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RÉSUMÉ

Les avancées significatives dans la collecte et le stockage des données ont contribué au
développement et à l’émergence des techniques d’apprentissage automatique (ML) en tant
qu’outils puissants pour le traitement des données et la prise de décision dans les systèmes
industriels. Ces systèmes ont essayé de s’adapter aux évolutions des progrès qui ont conduit
à de nouveaux concepts tels que l’industrie 4.0 et la qualité 4.0. Dans de tels systèmes, les
données sont stockées dans de grands volumes et se présentent sous la forme de flux continus
de grandes quantités, au lieu des petits ensembles de données statiques traditionnels qui ont
longtemps été utilisés pour créer des modèles statistiques et pour former des modèles ML.
Ces systèmes industriels nécessitent des modèles ML à fort pouvoir d’interprétabilité. Dans
ce contexte, l’analyse logique des données (LAD), en tant que technique de classification
hautement interprétable, devient un candidat de l’approche ML qui a la capacité de traiter
un grand volume de données ainsi que des données en continu tout en préservant son pouvoir
distinct d’interprétabilité. De telles versions de LAD n’ont pas encore été développées, et
c’est la proposition de cette thèse. En tant que tel, l’objectif de cette thèse est de développer
une technique ML basée sur le LAD classique, mais avec la capacité de traiter un grand vol-
ume de données en continu, qui présente un phénomène de dérive de concept. Ce phénomène
est très courant en milieu industriel car tous les actifs physiques subissent un vieillissement
et une détérioration.

Premièrement, une technique basée sur les ensembles est développée pour accélérer LAD et
le rendre capable de traiter un grand volume de données. Un nouveau mécanisme est proposé
pour développer un système d’ensemble pour LAD (LAD-ENS) afin d’améliorer son efficacité
de calcul, tout en préservant son interprétabilité et sa précision. Ce nouveau mécanisme vise
à maintenir le pouvoir explicatif de la LAD classique en combinant les classificateurs indi-
viduels au niveau des motifs. À l’aide d’ensembles de données obtenus à partir du référentiel
d’apprentissage automatique de l’UCI, des expériences informatiques sont menées pour dé-
montrer les performances de LAD-ENS en termes de temps de calcul, de précision de la clas-
sification et d’interprétabilité. En plus d’obtenir une réduction statistiquement significative
du temps de calcul, le LAD-ENS développé atteint des précisions de classification compéti-
tives par rapport à deux approches LAD classiques et à cinq algorithmes d’apprentissage
automatique courants.

Deuxièmement, une adaptation de la technique LAD est fournie pour devenir dynamique
et adaptative afin de pouvoir gérer des flux de données continus qui incluent des dérives
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de concept - c’est ce qu’on appelle l’analyse logique dynamique et adaptative des données
en continu, ou DA-LASD. De plus, DA-LASD est conçu pour avoir la capacité de gérer
des données de flux déséquilibrées. Le cadre proposé est construit de différents modules qui
modifient dynamiquement les caractéristiques des modèles LAD ; éliminer les modèles pourris
et inefficaces ; et en générer de nouveaux si nécessaire. Cela met à jour en permanence le
classificateur LAD pour s’adapter aux changements dans les flux de données. Le DA-LASD
est testé sur plusieurs jeux de données synthétiques couvrant différents types de dérives
de concept. Les résultats montrent comment le cadre proposé adapte dynamiquement le
modèle et améliore avec succès toutes les mesures de performance qui commencent à décliner.
De plus, il s’avère assez compétitif en termes de précision de classification, par rapport à
d’autres techniques d’apprentissage automatique qui traitent des données en continu. En
plus de sa puissance d’interprétabilité distinctive, le DA-LASD est un cadre prometteur pour
une gamme variée d’applications où la haute précision et l’interprétabilité sont toutes deux
essentielles.

Le système de contrôle de la qualité des processus industriels est considéré comme l’un
des systèmes qui devraient être adaptés pour être plus intelligents et automatisés sous le
label de l’Industrie 4.0. Cela peut être réalisé en utilisant une technique d’apprentissage
automatique interprétable afin de prendre des actions correctives automatiques pour les états
hors de contrôle et de ramener le processus à l’état sain. De plus, cette technique doit
traiter et s’adapter dynamiquement à la nature des données de flux collectées à partir de
ces systèmes avancés et complexes. Par conséquent, DA-LASD est renforcé par un processus
d’ingénierie des fonctionnalités et utilisé dans ce contexte à travers une étude de cas de
l’industrie aérospatiale. Le modèle proposé montre à quel point il est résilient et durable,
et comment il s’adapte dynamiquement aux dérives du concept et améliore avec succès les
mesures de performance qui commencent à se détériorer après les dérives du concept. De plus,
le modèle proposé surpasse statistiquement les autres techniques d’apprentissage automatique
en termes de sensibilité de classification, ce qui est important pour mesurer la capacité à
détecter les défauts et les états hors de contrôle, tout en fournissant de puissants modèles
interprétables qui aident à prendre des mesures de contrôle automatiques.

Avec leurs hautes précisions et leur pouvoir d’interprétabilité distinctif, le LAD-ENS et le
DA-LASD montrent une performance prometteuse dans les applications où un grand volume
de données ou de flux de données existe et où l’interprétabilité est requise, à savoir dans les
applications industrielles et de machines.
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ABSTRACT

The significant advancements in data collection and storage have helped the development and
the emergence of Machine Learning (ML) techniques as powerful tools for data processing
and decision making in industrial systems. These systems have been trying to adapt to the
advancements changes led to new concepts such as Industry 4.0 and Quality 4.0. In such
systems, data is stored in large volumes and comes in the form of continuous streams of
large amounts, instead of the traditional small and static datasets that have long been used
to build statistical models, and to train ML models. These industrial systems require ML
models with high-interpretability power. In this context, Logical Analysis of Data (LAD)
as a highly interpretable classification technique, becomes a candidate of ML approach that
has the ability to process large volume of data as well as streaming data while preserving
its distinct power of interpretability. Such versions of LAD have not yet been developed,
and it is the proposal in this thesis. As such, the objective of this thesis is to develop a ML
technique that is based on the classical LAD, but with the ability of processing large volume of
streaming data, which exhibits concept-drift phenomenon. This phenomenon is very common
in industrial setting because all physical assets experience aging and deterioration.

Firstly, an ensemble-based technique is developed to accelerate LAD and make it able to
process a large volume of data. A novel mechanism is proposed for developing an ensem-
ble system for LAD (LAD-ENS) to improve its computational efficiency, while preserving
its interpretability and accuracy. This new mechanism aims to maintain the explanatory
power of classical LAD by combining the individual classifiers at the level of patterns. Using
datasets obtained from the UCI Machine Learning Repository, computational experiments
are conducted to demonstrate the performance of LAD-ENS in terms of computational time,
classification accuracy, and interpretability. In addition to achieving a statistically significant
reduction in computational time, the developed LAD-ENS achieves competitive classification
accuracies compared to two classical LAD approaches and five common machine learning al-
gorithms.

Secondly, an adaptation of LAD technique is provided to become dynamic and adaptive to be
able to handle continuous data streams that include concept drifts – it is called Dynamic and
Adaptive Logical Analysis of Streaming Data, or DA-LASD. Moreover, DA-LASD is devised
in order to have the ability for handling imbalanced streaming data. The proposed frame-
work is built of different modules that dynamically modify the characteristics of the LAD
patterns; eliminate decayed and inefficient patterns; and generate new ones if needed. This
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continuously updates the LAD classifier to adapt to the changes in the data streams. The
DA-LASD is tested on several synthetic datasets covering different types of concept drifts.
The results show how the proposed framework dynamically adapts the model, and success-
fully improves any performance measures that start to decline. Moreover, it proves quite
competitive in terms of the classification accuracy, compared to other machine learning tech-
niques that handle streaming data. In addition to its distinctive interpretability power, the
DA-LASD is a promising framework for a diverse range of applications where high accuracy
and interpretability are both essential.

The industrial process quality control system is considered one of the systems that should
be adapted to be more intelligent and automated under the label of Industry 4.0. That can
be achieved by using an interpretable machine learning technique in order to take automatic
corrective actions for out-of-control states and bring the process back to the healthy state.
Moreover, this technique has to deal and adapt dynamically with the nature of the streaming
data collected from such advanced and complex systems. Therefore, DA-LASD is reinforced
with a feature engineering process and used in this context through a case study from the
aerospace industry. The proposed model shows how resilient and sustainable it is, and how it
is dynamically adaptive to the concept drifts and successfully improves performance measures
that start to deteriorate after the concept drifts. Moreover, the proposed model outperforms
statistically other machine learning techniques in terms of classification sensitivity which is
important to measure the ability to detect faults and out of control states, while providing
powerful interpretable patterns that help automatic control actions to be taken.

With their high accuracies and their distinctive interpretability power, the LAD-ENS and
the DA-LASD show a promising performance in applications where large volume of data
or data stream exists, and interpretability is required, namely, in industrial and machinery
applications.
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CHAPTER 1 INTRODUCTION

1.1 Industry 4.0

The combination of future-oriented technologies in intelligent machines and products, and
advanced network technologies pushes to a new paradigm shift in industrial production un-
derlying digital transformation. This new industrial shift has been considered the fourth
industrial revolution and known as Industry 4.0 [3, 4]. In this new paradigm, products will
control their own manufacturing process by further increase in mechanization and adopting
automatic solutions which depend on analytical components. That will lead to fully smart
factories which will completely devised with sensors, actors, and autonomous controlling
systems [3].

Accordingly, that leads to industrial significant advancements in data collection and storage
which help the development and emergence of machine learning (ML) techniques as powerful
tools in autonomous controlling systems in Industry 4.0 applications such as process control,
quality management and maintenance systems, to name a few. Most of these applications
now produce data in the form of streams. Data streams are defined by algorithmic community
to support real-time analytics. They are sequences of data observations, possibly infinite,
each has a timestamp and a temporal order. Observations arrive one by one, and should
be processed in real time. The data distribution may be shifted over time which is called
concept drift [5].

1.2 Machine learning in industry 4.0

Due to the demand of autonomous controlling systems in different applications under the
label of Industry 4.0, ML techniques have increasingly been investigated to deliver optimal
models in this context of Industry 4.0. In order to achieve an optimal model in this context,
it should consider four important performance criteria: robustness, resilience, sustainability,
and interpretability.

Robustness. A robust machine learning model should have a testing error consistent with
its training error, i.e., the model accuracy doesn’t deteriorate too much when testing with
slightly different data after adding some noise. Therefore, the model will have low bias and
low variance errors. This is the first basic problem that is faced during building the model.
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Resilience. Resilient machine learning model is the one maintains optimal performance
after deployment and on variety of test sets. It should not be overfitted to one test data
set. Resilience is the robustness against changes overtime. This problem occurs in industrial
application when there is lack of training data at the modeling phase and data arrives in
different time in the future. Therefore, a resilient machine learning model is demanded so
that it solve this practical problem.

Sustainability. A sustainable machine learning model is the one which can capture the
distribution drifts in the new data, and hence automatically adapt itself to the new concept.
In the real and practical data after deployment the model in industrial applications, there
are shifts that occur overtime, and hence the distribution of data used to train the model
is different from the newly available data. Therefore, a sustainable machine learning model
is needed to overcome this practical problem which is very common in industrial setting
because all physical assets experience aging and deterioration, and hence the distribution of
new data changes overtime.

Interpretability. An interpretable machine learning model is the one that have an ex-
planatory power able to provide root-cause analysis of certain phenomena to facilitate the
decision-making process. This criteria is very important in the demanded industrial au-
tonomous controlling systems in order to provide feedback so that autonomous corrective
decisions can be made.

1.3 Logical Analysis of Data

Most of the well-known ML techniques, despite they provide robust models and some of
resilient models, still do not provide the sustainability and the interpretability needed for
the real and practical autonomous systems such as demanded ones in Industry 4.0. On the
other hand, Logical Analysis of Data (LAD) is a robust classification technique that provides
the needed interpretability through generating patterns containing structural knowledge that
explain the hidden phenomena under study. As such, the patterns generated are the most
useful results that indicate the candidate root causes behind the observed physical phenom-
ena, and consequently, the best way to provide autonomous feedback to them. The patterns
it generates are considered unique components, and hence, they can be flexibly modified
or eliminated solely without the need to change the entire model. This flexibility makes
the LAD quite promising for delivering a resilient and sustainable models for Industry 4.0
applications.
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Limitations of Logical Analysis of Data. Despite its robust models and its provided
interpretability, LAD suffers from relatively long computational time that makes it unsuitable
for manipulating data with large volumes. In addition to that, LAD does not has a version
that has the ability to adapt the model dynamically to concept drifts occur in the data
while preserving its distinct power of interpretability, and hence increases the resilience and
sustainability.

1.4 Research objectives

1.4.1 General objectives

In this doctoral research, the ultimate objective is to provide robust, resilient, sustainable,
and interpretable classification model that able to be utilized in the demanded autonomous
controlling systems in the different applications in Industry 4.0. The model that is based on
LAD, should be able to perform self-monitoring for its performance while it is deployed in
the application and be able to detect concept drifts in data, and hence adapt itself to the new
concepts in the data. Maintaining the interpretability of LAD is an important target in order
to be useful for feedback and autonomous corrective actions in Industry 4.0 applications.

1.4.2 Specific research objectives

The above general objective is achieved fulfilling the following specific objectives:

1. Develop an accelerated version of LAD based on an ensemble technique in order to
overcome its limitation in processing large volume of data. The developed version
should maintain the robustness and interpretability of LAD.

2. Develop a dynamic and adaptive version of LAD that able to process and learn from
streaming data. Such version is able to monitor its performance while it is on the
service and able to detect any drift in the concept through the streaming data, and
hence adapt itself to the new data. As such model has high resilience and sustainability
over time.

3. Apply the new dynamic and adaptive version of LAD on one of the applications of In-
dustry 4.0, specifically the industrial process control, in order to evaluate the developed
model on practical, high-dimensional, and dynamic data.
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1.5 Originality

The originality and novelty of this research are as follows:

1. A new ensemble Logical Analysis of Data (LAD-ENS) is developed by introducing
a novel combining mechanism that integrates all patterns that are provided by the
individual LAD classifiers. This mechanism preserves the explanatory power of LAD
patterns and does not reduce their interpretability. it is the first ensemble model
developed for LAD.

2. A comprehensibility index is introduced in order to study the change in the explanatory
power of LAD.

3. A novel dynamic and adaptive Logical Analysis of Data is developed to process stream-
ing data online and adapt LAD to change in data distribution over time–concept drifts.
The proposed methodology is called Dynamic and Adaptive Logical Analysis of Data.
To the best of our knowledge, it is the first sustainable LAD for streaming data.

4. A novel characteristics for LAD patterns are introduced to evaluate the pattern effi-
ciency in the case of streaming data; the covering index and the protected homogeneity.

5. A methodology is developed to build a DA-LASD model reinforced with a feature engi-
neering mechanism for an intelligent and interpretable monitoring system of turbofan
engine. The model gives accurate detection of faults and provide high resilience and
sustainability, specifically after a concept drift.

1.6 Literature review

1.6.1 Accelerating LAD

Some techniques have been presented in the literature to implement LAD with the aim of
enhancing computational efficiency. In [6], a polynomial algorithm was used to enumerate
all LAD patterns with a selected degree to limit the number of features in the generated
patterns. The degree of a pattern is the number of features the pattern is constructed
with. However, with datasets that have large amounts of features, this technique becomes
computationally expensive as it still generates a high number of patterns. In [7], the column
generation technique is used to generate patterns with specific characteristics instead of
generating all possible patterns. In this framework, the master problem is developed with
the objective of building a LAD model with a maximum separation margin between the
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classes. This is achieved by generating patterns to enlarge this margin in subproblems. This
column generation framework generates only one pattern in each iteration, which affects its
computational efficiency. Therefore in [8], a multi-pattern generation framework is developed
to improve the efficiency of LAD column generation models by generating more than one
pattern in each iteration. However, none of these techniques is aimed at achieving a scalable
LAD that handles a large volume of data.

Developing scalable ML algorithms that can handle large datasets has attracted researchers
due to continuous increase in the volume of data [9]. In [10], a taxonomy was proposed
for ML techniques that can process a large volume of data through either designing more
efficient algorithms or relying on parallelism. The parallelism-based category reflects most
of the state of the art [11]. Specifically, the taxonomy classified the parallelized methods
into two sub-categories: (i) parallelized model/parameters: developing parallelized versions
of learning algorithms by first dividing the learning model/parameters and then performing
computations on each division concurrently, and (ii) parallelized data: partitioning input data
vertically, horizontally, or even arbitrarily into manageable subsets, and hence computing all
subsets simultaneously [10], [12]. The parallelized-data techniques are mainly ensemble based,
such as random forests [13] and XGBoost [14]. There is no research study yet to develop
ensemble technique for LAD in a way that preserve its interpretability and explanatory power.
And this is one of the objectives of this doctoral research.

1.6.2 Processing data streams by ML techniques

One of the first ML techniques that was modified to process streaming data is Decision Trees
in Hoeffding Tree algorithm [15]. This algorithm is built based on splitting the leaves of
the constructed tree by scanning each observation to extract the new information into the
model. In order to speed up the process, the same authors then proposed the Very Fast
Decision Tree (VFDT) as an improved version of the algorithm of incorporating the new
information. This is achieved by computing the best leaf splitting when a specific number of
observations arrive. In addition, the least promising nodes are deactivated to decrease the
computational memory. By using the sliding window technique, the VFDT was extended to
the Concept-Adapting Very Fast Decision Tree (CVFDT) in order to consider concept drifts
in the data stream [16].

Other adaptations to ML techniques include the Lazy Learning algorithm [17] applied to the
k-nearest neighbors method. This algorithm uses a sliding window as the search space used
in determining the k-nearest neighbors to a new, unclassified observation, and as the window
slides, the method naturally takes into account any data concept drift that may exist.
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The reservoir sampling [18] and the ensemble methods [19, 20] are more generic frameworks
that can be applied to different ML techniques to handle streaming data. Reservoir sampling
is based on maintaining a sampling reservoir from the data stream, and frequently updating
this reservoir, and accordingly the model. On the other hand, ensemble methods are based
on building an ensemble model of different classifiers trained on different batches from the
data stream. As the data stream flows and more classifiers are built, the ensemble model
is updated based on the accuracy of its classifiers. This ensures that the model is tuned
dynamically to optimize the accuracy according to the recent part of the data stream.

All these techniques, despite being quite helpful in many applications, still do not provide
the interpretability needed for Industry 4.0 applications – or at least do not maintain this
interpretability as their models grow in size. Therefore one the main objectives in this
research is to develop a framework based on LAD able to process data streams.

1.6.3 ML techniques in industrial process control

Industrial process control monitors the process performance and provides the required feed-
back for corrective actions [21]. Lately, this has been achieved through applying data-driven
approaches and machine learning (ML) techniques to detect anomalies and predict the out-
of-control states.

Machine learning techniques, such as support vector data description (SVDD), neural net-
works, decision trees, k-means clustering, linear discriminant analysis, principal component
analysis (PCA) and Logical Analysis of Data (LAD), have been used with control charts
to detect out-of-control states and anomalities [22, 23]. In [24], a pattern recognition-based
fault detection method was proposed using SVDD as a one-class classification algorithm.
This method was applied for chillers monitoring and faults detection in [25]. To improve
the fault detection performance, a PCA-R-SVDD based method is proposed in [26] by devel-
oping a SVDD model in the residual subspace (Rs) using the PCA modeling residual data.
In [27], neural network is used for real-time detection of faults. A neural network model for
fault detection is defined by using dynamic neurons in [28] and applied in sugar evaporation
process. In [29] and [30], deep neural networks were used for fault detection and monitoring
non-linear processes. PCA is used as a data-driven method for industrial process monitor-
ing [31]. Kernel PCA (KPCA) was proposed in [32] in order to extend PCA to nonlinear
systems as most practical and real industrial systems are nonlinear. In order to deal with the
streaming data, online KPCA was proposed in [33]. However, this method suffers from a high
computational time. Therefore, reduced rank optimized KPCA (RR-KPCA) was introduced
in [34] with reduced complexity to overcome this issue and was applied for monitoring an air
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quality monitoring network.

Some of these techniques are however not learning online and not dynamically adapting
for streaming data, i.e., their models are trained on static datasets and then put in action
without accounting for dynamically changing data concepts other than those existing in the
training datasets. Although the others have been extended to learn online from streaming
data, these techniques lack the interpretability needed to provide feedback for automatic
corrective actions. Therefore, LAD was proposed for a first time as a fault detection and
diagnosis tool for industrial systems in [35]. In [36], LAD was applied for the detection
of faults in rotating machinery using vibration signals. LAD is applied in [37] to detect
and diagnose faults in industrial chemical processes and provide patterns to build a decision
model that diagnoses faults and explains the potential causes of these faults. A tool wear
multiclass detection method based on LAD is proposed in [38] by deriving the information
from machining process variables. In spite of its distinct interpretability, classical LAD
doesn’t process streaming data, and hence its resilience and sustainability are low when
deploy it on the production. Therefore, one another main objective of this research is to
build a sustainable model based on LAD to process data stream from real and practical
industrial process.
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CHAPTER 2 THESIS ORGANIZATION

This thesis is consisted of five chapters. Chapter 1 explain the problem being study. It also
states the objective of this doctoral research and states its originality. It also includes a
literature review to describe the state of art in the different problems under the study.

Chapters 3, 4 and 5 presents the three articles that are accomplished in this research.

Chapter 3 proposes a novel LAD ensemble technique (LAD-ENS) to accelerate LAD and
make it able to process large volume of data. The performance of the technique is illustrated
on different type of datasets. The proposed LAD-ENS demonstrates better performance in
terms of computational time and quality of patterns over classical LAD models.

Chapter 4 presents a novel and innovative framework for LAD to process streaming data with
concept drifts. The methodology that contains of three different modules is called Dynamic
and Adaptive Logical Analysis of Streaming Data (DA-LASD). The online performance of
DA-LASD is illustrated on different synthetic data streams which have different type of
concept drifts. DA-LASD shows high sustainability through the different type of concept
drifts.

Chapter 5 proposes a methodology to build DA-LASD model reinforced by feature engi-
neering mechanism (DA-LASD-FE). DA-LASD-FE is proposed to be used in autonomous
industrial process control by detecting faults and out-of-control states, and providing inter-
pretable patterns which are responsible to guide the controlling systems to make automatic
corrective actions. The proposed methodology is demonstrated through an aerospace case
study of turbojet engine failure detection. The proposed DA-LASD-FE is able to accurately
detect the faults and dynamically adapt to the concept drift in the data stream.

Chapter 7 presents a general discussion on the three articles in this thesis, followed by con-
clusion and future work directions to extend this research.
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CHAPTER 3 ARTICLE 1: ACCELERATING LOGICAL ANALYSIS OF
DATA USING AN ENSEMBLE-BASED TECHNIQUE

Authors: Osama Elfar, Soumaya Yacout, Hany Osman.

Journal: Engineering Letters (published) [39].

Abstract: Logical Analysis of Data (LAD) is a well-known classification technique that
generates interpretable patterns with competitive accuracy. The challenge encountered in
applying LAD comes from its long computational time, which makes it unsuitable for han-
dling a large volume of data. In this paper, we propose a novel mechanism for developing
an ensemble system for LAD (LAD-ENS) to improve its computational efficiency, while pre-
serving its interpretability and promising accuracy. This new mechanism aims to maintain
the explanatory power of classical LAD by combining the individual classifiers at the level
of patterns. The developed ensemble system enables LAD to be run in parallel computing
environments. Using datasets obtained from the UCI Machine Learning Repository, compu-
tational experiments are conducted to demonstrate the performance of LAD-ENS in terms of
computational time, classification accuracy, and interpretability. Furthermore, we introduce
the concept of the comprehensibility index in order to study the change in the explanatory
power of LAD. In addition to achieving a statistically significant reduction in computational
time, the developed LAD-ENS achieves competitive classification accuracies compared to two
classical LAD approaches and five common machine learning algorithms.
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3.1 Introduction

As an Artificial Intelligence (AI) application, a machine learning (ML) algorithm enhances
the decision-making capabilities of various manufacturing and business systems. Therefore,
achieving good performance of an ML algorithm is essential in ensuring efficient operation
throughout these systems. Nevertheless, this goal becomes difficult to attain when dealing
with a large volume of data, especially with the emergence of the Internet of Things (IoT) and
Industry 4.0. IoT is the network of devices, buildings, machines, products, and other objects
that are connected with sensors, software, and network connectivity, allowing these things
to gather and interchange data [40]. Industry 4.0 aims to utilize advanced technologies in
connectivity to gather all of the important data in manufacturing processes and products to
develop analytical models through the means of ML techniques. One of the most important
objectives of these models is predicting manufacturing performance and providing feedback
so that corrective decisions can be made during the manufacturing processes. Therefore,
the ML techniques that will be used in this context should have good explanatory power
and interpretable results in order to provide root-cause analysis of certain phenomena to
facilitate the decision-making process. However, well-known ML techniques, such as ensemble
decision trees, support vector machines and neural network [41–43], show high accuracy in
the literature, but do not have enough explanatory power and interpretable results. On
the other hand, Logical Analysis of Data (LAD) is a classification approach that generates
patterns containing structural knowledge that explain the hidden phenomena under study.
As such, the patterns generated are the most useful results that indicate the candidate root
causes behind the observed physical phenomena, and consequently, the best way to respond
to them [44–46]. Additionally, LAD is used to develop regression models [23]. Because
of these abilities, LAD is used in various fields such as medical, services, business, and
manufacturing [46], [36–38, 47–52]. However, a relatively long computational time makes
LAD unsuitable for manipulating data with large volumes.

Some techniques have been presented in the literature to implement LAD with the aim of
enhancing computational efficiency. A polynomial algorithm was used in [6] to enumerate
all LAD patterns with a selected degree to limit the number of features in the generated
patterns. The degree of a pattern is the number of features it is constructed with. However,
this technique still generates a high number of patterns, which is computationally expensive
to handle when there are datasets with large amounts of features. In [7], instead of gener-
ating all possible patterns with specific characteristics, the column generation technique is
used. In this framework, the master problem has the objective of building a LAD model
with a maximum separation margin between the classes by generating patterns to enlarge
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this margin in subproblems. This column generation framework generates only one pattern
in each iteration, which affects its computational efficiency. Therefore, a multi-pattern gen-
eration framework is developed to improve the efficiency of LAD column generation models
by generating more than one pattern in each iteration [8]. However, none of these techniques
is aimed at achieving a scalable LAD that handles a large volume of data.

With a continuous increase in the volume of data, the need to develop scalable ML algorithms
that can handle large datasets has attracted researchers [9]. A taxonomy was proposed in [10]
for ML techniques that can handle a large volume of data by improving the computational
efficiency through either designing more efficient algorithms or relying on parallelism. The
parallelism-based category reflects most of the state of the art in scalable ML algorithms [11].
Specifically, parallelized methods that make ML algorithms more scalable are classified into
two sub-categories: (i) parallelized model/parameters: developing parallelized versions of
learning algorithms by first dividing the learning model/parameters and then performing
computations on each division concurrently, and (ii) parallelized data: partitioning input data
vertically, horizontally, or even arbitrarily into manageable pieces, and then computing all
data subsets simultaneously [10], [12]. The parallelized-data techniques are mainly ensemble
based, such as random forests [13] and XGBoost [14]. In this paper, we introduce a novel
technique that belongs to this sub-category: an ensemble LAD (LAD-ENS).

While building an ensemble LAD may seem like an intuitive way to improve both accuracy
and computational time, the challenge is actually to build an ensemble system that preserves
the explanatory power of LAD. Such explanatory power can guide the decision maker on
keeping a current process under control, or directing that process to reach its maximum
yield. For example, specifying the cutting conditions at which a machining process provides
the desired surface roughness and the required output. The objective of the proposed tech-
nique is establishing a mechanism to combine the knowledge of individual LAD classifiers
while preserving such explanatory power. In order to achieve this, LAD-ENS deals with the
individual classifiers at the level of patterns, and the explanatory power is based on these
patterns. Different ensemble systems in other ML techniques use voting mechanisms that
significantly decrease the interpretability of the results, such as Random Forest and XG-
boost. Since the explanatory power of LAD is affected by the total number of generated
patterns and their average degree [6], an index is introduced in this paper as a measure of
interpretability.

The remainder of this chapter is organized as follows: Section 3.2 provides essential back-
ground on the LAD classification technique. Section 3.3 introduces the LAD ensemble system
(LAD-ENS). Computational experiments and a comparison with classical LAD and other ma-
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chine learning algorithms are conducted in Section 3.4. Section 3.5 concludes the work and
discusses the future directions.

3.2 Logical Analysis of Data

LAD, originated in [53], is a classification technique that is characterized by extracting in-
terpretable patterns from two–class or multi-class datasets [54]. The generated patterns are
utilized as decision rules, used to classify unlabeled data into distinct classes [55]. LAD can
also be used to develop regression models [23]. However, in this paper we only address the
classification models. The LAD classification technique consists of three main steps: data
binarization, pattern generation, and theory formation, as shown in Figure 3.1.

The data binarization step converts numerical and nominal data to binary data. Pattern
generation is an essential step that extracts structural information in the form of patterns
that characterize each different class in the binarized dataset. Many approaches are used
for pattern generation, mostly based on enumeration, heuristics, or mixed integer linear
programming (MILP) algorithms. In this research, we use cbmLAD software [56], in which
patterns are generated by using the ant colony optimization technique. Theory formation is
the final step that uses the generated patterns to create a discriminant function that is used
as a classifier for new data [45].

In the case of a two-class dataset, the training set is Ω = Ω+ + Ω−, which is formed from
positive and negative subsets with n features. After the binarization and pattern generation
steps, LAD forms the pattern set Π = {P1, . . . , Pr}, where r is the number of generated
patterns from the training set Ω. The pattern set has positive and negative patterns. Each
Pi is a conjunction of d features, where d ≤ n is the pattern degree. Each Pi covers at least
one observation from one of the subsets Ω+ (or Ω−) and no observations from the other set
Ω− (or Ω+). Each Pi has characteristics that have been formed by the observations it covers.

Figure 3.1 Framework of LAD.
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These characteristics are illustrated as follows:

1. Ci is the class (the sign positive or negative) which is assigned to pattern Pi,

2. Qi is the number of observations covered by pattern Pi,

3. δi is the degree which is the number of features constructing the pattern Pi,

4. πi is the prevalence, i.e., πi = Qi/|Ω+| in case of positive Ci, or πi = Qi/|Ω−| in case of
negative Ci,

5. ωi is the weight of the pattern Pi, i.e., ωi = Qi/
∑r

j=1
Cj=Ci

Qj.

In the theory formation step, LAD uses the weights of patterns to formulate the discriminant
function as follows:

f(x) =
r∑

i=1
ωiyi(x) (3.1)

,where

yi(x) =


1 if Ci is +ve AND Pi covers x

−1 if Ci is −ve AND Pi covers x

0 if Pi doesn’t cover x

(3.2)

It is obvious that f(x) = [−1, 1]. The new observation x is classified as a positive observation
if f(x) > 0, negative observation if f(x) < 0, and unclassified if f(x) = 0.

In order to use LAD in multi-class classification problems, a decomposition approach is used
to divide the multi-class problem into many two-class problems. This approach is applied in
two different methods: One-Versus-All (OvA) and One-Versus-One (OvO) [57]. The OvA
method divides the multi-class problem into k different two–class classification problems,
where k is the number of classes. Each problem considers one class i ∈ [1 : k] as the positive
class and all the remaining (k − 1) classes as the negative class. The OvO method divides
the multi-class problem into

(
k
2

)
two-class problems by considering each possible class pair

as an individual two-class classification problem. Each problem considers class i ∈ [1 : k] as
a positive class and j ∈ [1 : k] as a negative class, where i ̸= j. In this research, we use the
multi-class OvO method for handling multi-class datasets in our computational experiments.
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3.3 Ensemble Logical Analysis of Data

Building an ensemble system is based on three pillars: (i) sampling the training data for
individual basic classifiers, (ii) the training procedures of individual classifiers, (iii) the com-
bination mechanism for merging individual classifiers and obtaining an ensemble model [58].

In this work, we use stratified sampling without a replacement to generate m different data
subsets for training individual LAD classifiers, as shown in Figure 3.2. In the case of a two-
class dataset, the training set Ω = Ω+ + Ω−, with n features, is partitioned into m subsets,
indexed by i. Each subset Ωi = Ω+

i + Ω−
i , has the same n features of Ω. LAD is applied

on each data subset in a parallel manner to generate m individual LAD classifiers. Each
classifier i has an independent pattern set, Πi = {Pi1, . . . , Piri

}, where ri is the number of
patterns generated from applying LAD on Ωi. Each Pij, where j = 1, . . . , ri, is a positive
(or negative) pattern that covers at least one observation from the set Ω+

i (or Ω−
i ) and does

not cover any observation from the other set Ω−
i (or Ω+

i ).

The characteristics of any pattern Plk, l ∈ [1 : m] and k ∈ [1 : rl], are based on the data
subset Ωl, and are as follows:

1. Clk is the class positive (or negative) of pattern k generated from data subset l.,

2. Qlk is the number of observations from Ωl covered by pattern Plk, ,

3. ωlk is the weight of the pattern Plk, i.e., ωlk = Qlk/
∑rl

j=1
Clj=Clk

Qlj.

In order to build a combination mechanism that merges the knowledge of individual classifiers
and preserves the explanatory power of LAD, we introduced a mechanism at the level of
patterns before formulating the discriminant function of LAD. This mechanism updates the
weight of each pattern to take into consideration the other patterns from other individual
classifiers. The weight ωlk of pattern Plk is adjusted to a combined weight ωc

lk, which is the
ratio of the coverage of Plk to the total coverage of all classifiers’ patterns with the same class
as Plk.

ωc
lk = Qlk∑m

i=1
∑ri

j=1:
Cij=Clk

Qij

(3.3)

After updating the weights of the patterns, the mechanism formulates the LAD-ENS dis-
criminant function using all patterns from all individual classifiers in a single function as
follows:
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Figure 3.2 Framework of LAD-ENS.

fensemble(x) =
m∑

i=1

ri∑
j=1

ωc
ijyij(x) (3.4)

,where

yij(x) =


1 if Cij is +ve AND Pij covers x

−1 if Cij is −ve AND Pij covers x

0 if Pij doesn’t cover x

(3.5)

Even though the voting mechanism provides good accuracy and results in the literature
with other ML techniques, such as Random Forest and XGboost, this proposed mechanism
preserves the explanatory power of LAD by using the patterns to directly predict the class
instead of getting a vote from each individual classifier, which significantly reduces the inter-
pretability.

To illustrate how a LAD-ENS model is developed compared to classical LAD, we consider,
for example, a two–class dataset Ω = Ω+ + Ω− with two features (X and Y ). The data
is partitioned by using a stratified sampling approach without replacement into two data
subsets Ω1 = Ω+

1 + Ω−
1 and Ω2 = Ω+

2 + Ω−
2 . The dataset Ω, and the two data subsets Ω1

and Ω2 are illustrated in Figure 3.3. Running classical LAD on Ω generates a pattern set
Π, as shown in Figure 3.4.c. Each data subset Ω1 and Ω2 was processed by LAD separately,
providing two basic pattern sets Π1 = {P11, P12}, and Π2 = {P21, P22}, from Ω1 and Ω2,
respectively, as shown in Figure 3.4.a and Figure 3.4.b. The characteristics of the patterns
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are determined and illustrated in Table 3.1.

In order to prepare these two sets of patterns Π1 and Π2 for a LAD-ENS discriminant function,
the weights of the patterns are adjusted according to 3.3. For example, ω11 = 1 is adjusted
to ωc

11 = 0.3. Other patterns’ weights are illustrated in Table 3.1. In this table, the patterns
of Π2 have relatively higher combined weights than Π1 because they are generated using a
relatively larger sized data subset.

ωc
11 = Q11∑2

i=1
∑ri

j=1:
Cij=C11

Qij

= Q11

Q11 + Q21
= 30

30 + 70 = 0.3

Afterwards, 3.4 and 3.5 will be used to formulate the ensemble discriminant functions fensemble

to classify new unlabeled observations.

Table 3.1 Characteristics of the patterns in Π1 and Π2 sets.

Pattern Class Q ω ωc

P11 Positive 30 1 0.3
P12 Negative 30 1 0.3
P21 Positive 70 1 0.7
P22 Negative 70 1 0.7

3.4 Computational experiments

In this section, the computational performance and the classification accuracy of the de-
veloped LAD-ENS are demonstrated using twenty datasets obtained from the UCI machine
learning repository. Table 3.2 shows the descriptions of these datasets. The k–fold cross
validation approach is used with k = 5 to average the results obtained from five different
training data subsets and five corresponding testing data subsets. As our main objective is to
reduce the computational time of LAD and solve classification problems with huge datasets,
we compare between our proposed LAD-ENS and the classical LAD models in terms of com-
putational time and classification accuracy. Additionally, the qualities of the patterns are
compared in terms of the total number of patterns and their degree and prevalence. Moreover,
a comprehensibility index (CI) is introduced in order to study the effect of LAD-ENS on
the explanatory power of the generated patterns. Additionally, to evaluate the competitivity
of LAD-ENS compared to other classifiers, LAD-ENS is compared to five ML techniques in
terms of the classification accuracy.

The mechanism of the developed LAD-ENS allows the pattern generation step to be per-
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Figure 3.3 The generated dataset Ω, and two data subsets Ω1 and Ω2.

Figure 3.4 a: pattern set Pi1, b: pattern set Pi2, and c: the patterns generated by classical
LAD.
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Table 3.2 Characteristics of the patterns in Π1 and Π2 sets.

ID Name # of # of # of positive # of negative # of # of
classes observations observations observations features subsets

wbc Wisconsin Breast Cancer 2 699 458 241 9 10
wpbc Wisconsin Prognostic Breast Cancer 2 198 47 151 33 2
wdbc Wisconsin Diagnostic Breast Cancer 2 569 212 357 30 4
hrt-c Heart disease diagnosis - Cleveland 2 303 139 164 13 4
hrt-h Heart disease diagnosis - Hungarian 2 294 106 188 10 4
hrt-s Heart disease diagnosis – Switzerland 2 122 114 8 10 2
hrt-lb Heart disease diagnosis - Long Beach VA 2 200 149 51 8 2
hpts Hepatitis Domain 2 142 28 114 18 2
bld BUPA liver disorders 2 325 200 125 6 2
pid Pima Indians Diabetes 2 768 500 268 8 10

SPECTF SPECTF Heart Data 2 267 212 55 44 2
SPECT SPECT Heart Data 2 267 212 55 22 2

prks Parkinsons Disease 2 195 147 48 22 2
SB Spambase 2 4,601 2788 1813 56 10

WFR Wall-Following Robot Navigation 4 5,456 – – 24 10
LR Letter Recognition 26 20,000 – – 16 10
MG MAGIC Gamma Telescope 2 19,020 12332 6688 10 65

MBP MiniBooNE particle identification 2 130,065 93565 36499 50 500
SS Skin Segmentation 2 245,057 194198 50859 3 90

CTa Covertype 7 581,012 – – 7 50
All datasets are available on the UCI machine learning repository: https://archive.ics.uci.edu/ml/index.php
a A sample of only 50,000 observations from Covertype dataset was used in the experiments to fit the available memory in
compute Canada clusters.

formed in a parallel manner. In these computational experiments, we run LAD-ENS in
parallel on Cedar cloud computing clusters provided by Compute Canada using 20 cores.
Each core has a 2.1 GHz CPU. Utilizing cloud-computing systems allows LAD to handle
large volumes of data. The number of subsets in LAD-ENS is different for each dataset, as
shown in the last column of Table 3.2. This number is chosen empirically based on the size
and the separability of the classes of the datasets to generate patterns from each subset in a
reasonable computational time. We increase the number of individual classifiers if the data
size is big, or if the separability is low.

Table 3.3 provides a comparison between LAD-ENS and two classical LAD models: cbmLAD
[56] and the multi-pattern generation framework of LAD (MPG-LAD) [8]. The results of
MPG-LAD are gathered from [8]. The reduction in processing time by using LAD-ENS is
more than 75% in most of the datasets compared to the cbmLAD model, and more than
99% in all datasets compared to the MPG-LAD model. The n/a means that the classical
LAD models were not able to solve the problems within 24 hours of running time. However,
LAD-ENS was able to solve these problems in fewer than 10 minutes. Sampling datasets
that have complex boundaries and low separability between the classes into different subsets
enables LAD-ENS to handle them with fewer binary attributes and in less computational
time. In terms of classification accuracy, LAD-ENS performs competitively for almost all
datasets except wpbc, hrt-h, hrt-s, hrt-lb, and prks.
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Table 3.3 Comparing the performance of LAD-ENS with classical LAD models.

Dataset cbmLAD MPG-LAD LAD-ENS
Accur (%) Time (sec.) Accur (%) Time (sec.) Accur (%) Time (sec.) Time reduction % wrt:

cbmLAD MPG-LAD
wbc 95.13 6.07 95 2283 94.44 0.98 83.86 99.96
wpbc 68.86 21.42 98 534 60.56 4.36 79.65 99.18
wdbc 95.81 41.9 99 1798 94.96 1.97 95.3 99.89
hrt-c 82.11 8.28 81 1438 83.11 1.54 81.4 99.89
hrt-h 68.61 5.08 78 2816 61.56 1.14 77.56 99.96
hrt-s 47.88 0.7 78 106 50 0.6 14.29 99.43
hrt-lb 56.68 1.71 68 3505 55.85 1.41 17.54 99.96
hpts 77.8 0.81 71 794 79.86 0.74 8.64 99.91
bld 70.52 11.24 63 3843 66.9 2.08 81.49 99.95
pid 75.88 140.21 70 16354 72.87 4.74 96.62 99.97
SPECTF 72.81 29.55 73 1595 64.81 2.12 92.83 99.87
SPECT 67.92 1.21 70 1809 74.81 0.93 23.14 99.95
prks 70.45 4.61 100 205 68.07 1.38 70.07 100
SB 91.99 16191 n/a n/a 93.73 61.06 99.62 100
WFR 99.74 1582 n/a n/a 98.83 16.01 98.99 100
LR n/a n/a n/a n/a 83.17 181.49 100 100
MG n/a n/a n/a n/a 84.42 35.37 100 100
MBP n/a n/a n/a n/a 88.88 276.83 100 100
SS n/a n/a n/a n/a 84.52 145.33 100 100
CT n/a n/a n/a n/a 71.52 612.64 100 100

In order to statistically evaluate the computational time and accuracy of LAD-ENS, the
Friedman test is used to compare the results of the three LAD models. The Friedman test
is a non-parametric statistical test used to detect differences between the values of various
populations’ means [59]. The test is applied to the computational time and the accuracy
for the three LAD models, cbmLAD, MPG-LAD and LAD-ENS, in two phases. We do
not include the last 7 datasets in the test, since cbmLAD and MPG-LAD failed to handle
them. The null hypothesis of phase 1 states that all of those models have the same means of
computational time (or accuracy), as follows:

H0 = µcbmLAD = µMP G−LAD = µLAD−ENS

The alternative hypothesis is formulated as follows:

Ha = Not all means are equal

To reject or accept H0, the test statistic Fr and the calculated significance level p are calcu-
lated as given in [59] and compared to the significant values; Fcritical = 6.0 and pcritical = 0.05.
Tables 3.4 and 3.5 show phase 1 of the Friedman tests on computational time and accuracy,
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respectively. For computational time, H0 is rejected with a high value of Fr = 26.0 which
means that there are very significant differences in terms of the computational time between
the three LAD models. Meanwhile, H0 is accepted in the test for accuracy, which indicates
that the three LAD models are similar in terms of accuracy.

Phase 2 of the Friedman test is aimed to distinguish the best model that will lead to a
significantly lower computational time or significantly higher accuracy. Accordingly, pairwise
comparisons were performed between LAD-ENS and each model j of the two other LAD
models. The null and the alternative hypothesis are formulated as follows:

H0 : µLAD−ENS = µj

Ha : µLAD−ENS ̸= µj

Table 3.4 Freidman test on computational time performance.

Model Phase 1 Phase 2
Sum of ranks (R) Mean of ranks AD AD > post-hoc? Significant?

cbmLAD 26 2 13 Yes Yes
MPG-LAD 39 3 26 Yes Yes
LAD-ENS 13 1
(Fr = 26.0 > 6.0, p = 0.0 < 0.05) → Rejecting H0 αf = 0.025, dαf

= 1.96, post-hoc value = 9.994

Table 3.5 Freidman test on accuracy performance.

Model Phase 1 Phase 2
Sum of ranks (R) Mean of ranks AD AD > post-hoc? Significant?

cbmLAD 25 1.92 5 No No
MPG-LAD 23 1.77 7 No No
LAD-ENS 30 2.3
(Fr = 2.0 < 6.0, p = 0.368 > 0.05) → fail to reject H0 αf = 0.025, dαf

= 1.96, post-hoc value = 9.994

The absolute difference (AD) between the rank sums, |RLAD−ENS − Rj|, is computed, where
Rj is the rank summation for the model j. The null hypothesis is rejected if the AD ex-
ceeds the post-hoc value dαf

√
Nk(k + 1)/6. dαf

is the 100(1 − αf )th of the standard normal
distribution, αf is the family-wise significant level, N is the number of datasets, and k is
the number of models [59]. As shown in Table 3.4, the results of phase 2 declared that the
LAD-ENS model significantly outperforms both cbmLAD and MPG-LAD models in terms of
computational time. However, phase 2 declared that the accuracies are not significantly dif-
ferent between LAD-ENS and the other models, as shown in Table 3.5. Moreover, LAD-ENS
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was able to handle the last seven datasets, while cbmLAD only handled two and MPG-LAD
was not able to handle any.

In order to study how LAD-ENS affects the interpretability power of LAD, we introduce the
complexity measure shown in equation 3.6. This measure is computed for LAD-ENS and
cbmLAD models for each dataset to give a quantitative measure of the model’s complexity.
Furthermore, a comprehensibility index (CI) is introduced in equation 3.7. Values of CI near
0 indicate a low explanatory power, whereas values near 1 indicate a high explanatory power.

Complexity = No. of Patterns × Avg. degree of Pattern

No. of Classes
(3.6)

CI = 1
Complexity

(3.7)

Table 3.6 shows a comparison between LAD-ENS and the cbmLAD model in terms of the
number of patterns, average degree of the patterns, and the CI over the datasets that cbmLAD
was able to solve.

LAD-ENS generated a number of patterns, up to 25% more in some datasets, compared
to the number of patterns in cbmLAD. In other datasets, LAD-ENS produced a number
of patterns that was less than that of cbmLAD by 6.6% to 37%. On the other hand, the
average degree of patterns was reduced in most datasets, which led to an increase in the CI of
LAD-ENS over classical LAD. The sampling process that is used to extract the data subsets
with better separability between the classes explains this decrease in the average degree of
the patterns. Therefore, a small number of patterns are generated from each data subset
with low degrees. This resulted in developing a LAD-ENS model with a reasonable number
of patterns and with low degrees compared to the classical LAD model. For a WFR dataset,
this reduction in the average degree of patterns did not prevent an increase in the complexity
of the LAD-ENS model. This is due the number of patterns that increases significantly,
3.8 times, compared to the number of patterns generated by the classical cbmLAD model.
Nevertheless, LAD-ENS has an efficient computational time of 16 seconds compared to 1582
seconds of cbmLAD. However, by eliminating LAD-ENS patterns that have homogeneity less
than the 75th percentile, the number of patterns is considered only 5% more than the number
of patterns in cbmLAD. Moreover, the average degree is reduced to 2.72, resulting in a CI
of 40.84 × 10−3 which is better than the CI of cbmLAD. Removing these low homogeneity
patterns does not affect the accuracy of LAD-ENS on a WFR dataset, as will be discussed
further in the paper.

The main limitation of LAD-ENS is that the homogeneity of some patterns can change when
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Table 3.6 Comparing the patterns generated by LAD-ENS and cbmLAD.

Dataset LAD-ENS cbmLAD
# of patterns Avg. Degree CI(E-3) # of patterns Avg. Degree CI(E-3)

wbc 35 2.24 25.52 28 4.95 14.44
wpbc 24 7.5 11.12 23 10.41 8.36
wdbc 25 5.16 15.5 22 9.25 9.82
hrt-c 46 4.13 10.52 54 5.36 6.9
hrt-h 40 3.83 13.06 49 4.72 8.64
hrt-s 10 3.96 50.5 11 4.75 38.28
hrt-lb 44 3.29 13.82 44 3.41 13.32
hpts 10 3.96 50.5 16 4.99 25.06
bld 70 4.46 6.4 75 4.36 6.12
pid 127 4.38 3.6 158 5.71 2.22
SPECTF 19 12.1 8.7 28 15.86 4.5
SPECT 35 4.8 11.9 33 5.42 11.18
prks 13 3.16 48.68 17 6.48 18.16
SB 307 12.63 0.52 283 15.26 0.46
WFR 129 4.89 6.36 34 3.26 36.08
WFRa 36 2.72 40.84 34 3.26 36.08

scanning the entire dataset. As each pattern was generated on one chunk of data, a pattern
might cover observations that belong to opposite classes from other chunks. In the case of a
positive (negative) pattern, homogeneity is the proportion of the covered positive (negative)
observations over all of the covered observations from positive and negative classes. The
homogeneity of a pattern is an important characteristic, since it refers to the confidence of a
positive/negative pattern belonging to a positive/negative class.

In order to analyze the quality of patterns in terms of homogeneity and prevalence, all
observations are scanned by each pattern for every dataset. Homogeneity and prevalence are
calculated for each pattern. Empirical cumulative distribution functions and box plots of the
homogeneity are shown in Figure 3.5 and Figure 3.6, respectively. The means of homogeneity
are illustrated with red triangles in Figure 3.6. These figures illustrate that 25% or fewer
patterns have homogeneity that is lower than 70% over most datasets. The figures also show
that most of the generated patterns have a very high homogeneity/confidence of 0.8 or more.

The results obtained with the proposed LAD-ENS mechanism are encouraging, since they
demonstrate that the patterns generated by LAD-ENS could be used to guide a decision
maker when monitoring a business or industrial process of interest. For example, controlling
parameters of a manufacturing process such as the operating conditions and the measure-
ments that keep the process under control, and predicting future events such as failure, alarm,
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Figure 3.5 Empirical cumulative distribution functions for the homogeneity of LAD-ENS
patterns.

and fraudulent cases. In addition, patterns with a high confidence are also useful in moni-
toring the status of a patient regarding a specific disease, and in detecting network intruders
and spam emails.

In order to investigate whether patterns with low homogeneity negatively affect classification
accuracy, the patterns with homogeneity lower than the 25th, 50th, 75th and 85th percentiles
were eliminated when forming the discriminant function. After each elimination, the testing
accuracy is computed using a new set of patterns. The accuracy of the results is shown in
Figure 3.7. The results demonstrate that accuracy is not negatively affected by keeping low
homogeneity patterns. In most of the datasets, testing accuracy decreases by discarding pat-
terns that have a homogeneity lower than the 75th percentiles. Therefore, low homogeneity
patterns could be eliminated to enhance the CI of the model, as we did earlier for the WFR
dataset.

Additionally, the prevalence of patterns is illustrated in Table 3.7 and compared with cbm-
LAD for the datasets that cbmLAD was able to solve. The patterns of LAD-ENS show a
high average prevalence compared with the patterns of cbmLAD. Overall, while the purity
of the patterns might be lost in LAD-ENS, it provides better prevalence and explanatory
power.

Finally, Table 3.8 provides a comparison between LAD-ENS with accuracy results of other
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Figure 3.6 Box plots of the homogeneity of LAD-ENS patterns.
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Figure 3.7 Testing accuracy of LAD-ENS after discarding patterns with homogeneity lower
than different percentiles.

Table 3.7 The prevalence of patterns generated by LAD-ENS and cbmLAD.

Dataset Average prevalence
LAD-ENS cbmLAD

wbc 0.79 0.42
wpbc 0.44 0.33
wdbc 0.82 0.75
hrt-c 0.39 0.22
hrt-h 0.29 0.15
hrt-s 0.49 0.45
hrt-lb 0.12 0.09
hpts 0.58 0.477
bld 0.13 0.08
pid 0.29 0.07
SPECTF 0.56 0.51
SPECT 0.25 0.11
prks 0.6 0.5
SB 0.37 0.15
WFR 0.75 0.68
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well-known machine learning techniques, as summarized in [8], such as support vector ma-
chines (SVM) [42], decision tree (J48) [60], random forest (RF) [13], multilayer perceptron
(NN) [43] and logistic regression (LR). It can be observed that LAD-ENS provides com-
petitive classification performance. This is obvious for the wbc, wdbc, hrt-c, bld, and pid
datasets. Although SVM outperforms LAD-ENS in some datasets, SVM lacks the capability
of providing interpretable results. As explained before, LAD-ENS provides the interpretabil-
ity power that guides a decision maker when monitoring a business or industrial process of
interest.

Table 3.8 Comparing the accuracy of LAD-ENS with other machine learning techniques.

Dataset LAD-ENS SVM J48 RF NN LR
wbc 94±4 97±2 94±2 97±1 96±2 96±2
wpbc 60±7 77±2 75±5 80±4 77±5 80±5
wdbc 95±3 97±1 93±2 96±2 97±1 97±2
hrt-c 83±4 84±5 78±5 83±5 79±5 83±5
hrt-h 61±2 81±4 79±4 80±4 78±5 83±5
hrt-s 50±4 94±2 93±2 93±3 89±6 92±4
hrt-lb 55±5 75±1 72±5 75±4 69±7 74±4
hpts 79±4 87±5 82±6 87±5 81±6 85±6
bld 66±5 58±0 62±5 73±6 68±6 69±5
pid 72±6 77±3 74±3 76±3 75±3 77±3
SPECTF 74±5 79±0 78±5 81±3 77±5 79±4
SPECT 64±4 83±4 80±3 82±4 80±4 82±5
prks 68±8 87±4 83±7 91±5 92±5 85±6

3.5 Conclusion and future work

In this paper, we have developed an ensemble LAD system called LAD-ENS to enhance com-
putation time and to train, test and classify large volumes of data. This ensemble system was
built based on stratified sampling without a replacement technique, in addition to a proposed
combining mechanism that integrates all patterns that are provided by the individual LAD
classifiers. This mechanism combines the knowledge at the level of patterns and then formu-
lates a new ensemble discriminant function. This mechanism preserves the explanatory power
of LAD patterns and does not reduce their interpretability like the voting mechanism does.
By means of this system, we successfully ran LAD-ENS on cloud computing clusters. The
LAD-ENS system was evaluated in terms of computational time, accuracy, pattern quality
and comprehensibility. The statistical Friedman tests revealed that LAD-ENS significantly
outperforms classical LAD models in terms of computational performance. Moreover, Fried-
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man tests revealed that very competitive accuracy is obtained. Although the patterns may
lose their purity, the patterns of LAD-ENS have lower degrees than those of classical LAD,
which enhanced the comprehensibility index. The computational experiments show that if
the sampling process is not able to relax complex boundaries of a dataset enough, the num-
ber of generated patterns in LAD-ENS will increase significantly and reduce the explanatory
power of the patterns. However, by eliminating low homogeneity patterns, the explanatory
power will improve significantly, and accuracy performance will not be affected. In general,
the proposed LAD-ENS demonstrates better performance in terms of computational time
and quality of patterns over classical LAD models.

The novel research on ensemble LAD systems introduced in this paper could be extended into
many different directions. One of these directions would be to use various sampling methods
to enhance the quality of the data subsets provided to the pattern generation processes.
This feature level could be another direction, focusing mainly on the features of original
data in order to select appropriate subsets, or sample the features in subsets and provide
them to the pattern generation processes with an aim to enhance accuracy. The combining
mechanism level is another direction, which would focus mainly on enhancing the combining
process and selecting the most appropriate patterns. This research direction could enhance
the explanatory power by reducing the number of patterns.
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ANALYSIS OF STREAMING DATA WITH CONCEPT DRIFTS
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Abstract: The nature of the data collected in the recent intelligent systems is evolving
from the classical static datasets to continuous flow of data streams that may include concept
drifts over time. On the other hand, since such intelligent systems rely mainly on machine
learning in order to detect, characterize and solve problems, machine learning techniques
have to adapt to this change in the nature of data they deal with. With this motivation,
we aim in this research to provide an adaptation of the Logical Analysis of Data technique
to become dynamic and adaptive to be able to handle continuous data streams that include
concept drifts – we call it Dynamic and Adaptive Logical Analysis of Streaming Data, or DA-
LASD. Moreover, DA-LASD is devised in order to have the ability for handling imbalanced
streaming data. The proposed framework is built of different modules that dynamically
modify the characteristics of the LAD patterns; eliminate decayed and inefficient patterns;
and generate new ones if needed. This continuously updates the LAD classifier to adapt
to the changes in the data streams. The DA-LASD is tested on several synthetic datasets
covering different types of concept drifts. The results show how the proposed framework
dynamically adapts the model, and successfully improves any performance measures that
start to decline. Moreover, it proves quite competitive in terms of the classification accuracy,
compared to other machine learning techniques that handle streaming data. In addition to
its distinctive interpretability power, the DA-LASD is a promising framework for a diverse
range of applications where high accuracy and interpretability are both essential.
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4.1 Nomenclature

P is a set of patterns of Logical Analysis of Data model
pi is a pattern in P . pi ∈ P , where i = [1, . . . , |P |]
S is a true-labeled data stream
xj is an observation in S. xj ∈ S, where j = [1, . . . , |S|]
lt
j is the true label of observation xj

Cj is a subset of P , which is covering observation xj. Cj ⊂ P

lp
j is the predicted label of observation xj by the model

qij is the coverage of pattern pi up to observation xj

q̄ij is the opposite coverage of pattern pi up to observation xj

hij is the homogeneity of pattern pi up to observation xj

δij is the coverage index of pattern pi up to observation xj

αp is the decay factor of the coverage index δ of the patterns
q̀ij is the normalized coverage of pattern pi up to observation xj

`̄qij is the normalized coverage of pattern pi up to observation xj

h̀ij is the normalized homogeneity of pattern pi up to observation xj

ĥij is the protected homogeneity of pattern pi up to observation xj

Aj is the model accuracy up to observation xj

AAj is the model arithmetic accuracy up to observation xj

GAj is the model geometric accuracy up to observation xj

DAj is the model decayed accuracy up to observation xj

DAAj is the model decayed arithmetic accuracy up to observation xj

DGAj is the model decayed geometric accuracy up to observation xj

αa is the decay factor of the decayed accuracies

4.2 Introduction

The significant advancements in data collection and storage have helped the development and
emergence of Machine Learning (ML) techniques as powerful tools in making decisions and
better improving our systems; and has even given birth to a large variety of new systems. Yet,
the development and evolution does never stop; systems continue to evolve, and so does the
nature of the data collected from such systems [61]. Social media platforms, cloud systems,
and the interconnections of Internet of Things (IoT) in many different applications are some
examples of this evolution. In such systems, data now comes in the form of continuous
streams of large amounts, instead of the traditional historical and static datasets that have
long been used to build and train ML models. Such continuous steams may have concept
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drifts over time due to changes in the observed phenomenon which require adaptation for
the trained ML models. Therefore, ML techniques have to cope with such evolution by
developing the ability to dynamically handle streaming data as illustrated in Figure 4.1, and
many have already done, as it will be reviewed later in this section.

However, while the vast majority of ML techniques technically try to provide the same
kinds of answers to decision makers, they still differ among each other in certain features
that some may provide while others do not. These subtle differences can be quite crucial
in applications where certain features are essential. To make this statement clearer with
the case relevant to this research, the Logical Analysis of Data (LAD) [45] features the
powerful ability of interpretability in classification problems [44–46] – whether they are two-
class [45] or multi-class [48] problems. Such powerful ability has made the LAD quite useful
in applications where interpretability is highly important. Examples of these applications
include financial [62], medical [46], aviation [63], and industrial [37], to name a few. More
specifically, applications in industrial systems where interpretability is essential to better
understand, and hence improve, such systems and their processes include manufacturing and
quality systems [37], and condition based maintenance systems [56].

In the light of the forementioned evolution of systems, industrial and quality systems have
also experienced such changes. With concepts such as Industry 4.0 [64] and Quality 4.0 [65],
such systems will be collecting continuous streams of large amounts of data. And while these
systems require high-interpretability, and hence their traditional versions have benefited from
such technique as the LAD, Industry 4.0 and Quality 4.0, among other types of systems, would
also significantly benefit from a version of LAD that has the ability to handle streaming data
while preserving its distinct power of interpretability. Such version of LAD has not yet been
developed, and it is our proposal in this paper.

One of the first ML techniques to be modified to handle streaming data is Decision Trees
in Hoeffding Tree algorithm [15]. This algorithm is based on splitting the leaves of the
constructed tree by scanning the streaming observations in order to incorporate the new
information into the model. The authors then, in the same publication, proposed the Very
Fast Decision Tree (VFDT) as an improved version of the algorithm in order to speed up
the process of incorporating the new information. This is achieved by computing the best
leaf splitting when a minimum number of observations arrive, in addition to deactivating the
least promising nodes to decrease the computational memory and processing time. As an
extension to the VFDT, the Concept-Adapting Very Fast Decision Tree (CVFDT) accounts
for data concept drift by using the sliding window technique [16].

Other adaptations to ML techniques include the Lazy Learning algorithm [17] applied to
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Figure 4.1 Adapting ML model after detecting a concept drift in a streaming data.

the k-nearest neighbors method. This algorithm uses a sliding window as the search space
used in determining the k-nearest neighbors to a new, unclassified observation, and as the
window slides, the method naturally takes into account any data concept drift that may
exist. More generic frameworks that can be applied to different ML techniques, to handle
streaming data, include reservoir sampling [18] and ensemble methods [19, 20]. Reservoir
sampling is based on maintaining a sampling reservoir from the data stream, and frequently
updating this reservoir, and accordingly the model. On the other hand, ensemble methods
are based on building an ensemble model of different classifiers trained on different chunks
from the data stream. As the data stream flows and more classifiers are built, the ensemble
model is updated based on the accuracy of its classifiers. This ensures that the model is
tuned dynamically to optimize the accuracy according to the recent part of the data stream.

All these techniques, despite being quite helpful in many applications, still do not provide
the interpretability needed for many other systems – or at least do not maintain this inter-
pretability as their models grow in size. The LAD, on the other hand, has this ability of
providing and maintaining its interpretability for real world problem sizes. This is because
the patterns it generates are considered unique components, and hence, they can be flexibly
modified or eliminated solely without the need to change the entire model. This flexibility
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makes the LAD quite promising for handling streaming data. This ability to handle stream-
ing data, along with the high interpretability the LAD already has, will make it a powerful
tool for systems such as Industry 4.0 and Quality 4.0 that require both.

This paper proposes a Dynamic and Adaptive Logical Analysis of Streaming Data (DA-
LASD) framework for handling streaming data while maintaining all the interpretability
powers of the LAD. Through advanced modification of patterns characteristics, while com-
bining concepts such as reservoir sampling and ensemble models, the proposed method builds
a dynamic classification model for streaming data, considering concept drifts that may be
present. It dynamically adapts to the most recent information present in the data stream by
continuously updating the model through modifying the characteristics of existing patterns,
generating new patterns, and eliminating decayed and/or inefficient patterns. This allows
DA-LASD model to adapt dynamically, autonomously, and continuously through infinite
data streams. In addition, the advanced modifications of patterns characteristics allowed
DA-LASD model to have the ability for handling imbalanced streaming data which is a
difficult challenge in classification problems of data streams [66].

This paper is organized as follows. Section 4.3 presents the framework of DA-LASD model
and the algorithm of the adaptive and dynamic mechanism. Section 4.4 presents how DA-
LASD handles imbalanced data streams. Section 4.5 demonstrates the proposed framework
through experimentation. Finally, section 4.6 concludes the paper.

4.3 The framework of DA-LASD

4.3.1 Classical Logical Analysis of Data

LAD is a data mining and classification approach that generates prescriptive patterns con-
taining structural knowledge that explains the hidden phenomena under study. It consists
of three main steps: (1) data binarization, which converts numerical and nominal data to
binary data; (2) pattern generation, which extracts the structural information in the form
of patterns characterizing every class, and hence, every generated pattern has a class la-
bel; and (3) theory formation, which creates a discriminant function, based on the patterns’
characteristics, which is then used to classify new observations.

The main characteristics of every generated pattern are illustrated as follows [8]: (1) c is
the pattern class; (2) q is the coverage which is the number of observations covered by the
pattern and have the same class label as the pattern class; (3) q̄ is the opposite coverage
which is the number of observations covered by the pattern but have a class label opposite
to the pattern’s class; (4) h is the homogeneity which is the ratio of the pattern’s coverage
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with respect to the summation of its coverage and opposite coverage; (5) prevalence, which
is the ratio of the pattern’s coverage with respect to the total number of observations having
the class label as the pattern’s class; and (6) degree, which is the number of features defining
the pattern.

The challenge in the case of streaming data is that the values of many of these characteristics
mentioned above are not constant values. This is because they are mainly based on how
many observations a pattern covers, and these observations are being streamed in over time.
Therefore, these values should be continuously updated in order to reflect the characteristics
of the patterns at every part of the data stream. To account for this, various modifications
are introduced to the existing characteristics as it will be further discussed along with the
proposed framework.

4.3.2 Devising DA-LASD framework

DA-LASD is defined as an online classification model that is constructed by extracting hidden
patterns in a data stream by implementing the theory of LAD. In most data streams, the
data evolves and has concept drifts over time, which means that various statistical properties,
such as correlations between features and between features and class labels, may change over
time. The goal is to keep the model dynamically and automatically updated to adapt to any
concept drift in the data.

As Figure 4.2 shows, there are two independent input streams of data: a stream of unlabeled
data and a stream of true-labeled data. The idea is to use the stream of true-labeled data
to improve the classification accuracy of the LAD Classification Model (LAD-CM) for the
flowing stream of unlabeled data. This stream of true-labeled data could be there intention-
ally to assist the model, e.g., having a human agent to manually label a certain number of
observations such that these true-labeled observations are used to update the model, and
hence, improve its accuracy. However, it could also be there as newly available historical
data, e.g., the today unknown status of a certain stock in the stock market – which is the
goal of many ML algorithms to predict today – will tomorrow be a true label that can be
used as feedback to improve the classification accuracy of the model.

DA-LASD is a framework to automatically and dynamically do the following: updating the
LAD classification model by incorporating the available stream of true-labeled data, with all
the recent information and concept drift it contains, in order to improve the classification
accuracy of this model for the flowing stream of unlabeled data. Updating the model is
done through three main actions: (1) Updating, dynamically and continuously, the charac-
teristics of the existing patterns; (2) Eliminating decayed and/or inefficient patterns that
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do not describe the current concept in the data stream; and (3) Extracting new patterns
to describe any new information or concepts in the data stream. Therefore, in addition to
the Module I, LAD Classification Model (LAD-CM), these three actions are done in the two
other modules of the framework. Module II, the Dynamic Upgrading of Existing Patterns
(DUEP), is responsible for the first and second actions; updating the characteristics of the
existing patterns and eliminating the decayed and/or inefficient ones. Module III, Extracting
New Patterns (ENP), as the name implies, is responsible for the third action. These three
modules are illustrated in Figure 4.2.

Figure 4.2 Schematic of DA-LASD.

Module I: LAD Classification Model (LAD-CM) module

The LAD-CM is the classifier module of the DA-LASD and is responsible for predicting
classification labels for input observations. As a classical LAD classifier, it uses a set of
patterns (P ) to establish the LAD discriminant function, which then generates the predicted
labels. The P set can be initialized using either historical pre-labeled data or the first chunk
of the true-labeled data stream. This pattern set is then dynamically updated using the
other two modules of the DA-LASD.

As Figure 4.3 illustrates, the LAD-CM module receives two independent input streams: a
stream of unlabeled data and a stream of true-labeled data. While the model is primarily run-
ning to classify the stream of unlabeled data, it is simultaneously used to process the stream
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of true-labeled data in order to use the model parameters during such processing as input to
the other two modules, which in return updates the model for continuous improvement.

Figure 4.3 Flowchart of Module I: LAD Classification Model (LAD-CM).

Every observation in each of these two streams is scanned by P set, and the subset of covering
patterns (C) is obtained for each. A discriminant function (f(x)) is then constructed, and
the class label (lp) is predicted. Specific model parameters are collected during the processing
of the true-labeled stream (S) to be then sent to the other two modules. After processing an
observation xj ∈ S, Module II, DUEP, is sent the P , the Cj, and the true-labeled observation
xj with its true label (lt

j), in order to update the characteristics of the patterns in P and
eliminate decayed and/or inefficient ones, if any. Module III, ENP, is sent the current model
accuracy, the f(xj) value, the true-labeled observation xj with its lt

j, and its predicted label
lp
j , as inputs to its mechanism of generating new patterns. These new patterns will then be

added to the P .

Module II: Dynamic Updating of Existing Patterns (DUEP) module

The DUEP module is responsible for updating the characteristics of the patterns in P and
eliminating any decayed and/or inefficient ones.
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Out of the forementioned pattern characteristics, two main qualities are quite crucial when it
comes to handling streaming data. The first one is the ability of a pattern to maintain correct
coverage, i.e., covering observations that are truly belongs to its own class, and not the other
class(es). This can be indicated by the pattern’s homogeneity h based on its coverage q

and opposite coverage q̂ characteristics. At the time of processing an observation xj ∈ S,
the coverage qij, opposite coverage q̂ij, and homogeneity hij of a pattern pi ∈ P , where
i = [1, . . . , |P |], can be calculated as follows:

qij =

qi(j−1) + 1 , ci = lt
j and pi ∈ Cj

qi(j−1) , otherwise
(4.1)

q̄ij =

q̄i(j−1) + 1 , ci ̸= lt
j and pi ∈ Cj

q̄i(j−1) , otherwise
(4.2)

hij = qij

qij + q̄ij

(4.3)

The second crucial quality when handling streaming data is the ability of the pattern to
remain useful, i.e., contributing to the classification decision. This quality decreases when a
pattern is increasingly unable to cover observations of its own class. This could be that it
incorrectly covers observations of other classes but not its own, which is then taken care of
by the homogeneity characteristic; or it could be that it frequently does not appear in the
covering subset while observations of its own class are flowing in. To measure this quality,
a coverage index (δ) is introduced. δ is an index between 0 and 1 indicating how covering
a pattern is in the recent part of the data stream. Its value that is close to 0 indicates low
covering, and a value close to 1 indicates high covering.

Each pattern is initially generated with δ = 1, and continuously updated using a decay factor
αp, where 0 < α < 1. At the time of processing new observation xj ∈ S, the δij of a pattern
pi ∈ P is calculated as follows:

δij =


αp × δi(j−1) , ci = lt

j and pi /∈ Cj

δi(j−1)/αp , ci = lt
j and pi ∈ Cj and αp < 1

δi(j−1) , otherwise

(4.4)

As the equation 4.4 shows, the covering indicator δ is updated in only two cases: (1) if the
pattern fails to cover an observation of its own class (decay), or (2) if the pattern successfully
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covers an observation of its own class while its δ < 1 (improvement). Otherwise, the δ is not
updated as it is either already at the maximum value of 1 while the pattern has successfully
covered an observation of its own class, or the pattern class is different from the observation
true label.

As Figure 4.4 illustrates, module II receives the true-labeled observation xj, the P set, and
the Cj subset. It then checks for every pattern in P , and hence the h and the δ of this
pattern are modified based on whether it is a covering pattern or not, and whether the
covering is correct or not. If the homogeneity falls below a certain threshold (h-Threshold),
the pattern is considered inefficient, and hence, eliminated. Similarly, if the δ falls below
a decay threshold (δ-Threshold), it is considered decayed, and hence, eliminated as well.
These thresholds are model hyperparameters that can be tuned using hyperparameter search
methods, e.g., random search and grid search.

Figure 4.4 Flowchart of Module II: Dynamic Upgrading Existing Pattern (DUEP)
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The output of the module II, namely the modified characteristics of the patterns and whether
any patterns should be eliminated, is then sent to update the LAD-CM module. Furthermore,
new patterns are generated by module III, ENP, as it is described in the following section.

Module III: Extracting New Patterns (ENP) module

The ENP module, as its name implies, is the module responsible for generating new patterns
to be added to the P set in order to reflect the recent concepts in the data stream. To do so, it
maintains a reservoir of observations, called the sampling reservoir, based on which the new
patterns are generated. This reservoir is continuously updated, to be always representative
of the most recent concepts of the data streams, through two parallel updating mechanisms.

Each of the two updating mechanisms updates the sampling reservoir by constructing two
sets of observations: an entering set, which is the set to be added to the reservoir; and an
exiting set, which is the set to be removed from the reservoir – note that the reservoir is
fixed in size and balanced between the observations of each class. The difference between the
two types of the updating mechanism is in how each mechanism constructs the entering and
exiting sets based on its main purpose.

The first updating mechanism, Type I update, aims at capturing both the incorrectly clas-
sified observations and the observations classified with low confidence, i.e., with low f(x)
value. Then based on the current model accuracy and the observation’s true label, it is
determined whether each specific observation is to be added to the entering set of Type I
update, En-SET I, as illustrated in Figure 4.5. Two accuracy thresholds, a-Threshold-1 and
a-Threshold-2 are used to control the trade-off between improving the model accuracy, by
adding the observation, and overloading the model, and hence, increasing the running time.
a-Threshold-1 is the higher one, over which the model accuracy is considered to be good
enough, and hence, the new observation is not added, in favor of not overloading the model.
Below a-Threshold-1, all incorrectly predicted observations are added, but not only that.
If the model accuracy drops below a-Threshold-2, the observations predicted correctly but
with low confidence, i.e., low f(x) value, are also added in favor of improving the model
accuracy. As for the exiting set of Type I update, Ex-SET I, it is constructed by selecting
the number of observations from the reservoir, equal to the cardinality of En-SET I, with the
highest f(x) values.

The second updating mechanism, Type II update, aims at keeping the reservoir always rep-
resentative of the most recent part of the data stream by continuously adding sampled ob-
servations from the most recent part of the stream.
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Figure 4.5 Flowchart of constructing En-SET I.

This is done by considering the most recent observations of a specific size as the sampling
population, out of which a smaller number of observations are sampled as the entering set,
En-SET II. As for the exiting set, it is constructed from the oldest observations at the time
of the update, i.e., the observations that have been in the reservoir for the longest amount
of time.

An important point to be noted while updating the reservoir is that the reservoir has to be
maintained balanced. This is achieved by making sure that the number of observations of
every class in an entering set replaces the same number of observations of the same class in
the exiting set. This is a governing rule for constructing exiting sets, under which all the
other considerations are implied, e.g., sorting the observation based on their f(x) values, and
how long they have been in the reservoir, is done for each class present in the reservoir.

Figure 4.6 illustrates how Module III works with Type I and Type II updating mechanism
being performed in parallel. The LAD is run, and new patterns are generated, every time
a Type I update is done. This is because Type I update is responsible for capturing the
observations that need new patterns to be better represented. This is also supported by
Type II update that keeps the sampling reservoir always representative of the recent part of
the data stream.
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To conclude this section, the main goal of the modifications and eliminations done in Module
II, and the additions done in Module III, is to keep the model up to date with the most
recent changes and information in the data stream, in order to maintain high classification
accuracy for future observations.

4.4 Handling imbalanced data streams

As imbalanced static datasets exist in several applications, the concept of data imbalance
also exists in data streams. This happens when observations of a certain class or more are
appearing in the data stream in significantly small or significantly large amounts, compared to
the observations of other classes, such that they are barely noticeable or mostly dominating
the data stream, respectively. This phenomenon can happen either temporarily or in the
entirety of the data stream. This, however, does not imply that the most occurring class(es)
is the most important to be detected while the least occurring class is negligible. Contrarily,
it could be the case that a least-appearing class is the most important to detect. For instance,
a process failure or a machine breakdown, although rarely occurring, are quite important to
be detected, and hence preserved in the information extracted from the data stream, i.e.,
the patterns generated in the proposed DA-LASD framework. This is the motivation behind
all the modifications presented in this section in order to preserve the information about the
minority class(es) present in the data stream.

Since the DA-LASD framework employs modules that continuously modify, eliminate, and
generate patterns. It is crucial to make sure that the patterns characterizing minority classes
do not get eliminated while they are still representative of these minority classes. This could
happen when the homogeneity of these patterns is reduced over time as observations of
other classes are flowing in significantly larger amounts. Thus homogeneity, with its classical
definition, could be deceiving in this case, and hence it needs to be redefined. This indeed
extends to the coverage and opposite coverage characteristics, based on which homogeneity
is defined.

Normalized pattern characteristics are instead proposed to account for this data imbalance.
These characteristics take into account not only the number of observations of a certain class
that are covered by a pattern, but also the total number of observations of this class that are
present in the entire data stream S. At the time of processing the most recent observation
xj ∈ S, these normalized characteristics of a pattern pi ∈ P are calculated as follows:

q̀ij = qij

Nij

(4.5)



41

Figure 4.6 Flowchart of Module III: Extracting New Patterns (ENP).



42

`̄qij = q̄ij

N̄ij

(4.6)

h̀ij = q̀ij

q̀ij + `̄qij

(4.7)

Where Nij is the total number of observations of the same class as pattern pi in the entire data
stream S up to observation xj, and Nij is the total number of observations of the opposite
class of pattern pi in the entire data stream S up to observation xj.

Furthermore, even the normalized definition of a pattern’s homogeneity may in some cases
not help protecting a pattern that is representative of a minority class from being deleted by
Module II. These cases may include the imbalance being severe in the entire data stream, or
the minority class(es) not being present in a significant part of the data stream — which does
not provide a chance to test the pattern’s ability to cover observations of its own class while
they are present. Therefore, a more elaborate definition for the homogeneity characteristic
is proposed that takes into account the previously considered measures in addition to the
ability of the pattern to continue covering observations of its own class as they flow in. This
latter measure is simply the previously defined covering index, δ, based on which and the
normalized homogeneity, the protected homogeneity characteristic is defined as follows:

ĥij = (q̀ij)1−δij

(q̀ij)1−δij + `̄qij

(4.8)

According to equation 4.8, the protection of a pattern’s homogeneity is proportional to its δ,
i.e., the homogeneity is not significantly decreased as long as the pattern’s δ is high. However,
if the pattern’s δ starts to drop, this indicates that the pattern is becoming less able to cover
observations of its own class as they flow in, reflected by its δ, and hence the protection
is accordingly reduced allowing the ĥ to start to drop as well. This makes the protected
homogeneity characteristic, ĥ, as representative as possible of how a pattern is performing,
taking into account the possibility that it may be a minority class pattern.

It is important though to note that the protected homogeneity, which accounts for any type
of imbalance, is a still a perfectly valid measure of homogeneity even if no imbalance exists.
Hence, it is the main measure of homogeneity used in the DA-LASD framework. In addition,
it is used as a weight for each pattern in the LAD discriminant function.
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4.5 Experimentation

In this section, the DA-LASD algorithm is tested in several classification problems. First,
the evaluation of the model performance, in the case of data streams, is explained. Then the
datasets used for experimentation are described, and the results are presented along with
relevant discussion.

4.5.1 Model performance evaluation

The first and most straightforward measure of model performance is its classification accu-
racy, which is simply the ratio of the correctly classified observations to the total number of
observations. In the case of data streams, this accuracy can be recomputed every time a new
observation is added. At the time of processing of the most recent observation xj, this can
be written as follows:

Aj = Ej

Bj

(4.9)

where
Ej = Lj + Ej−1, Bj = 1 + Bj−1 (4.10)

Lj is the loss function for each observation xj, and is equal to 1 if xj is correctly classified,
and 0 otherwise. Therefore, Ej and Bj are the total number of observations that are cor-
rectly classified, and the total number of observations that are received, respectively up to
observation xj.

However, in order to account for any possible imbalance in the data stream, other measures
that take into account the individual accuracy of each class are considered, namely arithmetic
and geometric accuracies. For an n number of classes, where each class is indexed by k, the
arithmetic and geometric accuracies are calculated as follows, respectively [5]:

AAj =
∑n

k=1 Akj

n
(4.11)

GAj = (
n∏

k=1
Akj)

1
n (4.12)
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4.5.2 Model performance evaluation

Since these measures of accuracy consider all the observations in the entire data stream, they
may not accurately reflect the most recent changes in the model performance in the recent
part of the data stream. Therefore, as it is more important how the model performance
has been recently, than how it was long ago at the beginning of the stream, the concept of
decayed accuracy is introduced to these measures.

In order to measure the classification accuracy of the model for only the most recent data, a
forgetting mechanism is used with fading factors that weigh data using a decay factor αa to
calculate a Decayed Accuracy DAj as follows [5]:

DAj = DEj

DBj

(4.13)

where
DEj = Lj + αa × DEj−1, DBj = 1 + αa × DBj−1 (4.14)

Similarly, this concept can be extended to both arithmetic and geometric accuracies as fol-
lows:

DAAj =
∑n

k=1 DAkj

n
(4.15)

DGAj = (
n∏

k=1
DAkj)

1
n (4.16)

4.5.3 Datasets and Implementation details

The experiments presented in this paper are for ten different synthetic datasets, each repre-
senting a data stream, generated using MOA, an open-source software [67]. The ten datasets,
named D1 to D10, are generated using different generating functions, namely random tree
generator which is introduced in [15], SEA generator which is introduced in [68], and rotating
hyperplane generator which is introduced in [16]. In addition, the datasets contain different
types and numbers of concept drifts. Table 4.1 presents the details of these datasets, while
Figure 4.7 illustrates the different types of concept drifts mentioned in the fourth column
in this table. The last column illustrates the sequence of concepts in the data stream, e.g.,
D1 starts with concept 1, then a drift happens into concept 2, and finally into concept 3.
Datasets D9 and D10 have an incremental and continuous drifts which means the concept is
changing in a continuous way.
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Table 4.1 Datasets details.

Dataset # of Classes Generator Function Drift type Concepts
D1 2 Random Tree abrupt 1 → 2 → 3
D2 2 Random Tree Gradual 1 → 2 → 3
D3 2 Random Tree Recurring - Abrupt 1 → 2 → 1
D4 2 Random Tree Recurring - Gradual 1 → 2 → 1
D5 2 SEA abrupt 1 → 2 → 3
D6 2 SEA Gradual 1 → 2 → 3
D7 2 SEA Recurring - abrupt 1 → 2 → 1
D8 2 SEA Recurring - Gradual 1 → 2 → 1
D9 2 Rotating Hyperplane Incremental - high Continuous
D10 2 Rotating Hyperplane Incremental - low Continuous

Figure 4.7 Different types of concept drifts.
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The DA-LASD is implemented in python using Faust package and Apache Kafka to build
the streaming environment. For the LAD part that generates new patterns, the cbmLAD
software [56] is used. For simplicity, it is assumed that the model immediately receives the
actual label for every observation after the model predicts the label and before receiving the
next observation [5].

A random search technique is applied to select best combination of hyper-parameters values
that maximizes the accuracy for each data stream. Table 4.2 shows the results of random
search technique for D1 data stream, as an example. Table 4.3 summarizes the model pa-
rameters used in the experimentation for all data streams.

4.5.4 Results and Discussion

The ten datasets represent five pairs containing the same types of concept drifts. While the
results of all datasets are summarized in Table 4.4, one dataset of each pair is discussed in
detail.

For more detailed analysis, the trends of the different accuracy measures along the data
stream, as well as the number of generated patterns and number of observations for every
class, are displayed for the selected datasets. These datasets are D1, D2, D3, D4, D9 and
D10.

D1, similar to D5, has an abrupt concept drift with three different concepts, each lasts for 20k
observations, for a total of 60k stream. Figure 4.8 shows the different performance measures
for D1. As expected, sudden drops in decayed accuracy measures occurred at the abrupt
drift points, namely at 20k and 40k observations, which is then followed by an uptrend as
the DA-LASD adapts to this change. Temporary imbalance is also noticed during the second
and third concepts, where class 2 and then class 1 become majority classes, respectively. This
is when pattern protection proves useful in preserving the patterns of the minority class until
their usefulness has a chance to be tested as the minority class starts to reappear in the data
stream.

D2, similar to D6, has a gradual concept drift of three different concepts. These gradual
drifts happened over a span of 5k observations, each centered at the points of 20k and 40k
observations, respectively, as shown in Figure 4.9. As the graphs in Figure 4.9 show, the
DA-LASD has adapted to these changes, and succeeded in improving the different accuracy
measures again after their decrease. It is also noticed that due to the longer time span of
the gradual drifts, which includes observations from both concepts, the number of generated
patterns is higher than the number of those generated in the case of abrupt drifts. However,
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Table 4.2 Datasets details.
Run αa a-Threshold-1 En-Threshold αp h-Threshold δ-Threshold A AA GA
1 0.9999 0.85 400 0.9995 0.85 0.2 0.835 0.834 0.834
2 0.9997 0.85 400 0.9995 0.85 0.2 0.846 0.847 0.847
3 0.9995 0.85 400 0.9995 0.85 0.2 0.848 0.846 0.846
4 0.9995 0.85 300 0.9995 0.85 0.2 0.854 0.855 0.855
5 0.9995 0.85 200 0.9995 0.85 0.2 0.874 0.873 0.873
6 0.9995 0.85 200 0.99975 0.85 0.2 0.869 0.868 0.868
7 0.9995 0.85 200 0.9999 0.85 0.2 0.88 0.879 0.879
8 0.9995 0.85 200 0.9999 0.85 0.1 0.873 0.872 0.872
9 0.9995 0.85 200 0.9999 0.85 0.1 0.896 0.896 0.896
10 0.9995 0.90 200 0.9999 0.85 0.1 0.906 0.903 0.903
11 0.9995 0.90 200 0.9999 0.8 0.1 0.907 0.905 0.905
12 0.9995 0.90 200 0.9999 0.8 0.05 0.892 0.895 0.894
13 0.9995 0.90 200 0.99995 0.8 0.05 0.907 0.906 0.906
14 0.9995 0.90 200 0.999925 0.8 0.05 0.899 0.899 0.899
15 0.9995 0.90 200 0.999975 0.8 0.05 0.883 0.887 0.887
16 0.999125 0.90 200 0.99995 0.8 0.05 0.896 0.898 0.898

Table 4.3 Values of DA-LASD parameters.

Dataset αa a-Threshold-1 αp h-Threshold δ-Threshold
D1 0.9995 0.9 0.9999 0.8 0.05
D2 0.999125 0.9 0.99995 0.8 0.05
D3 0.9995 0.9 0.9999 0.8 0.05
D4 0.999125 0.9 0.99995 0.8 0.05
D5 0.999125 0.87 0.99995 0.8 0.05
D6 0.999 0.87 0.99995 0.8 0.05
D7 0.999125 0.87 0.99995 0.8 0.05
D8 0.999 0.87 0.99995 0.8 0.05
D9 0.999 0.9 0.99995 0.85 0.1
D10 0.999 0.925 0.99995 0.85 0.1

Table 4.4 Summary of DA-LASD results.

Data Acc. Arithmetic Acc. Geometric Acc. Mean of Mean of Decayed Mean of Decayed
Decayed Acc. Arithmetic Acc. Geometric Acc.

D1 0.9073 0.9060 0.9059 0.9053 0.8954 0.8934
D2 0.8781 0.8811 0.8808 0.8781 0.8789 0.8783
D3 0.8972 0.8948 0.8940 0.8955 0.8846 0.8823
D4 0.8948 0.8953 0.8952 0.8944 0.8876 0.8868
D5 0.8903 0.8893 0.8893 0.8887 0.8878 0.8874
D6 0.8976 0.8971 0.8969 0.8970 0.8963 0.8960
D7 0.8919 0.8917 0.8916 0.8916 0.8912 0.8908
D8 0.9000 0.8974 0.8974 0.8989 0.8964 0.8961
D9 0.8858 0.8858 0.8857 0.8839 0.8814 0.8811
D10 0.8866 0.867 0.8866 0.8844 0.8832 0.8829
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the algorithm adapts by eliminating inefficient patterns as the new concept stabilizes.

Recurring drifts occurred in an abrupt manner in D3 and D7 and in a gradual manner in D4
and D8. Figures 4.10 and 4.11 show the results for D3 and D4, respectively. Again, it is clear
how the algorithm adapted to these two different concept drifts, and successfully improved
the accuracy measures. It can also be noticed how the algorithm responded to the drop
of class 1 accuracy by generating more patterns to characterize it, which in return helped
improving the accuracy of this class.

In D9 and D10, the drifts happened incrementally and continuously with a relatively high
and low change rates, respectively. As Figures 4.12 and 4.13 show, the algorithm was able
to maintain high accuracy measures along the entire data streams. They also show how the
number of patterns is smoothly changing in the case of incremental drift, compared to other
concept drifts, which is expected as there are no major points to mark the change in the
concept, but rather an incremental change. When it comes to the difference between D9
and D10, the high change rate in D9 has led to a larger number of patterns being generated
compared to D10.

This detailed analysis shows how the proposed DA-LASD is quite successful in dynamically
adapting to all the different changes in the data stream, and consequently maintaining high
accuracy measures across the entirety of the data streams in all the discussed datasets.

Finally, Table 4.5 provides a comparison between the proposed DA-LASD and other machine
learning techniques capable of handling streaming data, namely Hoeffding Tree, Hoeffding
Option Tree (HO-Tree), Hoeffding Adaptive Tree (HA-Tee), Naive Bayes incremental learner,
and Self Adjusting Memory K nearest neighbors (SAMKNN).

Table 4.5 Comparison between DA-LASD and different ML techniques in terms of the mean
accuracy over all the stream.

Data DA-LASD Hoeffding Tree HO-Tree HA-Tee Naive Byes SAMKNN
D1 0.907 0.733 0.759 0.889 0.603 0.904
D2 0.878 0.74 0.747 0.839 0.604 0.871
D3 0.897 0.774 0.781 0.874 0.622 0.885
D4 0.894 0.773 0.78 0.829 0.623 0.853
D5 0.89 0.899 0.9 0.925 0.897 0.933
D6 0.897 0.899 0.901 0.921 0.897 0.929
D7 0.891 0.919 0.92 0.925 0.906 0.934
D8 0.9 0.918 0.91 0.922 0.907 0.931
D9 0.885 0.876 0.889 0.911 0.824 0.921
D10 0.886 0.894 0.891 0.908 0.861 0.921

It is obvious that the proposed framework provides competitive classification performance,
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Figure 4.8 Performance of DA-LASD on D1 stream with abrupt drifts between 3 concepts.

Figure 4.9 Performance of DA-LASD on D2 stream with gradual drifts between 3 concepts.
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Figure 4.10 Performance of DA-LASD on D3 stream with recurring drifts between 2 concepts
in an abrupt manner.

Figure 4.11 Performance of DA-LASD on D4 stream with recurring drifts between 2 concepts
in a gradual manner.
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Figure 4.12 Performance of DA-LASD on D9 stream containing incremental drift with high
change rate.

Figure 4.13 Performance of DA-LASD on D10 stream containing incremental drift with low
change rate.
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even though not entirely dominant. What makes the proposed DA-LASD quite promising is
how it combines this competitive classification performance with its distinctive interpretabil-
ity power, which is essential in providing physical meanings and describing hidden phenom-
ena. This is particularly important in business and industrial applications, especially in
Industry 4.0 and Quality 4.0 paradigms, in addition to a diverse number of domains such as
medical, financial and aviation sectors, to name a few.

4.6 Conclusion

In this research, we propose a Dynamic and Adaptive Logical Analysis of Streaming Data
framework, DA-LASD, which is a LAD-based classifier capable of handling data streams.
The DA-LASD consists of three main modules. LAD-CM is the LAD classifier model, which
classifies observations based on the set of patterns it contains. However, this set of patterns
has to be continuously updated to adapt to the changes in the data stream as it flows. The
update is done by modifying the characteristics of existing patterns, eliminating decayed and
inefficient patterns, and added new patterns. The first two steps are done in the Module II:
Dynamic Update of Existing Patterns, DUEP. The third step is taken care of in the Module
III: Extracting New Patterns, ENP.

In order to correctly detect decayed and inefficient patterns, several modifications on the
classical pattern characteristics are proposed. Particularly, the covering and opposite cover-
ing characteristics are normalized, and the homogeneity is normalized and protected. This
enables the framework to take into account any data imbalance that may exist. Moreover, a
new characteristic is proposed, namely the covering index, δ, which is an updated measure
of the pattern’s ability to cover observations of its own class as they continue to flow in.

The proposed DA-LASD is then tested on several datasets of streams generated by differ-
ent generating functions and containing different types and numbers of concept drifts. The
detailed analysis of the experimentation results shows how the proposed framework dynam-
ically adapts the model, and successfully improves any performance measures that start to
decline, i.e., successfully maintains high levels of classification accuracy. This accuracy of the
DA-LASD is found to be competitive when compared with other machine learning techniques
that handle streaming data. With high accuracy and its distinctive interpretability power,
the DA-LASD shows a lot of promise in applications where high accuracy and interpretability
are required, e.g., industrial, financial, and medical applications, to name a few.
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CHAPTER 5 ARTICLE 3: SUSTAINABLE MODEL OF DYNAMIC AND
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INTERPRETABLE PATTERNS FOR DEGRADING TURBOFAN ENGINE
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Abstract: Industrial process control is adapting to become more intelligent and automated
using artificial intelligent and machine learning techniques under the label of Industry 4.0.
Automated and intelligent process control have to be able to handle and adapt dynamically
to the streaming data collected from such advanced industrial processes. These machine
learning techniques should be able to interprets their outputs and decide what action should
be taken to bring out-of-control process back to the normal state. In this paper, a Dynamic
and Adaptive Logical Analysis of Streaming Data (DA-LASD) model reinforced with feature
engineering mechanism is proposed to develop an intelligent and interpretable monitoring
system for turbofan engine. The feature engineering mechanism comprises different steps
of feature selection and feature extraction to enhance the model performance. Through
a case study of turbofan jet engine failure detection, the proposed model shows how it is
able to detect out-of-control states and provides interpretable patterns for them. Also, it
shows a high sustainability through a dynamic adapting to concept drifts in the streaming
data. Moreover, it statistically outperforms other machine learning techniques in terms of
classification sensitivity which is important to measure the ability to detect faults and out-
of-control states.
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5.1 Introduction

Industrial processes have been rapidly evolving in the recent decades due to significant ad-
vancements in sensor technology, networks, intelligent robotics, automation and big data
analytics, under the label of Industry 4.0 [69]. Such an evolution provides significant, posi-
tive impact on operational efficiency, agility and flexibility; productivity growth; as well as
consumer experience and cost and revenue management [70]. Industrial process control mon-
itors the process performance and provides the required feedback for corrective actions [21].

Running a jet engine is considered a process which is controlled through an advanced control-
ling system in order to operate a given jet engine at maximum efficiency and deliver optimal
performance. Jet engines have many controllable variables, such as fan speed, core speed,
pressure in bypass-duct and fuel-air ratio, which are controlled through different actuators
directly or indirectly by advanced controlling systems [71, 72]. However, an intelligent mon-
itoring system should be incorporated to detect out-of-control states and faults that cause
low efficiency and bad performance, and hence give the autonomous corrective action to
the controller to reset the state to the optimal without human interaction. Such intelligent
monitoring system could be achieved through applying data-driven approaches and machine
learning (ML) techniques to detect anomalies and predict the out-of-control. However, in
such advanced process, data arrives in the form of streams. Data streams are defined by
algorithmic community to support real-time analytics. They are sequences of data observa-
tions, possibily infinite, each has a timestamp and a temporal order. Observations arrive one
by one, and should be processed in real time. [5]. In this context ML techniques must be
able to process data streams and be featured by high robustness, resilience, sustainability,
and interpretability.

Robustness A robust machine learning model is the one have a testing error consistent
with its training error, i.e., the model accuracy doesn’t deteriorate too much when testing
with slightly different data after adding some noise. Therefore, the model will have low bias
and low variance errors. This is the first basic problem that is faced during building an ML
model.

Resilience A resilient machine learning model is the one maintains optimal performance
after deployment and on variety of test sets. It should not be overfitted to only one test data
set. Resilience is the robustness against time. This problem occurs in industrial application
when there are lack of training data at the modeling phase and data arrives in different time
in the future.
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Sustainability A sustainable machine learning model is the one which can capture the
distribution drifts in the new data, and hence automatically adapt itself to the new concept.
In the real and practical data after deploying the model in industrial applications, there
are shifts that occur overtime, and hence the distribution of data used to train the model is
different from the newly available data which is called a concept drift. Therefore, a sustainable
machine learning model is needed to overcome this practical problem which is very common
in industrial settings because all physical assets experience aging and deterioration, and hence
the distribution of new data changes overtime.

Interpretability An interpretable machine learning model is the one that have an ex-
planatory power able to provide root-cause analysis of certain phenomena to facilitate the
decision-making process. That will guide automatically the advanced controlling systems to
demand corrective actions to maintain the engine at the optimal performance and healthy
state [73].

Using an ML technique featured with these mentioned abilities is essential to develop an
intelligent monitoring system that is resilient, sustainable, and interpretable. Such system
will be able to guide automatically the advanced controlling system in a jet engine to demand
corrective actions for maintaining the engine at the optimal performance and continuously
in-control state or giving an alarm for a fetal fault in the engine.

In this paper, a model based on dynamic and logical analysis of streaming data (DA-LASD)
is proposed for intelligent and interpretable monitoring of the operational process of turbofan
engine. The proposed model relies on dynamically and automatically updated interpretable
patterns to determine process state and provide interpretation, and hence feedback corrective
actions. The model is reinforced by feature engineering steps in order to determine the set
of most relevant/significant features for the process control, and hence improve the model
resilience and sustainability which make the model to correctly classify the observations
and adapt to concept drifts in data stream. Therefore, the process control will be able
automatically to detect out-of-control states, provide interpretation for them, give corrective
feedback, and update the model to any concept drifts without any human interactions.

The paper is organized as follows. In section 5.2 related works and the objective are pre-
sented. In section 5.3, the proposed methodology is presented, including feature engineering
and DA-LASD methodology. In section 5.4, a case study is presented, including problem
generalization as well as evaluation criteria. Section 5.5 walks the reader through the key
results and comparative analysis with other techniques. Finally, section 5.6 concludes the
presented work and discusses areas of further research.
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5.2 Related Works

In this section, we begin by reviewing the most relevant works proposed for using machine
learning techniques in industrial process monitoring and fault detection. In [74] Different
ML techniques, such linear regression, decision tree, random forest, gradient boosting, and
k-nearest neighbors, are used to monitor turbofan engine and and predict the remaining useful
life for the engine. for the same purpose, deep convolutional neural network is used in [75]. In
addition, ML techniques, such as support vector data description (SVDD), neural networks,
decision trees, k-means clustering, linear discriminant analysis, principal component analysis
(PCA) and Logical Analysis of Data (LAD), have been used with control charts to detect out-
of-control states and anomalities [22,23]. In [24], a pattern recognition-based fault detection
method was proposed using SVDD as a one-class classification algorithm. This method was
applied for chillers monitoring and faults detection in [25]. To improve the fault detection
performance, a PCA-R-SVDD based method is proposed in [26] by developing a SVDD model
in the residual subspace (Rs) using the PCA modeling residual data. In [27], neural network
is used for real-time detection of faults. A neural network model for fault detection is defined
by using dynamic neurons in [28] and applied in sugar evaporation process. In [29] and [30],
deep neural networks were used for fault detection and monitoring non-linear processes. PCA
is used as a data-driven method for industrial process monitoring [31]. Kernel PCA (KPCA)
was proposed in [32] in order to extend PCA to nonlinear systems as most practical and real
industrial systems are nonlinear. In order to deal with the data streams, online KPCA was
proposed in [33]. However, this method suffers from a high computational time. Therefore,
reduced rank optimized KPCA (RR-KPCA) was introduced in [34] with reduced complexity
to overcome this issue and was applied for monitoring an air quality monitoring network.

Some of these techniques are however not learning online and not dynamically adapting
for streaming data, i.e., their models are trained on static dataset and then put in action
without accounting for the dynamical change in data concepts other than those existing in the
training dataset. Accordingly, these techniques will suffer from low sustainability. Although
the others have been extended to learn online from streaming data, these techniques lack
the interpretability needed to provide feedback for automatic corrective actions. LAD is a
classification method that generates interpretable patterns [44–46]. This characteristic made
it useful option in a wide variety of industrial settings where interpretability is required. LAD
was proposed for a first time as a fault detection and diagnosis tool for industrial systems
in [35]. In [36], LAD was applied for the detection of faults in rotating machinery using
vibration signals. LAD is applied in [37] to detect and diagnose faults in industrial chemical
processes and provide patterns to build a decision model that diagnoses faults and explains
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the potential causes of these faults. A tool wear multiclass detection method based on LAD
is proposed in [38] by deriving the information from machining process variables. In spite
of its distinct interpretability and competitive accuracy, classical LAD suffers from a high
computational time. Therefore, the authors in [39] proposed LAD ensemble (LAD-ENS)
technique to accelerate the processing and preserve its high accuracy and interpretability
by combining different LAD models in the pattern level. Although, process control, under
Indusrty 4.0 label, is required to be dynamic and adaptive to streaming data, which exhibits
concept-drift phenomenon. This phenomenon is very common in industrial settings because
all physical assets experience aging and deterioration. In order to overcome this issue, the
authors in [2] proposed a framework that addresses a methodology for handling streaming
data with high interpretability. The introduced methodology is dynamic and adaptive logical
analysis of streaming data (DA-LASD). DA-LASD is built with LAD as its core classifier
module, and provides modules for dynamically updating and adapting the model according
to the changes in the data streams.

Based on these related works, this paper presents a DA-LASD model for intelligent and in-
terpretable monitoring of the the operational process of turbofan engine. This model can be
extended to other industrial process control systems. The goal is to replace the traditional
statistical process control (SPC) that is shown in Figure 5.1, and which relies on detecting
out-of-control states and non-random variations in the process quality metrics and then per-
forming root-cause analysis by humans, with the DA-LASD that relies on dynamically and
automatically updated interpretable patterns to determine process state and provide inter-
pretation, and hence feedback corrective actions, as illustrated in Figure 5.2. The proposed
DA-LASD is reinforced by feature engineering steps in order to determine the set of most
relevant/significant features for the process control, and hence improve the model resilience
and sustainability. That means enhancing the model ability to correctly classify the observa-
tions and adapt to concept drifts in data stream. Therefore, the process control will be able
automatically to detect out-of-control states, provide interpretation for them, give corrective
feedback, and update the model to any concept drifts without any human interactions.

5.3 Methodology

The proposed methodology consists of two main parts. The first part is feature engineering,
which consists of feature selection and extraction. These steps prepare the data in such a way
that enhances the performance of machine learning techniques in extracting knowledge from
the data. The second part is applying the DA-LASD, which is a LAD-based methodology
that is dynamically updated according to the newly received observations to maintain high
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Figure 5.1 Traditional Statistical Process Control procedure
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Figure 5.2 DA-LASD Process Control procedure
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level of learning accuracy along with the distinct interpretability ability of the LAD.

The feature engineering and the initialization of the DA-LASD model are done using an initial
pool of observations. This pool is built by collecting an accumulated number of observations
as the data stream starts to flow, and it is then used to do the feature engineering steps
and to extract initial patterns for the LAD classifier module of the DA-LASD, as further
presented in this section.

5.3.1 Feature Engineering

In machine learning terminology, the word “feature” is a generic word that in the case of
industrial process refers to the control inputs and state variables of such control systems. It
is therefore further used here with this significance.

The purpose of the feature engineering is to determine the set of most relevant/significant
features to be considered in the machine learning model to enhance the model’s performance
and its ability to extract knowledge from the data. This is done through two main steps: i)
feature selection, and ii) time series feature extraction, as illustrated in Figure 5.3.

Feature selection The first sub-step of feature selection is which features with low varia-
tion are excluded–other criteria may also be used to further reduce the data if needed. These
features are those with a variance below a certain threshold σ2 < σ2

th, and can hence be consid-
ered constants. In order to determine a proper variance threshold, scaling step is performed
firstly for all features, and then all variances are determined, i.e., the variance threshold will
be determined on the scaled values. The aim of this sub-step is to avoid unnecessarily over-
loading the model, and consequently enhance its efficiency. The second sub-step of feature
selection is which then focuses on selecting the most significant features. This is achieved by
using a voting-based feature selection mechanism that comprises three different classifiers,
namely random forests, gradient boosting classifier and LASSO (least absolute shrinkage
and selection operator). It then combines the individual outputs of these classifiers, based on
their respective selection votes, in order to determine the set of significant features. Random
forests and gradient boosting techniques provide a ranked feature importance based on mean
of accumulation of impurity decrease within each tree in the forest by using the feature to
split nodes [76]. That is employed to select the set of most relevant/significant features. In
our methodology, these two feature selection techniques are performed with recursive feature
elimination (RFE) technique [77] to optimize selecting features to be eliminated and their
number. LASSO technique is based on a regression estimator that shrinks the coefficients of
irrelevant features. It also chooses only one among highly correlated features by shrinking
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Figure 5.3 Feature Engineering
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the coefficients of others to zero. That is performed by defining the LASSO model to decrease
the residual sum of squares subject to the sum of the absolute value of the coefficients being
less than a constant [78].

Time series feature extraction Data streams collected from most practical and real
industrial process are stationary time series data in the healthy state (in-control state). That
means that such data streams have statistical properties, e.g., mean and variance, that don’t
change through time. However, these statistical properties can change over time in the
case of the process is out-of-control. As such changes should be captured by the model.
Therefore, time series feature extraction is used as a step to generate new features that
capture, for every observation, specific change information over time from a certain number
of preceding observations [79]. For instance, this could be a moving average of some features
or the difference in value of a specific feature from a previous observation to the current one.
Extracted features are added to the previously selected set of significant features, then the
voting-based feature selection mechanism is performed again to determine the final set of
significant features.

5.3.2 DA-LASD Framework

DA-LASD is a machine learning classification framework that not only possesses strong
interpretability powers, by using the concept of Logical Analysis of Data (LAD), but also
adapts dynamically to the changes in the data as it flows in. This gives the DA-LASD its
distinct ability of maintaining high levels of accuracy and interpretability along dynamically
changing data streams [2].

As Figure 5.4 illustrates, the DA-LASD framework consists of three main modules. Module I
is the LAD classification model which determines for every observation a set of patterns cov-
ering the observation, constructs the discriminant function, and accordingly predicts a label.
As the data stream flows in, carrying new knowledge, Modules II and III take care of updat-
ing the set of all patterns which is used by Module I for classification. Specifically, Module II
updates the pattern’s characteristics and eliminates inefficient and decayed patterns, while
Module III generates new patterns.

Inefficient pattern is the pattern whose homogeneity below a certain threshold. The authors
introduced in [2] a novel protected homogeneity characteristic ĥ in order to make the model
able to handle imbalanced data streams and measure the pattern efficiency effectively. In
order to define decayed patterns, the authors also introduced in [2] a coverage index δ,
which is a measure of the pattern’s ability to remain useful by correctly contributing to the
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Figure 5.4 Dynamic and Adaptive Logical Analysis of Streaming Data (DA-LASD) Frame-
work [2]
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classification decision, i.e., continuing to cover observations of its own class as they flow in.
Patterns with a coverage index below a certain threshold are considered decayed δ < δth.

In addition to model performance measures, such as accuracy, sensitivity and specificity,
decayed versions of them were introduced to account to a larger extent for the model’s per-
formance in the recent part of the data stream than its performance earlier at the beginning of
the stream in addition to measure its resilience and sustainability. All performance measures
developed as evaluation criteria are discussed in detail in the next section.

5.4 Case Study

5.4.1 Dataset

In this paper, the dataset comes from a jet engine failure detection simulation using Commer-
cial Modular Aero-Propulsion System Simulation (C-MAPSS) [80]. The simulation results
are for 100 jet engines. Every engine runs for a different number of cycles up to failure,
ranging from 127 to 361 cycles, with a total of 20631 cycles for the 100 engines. For every
cycle, the readings of 21 sensors measuring engine health, as well as 3 operational settings,
are measured. The descriptions of the sensors are illustrated in Table 5.1 [1].

The simulation begins for every engine with different values of initial wear and manufacturing
variations [81]. Then a fault starts to develop at an unknown point along the engine’s lifetime.
This fault results in degradation in engine health measures, continuing up to its failure.

5.4.2 Problem Generalization

In general, running a jet engine is considered a process, and engine health measures are con-
sidered process behavior measures. Since the cycle at which a fault is developed is unknown,
the out-of-control states is assumed to be after a specific cycles threshold before the engine
failure. At such threshold cycle, the process is considered out-of-control and corrective ac-
tions are needed to be taken. The data set will flow to the model as a stream of data, i.e.,
data observations will stream from one engine after another. In order to create a concept
drift in the data stream, two out-of-control thresholds are used, namely 15 and 30 cycles
before failure, for first 50 engines and last 50 engines, respectively. This threshold could be
more restricted or more released according to the practical situations.

Therefore, we consider streaming data for the 100 engine life cycles of a total 20,631 obser-
vations flowing in as a data stream. For every observation, the features are the previously
mentioned 24 measures, and the label is either in control (negative - before the threshold)
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Table 5.1 Description of Dataset Features [1]

Symbol Type Description Units
f1 Setting 1 Operational regime setting
f2 Setting 2 Operational regime setting
f3 Setting 3 Operational regime setting
f4 Sensor 1 Total temperature at fan inlet ◦R
f5 Sensor 2 Total temperature at LPC outlet ◦R
f6 Sensor 3 Total temperature at HPC outlet ◦R
f7 Sensor 4 Total temperature at LPT outlet ◦R
f8 Sensor 5 Pressure at fan inlet psia
f9 Sensor 6 Total pressure in bypass-duct psia
f10 Sensor 7 Total pressure at HPC outlet psia
f11 Sensor 8 Physical fan speed rpm
f12 Sensor 9 Physical core speed rpm
f13 Sensor 10 Engine pressure ratio
f14 Sensor 11 Static pressure at HPC outlet psia
f15 Sensor 12 Ratio of fuel flow to Ps30 pps/psi
f16 Sensor 13 Corrected fan speed rpm
f17 Sensor 14 Corrected core speed rpm
f18 Sensor 15 Bypass ratio
f19 Sensor 16 Burner fuel-air ratio
f20 Sensor 17 Bleed Enthalpy
f21 Sensor 18 Demanded fan speed rpm
f22 Sensor 19 Demanded corrected fan speed rpm
f23 Sensor 20 HPT coolant bleed lbm/s
f24 Sensor 21 LPT coolant bleed lbm/s
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or out-of-control (positive - after the threshold). This leads to a generalized classification
problem for streaming data–the DA-LASD is therefore used for this problem.

5.4.3 Evaluation Criteria

The prequential interleaved test-then-train technique is used for the evaluation through the
data stream [5]. In which, each individual labeled observation is used to test the model before
it is used for training process. Therefore, evaluation measures; such as accuracy, sensitivity,
and specificity can be incrementally computed.

Accuracy The first evaluation criterion is the accuracy which is the ratio of the number of
correctly classified observations to the total number of observations. It is a measure of the
quality of learning. In the case of streaming data, this accuracy can be recomputed every
time a new observation xj is received, and this can be computed as follow:

Aj = Ej

Bj

(5.1)

where
Ej = Lj + Ej−1, Bj = 1 + Bj−1 (5.2)

where Lj is the loss function for each observation xj and is equal to 1 if xj is correctly
classified and 0 otherwise. Ej and Bj are the number of observations correctly classified, and
the total number of observations that are received, respectively up to observation xj. xj ∈ S,
where j = [1, ..., |S|]. S is the streaming data [5].

Sensitivity It is the proportion of positive class observations get correctly classified. It
is the most important measure for industrial process control application, which reflects how
correctly the model detect out-of-control states. In the case of streaming data, this sensitivity
can be recomputed only every time a new positive observation is received, and this can be
computed as follow:

Sensitivityj = TPj

Pj

(5.3)

where
TPj = Lj + TPj−1, Pj = 1 + Pj−1 (5.4)

Lj is the loss function for each observation xj. TPj and Pj are the number of faulty ob-
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servations correctly classified, and the total number of faulty observations that are received,
respectively up to observation xj.

Specificity Which is the proportion of the negative class observations got correctly clas-
sified, i.e., the proportion of healthy observations correctly classified to the total number
of healthy observations. This is criteria measures the capability of the model to correctly
distinguish the healthy observations and not give a false alarm which could interrupt the
process and increase the total cost. In the case of streaming data, the specificity can be also
recomputed only every time a new negative observation is received and this can be computed
as follow:

Specificityj = TFj

Fj

(5.5)

where
TFj = Lj + TFj−1, Fj = 1 + Fj−1 (5.6)

Lj is the loss function for each observation xj. FPj and Fj are the number of healthy obser-
vations correctly classified, and the total number of healthy observations that are received,
respectively up to observation xj.

Since these evaluation measures consider all the observations in the entire data stream, they
may not accurately reflect how the model resilience and sustainability are in the recent part
of the data stream. Therefore, as it is more important how the model performance has
been recently, than how it was long ago at the beginning of the stream, the concept of
decayed evaluation measures is introduced to have an indicator for the model resilience and
sustainability.

The decayed accuracy, decayed sensitivity and decayed specificity of the model for only the
most recent data are computed using a forgetting mechanism with fading factors that weigh
data using a decay factor α. Decayed accuracy DAj is computed as follows [5]:

DAj = DEj

DBj

(5.7)

where
DEj = Lj + α × DEj−1, DBj = 1 + α × DBj−1 (5.8)

Similarly, both sensitivity and specificity are computed as follows:
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D. Sensitivityj = DTPj

DPj

(5.9)

where
DTPj = Lj + α × DTPj−1, DPj = 1 + α × DPj−1 (5.10)

D. Specificityj = DTFj

DFj

(5.11)

where
DTFj = Lj + α × DTFj−1, DFj = 1 + α × DFj−1 (5.12)

5.5 Results

5.5.1 Feature Engineering

Based on the proposed modeling framework, the first portion of data enters different feature
engineering steps to determine the set of most relevant/significant features. In this section,
the results of each feature engineering step is presented.

Feature Selection This step starts by eliminating lowly-variable features that can be
considered constants. Robust scaler technique was used firstly to transform the features into
a similar scale. Robust scaler is performed by subtracting the median and then dividing by
the interquartile range. Box plot of each scaled feature is shown in Figure 5.5. The variances
of scaled features was calculated and is shown in 5.6. The variance threshold σ2

th = 0.2 has
been selected to eliminate features with variance below it. Eight features were excluded in
this step; f3, f4, f8, f9, f13, f19, f21 and f22.

Then, the voting-based feature selection mechanism, with the three forementioned classifiers,
random forests, gradient boosting and LASSO, was used in this step to select the most
significant features with the majority vote. Random forests and gradient boosting classifiers
were performed with recursive feature eliminations (RFE) technique [77] to optimize selecting
features to be eliminated and their number. The final selected feature must have the majority
vote by the classifiers. Table 5.2 shows the selected features by each classifiers and the voting
outputs. At the end of voting process, 10 features were selected by the mechanism.

Feature Extraction In this step, three new features were extracted out of each previ-
ously selected feature using different statistics, namely the 10-cycle moving average, 10-cycle
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Figure 5.5 Box plots of the scaled values of data features

Figure 5.6 Variance of the scaled values of data features

Table 5.2 Results of voting-based feature selection mechanism

f1 f2 f5 f6 f7 f10 f11 f12 f14 f15 f16 f17 f18 f20 f23 f24
LASSO 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1
Gradient Boosting 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0
Random Forests 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1
Voting score 0 0 3 1 3 3 1 3 3 3 1 2 3 1 3 2
Selected Features - - Y - Y Y - Y Y Y - Y Y - Y Y
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moving standard deviation, and percentage change from the 10-cycle moving average. These
statistical properties can change over time in the case of the process is out-of-control. As
such changes should be captured by the model if exist. This step resulted in having 30 new
features and 40 features in total.

Reapplying Feature Selection In this last step of feature engineering, the same voting-
based feature selection mechanism was reapplied on the total 40 features. Finally, 13 features
were selected with majority votes from two classifiers. The final 13 selected features with
their description are illustrated in Table 5.3.

Table 5.3 Final selected features

Symbol Description
f5-1 Moving average of Sensor 2
f7-1 Moving average of Sensor 4
f10-1 Moving average of Sensor 7
f12 Sensor 9
f12-1 Moving average of Sensor 9
f12-2 Moving standard deviation of Sensor 9
f14 Sensor 11
f14-1 Moving average of Sensor 11
f15-1 Moving average of Sensor 12
f17-1 Moving average of Sensor 14
f18-1 Moving average of Sensor 15
f23-1 Moving average of Sensor 20
f24-1 Moving average of Sensor 21

5.5.2 DA-LASD Results

A model of DA-LASD was generated using the selected features in Table 5.3, we called it
DA-LASD-FE (DA-LASD with feature engineering). Another model was generated from
the data without any feature engineering process, we called it DA-LASD. The trends of
the different decayed accuracy measures along the data stream, as well as the number of
generated patterns, are displayed for both of the two models in Figure 5.7. As expected,
sudden drop in decayed sensitivity occurred after the concept drift point nearly to observation
10K. This is happened because the out-of-control threshold was shifted from 15 to 30 cycles
preceding a complete failure, and hence more out-of-control observations are considered in the
stream. It is obvious that DA-LASD-FE model was able to adapt to the new concept which
is represented by an uptrend of the decayed sensitivity. Despite DA-LASD model without
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feature engineering generated three times patterns more than DA-LASD-FE after the concept
drift, it was not able to adapt to this change and enhance its sensitivity. This shows how
the proposed DA-LASD-FE is quite sustainable in dynamically adapting to the change in
the data stream, and consequently maintaining high accuracy measures, specifically, the
sensitivity which is very important for monitoring and control industrial processes and fault
prognosis applications. In addition, DA-LASD-FE shows a high resilience before and after
the concept drift with consistency in the evaluation criteria. Moreover, the small number of
the generated patterns by DA-LASD-FE, compared to DA-LASD, makes DA-LASD-FE has
better interpretability [39]. Table 5.4 shows two of the most powerful patterns presenting the
out-of-control process states. At end of the stream, the protected homogeneity values ĥ for
these two patterns are 0.94 and 0.98 respectively. And the coverage index values δ are 1 and
0.99, respectively. For example, if the model predict an out-of-control state and pattern 1 is
a covering pattern, DA-LASD will guide the controlling system by demanding one or more
of following corrective actions: (1) decrease the total temperature at LPT outlet until get
moving average lower than 1411 ◦R, (2) increase the total pressure at HPC outlet until get
moving average higher than 553 psia, (3) decrease the physical core speed until get moving
average lower than 9048 rpm, or (4) increase the physical fan speed until get moving average
47.62 rpm, and hence the engine will be back to in-control state.

Figure 5.7 DA-LASD-FE and DA-LASD performances
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Table 5.4 Two of the most powerful patterns for out-of-control states

Symbol Description Pattern 1 Pattern 2
f5-1 Moving average of Sensor 2 – > 642.84
f7-1 Moving average of Sensor 4 > 1411.12 –
f10-1 Moving average of Sensor 7 < 553.17 < 553.07
f12-1 Moving average of Sensor 9 > 9048 –
f12-2 Moving STD of Sensor 9 – > 3.445
f14-1 Moving average of Sensor 11 < 47.6205 –
f24-1 Moving average of Sensor 21 – < 23.21

5.5.3 Comparative Analysis

Finally, Table 5.5 and Figure 5.8 provide a comparison between the proposed DA-LASD-FE
model and other machine learning techniques capable of handling streaming data, namely
Hoeffding Tree (HT) [15], Hoeffding Adaptive Tree (HAT) [16] and Self Adjusting Memory
K nearest neighbors (SAMKNN) [17]. However other ML techniques provide higher average
decayed accuracies than DA-LASD-FE through the stream, that is considered a deceiving
evaluation as the stream is imbalanced and their average decayed sensitivity are low, i.e,
their abilities to detect out-of-control states are low. The ability to detect these states is the
most important feature in the context of process control. In order to statistically compare
the resilience and the sustainability of DA-LASD-EN with the different models in terms of
the sensitivity through the stream, the Friedman test, a non-parametric statistical test, is
performed between them. A decayed sensitivity value is recorded for each model each one
thousand received observations through the stream for this statistical test. The test is con-
ducted in two phases. Phase 1 is to evaluate the significant difference between the means of
the sensitivity for all the models. Phase 2 is to pairwise evaluate the significant difference
between DA-LASD-FE and the others. Table 5.6 shows the result of phase 1 that indicates
there is a high significant difference between the means. Table 5.7 presents the results of
phase 2 which indicate that the proposed DA-LASD-FE outperforms statistically other ML
models in terms of the decayed sensitivity. That means DA-LASD-FE statistically is more
resilient and sustainable through the data stream. What makes the proposed DA-LASD-FE
quite promising is how it combines these resilience and sustainability with its distinctive in-
terpretability power, which is essential in providing physical meanings and describing hidden
phenomena behind the out-of-control cases and help to intelligently guide the controlling
systems to take automated corrective actions. This is particularly important in advanced
industrial applications, especially in Industry 4.0 paradigm.
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Figure 5.8 Performances of DA-LASD and other ML techniques

Table 5.5 Comparison between DA-LASD-FE and different ML techniques

Model Avg. D. Sensitivity Avg. D. Specificity Avg. DA
DA-LASD-FE 0.913 0.955 0.958
DA-LASD 0.824 0.977 0.961
HT 0.863 0.982 0.963
HAT 0.844 0.971 0.957
SAMKNN 0.839 0.999 0.985

Table 5.6 Sensitivity - Friedman test phase 1

Model Sum of ranks (R) Mean of ranks
DA-LASD-FE 29 1.61
DA-LASD 69 3.83
HT 45 2.50
HAT 77 4.27
SAMKNN 50 2.77

Fr = 32.8 > Fcr = 9.49 → highly significant
p-value = 1.31E−06 < 0.05

Table 5.7 Sensitivity - Friedman test phase 2

Model 1 Model 2 p-value Significance
DA-LASD-FE DA-LASD 7.63E−06 Yes
DA-LASD-FE HT 4.19E−04 Yes
DA-LASD-FE HAT 7.62E−06 Yes
DA-LASD-FE SAMKNN 2.36E−02 Yes
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5.6 Conclusion

In this paper, a resilient and sustainable Dynamic and Adaptive Logical Analysis of Stream-
ing Data (DA-LASD) model reinforced with feature engineering mechanism is proposed to
develop an intelligent and interpretable monitoring system for turbofan engine. This moni-
toring system helps in controlling the operational process of the turbofan engine. The feature
engineering mechanism aims to determine the most relevant/significant variables of the pro-
cess. It consists of two main steps, feature selection and time series feature extraction. Fea-
ture selection compromises a voting mechanism of three classifiers; random forests, gradient
boosting classifier and LASSO. The concept of decayed evaluation measures is used to have an
indicator for resilience and sustainability of a given model. Through an aerospace case study
of turbojet engine failure detection, the proposed model DA-LASD with feature engineering
(DA-LASD-FE) showed high resilience and sustainability, and was able to dynamically adapt
to the concept drift. The proposed model statistically outperformed, in this context, the DA-
LASD model without a feature engineering. The proposed feature engineering determined
the most 13 relevant/significant features that enhanced the DA-LASD-FE sustainability and
made it be able to capture the new drift with a less number of new patterns. In addition
to the provided interpretable patterns that are most important for automated corrective ac-
tions in intelligent process control systems, DA-LASD-FE model outperformed statistically
other machine learning techniques that handle streaming data in terms of resilience and sus-
tainability. This makes the proposed DA-LASD-FE quite promising in industrial advanced
process controls.

Further research The DA-LASD-FE introduced for turbofan jet engine in this paper could
be investigated in another industrial process control applications, specifically in Industry 4.0
application where the autonomous and intelligent controlling systems are demanded. Other
direction to extend this model would be to enhance the interpretability by extracting an
online feature importance based on their appearance frequency in the available pattern set
and how efficient and decayed these patterns. As such ability will give the controlling system
the most important features that could be targeted to control the process.
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CHAPTER 6 GENERAL DISCUSSION

The ultimate objective in this research work is achieved by providing robust, resilient, sus-
tainable, and interpretable classification model that able to be utilized in the demanded
autonomous controlling systems in the different applications in Industry 4.0. The classifi-
cation model is based on Logical Analysis of Data (LAD) which is a robust classification
technique that provides the needed interpretability through generating patterns containing
structural knowledge that explain the hidden phenomena under study. This research over-
comes the computational time limitation of LAD by developing accelerated ensemble LAD
(LAD-ENS) maintaining LAD’s robustness and interpretability in high levels. This mecha-
nism allows LAD to be implemented in distributed computing systems and to handle large
datasets.

In order to enhance the resilience and sustainability of LAD, a dynamic and adaptive version
of LAD called DA-LASD is developed. DA-LASD is able to process and learn from streaming
data. Such version is able to monitor its performance while it is on the service and able to
detect any drift in the concept through the streaming data, and hence adapt itself to the
new data. The high resilience and sustainability allowed LAD to be applied on applications
of Industry 4.0, specifically the industrial process control. In order to evaluate the developed
DA-LASD on practical, high-dimensional, and dynamic data; this research work applied DA-
LASD on industrial dataset to develop an intelligent and interpretable monitoring system
for turbofan engine operational process by reinforcing DA-LASD with feature engineering.
The model gives accurate detection of faults and provide high resilience and sustainability,
specifically after a concept drift.

These modifications and developed models, LAD-ENS and DA-LASD, allow LAD to be uti-
lized in applications where large volume of data or data stream exists, and interpretability is
required, namely, in industry 4.0 applications thanks to their robustness, resilience, sustain-
ability, and interpretability.
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CHAPTER 7 CONCLUSION AND RECOMMENDATIONS

7.1 Summary of Works

In this doctoral research, an ensemble LAD system has been developed and called LAD-ENS
to enhance computation time and to process large volumes of data. This ensemble system
was built based on stratified sampling without a replacement technique, in addition to a pro-
posed combining mechanism that integrates all patterns that are provided by the individual
LAD classifiers. This mechanism combines the knowledge at the level of patterns and then
formulates a new ensemble discriminant function. This mechanism preserves the explanatory
power of LAD patterns and does not reduce their interpretability like the voting mechanism
does. By means of this system, LAD-ENS was successfully run on cloud computing clusters.
The LAD-ENS was evaluated in terms of computational time, accuracy, pattern quality and
comprehensibility. The statistical Friedman tests revealed that LAD-ENS significantly out-
performs classical LAD models in terms of computational performance. Moreover, Friedman
tests revealed that very competitive accuracy is obtained. Although the patterns may lose
their purity, the patterns of LAD-ENS have lower degrees than those of classical LAD, which
enhanced the comprehensibility index.

In addition, a Dynamic and Adaptive Logical Analysis of Streaming Data (DA-LASD) frame-
work was proposed. It is a LAD-based classifier capable of processing data streams. The
DA-LASD consists of three main modules. Module I, LAD-CM, is the LAD classifier model,
which classifies observations based on the set of patterns it contains. However, this set of
patterns has to be continuously updated to adapt to the changes in the data streams. The
update is done by modifying the characteristics of existing patterns, eliminating decayed and
inefficient patterns, and added new patterns. The first two steps are done in the Module II:
Dynamic Update of Existing Patterns, DUEP. The third step is taken care of in the Mod-
ule III: Extracting New Patterns, ENP. In order to correctly detect decayed and inefficient
patterns, several modifications on the classical pattern characteristics are proposed. Particu-
larly, the covering and opposite covering characteristics are normalized, and the homogeneity
is normalized and protected. This enables the framework to take into account any data
imbalance that may exist. Moreover, a new characteristic is proposed, namely the covering
index, δ, which is an updated measure of the pattern’s ability to cover observations of its own
class as they continue to flow in. The proposed DA-LASD is evaluated on several synthetic
data streams generated by different generating functions and containing different types and
numbers of concept drifts. The detailed analysis of the experimentation results shows how
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the proposed framework dynamically adapts the model, and successfully improves any per-
formance measures that start to decline, i.e., successfully maintains high levels resilience and
sustainability. This accuracy of the DA-LASD is found to be competitive when compared
with other machine learning techniques that handle streaming data.

Additionally, a resilient and sustainable Dynamic and Adaptive Logical Analysis of Stream-
ing Data reinforced with feature engineering (DA-LASD-FE) is proposed for is proposed to
develop an intelligent and interpretable monitoring system for turbofan engine. This moni-
toring system helps in controlling the operational process of the turbofan engine. The feature
engineering aims to determine the most relevant/significant attributes of the system. It con-
sists of two main steps, feature selection and time series feature extraction. Feature selection
compromises a voting mechanism of three classifiers; random forests, gradient boosting clas-
sifier and LASSO. Through an aerospace case study of turbojet engine failure detection, the
proposed model DA-LASD with feature engineering (DA-LASD-FE) showed high resilience
and sustainability, and was able to dynamically adapt to the concept drift and statistically
outperformed, in this context, the DA-LASD model without a feature engineering. The
proposed feature engineering determined the most 13 relevant/significant features that en-
hanced the DA-LASD-FE performance and made it be able to capture the new drift with
a less number of new patterns. In addition to the provided interpretable patterns that are
most important for automated corrective actions in intelligent process control systems, DA-
LASD-FE model outperformed statistically other machine learning techniques that handle
streaming data. This makes the proposed DA-LASD-FE quite promising in industrial ad-
vanced process controls. Figure 7.1 shows the main outcomes and their abilities.

7.2 Limitations

LAD-ENS and DA-LASD still have relatively high computational time comparing to other
machine learning techniques. In addition, DA-LASD must have initial patterns before start-
ing to process data streams. That limits DA-LASD to be applied directly before having some
historical data.

7.3 Future Research

For the ensemble LAD system introduced in research, it could be extended into many different
directions. One of these directions would be to use various sampling methods to enhance
the quality of the data subsets provided to the pattern generation processes. The feature
level could be another direction, focusing mainly on the features of original data in order
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Figure 7.1 Research summary and outcomes
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to select appropriate subsets, or sample the features in subsets and provide them to the
pattern generation processes with an aim to enhance accuracy. The combining mechanism
level is another direction, which would focus mainly on enhancing the combining process
and selecting the most appropriate patterns. This research direction could enhance the
explanatory power by reducing the number of patterns.

For the DA-LASD framework could be extended to another industrial process control appli-
cations, specifically in Industry 4.0 application where the autonomous and intelligent con-
trolling systems are demanded. Other direction to extend this framework to enhance the
interpretability would be by extracting an online feature importance based on their appear-
ance frequency in the available pattern set and how efficient and decayed these patterns.
As such ability will give the controlling system the most important features that could be
targeted to control the process.

LAD-ENS and DA-LASD are developed only for classification problems. They do not con-
sider regression problems in this research. The can be extended for regression problems in
order to tackle different varieties of Industry 4.0 applications.
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