each pattern is a logical relation

among the machine's sensors (uncontrollable variables), the current measurement is said to

be covered by a pattern when it satis�es the pattern logical relation. In online mode, each

generated pattern is represented by an IF-Then-Rule and this rule de�nes the current ma-

chining status.

To explain the online implementation of Module 2, Table 5.3 shows the sensor data of the

example given in Table 5.1. It contains the product exit delamination and the corresponding

uncontrollable variable measurements of the forces x-directionFx (N ) and mean-temperature

Tmean (Co). For pattern generation, the data example in Table 5.3 are ingested to cbmLAD
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to extract the explanatory patterns that are capable to monitor and de�ne the machining

process status. It is stated that the working piece conforms when its exit-delamination is

lower than or equal to one. Table 5.4 summarizes the generated patterns for the data example

Table 5.3 Delamination data example for uncontrollable variables

Fx=Tmean 100 150 200 250 300 350 400

10 1.00 1.00 1.00 1.08 1.11 1.22 1.24
20 1.00 1.00 1.05 1.05 1.06 1.14 1.17
30 1.05 1.00 1.00 1.05 1.06 1.10 1.11
40 1.00 1.00 1.00 1.04 1.06 1.04 1.07
50 1.07 1.00 1.00 1.03 1.05 1.05 1.05

in Table 5.3. Four patterns represent the conforming delamination product and another four

patterns for the out-of-speci�cation product. Each pattern is a logical relation between the

forcesFx and mean-temperatureTmean , and it is bounded by a range of sensors' measurement

values. In online mode at any time step (t), one of these logical relations is satis�ed and its

related pattern is de�ned, then the current machining status is concluded. The innovation

aspect of this approach is the interpretable patterns that indicate the cause of receiving this

status. For example, if the sensor reading at a time (t) is [50N , 230 Co] for Fx and Tmean

respectively. The product delamination is out-of-speci�cation as this measurement is covered

by the 1st pattern of the non-conforming patterns. The high temperature is the main cause

to have this non-conformed working piece. To build module 2 that triggers the self-healing

mechanism for delamination out-of-speci�cations, the four non-conforming patterns in Table

5.4 are modeled by four If-Then-Rules.

Table 5.4 Extracted cbmLAD's Patterns to characterize the product delamination based
uncontrollable variables

N.o Fx (N ) Tmean (Co) Delamination

1 Tmean > 255 Out-of-speci�cation
2 Fx > 45 Tmean < 120 Out-of-speci�cation
3 15< F x < 25 Tmean > 175 Out-of-speci�cation
4 25< F x < 35 Tmean < 125 Out-of-speci�cation
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5.4 The implementation of the self-healing mechanism to a milling process

The proposed self-healing system in �gure 5.1 is applicable to any machining process with

di�erent materials and di�erent quality factors. The developed mechanism is validated to

recovers the CNC machining faults with a wide range of controllable variables for feed rate

[20 mm/min - 700 mm/min], and spindle speed [10,000 RPM - 40,000 RPM]. This mecha-

nism can be applied to all engineering systems, which have controllable variables that can be

manipulated automatically.

In this paper, the self-healing mechanism is tested on a CNC machine while routing a carbon

�ber reinforced polymer material. The experimental data and the data collection procedures

are described in [20]. An example of the collected data is given in Table 5.5. The CNC milling

machine's experimental raw data is de�ned by four controllable variables: feed ratef , speedv

, tool length , and depth of cutC, and sensors `measurements of forces,Fx ; Fy; Fz, and mean

temperature Tmean . At the time of data collection, the surface roughness (Ra) is physically

measured on the product after machining time and it was categorized as within-speci�cation

(0) or out-of-speci�cation (1) according to the Ra value [20]. To emulate the developed self-

healing mechanism, we build and validate an arti�cial CNC milling machine model. Table

5.5 shows a sample of the experimental data. Each observation is classi�ed based on the

value of produced surface roughness (Ra) value, whether it is within-speci�cation or out-of-

speci�cation. The collected data is imbalanced because it consists of 100 observations with

an out-of-speci�cation Ra and only 8 observations that have within-speci�cation values. To

balance the data, the AMSCO algorithm in [72], is applied to generate new observations

within the speci�cation values of the Ra.

A deep neural network model is built to simulate the CNC milling machining process in

CPS. It has three inputs: the depth of cutC(mm), feed ratef (mm/min), and spindle speed

v (RPM), and four outputs, 3D forces (N) and the mean temperature (Co). To increase

the learning accuracy, we design more than 10,000 di�erent NN architectures with di�erent

layers that varied from one-layer models to �ve-layer models. The number of hidden neurons

varied from 2 up to 9 neurons. The best model architecture to be selected is the model that

achieves the lowest Mean Square Error (MSE) for unseen testing data.

The sensors' measurement vector[Fx ; Fy; Fz; Tmean ] of the physical machine is the output of

the NN model, and we apply 10-folds cross-validation to �nd out the best NN model archi-

tecture. The NN modeling experiment's details and the architecture that has the minimum

MSE for each combination of neurons and layers are given in �gure 5.2. With the lowest

MSE of 311, the best NN architecture consists of four hidden layers with hidden neurons of

9, 6, 4, and 6 neurons for the1st ; 2nd ; 3rd ; and 4th layers, respectively.
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Table 5.5 Sample of The Experimental Raw Data (Shaban et al., 2017)

No
v

X 104 RPM
f

Mm/min
C (mm) Tool length Fx (N) Fy(N) Fz(N) Tmean (Co) Ra fault

1 4 250 32 38 9.2 5.8 6.5 305.031 1
2 4 500 32 38 15.4 11.2 6.6 385.058 1
3 4 1000 32 38 25.5 20.5 11.5 437.552 1
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

13 4 250 32 31 9.3 5.8 6.4 231.178 1
. . . . . . . . . .
. . . . . . . . . .

25 4 1000 32 24 29.5 17.6 11.1 421.388 1
. . . . . . . . . .
. . . . . . . . . .

32 4 250 64 38 11.6 7.1 9.1 292.493 1
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

66 4 250 96 38 14.2 7.8 3.1 417.309 1
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

100 1 1000 96 24 79.5 96 49.1 405.448 1
101 4 250 32 32 18.4 5.7 3.2 305.491 0

. . . . . . . . . .

. . . . . . . . . .
107 2 250 64 24 24.2 11.2 6.1 220.27 0
108 3 250 96 24 23.2 8 4.9 281.012 0
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Figure 5.2 Minimum MSE per each model's layers for unseen testing data

To build the NN model, we used the best NN architecture to be trained and tested on the

deep TensorFlow environment [73]. With the developed deep learning model, The Mean

Absolute Error (MAE) is 5.477 for training and 6.747 for testing (e.g. physical measure-

ment = model reading ± 6.747 Co). Figure 5.3 shows the uncontrollable variables' values

of (a)Fx ; (b)Fy; (c)Fz; and (d) Tmean obtained with the NN model versus the actual physical

measurements for testing data. Once the CNC machine has an out-of-speci�cation Ra, the

proposed Self-healing algorithm produces a corrective action based on the recovery patterns

that are given in Table 5.6 to clear this fault. As a result, the faulty state is updated in the

next time step. To evaluate this interaction in the Cyber-Physical System (CPS), we devel-

oped an arti�cial CNC milling machine model and validated this model with the physical

raw data in Table 5.5.

5.4.1 Generation of The Recovery Patterns

The recovery pattern matrix contains patterns that are obtained with the software cbmLAD

[32] when the CNC machine product is within Ra speci�cations. These patterns de�ne the

zones of controllable variables; the spindle speed, the feed rate, and depth of cut values

that would recover the machine from an out-of-speci�cation status. These patterns are

extracted by using the Logic Analysis of Data (LAD) algorithm. Table 5.6 shows the six
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Figure 5.3 uncontrollable variables of(a)Fx ; (b)Fy; (c)Fz; and (d)Tmean with the NN model
vs. actual physical testing data

recovery patterns in terms of the controllable variables that are generated by the cbmLAD

software [32] from the data shown in Table 5.5, columns 2 to 5. These patterns classify

the milling process according to the Ra values that are within-speci�cations. Two MILP

Table 5.6 Recovery Patterns for Machine controllable variables Generated by cbmLAD.

Pattern v (� 104RPM) f (mm/min) C(mm)

1 v > 1.5 f < 375 C < 48
2 v > 3.5 f < 375 C < 80
3 v > 3.5 f < 750 C < 48
4 2.5< v < 3.5 f < 375 C > 80
5 1.5< v < 2.5 f < 375 C < 80
6 1.5< v < 2.5 f < 750 C < 48

problems are solved by cbmLAD. First, the controllable machine's settings that are shown in

Table 5.5, columns 2 to 5, are used to extract recovery (negative) patterns that are shown in

Table 5.6. The second problem is to detect the Ra's fault within one of the positive patterns
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that are generated in terms of the uncontrollable variables. The values of these variables are

shown in columns 6 to 9 of the sensors' measurements in Table 5.5.

5.4.2 Out of speci�cation detection modeling

To eliminate additional hardware, the product quality monitoring and fault detection is

developed with using of the current machine sensor data. The fault detection module is

modeled the extracted patterns that generated by applying the Logical analysis of data

(LAD) algorithm to the CNC milling machine sensors' data, which are shown in columns

6 to 9 in Table 5.5. These patterns segment the multidimensional space that is formed by

the forces and the temperature's values into two zones: conformed or non-conformed Ra to

speci�cations. An observation of CNC machine sensors' data is classi�ed according to the

patterns generated by the uncontrollable variables of forces and temperature. To classify and

detect the nonconformity of the working piece online at each time step (t), each one of the

generated positive patterns is represented by an If-Then-Rule. The machine measurements

are forces(Fx ; Fy; Fz) in Newton (N) and mean temperature in Celsius (Co). The fault

detection rules generated by the cbmLAD tool are as follows:

1. IF ( Fx > 24.7 N) THEN non-conformed Ra

2. IF (Tmean > 366.474 Co) THEN non-conformed Ra

3. IF (Fy > 5.75 N) AND (225.724 Co < T mean < 361.878 Co) THEN non-conformed Ra

4. IF (Fx > 22.4 N) AND (Fy > 5.75 N) AND (Fz > 3.05 N) AND (190.028 Co < T mean <

361.878 Co) THEN non-conformed Ra

5. IF (Fx > 18.15 N) AND (Tmean > 225.724 Co) THEN non-conformed Ra

6. IF (Fx > 14.9 N) THEN non-conformed Ra

7. IF (Fy > 5.75 N) AND (Tmean < 203.86 Co) THEN non-conformed Ra

5.4.3 The Self-healing module

At each time step (t), the fault detection module reads the machine sensor's measurements

and generates a fault �ag signal in the case of non-conforming Ra. The fault �ag signal is

transferred to the Self-healing module. In this case, the self-healing algorithm that is shown

in Table 5.7 uses the P2P or the P2D approaches to �nd the closest recovery pattern, out of

those that are shown in Table 5.6 in terms of feed and speed. This algorithm recovers the
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machining process from the out-of-speci�cation state by returning it to within-speci�cation

state, while minimizing the setting �uctuations to avoid process instability. According to

pattern selection, the self-healing actions at time (t+1) is a vector S=[vt+1 ; f t+1 ], whose

value is between the minimum values[vmin ; f min ]p of the selected pattern p, and the maxi-

mum values of the vector[vmax ; f max ]p.

In this implementation example, the developed Self-healing algorithm with the P2P distance

approach shows the same performance when using the Manhattan distance(r = 1) and the

Euclidean distance(r = 2) for all experiments. The di�erence between the results becomes

signi�cant with a large number of variables [69]. In this study, we have only two controllable

variables, spindle speed and the feed rate, since the depth of cut(C) value is set according to

the design of the product before the machining process begins. Thus, the self-healing mech-

anism deals with it as a constant value while recovering the Ra from the out-of-speci�cation

state. The self-healing actions are the recovery settings of feed rate (mm/min) and spindle

speed (RPM) at time step (t).

Table 5.7 Propose self-healing algorithm of the CNC Milling Process

The algorithm in Table 5.7 recovers the surface roughness (Ra) fault and provides online

automatic actions to ensure that it meets the product speci�cations. The input vector for

the Self-healing module contains the machine settings at a time (t) and the fault detection

signal, in terms of forces and temperature. Meanwhile, the output vector contains the recov-

ery settings of feed rate(f t+1 ) in mm/min and spindle speed(vt+1 ) in RPM. To save time
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during the online computation, the self-healing algorithm will be active only if there is a

detected fault. It is structured on the Ra recovery patterns in terms of controllable variables,

fault detection in terms of the force and temperature, and the distance metric approaches,

which will be discussed in the next section.

5.5 Validation of the Self-healing Mechanism

To validate the performance of the self-healing system, machine settings that were not used

in the training by the NN algorithm were chosen. These settings are listed in Table 5.8.

They represent the maximum and the minimum values that are allowed for the controllable

variables, which are the depth of cut, the feed rate, and the speed, according to the rec-

ommendation of tool's supplier. The combination of these values leads to 27 observations

of settings. These observations are ingested to module 1 in �gure 5.1 to �nd the estimated

class for each observation according to the seven patterns of If-Then-Rules that were shown

previously in the modeling of module 2.

Next, the performance of the self-healing algorithm is evaluated by using the SIMULINK

simulation environment, and the sampling frequency is 20 kHz. Seven settings out of the 27

initial observations lead to conforming Ra as shown in Table 5.8. These sets are excluded

from the next steps, since the objective is to simulate the self-healing mechanism by beginning

with a setting that will lead to out-of-speci�cation states. Before simulating the autonomic

closed-loop in �gure 5.1, the CNC machine is set with the initial settings listed in Table 5.8

for the 20 out-of-speci�cation labels. In 4 settings, the P2D distance approach led to better

recovery time. These are settings 2,7, 8, and 9 from Table 5.8. In 9 settings, both approaches

led to comparable recovery times. These were settings 18 to 27 from Table 5.8. Finally, 7

settings let to better recovery time with the P2P approach. These are settings 3, 4, 6, 10, 11,

12, 15 from Table 5.8. In the following section, we present the synchronization mechanism

using setting 2, 7, 8 and 9. The results of the other settings are shown in the Appendix.

5.5.1 The Self-healing mechanism Synchronization

In the 2nd initial set, and with a P2P distance approach, the self-healing module receives

the Ra fault �ag; then it starts to interact with the CNC machine model to adapt to the

nearest recovery settings of feed rate and spindle speed based on the recovery patterns in

Table 5.6. Figure 5.4.b and c present the actions of the P2P self-healing module to clear the

detected CNC milling Ra �ag. Time (seconds) is on the x-axis, while the y-axis presents the

machine controllable variables of the depth of cuttingC(mm), feed rate f (mm/min), and

spindle speedv(� 104 RPM), respectively, and the detected fault �ag is in �gure 5.4.d.
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Table 5.8 The 27 Observations of the CNC machine's Initial Settings with Fault detection
(module 2) response

Run N.o
C
mm

f
mm/min

v
� 103 RPM

Ra
Speci�cations state

1 32 100 10 Within
2 32 400 10 Out
3 32 700 10 Out
4 32 100 20 Out
5 32 400 20 Within
6 32 700 20 Out
7 32 100 40 Out
8 32 400 40 Out
9 32 700 40 Out
10 64 100 10 Out
11 64 400 10 Out
12 64 700 10 Out
13 64 100 20 Within
14 64 400 20 Within
15 64 700 20 Out
16 64 100 40 Within
17 64 400 40 Within
18 64 700 40 Out
19 96 100 10 Out
20 96 400 10 Out
21 96 700 10 Out
22 96 100 20 Out
23 96 400 20 Out
24 96 700 20 Out
25 96 100 40 Within
26 96 400 40 Out
27 96 700 40 Out

The red rectangles in �gure 5.4.b and �gure 5.4.c are 5msecond time windows. They depict

the high �uctuating self-healing actions of feed rate and speed. The fault �ag was not cleared

during the �uctuating period, at the same time the self-healing module generates new recovery

values every t= 5� seconds. This �uctuation is not acceptable in a practical implementation,

because it causes instability in the machining operation, with the possibility of releasing

the Ra �ag once again. To deal with this drawback, the proposed self-healing module and

the fault detection module is synchronized. In The case study of this paper, the machining

material is carbon �ber composites, and the thermocouple lead wire is the temperature

sensor as demonstrated in [74, 75]. The temperature sensor's measurement increases with
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32 mm Constant depth of cut during 
recovery tine 

Instant of Ra fault detection Instant of Ra fault recovery  

Fluctuated speed setting

Fluctuated feed rate

Figure 5.4 Unsynchronized P2P-Self-healing algorithm actions while recovering from Ra
faulty state;(a) depth of cut, (b) feed rate, (c) Speed, and (d) fault detection �ag.

time, and this increment is more rapid as the feed rate increases. At 250 mm/min feed rate,

thermocouple lead wire reads the value of the maximum temperature before 0.5 second [74];

consequently, we model the measurement sensors with a response delay of 0.5 second. We

use this 0.5 second delay to synchronize the Self-healing module 3 in �gure 5.1, to the fault

detection module 2 and CNC machine module 1.

The Self-healing module actions of recovery feed rate and speed are synchronized to the fault

detection module by holding the values of the actions until the next update of the sensor

measurements and fault detection signal, and we adjust the synchronization block to 0.5

second. The P2P synchronized self-healing actions are presented in �gure 5.5. The fault

detection signal is given in �gure 5.5.a and is cleared after 1.5 seconds with the self-healing

action of adjusting the feed rate from 400 mm/min to 200.8 mm/min in �gure 5.5.c, and the

spindle speed from 1� 104 RPM to 1.94� 104 RPM in �gure 5.5.e. P2P distance approach

selects the6th recovery pattern in Table 5.6 to clear the fault because it is the nearest pattern

to the feed's actual setting. Consequently, the sensor reading ofFx goes from a value of 36.9

N to 16.6 N, as determined by �gure 5.5.d. In �gure 5.5.f, the mean temperature decreased

from 241 Co to 225.9 Co.

With the 2nd initial settings and the use of the P2D distance, the synchronized Self-healing

mechanism demonstrates faster recovery than the P2P approach. The P2D Self-healing
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Figure 5.5 P2P- synchronized Self-healing module interacting with CNC milling fault with
the 2nd initial setting.

algorithm selects the1st recovery pattern in Table 5.6 as the nearest recovery pattern, as

shown by �gure 5.6.b. The self-healing module takes 1 second to recover the CNC machine

and to clear the fault detection signal in �gure 5.6.a. TheFx is the sensor's reading that

activated the fault detection module, and its value decreased from 36.9 N to 19.4 N when

the recovery pattern was implemented, as shown in �gure 5.6.d. Machining settings were

changed from 400 mm/min to 329.5 mm/min for the feed rate, and from 1� 104 RPM to

2.08� 104 RPM for the spindle speed.

Table 5.9 summarizes the evaluation of the synchronized self-healing mechanism for the initial

settings 2, 7, 8, and 9 before and after the recovery. We note that, for these 4 settings, the

P2D approach performs better than the P2P in terms of recovery time. Among the test-

runs in Table 5.8, the longest recovery time is 18 seconds and it is executed by the P2P

self-healing module with7th ,8th , and 9th initial settings. The detailed results of these runs

are in Appendix A. It should be stated that with this longest recovery time, the proposed
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Figure 5.6 P2D-synchronized Self-healing module interacting with CNC milling fault in set-
ting 2

Table 5.9 Summary of the Synchronized Self-Healing Mechanism for 2, 7, 8, and 9 Initial
Settings

N.o
Distance
approach

Initial settings
Sensors' readings
Before recovery

Final Recovery settings
Sensors' readings

After recovery
Recovery
time (s)

f
mm/min

v
Ö103 RPM

Fx(N) Tmean(Co)
f

mm/min
v

Ö103 RPM
Fx(N) Tmean(Co)

2
P2P

400 10 36.9 241
200.8 19.4Ö103 16.6 225.9 1.5

P2D 329.5 20.8Ö103 19.4 254.4 1

7
P2P

100 40 16.9 285.5
499.3 35.6Ö103 18.3 280.8 18

P2D 308.2 31.3Ö103 15 243.5 3.5

8
P2P

400 40 17 284.6
499.3 35.6Ö103 18.3 283.5 18

P2D 308.2 31.3Ö103 15 243.5 3.5

9
P2P

700 40 22.5 331.7
499.3 35.6Ö103 18.3 283.5 18

P2D 308.2 31.3Ö103 15 243.5 3.5

self-healing mechanism still outperforms the classical approaches and improve the machining

process. In the classical techniques, the product surface roughness is measured o�ine after
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machining the part and if it is found to be non-conformed, this part has to be reworked.

In this case, the CNC machine is stopped to change its parameter before milling the next

products [20]

5.6 Conclusion

This article proposes a novel self-healing mechanism based on pattern recognition for an au-

tonomous CNC milling machine. The objective is to produce products that are within the

prede�ned speci�cations. In this paper, we apply the proposed mechanism to a milling process

of carbon �ber reinforced polymer material, where the product quality is de�ned by surface

roughness (Ra). The fault detection module is built on the pattern recognition of faulty ob-

servations, which are obtained from sensors' readings of 3D forces and temperature at each

time step (t) and raises a �ag when these readings exhibit patterns of out-of-speci�cation

zones. Once a faulty state is detected, the self-healing mechanism changes the controllable

machine variables of feed rate and spindle speed to return to the within-speci�cations zones

of surface roughness. The proposed mechanism is achieved by building a Self-healing module

that interacts with the CNC machine and fault detection module in online operation. The

self-healing mechanism is based on P2P and P2D approaches that search for the nearest

patterns that are generated by solving a MILP of the Logical Analysis of Data (LAD), which

de�nes the within-speci�cation zones for the controllable variables of feed and speed. The im-

plemented Self-healing algorithm uses the explanatory recovery patterns that are generated

by cbmLAD software [32] and the two distance approaches. To recover the CNC machine's

faulty state, the corrective actions are set by manipulating the controllable variables, the feed

rate, and the spindle speed, at time step (t+1) based on the nearest recovery pattern to the

nonconformity machine settings at time (t). While the Self-healing module interacts with

the CNC machine, the forces and mean temperature measurements of the CNC machine are

reduced to the conformity ranges. Consequently, the fault detection module is cleared.

Synchronizing the Self-healing module with the fault detection module prevents the �uctu-

ation of Self-healing actions that lead to an unstable autonomic loop and instability of the

machinery process. Consequently, it would lead to the inability to clear a fault.

The proposed synchronized Self-healing module is evaluated with 27 initial machine settings

that cover the possible ranges of the CNC machine's controllable variables. These settings

are initialized the CNC machine's cyber model during its testing phase. Twenty runs out

of twenty-seven lead to out-of-speci�cation Ra initial settings. The self-healing algorithm

with a Point-to-Distribution (P2D) distance approach shows three kinds of performance over

twenty simulation runs. In the �rst performance , the P2D-self-healing has faster fault
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recovery than the P2P-self-healing with four settings. Moreover, the P2D distance approach

selects di�erent recovery patterns from the P2P approach. The maximum P2D-Self-healing

recovery time was 3.5 seconds. Inthe second performance , the P2D Self-healing module

has the same performance as P2P in nine runs out of 20-runs. Inthe third performance ,

Self-healing selects the same recovery pattern either with P2D or P2P distance approaches,

yet, the P2D recovery time of the CNC machine out-of-speci�cation Ra is slower than P2P.

The computation time of P2D distance depends on the number of corrective data points

used to calculate the pattern covariance matrix. This matrix is more accurate with more

corrective points, but it increases the computation time on the other side. Self-healing was

evaluated for all 27 runs with 1000 corrective points to calculate the P2D distance. When

the number of corrective samples decreases to 10 samples, the P2D Self-healing execution

time becomes faster and it performs the same as P2P Self-healing.

The Self-healing algorithm selects the corrective machine settings from a uniform distribution

of the spindle speed and feed rate values with the same priority over the recovery pattern

range. In future work, we will address the setting values that could achieve smooth machine

transitions, low energy consumption, and high productivity. In addition, the variations of

spindle speed a�ect the machining stability [65], a stability analysis is acquired to be added

to the self-healing algorithm. Moreover, the algorithm evaluation will be extended to cover

di�erent working materials and machining types.
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Abstract

This article proposes a Condition-Based Maintenance (CBM) approach for aircraft engines

and Remaining Useful Life (RUL) monitoring, and failure prevention. Due to the unavailabil-

ity of run-to-failure data, Turbofan Engine Simulation data, obtained from NASA repository,

is used to train and test our model. Data Acquisition and Management system framework

and planning are proposed for online monitoring and RUL prediction. In practice, sensor

measurements usually su�er from noise contamination, hence the prediction models are chal-

lenged by noise contaminated data for both training and testing tasks. This is done to assess

their prediction ability in a similar condition of having noisy data. Linear and nonlinear pre-

diction models are developed, with performance comparison addressing both regression and

classi�cation problems. Models performance indices consider both prediction accuracy and

percentage of predictions before the actual failure (PBAF). The proposed model considers

continuous learning and improvement to account for any further operational changes that

a�ect the model prediction ability. This is reached by ingesting the model with the actual

RUL during the maintenance of the engine unit, and by comparing it to the predicted one.

Keywords: Condition-based maintenance, Failure prediction, Engine Degradation, IoT, In-

dustry 4.0..

6.1 Introduction

Aircraft engine is a critical component. Its failure causes loss of lives. The traditional main-

tenance strategies, that are proposed by the designers, usually involve Reliability Centered

Maintenance (RCM). These strategies propose preventive maintenance tasks that are based

on reliability analysis of the operating systems. These strategies improve e�ectively the

reliability of the engine. However, the costs are high due to unnecessary maintenance or re-

placement actions. Condition-Based Maintenance (CBM) is used for cost minimization while

achieving reliability improvement. Online monitoring and data analysis lead to better main-

tenance planning and maintenance duration reduction. In addition to performing e�ective
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maintenance plans, airlines can achieve better consistency of �ight scheduling.

CBM is a condition monitoring concept which is used to decide when the operating asset

requires maintenance [7, 76]. This provides a proactive scheduling for the maintenance pro-

cess. The CBM strategy begins with data acquisition from sensors' readings, which are

analyzed to extract useful information about the system's state [7]. The performance of

CBM is challenged by data cleanness and prediction models' accuracy [7, 77]. Normally, an

engine condition should trigger maintenance actions within enough time before failure. Con-

sequently, e�cient models that accurately predict the RUL are required while overcoming

the noise contamination problems [78]. Researchers proposed supervised learning prediction

models for aircraft engine degradation [27,77,79�83]. However, their models do not consider

continuous learning, hence there is no possibility for accuracy improvement or considering

any new events that the model was not trained for. In practice, industrial operations usually

have operational modi�cations that require continuous monitoring to avoid inaccurate predic-

tions [84]. The online monitoring of operating assets has become possible through Internet

of Things (IoT) technologies adopted by the Industry 4.0 paradigm. These give a chance

for sensors to transmit the captured engine data to a cloud database during operation [84].

The cloud storage of the data facilitates the engine monitoring even if the aircraft is in the

air. Hence, maintenance scheduling is achieved, and �ight rescheduling is planned to avoid

con�icts. Our proposed framework consists of:

ˆ Data acquisition and cloud storage platform

ˆ RUL prediction model

In this paper, the data that is used for training and testing of the prediction models, is

obtained from NASA Prognostics Data - Turbofan Engine Degradation Simulation results

[78]. Simulation is used due to the di�culty of having run-to-failure real data for these

engines. This article is organized as follows: System planning, and framework layout are

presented in section 2. Data prepossessing and overview of the prediction models are given

in section3. Section 4 discusses the obtained results. Finally, section 5 presents our conclusion

and future works.

6.2 System planning and framework layout

The data represents simulation results for 100 engine units. It is provided by a text �le of

26 columns and indexed into units, cycle time, three types of operational settings, and 21

sensors' measurements. Each row is a snapshot of the data that is taken during a single
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operational cycle. Table 6.1 shows detailed description of sensors' measurements. The actual

RUL for an operational cycle is the di�erence between the unit's total life until failure, and

the current cycle's number. It is calculated for the training and the testing data as the failure

cycle for each unit is given by its simulation results

The main objective for a condition-based maintenance strategy is to predict the number of

remaining operational cycles before failure, i.e the number of operational cycles after the

current cycle, during which the engine will continue to operate. However, this prediction

task is challenged by data contamination due to sensor noise. The measurements types are

summarized as follows:

ˆ Temperature measurement

ˆ Pressure measurement

ˆ RPM measurement

ˆ Air Mass �ow measurement

A data acquisition system is needed for transfer and storage of the sensors' measurements.

Aircrafts have data acquisition system with aviation Arinc429 standard [85]. It is used to

transfer data such as air data, radar altimeter data, and GPS data. The measurements are

used for engine operational control [86]. Our proposed system layout includes sensors' mea-

surements data transfer to an onboard server as shown in Figure 6.1. The server is selected

with internet/cloud connecting feature; thus, it facilitates the engine remote monitoring and

RUL prediction, even when the aircraft is in operation.

6.3 Methodology

The methodology that is applied for model training and testing is performed using Scikit-

learn library for machine learning on Python 3.7. Python is an open-source general-purpose

programming language. The Scikit-learn is a free machine learning library that features

various classi�cation and regression algorithms. The Python code loads the input data from

CSV �le. The CSV �le is developed from the raw text �le using MS Excel.

6.3.1 Data prepossessing

The preprocessing of the data is an important step before training machine learning models.

Some problems within the data, such as correlated predictors, presence of outliers, missing
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Figure 6.1 Proposed system layout

Table 6.1 Descriptions of sensor signals

Index Predictor name Unite
1 Total temp fan inlet K o

2 Total temp LPC outlet K o

3 Total temp HPc outlet K o

4 Total temp LPT outlet K o

5 Pressure fan inlet psia
6 Total pressure in bypass psia
7 Total pressure HPC outlet psia
8 physical Fan speed RPM
9 physical Core speed RPM
10 Engine Pressure Ratio -
11 HPC outlet preasure psia
12 Fuel �ow Ratio to "11" PPS/psi
13 corrected fan speed RPM
14 corrected Core speed RPM
15 bypass ratio -
16 Fuel air ration -
17 Bleed enthalpy -
18 Demand fan speed RPM
19 Demand Core speed RPM
20 HPT coolant bleed ibm/s
21 LPT coolant bleed ibm/s
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data instances, cannot be handled well by some machine learning techniques and may a�ect

their prediction capabilities. Hence, it is advisable to preprocess the data to improve the

performance of the models. The preprocessing applied here includes the following:

ˆ Outliers detection and removal

ˆ Removing highly correlated predictors

The outliers are detected by Box plot. The data instances that have a Z-score higher than

3 are considered outliers and are removed. Figure 6.2 depicts sensor 7 data as an example

for outlier removal. The data instance that is red colored has a Z-score greater than 3.

This instance is removed from the input data. The same procedure is applied for the other

predictors.

Figure 6.2 Box Plot for sensor 7 before (a) and after (b) removing the outliers

Figure 6.3.a shows the correlation matrix for the predictors. The matrix represents the

coe�cient of correlation between each of the predictors and the others. This coe�cient

ranges from -1 to 1. The sign de�nes the type of proportionality between the predictors. The

relationship is directly proportional for a positive coe�cient of correlation, while is inversely

proportional for a negative one. Large absolute value of the coe�cient of correlation, greater

than 0.95, shows high correlation. The values are color coded to aid visualization. Highly

correlated predictors, Setting 3, Sensor 1, Sensor 5, Sensor 10, Sensor 16, Sensor 18, and

Sensor 19, are removed from the input data before models' training as shown in Figure 6.3.b.
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Figure 6.3 Correlation matrix for (a) all predictors, (b)removing highly correlated predictors

6.3.2 Prediction Models

To predict the RUL, both linear and non-linear models are explored including parametric

and non-parametric types. Di�erent transformations for the output are tested in order to

select the best form for RUL prediction. The best form is selected based on the prediction

performance of the models. The performance is measured by the root mean square error

(RMSE) for predictions using the testing data. For this data, the best form for the output

is the inverse form, 1/RUL, for all the tested models. The input data is standardized to

eliminate the e�ect of the predictors data units on the prediction models. The explored

models include the following:

ˆ Linear parametric:

� Multiple linear regression

� Ridge regression

� Partial least square regression (PLS)

ˆ Non-linear parametric:

� Polynomial regression

ˆ Non-linear Non-parametric:

� K-nearest neighbors (KNN)

� Random Forest (RF)

� Neural Networks (NN)
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Equation 6.1 presents the multiple linear model whereyp is the predicted RUL value according

to the transformation that is applied for the RUL of training data,X j is the j th predictor, P

is the number of predictors which is 17 for the input data after removing highly correlated

ones, and� 0; � j are model parameters. The Ridge regression model is shown by Equation

6.2 where� is the Ridge parameter. A value of 0.2 is selected for this parameter based on

the best performance for prediction. The polynomial model, degree 2, is given by Equation

6.3. This degree is selected to avoid the over�tting problem that the polynomial model

su�ers from when the degree is high. The over�tting results in low training error, but high

test error and poor prediction ability. This problem is named as the bias-variance trade-o�

in literature [87]. The Ridge and the PLS models are explored for their ability to control

and reduce the regression coe�cients variance, hence improving the prediction performance.

The Ridge model involves shrinking the coe�cients towards zero, while the PLS considers

dimensions reduction for the predictors [87].

The KNN regression model is given by Equation 6.4 whereK is number of neighbors, andFi

is inverse of the distance between two neighbors.yi is the RUL value, according to the applied

transformation, for i th nearest data point to the givenX . The number of neighborsK is

selected to be 5 according to the best prediction accuracy found. This avoids the over�tting

problem as smallK values are avoided. For the Random Forest model, the best parameters

for prediction performance using the testing data are 100 trees with a depth of 20. The

square root of predictor number is considered when looking for the best split. The Neural

Network model consists of three hidden layers with sizes of 10, 8, 4, and the activation is

recti�ed linear unit (ReLU). The size of hidden layers is selected to be between the size of

the input layer and the output layer as recommended in [88]. Model performance is assessed

by RMSE which is shown by Equation 6.5 [87].

yp = � 0 +
pX

j =1

(� j X j ) (6.1)

yp = � 0 +
pX

j =1

(� j X j ) + �
pX

j =1

� 2
j (6.2)

yp = � 0 +
pX

j =1

(� j X j ) +
pX

j =1

(� j X 2
j ) (6.3)

yp =
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P K
i =1 (Fi )

KX

i =1

(yi ) (6.4)
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(yi � ypi )2 (6.5)

6.4 Results

The prediction of the RUL may have an error which results in a prediction of failure before the

actual failure, PBAF, or after the actual failure, PAAF, as shown in Figure 6.4. Both cases

are considered error from the point of view of RUL prediction. However, having a predicted

life which is beyond the actual life is worse than having a prediction which is shorter than

the actual life. For this, the performance of the models is measured not only based on the

value of error, but also based on the PBAF%. The best-case scenario, in this case, is having

the least possible value of error, along with the highest PBAF%.

6.4.1 Regression Method

The regression is done in this context to predict the value of the RUL. Figure 6.5 shows the

performance measurement of the selected models based on RMSE and PBAF%. As shown

in Figure 6.5, the Random Forest regressor is the most suitable over studied models with

the lowest RMSE and high PBAF%. The Neural Network regressor gives the highest RMSE

value among all models. The Neural Network yields the highest PBAF%, nearly 70%, while

the Random Forest yields fewer PBAF%, up to 58%.

Figure 6.6 shows the relative importance of predictors based on the Random Forest model

as the best model in this case. In Random Forest, the decrease of the Residual Sum of

Squares (RSS) at each split is recorded. The predictor that has the highest value of RSS

total reduction in all splits is the most important. The predictors importance gives better

understanding for the most important engine readings that are a�ected by the RUL of the

Figure 6.4 Positions of possible error in RUL within time axis
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engine. The �gure shows that Static pressure at HPC outlet, Sensor 11, is the most important

predictor for RUL prediction. The Total pressure in bypass-duct, Sensor 6, has no importance

as shown in the �gure. The physical sensor measurement is no longer required; hence the

amount of measurement data size are reduced accordingly.

6.4.2 Classi�cation Method

Due to the less satisfactory results of the explored regression models, an alternative method-

ology is proposed which involves classi�cation of 2 RUL classes instead of directly predicting

its exact value. The RUL values are transformed into percentages for each engine unit, then

a class is assigned for each data instance based on the RUL% value. This value is assigned

according to the desired maintenance strategy. For demonstration, the RUL% value that

di�erentiates the classes is arbitrarily selected to be 20%. The classes are as follows:

ˆ Class 1: RUL is more than 20 %

ˆ Class 2: RUL is less than 20 %

Three di�erent classi�ers are tested at di�erent classi�cation thresholds:

ˆ logistic regression

ˆ KNN classi�er (5 neighbors)

ˆ Random Forest classi�er (Depth=8, 50 trees, Max features� �Sqrt�)

Figure 6.5 RMSE and PBAF% for the proposed prediction models
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Figure 6.6 Predictors relative importance based on Random Forest model

The number of neighbors in the KNN and both the depth and number of trees in the Random

Forest are selected according to the best class prediction performance found.

Figure 6.7.a shows both the error rate and the PAAF%. The error rate represents the

proportion of the false classi�cations obtained for the test data. The Random Forest classi�er

gives the minimum error rate and PAAF%. Classi�cation methods calculate the probability

of selection for each class and perform the selection according to its classi�cation threshold.

This threshold a�ects the classi�cation error rate and the percentage of false classi�cation

in each class. The false classi�cation in a certain class is changed when the threshold is

modi�ed [87]. The PAAF% is not acceptable error type, and it is reduced by decreasing

the classi�cation threshold as shown in Figure??.b. Although the error rate has increased

for all classi�ers, the Random Forest shows a promising result as the PAAF% is successfully

reduced to only 1.24% at 7.43% general error rate.

Figure 6.8 shows the execution time in seconds for di�erent parts of the Python code that

is used for the application of our methodology. These times are based on 2.5 GHz Core-i5

CPU with 8 Gb of RAM. The data loading and preprocessing is shown in green bar. The

regression models are shown in blue bars. The classi�cation models are shown in orange

bars. The Random Forest classi�er takes less execution time for training as compared to the

Random Forest regressor. This is due to that the classi�er has less depth and number of

trees than the regressor.
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Figure 6.7 Error rate and PAAF% at classi�cation threshold of: (a) 0.5, and (b) 0.2

Figure 6.8 Execution times for di�erent models using Python

6.5 Conclusion

This research proposed a framework for aircraft engine's RUL prediction. This framework

included On-line remote monitoring and continuous learning with cloud connection facility.

The RUL prediction model parameters are meant to be updated every maintenance opera-

tion, which helps improving the accuracy and the predicting capabilities of the model. The

sensor noise problem was overcome by our model which a�rms its robustness. This promotes
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its ability to provide reliable predictions with real data that is normally contaminated with

noise. The input data were preprocessed before exploring the prediction possibility. The

preprocessing included outliers and highly correlated variables removal for reaching better

modelling performance. We studied both regression and classi�cation methodologies for per-

forming RUL prediction. The Random Forest classi�er showed promising results. It o�ers

safe and conservative condition-based maintenance. It could provide RUL classes predic-

tion, above/below a certain level. This was demonstrated at 20% level of RUL. The classes

prediction was achieved at only 1.24% PAAF% and 7.43% general error rate.
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CHAPTER 7 ARTICLE 4: DEEP REINFORCEMENT LEARNING FOR

AUTONOMOUS PRE-FAILURE TOOL-LIFE IMPROVEMENT

Hussein A. Taha, Soumaya Yacout, Yasser Shaban

Under Review in : International Journal of Advanced Manufacturing Technology.

Abstract

This paper develops an approach to improve a CNC machine's tool performance and slow

down its degradation rate automatically in the Pre-Failure stage. A Deep Reinforcement

Learning (DRL) agent is developed to optimize the machining process performance online

during the Pre-Failure interval of the tool's life. The Pre-Failure agent that is presented in the

proposed approach tunes the feed rate according to the optimal policy that is learned in order

to slow down the tool's degradation rate, while maintaining an acceptable Material Removal

Rate (MRR) level. The machine learning techniques and pattern recognitions are imple-

mented to monitor and detect the tool's potential failure level. The proposed mechanism is

applied to a CNC machine when turning Titanium Metal Matrix Composites (TiMMC). A

CNC machine Digital Twin (DT) is developed to emulate the physical machine in the dig-

ital environment. It is validated with the physical machine's measurements. The proposed

pre-failure mechanism is a model-free approach, which can be implemented in any machin-

ing process with fewer online computational e�orts. It also covers a wide range of cutting

speeds, up to 15,000 RPM. Deployment of the proposed machine learning approach for the

particular case study improves the tool's Time to Failure (T2F) by 40% and the MRR by

6%, on average, compared to the classical approach.

Keywords: Degradation rate, Potential Failure, P-F Curve, Reinforcement Learning, Tool

performance.

7.1 Introduction

The integration of Arti�cial Intelligence (AI) in a Cyber-Physical System (CPS) is used to

establish autonomous and self-driven machining processes [23, 24, 89]. The machining pro-

cesses are usually associated with aspects of non-linear behavior and stochastic degradation

that result in the di�culty of predicting the life span of the tool, especially when dealing with

di�cult-to-cut materials [21, 90]. There are many attempts in the literature to monitor the

tool wear and detect the machining's tool failure. To achieve the highest possible material
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removal rates in machining, previous studies focused on o�ine optimization to schedule the

machine feed rate, assuming ideal machining conditions [57]. Despite the previous attempts,

an intelligent online system that can monitor and optimize the tool's performance in real-

time is still needed. This paper �lls this gap by o�ering a new approach that provides an

intelligent-based extension of Tool Time to Failures (T2F) while maintaining an acceptable

material removal rate level.

O�ine mathematical optimizations were applied to the CNC machine processes to �nd the

static machining parameters that maximize productivity [91]. Feed rate scheduling opti-

mizations were developed to have a dynamic online feed rate setting [64,90,92]. One of the

limitations of these approaches is the usage of empirical equations that assume ideal machin-

ing conditions. Adaptive control (AC) techniques take into consideration the environmental

and sensor variations by mathematically estimating the forces at each time step, and then

comparing the estimated values with the actual sensor measurements [90]. As such, the CNC

machine controller's parameters are changed to achieve the o�ine optimized feed-rate sched-

ule. The estimation of online forces requires large computational time. Stemmler, et.al [93]

developed a Model Predictive Controller (MPC) to minimize the production time online for

CNC milling machines. MPC is a model-based controller that predicts the values of the

forces and adjusts the feed rate online accordingly to minimize the machining time. The

MPC online optimization causes a processing delay, and thus, an additional signal processing

synchronization is added to the machine controller. Both MPC and AC require mathemat-

ical modeling to estimate the forces. These models assumed a new tool at the beginning of

cutting and ideal tooling conditions.

Shaban et.al studied tool wear monitoring for CNC machines to develop a failure alarm so-

lution that could avoid producing defective pieces [20, 56, 94]. The authors applied Logical

Analysis of Data (LAD) to detect the tool wear (VB) failure while monitoring the data of

the machining forces. Sadek et.al 2020 [62] developed an adaptive mechanism that linked

the tool wear monitoring to AC for a drilling machine. This mechanism is limited to two

speeds and two feed rate adjustment levels. Shaban et.al used the time to Failure (T2F) and

the Proportional Hazard Modeling (PHM) to obtain the optimal replacement time for the

CNC machine tool [95]. The authors de�ned the tool replacement time at di�erent machine

settings using two types of analyses: tool availability and cost. The machining parameters

were static settings, and it was adjusted before running the machine. Taha et.al [16] devel-

oped a self-healing mechanism for a CNC milling machine. This mechanism dealt with the

CNC machine under fault and approved self-healing mechanism to the machine. The authors

used pattern-recognition machine learning to de�ne the recovery patterns and each pattern

is bounded by corrective settings. The self-healing mechanism selects the recovery pattern
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according to distance calculations to the current machine's faulty settings. From the selected

pattern, the corrective actions are randomly selected through a uniform distribution that is

bounded by the selected pattern zone. Table 7.1 provides a summary of many attempts in

terms of what was achieved and what needs to be addressed.

Table 7.1 Research Gaps

Achieved Open Issues

O�ine optimal machining parameters
-Assuming ideal machining and environmental
conditions
-Static machining parameters

-Feed rate scheduling optimization
-Adaptive control was applied
to improve productivity

-O�ine feed rate optimization
-Complex modeling and empirical equations
-Ideal tooling conditions

-Online optimization
-Sensor predictions

-Massive online computation
-Complex modeling
-Ideal tooling conditions

-Tool wear monitoring
-Failure alarm

-Passive system
- Correction mechanism was not addressed

-Adaptive correction mechanism
-Adding Tool wear monitoring
to adaptive control

-Limited action values (feed rate)
-Tool Time to Failure (T2F) was not addressed
-Limited spindle speeds (Two values)
-Discrete value adjustment

-Optimal Replacement.
-Tool Time to Failure (T2F)
-Di�erent machining parameters

-Static Machining settings (non-variable)
-Correction mechanism was not addressed
-The failure detection module is time-independent

-Post-failure correction mechanism
-Dynamic online machine settings.
-Ease of implementation.

The study is missing the following:
-T2F and degradation rate optimization
-Optimal criteria to select the corrective settings
-E�ect of corrective action on productivity

To �ll the research gaps presented in Table 7.1, the main objective of this paper is to develop

an autonomous pre-failure mechanism that interacts with the CNC machine in the P-F

interval to extend the tool's useful life. Figure 7.1 depicts the P-F curve, which is a conceptual

curve of degradation of any physical assets. The P-F curve has two main points that express

its name: the potential failure point (P), and the function failure point (F) [96]. Practically,

the degradation process is a stochastic phenomenon, and each tool has a unique P-F curve

[21,23].

This section presents the LAD algorithm to generate the patterns, which are used to develop

the self-healing actions in Module 3, and to classify and detect the out-of-speci�cation in

Module 2.
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Figure 7.1 P-F Conceptual Curve

The proposed Pre-Failure approach has the following features:

1. Model-free adjustment mechanism for the CNC machine.

2. Continuous feed rate adjustment.

3. Time to failure extension and degradation rate slowdown.

4. Lower online computation e�orts.

5. Applicable for wide ranges of machining parameters.

In this work, a model-free Deep Reinforcement Learning (DRL) is proposed for continuous

online feed rate adjustment. This approach is developed to add a tuning mechanism that

optimizes the tool performance and productivity in the P-F zone of the machine's tool. The

approach has the capability to achieve the highest possible material removal rate while main-

taining an acceptable tool wear level. This approach can be implemented in any machining

process with less computational e�ort.

This paper is organized as follows: Section 2 describes the system layout and Pre-Failure

mechanism procedure. Section 3 contains the physical experiment and data review. Section

4 presents the proposed methodology. Section 5 describes the results of the implementation

and provides a discussion. Lastly, Section 6 concludes the paper.
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7.2 System Description

7.2.1 System Layout

Figure 7.2 shows the system layout of the online autonomic closed loop for the CNC machine's

pre-failure mechanism. In the pre-failure mechanism, there are two main phases and four

modules. Phase 1 is the o�ine step for machine learning with Logical Analysis of Data (LAD),

which is indicated by module 1. The software used is cbmLAD, which was developed for

condition-based maintenance applications [32]. The cbmLAD is used to generate explanatory

patterns that de�ne the online P-F zones in module 2. The tool data is labeled according

to the tool wear level V B as (a) new tool V B < V B p, (b) Potential Failure (P-F) of the

tool V Bp < V B < V B F , and (c) Failure of the tool V B < V B F . The data of the time-series

forces are ingested into the cbmLAD to extract patterns that characterize the P-F zone.

The tool's data is labeled as a failure when the tool wear level is more than, or equal to, a

prede�ned valueV BF . The data in the potential failure zone is labeled in the same way, as

shown in section 4.1.

P-F zone monitoring in module 2 is based on online rules extracted from the cbmLAD's

generated patterns. This module monitors the tool performance and detects the instant of

Potential failure and the tool failure. Module 3 represents the CNC machine in the Digital

environment. The developed CNC Digital Twin (DT) is proposed to work online and in

parallel with the physical machine. The DT model is supported by an arti�cial Neural

Network (NN) that reads the CNC machine settings of cutting speeds speed (v) and feed

rate f . It estimates the machine's forces measurements[Fx ; Fy; Fz] at each time step (t+1),

based on the sensor's readings of forces at the time (t).

Module 4 is a Deep Reinforcement Learning (DRL) Pre-Failure agent that generates action

at+1 to adjust the feed rate f t+1 according to the optimal policy that the agent learned

in the training phase. In the online mode, module 2 reads the CNC machine forces sensor

measurements at time (t) and enables the Pre-Failure agent in Module 4 once the P-F zone is

detected. The Pre-Failure agent reads the CNC machine measurement of the radial forceFx ,

the feed forceFy, the cutting Fz force, and the cutting speedv, at each time step. Accordingly,

the proposed DRL agent adjusts the feed ratef t+1 to slow down the tool degradation rate.

7.2.2 Pre-Failure Intelligent Mechanism Procedure

This section presents the design steps to achieve the research objective of having a tool Pre-

Failure mechanism for autonomous CNC machines. The proposed Pre-Failure mechanism

has �ve main steps, as follows :
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Figure 7.2 Autonomic closed loop to achieve Pre-failure Mechanism

1. CNC machine experimental data: the material-tool pair Time to Failure (T2F) data is

an essential process in order to improve the tool performance in the Pre-Failure stage.

In this paper, the raw T2F data is analyzed to monitor and detect the tool performance

degradation in the P-F zone. The developed CNC machine's Digital Twin (DT) model

is validated and tested with the Physical raw data. These data were collected for the

process of turning Titanium Metal Matrix composite (TiMMC) material. The raw-data

collection experiment was fully described in [56]. The data is presented in Section 3.

2. Tool P-F zone monitoring: the tool performance degradation is studied by building

the tool P-F curve as the general one in �gure 7.1. P-F curve shows the performance

degradation versus the lifetime of the tool. Section 4.1 presents the data analysis of tool

performance degradation and the proposed algorithm to de�ne the tool potential failure

instant. It also includes a Logical Analysis of Data (LAD) and the online generated

patterns that monitor the P-F zone. By the end of section 4.1, Module 3 in �gure 7.2

is achieved.

3. Deep Reinforcement Learning (DRL) Pre-Failure agent: This is the step of designing

the DRL agent (module 4 in �gure 7.2). Section 4.2 explains the DRL for continuous

feed rate adjustment, and it de�nes the pre-failure agent objective and state vector

that describes the CNC machine status from the perspective of DRL. Section 4.2 in-

cludes a description of the agent's architecture, training algorithm, and communication
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links to modules 2 and 3. The added value and machining improvement for the tool's

performance are discussed and veri�ed in the results in Section 5.

4. CNC machine Digital Twin (DT): The DRL's environment is an essential part of Pre-

Failure agent learning. A Digital Twin model is developed to interact with the DRL

agent. The developed model lies on the collected experimental data, and it is validated

with the physical machine tool's degradation. By the end of section 4.3, the CNC

machine's digital module 3 in �gure 7.2 is accomplished.

7.3 Review of the Experimental Data

The Proposed Pre-Failure algorithm will be implemented on a CNC machine during turning

Titanium Metal Matrix Composites (TiMMC), and all experimental data used in this study

is based on [56]. In the data collection phase, the experimental data was recorded under

di�erent static machining parameters on a 5-axis Boehringer NG 200 CNC turning center [56].

The tool diameter was 1.6 mm, and the tool wear was measured with an Olympus SZ-X12

microscope. In [56], two design variables are included; feed ratef (mm/rev) and cutting

speedv (m/min). In terms of the machining outputs and experiment response, the forces

and �ank wear V B (mm) are recorded. The experiment consisted of �ve runs, and at least

�ve replications for each run. A new tool was used for each replication.V B was measured

every two minutes until its value exceed the failure level of 0.2 mm. The raw experimental

data consists of 247 observations. A sample of the experimental data is given in Table

7.2. The observations indexed with (*) are the 1st observations of the tool's failure in each

run-replication.

For example, �gure 7.3 shows the radial forces of the experimental data provided in Table

7.2 for cutting speeds of 80 m/min. Figure 7.3 contains �ve replications of run 2 and run 4.

It should be stated from �gure 7.3 that increasing the feed rate at the same cutting speed

leads to higher radial forces. Accordingly, the T2F becomes shorter when increasing the feed

rate.
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Table 7.2 A sample of experimental Raw Data

No Run-Rep t (s) v (m/min) f (mm/rev) Fx (N) Fy (N) Fz (N) V B (mm)
1 1-1 120 40 0.15 120.4 51.1 116.2 0.0525
2 1-1 240 40 0.15 126 50 109.4 0.06
: : : : : : : : :
: : : : : : : : :

59* 1-5 1560 40 0.15 452.1 74.5 162 0.2
60 2-1 20 80 0.15 85 32.7 83.2 0.035
61 2-1 40 80 0.15 86 34 84 0.0425
: : : : : : : : :
: : : : : : : : :

101* 2-5 270 80 0.15 780.9 138.6 191.7 0.3
102 3-1 30 40 0.35 113.1 42.8 171.5 0.04
103 3-2 60 40 0.35 118 46.7 176.7 0.0475

: : : : : : : : :
: : : : : : : : :

188* 3-6 1320 40 0.35 618.8 161.1 252.3 0.22
189 4-1 15 80 0.35 136.2 41.5 159 0.05
190 4-1 30 80 0.35 153 47 164.2 0.065

: : : : : : : : :
: : : : : : : : :

247* 4-6 120 80 0.35 880 224.8 293 0.25

Figure 7.3 Experimental radial forcesFx at cutting speed of 80 m/min and di�erent feed
rates for di�erent replications
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7.4 Materials and Methods

7.4.1 Tool Degradation Monitoring on PF curve

Tool Potential Failure Point (P)

The P-F curve presents the tool performance's degradation against its operating time, and it

de�nes the potential failure point (P) and the functional failure point (F) [96]. The tool has

functionally failed when it exceeds the tool wearV B level that is recommended by the tool's

manufacturer. The potential failure point (P) is the point at which the tool's failure propa-

gation starts to increase, and it could be detected. In the P-F zone, the tool's performance

has a signi�cant deviation from its normal behavior when the tool is �rst installed. This

performance is observed by the machine's sensor measurements of forces [56, 95]. P-F zone

is an important mode as maintenance activities take place in this time interval [56,95,96].

In this paper, the knee point detection algorithm in [97] is adapted to de�ne the potential

failure point (P) for tool performance degradation according to the experimental tool wear

data in Table 7.2. To plot the tool performance degradation P-F curve, an index that takes

values in the interval of [0,1] is developed. The Normalized Tool performance degradation

Index NTPI is given byNTPI = 1 � 5 � V B. It equals one with the new tool and zero at

the tool failure limit of V B = 0:2mm. Figure 7.4 shows an example of the P-F curve for a

tool operated at 40 m/min cutting speed and feed rate of 0.35 mm/rev. The potential failure

point (P) is detected at 560 sec, and the wear is 0.073 mm for this replication.

The knee detection algorithm [97] calculates the Euclidian displacement between all of the

points on the NTPI graph and the perpendicular point on an imaginary reference line.

This straight-line links the maximum and the minimum points of the tool performance,

given by the dashed line in �gure 7.5. The potential failure point is a point on theNTPI

that has the maximum positive Euclidian distance. In �gure 7.5, the red curve is the Eu-

clidian displacement betweenNTPI and the reference line. Figure 7.6 depicts the Nor-

malized Tool performance degradation IndexNTPI and the potential failure (P) points

for all the runs and replications of the experimental data given in Table 7.2. The poten-

tial failure points are indicated by dashed lines. As the tool degradation is a stochastic

process, the detected potential points are not the same for all of the runs and replica-

tions. Table 7.3 summarizes the potential failure levels of the tool wearV B for each run

and replication for the cutting speedv1 = 40m=min and v2 = 80m=min and the feed rate

f 1 = 0:15mm=rev and f 2 = 0:35mm=rev. The average potential (P) tool wear over the col-

lected experimental data is 0.135 mm. Tool P-F zone is the pre-failure zone at which the

correction mechanism is needed.
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Figure 7.4 P-F curve of one tool replication under 40 m/min cutting speed and 0.35 mm/rev
feed rate

Figure 7.5 P-F curve and Euclidian distance curve for P-point detection
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Figure 7.6 TiMMC Normalized Tool performance degradation IndexNTPI for di�erent runs
and replications of the experimental data in Table 7.2.

Table 7.3 Potential failure points of the CNC tool experimental data

P -tool wear (mm) Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Average
Run 1 (v1= 40 m/min , f1 =0.15 mm/rev ) 0.135 0.165 0.2 0.15 0.145 - 0.159
Run 2 (v2 =80 m/min , f1 =0.15 mm/rev ) 0.075 0.1 0.11 0.14 0.1 - 0.105
Run 3 (v1= 40 m/min , f2 =0.35 mm/rev ) 0.073 0.16 0.168 0.2 0.073 0.14 0.1357
Run 4 (v2 =80 m/min , f2 =0.35 mm/rev ) 0.2 0.158 0.108 0.077 0.2 0.095 0.1397

The average value of the potential tool failure 0.135 mm

Tool P-F zone online monitoring and detection

Logical Analysis of Data (LAD) is a non-statistical supervised data mining method. It

uses Boolean logic functions and combinatorial optimization for classi�cation [31, 32]. The

advantage of LAD over other classi�cation methods is to generate explanatory patterns for

each class, which maintains comparative performance in knowledge extraction for supervised

and semi-supervised classi�cation problems. The patterns divide the multidimensional space

of features into zones that characterize the classes.

cbmLAD solves Mixed-integer Programming (MILP) optimization problems iteratively to

�nd the logical relationships among the input data features by generating patterns that

characterize each class of the tool's life [28]. For each pattern, each feature is bounded by

a speci�c range of values. For a new data point, the pattern is satis�ed if the value of

the measured features lies in its bounded range. In the one versus all (OVA) classi�cation
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technique, the cbmLAD generates patterns to characterize a speci�c class from the other

classes. From the tool P-F curve, the tool-life consists of three zones, as shown in �gure 7.7:

(a) New-tool class, (b) Pre-failure class, and (c) Failure class. To detect the tool degradation

state, cbmLAD divides the classi�cation problem into three sub-problems and �nds each

class' discrimination function�1 ; �2 ; �3 .

For a new observationO, the OVA cbmLAD multiclass's discrimination function �( O) is

Figure 7.7 OVA Technique for the Tool Degradation Performance Classes in Two-Dimensional
Space

given in Equation 7.1 as described in [28].

�( O) = argi max[� i (O)]

� i (O) =
X

Pj

wj � Pj (O); 8i = 1; 2; 3 (7.1)

Where Pj is the j th pattern that covers the observation O wherej is the number of the

pattern that belongs to the classi set of patterns. Wj is the pattern coverage weight, and

� is a binary index, which is 1 when the observation O is covered by patternPj , and zero

otherwise.

In this paper, the cbmLAD one versus all (OVA) technique is applied to solve a multi-

classi�cation problem in order to �nd the tool's state of degradation. In online mode at

each time step (t), the P-F monitoring and detection module 2 in �gure 7.2 monitors the

time-stamped machine's sensors[t; Fx ; Fy; Fz] and checks whether the measured observation

is covered by any of the patterns that represent the pre-failure or failure zones. The Pre-

failure zone's detection signals are used to activate or deactivate the Reinforcement Learning

RL module 4 in �gure 7.2.

From Table 7.3, the potential failureV B level is 0.135 mm on average. The P-F zone is de�ned

when the tool wear is0:135� V B < 0:2, and the failure level isV B > 0:2. The experimental

data is categorized into three main classes: (a)V B < 0:135, (b) 0:135� V B < 0:2, and (c)

V B � 0:2 mm. According to the developed tool P-F curve, the data in Table 7.2 is identi�ed
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by the classes label and ingested to OVA cbmLAD to generate the tool life's patterns. Table

7.4 presents the generated patterns that characterize the P-F and the failure classes.

The online P-F monitoring module 2 in �gure 7.2 performs two main functions, (a) the

monitoring of the potential failure interval with ten patterns, and (b) the detection of failure

with �ve patterns. Each pattern in Table 7.4 is represented in a multidimensional zone in

the features space. At each time step (t), once the measured observation lies in a pattern

zone, a signal is sent to activate or deactivate the Pre-Failure agent module 4 in �gure 7.2.

The P-F monitoring and detection module's scanning cycle is synchronized with the machine

module 3 in �gure 7.2 and with the pre-failure agent.

7.4.2 Deep Reinforcement Learning (DRL) Model

The standard RL is formalized as an agent that interacts with a system's environment, then

receives the current system state and instant rewardr t at time t [33,34]. The RL goal is to �nd

the optimal policy � � that maximizes the return from the stateRt =
P 1

t=0 
r t (st ; at ), where


 2 [0; 1] is the discount factor for future rewards and t is instant of the return [29,34]. The

expected return value of taking action (at ) in the state st under a policy� is called action-value

function or Q-function and it is equal toQ� (st ; at ) = Er t ;st +1 [r t (st ; at ) + 
E at +1 [Q� (st+1 ; at+1 )]].

The optimal Q-valueQ� (st ; at ) = max(Q� (st ; at )) is the maximum returned value8st 2 S and

8at 2 A , whereS is the state space, and the action spaceA is limited to discrete actions [29,

34]. The optimal policy is obtained from the optimal Q-value when obtaining the action that

maximizes the returned Q-value; in mathematics, this is given by� (s) = argmaxaQ(st ; at )

[29, 34]. The Q-learning is an o�-policy algorithm that uses a greedy policy. It learns the

optimal policy � � as it approximates the Q-function by the Q-network parameters� Q. The

optimal Q-function Q� (st ; at ) is achieved by obtaining the optimal parameters� Q� at which

the training loss L(� Q) = Est ;at ;r t [(Q(st ; at j� Q) � yt )2] is the minimum. yt is the target func-

tion with next time step state st+1 , and it is calculated asyt = r (st ; at ) + 
Q (st+1 j� Q). For

the Q-learning stability, the target yt is calculated by another identical Q-network [34, 89].

Practically speaking, it is di�cult to apply Q-learning to a continuous action space, and the

Q-algorithm is not capable of optimizing an in�nite number of actions at each time step. The

actor-critic approach is used to solve this problem with the Deterministic Policy Gradient

(DPG) algorithm [34,89]. The critic is an action-value functionQ(s; aj� Q) used to calculate

the temporal di�erence (TD) error to criticize actions made by the actor, and it is updated

based on the Q-function. The actor is a deterministic policy function� (sj� � ) that chooses

action at given statest [34,89]. The actor's network parameters� � are updated according to

maximizing the action-valueQ(s; aj� Q), and its training losses are ascending losses given by

r Q � J � Est [r a:Q(s; aj� Q)js= st ;a= � (st )r Q � � (sj� � )js= st ]. A Deep Deterministic policy gradient
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Table 7.4 Generated patterns of P-F and failure zones for the data of the time-stamped Force

Class Pattern t (sec) Fx (N) Fy (N) Fz (N)

Pre- Failure

1 102:5 < t 305:3 < F x < 685:95 126:85 < F x < 155:85 203:3 < F z

2 - 305:3 < F x < 542:3 117:25 < F x < 174:5 Fz < 250:7
3 85 < t 341:35 < F x < 507:85 Fy < 174:5 -
4 685 < t 271:2 < F x < 605:4 71:3 < F x < 174:5 175:25 < F z < 250:7
5 t < 67:5 354:1 < F x < 507:85 93:75 < F y < 174:5 -
6 1085 < t 271:2 < F x < 507:85 Fy < 174:5 -
7 805 < t 261:9 < F x < 507:85 78:25 < F y < 114:6 -
8 127:5 < t 316:1 < F x < 507:85 Fy < 174:5 Fz < 190:25
9 t > 685 249:5 < F x < 488:5 71:3 < F y < 174:5 139:7 < F z < 159:85
10 - 271:2 < F x - 143:75 < F z < 150:2

Class Pattern t (sec) Fx (N) Fy (N) Fz (N)

Failure

1 t < 327:5 Fx > 605:4 - -
2 1025< t Fx > 542:3 - -
3 t < 112:5 Fx > 543:3 - -
4 127:5 < t < 327:5 Fx > 488:5 - Fz > 174:85

(DDPG) is an algorithm that implements the deep Q-network on the DPG algorithm. DDPG

approximates the Q-function and enables RL in systems that have continuous actions and a

large-dimension state [34,89]. DDPG is a model-free RL algorithm that uses a replay bu�er

memory to update the system's states, actions, and rewards during agent training [33,34]. In

this paper, the pre-failure agent is an adapted DDPG algorithm to achieve optimal proactive

and autonomous feed rate adjustment.

Pre-Failure Agent for Autonomous CNC Machine

In the current work, the CNC turning machine pre-failure agent actionat is performed on

the feed rate f t mm/rev. At each time step t=1sec, the agent reads the machine sensor

data [Fx ; Fy; Fz] and scans the P-F monitoring module signal. The agent generates actions

to decrease the tool's degradation rate and keep a reasonable productivity limit in the P-F

zone, which is given in Equation 7.2.

In the training phase, the pre-failure agent interacts with the DT model of the CNC turning

machine, and it is rewarded for each actionat ! f t with the reward function r t . The rewarded

value depends on the tool degradation rate and productivity at each time step. The machine's

productivity is represented by the Material Removal RateMRR (mm3=min) in Equation 7.2.

MRR = f � v � d (7.2)

Where f is the feed rate in mm/rev, v is the cutting speed in m/min, and d is the cutting

depth in mm. The proposed pre-failure agent interacts with the CNC machine at a di�erent

cutting speed, which varies from 25 m/min to 80 m/min. The agent's actions are a wide
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range of feed rate adjustments from 0.025 mm/rev to 0.35 mm/rev.

De�nition of the State: The classical RL algorithm is an extension of a Markov Decision

Process (MDP) and its assumption of time-independent states [29]. At each time step (t),

the RL agent receives statest and takes an actionat ! f t according to its learned policy [34].

To learn the optimal policy, the state is assumed to be time-independent, and it describes

the system status regardless of the system's historical behavior. In many industrial system

applications, the MDP cannot fully describe a system in which the time-independent state

is useless in learning the optimal policy [34]. For example, in CNC machining, the instant

sensor measurement[Fx ; Fy; Fz]t at time (t) cannot abstract the tool wear stage, as described

in section 4.1. Therefore, it is di�cult to take a maintenance decision according to a time-

independent instant value of forces. To ensure that the RL agent has the full features to

describe the tool wear status, the RL statest is extended to include the cutting speedv

(m/min), forces measurement at the instant of potential failure detection[Fx ; Fy; Fz]p, the

sensor measurement deviation at time t from its value when the tool is at the P-point[Exyz ],

and the negative rate of forces[� Fxyz ]t over sampling time T. Pre-Failure agent's statest is

given by Equations 7.3,9.1, and 9.2.

[Exyz ]t = [ Fx ; Fy; Fz]p � [Fx ; Fy; Fz]t (7.3)

[� Fxyz ]t =
[Fx ; Fy; Fz]t � [Fx ; Fy; Fz]t+1

T
(7.4)

st = ( v; [Fx ; Fy; Fz]p; [Exyz ]t ; [� Fxyz ]t ) (7.5)

RL agent Action: The feed rate optimization is the key factor in optimizing the CNC

machine tool's performance, as indicated in section 3. At the same cutting speedv (m/min),

the tool's degradation rate decreases while the feed ratef (mm/rev) is decreased, and this

decreases productivity. The pre-failure RL agent is designed to generate optimal and continu-

ous action at that adjusts the CNC machine feed rate at each time step (t). This action aims

at decreasing the tool degradation rate while keeping the productivity within an acceptable

limit. In practice, the adjustable feed rate range depends on the tool-material pair, and for

products in composite materials, it could be changed from 0.025 mm/rev to 0.35 mm/rev.

Reward Function: In RL, the reward function r t (st ; f t ; st+1 ) acts as the objective function

in mathematical programming. At each time t, the RL agent explores the action spaceA to

�nd the optimal action at that maximizes its reward according to the given statest . The

pre-failure agent reward function is designed to minimize the tool degradation rate and to
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keep the productivity level within acceptable limits. To maximize the tool Time to Failure

(T2F), the Pre-Failure agent is designed with a positive reward functionr t (st ; f t ; st+1 ) given

by Equation 9.3. To keep the productivity level relatively high, the agent is rewarded only if

its action at minimizes the forces deviationjExyz j t ,which is the absolute di�erence between

the measurement forces[Fxyz ] in the P-F zone and the detected potential failure forces[Fxyz ]p
at t = tp point. The tool degradation rate increases when the deviation decreases. Equation

9.3 indicates the instant rewardr t (st ; f t ; st+1 ) calculation at each time step t.

r t (st ; f t ; st+1 ) =

8
<

:
1 if jExyz j t+1 � j Exyz j t
0 o:w

(7.6)

Pre-Failure Agent Training

The Pre-Failure agent is an adapted DDPG algorithm, and its structure consists of the actor

and the Q-function/Critic deep NNs. The actor adjusts the CNC machine feed rate according

to the input RL state st and learned policy that is criticized by the Q-function network. To

improve the DDPG agent training performance, a random noiseN t � N (0; std) is added to

the actor action [98]. The feed ratef t to be adjusted at time (t) equals toat = � (st j� � ) + N t ,

where � (st j� � ) is the output of the actor-network and � � is the parameters of the actor-

network. In the training phase, the hidden layer's parameters of the Pre-Failure agent are

updated to minimize the losses function of critics and to maximize the negative losses of

the actor-network. To improve the learning stability, the target networks' parameters are

updated with soft updates [98]; in other words,�
0
 � � + (1 � � )�

0
, where the learning rate

� is less than one.

The target network's parameters are� Q0
and � � 0

for the critic and the actor. The pre-

failure agent's full training algorithm is given in algorithm 1, and it is built and trained

on a deep learning Pytorch environment. The developed Pre-Failure agent architecture and

hyper-parameters are given in Appendix B.

7.4.3 Digital Twin (DT) for CNC Turning Machine

Recently, the development of Industrial IOT (IIOT), simulation modeling, and Arti�cial

Intelligence (AI) enable the digitalization of the machines, and the Digital Twin (DT) is

extracted as a new concept of Cyber-Physical Systems (CPS) [12, 23]. Digital Twin is a

model that emulates the Physical CNC machine in the cyber/digital environment, and it has

the capability of interacting with the real machine in the Physical environment [12�14]. DT

was developed for a system level, and in the case of a single machine, DT is developed on



76

Algorithm 1 CNC machines' Pre-Failure agent training

1: Initialize Critic Q(s; aj� Q), Actor � (sj� � )
2: Initialize target networks Q0; � 0

3: for each episode:do
4: Reads the cutting speedv.
5: for each K (min) steps in stimulation-Run: do
6: scanning cycle timet = k=T
7: switch Machine's tool P-F monitoring: do
8: case New tool performance:
9: Adjust the feed rate to maximumf = f max

10: case Tool in P-F zone:
11: [Fi ]P = [ Fi ]tp ; 8(i ) � [x; y; z].
12: Execute feed ratef t  � (st j� � ) + N t .
13: Interact with CNC DT, get [Fx ; Fy; Fz]t+1 .
14: Calculate st+1 = ( v; [Fxyz ]p; [Exyz ]t ; [� Fxyz ]t )

15: r (st ; f t ; st+1 )=

8
<

:
0 if jExyz j t+1 � j Exyz j t
1 o:w

16: Set targetsyt = r t + 
Q 0(st+1 ; � 0(st+1 j� � 0
)j� Q0

).
17: Update Critic L = 1

N

P
t (yt � Q(st ; at j� Q))2.

18: Update actor 5 Q � J � 1
N

P
t 5 a:Q(s; aj� Q) 5 Q � :� (sj� � ).

19: Update � Q0
 � � Q + (1 � � )� Q0

.
20: Update � � 0

 � � � + (1 � � )� � 0
.

21: if Tool worn then Break
22: end if
23: end for each
24: end for each
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the component level. Figure 7.8 shows the implementation of DT on machine tool manage-

ment. The digital environment contains physical data storage, data preprocessing, digital

simulation models, and arti�cial intelligent agents. The digital environment has three main

objectives: (1) monitoring the machine's data forces (2) analyzing this data to abstract the

health status of the tool, and (3) taking action to improve the tool's performance. There are

Figure 7.8 DT implementation on a machine's tool management

three methods to model a Digital Twin: Multiphysics modeling using Finite Element Analy-

sis (FEA), Mathematical model-based, and/or Data-driven modeling [98]. In this paper, the

experimental data in Table 7.2 is used to build the machine DT, and a deep arti�cial Neural

Network (NN) is developed to act as a digital twin for the CNC turning machine. This model

emulates the CNC turning machine in the digital environment. The DT's outputs are the

estimated radial forceFx , feed forceFy, and cutting forceFz measurements at each time step

t, and the model inputs are the cutting speedv (m/min) and the feed rate f (mm/rev), and

time step t (min).

To minimize the over�tting of the model, a rule of sum for the NN architecture design is

provided in Equation 9.4 [99,100]. The numbers of hidden layers are limited to the number

of inputs N i and number of outputs No, while the number of hidden neuronsNh for Ns

data observations is given by Equation 9.4 [99,100].� is a scaling factor that represents the
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prevention of over�tting in the NN model and it takes a value from 2 to 10 [99,100].

Nh =
Ns

� (N i + No)
(7.7)

The developed digital model has three inputs[t; v; f ] and three outputs Fx , Fy,andFz. For

247 data observations, the number of hidden layers varies from 4 to 20 for� 2 [2; 10]. One of

the model's architectures is selected from more than 170 models' architectures. The models'

hidden layers vary from single-layer to four-layer models, and each layer's amount of neurons

changes from 4 to 20 neurons, and more �ve-layer models were added to the architecture's

comparison. The best model is the model that has the lowest Mean Square Error (MSE)

for the unseen testing data. Table 7.5 demonstrates the lowest MSE Network's architecture

among all of the models with the same number of layers. The best model architecture of

[14� 15� 18� 15] is selected. To build the CNC machine DT, this model is trained and

tested on a deep TensorFlow learning environment [73]. During the testing of the DT model,

the testing Mean Absolute Error (MAE) was± 12.8 (e.g., DigitalFx = physical Fx ± 12.8).

Figure 7.9 shows the DT model sensors' reading detections versus the physical CNC turning

machine sensors' reading for the unseen testing data ofFx , Fy, and Fz.

7.5 Analysis of the Results

This section analyzes the e�ects of the Pre-Failure agent on the tool performance and the

tool Time to Failure (T2F) compared to the standalone CNC machine at di�erent cutting

speeds. The performance of the proposed Pre-Failure mechanism is measured by two key

indexes: the Tool T2F and the achieved MRR. The P-F monitoring module activates the

Pre-Failure agent in the P-F zone, and the agent is deactivated at the instant of tool fail-

ure. The closed-loop autonomy enables the Pre-Failure agent to adjust the optimal feed rate

according to the estimated machine's forces at time (t+1). In online mode, the Pre-failure

agent interacts with the CNC machine every 1 second, and its sampling time T is selected

as T=60 sec.

The trained Pre-Failure agent is validated with the CNC Turing machine DT at di�erent

Table 7.5 Lowest MSE NN models and their hidden layers and neurons

Layers 1 2 3 4 5
Layer # 1st 1st 2nd 1st 2nd 3rd 1st 2nd 3rd 4th 1st 2nd 3rd 4th 5th

Neurons 14 5 19 4 6 19 14 15 18 15 4 10 16 10 14
MSE 6.63E+04 6.44E+04 6.26E+04 5.53E+04 5.88E+04
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Figure 7.9 Sensor data of (a)Fx , (b)Fy, and (c)Fz with the CNC cyber model vs. experimental
physical testing data

cutting speed settings given in Table 7.6. In each run, the autonomic CNC machine is sim-

ulated until the tool failure is detected at VB=0.2 mm. The machine's tool starts with a

maximum feed rate of 0.35 mm/rev and the Pre-Failure enters the machining process when

the P-F monitoring module 2 detects the potential-failure class and the instant of P point.

In Run I, the Pre-Failure agent increased the tool T2F by almost 27% over the standalone

CNC machine. Figure 7.10 illustrates the force measurements for the standalone CNC ma-

chine in solid lines, and the tool Time to Failure (T2F) is 31.433 minutes (1886 seconds).

With the implementation of the Pre-Failure agent on the CNC machine, the degradation rate

Table 7.6 Di�erent speeds to validate the trained Pre-Failure agent

Simulation Run I II III IV V
Spindle speed V (RPM) 5000 7500 10000 12500 15000
Cutting speed v(m/min) 25.12 37.68 50.24 62.8 75.36
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of the machine forces decreases, which is indicated by the dashed (� � � ) lines in �gure 7.10.

The tool's T2F increases to 40 minutes (2400 seconds).

Figure 7.10 3D ForcesFxyz (N) at 5000 RPM of Run I for the standalone machine and the
Pre-Failure machine.

In the P-F zone, the Pre-Failure agent generates a continuous feed rate adjustment according

to the optimal trained policy in section 4.2. At a spindle speed of 5000 RPM, the adjusted

feed rate at each time-step (1 second) is given with the blue color in �gure 7.11, while its

accumulated moving average is given in the orange color. At t=21.733 minute (1304 second,)

the tool's potential failure point (P) is detected, then the feed rate is adjusted according to

the learned optimal policy. Cumulative Moving Average (CMA) at each time step is plotted

as the average of the Pre-Failure agent's action up to the current time-step. The Pre-Failure

agent generates a variable feed rate at each second to maximize the T2F within the P-F zone.

The Pre-Failure agent keeps the productivity of the CNC machine at an acceptable limit,

as the minimum CMA feed rate is kept at 0.2665 mm/rev. The machine's productivity index

is the Material Removal Rate MRR(mm3=min) in Equation 7.2. For a 0.2 mm depth of

cut and 25120 mm/min cutting speed, the change of the MRR with the Pre-Failure agent is

indicated by the green shaded area in �gure 7.12.MRR % is the Pre-Failure agent's overall

productivity MRR P F relative to the standalone machineMRR maxfeed at the maximum feed

rate given by Equation 9.5.T2Fst is the standalone machine's T2F, andT2FP F is the T2F
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Figure 7.11 Pre-Failure feed rate adjustment at a spindle speed of 5000 RPM in Run I.

that includes the Pre-Failure agent.

MMR % =
P T 2FP F

t=0 MMR P F
P T 2Fst

t=0 MRR maxfeed
=

P T 2FP F
t=0 f (t)

f max � T2Fst
(7.8)

In Run I, the Pre-Failure machine productivity is almost the same as the standalone machine

with the maximum feed rate, and theMRR % equals 99.3%. The extension in T2F enables

the machine to produce more within the added time. Figure 7.12 shows that the Pre-Failure

added value MRR recovers the lost MRR.

Figure 7.13 concludes the extension of the tool's Time to Failure (T2F) by the Pre-Failure

agent over the standalone machine. The tool's added lifetime is high with relatively low

spindle speeds, and it is small with high speeds. The lowest T2F added time is 1.4 min

(37%) for the tool that works on 12500 RPM and the highest added time is 10.9 min (50%)

with 7500 RPM. At higher cutting speeds, the tool degrades faster, the P-F interval is smaller,

and the Pre-Failure agent has a smaller time to interact with the CNC machine environment.

In the meantime, the T2F added time adds more valuable MRR at high speeds, as stated in

�gure 7.14. The Pre-Failure agent keeps the level of productivity high, as given in �gure

7.14, while the tool deviation from the potential failure level is considered as discussed in

Section 4.2. The lowest Pre-Failure agent'sMRR % is 79%, which is achieved at a spindle

speed of 10000 RPM, as given in �gure 7.14. At 10000 RPM, the tool T2F increases to

2.133 min (128 sec), and the added-value MRR with the Pre-Failure agent is lower than the

lost one due to a decrease in the feed rate value. Figure 7.15 depicts the T2F andMRR %
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Figure 7.12 Pre-Failure Agent Tool MRR VS. Standalone Machine

of the standalone machine at di�erent static feed rates and a spindle speed of 10000 RPM.

The best standalone static feed-rate setting is 0.1745 mm/rev, which aims to increase both

MRR and T2F; the achieved MRR is 59% of that at fmax, and tool T2F is 19.12 min. The

proposed Pre-Failure mechanism outperforms the standalone machine with static settings,

and the online agent's optimal policy achieves more T2F extension andMRR %, as given in

�gure 7.13 and �gure 7.14.

Implementation of the developed Pre-Failure agent improves the tool's performance in the

P-F zone. The online optimal feed rate continuous adjustment adds on average of 5 minutes

to the tool T2F and 5% to the MRR over the classical machining system. The detailed

experimental results for each run in Table 7.6 are provided in Appendix C.

7.6 Conclusion

In this paper, the developed Pre-Failure approach improves the tool's performance in the

Pre-Failure zone based on Deep Reinforcement Learning (DRL) during machining processes.

The proposed Pre-Failure agent increases the tool Time to Failure (T2F) while maintaining

the Material Removal Rate (MRR) at an acceptable limit. The machine tool's P-F curves

and Logical Analysis of Data (LAD) are implemented to monitor and detect the potential

failure level of the machine's tool. In the P-F zone, Pre-Failure model-free agent interacts

with the CNC machine and adjusts its feed rate according to the estimated machine's forces

at time (t+1). This method decreases the tool's degradation rate in the P-F zone before

the tool is worn out, at VB=0.2mm. The Pre-Failure mechanism also keeps the forces at

a relatively high level. To train the Pre-Failure agent, a machine Digital Twin (DT) was
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Figure 7.13 Tool T2F of the Pre-Failure and the Standalone machine for di�erent RPMs

developed and validated with the physical machine data. The Pre-Failure agent is validated

at di�erent spindle speeds, starting from 5000 RPM to 15,000 RPM. By implementing the

proposed Pre-Failure approach, the tool T2F increases over the classical machining approach.

The value-added time is high at relatively low spindle speeds. It was found that the maximum

added time is 10.9 minutes, which is achieved with 7500 RPM. Meanwhile, at 15,000 RPM,

the tool T2F equals 4.55 min, which is almost double the standalone machine. In the P-F

zone, the Pre-Failure agent adds more MRR that recovers the lost MRR due to decreasing

the adjusted feed rate to be lower than its maximum value. At high speeds, the added

MRR is higher than the lost ones. The Pre-Failure agent's MRR reaches 138.04% of that

achieved with a static maximum feed rate under 15,000 RPM spindle speed. At 1000 RPM,

the Pre-Failure agent gets the lowest MRRR of 79%, relative to the standalone machine,

and it adds 12% of the tool T2F. However, the added time is not enough to recover the lost

MRR. The developed dynamic Pre-Failure agent outperforms the best static adjustment for

standalone machine runs at 10,000 RPM from the perspective of tool life and productivity.

The current work can be extended in the future by including electrical power consumption,

the material type, and other machining quality characteristics (e.g., surface roughness and

residual stresses).
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Figure 7.14MRR % for di�erent spindle speeds

Figure 7.15 T2F and MRR% for a standalone machine at a spindle speed of 10000 RPM and
di�erent feed rates
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Abstract

Wheel Motor Electric Bus (W.M.E-Bus) is a recent e-mobility technology, which has a com-

plex system integration. Since the operational reliability and life cycle data of such systems

is scarce, it becomes impractical to plan for maintenance and determine system-critical com-

ponents. Moreover, E-Bus system dismantling and assembling is a long time process espe-

cially for components near to the its power-system. In this paper, we propose a Fuzzy-logic

fault-tree evaluation for the W.M.E-Bus system under uncertain failure data. The proposed

method indicates the critical components that signi�cantly in�uence the system's failure un-

certainty. At a 10% failure rate uncertainty, control unit failure, including the embedded

software, is ranked as the top critical failure mode with a 1.8 Fuzzy Importance Measure

(FIM).

Keywords: Wheel Motor, Electric Bus, E-mobility, Fuzzy Logic, Fault Tree, Uncertainty,

Fault Reasoning.

8.1 Introduction

Electri�ed Mobility (E-mobility) is the potential solution to reduce global warming, as it saves

emissions and running costs. To achieve zero emissions by 2040, the public transportation

buses are planned to be fully electri�ed buses (E-Buses) [101]. Failures in electric buses'

driving system lead to road disasters [2,102]. In these systems, parts replacement is a long-

time process, in which power voltage has to be discharged before starting the replacement

[103]. Since operational failure data are unavailable, reliability prediction and maintenance

planning are challenging tasks.

Embedded software is critical in E-Buses as its failure is related to safety [102]. Hence,

researchers address their failure in operation [4, 104]. Software Reliability Growth Models

(SRGM) are utilized to model the embedded software failure. The �tted model goodness

depends on the vehicle's operational modes and design [4, 104]. Pre-failure software testing
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is proposed to eliminate operational embedded software failure [102].

Electrical motors are considered the main source of mechanical energy for the E-Bus wheels.

Prognostics and Health Management (PHM) concepts are implemented to analyze the motor

measurements such as current, temperature, and vibration [2,105]. In addition to reliability

analysis, DC/AC inverter fault-tolerant control techniques increase inverters' availability.

PHM of electrical motors shows an accurate prediction of motor availability [106]. But, it

addresses either the motor or the inverter individually. The unavailability of inverter a�ects

the operation of electric motor and the E-Bus. Hence, researchers study the motor and its

inverter as one system of a motor control system [2,107]. However, the reliability analysis of

motor control systems does neither address uncertainties of the failure data nor embedded

control units. The main contributions of this paper are as follows:

ˆ Pre-failure analysis of Wheel Motor Electric Bus (W.M.E-Bus) under uncertainty of

failure data.

ˆ De�nition of W.M.E-Bus system critical components.

ˆ De�nition of the W.M.E-Bus's components that a�ect system's uncertainty the most.

The W.M.E-Bus system is described in section II. Section III introduces the proposed method-

ology. The obtained results and discussion are presented in section IV. Lastly, the conclusion

is presented in section V.

8.2 system structure of Wheel Motor E-Bus

Wheel Motor E-Bus (W.M.E-Bus) system eliminates the di�erential unit between the two

wheels [107]. The two motors' structure provides a symmetrical E-Bus's mass distribution

[107]. The available W.M.E-Bus driving types are rear wheel drive, front wheel drive, or all

wheel drive. In our studied system, the W.M.E-Bus consists of a driving axle and a passive

axle. In �gure 8.1, each wheel on the driving axle has a three Phase (3-� ) asynchronous

electrical motor that is powered by a 3-� DC/AC inverter. On the source side, battery pack

supplies the DC power to the motor's inverter through DC link. The Red lines are hot

voltage power lines. The green lines are the signal wires. The embedded control unit is a

Digital Signal Processing (DSP) board that contains the W.M.E-Bus software. It provides

the control signals to the 3-� inverter, monitors battery's State of Charge (SoC), and performs

the bus's driver inputs of braking or accelerating. For monitoring and controlling the bus's

wheels, motor speed and temperature signals are sent to the inverter and to the embedded

control unit.
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Figure 8.1 The Wheel Motor E-Bus System Structure.

8.2.1 Building Fault Tree

Fault Tree (FT) is a graphical and logical representation of potential failure modes, and it is

implemented successfully in di�erent applications [2]. It is proposed for pre-failure analysis

and to identify the logical link between the W.M.E-Bus system and its basic components.

Figure 8.2 shows the top three levels of the FT. The zeroth level is the top event of E-Bus

system failure. The1st level of FT contains the main system items failure modes for the

embedded control unit, and the two wheels. In the2nd level, middle failure causes of wheels'

failure modes are indicated as the motor failure or the inverter failure. The reliability model

Figure 8.2 Fault Tree for The Wheel Motor E-Bus System Main Items.
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for the embedded control unite is a series model. Its middle failure causes are given by �gure

8.3. It indicates the basic components that have a high failure rate; main-PCB, main chipset,

and the embedded software operational failures as stated in Table 8.1.

Figure 8.3 Sub-Tree for The W.M.E-Bus Embedded Controller Failure Mode.

Each wheel failure could be caused by either the 3-� electrical motor or the inverter. The

inverter failure mode is caused by either the inverter driving circuit, or sensing circuit. The

frequently failed basic components of Inverter's driving circuit are Printed Circuit Board

(PCB), power switches (IGBTs), and Isolation optocoupler (IC) as given in Table 8.1. The

communication chipset, speed and temperature sensors are the basic events of the communi-

cation loop. Figure 8.4 depicts the 3-� asynchronous motor's three main items: the stator,

the rotor, and the bearing. These items are part of FT level 3. The bearing failure and

winding failure are the frequently failed basic components of the electrical motor [1,105]

Figure 8.4 Sub-Tree for The E-Bus 3-� Asynchronous Motor Basic Components.
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Table 8.1 Wheel Motor E-Bus System Components and Failure Rates [1�4]

Component Description Symbol Failure Rate/Mh
Embedded Controller PCB C1 3.06
Control unit Main chipset C2 0.31
Controller Other SMDs C3 0.072
Embedded software C4 17.6
Left inverter PCB failure L_i1 1.12
Left inverter IGBTs failure L_i2 0.085
Left inverter Optocoupler failure L_i3 0.243
Left inverter Other SMD's failure L_i4 0.094
Left inverter communication IC failure L_ic1 0.0252
Left motor temperature Sensor failure L_ic2 0.22
Left motor Speed Sensor failure L_ic3 0.0375
Left motor Bearing seal failure L_m1 0.4465
Left motor Bearing failure L_m2 0.083
Left motor rotor winding failure L_m3 0.277
Left motor rotor shaft failure L_m4 0.0226
Left motor stator winding failure L_m5 0.277
Left motor Gear, spline failure L_m6 0.0385
Right inverter PCB failure R_i1 1.12
Right inverter IGBTs failure R_i2 0.085
Right inverter Optocoupler failure R_i3 0.243
Right inverter Other SMD's failure R_i4 0.094
Right inverter communication IC failure R_ic1 0.0252
Right motor temperature Sensor failure R_ic2 0.22
Right motor Speed Sensor failure R_ic3 0.0375
Right motor Bearing seal failure R_m1 0.4465
Right motor Bearing failure R_m2 0.083
Right motor rotor winding failure R_m3 0.277
Right motor rotor shaft failure R_m4 0.0226
Right motor stator winding failure R_m5 0.277
Right motor Gear, spline failure R_m6 0.0385
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8.2.2 Fuzzy-Logic Analysis

The uncertainty in the W.M.E-Bus system's failure analysis is caused by a lack of opera-

tional failure data. Fuzzy logic fault tree analysis is a powerful method that analyzes the

systems' failure probability under uncertainties [108]. Fuzzy logic analysis follows three main

sequential steps [105,108]:

1. Fuzzi�cation.

2. Application of the Fuzzy logic rules.

3. Defuzzi�cation.

Fuzzi�cation is the step of converting the basic components' failure rate into fuzzy sets. For

simplicity, we used a triangular fuzzy set,[ai ; bi ; ci ], to represent the failure rate of component

i . ai is the failure rate's lower bound, andci is the upper bound. bi is the middle value of

the failure rate which equals the reference failure rate value� i . The membership function of

this set, � i (r ), is given by Eq. (8.1).

� i (r ) =

8
>>>><

>>>>:

r � ai
bi � ai

ai < r � bi

ci � r
ci � bi

bi < r < c i ; 8(i )

0 otherwise

(8.1)

wherer is the uncertain failure rate for each component, andi is the component index. The

input fuzzy set's upper and lower bounds are calculated based on the uncertainty experts-

de�ned Error Factor (EF ). This factor represents the uncertainty of the W.M.E-Bus com-

ponent failure rate as given by Eq. (8.2) [108].

ai = � i (1 � EF ) ; ci = � i (1 + EF ) ; 8(i ) (8.2)

Assuming a constant failure rate� i for the electrical systems, the input fuzzy set failure

probability matrix, [F (t)]30� 3, is given by Eq. (8.3) [109] in which each row represents a

single component. In our system, the number of components is 30. In Eq. (8.3) [109],t is

the W.M.E-Bus system working hours.

[F (t)]i � 3 = [1 � e� ai t ; 1 � e� bi t ; 1 � e� ci t ] ; 8(i ) (8.3)

The next step is the application of the Fuzzy logic rules according to the Fault Tree of the

W.M.E-Bus system. The top event's reliability will be an exponential distribution, and its
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parameter is the sum of the basic events' failure rate. Fuzzy logic rules are used to analyze

the fault tree and to �nd the top event fuzzy set, [F0(t)]1� 3. According to our system's fault

tree, as shown in �gure 8.2, all relations are represented by OR logic gates. ForN basic events

in an OR logic relations, and a triangular fuzzy sets, the fuzzy probability array,[F (t)OR ]1� 3,

is calculated by Eq. (8.4) [108,109].

[F (t)OR ]1� 3 = [1; 1; 1] � � N
i =1 ([1; 1; 1] � [F (t)]i � 3); (8.4)

Accordingly, [F0(t)]1� 3 = [ F (t)OR ]1� 3 . For the 30 components of our W.M.E-Bus, atN = 30,

all the basic events are considered.[F0(t)]1;1, [F0(t)]1;2, and [F0(t)]1;3 are the lower, medium,

and upper bounds of the top event fuzzy probability using a triangular membership function.

Defuzzi�cation is the last step of the fuzzy analysis. In this step, the top event fuzzy set

probability, [F0(t)]1� 3, is converted into a deterministic valueTE0(t). In the reliability con-

text, the centroid approach is the most common defuzzi�cation method [108], as presented

by Eq. (8.5) for triangular fuzzy sets.

TE0(t) =
1
3

3X

k=1

[F0(t)]1;k

=
1
3

([F0(t)]1;1 + [ F0(t)]1;2 + [ F0(t)]1;3)

(8.5)

8.2.3 Fuzzy Uncertainty Analysis

There are two evaluation fuzzy factors to analyze the W.M.E-Bus system: the Fuzzy Un-

certainty Importance Measure (FUIM ) and the Fuzzy Importance Measure (FIM ). FUIM

indicates the high impact basic components to the top event uncertainty. These components'

data must be operational data to minimize the top event uncertainties [108]. At certaint

working hours,FUIM is calculated by Eq. (8:6) for componenti . [Q]1� 2 is the top event fuzzy

[lower; upper] probabilities. [Qi ]1� 2 is the top event fuzzy[lower; upper] probabilities when

basic eventi fuzzy set is a deterministic value withEF = 0. D i is the Euclidean distance

between[Q]1� 2 and [Qi ]1� 2, and is given by Eq.8.7.

FUIM = D i ([Q]1� 2; [Qi ]1� 2) ; 8(i ) = [1 ; 30] (8.6)

D i =
q

([F0(t)]1;1 � [F0(t) i ]1;1)2 + ([ F0(t)]1;3 � [F0(t) i ]1;3)2; (8.7)

where [F0(t) i ]1;1 is the lower bound of the top event fuzzy probability when basic eventi

fuzzy set is a deterministic value withEF = 0. Similarly, [F0(t) i ]1;3 is the upper bound. We
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did not consider the top event middle value in calculating evaluation factors, as the middle

value of each basic componentsbi does not contain the uncertainty error factorEF . The

Fuzzy Importance Measure (FIM ) identi�es the critical W.M.E-Bus system's components,

and it is given by Eq. (8.8). [Q1
i ]1� 2 is the top event fuzzy[lower; upper] probabilities when

basic event i is fully unavailable, i.e. [F (t)]i � 3 = [1; 1; 1]. [Q0
i ]1� 2 is the top event fuzzy

[lower; upper] probabilities when basic eventi is fully available, i.e [F (t)]i � 3 = [0; 0; 0].

F IM = D i ([Q1
i ]1� 2; [Q0

i ]1� 2) ; 8(i ) = [1 ; 30] (8.8)

8.3 Results

The reliability of the W.M.E-Bus system is evaluated under uncertainty using fault tree in

�gure 8.2 and Fuzzy logic reasoning with 10% uncertainty, EF = 0:1. Figure 8.5 represents

the top event Fuzzy output sets, [Lower, Medium, Upper], at various working hours. The

upper bound fuzzy output reaches the 0.8 failure probability before 25000 working hours.

Therefore, the low-risk decision prioritizes the upper bound of the fuzzy set in the defuzzi�-

cation step. The probability of failure for the top event reaches 0.8 at 62760 working hours.

Figure 8.5 Fuzzy probability Sets for di�erent working hours.

Figure 8.6 shows the critical components of the W.M.E-Bus system at 10000 working hours

and 10% uncertainty,EF = 0:1, according to Eq. 8.8. With a 1.82 FIM value, Embedded

software failure is the most probable cause for W.M.E-Bus system failure. Moreover, the

critical components are the Embedded controller's PCB (c1), Inverter's PCBs (L_i1&R_i1),

and Motor seal Bearings (Lm1 & Rm1). Fuzzy uncertainties measurement (FUIM) factor

is calculated by Eq. 8.6 for the W.M.E-Bus system under 10000 working hours. Embedded
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Figure 8.6 Fuzzy Importance Measure at 10000 Working Hours.

software failure uncertainty is the highest factor that a�ects the W.M.E-Bus system fail-

ure uncertainty and its FUIM is 4.9E-4. For the hardware level, the control unit' PCB is

the highest uncertainty-in�uenced basic component with FUIM value around 1.2E-4. Un-

certainties of the inverter PCBs' data are the2nd top basic components with 4.5E-4. The

uncertainty of Motor bearing failure data due to the seal leakage comes in the3rd highest

FUIM factor. These are the basic components that their data uncertainty signi�cantly a�ects

the W.M.E-Bus system's availability. The failure rates of these components are required to

be well determined for more accurate system reliability analysis.

8.4 Conclusion

Wheel Motor Electric Bus (W.M.E-Bus) system structure is the potential heavy-duty electri-

cal vehicle candidate as it minimizes the system cost and mechanical complexity. Since the

system integrated E-Buses' failure data are unavailable, the maintenance and replacement

suitable planning becomes a challenging task. We proposed a combination of fuzzy logic and

fault tree to analyze the W.M.E-Bus system reliability under uncertainties of failure data. At

10% failure data uncertainty and 10000 working hours, we found that the embedded software

was the most critical basic event of the Embedded control unit with an FIM index of 1.82.

The 2nd critical component was the embedded control unit's PCB with FIM value of 1.57

and FUIM value of 1.2E-4. The 3-� inverter's PCB was the top second W.M.E-Bus critical

component with FIM around 1.55 and FUIM value of 0.45E-4. Moreover, Electrical Motor

important components were the bearing. In our future work, more W.M.E-Bus failure data

will be provided, and reference failure data can be updated. This study will be extended

to include the quality failures such as wiring connection failure. Downtime and cost will be

included to have more applicable maintenance planning.
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Abstract

Autonomous and self-improvement systems rely on the historical operational data of these

systems. With the lake of operational data, the development of the self-improvement process

becomes more challenging. This paper develops an autonomous uptime improvement scheme

for a system with either unavailability or uncertainty of operational failure data. Fuzzy-Fault

Tree Analysis (F-FTA) is adapted to analyze the system failure with operational data uncer-

tainty. Meanwhile, the Reliability Centered Maintenance (RCM) worksheets are developed

to de�ne the uptime-improvement autonomous actions. The proposed scheme is veri�ed on

the Wheel Motor Electric Bus (W.M.E-Bus) drive system in the Digital Twin (DT) envi-

ronment. It links the on-road Physical W.M.E-Bus driving conditions to the system failure

and reliability estimation, which are in the digital DT environment. The Embedded Control

Unit (ECU) transmits the W.M.E-Bus's driving cycle to be analyzed in the digital environ-

ment. Then, the improvement action of derating percentage for the driving cycle is sent back

to the E-bus to automatically manipulate the driver's pedal in the next driving cycle. In

this particular case study, the deployment of the proposed scheme increases the maximum

allowable W.M.E-Bus millage distance by 8603 miles when it reduces the driving cycle by

36 %, on average. A detailed improvement analysis for di�erent operating speeds and RCM

worksheets are reported.

Keywords: Electric-Bus, Reliability, uptime, Digital Twin, Data uncertainty, RCM, Derat-

ing, E-mobility.

9.1 Introduction

Electri�ed Mobility (E-mobility) is a potential solution to tackle global warming, as it saves

emissions and running costs. Global EV outlook is an annual publication that identi�es and

discusses the recent developments in electric mobility. Their report of 2021 stated that many

countries have planned to have a fully electri�ed transportation by 2040 [110, 111]. This

massive transient makes the maintainability and the uptime of the Eclectic-Bus an essential

requirement, especially for the complex integrated-system buses [111]. The part replacement
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of a Wheel Motor Electric-Bus (W.M.E-Bus) is a long-time process, where the high voltage

has to be discharged before starting the replacement [110]. The up-time extension activities

for this system are highly required by �eet management.

The combinations of Industrial 4.0 and Arti�cial Intelligence enable real-time monitoring

and increase the uptime of the E-Bus [16,23]. The implementation of these new strategies is

highly dependent on the accessibility of the historical operational data [17]. For the in-service

E-Buses, the full system connectivity and the run-to-failure data are still unavailable. This

paper �lls this gap and provides the necessary structure for autonomous up-time improvement

while the system operational data are unavailable.The literature shows attempts to address

the E-Bus system failure analysis, and maintenance [2,110,112]. Reliability Centered Main-

tenance (RCM) is a concept that was introduced to reduce failures specially those caused by

inadequate maintenance [30]. RCM was adopted in the passenger vehicle to avoid system

failures while creating a periodic replacement of the system's components [112]. To get the

system's state of failure, the system failure analysis must be added. Shu et.al 2019 applied

the Fault-Tree approach to study the reliability of a central-drive electric vehicle [2]. The

study assumed a certain failure data and the drive system was analyzed in the design stage.

Taha et.al 2020 [110] studied the failure criticality analysis for the W.M.E-Bus drive system

in the operating stage considering data uncertainty. These studies are passive approaches,

and neither the real operating condition of W.M.E-Bus nor self-improvement activities were

addressed. To �ll this gap, this paper present a proactive approach that analyses the real

operating condition of the E-Bus in case of unavailability of data and provides uptime im-

provement's actions.

Fault-tolerant control (FTC) was developed to increase system availability and reduce the

risk of safety hazards. FTC is intended to compensate for the fault e�ects on the system

during operation to maintain the system stability. To react to system malfunctions, FTC

includes online fault detection, automatic condition assessment, and the calculation of re-

medial actions when a fault is detected [113�116]. FTC is designed to recover the vehicular

drive system after having a pre-speci�ed component failure, for example a speed sensor fail-

ure [113, 115], temperature sensor failure [116], or inverter switch failure [114]. FTC is a

post-failure reactive approach where it reacts to the system after a failure incident. Sama-

ranayake et.al 2018 developed a proactive Model Predictive controller (MPC) to address the

electrical motor degradation [117]. Firstly, MPC estimates the motor power losses that rep-

resented the motor degradation. MPC controls the supplied voltage to decrease the internal

losses [117]. Both FTC and MPC addressed a dedicated system component, and the system

integration is missed. To �lls this gap, this paper develops a scheme to improve the reliability

of the W.M.E-Bus integrated drive system.
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Table 9.1 summarizes the successive research to improve the reliability of E-Bus and the

research gap that needs to be addressed. The proposed scheme in this paper �lls those gaps

by presenting autonomous uptime-improvement for W.M.E-Bus systems with unavailable

operational data. This scheme links the on-road real driving condition of the W.M.E-Bus to

the system analysis and the proactive actions to increase the system up-time. The developed

Table 9.1 Summary of the W.M.E-Bus Drive System uptime Research Gaps

Achieved Need to be addressed
-Drive system analysis
-Combination of design failure data

-System analysis in operation mode
-System failure time and replacement time

-Power converter failure analysis under data uncertainty
- Integrated System failure analysis
-Autonomous active approach

-Drive system failure analysis
-Failure data uncertainty
-System critical components de�nition

-Passive approaches
-A real operating condition
-autonomous corrections

-RCM Tasks worksheets.
-Passive planning
-Integrated-System Failure analysis

-Reaction to the component failure.
-Tolerate the component's failure

-Proactive approaches.
-System-integration needs to be addressed

-Proactive Motor degradation control
-Degradation improvement of electrical motor

- Integrated System Failure analysis and autonomous actions
-Real on-road operating condition.

scheme establishes the self-improvement activities of the W.M.E-Bus drive system in the

Digital Twin (DT) environment, and adds the following features:

ˆ Analysis of the system failure while its operational data are uncertain or unavailable.

ˆ De�nition of the autonomous actions that improve the uptime of the integrated E-Bus

system.

ˆ Proactive approach to extend the E-Bus uptime.

ˆ On-road real operating conditions analysis of E-Bus and application of automatic ac-

tions to increase the bus allowable mileage.

This paper is organized as follows, Section 2 describes the Proposed scheme layout and its

main modules.Section 3 contains the methodologies that are proposed to develop a self-

improving system which lakes operational failure data. Section 4 shows the implementations

and veri�cations of the W.M.E-Bus. Section 5 presents the achieved results. Section 6 is the

conclusion and future work.
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9.2 Autonomous uptime-Improvement Scheme Layout in DT

The concept of autonomous available systems relays on two main functions: monitoring the

system health and performing improvement actions [16,17]. The autonomic loop is a closed-

loop that links these two essential functions of autonomy and enables the autonomous action

to be executed [16, 17]. The proposed implementation scheme of the autonomous uptime

extension in the Digital Twin (DT) is given in Figure 9.1. The digital environment contains

three modules as follows:

Figure 9.1 Autonomous uptime-Improvement Scheme for W.M.E-Bus In DT.

1. Database

The database is the historical data of the E-Bus system. These module includes the

�eet management data such as the maximum allowable mileage before performing main-

tenance process, the scheduled time for each bus-stops, and the realtime driving condi-

tion data [17,118]. In case of unavailability of the historical failure data, similar failure

data for the basic components of the system is involved with an uncertainty percent-

age [110,119]. To obtain the similar failure data, the common references are the IEEE

golden book for power system components [120], USA military handbook for electronic
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components [121], and US Navy reliability handbook for mechanical components [1].

2. System Health Monitoring.

In the health monitoring module (2), the conditional monitoring and diagnosis of the

system is performed [16]. In this module, the system failure is analyzed to evaluate

the health state of the system and its subsystems. In the application of this paper, the

health monitoring module is connected to the Database module (1) and to the physical

W.M.E-Bus to estimate system reliability at each time t. As the operation historical

data of the studied system are unavailable, the FTA analysis with failure data uncer-

tainty is proposed to Analyze the system failure-probability and reliability at a time t,

as explained in section 3.1.

3. Decision Making.

According to the analysis of the system reliability in module 2, the decision module

provides autonomous actions to improve system uptime. These actions are extracted

based the RCM's worksheets to enable the autonomic closed-loop between Physical and

digital environments [109], as described in section 3.2. In the W.M.E-Bus, these actions

include changing of the driving conditions automatically, and isolating of the failed

components, as stated in section 4.2. The proposed scheme of the uptime improvement

is veri�ed on a W.M.E-Bus drive system while monitoring and improving the driving

cycle autonomously.

9.3 Methodology

Reliability and maintenance are built on e�cient de�nition and diagnosis of faults/anomalies

and failures. They address the optimal actions of maintenance or replacement time [30,109].

Reliability Centered Maintenance (RCM) is a concept that was introduced to reduce fail-

ures caused by inadequate maintenance for several industries [30]. Maintenance is applied to

ensure that the machine continues to perform as intended, while RCM addresses modes of

failure and their consequences and possible maintenance actions. These actions are chosen

to improve the maintenance function and minimize the in�uence of failures because of inad-

equate decisions. The RCM approach identi�es the potential causes of failure, failure e�ects

and consequences, and possible actions to prevent or reduce the risk of failure [30]. There are

several tools to apply the RCM concept namely: Failure Mode and E�ect Analysis (FMEA),

Consequence of Failure Analysis (COFA), and the Top-down approach of Fault-Tree Analy-
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sis (FTA) [30,109]. To avoid a failure mode, RCM de�nes the proper tasks/activities to be

taken. RCM concept follows two main phases [30]: (1) Identifying the system components

and subsystems critical failure mode, (2) Specifying the RCM actions for each failure mode.

The 1st phase addresses the system and subsystem failure analysis, de�nes the possible causes

of the system failure, and estimate the system reliability at a time t. The system/subsystems

design has to satisfy the required safety and environment conditions. For example, in Wheel

Motor Electric-bus (W.M.E-bus), passenger safety is a requirement, and the reliability of

the bus is an operating criterion. In this paper, the Fault-tree is used to de�ne and analyze

the W.M.E-Bus system/subsystems' failure, causes, and estimate the E-Bus's reliability at a

time t, as demonstrated by section 3.1.

The 2nd phase develops RCM worksheet that indicates the actions to be taken to mitigate

the causes of each failure mode. The RCM actions are categorized into pre-failure and post-

failure actions [30, 109]. This paper addresses the Pre-failure RCM actions that could be

autonomously executed to increase the W.M.E-Bus system's uptime. Section 3.2 describes

the RCM's actions selection criteria and the RCM's worksheet structure.

9.3.1 System Health Monitoring and Failure analysis

As the in-�eld operational failure data of the W.M.E-Bus system are unavailable, this paper

develops an autonomous uptime-improvement scheme based on data uncertainty. The system

failure probability Fi (t) at time t is extracted by the Fuzzy Fault-Tree Analysis (FFTA)

algorithm for data uncertainty [110]. The FFTA algorithm has four main steps, as follows

[110]:

1. Building the system Fault-Tree and de�ning the basic components of each subsystem

i .

Fault-Tree is a top-down logical approach that presents the potential failure modes for

a system. The tree starts with the main system failure at the top level, then moves

down until reaching the root causes or basic events level. The middle levels represent

the subsystems, and there are logical combinations of intermediate events that lead to

system failure [110]. Figure 9.2 demonstrates a simple circuit example of two parallel

motors and its Fault-Tree. In this example, motors are connected to the DC source

through a switch. The main failure mode here is No-Rotation, which is indicated on

the top level of the tree. The intermediate events or the subsystems give the possible

causes for this failure mode, which are the failure of motors subsystem or power supply

failure. The basic event indicates the subsystem's basic components, which are the root

causes that could lead to the main failure mode. In case of a lack of operational failure
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Figure 9.2 Fault Tree Example For No-Rotation Failure Mode In Simple Dual Motor circuit

data, the failure rate for each basic component is obtained based on similar reference

data as uncertain data. the proposed FFTA is a successive algorithm to analyze the

system's failures under data uncertainty [110,122,123].

2. Fuzzi�cation.

For basic componentk, the uncertainty of the failure rate is represented by a fuzzy set

with a mathematical distribution. The uncertainty factor Ef k for the kth component

is a factor that is used to de�ne the fuzzy sets, and its value is obtained by an in-�eld

expert of the studied system [122, 123]. Figure 9.3 shows two examples of fuzzy-sets

for uncertain failure rate that is represented by a random variablexk : triangular dis-

tribution � tr (xk) = [ ak ; � k ; ck ], and Gaussian distribution� Gaus (xk) = N (� k ; � k ], where

� k is the similar referenced failure rate. The mathematical formulas of the two fuzzy

sets are given in Equations (4) and (5) for triangular and Gaussian distribution respec-

tively [124].

The lower bound of the triangular fuzzy set isak = (1 � Ef k)� k and the upper bound

is ak = (1 + Ef k)� k . The standard deviation of the Gaussian fuzzy set is� k = Ef k=3.

� tr (xk) = [ ak ; � k ; ck ] =

8
>>><

>>>:

xk � ak
� k � ak

, ak < x < �
ck � xk
ck � � k

, � k < x < c k

0 o:w

(9.1)
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Figure 9.3 Triangular and Gaussian distribution Fuzzy sets.

� Gaus (xk) = N (� k ; � k) = exp(�
(xk � � k)2

2� 2
k

): (9.2)

To present the data uncertainties for the example given in Figure 9.2, for 10% un-

certainty and let � 1 = � 2 = 0:0001Failure per hour (FPh), � 3 = 0:0000044FPh, and

� 4 = 0:000002FPh. Four fuzzy sets are required to represent the four basic events.

Each set is selected to be either a triangular or Gaussian fuzzy set. The triangular

fuzzy set is simpler for analytical solving and has �nite upper and lower bounds [55].

The triangular fuzzy sets arex1 � [a1 = 9 � 10� 5; � 1 = 10� 4; c1 = 1:1 � 10� 4] for mo-

tor1, x2 � [a2 = 9 � 10� 5; � 2 = 10� 4; c2 = 1:1 � 10� 4] for motor2,

x3 � [a3 = 39:6 � 10� 7; � 3 = 44 � 10� 7; c3 = 48:4 � 10� 6] for Battery failure,

and x4 � [a4 = 1:8 � 10� 6; � 4 = 2 � 10� 6; c4 = 2:2 � 10� 6] for switch failure.

3. Applying of the Fault-Tree logic rules

The fuzzy rules are the logical operations that satisfy the interconnection relations of

the di�erent levels of the system's Fault-Tree. The �AND� and �OR� gates are the

most common logic gates used to build systems' fault-tree [122]. The output failure

probability F (t)AND for k basic components/events that are connected in AND logic

relation is given in Equation (9.3) [122].

F (t)AND = AND f F1(t); F2(t); :::::; Fk(t)g

= � k
j =1 Fj (t)

(9.3)

Meanwhile, the output failure probability F (t)OR at time t for k events/components

that formulates OR logic relation is given in Equation (7) [110,122].
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F (t)OR = ORf F1(t); F2(t); ::::; Fk(t)g

= 1 � � k
j =1 [1 � Fj (t)]

(9.4)

The example given in Figure 9.2 is an electrical system and its components followed

an exponential failure distribution [30,109]. Due to the uncertainty factor, the failure

probability of the kth basic components is a function of the stochastic random variable

xk , and it is written as xk � [ak ; � k ; ck ] for triangular sets. The failure Probability is

given by Fk(t) = 1 � e� xk t . To apply the logic rules on the example in Figure 9.2 for

10000 working hours, the motors sub-system 1 failure is caused by motor1 AND motor2

failures. The failure probability of sub-system 1 is 1x3 vector, and it is calculated using

Equation (9.3) as:

F1(t = 10000)AND = � 2
k=1 Fk(t = 10000)

= � 2
k=1 [1 � e� [ak ;� k ;ck ]t ]

= [0:935; 0:865; 0:889]

The sub-system 2 failure is the power failure, and its failure has two possible causes:

Battery failure OR switch failure. The failure probability based OR logic relation is cal-

culated using Equation (9.4) is given by:F2(t = 10000)OR = 1 � � 4
k=3 [1 � Fk(t = 10000)]

= 1 � � 4
k=3 e� [ak ;� k ;ck ]t

= [0:062; 0:056; 0:068]

The No-Rotation system failure is caused by failures of subsystem 1 OR subsystem 2.

For N = 2 subsystems and 10000 working hours, the system fuzzy setF (t = 10000)set

of the system failure is 1x3 vector, and it is calculated using Equation (9.4) as:

F (t = 10000)set = 1 � � 2
N =1 [1 � FN (t = 10000)]

= 1 � [1 � F1(t = 10000)AND ][1 � F2(t = 10000)OR ]

= [0:061; 0:127; 0:1035]

4. Defuzzi�cation

Defuzzi�cation is the process of converting the system fuzzy setF (t)set into a determin-

istic crisp valueF (t)sys that represents the system failure probability at a certain time

t. In the reliability context, the centroid approach is the most common defuzzi�cation

technique [122]. The centroid is calculated as a center of the area under the system
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fuzzy set� sys(x), as given in Equation (9.5) [30,109]. The failure rate of the integrated

system� sys is represented by random variablex in the system fuzzy set.

F (t)sys =
R1

�1 xsys� sys(x) dx
R1

�1 � sys(x) dx
(9.5)

For the example given in Figure 9.2 the defuzzi�cation of the No-Rotation system failure

is calculated using Equation (9.5) for triangular fuzzy set at 10000 working hours, as
1
3(asys + � sys + csys)j t=10000 = 0:1.

The system failure probability of the given example in Figure 9.2 at 10000 working hours

and 10% uncertainty is 0.1. The system reliabilityR(t)sys is estimated at a certain time

t and uncertainty factor Ef as R(t)sys = 1 � F (t)sys. The estimated system reliability

of the example in Figure 9.2 at 10000 working hours and 10% uncertainty is 0.9.

9.3.2 Reliability Centered Maintenance (RCM) Activities.

The RCM activities are the actions that aim to avoid a failure mode and reduce the risk

of multiple failures. These actions are mainly characterized as Condition-Based and Time-

Based [30]. The condition-Based tasks are de�ned as Condition-Based Maintenance CBM

strategy, and it is relayed on the real condition of the system/subsystems while analyzing its

sensor data [30,55]. Time-Based tasks are the periodical planned replacement or restoration

of a component, and it is referred as the Preventive Maintenance strategy [30, 55]. Time-

directed tasks are suitable for systems/sub-systems that have low failure-variability and low

failure propagation [30].The condition-direct activities are the most e�ective for critical sys-

tems, yet the system's operational and real-time data are a prerequisite [55]. Both RCM

maintenance tasks of Preventive actions and Condition-Based actions are physical tasks. The

human interaction plus repairing time are required to perform the maintenance task [125].

The developed scheme of this paper extends the RCM concept to include automatic actions

that are possible to mitigate failure modes autonomously and increase the system's uptime.

Figure 9.4 depicts the developed logic-Tree tool that identi�es RCM action for each failure

mode in Fault-Tree given in section 3.1. The selection of autonomous actions is speci�ed by

the dashed line rectangle in the logic Tree of Figure 9.4. The RCM worksheet is a table that

contains mainly the RCM tasks to mitigate the failure mode or reduce its e�ects or conse-

quences. The worksheet is not limited to RCM tasks, and it could contain more information

to facilitate the implementation of RCM according to the studied system [109].

To improve the system's uptime autonomously, nine columns RCM worksheet sheet is pro-

posed, and the columns are described as follows:
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Figure 9.4 Logic-Tree of the Developed RCM Autonomous Action's selection.

1. Index : it indicates the index of the basic cause of failure, and it is the same index as

given to the basic component in Fault-Tree.

2. Component : it indicates the basic component name.

3. Failure mode : it includes the failure mode that is linked to that component.

4. E�ects/Consequence : it identi�es the consequences and e�ects of that failure mode.

5. Causes: it de�nes the possible cause of having this failure mode.

6. Detection : it indicates the detection criteria of the failure mode if it is available.

7. RCM Task : it identi�es the possible actions to avoid that failure mode or reduce its

e�ect. The action type is selected for each basic component of the system according to

the selection logic tree given in Figure 9.4.

8. Frequency : it indicates how often this RCM action is carried out.

9. Autonomous Action : this column is developed to de�ne the possibility of mitigating

the failure mode and increasing the system's uptime autonomously.These actions are
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executed through the autonomic closed-loop between physical and digital environments.

For the example given in Figure 9.2, Table 9.2 demonstrate the possible RCM tasks

according to the worksheet logic. The system example consists of two sub-systems:

the motor failure sub-system and power failure sub-system. In this example, the cost

of proactive maintenance is assumed to be lower than the cost of the corrective main-

tenance plus the failure consequence for each failure mode. Deployment of proactive

maintenance tasks is assumed to decrease the likelihood of having multi-failure con-

sequences. The root cause of the motor subsystem 1 failure is over-current, and the

selected RCM action to mitigate this failure is a condition-directed action on a daily

basis, according to the logic criteria in Figure 9.4. Meanwhile, the autonomous RCM

action of discharging control is applicable to mitigate the battery's low-voltage in sub-

system 2 while monitoring the battery discharging voltage. The switch failure could be

identi�ed for the design change task when the cost of the corrective maintenance and

run to failure task are high, according to logic-tree criteria in Figure 9.4.

In the example given in Figure 9.2, Battery discharging control task is applicable to be

executed through the DT autonomic closed loop to prevent the system disturbance.

To improve the uptime of the W.M.E-Bus autonomously, this paper addresses the

RCM's actions that could be controlled through an autonomic closed loop. Section 4

veri�es the proposed methodology on the on-road operation of the W.M.E-Bus under

uncertainty of failure data.

9.4 Autonomous Scheme veri�cation on Electric-Bus

The Wheel Motor Electric-Bus (W.M.E-Bus) drive systems consisted of Embedded Control

Unite (ECU), and each wheel has a DC/AC 3-phase power inverter, and a 3-phase induction

motor. Figure 9.5 shows the schematic diagram for the W.M.E-Bus drive system. The

ECU controls the drive system and provides the control signals to the DC/AC inverters.

It monitors the wheel motors' sensors and performs the driver's acceleration/deceleration

Table 9.2 Structure of the RCM Task worksheet

Index Component Failure mode
Consequence/

Symptoms

Example
Possible
Causes

Detection RCM Task Frequency Autonomous action

1 Motor 1
Motor failure

No Rotation

Over current NA Current Monitoring Daily NA
2 Motor 2 Over current NA Current Monitoring Daily NA

3 Battery
Power failure

Low voltage NA
Discharging

Control
hourly Yes

4 Switch Wrong selection NA Change material Once NA
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decision [110]. The 3-phase DC/AC inverter controls the induction motor speed and charges

the battery in the motor's regenerative braking mode [120]. the developed scheme in this

paper increases the reliability and uptime of the W.M.E-Bus's drive system in Figure 9.5.

This system is categorized into six main subsystems, and each sub-system is dismantled

to its basic components using the Fault-tree analysis approach in section 3.1. A detailed

description of each basic component for the W.M.E-Bus drive system is given in [110]. Table

9.3 contains the W.M.E-Bus Subsystems, their indices, uncertain failure rate data in Failure

per 106 hours (FPMh) for each subsystem.

The given data in Table 9.3 are gathered based on the basic components in the schematic

of the W.M.E-Bus drive system in Figure 9.5, and the similar components in the literature

[1,2,4,110,121].

9.4.1 Electric-Bus Drive System Health Monitoring

The Fuzzy-FTA (FFTA) approach is applied to analyze the system fault tree with the uncer-

tainty of component failure rate. Figure 9.6 is the top three levels of the W.M.E-Bus drive

system Fault-tree. It includes the subsystems that are given in Table 9.3. The lower levels

of the basic components of each subsystem are presented by the blue triangle in Figure 9.6,

and it is fully descried with its indices in Figure 9.7.

The uncertainty factor of the failure rate in the power electronics converters is between 10%

and 24% [110, 119]. In the case of unavailability of the operational data, the system failure

uncertainty is an expert-based factor [122, 123, 126]. Based on an expert recommendation

from an e-mobility maintenance center, the uncertainty factor for the W.M.E-Bus is 17 %.

This percentage is calculated as the di�erence between the designed allowable millage and

the real failure miles for the W.M.E-Bus sub-systems. In this paper, the fault-tree in Figure

9.6 is analyzed using FFTA with Gaussian distribution fuzzy sets and 17% uncertainty.

9.4.2 Electric-Bus Drive System Autonomous Actions

The autonomous actions list is de�ned using the same concept of the RCM actions logic-tree

in section 3.2. In this paper, the actions list addresses the actions that could be executed

automatically through an autonomic closed loop. The autonomous actions worksheet for the

W.M.E-Bus Drive system is built on the system Fault-tree given in Figure 9.6. The recent

IIOT technology and Digital Twin (DT)'s connectivity to the E-Bus enable these autonomous

actions to be carried out.
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Figure 9.5 W.M.E-Bus Drive System Schematic.

In this section, for each sub-system, the extracted autonomous actions from the worksheet

are discussed, and the full actions-list is given in Appendix C.

1. Embedded control Unite (ECU) Subsystem Failure.

It is a DSP control unit, and its potential failure causes are embedded software bugs or

the protection circuit component failure [110]. The autonomous action tackles the soft-

ware issues that are indexed by C.1 in the system's Fault-Tree Figure 9.6. The software

version of the W.M.E-Bus's ECU is automatically checked on daily bases. Once there

is an update of the manufacturer's software database, DT updates the W.M.E-Buss'

ECU by Over-The-Air (OTA) software update [127].

2. AC/DC 3-phase Inverter Subsystem Failure

The power inverter sub-system failure is de�ned as a critical operational concern. This

failure causes a malfunction of the electrical motor and inverters sub-systems failure.

To increase the inverter's uptime autonomously, the Switching frequency check is the

autonomous RCM action to mitigate the abnormal noise failure mode I.3 in Figure 9.7.

Switching frequency is one of the causes that create an unacceptable vibration noise

of the inverter, especially in the system integration of a di�erent supplier [128, 129].

At each ECU software update, the compatibility of the inverter's frequency is checked

autonomously.
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Table 9.3 W.M.E-Bus Drive system and subsystems Failure rate

No Driving System Components symbol (FPMh)
1 ECU failure C 3.44E-06

Left Wheel Subsystems
2 Inverter failure I1 1.54E-06
3 Sensor's failure S1 2.83E-07
4 Bearing failure at 11000 rpm B1 1.74E-06
5 Mechanical-link failure G1 6.11E-08
6 Motor windings failure W1 3.00E-07

Right Wheel Subsystems
7 Inverter failure I2 1.54E-06
8 Sensor's failure S2 2.83E-07
9 Bearing failure at 11000 rpm B2 1.74E-06
10 Mechanical-link failure G2 6.11E-08
11 Motor windings failure W2 3.00E-07

Figure 9.6 Top Three levels in the Fault-Tree of W.M.E-Bus Drive System.
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Figure 9.7 Fault-Tree's Basic Level of the W.M.E-Bus Drive system.

3. Three-phase Induction motor's Subsystem Failure

Motor failure could be caused by the winding, the bearing, or the mechanical link

sub-systems [110]. The worksheet in Appendix C includes the detailed RCM tasks for

each subsystem's failure mode. From the perspective of autonomous improvement, the

wheel motor's degradation is related to the internal mechanical and electrical power

losses of the motor that caused internal thermal stress [117]. Reducing the motor's

power lossesPlosses (Kw) at the operation leads to reducing the degradation rate of the

motor sub-system [117]. The autonomic loop is objected to decrease the wheel motor

power losses at each operating cycle to increase the system uptime. Equation (9.6) is

the losses over an operating cycle timeTcycle, and � is the motor e�ciency according to

its manufacture. The wheel motor outputPout (kw) in Equation (9.7) is related to the

load torque Tload (Nm) and motor speedn(t) (RPM).

Plosses =
Z Tcycle

0
(
1
�

� 1)Pout dt (9.6)
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Pout =
2� n (t) Tload

60
(9.7)

With fully loaded W.M.E-Bus conditions, the bearing is the most a�ected subsystem

with the changing of the wheel motor speed [1,130,131]. Next section 4.3 links the real

operating cycles of a W.M.E-Bus to the system analysis to improve its uptime. The

full DT algorithm of the proposed scheme implementation is also included.

9.4.3 Electric-Bus Driving cycle

The driving cycle is a chart that plot the Electric-Bus speed versus running time, and it shows

the acceleration and deceleration behaviors of the E-Bus on a certain route. The FTP-75

city driving, HWFET highway driving, and SFTP US06 aggressive driving are the standard

driving cycles for testing light duties-vehicle in North America [132]. For heavy-duties,

WVU West Virginia University and EPA Urban schedule are the recommended standard

driving cycles [132]. In this paper, the developed approach is implemented on W.M.E-Bus

in operation, and a practical on-road driving cycle is used to analyze the drive systems and

their subsystems. Figure 9.8 shows an example of real on-road W.M.E-Bus driving cycle and

W.M.E-Bus speedV(t) is in mile/h. The electrical motor speedn(t) (RPM) is abstracted

by Equation (9.8), where theV(t) is the electric-bus (wheel end) speed in mile/h. The gear

ratio is G for the transmission gears from the motor to the wheel, and the wheel's tire radius

is r (m). The motor speedn(t) (rpm) over the practical driving cycle is given in Figure 9.9.

n(t) =
60V(t)
2�rG

(9.8)

The average motor speed over the driving cycle in Figure 9.9 is 2353.95 RPM. The operating

speeds of the inverter-driven motors are in�uenced its failure analysis and consequently the

reliability analysis of E-Bus system. The bearing of the electrical motor is the main a�ected

motor component with the operating speed [1, 130, 131]. The bearing reference failure rate

� B (Failures/Mh) is given by Equation (9.9) [1,110].Cenv is a multiplication factor that rep-

resents the bearing environmental condition (ex. Environmental temperature and lubricant)

this factor is calculated based on charts and table in [1]. In the case study of this paper, the

W.M.E-Bus works in the North America region and the environment multiplication factor

equals 1.716.

� B = � BE;B Cenv (9.9)

� BE;B is the basic bearing failure rate (Failures/Mh) given by Equation (9.10), WhereL10 is

the standard bearing life in (milion rev) [1]. Equation (9.11) indicates the operational failure



111

Figure 9.8 On-Road Electric-Bus Drive Cycle with Bus speed in (mile/h).

Figure 9.9 Wheel Motor Speed (rpm) Over the Driving Cycle in Figure 9.8.

rate for the motor bearing � B )op (Failures/Mh.rpm). The developed formula in Equation

(9.11) establish the relation between W.M.E-Bus's bearing failure rate and the operational

motor speed (rpm).

� BE;B = 2 � 105[
60 n(t)

L10
] (9.10)

� B )op =
120� 105 n(t) Cenv

L10
(9.11)

As the bearing failure rate has a direct relation to the wheel motor operating speed, the

operational reliability analysis of W.M.E-Bus depends on the bus driving cycle. The Proposed

algorithm in Figure 9.10 checks the daily W.M.E-Bus reliability and manipulates the driving

cycle for the next day.

In the form of the bus's running miles, the operating timet (h) is converted to distances

d (mile) using the average of the nominal on-road driving cycle given in Figure 9.9. The

W.M.E-Bus drive system reliability at d (mile) is R(d) and the failure probability is F (d).

In the Digital Twin (DT), the failure and reliability analysis of the W.M.E-Bus system are

executed using the FFTA method in section 3. The proposed DT algorithm reads the W.M.E-

Bus driving cycle, and then estimate the system reliability.
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Figure 9.10 E-Bus Autonomous Uptime Improvement Algorithm.

In case of having lower reliability for example lower than 33%, the DT connects to the Bus's

ECU to manipulate the average cyclic driving speed and improve the system's reliability and

increase its uptime on the next day of operation. The critical reliability level is adjusted

according to the �eet management strategies. In the studied case given by Figure 9.9, the

W.M.E-Bus is inspected every 600 K mile which is equivalent to 33% system reliability and

67% failure probability. The simulation cycle time� T is selected to be one day (24-hour

service). The sub-systems failure uncertainty factor is obtained based on the maintenance

workshop of the W.M.E-Bus driving system and it could be updated with the ongoing physical

replacement tasks. The achieved uptime-improvements with the proposed algorithm are

indicated in the results section.

9.5 Result and discussion

The DT algorithm in Figure 9.11 is the implementation of the proposed scheme of autonomous

uptime-improvement for the Wheel Motor Electric Bus (W.M.E-Bus). This algorithm is

veri�ed with Gaussian fuzzy sets to present the sub-systems failure data uncertainty and an

expert-based uncertainty factor of 17 %. For the studied case given in Figure 9.9, the 17

% uncertainty factor is obtained based on the di�erence between the real failure miles and
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designed one for the W.M.E-Bus drive system,

For W.M.E-Bus drive system analysis with 17% failure data uncertainties, Table 9.4 com-

pares the performance of the proposed Gaussian defuzzi�cation method versus Mount Carlo

(MC) and Latin Hypercubic (LH) methods that sampled from a Gaussian distribution [124].

This comparison is carried out for the W.M.E-Bus drive system that runs on the conditions

of the on-road driving cycle in Figure 9.9, and the results are reported at a running mileage

of 400,000 miles. The proposed method of defuzzi�cation of Gaussian fuzzy sets performs as

the LH sampling method with 100 samples and 17 % uncertainty factor.

Figure 9.11 shows the W.M.E-Bus system reliability in the blue line and failure probability

in the orange line. At 600,000 running miles, the reliability of W.M.E-Bus drive system

degrades to 33% with the nominal on-road driving cycle given in Figure 9.9.

To improve the system reliability during the operation, the proposed DT algorithm in Fig-

Figure 9.11 FFTA W.M.E-Bus system analysis at the average cyclic speed of 15.11 mile/h.

ure 9.10 will change the controllable variable of the W.M.E-Bus; speed over the driving cycle

for the next operating day. Figure 9.12 shows the W.M.E-Bus drive system reliability at

Table 9.4 WME-Bus Analysis at 15 mile/h nominal average cyclic speed and 400K mile for
di�erent uncertainty analysis techniques

Index
Triangle

Defuzzi�cation
Gaussian

Defuzzi�cation
MC sampling [22]

100 samples
LHS sampling [22]

100 samples
Failure Probability 0.52662931 0.526646 0.53319864 0.52659089
System Reliability 0.48448179 0.484464 0.47791246 0.48451
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di�erent operating driving cycle speeds. At the same running distance of 600,000 miles, the

reliability of the W.M.E-Bus drive system increases as the developed algorithm manipulates

the bus's driving cycle and decreases the operating speeds.

In this case study, the allowable W.M.E-Bus mileage distance before performing the pre-

Figure 9.12 W.M.E-Bus Reliability analysis at di�erent operating E-Bus speeds.

ventive maintenance is 600,000 miles. Figure 9.13 demonstrates the impacts of the proposed

scheme on the allowable W.M.E-Bus mileage distances at di�erent operating average cyclic

speeds. At 33% system reliability, the allowable W.M.E-Bus's mileage increases as the pro-

Figure 9.13 W.M.E-Bus Allowable Distance (mile) Versus Average Driving Cycle speed
(mile/h) at Same Level of Reliability.
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posed DT algorithm interacts with the ECU of the E-Bus and slowdown the bus's driving

cycle. For example, changing operating speeds from 15.11 mile/h to 9.63 mile/h increases the

allowable bus's mileage by 8603 miles over the 600,000 miles that is adjusted as the maximum

allowable millage for the studied case.

9.6 Conclusion

This paper proposed a scheme for the implementation of autonomous uptime-improvement

systems in a Digital Twin (DT) environment while the operational in-�eld data are unavail-

able. The Basics of the Reliability Centered Maintenance (RCM) is extended to develop a

DT scheme that is capable to improve the system uptime autonomously. The Fuzzy Fault

Tree analysis is developed to analyze the system reliability with uncertainty of data. The

proposed scheme is veri�ed on Wheel Motor Electric Bus (W.M.E-Bus) drive system. To

overcome the unavailability of the operational data, the W.M.E-Bus drive system is disman-

tled to subsystems and basic components to analysis the system reliability. The developed

DT scheme links the uptime analysis with the real operating condition of the W.M.E-Bus

while using on-road driving cycle. The uptime-improvement of the W.M.E-Bus is measured

and compared to the existing inspection criteria, and the proposed scheme adds 8603 miles to

the maximum allowable mileage distance when derating the average operating speed by 36%.

In Future work, implementation of the decision making, Self-healing mechanism need to be

addressed. The developed scheme will extend to include operation cost, battery degradation,

and the DC power system.
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CHAPTER 10 GENERAL DISCUSSION

The fourth industrial revolution relays on digitized and fully connected machines. This digital

transformation and connectivity enable the observability and controllability of the machines.

According to these hypotheses, this thesis develops di�erent intelligent approaches in a Digital

Twin (DT) environment to improve the machines' uptime.

This thesis developed di�erent approaches to implementing the self-healing and autonomously

maintained machine. Di�erent industrial systems were studied with di�erent types of data,

including time-series and time-independent numerical data. Several Machine Learning (ML)

algorithms were developed to analyze the system sensor data and monitor its degradation

state. These algorithms modeled the health monitoring module that detects, diagnosis, and

predict system failures. Another module is developed to act automatically online to increase

the uptime while manipulating the system settings. The integration of these two modules

formulates the closed-loop of the autonomous system.

The performance degradation of a system can be stopped if it is detected and suitable required

actions are applied. In the degradation monitoring process, the system's faults/failures are de-

tected and diagnosed to trigger the self-healing mechanism. Integration of Long-Short-Term-

Memory (LSTM) and Regression Adjustment for Multivariate (RAM) detects the positional

anomalies of a robotic arm with correlated and unsupervised data variables. Meanwhile, in

the Pre-failure approaches, the monitoring module should include the Remaining Useful Life

(RUL) prediction or the Time to Failure (T2F) estimation of the system.

The logical Analysis of Data (LAD) pattern recognition technique enables the post-failure

self-healing mechanism. The online health monitoring module detects the instant of faults,

and it is modeled by the generated patterns when ingesting the uncontrollable variable data

to the LAD algorithm. Then, the self-healing module provides corrective settings to clear the

detected fault. The recovery patterns are generated when ingesting the controllable variable

data in the machine's normal operation to the LAD algorithm. For fast recovery, Distance

approaches were the criteria of the self-healing module to select the nearest recovery pattern

to the machine's settings at the instant of the fault.

Reinforcement Learning (RL) is a model-free approach and it has low online computation.

The combination of RL and LAD develops an online Pre-failure autonomous slowdown for

the system's degradation. The online health monitoring module is modeled by the generated

LAD patterns when ingesting the run-to-failure time series data. This module is able to

monitor and detect the Pre-Failure interval of the system while tracking the P-F curve.
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Once, the Potential failure point is detected, the Pre-Failure RL module is activated and

generates continuous autonomous actions according to the trained optimal policy. These

actions increase the Time to Failure (T2F) while keeping the system performance at an

acceptable level.

With the lack of system operational data, Fuzzy Fault-Tree Analysis (FFTA) algorithm is

adopted to analyze the Electric Bus (E-Bus) with the uncertainty of system failure data. This

approach estimates the system failure system and de�nes its critical components. The con-

cept of Reliability Centered Maintenance is adopted and extended to enable the autonomous

uptime improvement for the E-Bus with the unavailability of data or data uncertainty. Inte-

gration of FFTA and RCM's actions in a DT environment develops an autonomous scheme

that increases the E-Bus uptime according to the on-road real driving conditions.
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CHAPTER 11 CONCLUSION AND RECOMMENDATIONS

11.1 Summary of Works

This thesis has presented novel approaches to implementing autonomously maintained ma-

chines. The main objective of the research was uptime improvement. This thesis addressed

the Time to Failure (T2F) extension and self-healing mechanisms to improve the perfor-

mance of machines. The approaches developed in this thesis veri�ed the two limbs of the

autonomous systems concept in maintenance: system health monitoring, detection, and di-

agnosis, and (2) autonomous improvement actions. The health monitoring and diagnostic

modules are developed for di�erent systems/assets to provide a system degradation state to

the autonomous action module. According to this state, the proper autonomous action is

performed to increase the system uptime performance. In this thesis, supervised and non-

supervised machine learning algorithms were developed to build the health monitoring and

autonomous recovery modules. The impact of the autonomous module on system perfor-

mance is validated in di�erent industrial systems.

The industrial data of the studied systems are an essential part of learning and developing

an autonomous system. The data variables have to cover the non-controllable variables of a

system to be fully monitored, and the setting variables of the system to fully controlled. The

data type de�nes the main objectives of the health monitoring and autonomous recovery

modules. For example, time-independent data of faulty and non-faulty observations are

useful in building a post-failure self-healing mechanism to recover the machine at the instant

of a fault. This mechanism is implemented on a CNC milling machine and it was capable of

recovering the machine from a non-conformation (faulty) state to a conformation (non-faulty)

state. The health monitoring module detects undesired performance (fault/anomalies) and

enables the self-healing mechanism to recover the machine. cbmLAD Pattern recognition

machine learning algorithm was a successful method to analyze this supervised data and to

develop the novel self-healing mechanism.

In another application, Time series run-to-failure data was used to develop a pre-failure tool

performance improvement approach. a tool degeneration state is monitored online and the

potential failure level is estimated. A deep RL agent is developed to slowdown the tool

degradation rate while manipulating the machine settings according to the optimal trained

policy. The implementation of this approach in the particular case study increased Time to

Failure (T2F) by 40% on average, compared to the classical approach.
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If the assets data is unavailable, the autonomous uptime improvement approach was devel-

oped on the basis of reliability Centered Maintenance (RCM) and failure analysis of uncertain

data. A novel scheme was developed to increase the uptime of the Electric-Bus (E-Bus) in

Digital Twin. The drive system of the E-Bus was analyzed to estimate its reliability, and

according to the real driving cycle, the autonomous action is performed to extend the allow-

able millage. Deployment of the developed structure could increase the maximum allowable

E-Bus millage by 8603 miles on average.

11.2 Future Work

In future research, the validation of physical hardware systems needs to be addressed. More

physical experiments needed to be conducted to verify the IIOT send/receive responses and

the implementation of real-world autonomous action . The self-healing mechanism developed

addressed the anomalies of the systems in the post-failure mode. To have a robust self-

healing mechanism, more analysis and experiments are required. The mechanism needs to

be extended to include the failure of sensors and actuators, for example having diagnostic

and availability prediction software for sensors and actuators.

A generalized autonomous healing approach for pre-failure and post-failure is needed, to

extend the feasibility of the health monitoring and the autonomous action modules while

using transfer learning. In this machine learning technique, the developed models could be

used to perform another application. Transfer learning enables the machine learning model to

train on one application and transfer the training knowledge to any other similar application.

Continuous online learning stimulates the explorations of new failures or new actions. The

incremental-learning AI modules enable continuous updating of the health monitoring and

autonomous action models. The autonomous action module could learn more action space,

and the health monitoring will train on more faults. Consequently, The autonomous modules

will be adaptable to any changes in the environment of the machine.
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APPENDIX A CHAPTER 3: SELF-HEALING MECHANISM

INTERACTIONS

A.1 P2D is better than P2P in recovery time

While running the 20 sets sequentially that are labeled as out-of-speci�cation, we compared

the recovery time of the P2D and the P2P distance approaches. The P2D self-healing out-

performs the P2P and recovers the out-of-speci�cation state of the CNC machine faster than

with P2P. This result was obtained when the initial settings were the2nd ; 7th ; 8th ; and 9th

that are shown in Table 5.8 and Table 5.9. This behavior happened in 4-runs out of 20

runs, which led to out-of-speci�cation as shown in Table 5.8. In 9 settings out of the 20, the

recovery time was found to be the same for the P2D and the P2P approaches. In this case,

the selection of a recovery pattern does not a�ect recovery time. Finally, seven settings led

to a longer recovery time with the P2D than with the P2P.A.1.1 7th ; 8th ; and 9th Initial

Settings

These initial sets are di�erent in feed rate and are common in 4� 104 RPM spindle speed and

with a 32 mm non-variable depth of cut. The di�erent feed rate settings led to di�erent faulty

forces and temperature measurements for each initial set, as indicated in Table 5.8. In these

runs, P2D-Self-healing outperforms the P2P-Self-healing, and it recovers the CNC machine

Ra fault in 3.5 seconds as shown in Figures 6.a, 7.a, and 8.a. The P2D approach calculates

the distance to each recovery pattern by considering it as uniform distribution. The P2P

distance was calculated to a recovery pattern mean as a single point regardless of the other

corrective values inside the pattern. P2D-Self-healing selects the3rd recovery pattern to be

the nearest pattern in the �rst 5 cycles, which is the same as P2P. Then, it selects the1st

recovery pattern instead of the3rd pattern at a time of 3 seconds, while the P2P-self-healing

recovers the Ra out-of-speci�cation in 18 seconds with the1st recovery pattern, as given in

Figures A.1.b, A.2.b, and A.3.b. In these initial sets, the P2P-Self-healing cleared the de-

tected fault with the corrective action of changing the initial settings to 499.3 mm/min feed

rate and spindle speed to 3.56� 104 RPM. Consequently, the fault detection symptoms of the

force in the x-direction given in Figures A.1.d, A.2.d, and A.3.d,Fx were changed from the

values that cause a fault in each run to a normal value of 18.3 N. P2D-self-healing corrective

settings are 308.2 mm/min feed rate and 3.13� 104 RPM spindle speed. As a result of changes

to the settings, the faulty force in the x-direction for each initial set,Fx was changed to 15

N as presented by Figures A.1.d, A.2.d, and A.3.d, and the mean temperature decreased to

243.5 Co, as given in Figures A.1.f, A.2.f, and A.3.f. A.2 P2D and P2P have the same

recovery time.
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Figure A.1 P2P-synchronized Self-healing (P2P & P2D) interacting with CNC milling fault
in the 7th run

Figure A.2 Synchronized Self-healing (P2P & P2D) interacting with CNC milling fault in
the 8th run

In the runs of this behavior, the distance approaches of P2D and P2P do not a�ect Self-

healing performance, and it has the same fault recovery performance for the two approaches.

The performance equalizations exist in 9 runs out of the 27 runs that are indexed[18th � 27th ]

with excluding the conformed settings25th initial set. A.1.2 18th Initial Settings

In this run, we set the CNC machine initially with faulty settings of a non-variable 64 mm

cutting depth, a feed rate of 700 mm/min, and 4� 104 RPM spindle speed. P2P and P2D

Self-healing select the2nd recovery pattern to be the nearest pattern to the18th initial set-
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Figure A.3 Synchronized Self-healing (P2P & P2D) interacting with CNC milling fault in
the 9th run.
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Normal Temperature 
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Figure A.4 Synchronized Self-healing (P2P & P2D) interacting with CNC milling fault in
the 18th run.

tings, as identi�ed by �gure A.4.b. The self-healing module achieves the same fault recovery

time of 1 second for the two distance approaches, as given in �gure A.4.a. The self-healing

corrective actions are 358.5 mm/min, 3.9� 104 RPM with P2P self-healing, while P2D self-
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healing generates 367.2 mm/min and 3.7� 104 RPM for the feed rate and speed, respectively.

The fault cause was theFx sensor that has a high value of 26.8 N at the incident of the fault,

and with the self-healing action, it was reduced to normal values of 20.2 N, as depicted by

�gure A.4.d. The mean temperature decreased from 355.3Co to 297.4Co with P2P, and to

290Co with P2D, as presented in �gure A.4.f. A.1.3 19th , and 20th Initial Sets.

The CNC machine's initial faulty settings are 96 mm non-variable depth of cut, 1� 104 RPM

spindle speed, and the feed rate is 100 mm/min for the19th set and 400 mm/min for the

20th initial set. According to the depth of cut, the nearest possible recovery pattern to be

selected is the4th pattern out of the recovery patterns in Table 5.6. Therefore, in these

runs, the distance approaches do not in�uence the self-healing module performance, and it

has the same self-healing corrective actions of 200.3 mm/min feed rate and 2.94� 104 RPM

spindle speed with P2P and P2D self-healing, as recorded by �gure A.5.c and �gure A.5.e.

The Self-healing module clears the detected out-of-speci�cation fault within 1.5 seconds, as

given in �gure A.5.a. As the initial feed rate is di�erent in the 19th and 20th initial sets, the

faulty measurements of forces and temperature are di�erent for each initial set, as indicated

in �gure A.5.d and �gure A.5.e. CNC milling x-access force was the main fault indicator in

the 19th and 20th runs, and it decreased with self-healing actions to 24.0 N; while the mean

temperature changed to 294.4Co, as exhibited in �gure A.5.d and �gure A.5.e.

In the 21st , 22nd , 23rd , 24th , 26th , and 27th runs, the self-healing with either P2P or P2D

has the same fault recovery time, and it clears the CNC machine fault in 1.5 seconds, as

mentioned in �gure A.6.a. The depth of cut is the common setting in all these runs, and it is

96 mm; therefore, the4th recovery pattern is the nearest possible pattern as in the20th run.

The self-healing actions to recover the Ra fault are the same values of 200.3 mm/min for the

feed rate and 2.94� 104 RPM for the spindle speed, as mentioned in �gure A.6.c and �gure

A.6.e. For all these 6 runs, theFx is the main cause of the Ra fault and it activated the

1st IF-THEN detection rule in section 4.2. The faultyFx sensor values were 69.9 N, 55.3 N,

41.8 N, 41.8 N, 40.7 N, 29.7N, and 28.1 N for the21st , 22nd , 23rd , 24th , 26th , and 27th Runs

respectively, and it changed with a self-healing module to 24 N, as shown by �gure A.6.d.

A.3 P2P is better than P2D in recovery time

This is the last kind of Self-healing performance, and it was in 7 runs out of the 27 runs.

However, P2D and P2P approaches select the same nearest recovery pattern in each run of

these 7 runs; Self-healing P2P outperforms P2D self-healing, and it recovers the CNC ma-

chine Ra fault in fewer time steps than with P2D distance. In the3rd , 4th , and 6th runs,

P2P and P2D Self-healing selects the6th recovery pattern to recover the out-of-speci�cation

fault, as presented in �gure A.7.3.b, �gure A.7.4.b, and �gure A.7.6.b, respectively. The P2D

self-healing recovers the Ra fault within 2.5 seconds, while the recovery time was 2 seconds
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Figure A.5 Synchronized Self-healing (P2P &P2D) interacting with the CNC milling Ra fault
in sets 19 and 20.
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Figure A.6 Synchronized Self-healing interaction with Ra fault in the21st , 22nd , 23rd , 24th ,
26th , and 27th runs.
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with P2P self-healing, as indicated in �gure A.7.6. In the remaining 4 initial sets out of

the 27, the 5th recovery pattern is selected to be the nearest to clear the Ra faults in the

10th , 11th , 12th , and 15th runs, according to the P2P and P2D distance calculations. P2P

Self-healing clears the CNC machine fault within 1 second, while it is cleared in 1.5 seconds

with P2D, as given in �gure A.8.

Figure A.7 Synchronized Self-healing (P2P & P2D) interacting with the CNC milling fault
in the 3rd , 4th , and 6th runs.

The P2D Self-healing minimum execution time was 1.9 mseconds and it is achieved at the

12th run, while the maximum P2P execution time was 2µseconds at the15th run, as stated

in �gure A.9. Hence, the P2D self-healing recovers the fault within the next fault detection

cycle of 0.5 seconds later than P2P-self-healing. The execution time of Self-healing with

P2D distance depends on the number of corrective sample points inside the recovery pattern,

which are sampled from the pattern range to calculate the covariance matrix (Cov). While,

P2D-self-healing would be more accurate with a higher number of samples, its exclusion time

would increase. The number of recovery samples used in all 27 runs was 1000 samples. When

we decrease the number of samples to 10 samples per recovery pattern, a P2D Self-healing

execution becomes small and almost equal to the P2P-Self-healing execution time. Moreover,

the fault recovery time gets faster, the same as with P2P self-healing, in these 7 runs as given

in �gure A.9.
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Figure A.8 Synchronized Self-healing (P2P &P2D) interacting with the CNC milling fault in
the 10th , 11th , 12th , and 15th runs.

Figure A.9 Self-healing algorithm execution time with the3rd , 4th , 6th , 10th , 11th , 12th , and
15th Initial Sets
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APPENDIX B CHAPTER 5: PRE-FAILURE DRL AGENT

B.1 DRL Agent Parameters

The proposed pre-failure DDPG architecture consists of two deep actor-critic networks with

two hidden layers and the hyperparameters in Table B.1. The DRL performance depends

on its hyperparameters, and it is related to the environment/application dimension space

of actions and state [33, 34, 89, 133]. These hyperparameters are adopted from literature on

computer game applications that have the same data dimensions of actions and sensors as the

CNC turning machine [34]. Figure B.1 shows the developed Pre-Failure agent architecture.

Table B.1 DRL Pre-Failure agent hyperparameters

Hidden
neurons

Discount
factor

Batch
size

Learning rate
critic

Learning rate
actor

Target Update
rate

Memory
size

256/128 0.995 128 1e-4 1e-4 1e-3 1e6

Figure B.1 Pre-failure DDPG agent architecture for CNC tool performance

B.2 DRL Interactions for Di�erent Runs

In this section, the detailed results of runs II,III,IV, and V are stated.
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B.2.1 Run II, the spindle speed is 7500 RPM

The Pre-Failure agent interaction in this run is demonstrated by �gure B.2.

Figure B.2 Pre-Failure agent interaction in Run II, the spindle speed is 7500 RPM
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B.2.2 In Run III, the spindle speed is 1000 RPM

The Pre-Failure agent interaction in this run is given by �gure B.3.

Figure B.3 Pre-Failure Agent Interaction in Run III, the spindle speed is 1000 RPM
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B.2.3 In Run IV, spindle speed is 12,500 RPM

The Pre-Failure agent interaction in this run is depicted by �gure B.4.

Figure B.4 Pre-Failure Agent Interaction in Run IV, spindle speed is 12,500 RPM
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B.2.4 In Run V, the spindle speed is 15000 RPM

The Pre-Failure agent interaction in this run is shown by �gure B.5.

Figure B.5 Pre-Failure Agent Interaction in Run V, the spindle speed is 15000 RPM
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APPENDIX C CHAPTER 7: W.M.E-BUSES' RCM ACTION LIST

Table C.1 Full RCM actions worksheet for W.M.E-Bus.
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Table C.2 Full RCM actions worksheet for W.M.E-Bus (continue and end).
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