
Titre:
Title:

Message Flow Analysis for Distributed Real-Time Control Systems

Auteur:
Author:

Christophe Bourque Bédard

Date: 2022

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Bourque Bédard, C. (2022). Message Flow Analysis for Distributed Real-Time
Control Systems [Mémoire de maîtrise, Polytechnique Montréal]. PolyPublie.
https://publications.polymtl.ca/10366/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/10366/

Directeurs de
recherche:

Advisors:
Michel Dagenais

Programme:
Program:

Génie informatique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/10366/
https://publications.polymtl.ca/10366/

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Message Flow Analysis for Distributed
Real-Time Control Systems

CHRISTOPHE BOURQUE BÉDARD
Département de génie informatique et génie logiciel

Mémoire présenté en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées
Génie informatique

Juin 2022

© Christophe Bourque Bédard, 2022.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Ce mémoire intitulé :

Message Flow Analysis for Distributed
Real-Time Control Systems

présenté par Christophe BOURQUE BÉDARD
en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

Maxime LAMOTHE, président
Michel DAGENAIS, membre et directeur de recherche
Jérôme LE NY, membre

iii

DEDICATION

« #yopo »
- Eva T.

Eh-oh! Sufferin’ succotash!

iv

ACKNOWLEDGEMENTS

This work was made possible by many, many people. I first got introduced to the world of
tracing and performance analysis through my internship with the Trace Compass team at
Ericsson in 2018. In turn, they introduced me to the DORSAL lab and Michel Dagenais,
whom I thank for allowing me to work on an undergraduate research project exploring tracing
with ROS 1 back in 2018-2019, thus eventually leading to this project. I am also grateful
to Ingo Lütkebohle for giving me the opportunity to apply tracing to ROS 2 at Bosch in
Germany in 2019.

Furthermore, I would like to thank Michel Dagenais again for his mentorship and for giving
me a lot of leeway all through this project. I would also like to acknowledge Ericsson, the
Natural Sciences and Engineering Research Council of Canada (NSERC), and Prompt for
the financial support.

All of this would not have happened had I not had the real pleasure of working on autonomous
drones with Élikos, a team of passionate students at Polytechnique. The challenges, the
people I met, and the friends I made were wonderful and led me to embark on this amazing
journey.

I wish to thank my friends Pierre-Yves Lajoie and Eva Terriault for their kindness and support
throughout this unusual (in every way) adventure of mine. Finally, I would like to thank
my family for enduring my never-ending student status, and S. for always sticking with me
through thick and thin.

v

RÉSUMÉ

Au courant des deux dernières décennies, le développement logiciel en robotique, effectué par
des chercheurs et des compagnies à travers le monde, a évolué, en commençant par des solu-
tions sur mesure pour se diriger vers des cadres d’applications haut niveau libres. Ceci est de-
venu particulièrement utile pendant la dernière décennie, puisque les applications robotiques
sont devenues de plus en plus complexes, en partie grâce à des avancées technologiques au
niveau des capteurs, actionneurs, et des plateformes de calcul. Malheureusement, les cadres
d’applications tels le Robot Operating System (ROS), qui utilisent les mécanismes publisher-
subscriber et remote procedure call (RPC), présentent plusieurs défis au niveau de la perfor-
mance. En effet, ils effectuent l’ordonnancement haut niveau par-dessus l’ordonnanceur du
système d’exploitation, ce qui peut mener à des inefficacités et des goulots d’étranglement
au niveau de la performance. Les outils usuels de débogage fournissent une vision étroite de
l’exécution de l’application; ils ne peuvent pas procurer une vue d’ensemble de l’exécution
d’une application distribuée. Les techniques et outils de débogage et d’analyse de perfor-
mance doivent donc être adaptés pour ce genre de cadre d’application. De plus, ces outils
ne sont souvent pas compatibles avec les contraintes de systèmes temps réel : ils doivent
avoir un surcoût d’exécution minime afin d’éviter d’affecter l’exécution d’une application et
de fournir des résultats valides. Les méthodes existantes pour ROS 2 se concentrent sur des
cas d’utilisation très spécifiques, ce qui les rend inadéquates pour l’analyse de performance
générale, en plus d’avoir un grand surcoût d’exécution.

Afin d’améliorer la littérature sur ce sujet, ce mémoire apporte deux contributions prin-
cipales. Premièrement, il introduit un nouvel ensemble d’outils de traçage pour ROS 2.
L’instrumentation polyvalente pour traçage proposée permet d’extraire de l’information sur
l’exécution de ROS 2, et des expérimentations démontrent son bas surcoût d’exécution.
De plus, des outils de traçage permettent de configurer le traçage à travers le système
d’orchestration puissant de ROS 2, ce qui est primordial pour une utilisation efficace par
des chercheurs et d’autres utilisateurs. Ensuite, la deuxième contribution est une analyse du
flot de messages à travers un système distribué ROS 2. Elle permet d’extraire de l’information
haut niveau sur l’exécution, ce qui aide à identifier des causes potentielles de problèmes de
performance, en plus de permettre d’étudier l’ordonnanceur haut niveau de ROS 2. Elle
inclut aussi un modèle abstrait de l’exécution d’une application ROS 2, qui peut être utilisée
pour d’autres analyses, et inclut une expérimentation qui démontre encore une fois le faible
surcoût d’utilisation de la méthode. D’autres expérimentations sur des systèmes robotiques
synthétiques et réels démontrent son potentiel dans un but d’optimisation de performance

vi

et, en général, dans le but de comprendre l’exécution d’un système ROS 2. Ces contribu-
tions pourraient donc être exploitées par d’autres chercheurs et développeurs afin d’étudier
et d’améliorer la performance de ROS 2 et d’autres cadres d’application similaires.

vii

ABSTRACT

Over the last two decades, software development in robotics has shifted from a focus on
building custom solutions – thus reinventing the wheel frequently – to building open-source
high-level modular frameworks that are used and improved by researchers and companies all
over the world. This has become particularly useful during the last decade, since robotics
applications have gotten significantly more complex, in part due to technological advances
with sensors, actuators, and computing plaftorms. Unfortunately, robotics software frame-
works like the Robot Operating System (ROS), built on the publisher-subscriber and remote
procedure call (RPC) paradigms, have multiple performance challenges. Indeed, they per-
form high-level scheduling on top of the operating system scheduler, which can lead to major
performance inefficiencies and bottlenecks. Common debugging tools provide a very narrow
view of the application execution; they cannot provide a global perspective on the execution
of a distributed system. Software debugging and performance analysis tools must be adapted
for such frameworks and evolve alongside them. Furthermore, performance analysis tools are
often not compatible with strict constraints of real-time – and potentially safety-critical –
applications: they must have minimal runtime overhead to avoid perturbing the application
and to provide valid results. Current methods for ROS 2 focus on very specific use-cases, thus
making them unsuitable for general performance analysis, and generally have high runtime
overheads.

To improve the literature on this subject, this thesis brings two main contributions. It first
introduces a novel multipurpose tracing framework for ROS 2. The proposed multipurpose
tracing instrumentation allows extracing ROS 2-level execution information, and experiments
demonstrate its low overhead. Furthermore, tracing tools allow configuring tracing through
the powerful ROS 2 orchestration system, which is indispensable for effective use by re-
searchers and other end-users. Then, the second contribution is a message flow analysis,
showing the path of messages across distributed ROS 2 systems. It extracts high-level infor-
mation, which helps identify potential causes of performance bottlenecks, and can be used to
study the ROS 2 scheduler. It also includes an abstract model of the execution of a ROS 2
application, which can be used for other analysis goals, and includes an experiment to again
demonstrate the low runtime overhead of this method. Further experiments on both syn-
thetic and real robotic systems demonstrate its potential for performance optimization, and
in general for understanding the execution of a ROS 2 system. These contributions could
therefore be leveraged by other robotics researchers and software developers to study and
improve the performance of ROS 2 as well as other similar frameworks.

viii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF SYMBOLS AND ACRONYMS . xv

LIST OF APPENDICES . xvi

CHAPTER 1 INTRODUCTION . 1
1.1 Definitions and Basic Concepts . 1

1.1.1 Robotics . 2
1.1.2 Middleware . 2
1.1.3 Distributed Systems . 3
1.1.4 Real-Time Systems . 3
1.1.5 Software Debugging and Tracing . 4
1.1.6 Trace Analysis . 4

1.2 Problem Statement . 4
1.2.1 High-Level Task Scheduling . 4
1.2.2 Extraction of Execution Information 5
1.2.3 Tracing Configuration and Tooling 5
1.2.4 Trace Analysis . 5

1.3 Research Objectives . 5
1.4 Thesis Outline . 6

CHAPTER 2 LITERATURE REVIEW . 7
2.1 Tracing and Profiling . 7

ix

2.1.1 Profiling . 7
2.1.2 Tracing . 7

2.2 Trace Analysis . 9
2.2.1 Trace Analysis Frameworks . 9
2.2.2 Trace Analysis Methods . 10

2.3 Middleware . 11
2.3.1 Centralized Middleware . 11
2.3.2 Decentralized Middleware . 12

2.4 Robotics . 12
2.4.1 Robot Operating System . 13
2.4.2 ROS Systems . 15
2.4.3 ROS Performance . 15

2.5 Literature Review Summary . 18

CHAPTER 3 RESEARCH APPROACH AND THESIS ORGANIZATION 19
3.1 Work Done . 19

3.1.1 Instrumentation and Tools . 19
3.1.2 Trace Data Analysis . 19

3.2 Document Structure . 20

CHAPTER 4 ARTICLE 1: ROS2_TRACING: MULTIPURPOSE LOW-OVERHEAD
FRAMEWORK FOR REAL-TIME TRACING OF ROS 2 21
4.1 Introduction . 22
4.2 Related Work . 23
4.3 Background . 24

4.3.1 ROS 2 Architecture . 24
4.3.2 ROS Nodes and Packages . 25
4.3.3 Usability and Orchestration Tools . 25
4.3.4 Generalizability . 26

4.4 ros2_tracing . 26
4.4.1 Instrumentation . 26
4.4.2 Usability Tools . 28
4.4.3 Test Utilities . 30

4.5 Analysis . 30
4.6 Evaluation . 34

4.6.1 Experiment Setup . 34
4.6.2 Results and Discussion . 35

x

4.7 Future Work . 38
4.8 Conclusion . 38

CHAPTER 5 ARTICLE 2: MESSAGE FLOWANALYSISWITH COMPLEX CAUSAL
LINKS FOR DISTRIBUTED ROS 2 SYSTEMS 40
5.1 Introduction . 40
5.2 Related Work . 42

5.2.1 Communications . 42
5.2.2 Executor . 43
5.2.3 Tracing and Data Analysis . 44
5.2.4 Summary . 45

5.3 Background . 45
5.4 Intermediate Execution Representation . 46

5.4.1 Processing . 46
5.4.2 Implementation Details . 47

5.5 Message Flow Analysis . 47
5.5.1 Transport Links . 48
5.5.2 Causal Message Links . 49
5.5.3 Building the Message Flow Graph . 52

5.6 Experiments . 54
5.6.1 Autoware Reference System . 54
5.6.2 RTAB-Map . 57

5.7 Runtime Overhead Evaluation . 59
5.8 Future Work . 60
5.9 Conclusion . 61

CHAPTER 6 GENERAL DISCUSSION . 62
6.1 Instrumentation and Tracing Tools . 62
6.2 Trace Data Analysis Method . 62

CHAPTER 7 CONCLUSION . 64
7.1 Summary of Works . 64
7.2 Limitations . 64
7.3 Future Research . 65

REFERENCES . 66

APPENDICES . 79

xi

LIST OF TABLES

Table 4.1 Summary of Existing Monitoring and Instrumentation Methods and
Comparison with Proposed Method 27

Table 4.2 Instrumentation Points List with Types 29
Table 4.3 Experiment Parameters and Values 34
Table A.1 Comparison of Message Latencies with Minimum and Maximum Values 80

xii

LIST OF FIGURES

Figure 1.1 Typical publisher-subscriber communication. 2
Figure 1.2 Typical RPC communication, with a request and a reply. 3
Figure 4.1 Overall ROS 2 architecture and tooling interaction. 26
Figure 4.2 Instrumentation and tracepoint calls. 27
Figure 4.3 Example time chart of subscription message reception (sub.), timer

callback execution (timer), and message publication (pub.). Message
reception and publication instances are displayed as single timestamps,
while timer callback executions are displayed as ranges, with a start
and an end. The periodic timer callback uses the last received mes-
sage from each subscription to compute a result and publish it; this
inputs-outputs link is illustrated using colors, highlighting an inade-
quate synchronization. 31

Figure 4.4 Example timer callback execution interval (top) and duration (bottom)
over time. The callback period is set to 100 ms, while the callback
duration depends on the work done. Both contain outliers. 32

Figure 4.5 State of ROS 2 application threads over time with timestamps of ROS 2
events from the ros2_tracing instrumentation displayed as small tri-
angles on top of the thread state rectangle: 1O thread waiting for CPU
for 9.9 ms (orange), 2O thread running (green), 3O event marking start
of middleware query & wait for new messages, 4O event marking end
of middleware query, and 5O rclcpp_executor_execute event followed
shortly after by callback_start event for timer callback. This result
was obtained by importing trace data collected from the Linux kernel
and from the ROS 2 application using LTTng into Trace Compass [1].
The black arrow to the left of 3O represents the scheduling switch from
one thread to another for a given CPU. Some less relevant threads were
hidden. 33

Figure 4.6 Message latencies (avg. ± std.) without tracing (left) and with trac-
ing (right). 35

Figure 4.7 Absolute (left) and relative (right) latency overhead results. The stan-
dard deviation of the difference between the two means is insignificant
here. 36

xiii

Figure 4.8 Aggregated latency overhead and variation without tracing (left) and
with tracing (right). Latency values have been individually normalized
to zero mean based on the latencies without tracing, showing overhead
and variation. Note that the left mean is very slightly below zero
due to the additional imbalance caused by the variation in publishing
frequency. 37

Figure 5.1 Message flow visualization using our method. 42
Figure 5.2 Transport link example. The tree structure on the left represents

traces, with publishers, subscriptions, and timers under the nodes of
each trace. To the right of this, internal handles, PIDs, and host infor-
mation are shown: this is the 3-tuple needed to uniquely identify ROS 2
objects (see Section 5.4.1). Then, on the right is a time-based chart,
which provides an abstract representation of the execution using time
segments and arrows. In this example, a 5 ms timer triggers a callback
which publishes a message on /topic_a under node /source. This
message is received by the /topic_a subscription of node /sink on
the other computer. Next to timers and subscriptions, segments repre-
sent the duration of a specific callback instance, from beginning to end.
The smaller segment before the subscription callback segment repre-
sents the message being fetched (or taken) from the underlying mid-
dleware, before it is provided to the callback instance. For publishers,
the segments represent the duration between the initial user-level pub-
lication call and the underlying DDS call. The longer arrow between
the /topic_a publisher and subscription represents the transport link,
i.e., the message going from the publisher to the subscription over the
network. The shorter arrow between the 5 ms timer callback and the
/topic_a publisher shows that the message was published during the
timer callback. 48

Figure 5.3 Direct causal message link example. A message is published on /topic_a
during a 5 ms timer callback by node /source. The message is then re-
ceived by the corresponding subscription under node /sync_one_to_one.
During the subscription callback for that message, a message is pub-
lished on /topic_b, which is finally received by the corresponding sub-
scription under node /sink. The link between the input message and
the output message is therefore a direct one-to-one causal link. . . . 50

xiv

Figure 5.4 Indirect causal message links examples: (a) periodic asynchronous and
(b) partial synchronous. In both examples, messages are published
periodically using timers on /topic_a and /topic_b by two /source
nodes. These messages are then received by subscriptions under the
/periodic_async_n_to_m and /partial_sync_n_to_m node, respec-
tively. An output message linked to the input messages is eventually
published on /topic_c. 51

Figure 5.5 Simplified representation of a typical message flow graph, showing all
edge types. Edges are segments of the message flow, and their duration
is their weight. Vertices link one or more input edges to one or more
output edges. The third message (bottom) has two outgoing transport
links, i.e., it is received by two subscriptions. The first message (top) is
processed by a subscription callback and put into a message cache. This
message has a periodic asynchronous causal link to an output message
generated and published by a timer callback (above). This last message
is then received and processed by a subscription callback, which uses
it along with another message linked by a partial synchronous causal
link (below) to generate and publish a final message. 52

Figure 5.6 Autoware reference system (a) message flow result example and (b)
executor state for the same time range. 55

Figure 5.7 Autoware reference system (a) message flow and (b) executor state for
the same time range, showing the impact of a multi-threaded executor
instance. 56

Figure 5.8 RTAB-Map (a) callback instances and message publications along with
transport and direct links, and (b) message flow result for the main
computation pipeline for the same time range. 58

Figure 5.9 End-to-end latency comparison, without tracing (left) and with tracing
(right). 60

xv

LIST OF SYMBOLS AND ACRONYMS

API application programming interface
AUTOSAR AUTomotive Open System ARchitecture
CORBA Common Object Request Broker Architecture
CTF Common Trace Format
DAG directed acyclic graph
DDS Data Distribution Service
DLT Diagnostic Log and Trace
IDL interface definition language
IoT Internet of things
IPC inter-process communication
LET logical execution time
LTTng Linux Trace Toolkit: next generation
MPI Message Passing Interface
OMG Object Management Group
OS operating system
pub-sub publisher-subscriber
QoS quality of service
RCU Read-Copy-Update
ROS Robot Operating System
RPC remote procedure call
RTOS real-time operating system
RTPS Real-Time Publish Subscribe
SLAM simultaneous localization and mapping
SOME/IP Scalable service-Oriented MiddlewarE over IP

xvi

LIST OF APPENDICES

Appendix A ROS2_TRACING RUNTIME OVERHEAD 79

1

CHAPTER 1 INTRODUCTION

The last two decades have brought significant progress in the field of robotics. Lower costs and
newer & better technologies have transformed robotics into an ever-expanding industry. On
the development side, there has been a shift from the build-everything-from-scratch mentality
to using higher-level open-source frameworks. The wheel is thus no longer reinvented by
everyone, which cuts down on implementation time. This helps both academic and industrial
research as well as product development.

Alongside those technological advances – and in part as a result of them – robotics applica-
tions have also evolved and gotten more complex. Modern applications have a much larger
scope, are more computationally-intensive, and might involve distributed or multi-robot
systems. This includes domestic tasks, agriculture, manufacturing, warehouse automation,
search & rescue, and even space exploration. It also includes safety-critical applications such
as autonomous driving and uncrewed aerial systems. Software debugging and performance
analysis tools & techniques must adapt and evolve as well.

This thesis includes two research articles (Chapters 4 and 5):

1. Christophe Bédard, Ingo Lütkebohle, and Michel Dagenais, “ros2_tracing: Multipur-
pose Low-Overhead Framework for Real-Time Tracing of ROS 2,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 6511–6518, 2022.

2. Christophe Bédard, Pierre-Yves Lajoie, Giovanni Beltrame, and Michel Dagenais, “Mes-
sage Flow Analysis with Complex Causal Links for Distributed ROS 2 Systems,”
Robotics and Autonomous Systems, [in review] 2022.

The research work presented in this thesis was done in the DORSAL laboratory at Poly-
technique Montréal (Montréal, Québec, Canada) under the supervision of Michel Dagenais.
Aside from our great industrial partners and research lab colleagues, this work also benefited
from collaborations with Ingo Lütkebohle from Bosch Corporate Research and Pierre-Yves
Lajoie from MIST lab (Polytechnique Montréal).

1.1 Definitions and Basic Concepts

This section goes over basic concepts and definitions that are useful for understanding the
problem statement as well as the rest of this thesis.

2

1.1.1 Robotics

Typical robotic systems consist of three distinct elements: sensors, processors, and actuators.
Sensors convert observations of the real world into data. This data is then transformed into
commands using any number of processing layers. Commands are sent to actuators, which
physically move the system, thus affecting future sensor readings. Robotic systems can
have multiple sensors and actuators, and processing can be quite complex. For example,
simultaneous localization and mapping (SLAM) is used to map an unknown environment
using sensor data and then localize the robot within that map. Subsequent processing layers
then use this high-level localization information and eventually produce actuator commands
to move within the environment. Complex SLAM systems can be used to do surveying and
infrastructure inspection [2], and can involve multiple robots all working on the same map [3].

1.1.2 Middleware

Middlewares1 are simply an intermediary between two or more software or hardware compo-
nents. They help abstract away some of the work to allow easily building on top of them,
e.g., by providing an application programming interface (API).

Communications

In the field of robotics and Internet of things (IoT), middlewares are used to exchange mes-
sages between nodes, with the exact definition and mapping between nodes and machines,
processes, or threads being implementation- or application-dependent. The two main meth-
ods are publisher-subscriber (pub-sub) and remote procedure call (RPC). With the pub-sub
paradigm, messages are sent unidirectionally between one node and N nodes on a given topic,
as shown in Fig. 1.1. Nodes can have multiple publishers and multiple subscribers, and any
number of publishers or subscribers can publish or subscribe to a topic.

publisher
node

topic subscriber
node

subscriber
node

message

Figure 1.1 Typical publisher-subscriber communication.

1Henceforth intentionally pluralized with an s to refer to different middleware types and implementations.

3

On the other hand, as shown in Fig. 1.2, RPC allows bidirectional, request-reply communi-
cations, for example to request data from – or delegate computation to – another node. It
is therefore an additional abstraction on top of the pub-sub paradigm, providing a request
topic and a reply topic.

client
node

topic provider
node

request

response

Figure 1.2 Typical RPC communication, with a request and a reply.

Orchestration

Message-based communications allow building modular systems, which aids development.
Orchestration systems are often used to assemble these multi-node systems. This can be
especially convenient when multiple hosts are involved.

1.1.3 Distributed Systems

In distributed systems, components of a larger system are spread across multiple computers
over a network. This can be used for many types of applications, including robotics. In
simple applications, this can be achieved by having multiple computers (not necessarily a
coprocessor) in a single robot that communicate over a network switch. In more complex
applications, these are multi-robot systems working on a single common task communicating
over a network.

1.1.4 Real-Time Systems

In the world of embedded and safety-critical systems, real-time systems have very stringent
requirements. Real-time systems must have response time guarantees, and usually have
short and strict deadlines. For example, for an autonomous driving system, if an obstacle is
detected, the vehicle must react within a very short amount of time. Part of what is needed
to accomplish this is determinism: for a given input, the system must always provide the
same output. This includes not having dynamic memory allocations or blocking calls during
runtime. The former are non-deterministic and can fail; dynamic memory allocations are
restricted to the initialization phase, or applications are simply designed to only use static
memory. The latter may of course block for any amount of time; reasonable timeouts can

4

be used, or blocking calls can be replaced with polling calls. This thus applies at all levels,
from the drivers and operating system up to the application itself.

1.1.5 Software Debugging and Tracing

There are many software debugging techniques. Common tools such as debuggers give con-
trol of the execution to developers in order to introspect and understand the execution of
specific parts of the code. Observability tools provide information about the execution of an
application. This can be achieved by sampling the state of an application periodically, by
using counters to record basic information, or by recording events.

Tracing is a form of fast low-level logging. Applications are instrumented in specific locations.
Instrumentation can be static (i.e., included in the source code) or dynamic (i.e., added to
the application during execution). Both userspace applications and operating systems can be
instrumented and traced. When instrumentation points are executed, an event is generated
and recorded. Each event contains a basic payload (e.g., timestamp, event type or name)
and a payload that is specific to the given instrumentation point. Traces are collections of
these events. While logging allows recording user-readable information (i.e., strings), tracing
usually records raw data.

1.1.6 Trace Analysis

Analyzing data from the trace helps provide helpful information. It can be done online, in
which case it is considered monitoring. However, in most cases, it is done offline, i.e., after
the fact, since it is simpler and leads to less runtime overhead.

Traces can be analyzed to create a model of the execution. This can produce statistics about
parts of the application, and can also produce higher-level visualizations of the behaviour of
an application.

1.2 Problem Statement

1.2.1 High-Level Task Scheduling

Modern robotics applications run on more common kernels like Linux and operating systems
like Ubuntu instead of baremetal microcontrollers. Operating system scheduling, combined
with the high-level scheduling of tasks in publisher-subscriber frameworks, is challenging.
There are multiple engineering challenges and open research problems related to this. There
is therefore a need for improved tools and analysis methods to study this.

5

1.2.2 Extraction of Execution Information

Extracting execution information from an application must have minimal runtime overhead to
avoid perturbing the application, especially in safety-critical applications. The observability
tool must also be compatible with real-time principles. This includes both the choice of tracer
and the design of the instrumentation.

Furthermore, robotics software frameworks have a complex architecture. Multiple abstraction
layers make efficient instrumentation more challenging, requiring that multiple locations in
the source code be instrumented.

1.2.3 Tracing Configuration and Tooling

The modularity of middleware-based robotic systems requires powerful but flexible tools.
Orchestration systems make putting together and executing large modular systems easy,
either on a single host or on multiple hosts. Common tools to configure tracing are created
to be universal, hence they are unfortunately simple and rudimentary. They need to be
adapted to the aforementioned use-cases.

1.2.4 Trace Analysis

Tracing generates considerable amounts of data. This data needs to be processed and ana-
lyzed in order to provide useful and actionable information. The research work presented in
this thesis aims to provide high-level information on the execution of a ROS 2 application.
This includes information on the path of a message across a ROS 2 system, which could be
distributed. To be able to dig deeper, it should be possible to correlate such information
with execution information from the operating system.

1.3 Research Objectives

This thesis, including articles in Chapters 4 and 5, aims to tackle the following research
objectives:

• Develop low-overhead instrumentation that allows extracting execution information
from ROS 2.

• Develop or adapt tracing tools to conform to the intricacies of typical distributed robotic
systems.

• Develop an abstract model of the execution of a ROS 2 application.

6

• Develop an algorithm to extract high-level information from the abstract model: path
of message across a distributed robotic system.

• Perform experiments on both simulated and real robotic systems for validation.

1.4 Thesis Outline

This thesis contains 6 other chapters. Chapter 2 provides a review of the literature, showing
the state of the art in performance analysis and robotics. Then, a summary of the research
approach is presented in Chapter 3. Following this approach, Chapter 4 and Chapter 5 each
present a research article. Chapter 6 contains a general discussion on the results of the two
papers. Finally, Chapter 7 concludes and mentions limitations as well as possible future
work.

7

CHAPTER 2 LITERATURE REVIEW

2.1 Tracing and Profiling

Extracting performance-related execution information can be done using tracing and profil-
ing, as introduced in Section 1.1.5. However, it must be minimally invasive to avoid per-
turbing or influencing the system when observing it. Otherwise, the system may not work as
expected and the results may be invalid. This is known as the observer effect [4, Section 2.3.10]
and can manifest as “heisenbugs” [5, Section 11.6.4], although the latter inaccurately refers
to Heisenberg’s uncertainty principle [6].

2.1.1 Profiling

Profiling is a great general-use observability technique. It provides execution information
by collecting samples from various sources [4, Section 4.2.2]. With sampling-based profiling,
samples are usually collected at a fixed rate. Unfortunately, if the rate of the target activity
is similar to the sampling rate, sampling can completely miss it, leading to erroneous results.
This is somewhat analogous to the Nyquist–Shannon sampling theorem in the field of signal
processing [7].

CPU profiling is a common form of profiling. It can provide a breakdown of CPU usage by
function. perf [8] and gprof [9] are common profilers. The information can be visualized
using flame charts and flame graphs [10, 11]. The former show the state of the call stack
frame over time, while the latter show the total time of each function in the call stack.

Profilers can also provide information about performance counters, e.g., for cache. However,
this is intended for lower-level performance tuning.

2.1.2 Tracing

Tracing is event-based, collecting events using instrumentation instead of sampling data [4,
Section 4.2.3]. It can be done at different levels, e.g., kernel and userspace. Instrumentation
can be static (i.e., in the source code, called tracepoints) or dynamic (i.e., added during
runtime). Static instrumentation can also be integrated using the LD_PRELOAD mechanism,
for example to intercept certain function calls, trigger tracepoints, and then call the original
function. In-source static instrumentation is common when analyzing large applications as a
whole.

8

Tracing can also be used for function profiling by instrumenting function entries and exits,
e.g., using the -finstrument-functions gcc option. Flame charts and flame graphs can
be produced from this information as well. While this provides the real number of calls,
such instrumentation also adds significant runtime overhead. Since the overhead cost is the
same for each instrumented function, this skews function duration results, especially with
high numbers of short function calls. Tools exist to selectively instrument functions instead
of instrumenting all functions [12], but this still must be kept in mind when interpreting the
results.

There are many tracers, each one with a unique set of features and underlying mechanism [13]:
perf [8], DTrace [14], Ftrace [15–18], strace [19–21], VampirTrace [22], SystemTap [23–
25], eBPF [26, 27], and Linux Trace Toolkit: next generation (LTTng) [28–30]. perf and
DTrace can trace various events (on top of the already-mentioned profiling feature). Ftrace
traces kernel functions, while strace traces system calls. VampirTrace was created to trace
large-scale applications leveraging low-level parallel programming tools such as the Message
Passing Interface (MPI) [31]. SystemTap and eBPF allow tracing various events. eBPF is an
eierlegende Wollmilchsau1 kind of tool, meaning that it can do anything. However, while it
is useful for general-purpose system performance analysis, at its core, eBPF is an aggregator
for live monitoring. For instrumenting & tracing applications, other tools are more fitting.

LTTng

LTTng [28–30] is a low-overhead tracer [13] with a design that is compatible with real-
time requirements [32]. It is reetrant [33], thread-safe, signal-safe, non-blocking, has no
system calls in the fast path, and does not make copies of the trace data. It uses Read-
Copy-Update (RCU) [34] for concurrent wait-free reads of internal variables [35]. LTTng
writes trace data to ring buffers, which are then usually consumed by being written to
the file system or sent over the network to be consumed by another system. It uses a
tracepoint mechanism for instrumentation, which is the most efficient mechanism according
to Gebai and Dagenais [13]. Similar to other tracers, tracepoints can be enabled or disabled
during runtime. When disabled, tracepoints have virtually no performance impact [13].
LTTng as a whole has both a kernel tracer and a userspace tracer, both generating Common
Trace Format (CTF) [36] traces. The userspace tracer is completely implemented in the
userspace, thus avoiding costly context switches. Developers can design instrumentation that
is specifically tailored to the needs of their application and then implement it by adding static
LTTng tracepoints. Furthermore, while LTTng is most commonly used for offline analysis, in

1German for “egg-laying wool-milk-sow,” literally.

9

which all trace data is recorded and written to disk before being processed, LTTng also has
a snapshot mode. This mode is similar to how flight recorders work: trace data is written to
a buffer, and the buffer gets overwritten with new data until a snapshot is requested. This
can be particularly useful for production settings, when only the most recent chunk of data
is required, and it also avoids writing the data to the file system when it is not needed.

Finally, kernel and userspace traces collected using LTTng can easily be analyzed together [37,
38]. The Babeltrace tool [39], especially Babeltrace 2, can be used to read and process CTF
traces. However, there are better tools for more complex trace analyses.

2.2 Trace Analysis

As defined in Section 1.1.6, traces contain raw, low-level information, and must therefore be
processed to produce useful information for users and developers. Traces are processed from
beginning to end; the result of this is often a time-based chart showing events and states over
time. Statistics can also be computed and shown in XY charts.

2.2.1 Trace Analysis Frameworks

As with tracers, there are many trace analysis tools and frameworks, each with a unique
set of features and general approach. KernelShark [40] can analyze kernel traces obtained
with trace-cmd [41], an Ftrace frontend. Vampir [22, 42–44] encompasses VampirTrace
to form a framework for instrumenting, tracing, and analysis. Tracealyzer [45] is a trace
viewer built for lower-level real-time operating systems (RTOSs). Diagnostic Log and Trace
(DLT) [46] is an all-in-one tracing & loging and viewing framework built specifically by and
for the automotive sector under AUTomotive Open System ARchitecture (AUTOSAR), an
automotive consortium. These trace analysis frameworks are generally too specific in scope,
and too limited in features and extendability.

Trace Compass

Trace Compass is a full framework for trace data analysis [1]. It can process many trace
formats, including CTF traces. It has many built-in analyses and views, including a resources
view, showing the state of each CPU over time, and a control flow view, showing the state of
threads over time. Most of the built-in views show an abstract version of the execution trace
with time-based data in the form of segments, similar to a Gantt chart. However, it can also
generate tables and XY charts.

10

Furthermore, users can extend Trace Compass by providing their own analysis and viewer
plugins. Analyses can depend on any number of other analyses: users can use the result of
those analyses as an input for their own processing, thus favouring re-use and modularity.
Trace Compass offers many tools and APIs that are commonly needed for trace data pro-
cessing. It provides a straightforward way to process a trace by reading events one by one,
in order. This allows collecting statistics or building a model using both simple and complex
state machines. It also provides a mechanism for storing time-based data in a tree structure
on disk or in memory. Custom analyses can therefore easily leverage existing analyses and
tools, which reduces development time.

Finally, Trace Compass is being integrated as a plugin for the Eclipse Theia cloud IDE
platform [47]. Decoupling the trace viewer frontend from the trace analysis backend has
many benefits. For example, it enables large-scale distributed processing of very large traces.
This also follows a general workflow change in the industry, where companies are shifting
from managing individual installations of tools to providing centralized tools with access to
more substantial computing resources.

2.2.2 Trace Analysis Methods

In general, traces can be either processed directly or processed to create an abstract model.
However, there are a number of issues and limitations with this approach. Direct analyses
are limited by what was observed, and model-based analyses are limited by the conditions
under which the trace was made [48].

Studying distributed applications (see Section 1.1.3) as a whole can provide very useful
information. To do so, each individual system must be traced, and then the traces can be
combined and analyzed [4, Section 5.4.8]. Since each system has its own clock, traces have to
be synchronized in order to be correctly correlated. Trace synchronization can be performed
using the convex hull algorithm using network packets [49], both offline [50] and online [51].
This can be applied to heterogeneous embedded systems [52].

Furthermore, real-time applications were traced and studied in [53–57]. Finally, combining
execution information from kernel traces and userspace traces can help solve some of the
aforementioned trace processing issues [58].

Critical Path

The critical path is defined as the longest path in a directed acyclic graph (DAG). Therefore,
if this path is shortened, the overall length from beginning (i.e., root) to end is shortened.

11

The initial definition and application comes from task scheduling for project activities in
management [59]. A similar idea was applied to circuits by Abramovici et al. [60] to identify
faults detected during tests. Of course, the method can be applied to software [61], where
identifying the critical path is helpful for optimization. Yang and Barton [62] applied it to
compute the critical path of the execution of parallel and distributed programs. They built a
DAG of the execution history of an application using data collected during execution. Graph
edges represent an activity with a certain duration, either executing or waiting. Graph
vertices represent activity beginnings or ends: program start or end, or network send or
receive. The longest execution path can then be computed to identify the bottleneck.

Hollingsworth [63] performed an online computation of the critical path for a message-passing
parallel program using information obtained from logs. Saidi et al. [64] improved the tech-
nique, targetting systems with numerous interacting state machines. Fournier and Dage-
nais [65] applied a similar method to identify and analyze blocking in parallel programs
using kernel traces obtained with LTTng. Giraldeau and Dagenais [66] extended this method
and used wait-related events from the kernel (e.g., scheduling, network, or interrupts) to re-
cursively compute wait dependencies across machines, thus identifying the critical path. One
of the main advantages of this kernel-only approach is a userspace-independence, since all
userspace applications use these operating system primitives. Therefore, userspace applica-
tions do not need to be instrumented. Doray and Dagenais [67] further extended this method
to identify differences between multiple executions of the same task using both kernel and
userspace traces. Nemati et al. [68] applied the algorithm to virtualized environments using
kernel tracing. Ezzati-Jivan et al. [69] proposed a method to model the wait dependencies
between threads and hardware resources using kernel traces.

2.3 Middleware

As defined in Section 1.1.2, middlewares enable message-based communications between com-
ponents. There are two main types: centralized and decentralized.

2.3.1 Centralized Middleware

The first middleware type is broker-based, where a central server coordinates communications
between components. MQTT [70,71] and other variants offer pub-sub messaging, usually over
TCP. This lightweight and efficient protocol is designed for low-level, low-energy IoT devices
running on potentially unreliable networks.

12

2.3.2 Decentralized Middleware

On the other hand, decentralized middlewares do not use central message brokers, which of
course comes with additional complexity. LCM [72, 73] provides pub-sub communications
and is designed to be integrated into any kind of application. Scalable service-Oriented
MiddlewarE over IP (SOME/IP) [74], another AUTOSAR standard, was built for automative
applications, and provides pub-sub and RPC communications over TCP or UDP.

DDS

Data Distribution Service (DDS) [75,76], an Object Management Group (OMG) standard, is
designed for flexibility and scalability, and uses a discovery mechanism to achieve complete
decentralization. While DDS is used for IoT applications, it was intended for more powerful
applications and does not exclusively target unreliable networks. DDS itself incorporates
many other OMG standards, including a topic-level security specification, an interface or
message definition language borrowed from the Common Object Request Broker Architecture
(CORBA) [77] interface definition language (IDL), and Real-Time Publish Subscribe (RTPS)
for the actual message transport. DDS supports TCP and UDP, and can leverage both
unicast and multicast, which is key for scalability with large numbers of nodes. It provides
its own quality of service (QoS) policies and offers a much wider range of policies compared
to SOME/IP, which only proposes a reliability setting. DDS offers QoS policies related
to reliability, deadlines, message durability, message history depth, data lifespan, liveliness,
etc. There are multiple implementations of the DDS standard: Eclipse Cyclone DDS [78],
eProsima Fast DDS [79], and RTI Connext DDS [80], to name a few. The first two are
open-source, while the last one is proprietary. Moreover, the RTPS protocol was created to
be interoperable, but the full features of different DDS implementations might not be.

2.4 Robotics

A number of frameworks and tools have been created to help ease software development in
robotics. Player, a robotics framework, and Stage, a simulator, commonly referred to as
Player/Stage [81], were first created in 1999. Their main goal was to provide a common
open-source infrastructure for multi-robot systems research. However, since Stage is a 2D
simulator for indoor environments, its applications are limited.

13

2.4.1 Robot Operating System

Robot Operating System (ROS) [82] is an open-source robotics framework that was first re-
leased in 2007. It is a middleware and set of tools for robotics software development. It offers
pub-sub and RPC-like communications between nodes (see Section 1.1.2), using publishers,
subscriptions2, services, and actions. Communication topics have a name and a message type,
e.g., an integer, a string, or a complex structure defined using a simplified message description
language similar to the CORBA IDL. Services and actions are both asynchronous request-
reply RPCs, with the latter having optional progress feedback messages. Service servers offer
a unique service which can be used by service clients. As mentioned in Section 1.1.2, all of
this enables the creation of high-level computation graphs, facilitating modularity. Further-
more, since ROS is open-source and has garnered many users over the years, implementations
for common algorithms and sensor drivers can be easily found and used. This open-source
ecosystem thus significantly promotes reusability and is very attractive to potential users [83].

ROS was created as an academic research tool, and was not designed for real-time applica-
tions (see Section 1.1.4). Its custom message-passing middleware implementation does not
offer the features, flexibility, or performance that are commonly offered by state-of-the-art
middlewares. Moreover, it uses a central broker for discovery of pub-sub and RPC objects;
each machine needs to be configured to point to that central node. Although this is accept-
able for systems consisting of a few machines, it considerably limits scalability. Consequently,
ROS did not meet the requirements of real-time safety-critical applications.

Therefore, in 2014, development began for ROS 2 [84, 85] as a complete re-write of ROS
(i.e., ROS 1) to meet the requirements of those newer use-cases and to leverage new tech-
nologies [86]. The ROS 2 architecture is therefore substantially different [87]. While ROS 1
uses a custom message transport protocol with a central broker, ROS 2 defines a middleware
interface and leaves the message-passing tasks up to an actual middleware [88]. The default
middleware is DDS; a few implementations are available and tested for ROS 2: Cyclone
DDS [78], Fast DDS [79], and Connext DDS [80]. Furthermore, ROS 2 defines its own IDL,
although it is very similar to the message description language from ROS 1, and the mapping
between the DDS IDL and the ROS 2 IDL is trivial. ROS 2 also defines and proposes its
own QoS settings; in practice, this is a subset of the DDS QoS settings. However, since the
middleware abstraction allows ROS 2 to run using any middleware, other non-DDS middle-
wares can also be used. For example, the Eclipse iceoryx [89] inter-process shared memory
middleware can be used through rmw_iceoryx [90], an implementation of the middleware
interface for iceoryx. Similarly, rmw_email [91, 92] leverages a middleware that uses emails

2ROS uses “subscription” instead of “subscriber” by convention.

14

to exchange messages.

ROS 2 also features “lifecycle nodes” [93], which are stateful nodes based on a standard
state machine. Transitions between creation, configuration, activation, deactivation, shut-
down, and error states can be triggered using services and other tools. This makes their life
cycle well defined and easier to control, fitting with common approaches for safety-critical
applications [94].

As introduced in Section 1.1.2, orchestration systems are used to assemble multi-node sys-
tems. Using a common system description language backend, the ROS 2 orchestration system,
launch [95], supports description formats in XML and YAML files, i.e., launch files. This
promotes aggregation and re-use of multiple smaller systems in a single host or as part of a
larger distributed system. On the security side, ROS 2 exposes some of the DDS security
features, namely authentication and authorization, through a user-facing tool, SROS2 [96].

Moreover, ROS 2 nodes may have any number of publishers, subscriptions, services, actions,
or timer-triggered periodic callbacks. Nodes usually communicate with each other using
messages. This means that the mapping between nodes and processes is not strict: users
can define any number of nodes in a single executable. Nodes can also be made composable,
making “components” [87], each one in its own shared library. Composition of nodes can
then be done at runtime using command-line tools or defined in a launch file. Combining
two components into a single process enables the use of intra-process communications, which
can significantly improve latencies while still keeping the message-based abstraction.

Finally, while the underlying middleware takes care of sending and receiving messages, ROS 2
must coordinate the reception of messages internally. Messages and requests are passed on
directly to the middleware, although they may actually be sent asynchronously. However,
ROS 2 has to fetch new messages from the middleware: this is handled by the ROS 2
executor [97], a high-level scheduler. The default executor implementation is single-threaded,
although a multi-threaded executor is also available. It constantly queries the middleware
for new messages and checks if timers are due. Then, if a new message is available, it takes
it from the middleware and calls the callback function of the corresponding subscription.
Similarly, it calls the callback function associated with a timer if it is due. Furthermore,
a static version of the single-threaded executor is also available. By not allowing nodes to
be added to it after initialization, its internal logic can be simplified, reducing its runtime
overhead and memory footprint compared to the default executor. Fortunately, as mentioned
in Section 1.1.4, this fits with real-time principles, which can therefore easily take advantage
of it. Consequently, the executor is a crucial part of the ROS 2 architecture and has a critical
role in its performance.

15

2.4.2 ROS Systems

Multiple architectures for complete ROS 1- and ROS 2-based systems have been proposed.
Kato et al. presented Autoware.AI [98,99], an autonomous driving system completely based
on ROS 1. Its successor, Autoware.Auto, is built on ROS 2. Similarly, a reference sys-
tem based on the Autoware.Auto computation graph was proposed as a standard system
for comparing and benchmarking different approaches [100]. Reke et al. [101] proposed an
architecture based on ROS 2 with some real-time requirements. Finally, ROS 2 is also being
used by NASA for space missions [102,103].

2.4.3 ROS Performance

Network and Message-Passing

First, the networking layer was evaluated for real-time communications on Linux. Gutiérrez et
al. [104,105] evaluated communications on a real-time Linux kernel using the PREEMPT_RT
patch [106] and concluded that it can meet real-time requirements.

For ROS 2, Apex.AI proposed performance_test [107], a benchmarking tool to evaluate
single pub-sub latencies over the network. Inspired by this, iRobot proposed a framework
for evaluating latencies in custom computation graphs [108]. As will become evident in the
following sections, the two approaches are different but complementary.

Maruyama et al. [109], Gutiérrez et al. [110], and Puck et al. [111] all evaluated the per-
formance of ROS 2 as a whole and found it promising. Kim et al. [112] and Fernandez et
al. [113] evaluated the performance impact of the ROS 2 security features. Thulasiraman et
al. [114] evaluated the performance of ROS 2 and influence of its QoS settings on lossy net-
works. Barut et al. [115] compared the real-time capabilities of ROS 2 with PREEMPT_RT
and OROCOS [116], a lower-level real-time robot control framework, and found that their
performance was similar under normal conditions. Wang et al. [117] proposed a single-host
inter-process communication (IPC) layer for ROS 1 and ROS 2 which reduces the overhead
of IPC for large messages. Jiang et al. [118] proposed a serialization technique to improve
communication performance by up to 93%. Kronauer et al. [119] evaluated the overhead
of ROS 2 with relation to the underlying DDS implementation using profiling and showed
that it can lead to 50% latency overhead. They noted that the message latency decreases
as the publication frequency increases, potentially as a result of internal middleware buffers.
They also noted that common operating system (OS) energy-saving features such as CPU
frequency scaling cause a lot of latency variability. Finally, Puck et al. [120] noted in another
performance evaluation of ROS 2 that the use of dynamic memory allocations accounts for

16

a significant portion of the message processing time.

Executor

As introduced in Section 1.2.1 and Section 2.4.1, high-level scheduling of tasks with ROS is
an open problem.

Exchanges of messages from node to node can be modelled as event chains and pipelines
in DAG, which have been studied from a pure scheduling and dataflow perspective in the
past [121–124]. Peeck et al. [125] focused on online monitoring for reacting to latency viola-
tions in event chains, proposing a monitoring solution that can identify deadline violations
in order to try to recover. Casini et al. [126] proposed a formal scheduling model and a
response-time analysis for ROS 2 to bound worst-case response times. Tang et al. [127] then
proposed a more specific version that is however only valid for independent linear processing
chains. Blass et al. [128] built on the work by Casini et al. [126] and proposed ROS-Llama,
an online automatic latency manager for ROS 2. It extracts a model of the running system
using tracing, and schedules threads to satisfy latency goals on a real-time system. Their
work helped illustrate how the higher-level scheduling of tasks in ROS 2 does not apply very
well to classic OS-level scheduling techniques. Blass et al. [129] further extended this work,
and stressed how the ROS 2 executor differs from normal schedulers in the literature, since it
prioritizes, in order: timers, subscriptions, service servers, and service clients. This inherent
prioritization certainly impacts scheduling.

Lienen and Platzner [130] presented an FPGA-accelerated executor for ROS 2. Yang and
Azumi [131] explored the real-time performance of the callback-group-level executor [132]
available as an alternative in ROS 2, which allows having multiple distinct executor instances
without interference. This allows setting scheduling priorities individually for each thread
and its corresponding callback group, instead of bundling everything together as the default
executor does. Choi et al. [133] proposed PiCAS, a priority-driven chain-aware scheduler, and
showed that it helps lower end-to-end latencies. Staschulat et al. [134,135] proposed a budget-
based executor for RTOSs based on the logical execution time (LET) paradigm [136, 137],
which restricts communication of data to specific periodic time instances. Data is only read
at the beginning of a time period and only written at the end. LET is more appropriate for
programs relying on time or event triggers, thus helping make the executor more compatible
with real-time OS schedulers.

17

Observability

Malavolta et al. [138] presented robotics software architecture guidelines that were mined from
open-source projects. One of their guidelines mentions that logging should be standardized
across a project and follow well-defined guidelines. As presented by Afzal et al. [139] and
demonstrated by Quigley et al. [140], ROS users rely heavily on textual logging as well
as tools such as rosbag, which records messages for later playback. Unfortunately, these
methods provide execution information that is too abstract to be useful for performance-
related concerns. Moreover, using the system itself to collect execution information – i.e.,
using publishers and subscriptions to record logs and messages – is also too invasive to be
able to provide valid performance-related information, as explained in Section 2.1.

Blass et al. [128] noted that ROS-Llama improves latency-goal compliance, but that most of
the runtime overhead of their solution is due to their custom tracer implementation. Forouher
et al. [141] proposed a tool to visualize the flow of data in a ROS 1 system based on the data
provenance principles from Acar et al. [142]. They do not consider the runtime impact, and
their method relies on a special in-message header, which is invasive and does not fit with
low-overhead observability principles. Similarly, Witte and Tichy [143] presented a tool to
track messages in ROS 1 in order to interactively apply transformations. They also used a
custom message header and noted that the performance overhead it introduces is significant.

Lütkebohle [144] identified a determinism problem with the standard obstacle avoidance
algorithms in ROS 1. They used LTTng [28–30] to instrument ROS 1. They created an
execution model and identified a lack of synchronization between input data and output
data. This was presented as a generic tracing tool for ROS 1 [145], and was used and
extended to visualize the flow of a message in ROS 1 [146].

Rivera et al. [147] proposed ROS-FM, which uses eBPF [26, 27] to monitor ROS-related
network data for security purposes. Since they solely use network data, the applications
of ROS-FM are limited. Furthermore, its overhead is at least 15% for ROS 2, which is
significant for real-time systems. Nishimura et al. [148] proposed RAPLET, which provides
a ROS-aware breakdown of the latency between publication and subscription in ROS 1. It
uses LD_PRELOAD to dynamically instrument ROS and uses eBPF for network data. They
claim that the pub-sub latency overhead of their tool is about 0.03 ms, which accounts for
2-20% of the latency depending on message size. They note that further enhancements are
needed to enable the use of the tool in production.

18

2.5 Literature Review Summary

The previous sections provided an overview of multiple areas of the literature relating to the
problem statement as presented in Section 1.2. LTTng has been identified as the most suitable
tracer for instrumenting userspace applications and being able to correlate the information
with other sources such as the Linux kernel. Trace Compass was also selected as the most
powerful trace analysis framework. Moreover, various trace analysis methods were presented.
Powerful methods use trace data to build an abstract model of the execution, which can then
be used to provide useful information. The critical path method helps highlight the most
important segments of the execution of a distributed application.

Thereafter, multiple middleware types were presented, and decentralized middlewares were
established as being most appropriate for scalable or distributed systems. For this range of
use-cases, ROS 2 on DDS was identified as the definite framework for robotics applications.
Finally, open problems with ROS 1 and ROS 2 performance were presented. These problems
predominently revolve around the handling of messages by the underlying middleware and
the high-level scheduling of the ROS 2 executor. Some benchmarking and monitoring tools
were proposed. However, there is no method that can produce a visualization of the flow of
messages across distributed ROS 2 systems with a low performance impact.

19

CHAPTER 3 RESEARCH APPROACH AND THESIS ORGANIZATION

This chapter outlines the research approach used for the work presented in this thesis. It
aims to explain the following two chapters, which correspond to the articles in Chapters 4
and 5, as well as the link between them.

3.1 Work Done

To accomplish the research objectives presented in Section 1.3, the approach and work for
this thesis is split into two parts. In the first part, instrumentation and tools are created
to collect execution data from ROS 2. The second part is about processing and analyzing
the collected data. While these two main steps are not completely sequential, they are fairly
distinct.

Following the literature review in Chapter 2, ROS 2 on Ubuntu, LTTng, and Trace Compass
are chosen for the implementation. However, the approach would be applicable to other
similar robotics frameworks, tracers, and trace analysis frameworks.

3.1.1 Instrumentation and Tools

First, the latest version of ROS 2 (Humble) was instrumented using LTTng tracepoints. The
instrumentation was created to collect basic information about objects (i.e., publishers and
subscriptions) and events (i.e., publications, timer and subscription callbacks). This was
a first step, knowing that this might need to be improved or augmented when working on
the actual analysis. Then, tools were created to integrate tracing into the ROS 2 tooling
ecosystem, namely the command-line tools and launch system introduced in Section 2.4.1.
To control LTTng tracing within the ROS 2 ecosystem, the LTTng bindings were used.
Chapter 4 presents a framework with low-overhead instrumentation and tools for tracing
ROS 2.

3.1.2 Trace Data Analysis

Using the Babeltrace Python bindings, a first trace processing prototype was created as a
proof-of-concept for the initial instrumentation and corresponding execution models. Then,
similar analyses were implemented using Trace Compass. Finally, the instrumentation and
Trace Compass analyses were extended to be able to compute the message flow. Chapter 5

20

presents a method for extracting and displaying the path of a message across distributed
ROS 2 systems.

3.2 Document Structure

This thesis adopts the recommended outline for a thesis by articles, where published or
submitted articles are directly included as chapters. The structure is as follows:

• Chapter 1 introduces the research context and presents the research objectives.

• Chapter 2 summarizes relevant work in the literature.

• Chapter 3 explains the research approach that was used for this thesis.

• Chapter 4 presents a framework for tracing ROS 2, with instrumentation and tracing
tools.

• Chapter 5 presents a method for visualizing the path of a message across distributed
ROS 2 systems.

• Chapter 6 contains a general discussion following the work presented in Chapters 4
and 5.

• Chapter 7 concludes with a summary of the work presented in this thesis, its limitations,
and possible future work.

21

CHAPTER 4 ARTICLE 1: ROS2_TRACING: MULTIPURPOSE
LOW-OVERHEAD FRAMEWORK FOR REAL-TIME TRACING OF ROS 2

Preface
Full Citation: Christophe Bédard1, Ingo Lütkebohle2, and Michel Dagenais1, “ros2_tracing:
Multipurpose Low-Overhead Framework for Real-Time Tracing of ROS 2,” IEEE Robotics
and Automation Letters, [accepted] 2022.
Copyright: © 2022 IEEE. Reprinted, with permission.

Abstract - Testing and debugging have become major obstacles for robot software develop-
ment, because of high system complexity and dynamic environments. Standard, middleware-
based data recording does not provide sufficient information on internal computation and
performance bottlenecks. Other existing methods also target very specific problems and
thus cannot be used for multipurpose analysis. Moreover, they are not suitable for real-time
applications. In this paper, we present ros2_tracing, a collection of flexible tracing tools
and multipurpose instrumentation for ROS 2. It allows collecting runtime execution infor-
mation on real-time distributed systems, using the low-overhead LTTng tracer. Tools also
integrate tracing into the invaluable ROS 2 orchestration system and other usability tools.
A message latency experiment shows that the end-to-end message latency overhead, when
enabling all ROS 2 instrumentation, is on average 0.0033 ms, which we believe is suitable for
production real-time systems. ROS 2 execution information obtained using ros2_tracing
can be combined with trace data from the operating system, enabling a wider range of
precise analyses, that help understand an application execution, to find the cause of perfor-
mance bottlenecks and other issues. The source code is available at: https://gitlab.com/ros-
tracing/ros2_tracing.

Keywords - Software tools for robot programming, distributed robot systems, Robot Op-
erating System (ROS), performance analysis, tracing.

Parts of this work were supported through funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 780785. Further, financial support of Ericsson, NSERC,
and Prompt for C. Bédard and M. Dagenais is gratefully acknowledged.

1C. Bédard and M. Dagenais are with the Department of Computer Engineering
and Software Engineering, Polytechnique Montréal, Montreal, Quebec H3T 1J4, Canada,
{christophe.bedard,michel.dagenais}@polymtl.ca

2I. Lütkebohle is with Corporate Research at Robert Bosch GmbH, 71272 Renningen, Germany,
ingo.luetkebohle@de.bosch.com

https://gitlab.com/ros-tracing/ros2_tracing
https://gitlab.com/ros-tracing/ros2_tracing

22

4.1 Introduction

As modern robots have become more versatile, e.g., in tackling unstructured environments or
collaborative work, their software has become correspondingly more complex. Distributed,
asynchronous compute graphs based on frameworks like ROS [82, 85] are now the dominant
approach for integrated systems, even for space exploration [103]. Correspondingly, testing
and debugging is now typically conducted by collecting data from a running system for later
analysis, through tools like rosbag or textual logging [139,140].

However, there are well-known drawbacks: rosbag and similar middleware-based tools can
only record data that is available as messages. Aside from the effort involved, there is also
a significant resource cost in both CPU and memory usage. It is also well known that
perturbing a system through extensive monitoring is to be avoided [4]. Therefore, messages
simply cannot practically deliver the stacktrace-level of detail and the detailed execution
context information that we have come to expect from classical debuggers. Logging also
cannot fill this gap, because of its unstructured output and lack of support for binary data.
As a result, the debugging experience in robotics is greatly impoverished.

In contrast, tracing has been developed to provide structured, flexible, on-demand data
capture across multiple applications and the kernel, to enable detailed analysis when needed.
Conceptually, it can be considered an evolution of logging with support for binary data and
well-defined data structures. Common frameworks provide support for easy and low-overhead
capture of contextual data, such as process information or accurate, in-process timestamps,
as well as aggregation of data across hosts and tooling for analysis [13,28,50,58].

However, two challenges need to be solved to truly improve the testing and debugging sit-
uation. First, tracing has so far been a tool for performance experts, used in very specific
analysis use-cases – such as scheduling optimization [128] or message latency analysis [148]
– that were difficult to extend. To improve the debugging experience in general, a more
versatile approach is required. Second, we need to ensure that the performance requirements
of robotics are met. Standard ROS 2 targets soft real-time systems, i.e., systems where
reaction time should have an upper bound, and should be achieved almost always, even
though exceeding the bound is not catastrophic. To maintain these characteristics, a tracing
integration must have comparatively low overhead with very few outliers.

Contributions. In this paper, we present ros2_tracing, a framework for tracing ROS 2 [85]
with a collection of multipurpose low-overhead instrumentation and flexible tracing tools.
This new tool enables a wider range of precise analyses that help understand an application
execution. The source code is available at: https://gitlab.com/ros-tracing/ros2_tracing.

https://gitlab.com/ros-tracing/ros2_tracing

23

ros2_tracing brings the following contributions:

• It offers extensible tracing instrumentation capable of providing execution information
on multiple facets of ROS 2.

• With a strategic two-phase instrumentation design and using a low-overhead tracer, it
has a lower runtime overhead than current solutions, making it suitable for the real-time
applications targeted by ROS 2.

• It enables more precise analyses using combined ROS 2 userspace and kernel space data
as a whole.

Furthermore, notable ros2_tracing features include a close integration into the expansive
suite of ROS 2 orchestration & general usability tools, and an easily swappable tracer backend
to support different operating systems or to switch to a tracer with other desired features.

This paper is structured as follows: We survey related work in Section 4.2 and summarize
relevant background information in Section 4.3. We then present our solution in Section 4.4
and discuss its analysis potential in Section 4.5. Thereafter, Section 4.6 presents an evaluation
of the runtime overhead of our solution. Future work is outlined in Section 4.7. Finally, we
conclude in Section 4.8.

4.2 Related Work

Tracing is an established approach for performance analysis, popular for operating system-
level performance analysis and for distributed systems. Its popularity is both due to the low
overhead when not in use, which is often zero, and due to the extensive tool support. An
excellent overview, covering both cloud and operating system use-cases, is [4,149]. However,
while powerful, these tools arguably operate at an abstraction level that is too low to be
practical for the average roboticist.

In the context of robotics and ROS 1, the earliest reported use of tracing was motivated
by non-deterministic behavior of obstacle avoidance in a mobile robot, by one of the present
authors [144]. Using a model of the ROS 1 navigation stack, and tracing based on LTTng [28],
a lack of synchronization between the sensory data processing and motion control pathways
could be identified. This is a primary example of how non-deterministic effects can be hard to
diagnose otherwise, since the magnitude of the effect was dependent on how the OS scheduled
the threads involved, which also varied over the run-time of the system. There were some
attempts at generalizing this kind of tracing tooling in [145], and deriving a message flow

24

analysis [146]. However, they were discontinued due to the emergence of ROS 2 and its
potential for real-time applications [86,94].

Previous work has identified various open problems in ROS 2. Kronauer et al. [119] inves-
tigated the end-to-end latency of communications and found that its overhead is up to 50%
compared to directly using DDS, the underlying middleware. Similarly, Jiang et al. [118]
found that the message conversion cost is highly dependent on the complexity of the message
structure. Casini et al. [126] proposed a scheduling model that aims to bound the end-to-end
latency of processing chains. Furthermore, several previous contributions propose tools that
use tracing to measure and/or improve message transmission latency, due to its importance
for realizing low-latency distributed systems. This includes the RAPLET tool by Nishimura
et al. [148] for ROS 1, ROS-FM by Rivera et al. [147], and ROS-Llama by Blass et al. [128],
both targeting ROS 2. The last two are monitoring tools, meaning that they use instrumen-
tation to extract execution information, process it, and provide the results to users or act on
them during runtime. However, none of these tools support any use-cases beyond latency,
and they all show significant overheads (cf. Table 4.1), which is due for some of them to the
use of logs or custom unoptimized tracers to extract execution information. An interesting
custom proposal to detect latency deadline violations with a low overhead of only 86 µs
per event, including online detection, is proposed by Peeck et al. [125], but again, without
attempt at generality.

In conclusion, the present work is – to the best of our knowledge – the first and only tool
that provides a generic, tracing-based approach for ROS 2 performance analysis.

4.3 Background

In this section, we summarize relevant background information needed to support subsequent
sections. Note that we use “ROS 1” to refer to the first version of ROS and use “ROS” to
refer to ROS 1 and ROS 2 in general, since many concepts apply to both.

4.3.1 ROS 2 Architecture

The ROS 2 architecture has multiple abstraction layers; from top to bottom, or user code to
operating system: rclcpp/rclpy, rcl, and rmw. The user code is above and the middleware
implementation is below. rclcpp and rclpy are the C++ and Python client libraries, respec-
tively. They are supported by rcl, a common client library API written in C which provides
basic functionality. The client libraries then implement the remaining features needed to pro-
vide the application-level API. This includes implementing executors, which are high-level

25

schedulers used to manage the invocation of callbacks (e.g., timer, subscription, and service)
using one or more threads. rmw is the middleware abstraction interface. Each middleware
that is used with ROS 2 has an implementation of this interface. Multiple middleware im-
plementations can be installed on a system, and the desired implementation can be selected
at runtime through an environment variable, otherwise the default implementation is used.
As of ROS 2 Galactic Geochelone, the default middleware is Eclipse Cyclone DDS [78].

4.3.2 ROS Nodes and Packages

ROS is based on the publish-subscribe paradigm and also supports the RPC pattern under
the “service” name. ROS nodes may both publish typed messages on topics and subscribe
to topics, and they can use and provide services. While the granularity and semantics of
nodes in a system is a design choice, the resulting node and topics structure is analogous to
a computation graph.

There are also specialized nodes called “lifecycle nodes” [93]. They are stateful managed
nodes based on a standard state machine. This makes their life cycle easier to control, which
can be beneficial for safety-critical applications [94]. Node life cycles can also be split into
initialization phases and runtime phases, with dynamic memory allocations and other non-
deterministic actions being constrained to the initialization phases for real-time applications.

As for the code, in ROS, it is generally split into multiple packages, which directly and
indirectly depend on other packages. Each package has a specific purpose and may provide
multiple libraries and executables, with each executable containing any number of nodes.
The ROS ecosystem is federated: packages are spread across multiple code repositories, on
various hosts, and are authored and maintained by different people. The ROS 2 source code
itself is made up of multiple packages that approximately match its architecture.

4.3.3 Usability and Orchestration Tools

Much like ROS 1, ROS 2 has many tools for introspection, orchestration, and general usabil-
ity. There are various ros2 commands, including ros2 run to run an executable and ros2
topic to manually publish messages and introspect published messages. Packages can also
provide extensions that add other custom commands. The ros2 launch command is the
main entry point for the ROS 2 orchestration system and allows launching multiple nodes
at once. This is configured through Python, XML, or YAML launch files which describe
the system to be launched using nodes from any package or even other launch files. Since
ROS systems can be quite complex and contain multiple nodes, an orchestration system is

26

indispensable. Launch files can also be used to orchestrate test systems and verify certain
behaviors or results.

4.3.4 Generalizability

Fig. 4.1 shows a summary of the ROS 2 architecture and the main tooling interaction. The
architecture and launch system can be generalized down to an orchestration tool managing
an application layer on top of a middleware. Therefore, the tool presented in this paper could
be applied to other similar robotic systems.

OS
DDS
rmw
rcl

rclcpp
user code

launch

Figure 4.1 Overall ROS 2 architecture and tooling interaction.

4.4 ros2_tracing

In this section, we present the design and content of ros2_tracing. It contains multiple
ROS packages to support three different but complementary functionalities: instrumentation,
usability tools, and test utilities. Table 4.1 shows a comparison between our proposed method
and the existing methods mentioned in Section 4.2.

4.4.1 Instrumentation

As shown in Fig. 4.2, core ROS 2 packages are instrumented with function calls to the
tracetools package. This package provides tracepoints for all of ROS 2 and is the one that
triggers them. Tracepoints are statements in the source code which allow capturing execution
information using a hook mechanism [13]. They usually act as instrumentation points and
could be directly added to the instrumented code. This creates an indirection, which we
introduced for two complementary reasons. First, it allows for abstracting away the tracer
backend and allows to easily switch the tracer. Indeed, by replacing the compiled tracetools

27

Table 4.1 Summary of Existing Monitoring and Instrumentation Methods and Comparison
with Proposed Method

Method Typea ROS
1 / 2

Instrumentation Extensible Launch
tools Overheadb Source

avail.

m
es

sa
ge

s

ca
llb

ac
ks

se
rv

ic
es

ex
ec

ut
or

lif
ec

yc
le

ROS-FM [147] M 1 / 2 X × X - / × - / × × × 15-515% C ×
tracetools [145,146] I 1 X X × - - × × ? X
RAPLET [148] I 1 X X × - - × × 2-20% L X
ROS-Llama [128] M 2 X X × X × × × 30-40% C ×
ros2_tracing I 2 X X X X X X X 1-15% L X

a M and I for monitoring and instrumentation-only types, respectively.
b C and L for CPU and latency overhead, respectively.

library, the tracer backend can be replaced without affecting the instrumented packages (i.e.,
the core ROS 2 code). This could be done to support tracing on a different platform or to
use a tracer that has other desired functionalities. Second, this keeps instrumented packages
free of boilerplate code (e.g., tracepoints definitions and other required preprocessor macros).
However, the main advantage of this design choice also has a slight downside, since adding new
tracepoints requires modifying both the instrumented package and the tracetools package.

ROS 2
package tracetools Tracer

Tracer

instrumentation
function call

tracepoint
call

Figure 4.2 Instrumentation and tracepoint calls.

As shown in Table 4.1, in addition to being extensible, our method provides instrumentation
for multiple aspects of ROS 2, including messages, callbacks, services, executor states, and
lifecycle states. Table 4.2 presents a full list of the instrumentation points provided by
tracetools. We split the instrumentation points into two types: initialization events and
runtime events. The former collect one-time information about the state of objects, e.g.,
creation of publishers, subscriptions, and services. The latter collect information about
events throughout the runtime, e.g., message publication and callback execution. The former
are therefore predominantly triggered during the system initialization phase and are used
to minimize the payload size of the latter. This strategic instrumentation design is key to
minimizing the overhead in the runtime phase. For example, all publisher-related tracepoints
in the runtime phase include a unique identifier for the publisher, which is then matched

28

with the data collected by the publisher-related tracepoints in the initialization phase (e.g.,
topic name, corresponding node name, etc.), thus minimizing the payload size of runtime
tracepoints. The information that is collected to form the trace data can then be used to build
a model of the execution. Due to the very abstractional nature of the ROS 2 architecture,
multiple instrumentation points are sometimes needed to gather the necessary information.
For example, to build a model of a subscription, we collect information about its callback
function from rclcpp and its topic name from rcl. This is because callbacks are managed
by the client library. Furthermore, both the instrumentation point name and the payload are
meaningful: some instrumentation points only differ by their names and are used to indicate
the originating layer. Since the instrumentation points cover multiple analysis use-cases, if
a portion of the information is not needed for a given analysis, some of the instrumentation
points can be disabled and therefore have virtually no impact on execution.

We did not instrument the Python client library, since it is not used for the kind of real-time
applications that we are considering with ros2_tracing. However, we instrumented rcl
directly whenever possible. By putting the instrumentation as low as possible in the ROS 2
architecture, it can be leveraged to more easily support other client libraries in the future.

The Linux Trace Toolkit: next generation (LTTng) tracer was chosen as the default tracing
backend, for its low overhead and real-time compatibility as well as its ability to trace both the
kernel and userspace [28,38]. The runtime cost per LTTng userspace tracepoint on a vanilla
Linux kernel using an Intel i7-3770 CPU (3.40 GHz) with 16 GB of RAM is approximately
158 ns [13]. Since it is a Linux-only tracer, all instrumentation calls to the tracetools
package are preprocessed out on other platforms. This can also be achieved on Linux through
a build option.

4.4.2 Usability Tools

In line with the ROS 2 usability and orchestration tools, our proposed solution includes
two different interfaces to control tracing: a ros2 trace command and a Trace action for
launch files. The ros2 trace command is a simple command that allows configuring the
tracer to start tracing. The system or executable to be traced must then be run or launched
in a separate terminal. When the application is done running, tracing must be stopped in
the original ros2 trace terminal. On the other hand, the Trace action can be used in
XML, YAML, and Python launch files. It then allows configuring the tracer and launching
the system at the same time. Tracing is stopped automatically after the launched system
has shut down, either on its own or after being manually terminated. Listing 4.1 shows an
example with an XML file that launches two nodes. While ROS 2 does not currently natively

29

Table 4.2 Instrumentation Points List with Types

ROS 2 Layer Instrumentation Point Name Typea Noteb

rclcpp

rclcpp_subscription_init I
rclcpp_subscription_callback_added I
rclcpp_publish R P
rclcpp_take R S
rclcpp_service_callback_added I
rclcpp_timer_callback_added I
rclcpp_timer_link_node I
rclcpp_callback_register I
callback_start R S
callback_end R
rclcpp_executor_get_next_ready R S
rclcpp_executor_wait_for_work R S
rclcpp_executor_execute R S

rcl

rcl_init I
rcl_node_init I
rcl_publisher_init I
rcl_subscription_init I
rcl_publish R P
rcl_take R S
rcl_client_init I
rcl_service_init I
rcl_timer_init I
rcl_lifecycle_state_machine_init I
rcl_lifecycle_transition R

rmw

rmw_publisher_init I
rmw_subscription_init I
rmw_publish R P
rmw_take R S

a I and R for initialization and runtime types, respectively.
b P and S for publishing and message reception hot paths, respectively.

30

support it, this would be useful for remote or multi-host orchestration to trace all hosts at
once and aggregate the resulting traces.

Listing 4.1 Trace action in XML launch file
<launch >

<trace

session -name="ros2" events -ust="ros2:*"/>

<node pkg=" package_a " exec=" executable_x "/>

<node pkg=" package_b " exec=" executable_y "/>

</ launch >

Furthermore, these tools can be used to leverage existing LTTng instrumentation (e.g., kernel
and other userspace instrumentation) and to enable any custom application-level tracepoints
to record other relevant data. For example, LTTng provides shared libraries that can be
preloaded with LD_PRELOAD to intercept calls to libc, pthread, the dynamic linker, and
function entry & exit instrumentation (added with -finstrument-functions) and trigger
tracepoints before calling the real functions. If those tracepoints are enabled through launch
files, the corresponding shared libraries will be located and preloaded automatically for all
executables, which greatly simplifies the launch configuration. The tools also do not prevent
users from directly configuring the tracer for advanced options. They are only a thin flexible
compatibility and usability layer for ROS 2 and use the LTTng Python bindings for tracer
control.

4.4.3 Test Utilities

The tracetools_test package provides a test utility that allows running nodes and tracing
them. The resulting trace can then be read in the test using the tracetools_read package
to assert results or behaviors in a lower-level, less invasive way.

4.5 Analysis

The instrumentation and tracing tools provided by ros2_tracing allow collecting execution
information at the ROS 2 level. This information can then be processed using existing tools
to compute metrics or to provide models of the execution. For example, we traced a ROS 2
system that simulates a real-world autonomous driving scenario [100]. In this example,

31

a node receives data from 6 different topics using subscriptions. When the subscriptions
receive a new message, they cache it so that the node only keeps the latest message for
each topic. The periodically-triggered callback uses the latest message from each topic to
compute a result and publish it. To analyze the trace data, we wrote a simple script using
tracetools_analysis [150], a Python library to read and analyze trace data. As shown in
Fig. 4.3, we can display message reception and publication instance timestamps as well as
timer callback execution intervals over time. There is a visible gradual time drift between the
input and output messages, which could impact the validity of the published result, similar
to the issue described by [144]. This could warrant further analysis and tuning, depending
on the system requirements. We can also compute and display the timer callback execution
interval and duration, as shown in Fig. 4.4. The timer callback period is set to 100 ms and
the duration is approximately 10 ms, but there are outliers. This jitter could negatively affect
the system; these anomalies could warrant further analysis as well.

0 100 200 300 400
time (ms)

pub.

timer

sub. 6

sub. 5

sub. 4

sub. 3

sub. 2

sub. 1

Figure 4.3 Example time chart of subscription message reception (sub.), timer callback exe-
cution (timer), and message publication (pub.). Message reception and publication instances
are displayed as single timestamps, while timer callback executions are displayed as ranges,
with a start and an end. The periodic timer callback uses the last received message from
each subscription to compute a result and publish it; this inputs-outputs link is illustrated
using colors, highlighting an inadequate synchronization.

To dig deeper, this information can be paired with data from the operating system: OS trace

32

95

100

105

ca
ll

b
ac

k
in

te
rv

al
(m

s)

0 10 20 30 40 50 60
time (s)

10

20

30

ca
ll

b
ac

k
d

u
ra

ti
on

(m
s)

Figure 4.4 Example timer callback execution interval (top) and duration (bottom) over time.
The callback period is set to 100 ms, while the callback duration depends on the work done.
Both contain outliers.

33

Figure 4.5 State of ROS 2 application threads over time with timestamps of ROS 2 events
from the ros2_tracing instrumentation displayed as small triangles on top of the thread
state rectangle: 1O thread waiting for CPU for 9.9 ms (orange), 2O thread running (green),
3O event marking start of middleware query & wait for new messages, 4O event marking
end of middleware query, and 5O rclcpp_executor_execute event followed shortly after by
callback_start event for timer callback. This result was obtained by importing trace data
collected from the Linux kernel and from the ROS 2 application using LTTng into Trace
Compass [1]. The black arrow to the left of 3O represents the scheduling switch from one
thread to another for a given CPU. Some less relevant threads were hidden.

data can help find the cause of performance bottlenecks and other issues [55]. Since ROS 2
does higher-level scheduling, this is critical for understanding the actual execution at the OS
level. Using LTTng, the Linux kernel can be traced alongside the application. The ROS 2
trace data that was obtained using the ros2_tracing instrumentation can be analyzed to-
gether with the OS trace data using Eclipse Trace Compass [1], which is an open-source trace
viewer and framework aimed towards performance and reliability analysis. Trace Compass
can analyze Linux kernel data to show the frequency and state of CPUs over time, including
interrupts, system calls, or userspace processes executing on each CPU. It can also display
the state of each thread over time, as shown in Fig. 4.5 for the application threads. Building
Trace Compass analyses specific to ROS 2 is left as future work; however, we can visualize
timestamps of ROS 2 trace events on top of the existing analyses. From the ROS 2 trace data
shown in Fig. 4.4, we know that the timer callback instance following the longest interval is
at the 1.4 s mark with 107.8 ms. Finding the timestamps of the corresponding ROS 2 events
in Trace Compass, we see that the thread was blocked waiting for CPU for 9.9 ms before the
aforementioned callback instance. The thread then had to query the middleware for new mes-
sages (even if timers are strictly handled at the ROS 2 level) and finally call the overdue timer
callback. In this example, a multi-threaded executor was used, with the number of threads
being equal to the number of logical CPU cores by default. Since this was not the only ap-
plication running on the system at that time, multiple processes and threads were competing
for CPU, as can be observed using Trace Compass. Therefore, the executor settings could be
tuned, or the executor could be replaced by another type of executor with features that better
meet the requirements for this system, which could entail creating a new executor: this is an
open problem in ROS 2. A multi-level analysis such as this one would not have been possible
without collecting both userspace & kernel execution information, and analyzing the com-

34

bined data, which current tools do not offer. The scripts and full instructions to replicate this
example are available at: github.com/christophebedard/ros2_tracing-analysis-example.

4.6 Evaluation

To validate that our proposed solution is compatible latency-wise with real-time systems, we
evaluate the overhead of ros2_tracing, or specifically its instrumentation overhead. This is
the time consumed by the instrumentation within the monitored process. When enabled, it
directly affects these processes by adding latency.

Since the ros2_tracing tracepoints are placed along the message publication and reception
pipeline, an easy way to capture the maximum overhead is to measure the time between
publishing a message and when it is handled by the subscription callback. This is what we
will do in the following.

4.6.1 Experiment Setup

We use the standard message-passing latency benchmark for ROS 2, performance_test [107],
with a minimal configuration: one publisher node and one subscription node. We vary mes-
sage size and publishing rate, since it is known that they affect middleware performance [119].
The parameter space is shown in Table 4.3 and is based on typical use-cases [101].

Table 4.3 Experiment Parameters and Values

Publishing rate (Hz) 100, 500, 1000, 2000
Message size (KiB) 1, 32, 64, 256
Quality of service reliable only

DDS implementation eProsima Fast DDS

To reduce measurement variability, we follow common practice by using a kernel patched with
the PREEMPT_RT patch (5.4.3-rt1), disabling simultaneous multithreading, and disabling
power-saving features in the BIOS (dynamic frequency scaling, C-states, Turbo Boost, etc.).
Further, we increase UDP buffers to 64 MB to ensure sufficient networking performance
for larger messages. The experiment was run on an Intel i7-3770 (3.40 GHz) 4-core CPU,
8 GB RAM system with Ubuntu 20.04.2. All measurements are based on the ROS 2 Rolling
distribution, in between the Galactic and Humble releases, which is the most recent version
at this time. While Eclipse Cyclone DDS [78] is the default DDS implementation for the
current ROS 2 release, Galactic, we have found eProsima Fast DDS [79] to be more stable

https://github.com/christophebedard/ros2_tracing-analysis-example

35

for larger messages, and it is also the default for the upcoming release, Humble. We have
therefore used Fast DDS.

For each combination in the parameter space, performance_test is run for 60 minutes and
scheduled with the SCHED_FIDO real-time policy with the highest priority (99). To reduce
outliers due to system initialization, the first 10 seconds of each recording are discarded. To
determine the tracing overhead, we run the experiment once without any tracing enabled,
and once with all tracepoints enabled. In practice, since not all tracepoints might be needed
depending on the intended analysis, this represents the worst-case scenario.

The code and instructions to replicate this experiment are available at: github.com/christophebedard/ros2_tracing-
overhead-evaluation.

4.6.2 Results and Discussion

Fig. 4.6 shows the individual average latencies without and with tracing, while Fig. 4.7 shows
the absolute and relative latency overhead.

0 500 1000 1500 2000
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
ea

n
la

te
n

cy
(m

s)

0 500 1000 1500 2000

1 KiB

32 KiB

64 KiB

256 KiB

publishing frequency (Hz)

Figure 4.6 Message latencies (avg. ± std.) without tracing (left) and with tracing (right).

First, as expected, the mean latency values increase with the message size, and the relative
latency overhead values decrease with the message size. There is no significant decrease in
latency as the publishing frequency increases; this behavior was however much more notice-

https://github.com/christophebedard/ros2_tracing-overhead-evaluation
https://github.com/christophebedard/ros2_tracing-overhead-evaluation

36

0 500 1000 1500 2000
0.000

0.001

0.002

0.003

0.004

0.005

m
ea

n
la

te
n

cy
ov

er
h

ea
d

(m
s)

0 500 1000 1500 2000
0

2

4

6

8

10

12

14

m
ea

n
la

te
n

cy
ov

er
h

ea
d

(%
)

1 KiB

32 KiB

64 KiB

256 KiB

publishing frequency (Hz)

Figure 4.7 Absolute (left) and relative (right) latency overhead results. The standard devia-
tion of the difference between the two means is insignificant here.

able before disabling power-saving features through the BIOS. We would also expect the
CPU overhead to be the same for all message sizes and publishing frequencies, since it is, in
theory, a constant overhead for message publication and reception. However, it can be seen
that this is not the case, and instead, the absolute overhead is larger at small frequencies.
This is somewhat puzzling, and it would certainly merit further experiments. However, due
to the overall small effect, we are approaching a range where cache effects in the CPU or
other non-deterministic factors come into play. Since the overhead values are overall fairly
close, the overhead does not seem to be related to any of the experiment parameters, and the
absolute values are well within acceptable ranges, we consider the requirements set out for
ros2_tracing to be fulfilled. Additionally, these absolute latency overhead results are within
one order of magnitude of the results that [13] presented: since there are 10 tracepoints in
the publish-subscribe hot path (see Table 4.2), the overhead should therefore be 10 · 158 ns
= 0.00158 ms, which is indeed comparable.

Since most practical systems use a mixture of message sizes and frequencies, we also analyze
the overhead by aggregating it over all experiment runs. For each combination of message
size and publishing frequency, we use the two sets of latencies (i.e., without tracing and
with tracing, represented in Fig. 4.6), and subtract the mean of the no-tracing set from all

37

latencies. By aggregating the latency differences for all combinations, we obtain two sets
of latency overheads, which are represented in Fig. 4.8 (without tracing and with tracing,
respectively). Note that the aggregate overhead is more strongly influenced by the higher
publication frequencies, since more messages are sent in the same time frame. The mean
overhead is thus 0.0033 ms, with 50% of the data between 0.0010 ms and 0.0056 ms.

base trace

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

la
te

n
cy

ov
er

h
ea

d
(m

s)

Figure 4.8 Aggregated latency overhead and variation without tracing (left) and with trac-
ing (right). Latency values have been individually normalized to zero mean based on the
latencies without tracing, showing overhead and variation. Note that the left mean is very
slightly below zero due to the additional imbalance caused by the variation in publishing
frequency.

No measurement system can be entirely without overhead – however, we think that these
results show that ros2_tracing has very low overhead, which is acceptable for most target
situations for ROS 2. It is certainly lower than known alternatives as presented in Table 4.1.

Nonetheless, for very busy systems or very particularly CPU-constrained platforms, overheads
might add up enough to impact the messaging performance. For such situations, there are
two potential optimization options: First, about half of the tracepoints would be sufficient
for basic information, and, second, tracing can be selectively enabled on only some of the
processes, instead of all ROS 2 nodes.

38

4.7 Future Work

Many improvements and additions could be made to ros2_tracing. While the RPC pattern
is not used as much in real-time applications, instrumentation could be added to support
services and actions, with the latter being services with optional progress feedback. Further-
more, ros2_tracing does not gather information about object destruction, e.g., if a publisher
or a subscription is destroyed during runtime. This is because it does not fit with design
guidelines of real-time safety-critical systems, where the system is usually static once it en-
ters its runtime phase. Nonetheless, complete object lifetime information could be gathered.
Middleware implementations could also be instrumented to provide lower-level information
on the handling of messages. Instrumenting rclc [134, 135] would also be interesting. It is
a client library written in C with a deterministic executor aimed at ROS 2 applications on
memory-limited real-time platforms such as microcontrollers.

As for the usability tools, as mentioned previously, the orchestration tools could be improved,
when native support for remote or coordinated multi-host orchestration gets added to the
ROS 2 launch system.

While the overall approach taken for ros2_tracing is primarily aimed at offline monitoring
and analysis, the instrumentation itself could be leveraged for online monitoring. For exam-
ple, the LTTng live mode could be used to do online processing of the trace data. Another
backend could also be added for a tracer that better supports online monitoring. There could
also be other default backends for other operating systems, like QNX, which is often used for
real-time as well.

In future work, we plan on building on the ros2_tracing instrumentation and tools to an-
alyze the internal workings of ROS 2. For example, as mentioned in Sections 4.2 and 4.5,
the determinism and efficiency of the ROS 2 executors could be analyzed and compared
to proposed alternatives. The ROS 2 instrumentation could of course also be used in con-
junction with the LTTng built-in userspace and kernel instrumentation, as demonstrated
in Section 4.5. For example, to verify real-time systems, unwanted runtime phase dynamic
memory allocations could be detected by combining lifecycle node state information and the
LTTng libc memory allocation tracepoints. Trace Compass could also be used to provide
analyses and views specific to ROS 2.

4.8 Conclusion

Testing and debugging robotic systems, based on recordings of high-level messages, does not
provide sufficient information on the computation performed, to identify causes of perfor-

39

mance bottlenecks or other issues. Existing methods target very specific problems and thus
cannot be used for multipurpose analysis. They are also not suitable for real-world real-time
applications, because of their high overhead or poor usability.

We presented ros2_tracing, a framework with instrumentation and flexible tools to trace
ROS 2. The extensible multipurpose low-overhead instrumentation for the ROS 2 core allows
collecting execution information to analyze any ROS 2 system. The tools promote usability
through their integration with the ROS 2 orchestration system and other usability tools.
Our experiments showed that the message latency overhead it introduces is in an acceptable
range for real-time systems built on ROS 2. These tools enable testing and debugging ROS 2
applications based on internal execution information, in a manner that is compatible with
real-time applications and real-world development processes. Analyzing the combined trace
data, from a ROS 2 application and the operating system, can help find the cause of perfor-
mance bottlenecks and other issues. We plan on leveraging ros2_tracing in future work to
analyze the internal handling of ROS 2 messages.

40

CHAPTER 5 ARTICLE 2: MESSAGE FLOW ANALYSIS WITH
COMPLEX CAUSAL LINKS FOR DISTRIBUTED ROS 2 SYSTEMS

Preface
Full Citation: Christophe Bédard1, Pierre-Yves Lajoie1, Giovanni Beltrame1, and Michel
Dagenais1, “Message Flow Analysis with Complex Causal Links for Distributed ROS 2 Sys-
tems,” Robotics and Autonomous Systems, [in review] 2022.

Abstract - Distributed robotic systems rely heavily on publish-subscribe frameworks such
as the Robot Operating System (ROS) to efficiently implement modular computation graphs.
The ROS 2 executor, a high-level task scheduler which handles ROS 2 messages, is a perfor-
mance bottleneck. We extend ros2_tracing, a framework with instrumentation and tools
for real-time tracing of ROS 2, with the analysis and visualization of the flow of messages
across distributed ROS 2 systems. Our method detects one-to-many and many-to-many
causal links between input and output messages, including indirect causal links through
simple user-level annotations. We validate our method on both synthetic and real robotic
systems, and demonstrate its low runtime overhead. Moreover, the underlying intermediate
execution representation database can be further leveraged to extract additional metrics and
high-level results. This can provide valuable timing and scheduling information to further
study and improve the ROS 2 executor as well as optimize any ROS 2 system. The source
code is available at: github.com/christophebedard/ros2-message-flow-analysis.

Keywords - Software tools for robot programming, distributed robot systems, Robot Op-
erating System (ROS), performance analysis, tracing.

5.1 Introduction

Modern robotic systems often leverage complex distributed processing: they use distributed
perception [151], motion planning [152], and decision making [153]. They are built on soft-
ware frameworks like ROS 2 [85], the successor to the Robot Operating System (ROS) [82].
Such publish-subscribe frameworks greatly simplify the development of modular computation
graphs. However, high-level scheduling of tasks in ROS 2 (i.e., internal message handling,

The financial support of Ericsson, NSERC, Prompt, and Vanier Canada Graduate Scholarship is grate-
fully acknowledged.

1Department of Computer Engineering and Software Engineering, Polytechnique Montréal,
Montreal, Quebec H3T 1J4, Canada, {christophe.bedard, pierre-yves.lajoie, giovanni.beltrame,
michel.dagenais}@polymtl.ca

https://github.com/christophebedard/ros2-message-flow-analysis

41

and subscription, service, or timer callback execution) brings a number of performance chal-
lenges. Several methods and tools have been proposed to study the default ROS 2 executor
and compare its performance with other proposed executor designs [132–135]. However,
such techniques are either not applicable to existing ROS 2 systems, since they require code
modifications, or result in significant runtime overhead.

Low-overhead tracing has been used as a way to extract execution information for perfor-
mance analysis purposes without impacting or perturbing the system. Furthermore, vari-
ous techniques allow combining and correlating kernel and userspace events from multiple
traces (i.e., from distributed systems). In previous work, we proposed ros2_tracing [154],
a framework with low-overhead instrumentation and orchestration tools for tracing ROS 2.
This tracing framework allows extracting ROS 2 execution information, and can be extended
with additional instrumentation for more advanced use-cases or performance analysis goals.

Moreover, critical path analysis has been used to model the interactions inside parallel and
distributed systems. For example, wait-related kernel events can be used to recursively com-
pute wait dependencies across machines for requests spanning multiple hosts in a distributed
system [66]. This technique helps to understand and explain the actual process execution,
and to identify the prime target for performance optimization (i.e., the bottleneck). Likewise,
in this paper, we present a message flow analysis method for ROS 2 distributed computation
graphs. It can be useful for both end users of ROS 2, looking to analyze & optimize their
system, and for developers, looking to do the same for the internals of ROS 2, although these
two target audiences are not necessarily distinct.

Contributions. As shown in Fig. 5.1, our proposed technique can extract and visualize
the paths of messages across distributed ROS 2 systems. Building a message flow graph in
a low-overhead way, without modifying the applications themselves as the existing methods
do, requires more complex execution data collection and analysis. With this novel approach,
we bring the following contributions:

• An intermediate execution representation database of trace data obtained from a dis-
tributed system, providing information on ROS 2 objects (i.e., nodes, publishers, sub-
scriptions, and timers) and events (i.e., message publication & reception instances, and
subscription & timer callback instances). This database can be further leveraged to
derive additional metrics and high-level results.

• Matching of published and received messages, compatible with distributed systems,
without needing to modify the user code and without adding significant overhead.

• Inference of one-to-one and one-to-many causal links between received messages and

42

Figure 5.1 Message flow visualization using our method.

published messages, both automatically for direct links, and using simple user-level
annotations for more complex indirect causal links.

• Extraction and visualization of the flow of messages across distributed ROS 2 systems,
as well as the state of the executor over time for each process.

• Experiments and validation of our proposed method on both synthetic and real robotic
systems, demonstrating that it can be used to study and optimize existing systems,
and that it has a low runtime overhead.

This paper is structured as follows: We first survey related work in Section 5.2 and summarize
relevant background information in Section 5.3. We then describe our intermediate execution
representation in Section 5.4 and present our analysis method in Section 5.5. Thereafter,
Section 5.6 presents experiments where we apply our method to two systems, and Section 5.7
provides an evaluation of the runtime overhead. Future work is outlined in Section 5.8.
Finally, we conclude in Section 5.9.

5.2 Related Work

Previous work has identified open problems relating to the communication latency of ROS 2 [85]
and its executor. Relevant methods were proposed to observe and study those problems.

5.2.1 Communications

First, the general performance of ROS 2 was evaluated by Maruyama et al. [109], Gutiér-
rez et al. [110], and Puck et al. [111]. Other work focuses on more specific elements of the

43

performance of ROS 2, including its overhead with relation to the underlying middleware,
DDS [75]. Kronauer et al. [119] evaluated the overhead of ROS 2 using profiling, and showed
that it can lead to a 50% latency overhead. Some of this overhead can be attributed to the
serialization and deserialization of complex message structures. Jiang et al. [118] proposed an
adaptive serialization technique to improve communication performance by up to 93%. Wang
et al. [117] proposed a single-host inter-process communications (IPC) layer for ROS 1 [82]
and ROS 2 which reduces the overhead of IPC for large messages. Finally, Puck et al. [120]
noted in another performance evaluation of ROS 2 that the use of dynamic memory alloca-
tions, when fetching new messages from the underlying middleware, accounts for a significant
portion of the internal message processing time.

Various tools have been proposed to study message latency in ROS 2. The performance_test [107]
benchmarking tool allows measuring the latency between publishers and subscriptions di-
rectly, while [108] allows defining a custom message graph topology. However, these bench-
marking tools only evaluate the performance of a synthetic system or communication con-
figuration. To measure the performance of real systems, observability tools are needed.
Nishimura et al. [148] proposed RAPLET, which breaks down the latency between the publi-
cation of a message and the execution of the subscription callback function on the other end.
It tracks messages using a sequence number in the message structure itself. Unfortunately,
this sequence number field is not included in all messages. Similarly, Witte and Tichy [143]
presented a tool to track messages in ROS 1 in order to interactively modify their content.
These techniques cannot be applied to existing systems, since they require the addition of
a custom message header, and their runtime overhead is significant, which can affect the
validity of their results [4].

5.2.2 Executor

Moreover, other previous work has identified and studied open problems with the ROS ex-
ecutor, which is a high-level task scheduler [97]. It is responsible for fetching new messages
from the underlying middleware and executing the corresponding subscription callbacks as
well as timer callbacks, making the executor a clear performance bottleneck. Furthermore,
scheduling tasks on top of the OS scheduler itself is challenging. Multiple methods model
exchanges of ROS messages, from node to node, as event chains and pipelines in a directed
acyclic graph (DAG). Peeck et al. [125] focused on online monitoring for reacting to latency
violations in event chains. Casini et al. [126] proposed a formal scheduling model and a
response-time analysis for ROS 2 to bound worst-case response times. Tang et al. [127] then
proposed a more specific version that is, however, only valid for independent linear process-

44

ing chains. Blass et al. [128] built on the work by Casini et al. [126] and proposed an online
automatic latency manager for ROS 2. Their work also helped illustrate how the higher-level
scheduling of tasks in ROS 2 does not interact well with classic OS-level scheduling tech-
niques. Blass et al. [129] further extended this work, and stressed how the ROS 2 executor
differs from normal schedulers in the literature, since it inherently prioritizes in order: timers,
subscriptions, service servers, and service clients.

To help tackle some of these challenges, new executor designs have been proposed for ROS 2.
The callback-group-level executor [132], now available as an alternative in ROS 2, allows
having multiple distinct executor instances on multiple threads without interference. This
enables scheduling of the OS threads themselves, using different priorities depending on sys-
tem requirements, instead of bundling all ROS 2 elements together, as the default executor
does. This results in lower latencies for higher-priority callback groups, as demonstrated
by Yang and Azumi [131]. Similarly, Choi et al. [133] proposed a priority-driven chain-
aware scheduler and showed that it helps lower end-to-end latencies as well. Staschulat et
al. [134, 135] proposed a budget-based executor for real-time operating systems. To bench-
mark and compare executor designs, a reference system was proposed [100]. It is based on
the computation graph of Autoware [98,99], an autonomous driving system completely based
on ROS.

5.2.3 Tracing and Data Analysis

To investigate performance issues, low-overhead tracing has been widely used for collecting
execution information in a minimally-invasive way. In particular, the LTTng tracer [28], which
has a low runtime overhead [13], was used by Lütkebohle [144] to investigate determinism
and message timing issues in ROS 1. They proposed [145] as a generic tracing tool for
ROS 1. As a follow-up to this for ROS 2– and to improve on it – in previous work, we
presented ros2_tracing [154], a framework with low-overhead instrumentation and tracing
tools for ROS 2. The proposed instrumentation allows extracting simple metrics, such as
publishing rate and subscription or timer callback duration. For more advanced use-cases,
the instrumentation can easily be extended.

To extract useful information from trace data, advanced trace analysis methods build models
from the trace data. One interesting technique is the critical path method, where the critical
path is defined as the longest path in a DAG. The critical path is therefore the overall program
or end-to-end latency bottleneck; shortening it effectively reduces the total execution time.
Yang and Barton [62] applied the method to compute the critical path of the execution of
parallel and distributed programs. Trace data from multiple hosts in a distributed system can

45

be combined and synchronized for analysis as a whole [49–51]. Giraldeau and Dagenais [66]
used wait-related trace events from the kernel (e.g., scheduling, network, or interrupts) to
recursively compute wait dependencies across machines. While such wait-related operating
system primitives are used in many applications, application-level information is required for
more specialized analyses [58]. For example, ROS-level information could be used to apply
the critical path method to the computation graph of a ROS system.

Previous work has partially tackled this critcial path analysis effort. Li et al. [155] used
ros2_tracing [154] and tracetools_analysis [150], a simple trace data processing library,
to provide an end-to-end latency breakdown. However, links between input subscriptions
and output publishers need to be manually provided by the user; they are not automatically
detected. [145] was used and extended by [146] to visualize the flow of messages. Unfortu-
nately, [146] has many limitations and uses simplistic assumptions which do not always hold.
For example, to track messages between nodes, it selects the first TCP packet that is queued
after a message is sent by ROS 1. It then matches that network packet when it is received on
the other end, and selects the next message reception event. This heuristic is simple and does
not require adding additional fields to the messages themselves, but it is far from solid, since
it could select packets from other applications. Furthermore, it only considers direct causal
links inside subscription callbacks, i.e., where the message being processed by the callback
instance is linked to the message that is published during that callback instance. However,
many systems use custom message cache mechanisms that are independent from the ROS 2
API, which makes detecting and modeling those causal links far from trivial. Finally, it
does not support one-to-many or many-to-many causal links, i.e., where one or more input
messages are linked to more than one output message, and also does not work with more
than one machine.

5.2.4 Summary

In summary, numerous latency- and executor-related open problems exist in ROS 2. Building
a model and graph of the path of messages across a ROS 2 system would provide useful
information to further study or work on resolving those open problems. Thus, we propose a
low-overhead technique that can transparently & natively track messages while supporting
complex application-dependent causal links between messages.

5.3 Background

In this section, we summarize relevant information required to support subsequent sections.

46

ROS 2 contains multiple abstraction layers. From top to bottom, i.e., from user-level to
OS-level: rclcpp & rclpy, rcl, and rmw. The client libraries, rclcpp and rclpy, offer
the actual user-facing ROS 2 C++ and Python APIs, respectively. They use a common
underlying library, rcl; this architecture reduces duplicate code and thus makes adding new
client libraries simpler. Then, rcl calls rmw, the middleware interface. This interface is
implemented for each underlying middleware implementation, e.g., for each distinct DDS
implementation. This allows ROS 2 to use any message-passing middleware, as long as it is
done through this interface.

5.4 Intermediate Execution Representation

Before extracting the flow of ROS 2 messages across a distributed system, we first process
the raw trace data to create an intermediate representation of the execution. The underlying
database can then be queried to build the actual message flow analysis; the intermediate
representation greatly simplifies this. The database can also be queried for other analysis
purposes.

5.4.1 Processing

As explained in Section 5.3, the ROS 2 architecture contains multiple separate abstraction
layers. The information collected by ros2_tracing [154] for analysis purposes is therefore
spread out over all these layers. This also provides internal information about ROS 2. For
example, the duration of the message publication call can be broken down into rclcpp,
rcl, and DDS time. Hence, ros2_tracing instruments all layers in order to collect all
relevant information. Furthermore, to minimize the runtime impact, the ros2_tracing
instrumentation is split into two distinct groups: initialization and runtime. The initialization
instrumentation points collect one-time information, in order to minimize the size of the data
collected by the runtime instrumentation points, which are executed more often. Therefore,
we need to combine data from multiple instrumentation points in order to get the high-level
information we need. Moreover, ros2_tracing does not include instrumentation for the
chosen DDS implementation; thus we instrumented it and combined all this information.

For example, when a new publisher object is created, 3 tracepoints are triggered: the first
one is in rcl, the second one is in rmw, and the last one is in the DDS implementation. By
combining the execution information collected at different levels of the ROS 2 architecture by
the 3 tracepoints into one publisher entry in the database, we can attribute the rcl-, rmw-,
or DDS-level data, of the subsequent publication instance trace events, to the correspond-

47

ing publisher. To correlate and merge the information from multiple trace events, unique
identifiers are required. In most cases, ros2_tracing uses the values of the pointers to the
underlying internal data structures, i.e., memory addresses. To combine DDS-level informa-
tion with the above ROS 2 information, we use the globally-unique identifier (GUID or GID)
of the DDS data writer, which is the DDS-level object that actually sends messages from a
ROS 2 publisher. This GID is used internally in ROS 2 and is part of the rmw interface. We
have instrumented both eProsima Fast DDS [79] and Eclipse Cyclone DDS [78]. As a result
of the above design, either DDS implementation can be used without affecting the model.

Our intermediate representation needs to be valid when tracing multiple processes on one host
computer, and when combining data from multiple hosts. Unfortunately, memory addresses
are only valid for one process. To account for multiple processes on the same host, we combine
the pointer value with the process ID (PID). Then, to account for multiple hosts, we combine
the pointer value & PID with a unique host ID obtained from the trace data. This 3-tuple
is thus unique across different processes and hosts.

In summary, the resulting intermediate representation database contains information about
all ROS 2 objects: nodes, publishers, subscriptions, and timers. It also contains all relevant
instances: message publication instances, and subscription & timer callback instances. This
database can then be queried for analysis purposes.

5.4.2 Implementation Details

To build a database of raw trace data as an intermediate representation, as described in the
previous section, we used Eclipse Trace Compass [1], an open-source trace analysis framework.
Since traces collected from multiple computers usually do not have the same clock reference,
the traces need to be synchronized for the combined data to be valid, time-wise. Trace
Compass can synchronize traces from distributed systems using network packet data collected
from the kernel [51]. System clocks can also be synchronized directly using NTP [156]. The
time synchronization method and its precision should of course be taken into consideration
when extracting time-related information from the database. We then use Trace Compass
to perform our message flow analysis using information from the intermediate execution
representation database.

5.5 Message Flow Analysis

Our proposed message flow analysis builds a graph of the path of messages across a ROS 2
system using the information from the intermediate execution database, described in the

48

previous section. However, to achieve this, we must add more information to the database
and combine multiple elements. We must first track messages as they are sent over the
network transport, to link a message being published by a publisher to the same message
being received by one or more subscriptions. Then we add causal links, between messages
that act as an input to a node, to the messages that are published by that node as the output.
Finally, we put everything together to build the flow graph.

5.5.1 Transport Links

Figure 5.2 Transport link example. The tree structure on the left represents traces, with
publishers, subscriptions, and timers under the nodes of each trace. To the right of this, in-
ternal handles, PIDs, and host information are shown: this is the 3-tuple needed to uniquely
identify ROS 2 objects (see Section 5.4.1). Then, on the right is a time-based chart, which
provides an abstract representation of the execution using time segments and arrows. In this
example, a 5 ms timer triggers a callback which publishes a message on /topic_a under
node /source. This message is received by the /topic_a subscription of node /sink on the
other computer. Next to timers and subscriptions, segments represent the duration of a spe-
cific callback instance, from beginning to end. The smaller segment before the subscription
callback segment represents the message being fetched (or taken) from the underlying mid-
dleware, before it is provided to the callback instance. For publishers, the segments represent
the duration between the initial user-level publication call and the underlying DDS call. The
longer arrow between the /topic_a publisher and subscription represents the transport link,
i.e., the message going from the publisher to the subscription over the network. The shorter
arrow between the 5 ms timer callback and the /topic_a publisher shows that the message
was published during the timer callback.

Transport links associate a publication instance to the corresponding subscription callback in-
stance on the other end. These links are always one-to-many, since messages always originate
from a single publisher but can be received by any number of subscriptions.

ROS 2 internally provides metadata for all received messages, including the GID of the source
publisher and the timestamp of the time right before DDS sent the message over the network.
This information is collected on the subscription side using an instrumentation point in rmw.
The publisher GID is collected during initialization; the source timestamp is collected on the

49

publisher side using DDS instrumentation, since this information is not made available to
ROS 2. To uniquely identify messages and thus avoid collisions in case multiple publishers
emit messages at the same time, we should use a combination of the publisher GID and
the source timestamp. Unfortunately, as of writing this, a bug in the implementation of the
rmw interface for Cyclone DDS prevents us from relying on the GID. We therefore instead
reduce the probability of collisions by combining the source timestamp with the topic name,
which is known on both sides of the transport link. Furthermore, unless the source clock has a
higher granularity, collisions are unlikely, given that source timestamps have nanosecond-level
precision. These elements are all available from the intermediate execution representation
database.

Collecting this low-level execution information, to track messages, allows our method to work
transparently, i.e., without needing to modify a system to add fields to messages or rely on
high-level tracking logic, unlike what is done by [143,148]. More importantly, we expect the
overhead to be much smaller, given the low overhead of the ros2_tracing instrumentation,
as demonstrated in [154]. Fig. 5.2 shows an example of a transport link, with a subscription
on one computer receiving a message from a publisher on another computer. Given our
technique for tracking messages and uniquely identifying ROS 2 objects (see Section 5.4.1),
there is no difference between a transport link between two computers, and a transport link
constrained to a single computer.

5.5.2 Causal Message Links

For causal links, we define the causality of messages based on both time and value. In direct
cases, an output message is generated and published when a new input message is received
and processed, thus linking the two messages. In indirect cases, an input message is linked to
an output message if the content of the former is used to generate the content of the latter,
without any strict requirements on time. Indeed, the link is not strictly time-related, since
causal links can be asynchronous, as we will explain in the following.

Direct Case

For the direct case, new messages are published on any number of topics directly during
the subscription callback for a received message. The input message is thus linked to all
messages that are published between the start and end of the corresponding subscription
callback instance on the same thread. Since normal subscription callbacks only process a
single message, the causal link for the direct case is strictly one-to-many. No user-level
annotation is necessary for the direct case. An example is shown in Fig. 5.3, with a pipeline

50

of three nodes and direct one-to-one causal links. In this case, the message flow graph
generated from this exchange would be visually identical, since there are no additional links
to be found.

Figure 5.3 Direct causal message link example. A message is published on /topic_a during
a 5 ms timer callback by node /source. The message is then received by the correspond-
ing subscription under node /sync_one_to_one. During the subscription callback for that
message, a message is published on /topic_b, which is finally received by the corresponding
subscription under node /sink. The link between the input message and the output message
is therefore a direct one-to-one causal link.

Indirect Case

For the indirect case, causal links are the result of user-level code, i.e., above the ROS 2 API.
We therefore cannot detect these causal links from the trace itself; users need to provide this
application-specific information for the links to be detected. We achieve this using simple
annotations in the form of one-time tracepoints during the initialization phase, after the
subscriptions and publishers have been created. Annotations simply contain the type of
message link and the list of input subscriptions and output publishers. Annotation can thus
be easily added to an existing system, without needing to modify the existing application
logic or message structures as is done by [143,148].

From studying real systems and the Autoware reference system [100], we define two types
of causal links: periodic asynchronous link and partial synchronous link, both N-to-M, i.e.,
many-to-many. With the periodic asynchronous link, messages are received from N topics
and are cached. A timer periodically triggers a callback during which the last message from
each of the N caches is used to compute a result and then publish messages on M topics.
For the partial synchronous link, messages are received from N topics and are cached as well.
However, the result is conditionally computed during the subscription callback itself: if all N

51

(a) Periodic asynchronous causal message link. All messages received by node /periodic_async_n_to_m
are cached. The periodic callback triggered by the 8 ms timer then uses those cached messages to compute
and publish an output message on /topic_c. Therefore, the subscription callback of the input messages
(/topic_a and /topic_b) are linked to the output message publication (/topic_c). These two periodic
asynchronous links are shown in red.

(b) Partial synchronous causal message link. Messages are received by node /partial_sync_n_to_m. The
first message (/topic_b) is received and cached, since the other cache is empty. However, when the second
message (/topic_a) is received, both messages are available, and are therefore used to compute and publish
an output message on /topic_c. Therefore, the subscription callback of the first message (/topic_b) is
linked to the output message publication (/topic_c) which happens during the subscription callback for the
second message (/topic_a).

Figure 5.4 Indirect causal message links examples: (a) periodic asynchronous and (b) par-
tial synchronous. In both examples, messages are published periodically using timers on
/topic_a and /topic_b by two /source nodes. These messages are then received by sub-
scriptions under the /periodic_async_n_to_m and /partial_sync_n_to_m node, respec-
tively. An output message linked to the input messages is eventually published on /topic_c.

52

caches contain a message, a result is computed and published on M topics. The caches are
then reset so that at least one new message from each of the N input topics is received again
before the next output. Without the link annotation, the partial synchronous link would be
similar to the direct case; however, it would only link one out of N real input messages.

With the information from the annotations and the timer & subscription callback, and mes-
sage publications instances from the intermediate execution representation database, we can
thus automatically infer indirect causal links between specific input and output messages.
Therefore, unlike [155], users do not need to provide these links after the fact, since they are
already in the trace data. Furthermore, unlike the direct case, which is limited to a single
input message per link, indirect causal links can be many-to-many, given their asynchronous
nature. Fig. 5.4a shows an example for the periodic asynchronous link, while Fig. 5.4b shows
an example for the partial synchronous link. In both cases, two input messages result in
one output message. However, the mechanics of the two causal links are different. For the
periodic asynchronous link, the output rate and delay between input and output depend on
the period value for the timer. For the partial synchronous link, the output rate only depends
on the rate of the inputs.

5.5.3 Building the Message Flow Graph

...

... ...timer
callback messagepub.

transport
link

sub.
callback

mess
age

pu
b.

message
pub.

tra
nsp

ort

link

sub.
callback

period.
async. link

message
pub.

transport
link

sub.
callback

message
pub.

timercallback

message
pub.

transport
link

sub.
callback

par
tia

l

syn
c.

link

Figure 5.5 Simplified representation of a typical message flow graph, showing all edge types.
Edges are segments of the message flow, and their duration is their weight. Vertices link
one or more input edges to one or more output edges. The third message (bottom) has two
outgoing transport links, i.e., it is received by two subscriptions. The first message (top)
is processed by a subscription callback and put into a message cache. This message has a
periodic asynchronous causal link to an output message generated and published by a timer
callback (above). This last message is then received and processed by a subscription callback,
which uses it along with another message linked by a partial synchronous causal link (below)
to generate and publish a final message.

Information from the intermediate execution representation database, including transport
links and direct causal message links, can be displayed directly to provide a visual repre-

53

sentation, as shown in Fig. 5.2 and Fig. 5.3. We then need to use this information to build
the message flow graph for a particular message, as selected by a user in the Trace Compass
GUI.

As presented by Casini et al. [126] and used by [127–129], ROS computation graphs can
be modeled as directed acyclic graphs (DAGs). The flow of a message can therefore also
be modeled as a DAG. Fig. 5.5 shows a simplified version of a typical message flow graph.
Message flow graphs have a limited set of edge types. Each edge type can be preceded and
followed by a specific set of other edge types. For example, transport link edges are preceded
by message publication edges and followed by subscription callback edges. Using this logic,
and the different data sources presented in previous sections, the message flow graph can
be constructed recursively, one edge at a time, going both forward and backward from the
initial edge selected by the user.

Unlike [146], which assumed for simplification purposes that the message flow graph is a di-
rected graph that only contains one-to-one links, our method supports one-to-many transport
links and many-to-many causal message links. Furthermore, unlike [146] again, our method
also builds the message flow graph both forward and backward from the initial element. This
can be useful when analyzing traces from a ROS 2 system: building a message flow graph
starting from one of the roots of the ROS 2 computation DAG will be different from a graph
built starting from the leaf of a computation DAG, even if the resulting message flow graphs
intersect. The initial segment from which to build the message flow graph can thus be chosen
depending on the user needs.

Finally, there is one exception when modeling ROS computational graphs as DAGs. As
explained by Blass et al. [128], the /tf topic is a special topic. It is used to communicate
information about relationships between coordinate frames (transforms). All nodes that need
and provide this information both subscribe and publish to the same topic, thus seemingly
creating a loop in the graph model. However, /tf messages have a field which identifies the
two coordinate frames to which the transform message applies. Therefore, a node publishing
a /tf message might also receive that same message; however, it will not be used. As Blass
et al. [128] do, we can detect the transport links for /tf with the same node as the source
and destination, and remove them, since we assume that these messages are not meant for
the originating node itself, and will not be used by it. However, this does not actually cause
loops in our message flow graph implementation. Indeed, the subscriptions to the /tf topic
are special subscriptions that are managed by ROS 2: messages are received and put into a
buffer, the content of which is used eventually by the user. This application-level link is not
detected; therefore, our method does not detect any message flow segments after subscription

54

callbacks for /tf messages.

5.6 Experiments

We apply our proposed method first to a synthetic system and then to a real system. These
experiments demonstrate how our technique can be used to analyze ROS 2 itself, as well as
application-level logic, for performance optimization purposes. The code and instructions for
these experiments are available in our repository.

5.6.1 Autoware Reference System

We first apply our method to a reference system [100] with a synthetic computation graph
based on Autoware [98,99], a ROS-based autonomous driving stack. The nodes and topics are
based the Autoware system; however, all messages have the same type, and computation is
replaced with a processing-intensive task, in order to consume CPU time. The computation
graph has multiple inputs and outputs, i.e., sensor data and vehicle commands or secondary
visualization outputs. It uses all types of causal message links, as defined in Section 5.5.2.
However, it specifically uses the periodic asynchronous link in a many-to-one configuration,
and the partial synchronous link in a two-to-one configuration.

We split the nodes defined in the reference system into multiple executables and split those
executables into two launch files. Each launch file is run on a specific host, with the two
hosts being on the same network. We set the launch files to configure the LTTng tracer
using ros2_tracing and enable all ROS 2 and DDS tracepoints. Furthermore, we enable
network-related events, in order to synchronize the traces using [51].

Fig. 5.6 shows the entire message flow graph starting from one of the lidar drivers, which is
one of the roots of the computation graph, along with the state of the executors over time.
As displayed in Fig. 5.6a, the initial /FrontLidarDriver message results in three separate
/VehicleInterface messages to the /VehicleDBWSystem node. This is due to the caching
and asynchronous nature of the indirect causal links, which results in one-to-many or many-
to-many links, as explained in Section 5.5.2. The end-to-end latency ranges from 370 ms for
the first message to 571 ms for the third message.

Furthermore, as displayed in Fig. 5.6b, a secondary visualization shows the state of all ex-
ecutor instances over time. In this experiment, we only use the default single-threaded
executor, which means that timer and subscription callbacks within a single process can
only be processed one at a time. We can see that some executor instances are busier
than others; if executors are too busy, there can be a greater delay between message re-

55

(a) End-to-end message flow graph. The initial root of the message flow graph
is a 100 ms timer callback instance which publishes a /FrontLidarDriver message,
while the main leaves of the graph are /VehicleInterface messages received by the
VehicleDBWSystem node. The message flow graph includes direct and indirect causal
links, including both periodic asynchronous and partial synchronous links.

(b) State of all executor instances over time for the same time range as (a). For
this executor state visualization, the tree structure on the left lists IDs of processes
under each trace. On the right, the state of the executor instance for each process is
displayed over time. Green segments represent execution instances (e.g., timer callback,
subscription callback). Orange segments indicate the moments during which ROS 2
was waiting for new messages from the underlying middleware. Therefore, for a given
process ID, orange means that the executor has nothing to process, while green means
that the executor is busy executing callbacks. Red segments represent internal executor
processing, although they are too small to be visible for this time range.

Figure 5.6 Autoware reference system (a) message flow result example and (b) executor state
for the same time range.

56

(a) Partial message flow graph; segments for the second host are hidden. Callbacks
for the same /PointCloudFusion message received by the /RayGroundFilter and
/VoxelGridDownsampler nodes are executed concurrently.

(b) State of executor instances for the first host over time for the same time range
as (a). Process 139690 has two executor threads (139690 and 139744), while other
processes use single-threaded executors.

Figure 5.7 Autoware reference system (a) message flow and (b) executor state for the same
time range, showing the impact of a multi-threaded executor instance.

57

ception and processing. Depending on subscription options, old messages could be dropped,
which wastes the CPU time used for publishing those dropped messages, thus resulting in
a generally poor performance optimization. For example, unlike all executor instances un-
der trace-reference-system-2, the executor instance for process 189847 is always busy,
which could explain why the callback for the /PointsTransformerFront message under
the /PointCloudFusion node happens long after the message was published. Also, the
/VoxelGridDownsampler, /PointCloudFusion, and /RayGroundFilter nodes are all on the
same process and thus share the same single-threaded executor instance. The callbacks for
the same /PointCloudFusion message under two different nodes thus cannot be processed
at the same time. This directly affects the end-to-end latency, as our method helps highlight.

In this case, the computation graph distribution could be improved: nodes could be split over
more processes, and better executor designs could be used. For instance, as demonstrated in
Fig. 5.7, to allow the callbacks of the /VoxelGridDownsampler and /RayGroundFilter nodes
to run simultaneously, we can use a multi-threaded executor with 2 threads. As shown in
Fig. 5.7b, there are two executor threads for the corresponding process (139690 and 139744).
The subscription callbacks can then run concurrently, as shown in Fig. 5.7a. The end-to-end
latency is hence reduced from 370 ms in the previous example to 298 ms in this example. Our
method can therefore be used to compare or study the impact of proposed executor designs
in order to address the open problems summarized in Section 5.2.

5.6.2 RTAB-Map

For our second experiment, we distribute the RTAB-Map [157] simultaneous localization and
mapping (SLAM) system over two computers and trace it. One host runs the camera driver
node and odometry node, while the other host runs the main SLAM node and rviz to visualize
the resulting map. To obtain synchronized traces, we synchronize the clocks of the two hosts
using NTP [156].

A section of the trace is represented in Fig. 5.8. Fig. 5.8a shows all callback instances, message
publications, transport links, and direct links from the intermediate execution representation
database for this time range. Fig. 5.8b shows an end-to-end message flow graph for the
main computation pipeline. Using Trace Compass, we find that the end-to-end latency is
242.3 ms; the duration of the first subscription callback (odometry computation) is 89.5 ms,
and the duration of the second subscription callback (RTAB-Map) is 112.5 ms. As seen
shortly after the 16:53:35.000 time mark under the /rgbd_odometry node, a /tf message is
published during a subscription callback instance. As mentioned in Section 5.5.3, the message
is received by a special subscription, a transform listener, under the same process (PID 1348).

58

(a) Display of intermediate execution representation data: subscription callbacks, message publications,
transport links (black arrows), and direct causal links (gray arrows). A camera driver node (/camera/camera)
and odometry node (/rgbd_odometry) run on the the first host (top half) along with a transform listener
node (see Section 5.5.3). The RTAB-Map (/rtabmap) and rviz (/rviz) nodes run on the second host (bottom
half) along with two transform listener nodes.

(b) End-to-end message flow graph for the main RTAB-Map computation pipeline, which goes through,
in order: camera driver node (/camera/camera), odometry node (/rgbd_odometry), RTAB-Map node
(/rtabmap), and rviz node (/rviz). The graph was generated starting from the subscription callback for
a /mapGraph message received by the /rviz node, which is the last segment of the computation pipeline.
Therefore, the message flow only goes backward from there to the root /camera/color/image_raw message
published by the /camera/camera node on the other host. Looking at Fig. 5.8a, we know that generating the
message flow graph starting from the initial /camera/color/image_raw message would result in a message
flow graph with one-to-many links, similar to Fig. 5.6a.

Figure 5.8 RTAB-Map (a) callback instances and message publications along with transport
and direct links, and (b) message flow result for the main computation pipeline for the same
time range.

59

However, this /tf message is actually only intended for the two transform listeners on the
other hosts (PIDs 194363 and 194365), and does not cause a loop since there are no further
segments after these /tf messages are received. Our method could be improved to model
and detect indirect causal links after /tf messages.

5.7 Runtime Overhead Evaluation

Since runtime overhead should be minimal to avoid perturbing an application [4], we also
evaluate the overhead of execution data collection. In previous work, we demonstrated that
ros2_tracing [154] introduces a mean end-to-end latency overhead of 0.0033 ms for a single
message publication (i.e., publisher to subscription). Since the instrumentation proposed
in [154] includes 10 tracepoints in the publish-subscribe hot path, this is comparable to a
runtime cost per LTTng userspace tracepoint of 158 ns, as measured by [13]. Depending
on the DDS implementation, our proposed method adds either 2 or 3 additional tracepoints
to the hot path. However, the systems presented in Section 5.6 include between 3 and 8
message transport instances, and have end-to-end latencies ranging from 240 ms to 370 ms.
Furthermore, as discussed in [154], the combination of a high-level ROS 2 scheduler on top of
the OS scheduler and networking stack introduces a lot of variability. Therefore, we expect
the end-to-end latency overhead for real applications to be small, especially when compared
to the absolute latency.

We create a computation graph similar to the experiments in Section 5.6, with 5 one-to-one
message transport instances and an expected end-to-end latency of approximately 260 ms.
We use an Intel i7-3770 (3.40 GHz) 4-core CPU, 8 GB RAM system with Ubuntu 20.04.2, and
disable power-saving features. We run the computation graph at 10 Hz for 20 minutes first
without and then with tracing to compare the runtime impact of tracing on the end-to-end
latency. By comparing the latencies for each case, shown in Fig. 5.9, we obtain a difference
of means of 0.1597 ms and a difference of medians of 0.0521 ms. This end-to-end latency
overhead is small compared to a total latency of 260 ms; we therefore consider it suitable for
real applications. Furthermore, this value is within an order of magnitude of overhead values
extrapolated from results by [154] and [13], respectively 0.0215 ms and 0.0103 ms. Finally,
as mentioned previously, we expect this overhead to be less noticeable – and challenging to
actually measure – on more complex ROS 2 systems.

60

without tracing with tracing

260.20

260.22

260.24

260.26

260.28

260.30

260.32

en
d

-t
o-

en
d

la
te

n
cy

(m
s)

Figure 5.9 End-to-end latency comparison, without tracing (left) and with tracing (right).

5.8 Future Work

Many improvements and additions could be made to our proposed message flow analysis
method and executor state visualization.

First, our method can easily be extended with other indirect causal links. Moreover, trans-
port links could be split into actual network transport time and a time delay between message
reception by DDS and processing by the executor. As mentioned in Section 5.6.1, it would
help highlight delays in callback executions when the executor is busy processing other call-
backs. This would require additional instrumentation in the underlying DDS middleware.
Other executor types, such as the multi-threaded executor or other executors presented in
previous work [132–135], could also be instrumented and supported for the executor state
visualization. Additionally, as mentioned in Section 5.5.3 and shown in Section 5.6.2, special
subscriptions like the transform listener could be supported to be able to detect valid message
flow segments resulting from received /tf messages.

Furthermore, our message flow analysis method could be further extended into a critical
path analysis [62]. Fundamentally, indirect causal links (shown in red in Fig. 5.4, Fig. 5.5,
and Fig. 5.6a) are wait intervals. Indeed, as mentioned in Section 5.5.2, the duration of
a periodic asynchronous link depends on the period of the timer, and the duration of a

61

partial synchronous link depends on the other input messages. These wait segments could
thus be recursively replaced with the actual cause of the wait, as is done by Giraldeau and
Dagenais [66] using kernel-level wait primitives for wait dependencies across a distributed
system.

Similarly, the message flow graph could be augmented with other information. For example,
as mentioned in Section 5.4.1, the duration of a message publication call can be broken
down into rclcpp, rcl, and DDS time. The required information is already collected using
ros2_tracing and available in the intermediate execution representation database. Finally,
other metrics, such as message publication or reception rate and executor usage over time,
could be extracted from the database and displayed alongside our proposed visualizations.

5.9 Conclusion

In conclusion, modern robotic systems are built as distributed computation graphs, using
publish-subscribe frameworks such as ROS 2. However, there are open problems with the
higher-level scheduling of tasks performed by the ROS 2 executor, which can affect perfor-
mance.

We presented a low-overhead method for extracting and visualizing the flow of a message
across a distributed ROS 2 system. Our novel approach can detect exchanges of messages
across distributed systems, and also introduces simple annotations for indirect causal message
links. This is achieved without needing to modify the applications themselves. Combined
with a visualization of the state of the executor instances over time, this is useful for opti-
mizing both application layers and ROS 2 itself.

Finally, the underlying intermediate execution representation data can be leveraged for fur-
ther analyses. Furthermore, the message flow graph can also be extended with more in-
formation, and can be expanded into a critical path analysis, by recursively resolving wait
dependencies resulting from indirect causal links.

62

CHAPTER 6 GENERAL DISCUSSION

This chapter aims to discuss the work presented in Chapters 4 and 5, and to summarize its
research contributions as well as its potential impact on the research community, first with
the instrumentation and tracing tools, and then with the message flow analysis method.

6.1 Instrumentation and Tracing Tools

Chapter 4 introduces a framework for tracing ROS 2. This includes instrumentation to ex-
tract ROS 2-level execution information, which is not limited to one specific performance
metric or analysis goal, unlike existing techniques. Its low runtime overhead was established,
which is again better than existing methods, making it compatible with real-time and ob-
servability constraints, as introduced in Section 1.2.2. Appendix A shows the full results
for the overhead experiment presented in Section 4.6. Moreover, tracing configuration tools
were integrated into the powerful ROS 2 orchestration system, which is paramount for it to
be used effectively by both researchers and actual end-users of ROS 2, as explained in Sec-
tion 1.2.3. This is a significant contribution to the research community, since it can be used
for other endeavours without needing to focus on runtime execution information collection.
The instrumentation can also be extended to cover other use-cases.

Furthermore, while the LTTng tracer was chosen for the research work presented in this thesis,
the intentional split of instrumentation points and tracepoints into two distinct elements
facilitates the use of other tracers. Finally, the same approach could be applied to other
robotics frameworks.

6.2 Trace Data Analysis Method

Chapter 5 presents a trace data analysis method to extract and visualize the path of a
message across a distributed robotic system. This method brings numerous contributions.
First, it introduces an abstract model of the execution of a ROS 2 application which is
compatible with traces obtained from distributed systems. This contribution has a high
impact potential for the research community, since other researchers can leverage it for other
analysis methods. Then, the message flow analysis method extracts high-level information
from the raw trace data. This allows researchers and users to focus on the right sections of a
trace for general performance analysis, as introduced in Section 1.2.4. It also allows studying
high-level task schedulers, as introduced in Section 1.2.1 and explained in Section 2.4.3.

63

Moreover, as described in Chapter 5, considering – and correctly identifying – indirect causal
links between input and output messages is important for the method to be valid for real,
complex systems, otherwise its applicability would be poor. The proposed simple user-level
annotation can be further extended for other types of causal links.

Furthermore, as an extension of the low-overhead tracing framework presented in Chapter 4,
the low runtime overhead of the message flow analysis method was demonstrated. Finally,
experiments on both synthetic and real robotic systems demonstrated its potential for per-
formance optimization, and in general for understanding the execution of a ROS 2 system.

64

CHAPTER 7 CONCLUSION

The work presented in this thesis aims to improve software debugging and performance
analysis tools & techniques in robotics. To achieve this, using new tools for extracting
execution information from ROS 2, a method for visualizing the path of messages across
distributed robotic systems was proposed.

7.1 Summary of Works

In summary, the research objectives presented in Section 1.3 were achieved through the work
presented in Chapters 4 and 5. First, ros2_tracing, introduced in Chapter 4, accomplished
the first objectives: the low-overhead instrumentation allows extracting execution information
from ROS 2, and the tracing tools allow configuring tracing for complex ROS 2 systems.
Then, the message flow analysis method presented in Chapter 5 accomplished the remaining
objectives. Indeed, it extracts high-level information through the path of messages across
distributed ROS 2 systems. It also includes an abstract model of the execution of a ROS 2
application, and includes experiments on both simulated and real robotic systems to validate
its contributions and usefulness.

7.2 Limitations

Notwithstanding its contributions, the research work presented in this thesis still has some
limitations. The main limitation is its focus on offline analysis. Some of the existing methods
presented in Section 2.4.3 do online monitoring, leveraging the same kind of instrumentation,
but processing the execution information during runtime to adjust system configurations, for
example. While online monitoring inherently has a higher runtime impact, since it does
more than just collect execution information during runtime, it can still provide a lot of
value. However, both ros2_tracing and the message flow analysis presented in this thesis
were developed for offline processing. Indeed, ros2_tracing was created for collecting all
information during runtime and then performing trace data analysis after execution, and
would thus need to be adapted for monitoring use-cases. Furthermore, as mentioned in
Section 2.1.2, flight recorder-style tracing using the LTTng snapshot mode can be useful
in production. However, due to the ros2_tracing two-phase instrumentation design (Sec-
tion 4.4.1), to process a chunk of trace data generated during the runtime phase, the trace
data generated during the initialization phase of the system is required. Therefore, the LTTng

65

snapshot mode cannot be used as-is, since the chunk of runtime trace data written to disk
after triggering a snapshot would be incomplete; this would need to be addressed.

7.3 Future Research

Other than working towards addressing the limitations mentioned in the previous section, the
clear follow-up to the research work presented in this thesis is the extension of the message
flow analysis to resolve wait dependencies. Indeed, similar to [66], wait dependencies in the
message flow graph caused by indirect causal links could be resolved to find the actual cause
of the wait, resulting in a critical path graph. Moreover, augmenting the message flow graph
with actual processing information – for example, for image processing performed during
subscription callbacks – would be interesting. Finally, the work and methods presented in
this thesis could be utilized to perform a more comprehensive study of the ROS 2 executors
to work on addressing the open problems identified in Section 2.4.3.

66

REFERENCES

[1] “Eclipse trace compass.” [Online]. Available: https://www.eclipse.org/tracecompass/

[2] A. P.-V. Nguyen, “Méthodes d’inspection automatique d’infrastructure par robot mo-
bile,” Master’s thesis, Polytechnique Montréal, 2017.

[3] P.-Y. Lajoie, “Simultaneous localization and mapping systems robust to perceptual
aliasing,” Master’s thesis, Polytechnique Montréal, 2019.

[4] B. Gregg, Systems Performance: Enterprise and the Cloud, 2nd ed. Pearson, 2020.

[5] P. E. McKenney, “Is parallel programming hard, and, if so, what can you do about it?”
arXiv preprint arXiv:1701.00854, 2017.

[6] W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik
und Mechanik,” Zeitschrift für Physik, vol. 43, no. 3-4, pp. 172–198, 1927, English
translation in “Quantum theory and measurement” by Wheeler and Zurek.

[7] “Nyquist–Shannon sampling theorem.” [Online]. Available: https://en.wikipedia.org/
wiki/Nyquist%E2%80%93Shannon_sampling_theorem

[8] “perf(1).” [Online]. Available: https://man7.org/linux/man-pages/man1/perf.1.html

[9] “gprof(1).” [Online]. Available: https://man7.org/linux/man-pages/man1/gprof.1.
html

[10] B. Gregg, “The flame graph,” Communications of the ACM, vol. 59, no. 6, pp. 48–57,
2016.

[11] “Flamegraph: Stack trace visualizer.” [Online]. Available: https://github.com/
brendangregg/FlameGraph

[12] “instrument_function gcc plugin.” [Online]. Available: https://github.com/
christophebedard/instrument-attribute-gcc-plugin

[13] M. Gebai and M. R. Dagenais, “Survey and analysis of kernel and userspace tracers
on linux: Design, implementation, and overhead,” ACM Computing Surveys (CSUR),
vol. 51, no. 2, pp. 1–33, 2018.

https://www.eclipse.org/tracecompass/
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man1/gprof.1.html
https://man7.org/linux/man-pages/man1/gprof.1.html
https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/FlameGraph
https://github.com/christophebedard/instrument-attribute-gcc-plugin
https://github.com/christophebedard/instrument-attribute-gcc-plugin

67

[14] B. Gregg and J. Mauro, DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and
FreeBSD. Prentice Hall Professional, 2011.

[15] “Debugging the kernel using ftrace - part 1,” 2009. [Online]. Available:
https://lwn.net/Articles/365835

[16] S. Rostedt, “Finding origins of latencies using ftrace,” Proc. RT Linux WS, 2009.

[17] T. Bird, “Measuring function duration with ftrace,” in Proceedings of the Linux Sym-
posium, vol. 1. Citeseer, 2009.

[18] “ftrace.” [Online]. Available: https://www.kernel.org/doc/Documentation/trace/
ftrace.txt

[19] M. Kerrisk, The Linux programming interface: a Linux and UNIX system programming
handbook. No Starch Press, 2010.

[20] M. K. Johnson and E. W. Troan, Linux application development. Addison-Wesley
Longman Publishing Co., Inc., 1998.

[21] “strace(1).” [Online]. Available: https://man7.org/linux/man-pages/man1/strace.1.
html

[22] A. Knüpfer et al., “The vampir performance analysis tool-set,” in Tools for high per-
formance computing. Springer, 2008, pp. 139–155.

[23] V. Prasad et al., “Locating system problems using dynamic instrumentation,” in 2005
Ottawa Linux Symposium. Citeseer, 2005, pp. 49–64.

[24] F. C. Eigler et al., “Architecture of systemtap: a linux trace/probe tool,” 2005.

[25] F. C. Eigler and R. Hat, “Problem solving with systemtap,” in Proc. of the Ottawa
Linux Symposium. Citeseer, 2006, pp. 261–268.

[26] B. Gregg, BPF Performance Tools. Addison-Wesley Professional, 2019.

[27] “ebpf.” [Online]. Available: https://ebpf.io/

[28] M. Desnoyers and M. R. Dagenais, “The lttng tracer: A low impact performance
and behavior monitor for gnu/linux,” in OLS (Ottawa Linux Symposium), vol. 2006.
Citeseer, 2006, pp. 209–224.

[29] ——, “Lttng, filling the gap between kernel instrumentation and a widely usable kernel
tracer,” 2009.

https://lwn.net/Articles/365835
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://man7.org/linux/man-pages/man1/strace.1.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://ebpf.io/

68

[30] M. Desnoyers, “Low-impact operating system tracing,” Ph.D. dissertation, École Poly-
technique de Montréal, 2009.

[31] W. Gropp et al., Using MPI: portable parallel programming with the message-passing
interface. MIT press, 1999, vol. 1.

[32] M. Desnoyers and M. Dagenais, “Low disturbance embedded system tracing with linux
trace toolkit next generation,” in ELC (Embedded Linux Conference), vol. 2006. Cite-
seer, 2006.

[33] M. Desnoyers and M. R. Dagenais, “Lockless multi-core high-throughput buffering
scheme for kernel tracing,” ACM SIGOPS Operating Systems Review, vol. 46, no. 3,
pp. 65–81, 2012.

[34] P. E. McKenney and J. D. Slingwine, “Read-copy update: Using execution history to
solve concurrency problems,” in Parallel and Distributed Computing and Systems, Las
Vegas, NV, October 1998, pp. 509–518.

[35] M. Desnoyers and M. R. Dagenais, “Synchronization for fast and reentrant operating
system kernel tracing,” Software: Practice and Experience, vol. 40, no. 12, pp. 1053–
1072, 2010.

[36] “Common trace format.” [Online]. Available: https://diamon.org/ctf/

[37] M. Desnoyers and M. Dagenais, “Lttng: Tracing across execution layers, from the
hypervisor to user-space,” in Linux symposium, vol. 101, 2008.

[38] P.-M. Fournier, M. Desnoyers, and M. R. Dagenais, “Combined tracing of the kernel
and applications with lttng,” in Proceedings of the 2009 linux symposium. Citeseer,
2009, pp. 87–93.

[39] “Babeltrace.” [Online]. Available: https://babeltrace.org/

[40] “Kernelshark.” [Online]. Available: https://kernelshark.org/

[41] “trace-cmd(1).” [Online]. Available: https://man7.org/linux/man-pages/man1/
trace-cmd.1.html

[42] M. S. Müller et al., “Developing scalable applications with vampir, vampirserver and
vampirtrace.” in PARCO, vol. 15, 2007, pp. 637–644.

[43] R. Schöne et al., “The vampirtrace plugin counter interface: introduction and exam-
ples,” in European Conference on Parallel Processing. Springer, 2010, pp. 501–511.

https://diamon.org/ctf/
https://babeltrace.org/
https://kernelshark.org/
https://man7.org/linux/man-pages/man1/trace-cmd.1.html
https://man7.org/linux/man-pages/man1/trace-cmd.1.html

69

[44] “Vampir.” [Online]. Available: https://vampir.eu/

[45] “Tracealyzer.” [Online]. Available: https://percepio.com/tracealyzer/

[46] “Specification of diagnostic log and trace (4.3.1).” [Online].
Available: https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/
AUTOSAR_SWS_DiagnosticLogAndTrace.pdf

[47] “Eclipse theia trace viewer extension.” [Online]. Available: https://github.com/
theia-ide/theia-trace-extension

[48] M. Woodside, S. Tjandra, and G. Seyoum, “Issues arising in using kernel traces to make
a performance model,” in Companion of the ACM/SPEC International Conference on
Performance Engineering, 2020, pp. 11–15.

[49] A. Duda et al., “Estimating global time in distributed systems.” in ICDCS, vol. 87,
1987, pp. 299–306.

[50] B. Poirier, R. Roy, and M. Dagenais, “Accurate offline synchronization of distributed
traces using kernel-level events,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 3, pp. 75–87, 2010.

[51] M. Jabbarifar and M. Dagenais, “Liana: Live incremental time synchronization of
traces for distributed systems analysis,” Journal of network and computer applications,
vol. 45, pp. 203–214, 2014.

[52] T. Bertauld and M. R. Dagenais, “Low-level trace correlation on heterogeneous em-
bedded systems,” EURASIP Journal on Embedded Systems, vol. 2017, no. 1, pp. 1–14,
2017.

[53] R. Beamonte, “Traçage de systèmes linux multi-coeurs en temps réel,” Master’s thesis,
École Polytechnique de Montréal, 2013.

[54] ——, “Runtime verification of real-time applications using trace data and model re-
quirements,” Ph.D. dissertation, École Polytechnique de Montréal, 2016.

[55] M. Côté and M. R. Dagenais, “Problem detection in real-time systems by trace analy-
sis,” Advances in Computer Engineering, vol. 2016, 2016.

[56] F. Rajotte and M. R. Dagenais, “Real-time linux analysis using low-impact tracer,”
Advances in Computer Engineering, vol. 2014, 2014.

https://vampir.eu/
https://percepio.com/tracealyzer/
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_DiagnosticLogAndTrace.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_DiagnosticLogAndTrace.pdf
https://github.com/theia-ide/theia-trace-extension
https://github.com/theia-ide/theia-trace-extension

70

[57] R. Beamonte and M. R. Dagenais, “Linux low-latency tracing for multicore hard real-
time systems,” Advances in Computer Engineering, vol. 2015, 2015.

[58] L. Gelle, N. Ezzati-Jivan, and M. R. Dagenais, “Combining distributed and kernel
tracing for performance analysis of cloud applications,” Electronics, vol. 10, no. 21, p.
2610, 2021.

[59] J. E. Kelley Jr and M. R. Walker, “Critical-path planning and scheduling,” in Papers
presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer confer-
ence, 1959, pp. 160–173.

[60] M. Abramovici, P. R. Menon, and D. T. Miller, “Critical path tracing-an alternative
to fault simulation,” in 20th Design Automation Conference Proceedings. IEEE, 1983,
pp. 214–220.

[61] N. Deo, Graph theory with applications to engineering and computer science. Courier
Dover Publications, 2017.

[62] C.-Q. Yang and B. P. Miller, “Critical path analysis for the execution of parallel and
distributed programs,” in The 8th International Conference on Distributed. IEEE
Computer Society, 1988, pp. 366–367.

[63] J. K. Hollingsworth, “An online computation of critical path profiling,” in Proceedings
of the SIGMETRICS symposium on Parallel and distributed tools, 1996, pp. 11–20.

[64] A. G. Saidi et al., “Full-system critical path analysis,” in ISPASS 2008-IEEE Interna-
tional Symposium on Performance Analysis of Systems and software. IEEE, 2008, pp.
63–74.

[65] P.-M. Fournier and M. R. Dagenais, “Analyzing blocking to debug performance prob-
lems on multi-core systems,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 77–87, 2010.

[66] F. Giraldeau and M. Dagenais, “Wait analysis of distributed systems using kernel
tracing,” IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 8, pp.
2450–2461, 2015.

[67] F. Doray and M. Dagenais, “Diagnosing performance variations by comparing multi-
level execution traces,” IEEE Transactions on Parallel and Distributed Systems, vol. 28,
no. 2, pp. 462–474, 2016.

71

[68] H. Nemati et al., “Critical path analysis through hierarchical distributed virtualized en-
vironments using host kernel tracing,” IEEE Transactions on Cloud Computing, 2019.

[69] N. Ezzati-Jivan et al., “Depgraph: Localizing performance bottlenecks in multi-core
applications using waiting dependency graphs and software tracing,” in 2020 IEEE
20th International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 2020, pp. 149–159.

[70] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-s – a publish/subscribe pro-
tocol for wireless sensor networks,” in 2008 3rd International Conference on Commu-
nication Systems Software and Middleware and Workshops (COMSWARE’08). IEEE,
2008, pp. 791–798.

[71] “Mqtt.” [Online]. Available: https://mqtt.org/

[72] A. S. Huang, E. Olson, and D. C. Moore, “Lcm: Lightweight communications and
marshalling,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2010, pp. 4057–4062.

[73] “Lcm.” [Online]. Available: https://github.com/lcm-proj/lcm

[74] L. Völker, “Some/ip–die middleware für ethernet-basierte kommunikation,” Hanser
automotive networks, 2013.

[75] G. Pardo-Castellote, “Omg data-distribution service: Architectural overview,” in 23rd
International Conference on Distributed Computing Systems Workshops, 2003. Pro-
ceedings. IEEE, 2003, pp. 200–206.

[76] “Dds.” [Online]. Available: https://www.dds-foundation.org/

[77] S. Vinoski, “Corba: Integrating diverse applications within distributed heterogeneous
environments,” IEEE Communications magazine, vol. 35, no. 2, pp. 46–55, 1997.

[78] “Eclipse cyclone dds.” [Online]. Available: https://github.com/eclipse-cyclonedds/
cyclonedds

[79] eProsima, “Fast dds.” [Online]. Available: https://github.com/eProsima/Fast-DDS

[80] “Rti connext dds.” [Online]. Available: https://www.rti.com/products

[81] B. Gerkey et al., “The player/stage project: Tools for multi-robot and distributed sensor
systems,” in Proceedings of the 11th international conference on advanced robotics,
vol. 1. Citeseer, 2003, pp. 317–323.

https://mqtt.org/
https://github.com/lcm-proj/lcm
https://www.dds-foundation.org/
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/eProsima/Fast-DDS
https://www.rti.com/products

72

[82] M. Quigley et al., “Ros: an open-source robot operating system,” in ICRA workshop
on open source software, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

[83] S. Kolak et al., “It takes a village to build a robot: An empirical study of the ros ecosys-
tem,” in 2020 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2020, pp. 430–440.

[84] S. Macenski et al., “Robot operating system 2: Design, architecture, and uses in the
wild,” Science Robotics, vol. 7, no. 66, p. eabm6074, 2022.

[85] “Ros 2.” [Online]. Available: https://docs.ros.org/en/rolling/

[86] B. Gerkey, “Why ros 2?” [Online]. Available: https://design.ros2.org/articles/why_
ros2.html

[87] D. Thomas, “Changes between ros 1 and ros 2.” [Online]. Available: https:
//design.ros2.org/articles/changes.html

[88] ——, “Ros 2 middleware interface.” [Online]. Available: https://design.ros2.org/
articles/ros_middleware_interface.html

[89] “Eclipse iceoryx™ - true zero-copy inter-process-communication.” [Online]. Available:
https://github.com/eclipse-iceoryx/iceoryx

[90] “rmw_iceoryx.” [Online]. Available: https://github.com/ros2/rmw_iceoryx

[91] C. Bédard, “Ros 2 over email: rmw_email, an actual working rmw implementation.”
[Online]. Available: https://christophebedard.com/ros-2-over-email/

[92] “rmw_email.” [Online]. Available: https://github.com/christophebedard/rmw_email

[93] G. Biggs and T. Foote, “Managed nodes.” [Online]. Available: https://design.ros2.org/
articles/node_lifecycle.html

[94] J. Kay, “Proposal for implementation of real-time systems in ros 2.” [Online]. Available:
https://design.ros2.org/articles/realtime_proposal.html

[95] W. Woodall, “Ros 2 launch system.” [Online]. Available: https://design.ros2.org/
articles/roslaunch.html

[96] V. Mayoral-Vilches et al., “Sros2: Usable cyber security tools for ros 2.”

[97] “Executors.” [Online]. Available: https://docs.ros.org/en/rolling/Concepts/
About-Executors.html

https://docs.ros.org/en/rolling/
https://design.ros2.org/articles/why_ros2.html
https://design.ros2.org/articles/why_ros2.html
https://design.ros2.org/articles/changes.html
https://design.ros2.org/articles/changes.html
https://design.ros2.org/articles/ros_middleware_interface.html
https://design.ros2.org/articles/ros_middleware_interface.html
https://github.com/eclipse-iceoryx/iceoryx
https://github.com/ros2/rmw_iceoryx
https://christophebedard.com/ros-2-over-email/
https://github.com/christophebedard/rmw_email
https://design.ros2.org/articles/node_lifecycle.html
https://design.ros2.org/articles/node_lifecycle.html
https://design.ros2.org/articles/realtime_proposal.html
https://design.ros2.org/articles/roslaunch.html
https://design.ros2.org/articles/roslaunch.html
https://docs.ros.org/en/rolling/Concepts/About-Executors.html
https://docs.ros.org/en/rolling/Concepts/About-Executors.html

73

[98] S. Kato et al., “Autoware on board: Enabling autonomous vehicles with embedded
systems,” in 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS). IEEE, 2018, pp. 287–296.

[99] ——, “An open approach to autonomous vehicles,” IEEE Micro, vol. 35, no. 6, pp.
60–68, 2015.

[100] ROS 2 Real-Time Working Group, “Reference system.” [Online]. Available:
https://github.com/ros-realtime/reference-system

[101] M. Reke et al., “A self-driving car architecture in ros2,” in 2020 International
SAUPEC/RobMech/PRASA Conference. IEEE, 2020, pp. 1–6.

[102] NASA, “Viper’s mission operations.” [Online]. Available: https://www.nasa.gov/
viper/lunar-operations

[103] J. Perron, “Viper: Volatiles investigating polar exploration rover,” in ROS World 2021.
Open Robotics, October 2021. [Online]. Available: https://vimeo.com/649657650

[104] C. S. V. Gutiérrez et al., “Real-time linux communications: an evaluation of
the linux communication stack for real-time robotic applications,” arXiv preprint
arXiv:1808.10821, 2018.

[105] ——, “Time-sensitive networking for robotics,” arXiv preprint arXiv:1804.07643, 2018.

[106] F. Reghenzani, G. Massari, and W. Fornaciari, “The real-time linux kernel: A survey
on preempt_rt,” ACM Computing Surveys (CSUR), vol. 52, no. 1, pp. 1–36, 2019.

[107] Apex.AI, “performance_test.” [Online]. Available: https://gitlab.com/ApexAI/
performance_test

[108] iRobot, “irobot ros 2 performance evaluation framework.” [Online]. Available:
https://github.com/irobot-ros/ros2-performance

[109] Y. Maruyama, S. Kato, and T. Azumi, “Exploring the performance of ros2,” in Pro-
ceedings of the 13th International Conference on Embedded Software, 2016, pp. 1–10.

[110] C. S. V. Gutiérrez et al., “Towards a distributed and real-time framework for robots:
Evaluation of ros 2.0 communications for real-time robotic applications,” arXiv preprint
arXiv:1809.02595, 2018.

https://github.com/ros-realtime/reference-system
https://www.nasa.gov/viper/lunar-operations
https://www.nasa.gov/viper/lunar-operations
https://vimeo.com/649657650
https://gitlab.com/ApexAI/performance_test
https://gitlab.com/ApexAI/performance_test
https://github.com/irobot-ros/ros2-performance

74

[111] L. Puck et al., “Distributed and synchronized setup towards real-time robotic con-
trol using ros2 on linux,” in 2020 IEEE 16th International Conference on Automation
Science and Engineering (CASE). IEEE, 2020, pp. 1287–1293.

[112] J. Kim et al., “Security and performance considerations in ros 2: A balancing act,”
arXiv preprint arXiv:1809.09566, 2018.

[113] J. Fernandez et al., “Performance study of the robot operating system 2 with qos and
cyber security settings,” in 2020 IEEE International Systems Conference (SysCon).
IEEE, 2020, pp. 1–6.

[114] P. Thulasiraman et al., “Evaluation of the robot operating system 2 in lossy unmanned
networks,” in 2020 IEEE International Systems Conference (SysCon). IEEE, 2020,
pp. 1–8.

[115] S. Barut et al., “Benchmarking real-time capabilities of ros 2 and orocos for robotics
applications,” in 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2021, pp. 708–714.

[116] H. Bruyninckx, “Open robot control software: the orocos project,” in Proceedings
2001 ICRA. IEEE international conference on robotics and automation (Cat. No.
01CH37164), vol. 3. IEEE, 2001, pp. 2523–2528.

[117] Y.-P. Wang et al., “Tzc: Efficient inter-process communication for robotics middleware
with partial serialization,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2019, pp. 7805–7812.

[118] Z. Jiang et al., “Message passing optimization in robot operating system,” International
Journal of Parallel Programming, vol. 48, no. 1, pp. 119–136, 2020.

[119] T. Kronauer et al., “Latency analysis of ros2 multi-node systems,” in 2021 IEEE In-
ternational Conference on Multisensor Fusion and Integration for Intelligent Systems
(MFI). IEEE, 2021, pp. 1–7.

[120] L. Puck et al., “Performance evaluation of real-time ros2 robotic control in a time-
synchronized distributed network,” in 2021 IEEE 17th International Conference on
Automation Science and Engineering (CASE). IEEE, 2021, pp. 1670–1676.

[121] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings of the IEEE,
vol. 83, no. 5, pp. 773–801, 1995.

75

[122] G. Fohler and K. Ramamritham, “Static scheduling of pipelined periodic tasks in dis-
tributed real-time systems,” in Proceedings Ninth Euromicro Workshop on Real Time
Systems. IEEE, 1997, pp. 128–135.

[123] J. Fonseca et al., “Response time analysis of sporadic dag tasks under partitioned
scheduling,” in 2016 11th IEEE Symposium on Industrial Embedded Systems (SIES).
IEEE, 2016, pp. 1–10.

[124] Y. Cho et al., “Conditionally optimal parallelization of real-time dag tasks for global
edf,” in 2021 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2021, pp. 188–200.

[125] J. Peeck, J. Schlatow, and R. Ernst, “Online latency monitoring of time-sensitive event
chains in safety-critical applications,” in 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2021, pp. 539–542.

[126] D. Casini et al., “Response-time analysis of ros 2 processing chains under reservation-
based scheduling,” in 31st Euromicro Conference on Real-Time Systems (ECRTS
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[127] Y. Tang et al., “Response time analysis and priority assignment of processing chains on
ros2 executors,” in 2020 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2020,
pp. 231–243.

[128] T. Blass et al., “Automatic latency management for ros 2: Benefits, challenges, and
open problems,” in 2021 IEEE 27th Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS). IEEE, 2021, pp. 264–277.

[129] T. Blaß et al., “A ros 2 response-time analysis exploiting starvation freedom and
execution-time variance,” in 2021 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 2021, pp. 41–53.

[130] C. Lienen and M. Platzner, “Reconros executor: Event-driven programming of fpga-
accelerated ros 2 applications,” arXiv preprint arXiv:2201.07454, 2022.

[131] Y. Yang and T. Azumi, “Exploring real-time executor on ros 2,” in 2020 IEEE Inter-
national Conference on Embedded Software and Systems (ICESS). IEEE, 2020, pp.
1–8.

[132] R. Lange, “Callback-group-level executor for ros 2,” in ROSCon Madrid 2018. Open
Robotics, September 2018. [Online]. Available: https://vimeo.com/292707644

https://vimeo.com/292707644

76

[133] H. Choi, Y. Xiang, and H. Kim, “Picas: New design of priority-driven chain-aware
scheduling for ros2,” in 2021 IEEE 27th Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2021, pp. 251–263.

[134] J. Staschulat, I. Lütkebohle, and R. Lange, “The rclc executor: Domain-specific de-
terministic scheduling mechanisms for ros applications on microcontrollers: work-in-
progress,” in 2020 International Conference on Embedded Software (EMSOFT). IEEE,
2020, pp. 18–19.

[135] J. Staschulat, R. Lange, and D. N. Dasari, “Budget-based real-time executor for micro-
ros,” arXiv preprint arXiv:2105.05590, 2021.

[136] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-triggered language for
embedded programming,” in International Workshop on Embedded Software. Springer,
2001, pp. 166–184.

[137] C. M. Kirsch and A. Sokolova, “The logical execution time paradigm,” in Advances in
Real-Time Systems. Springer, 2012, pp. 103–120.

[138] I. Malavolta et al., “Mining guidelines for architecting robotics software,” Journal of
Systems and Software, vol. 178, p. 110969, 2021.

[139] A. Afzal et al., “A study on challenges of testing robotic systems,” in 2020 IEEE
13th International Conference on Software Testing, Validation and Verification (ICST),
2020, pp. 96–107.

[140] M. Quigley, B. Gerkey, and W. D. Smart, Programming robots with ROS. O’Reilly,
2015, ch. Debugging Robot Behavior.

[141] D. Forouher, J. Hartmann, and E. Maehle, “Data flow analysis in ros,” in ISR/Robotik
2014; 41st International Symposium on Robotics. VDE, 2014, pp. 1–6.

[142] U. A. Acar et al., “A core calculus for provenance,” Journal of Computer Security,
vol. 21, no. 6, pp. 919–969, 2013.

[143] T. Witte and M. Tichy, “Inferred interactive controls through provenance tracking
of ros message data,” in 2021 IEEE/ACM 3rd International Workshop on Robotics
Software Engineering (RoSE). IEEE, 2021, pp. 67–74.

[144] I. Lütkebohle, “Determinism in ros – or when things break /sometimes/ and how to
fix it. . . ,” in ROSCon Vancouver 2017. Open Robotics, September 2017. [Online].
Available: https://doi.org/10.36288/ROSCon2017-900789

https://doi.org/10.36288/ROSCon2017-900789

77

[145] Bosch Corporate Research, “Ros 1 tracetools.” [Online]. Available: https:
//github.com/boschresearch/ros1_tracetools

[146] C. Bédard, “Message flow analysis for ros through tracing,” 2019. [Online]. Available:
https://christophebedard.com/ros-tracing-message-flow/

[147] S. Rivera et al., “Ros-fm: Fast monitoring for the robotic operating system (ros),”
in 2020 25th International Conference on Engineering of Complex Computer Systems
(ICECCS). IEEE, 2020, pp. 187–196.

[148] K. Nishimura et al., “Raplet: Demystifying publish/subscribe latency for ros appli-
cations,” in 2021 IEEE 27th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA). IEEE, 2021, pp. 41–50.

[149] B. Gregg, “Linux performance.” [Online]. Available: https://www.brendangregg.com/
linuxperf.html

[150] “tracetools_analysis.” [Online]. Available: https://gitlab.com/ros-tracing/tracetools_
analysis

[151] P.-Y. Lajoie et al., “Towards collaborative simultaneous localization and mapping: a
survey of the current research landscape.” [Online]. Available: http://arxiv.org/abs/
2108.08325

[152] R. K. Dewangan, A. Shukla, and W. W. Godfrey, “Survey on prioritized multi robot
path planning,” in 2017 IEEE International Conference on Smart Technologies and
Management for Computing, Communication, Controls, Energy and Materials (IC-
STM), 2017, pp. 423–428.

[153] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of multi-robot
coordination,” International Journal of Advanced Robotic Systems, vol. 10, no. 12, p.
399, 2013. [Online]. Available: https://doi.org/10.5772/57313

[154] C. Bédard, I. Lütkebohle, and M. Dagenais, “ros2_tracing: Multipurpose low-overhead
framework for real-time tracing of ros 2,” arXiv preprint arXiv:2201.00393, 2022.

[155] Z. Li, A. Hasegawa, and T. Azumi, “Autoware_perf: A tracing and performance anal-
ysis framework for ros 2 applications,” Journal of Systems Architecture, vol. 123, p.
102341, 2022.

[156] D. L. Mills, “Internet time synchronization: the network time protocol,” IEEE Trans-
actions on communications, vol. 39, no. 10, pp. 1482–1493, 1991.

https://github.com/boschresearch/ros1_tracetools
https://github.com/boschresearch/ros1_tracetools
https://christophebedard.com/ros-tracing-message-flow/
https://www.brendangregg.com/linuxperf.html
https://www.brendangregg.com/linuxperf.html
https://gitlab.com/ros-tracing/tracetools_analysis
https://gitlab.com/ros-tracing/tracetools_analysis
http://arxiv.org/abs/2108.08325
http://arxiv.org/abs/2108.08325
https://doi.org/10.5772/57313

78

[157] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and visual simultane-
ous localization and mapping library for large-scale and long-term online operation,”
Journal of Field Robotics, vol. 36, no. 2, pp. 416–446, 2019.

79

APPENDIX A ROS2_TRACING RUNTIME OVERHEAD

Table A.1 presents individual data points for the results presented in Fig. 4.6, showing that
the difference between the minimum and maximum values is not significant when tracing is
disabled or enabled.

80

Table A.1 Comparison of Message Latencies with Minimum and Maximum Values

Message size Rate Tracing Min. Avg. Max. Std.
(KiB) (Hz) (N/Y) (ms) (ms) (ms) (ms)

1

100 N 0.029 0.036 0.141 0.003
Y 0.032 0.041 0.104 0.003

500 N 0.029 0.035 0.085 0.003
Y 0.032 0.039 0.086 0.004

1000 N 0.029 0.035 0.072 0.003
Y 0.031 0.038 0.072 0.003

2000 N 0.028 0.036 0.082 0.003
Y 0.031 0.039 0.085 0.003

32

100 N 0.043 0.049 0.092 0.002
Y 0.045 0.053 0.205 0.004

500 N 0.043 0.049 0.091 0.003
Y 0.045 0.052 0.144 0.003

1000 N 0.042 0.048 0.101 0.003
Y 0.044 0.051 0.103 0.003

2000 N 0.041 0.048 0.100 0.003
Y 0.044 0.051 0.223 0.003

64

100 N 0.058 0.064 0.111 0.003
Y 0.062 0.068 0.237 0.003

500 N 0.057 0.063 0.114 0.003
Y 0.060 0.066 0.132 0.003

1000 N 0.056 0.063 0.123 0.003
Y 0.059 0.066 0.148 0.003

2000 N 0.055 0.063 0.122 0.003
Y 0.058 0.066 0.114 0.003

256

100 N 0.131 0.136 0.272 0.003
Y 0.132 0.138 0.174 0.004

500 N 0.128 0.131 0.172 0.003
Y 0.130 0.133 0.188 0.002

1000 N 0.128 0.133 0.211 0.005
Y 0.131 0.137 0.233 0.004

2000 N 0.128 0.133 0.211 0.004
Y 0.131 0.138 0.216 0.005

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Definitions and Basic Concepts
	1.1.1 Robotics
	1.1.2 Middleware
	1.1.3 Distributed Systems
	1.1.4 Real-Time Systems
	1.1.5 Software Debugging and Tracing
	1.1.6 Trace Analysis

	1.2 Problem Statement
	1.2.1 High-Level Task Scheduling
	1.2.2 Extraction of Execution Information
	1.2.3 Tracing Configuration and Tooling
	1.2.4 Trace Analysis

	1.3 Research Objectives
	1.4 Thesis Outline

	2 LITERATURE REVIEW
	2.1 Tracing and Profiling
	2.1.1 Profiling
	2.1.2 Tracing

	2.2 Trace Analysis
	2.2.1 Trace Analysis Frameworks
	2.2.2 Trace Analysis Methods

	2.3 Middleware
	2.3.1 Centralized Middleware
	2.3.2 Decentralized Middleware

	2.4 Robotics
	2.4.1 Robot Operating System
	2.4.2 ROS Systems
	2.4.3 ROS Performance

	2.5 Literature Review Summary

	3 RESEARCH APPROACH AND THESIS ORGANIZATION
	3.1 Work Done
	3.1.1 Instrumentation and Tools
	3.1.2 Trace Data Analysis

	3.2 Document Structure

	4 ARTICLE 1: ROS2_TRACING: MULTIPURPOSE LOW-OVERHEAD FRAMEWORK FOR REAL-TIME TRACING OF ROS 2
	4.1 Introduction
	4.2 Related Work
	4.3 Background
	4.3.1 ROS 2 Architecture
	4.3.2 ROS Nodes and Packages
	4.3.3 Usability and Orchestration Tools
	4.3.4 Generalizability

	4.4 ros2_tracing
	4.4.1 Instrumentation
	4.4.2 Usability Tools
	4.4.3 Test Utilities

	4.5 Analysis
	4.6 Evaluation
	4.6.1 Experiment Setup
	4.6.2 Results and Discussion

	4.7 Future Work
	4.8 Conclusion

	5 ARTICLE 2: MESSAGE FLOW ANALYSIS WITH COMPLEX CAUSAL LINKS FOR DISTRIBUTED ROS 2 SYSTEMS
	5.1 Introduction
	5.2 Related Work
	5.2.1 Communications
	5.2.2 Executor
	5.2.3 Tracing and Data Analysis
	5.2.4 Summary

	5.3 Background
	5.4 Intermediate Execution Representation
	5.4.1 Processing
	5.4.2 Implementation Details

	5.5 Message Flow Analysis
	5.5.1 Transport Links
	5.5.2 Causal Message Links
	5.5.3 Building the Message Flow Graph

	5.6 Experiments
	5.6.1 Autoware Reference System
	5.6.2 RTAB-Map

	5.7 Runtime Overhead Evaluation
	5.8 Future Work
	5.9 Conclusion

	6 GENERAL DISCUSSION
	6.1 Instrumentation and Tracing Tools
	6.2 Trace Data Analysis Method

	7 CONCLUSION
	7.1 Summary of Works
	7.2 Limitations
	7.3 Future Research

	REFERENCES
	APPENDICES

