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RÉSUMÉ

L’optimisation de boîtes noires et l’optimisation sans dérivées sont deux disciplines mathé-
matiques qui traitent des problèmes ne possédant pas de formulation analytique exploitable,
rendant caduques les techniques d’optimisation usuelles fondées sur la dérivation. Ces types
de problèmes découlent souvent de simulations numériques de systèmes complexes dont la
structure ne peut être exploitée, appelées communément des boîtes noires. En outre, la com-
plexification de ces systèmes a mis en évidence les limites d’un modèle d’optimisation unique
ne prenant en compte qu’un seul objectif. En effet, de nombreux problèmes d’ingénierie
mettent en jeu plusieurs critères, souvent contradictoires, que l’on cherche à optimiser en
même temps. L’optimisation multiobjectif intègre ce cadre. La résolution ne donne pas une
solution unique, mais un ensemble de points reflétant les différents compromis qui existent
entre les objectifs.

Les algorithmes qui s’attaquent à des problèmes de boîtes noires multiobjectif ne sont pas
aussi développés que leurs homologues mono-objectif. Des heuristiques stochastiques et
coûteuses, pouvant poser des problèmes de robustesse, ont longtemps dominé le champ de
recherche. L’extension de solveurs mono-objectif déterministes et efficaces pour des boîtes
noires possédant des preuves de convergence à l’optimisation multicritères n’a démarré que
depuis une dizaine d’années et en est encore à ses débuts.

Cette thèse propose donc de nouvelles contributions théoriques et pratiques pour l’optimisation
multiobjectif déterministe de boîtes noires.

La multiplication de nouveaux algorithmes multiobjectif nécessite d’autant plus le développe-
ment d’outils d’analyse afin de pouvoir valider leurs performances et les comparer entre eux,
dans le but de guider l’utilisateur vers la ou les méthodes les plus adaptées à son application.
La première contribution de cette thèse est une étude sur les indicateurs de performance
pour l’optimisation multiobjectif, publiée dans European Journal of Operational Research.
Ces derniers évaluent la qualité de l’ensemble des solutions retournées par une méthode mul-
tiobjectif sur un problème donné. Cette étude synthétise les propriétés de 63 indicateurs
issus de la littérature scientifique, les classifie selon leurs propriétés et liste leurs principaux
usages.

La deuxième contribution est une nouvelle extension de la méthode de recherche directe par
treillis adaptatifs (MADS) à l’optimisation multiobjectif de boîtes noires. Ce nouvel algo-
rithme, DMulti-MADS, s’inspire des algorithmes DMS et BiMADS, créés pour résoudre ce
type de problèmes. Nous démontrons que DMulti-MADS garantit la convergence vers un
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ensemble de points localement non dominés en se basant sur le calcul non lisse de Clarke
sous des hypothèses classiques d’algorithmes de recherche directe. Afin de pouvoir valider
sa performance, une extension des profils de données à l’optimisation multiobjectif est intro-
duite, basée sur les recommandations de l’étude précédente. Des tests numériques montrent
que Dmulti-MADS est compétitif par rapport à des algorithmes de l’état de l’art. Il est égale-
ment plus performant pour des budgets d’évaluation de taille faible ou moyenne que BiMADS.
Cet algorithme a fait l’objet d’une publication parue dans Computational Optimization and
Applications.

La dernière contribution propose deux nouvelles stratégies appliquées à DMulti-MADS pour
gérer des contraintes d’inégalité de type boîtes noires. Les deux stratégies utilisent une
fonction de violation des contraintes, que l’on cherche à minimiser en même temps que les
objectifs. Ces deux nouvelles méthodes, nommées DMulti-MADS-PB et DMulti-MADS-
TEB, conservent les propriétés de convergence de DMulti-MADS. Elles sont comparées par
rapport à une méthode de pénalité ainsi que les algorithmes de l’état de l’art BiMADS,
DFMO et NSGA-II pouvant gérer ce type de contraintes. Les tests numériques montrent
qu’elles affichent des performances supérieures aux autres algorithmes sur un ensemble de
problèmes analytiques issus de la littérature. Elles surpassent également les autres méthodes
sur deux des trois problèmes d’ingénierie réels considérés.
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ABSTRACT

Blackbox optimization and derivative-free optimization are two subdisciplines of numerical
optimization. They address problems which do not have an exploitable analytical formulation
of objective and/or constraint functions. This absence of structure makes the deployment
of usual derivative-based solvers impossible. Such problems commonly arise from numerical
simulations modelling complex systems. Besides, real engineering situations have highlighted
the limits of single-objective modelling. Indeed, many engineering problems involve several
and often contradictory criteria, which one wants to optimize at the same time. Multiobjec-
tive optimization takes this framework into account. The resolution of such problems does
not give a single optimal solution, but a set of points which represent the (potential) best
trade-offs between the different objectives.

Algorithms which tackle multiobjective blackbox problems are not as developed as their
single-objective counterparts. For a very long time, stochastic and costly heuristics, with
questionable reliability, have dominated the field of research. The generalization of deter-
ministic and efficient single-objective methods to multiobjective blackbox optimization has
only started about ten years ago and is still at its beginnings.

This thesis therefore aims to explore further this research area by bringing new theoretical
and practical contributions in deterministic multiobjective blackbox optimization.

The increase in the development of new multiobjective methods requires all the more the
conception of pertinent benchmarking tools to assess their performance and compare them.
When done well, such analysis can be of great value to guide the user in the selection of the
most suited algorithm to solve his/her applications. The first contribution of this thesis is
a review on performance indicators for multiobjective optimization, published in European
Journal of Operational Research. These performance indicators evaluate the quality of all
trade-off solutions generated by a multiobjective solver on a problem. This review summarizes
the properties of 63 indicators from the scientific literature, classifies them and presents main
applications of these quality metrics.

The second contribution is a new extension of the Mesh Adaptive Direct Search (MADS)
method to multiobjective blackbox optimization. This new algorithm, denoted as DMulti-
MADS, is inspired by the two multiobjective blackbox solvers DMS and BiMADS. We prove
that DMulti-MADS is guaranteed to converge towards a set of locally non-dominated points
based on the Clarke calculus, under common directional search assumptions. To validate its
performance, new data profiles for multiobjective optimization are introduced by following the
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recommendations of the previous survey. Numerical experiments show that Dmulti-MADS
is competitive with state-of-the-art algorithms. It surpasses BiMADS when considering a
small to medium budget of function evaluations. It has been published in Computational
Optimization and Applications.

The last contribution proposes two new strategies applied to DMulti-MADS to handle black-
box inequality constraints. Both strategies use a single constraint violation function which
aggregates constraints. The goal is to minimize the constraint violation function and at
the same time the objectives. We prove that these two approaches retain the convergence
properties of DMulti-MADS. These two methods are compared with a penalty-based ap-
proach and the state-of-the-art solvers BiMADS, NSGA-II and DFMO, which can handle
these constraints. Numerical experiments show that these two approaches are more efficient
than the other algorithms on a set of analytical problems taken from the literature. They
also outperform the other solvers on two of the three real engineering problems considered.
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CHAPTER 1 INTRODUCTION

L’organisation de ce travail tient au souci de faire la part égale à l’exploration de
trois thèmes.

Claire Salomon-Bayet

1.1 Context

Optimization is a branch of mathematics which aims to specify and compute the max-
ima/minima of a function, whose solution may be submitted to some constraints. Its appli-
cations are numerous and range from the design of energy networks, imaging or finance to
numerical analysis and optimal control. The increasing complexity of engineering systems
coupled to more powerful computing machines for these last twenty years has resulted in
the conception and usage of a class of new nonlinear optimization techniques, designed as
blackbox optimization (BBO).

A blackbox is any process such that when provided an input, it returns one or several outputs
and the inner workings of this process are not analytically available. The user deals with
an objective function for which no partial information or structure is available, i.e., deriva-
tives. Thus, no gradient-based method can be considered, as the blackbox function may
be nonsmooth, non-differentiable, or non-convex and subject to noise. Sometimes, blackbox
evaluations are the outcome of expensive simulations (e.g., plane motor design) running from
a few minutes to several hours, limiting the number of calls to the blackbox.

Blackbox optimization (BBO) is then the “study of design and analysis of algorithms that
assume the objective and/or constraint functions are given by blackboxes” [20]. Its goal
is the conception of numerical methods to find the most appropriate combination of input
parameters corresponding to a feasible optimum given by the outputs of the blackbox. BBO
is distinct from derivative-free optimization (DFO) [67], another subdiscipline, which is of-
ten quoted in the BBO literature. As its name indicates, DFO is the study and design of
algorithms which do not use derivatives. However, they may exist although they are not
available.

Real engineering problems have also highlighted the limits of a universal single-objective
model. For example, in some design problems, the modeller wants to maximize the solidity
of a structure, and at the same time minimize its weight and the construction cost. In finance,
an investor could look for a portfolio with high returns and low volatility. In machine learning,
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the design of classification systems which are at the same time precise, robust and energy-
efficient has become an important issue. Often, these criteria are in conflict: the improvement
of one objective can be detrimental to another. Multiobjective optimization (MOO) methods
aim to provide the decision maker with a set of feasible solutions representing the best
trade-offs between the different objectives. Its knowledge enables him/her to visualize the
consequences of his choices, and to make the convenient decision according to him/her.

Historically, one can trace the beginnings of single-objective BBO to the 50s, with the con-
ception of the coordinate search method [113]. The development of a convergence analysis
framework [244] in the 90s has relaunched the development of new convergent-based meth-
ods for DFO and BBO. Since then, the field has taken more and more importance, as the
following textbooks [20, 67] and surveys reflect it [21, 160, 164]. Unfortunately, multiobjec-
tive approaches are not generally as established as single objective optimization algorithms,
especially for blackbox applications. Indeed, for a long time, the only methods to tackle mul-
tiobjective blackbox optimization problems were heuristics, such as evolutionary multiobjec-
tive optimization algorithms [88, 89], particule-swarm algorithms [207], and so on [127, 237].
Most of these solvers are stochastic, which can raise potential reliability concerns. They
also require an important budget of evaluations (e.g., from 20, 000 to 50, 000, as in [86,144])
to work, which can be impracticable when the blackbox function is costly. Note that the
substitution of costly functions by cheap interpolation models to guide the search (see for
example [196]) has partly removed this last issue.

Since some years, researchers have deployed many efforts to extend convergent-based deter-
ministic single-objective BBO methods to multiobjective BBO [27,28,74,126,180,223]. This
thesis is in line with these works. More precisely, it explores different ways to extend the
single-objective BBO Mesh Adaptive Direct Search (MADS) algorithm [15] to multiobjective
BBO. MADS [15] is a direct search method designed to address the resolution of constrained
single-objective BBO problems. It provides an extremely strong convergence analysis frame-
work, based on the Clarke calculus [59] but is flexible enough to integrate efficient heuristics
(see [29, 55, 66]). The NOMAD software [167] implements a state-of-the-art version of the
MADS algorithm.

Between 2008 and 2010, two extensions of the MADS algorithm to multiobjective BBO opti-
mization were developed: BiMADS [27] which takes into account two objectives, and Multi-
MADS [28] which deals with more than two objectives. Both methods use the scalarization
approach. It transforms the initial MOO problem into a succession of single-objective sub-
problems. Each subproblem can then be tackled by a single-objective optimization method,
in this case MADS. Consequently, BiMADS and MultiMADS directly benefit from the con-
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vergence analysis of MADS and its new improvements. However, the main drawback is the
management of the total budget of evaluations, which has to be split between all subprob-
lems. Too much effort can be allocated to the resolution of a particular subproblem at the
expense of a more thorough exploration of the objective space for potential new interesting
solutions. In 2011, Custódio et al. [74] proposed the Direct MultiSearch (DMS) framework,
which extends all direct search methods to MOO and does not aggregate objective functions.
Possessing a good performance, DMS has inspired the development of new deterministic
multiobjective BBO algorithms since its publication.

1.2 Research objectives

This thesis aims to bring new methodological and theoretical contributions to the field of
multiobjective BBO. Precisely, the objectives of this work are the following:

• The development of new algorithms possessing strong convergence properties (which is a
guarantee of reliability) and performance (relative to the number of function evaluations
required to obtain a good solution set). This work then prioritizes the development of
new deterministic-based convergent methods over heuristic approaches.

• The description of a rigorous benchmark framework to assess the performance of multi-
objective BBO algorithms. Indeed, the existing tools possess some drawbacks (e.g., non-
compliance with the dominance relation, impossibility to rank more than two solvers),
which can mislead their interpretation.

• As a byproduct, the thorough comparison of several state-of-the-art multiobjective DFO
algorithms with this new framework. One could claim it has already been done when
these solvers were introduced. However, in research, additional experimental validation
or refutation is always pertinent.

• Reproducibility. An implementation of the proposed algorithms should be, of course,
available to facilitate the reproduction of experiments, as a baseline for future bench-
marking, or to test them on new engineering applications. Ideally, the methods should
also be easy to understand and to reimplement. The number of algorithm parameters
should be kept at a minimum, which limits the intervention of an expert.

1.3 Research contributions

This thesis proposes the three following contributions, each of them corresponding to one
chapter/article.
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• The first contribution is a general survey on performance indicators in multiobjective
optimization. Performance indicators enable to evaluate the quality of a solution set
produced by a MOO algorithm, and consequently, its performance, hence their name.
This survey provides a classification of an important number of them, a list of their
properties and limitations, and some of their use.

• Inspired by the deterministic algorithms DMS [74], BiMADS [27] and DFMO [180], the
second contribution is a new extension of MADS to MOO called DMulti-MADS. Al-
though specialized on bound-constrained problems, this method can be easily adapted
to deal with general constraints (via an extreme barrier approach). It is proved this al-
gorithm generates sequences of points which converge to a set of locally non-dominated
solutions (which is similar to DMS, which is guaranteed to generate at least one local
Pareto point). To validate its performance over state-of-the-art algorithms, data pro-
files for MOO are defined and numerical experiments are conducted on a standard set
of academic problems.

• In the last contribution, we propose the integration of two new inequality constraint-
handling approaches into the DMulti-MADS algorithm. Both use a constraint violation
function. The first is a two-phase approach, where the search for the feasible point is
prioritized over the improvement of objectives. The second is an extension of the pro-
gressive barrier for single-objective optimization [16] to multiple objectives. Numerical
experiments are conducted on analytical benchmarks and three “real” engineering ap-
plications, validating these two approaches over existing state-of-the-art algorithms.

1.4 Plan

Chapter 2 presents a critical review of the literature. It provides a summary of fundamental
concepts of MOO, a statement of central optimality conditions in MOO, and a description
of the main algorithms mentioned in the three contributions. Chapter 3 is dedicated to
the organization of this work. It also details the expected research results of this thesis.
Chapters 4, 5 and 6 represent the contributions of this thesis. They are followed by a general
discussion and conclusion.
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CHAPTER 2 LITERATURE REVIEW

Il avait vu au cours d’un demi-siècle plusieurs générations d’idées tomber en
poussière.

Marguerite Yourcenar, L’oeuvre au noir

This chapter is divided into three parts. Section 2.1 introduces the main concepts, notations
and optimality conditions of multiobjective optimization required to understand the research.
Section 2.2 is dedicated to the description of some of the most important single-objective
DFO algorithms. Indeed, although this thesis focuses on the conception of new deterministic
multiobjective BBO methods, their design incorporates many mechanisms taken from single-
objective DFO/BBO algorithms. It is then relevant to detail them. Section 2.3 offers a
summary of the state-of-the-art convergent-based multiobjective DFO algorithms, mentioned
in the next chapters.

2.1 Multiobjective optimization: concepts and notations

2.1.1 Definitions

Optimization, as a mathematical discipline, aims to obtain the maximum or minimum of
one or several objective functions, by finding adequate decision variables in the domain of
the objective functions. These decision variables can be subjected to equality or inequality
constraints.

Generically, a multiobjective optimization problem is of the form

MOP : min
x∈Ω

f(x) = (f1(x), f2(x), . . . , fm(x))>

where Ω ⊆ Rn is the feasible decision space, i.e., the decision vector x = (x1,x2, . . . ,xn)>

must belong to Ω when presented to the decision maker. Rn is the decision space. The
image of the feasible decision space by the objective function f is the feasible objective space,
denoted as Y = f(Ω). Y is a subset (not always strict) of Rm, named the objective space,
whose elements are called objective vectors. Note that objective vectors may not always
belong to Y .

Contrary to single-objective optimization (SOO), the objective function is not a real scalar-
valued function but a vector-valued function, composed of m ≥ 2 scalar-valued objective
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functions fi : Rn → R for i = 1, 2, . . . ,m. By convention, all objectives fi for i = 1, 2, . . . ,m
are to be minimized. The maximization of a criterion fi is equivalent to the minimization of
−fi. The conversion to the standard form is then straightforward.

In SOO, the ranking of different feasible solutions according to their objective function is
trivial, as the set R is totally ordered. In MOO, minimizing simultaneously all objective
functions is not always possible, due to the potential conflicting nature of the different criteria.
One then needs to introduce a partial relation order on Rm to compare objective vectors.
The following cone order relation is adopted [98].

Definition 1 (Comparison between objective vectors [79]). Given two objective vectors y1

and y2 in the objective space Rm,

• y1 5 y2 (y1 weakly dominates y2) if and only if y1
i ≤ y2

i for i = 1, 2, . . . ,m.

• y1 ≤ y2 (y1 dominates y2) if and only if y1 5 y2 and y1 6= y2.

• y1 < y2 (y1 strictly dominates y2) if and only if y1
i < y2

i for i = 1, 2, . . . ,m.

• In the case when neither y1 � y2 nor y1 � y2, y1 and y2 are said to be incomparable
or non dominated.

With this definition, it is then possible to compare decision vectors, using the Pareto domi-
nance relation order.

Definition 2 (Comparison between decision vectors [27]). Given two decision vectors x1 and
x2 in the feasible decision space Ω,

• x1 � x2 (x1 weakly dominates x2) if and only if f(x1) 5 f(x2).

• x1 ≺ x2 (x1 dominates x2) if and only if f(x1) ≤ f(x2).

• x1 ≺≺ x2 (x1 strictly dominates x2) if and only if f(x1) < f(x2).

• x1 ∼ x2 (x1 and x2 are incomparable or non dominated) if f(x1) and f(x2) are incom-
parable.

This definition is illustrated on Figure 2.1 for a biobjective minimization problem, where
Ω ⊂ R2. The objective function f maps the feasible decision space Ω to the feasible objective
space Y ⊂ R2, delimited by the curve on the right part of the figure. Relatively to the decision
vector x1 ∈ Ω, three zones are defined. The dominance zone is the set of feasible decision
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vectors which dominate x1. The dominated zone is the set of feasible decisions vectors which
are dominated by x1. The indifference zone is the set of feasible decision vectors which are
incomparable to x1. The definition of these three zones can also be applied to objective
vectors. In Figure 2.1, x1 dominates x3 and is dominated by x2; the pairs of decision vectors
(x2,x4) and (x3,x4) are indifferent.

◦
x1 ∈ Ω

Feasible decision space: Ω ⊂ R2. Feasible objective space: Y = f(Ω) ⊂ R2.
f1

f2

◦
f(x1) ∈ Y

• f(x2)

• f(x3)
• f(x4)

Dominance zone

Dominated zone

Indifference zone

Indifference zone

Figure 2.1 An illustration of Pareto dominance for a minimization biobjective problem with
2 variables (inspired by [27]): x2 ≺ x1 ≺ x3, x2 ∼ x4 and x3 ∼ x4.

The definition above enables to introduce the notion of Pareto optimality for MOO.

Definition 3 (Pareto optimality). A decision vector x? ∈ Ω is said to be (globally) Pareto
optimal if there does not exist any other decision vector x ∈ Ω such that x ≺ x?.

As in SOO, it may be difficult to obtain global solutions. In this case, one should design
methods which guarantee at least local optimality conditions.

Definition 4 (Locally Pareto optimality). A decision vector x? ∈ Ω is said to be locally
Pareto optimal if there does not exist any other decision vector x ∈ Ω ∩ N (x?) such that
x ≺ x?, where N (x?) is a neighbourhood of x?.

A Pareto optimal decision vector is always locally Pareto optimal. The converse is not always
true unless some specific assumptions are given on the problem.

The set of all Pareto optimal solutions (potentially infinite [98]) is called the Pareto set
denoted by XP and its image by the objective function f is the Pareto front denoted by
YP . Similarly, the image of a set of locally Pareto optimal decision vectors by the objective
function f is a local Pareto front. The Pareto front for a problem with m objectives is at most
of dimension m−1, and may be non smooth or discontinuous. For example, for a biobjective
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problem, the Pareto front can be a curve or a point or a combination of curves/points or the
empty set. The ideal objective vector and nadir objective vector, as defined below, respectively
provide the Pareto front with a lower and an upper bound.

Definition 5 (Ideal objective vector [205]). The ideal objective vector yI ∈ Rm is defined as
yI = (yI1,yI2, . . . ,yIm)> whose elements are:

yIi = min
x∈Ω

fi(x), for i = 1, 2, . . . ,m.

Definition 6 (Nadir objective vector [205]). The nadir objective vector yN ∈ Rm is defined
as yN = (yN1 ,yN2 , . . . ,yNm)> whose elements are:

yNi = max
x∈XP

fi(x), for i = 1, 2, . . . ,m.

Definition 7 (Utopian objective vector [205]). Given a scalar ε > 0, the utopian objective
vector yU ∈ Rm is defined as yU = (yU1 ,yU2 , . . . ,yUm)> whose elements are:

yUi = yIi − ε, for i = 1, 2, . . . ,m.

If the ideal objective vector belongs to the Pareto front, the Pareto front is reduced to this
objective vector, and there exists a feasible decision vector whose image by f is the ideal
objective vector. Practically, as the different objectives are often contradictory, this situation
does not generally occur. The ideal objective vector is often used as a reference point in the
objective space to reach for. The utopian objective vector indicates a goal which dominates
all Pareto optimal objective vectors.

In Figure 2.2, a piecewise-continuous biobjective Pareto front for a minimization optimization
problem and its ideal and nadir objective vectors are illustrated. Note that the point x̂ ∈ Ω
is not Pareto optimal, as one can find some elements of YP which dominate f(x̂).

Remark. The field of optimization which uses a comparison based on a partial ordering space
structure provided as a fixed, pointed, convex and closed cone, and not only Rm+ , is designed
as vector optimization. Vector optimization is thus a generalization of MOO. This thesis
does not focus on vector optimization problems: an interested reader can refer to [98, 148]
for more details on this topic.
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f1

f2

•
yI

•
yN

•
f(x̂)

YP
Y

•yU

Figure 2.2 Pareto front YP and ideal, utopian and nadir objective vectors yI , yU and yN in
the feasible objective space Y for a biobjective minimization problem.

2.1.2 Optimality conditions

Optimization algorithms are iterative. Starting from a first “guess”, they generate a sequence
of improved estimates, until they reach a stopping criterion. It is common for researchers to
prove that the limit of the sequence generated by their methods satisfies necessary optimal
conditions, under diverse assumptions (e.g. convexity or differentiability of the objectives,
presence of constraints). This “certificate” brings to the user a certain reliability. Conver-
gence analysis also provides a framework in which a given algorithm should simply “work”.

This subsection gives a set of optimality conditions for MOO (the main references are [35,59,
190, 201]) used along this thesis. As this work is about DFO and BBO, this subsection will
only focus on zero order and first-order optimality conditions. The reader is invited to take
a look at [190, 201] for more information about second-order optimality conditions results.
This subsection equally omits proofs, which can be found in [35,59,190,201].

Preliminary notations

For the rest of this thesis, the following notations will be used.

The notation f ∈ C 0 signifies that the function f is continuous on its definition domain and
the notation f ∈ C k for k ∈ N∗ signifies that the function f is k times differentiable on
its definition domain and all its partial derivatives at order k are continuous. For example,
f ∈ C 1 on Rn means that f is differentiable on Rn and its gradient ∇f is continuous on Rn.
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Furthermore, convergence analysis of many DFO algorithms typically relies on the assump-
tions that involved functions or gradients are (locally) Lipschitz continuous on their definition
domains.

Definition 8 (Lipschitz Continuous). A function f : Rn → Rm is Lipschitz continuous on a
set Ω ⊆ Rn if and only if there exists a scalar ν > 0 such that ∀(x1,x2) ∈ Ω2,

‖f(x1)− f(x2)‖ ≤ ν‖x1 − x2‖.

ν is denoted as the Lipschitz constant of f relatively to the set Ω.

A function f : Rn → Rm is locally Lipschitz at x∗ ∈ Ω ⊆ Rn (or Lipschitz near x) if there
exists a neighbourhood N (x?) of x∗ such that f is Lipschitz continuous on N (x∗) ∩ Ω.

Following [20], we use the following notation f ∈ C 0+ to signify that f is locally Lipschitz
continuous at all x on its definition domain; f ∈ C 0+ with constant ν > 0 means that
f is Lipschitz continuous (of Lipschitz constant ν) on its definition domain. The notation
f ∈ C 1+ (with constant ν > 0) signifies that f ∈ C 1 and ∇f ∈ C0+ (with constant ν > 0).
Similarly, f ∈ C 2+ (with constant K > 0) signifies that f ∈ C 2 and ∇2f ∈ C 0+ (with
constant ν > 0).

Unconstrained smooth optimization

In this paragraph, the following unconstrained optimization multiobjective problem is con-
sidered:

min
x∈Rn

f(x) = (f1(x), f2(x), . . . , fm(x))> ,

where the objectives fi for i = 1, 2, . . . ,m are supposed to be continuously differentiable on
Rn. This assumption is reasonable in a DFO context where derivatives may exist even if they
are not available.

The following necessary first order condition of Fritz-John type, adapted from [190], is then
given.

Theorem 1 (Necessary first order condition for unconstrained multiobjective optimization).
Let x? ∈ Rn be locally Pareto optimal. If f : Rn → Rm is C 1, then there exists λ ∈ Rm+ ,
λ 6= 0Rm such that

m∑
i=1

λi∇fi(x?) = 0.

When m = 1, one falls back on the classical necessary first order condition for unconstrained
SOO, i.e. ∇f(x?) = 0, where f : Rn → R.
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Several authors (e.g. [117]) use this alternative condition. Let x? ∈ Rn be locally Pareto
optimal. If f : Rn → Rm is C 1, then for all vectors d ∈ Rm, there exists at least one index
i0 ∈ {1, 2, . . . ,m} such that

∇fi0(x?)>d ≥ 0.

In other words, there does not exist any vector d ∈ Rn which is a descent direction for all
objective functions fi for i = 1, 2, . . . ,m. Can be demonstrated by absurd.

Constrained smooth optimization

In this paragraph, the following inequality constrained MOO problem is considered, as
in [190]:

min
x∈Ω

f(x) = (f1(x), f2(x), . . . , fm(x))> ,

where Ω = {x ∈ Rn : cj(x) ≤ 0, j ∈ J }, with J the set of inequality constraints. As
in the unconstrained case, all objective functions fi for i = 1, 2, . . . ,m are assumed to be
continuously differentiable on Rn, as for the cj for j ∈ J which describe the set of constraints.

The presence of constraints requires additional assumptions designed as constraint qualifica-
tions. Roughly speaking, constraint qualifications offer guarantees that the linearized feasible
set (in terms of constraint gradients) is similar to the constraint set in the vicinity of an op-
timal feasible solution x? [201]. Following [190], the Kuhn-Tucker constraint qualification is
then presented.

Definition 9. Assume the constraints cj(x) for j ∈ J are C 1 at x? ∈ Ω. The constrained
multiobjective problem satisfies the Kuhn-Tucker constraint qualification at x? ∈ Ω if for
any d ∈ Rn such that ∇cj(x?)>d ≤ 0 for all j ∈ J (x?), where J (x?) is the set of active
constraints at x?, i.e.

J (x?) = {j ∈ J : cj(x?) = 0} ,

there exists a function a : [0, 1]→ Rn continuously differentiable at 0 and some scalar α > 0
such that a(0) = x?, c (a(t)) ≤ 0 for all t ∈ [0, 1] and a′(0) = αd.

One can then give the Karush-Kuhn-Tucker conditions for multiobjective optimization, de-
noted as MKKT conditions, to make a distinction with the single-objective case.

Theorem 2 (MKKT conditions). Let x? be a local Pareto optimal solution of (MOP). Sup-
pose that the objective functions fi for i = 1, 2, . . . ,m and the inequality constraint functions
cj for j ∈ J are C 1 at x? ∈ Ω, and that the Kuhn-Tucker constraint qualification holds at
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x? ∈ Ω. Then there exists λ ≥ 0, λ ∈ Rm and µ ≥ 0, µ ∈ R|J | such that

m∑
i=1

λi∇fi(x?) +
∑
j∈J

µj∇cj(x?) = 0,

µjcj(x?) = 0 for j ∈ J ,
(λ, µ) 6= (0Rm , 0R|J |),
λ 6= 0Rm .

When m = 1, the MKKT conditions reduce to the classical KKT conditions for constrained
single-objective optimization (see [201, Theorem 12.1]).

Remark. Many general references on optimization (for example [135, 201]) rather use the
linear independence constraint qualification (LICQ), which imposes that the set of gradients
of active constraints at an optimal solution are linearly independent, to derive Karush-Kuhn-
Tucker optimality necessary conditions. Note that Theorem 2 still holds if one substitutes
the Kuhn-Tucker constraint qualification by the LICQ, as the LICQ implies that the Kuhn-
Tucker constraint qualification holds (but it is not reciprocal). Figure 2.3 illustrates their
relations.

Ω
c1(x)

c2(x)

• x?

d a(t) = x? + td

a′(t) = d

(a) LICQ ⇒ KTCQ.

Ω

c1(x)
c2(x)

•x?

a(t)

d
a′(t) = αd

(b) KTCQ is satisfied but not LICQ.

Figure 2.3 Two examples illustrating the relation between the LICQ and the Kuhn-Tucker
constraint qualification (KTCQ)

If one removes the constraint qualification assumption, the following Fritz-John necessary
conditions [190] still apply.

Theorem 3 (Fritz John necessary condition for Pareto optimality). Let x? be a locally Pareto
optimal solution of (MOP) and suppose that the objective functions fi for i = 1, 2, . . . ,m and
the inequality constraint functions cj for j ∈ J are C 1 at x? ∈ Ω. Then there exists λ ≥ 0,
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λ ∈ Rm and µ ≥ 0, µ ∈ R|J |, such that

m∑
i=1

λi∇fi(x?) +
∑
j∈J

µj∇cj(x?) = 0,

µjcj(x?) = 0 for j ∈ J ,
(λ, µ) 6= (0Rm , 0R|J |).

However, the guarantee that the multiplier λ associated to the objective function is strictly
positive is lost, which may imply some degeneracy.

In DFO, the algebraic formulations of the objective functions are not explicitly available.
In this context, the MKKT or KKT conditions cannot be deployed to design practical al-
gorithms contrary to classical numerical optimization (for example, see [201] for a list of
available constrained methods based on the exploitation of KKT equations). However, it is
still possible to construct convergent-based DFO methods which rely on a more geometrical
view of constraint conditions. Cones are useful tools in this context.

Definition 10 (Cone). A set C ⊆ Rn is a cone if and only for all d ∈ C and every positive
scalar α > 0, αd ∈ Rn.

For example, Rn and the singleton set {0Rn} are cones. Cones can be convex, closed or open.
The description below follows [201]. The notion of (Bouligand) tangent cone is important.

Definition 11 (Contingent cone or (Bouligand) tangent cone). A vector v ∈ Rn is said to
be a tangent vector to Ω at the point x ∈ Rn in the closure of Ω (not necessary, as the border
is comprised in this set, but taken from [15]) if there exists a feasible sequence {vk} that
converges to x and a sequence of positive scalar {tk} such that v = limk→+∞ tk(vk − x).

The set T CoΩ (x) of all tangent vectors to Ω at x is called the contingent cone or the (Bouligand)
tangent cone to Ω at x.

An illustration of a tangent cone is given in Figure 2.4.

The (Bouligand) tangent cone represents all the directions in which the decision vector x
can be perturbed without violating the constraints. The following theorem for first-order
constrained conditions can then be given [201].

Theorem 4. Let x? ∈ Ω be locally Pareto optimal, and T CoΩ (x?) the tangent cone to Ω at x?.
Suppose that fi for i = 1, 2, . . . ,m and cj for j ∈ J are C 1 at x?. Then for all d ∈ T CoΩ (x?),
there exists at least an objective index i(d) ∈ {1, 2, . . . ,m} such that ∇fi(d)(x?) ≥ 0.



14

x

T CoΩ (x)
Ω

Figure 2.4 Tangent cone of x ∈ Ω of a nonconvex set Ω.

Nonsmooth optimization

In general, nonsmooth optimization focuses on the analysis of optimization problems where
objective and constraint functions are at least locally Lipschitz continuous at optimality.
Many applications cannot be classified into the category of continuously differentiable prob-
lems but belong to the larger set of locally Lipschitz continuous problems. It is then reason-
able to consider them in the context of BBO and DFO.

This subsection provides a summary of notions from nonsmooth optimization used along this
thesis. For more details, the reader is invited to read the works of Clarke [59] or the most
recent reference [35].

In nonsmooth optimization, one cannot use classical first order derivatives to assess opti-
mality conditions. The Clarke generalized directional derivative [59] generalizes continuous
directional derivatives to locally Lispchitz continuous functions.

Definition 12. Let f : Rn → R be a locally Lipschitz continuous function near x ∈ Rn.
Then the generalized Clarke directional derivative of f at x in the direction d ∈ Rn exists
and is defined as

f o(x; d) = lim sup
y→x
t↘0

f(y + td)− f(y)
t

.

To illustrate this definition, the classical following example is considered [20,59]. f : x→ |x|
is not differentiable at x = 0. On the contrary, ∀d ∈ R,

|d| = lim
t↘0

|td| − 0
t

≤ lim sup
y→0
t↘0

|y + td| − |y|
t

= f o(0; d) ≤ lim sup
y→0
t↘0

|y|+ |td| − |y|
t

= |d|,

hence f o(0; d) = |d| for all d ∈ R.
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In unconstrained nonsmooth optimization, first-order conditions can then be given using
generalized Clarke derivatives.

Theorem 5 (First order conditions in unconstrained nonsmooth multiobjective optimization
(adapted from [74])). Let f : Rn → R be locally Lipschitz continuous at x?. If x? is a local
Pareto optimal solution of min

x∈Rn
f(x), then for all d ∈ Rn, there exists an objective index

i(d) ∈ {1, 2, . . . ,m} such that f oi(d)(x?; d) ≥ 0.

If m = 1, one obtains the following first order conditions in unconstrained nonsmooth opti-
mization:

f o(x?; d) ≥ 0 for all d ∈ Rn.

In presence of some constraints, Theorem 5 needs some adjustments. Unfortunately, in a
blackbox context, one cannot derive some results using the tangent cone from nonsmooth
assumptions, as the construction of the tangent cone requires the constraint functions to
be smooth. The notion of tangency needs to be generalized by introducing the following
definition, taken from [59].

Definition 13 (Hypertangent cone). A vector d ∈ Rn is said to be a hypertangent vector to
the set Ω ⊂ Rn 6= ∅ at x ∈ Ω if there exists a scalar ε > 0 such that

y + tw ∈ Ω for all y ∈ Ω ∩ Bε(x), w ∈ Bε(d) and 0 < t < ε

where Bε(x) is the open ball of radius ε > 0 centred in x.

The set of all hypertangent vectors to Ω at x is called the hypertangent cone to Ω at x and
is denoted by T HΩ (x).

The hypertangent cone is the interior of the Clarke tangent cone [59] defined below. Re-
ciprocally, the Clarke tangent cone can be considered as the closure of the hypertangent
cone.

Definition 14 (Clarke tangent cone). A vector v ∈ Rn is said to be a Clarke tangent vector
to the set Ω ⊆ Rn 6= ∅ at the point x in the closure of Ω if for every sequence {xk} of elements
of Ω that converges to x and for every sequence of positive real numbers {tk} which converge
to 0, there exists a sequence of vectors {vk} converging to v such that xk + tkvk ∈ Ω.

The set of all Clarke tangent vectors to Ω at x is called the Clarke tangent cone to Ω at x
denoted as T ClΩ (x).
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Contrary to the unconstrained nonsmooth case, one needs to slightly adapt the definition of
the Clarke generalized directional derivative to the constrained case (to be sure the evalua-
tion is restricted to points in the feasible domain), denoted as the Clarke-Jahn generalized
directional derivative [149].

Definition 15. Let f : Rn → R ∪ {+∞} be locally Lipschitz continuous near x ∈ Ω, where
Ω ⊆ Rn 6= ∅. Then for d ∈ T HΩ (x) 6= ∅, the Clarke-Jahn generalized directional derivative at
x ∈ Ω in the direction d ∈ T HΩ (x) exists and is defined by

f o(x; d) = lim sup
y→x, y∈Ω

t↘0, y+tv∈Ω

f(y + td)− f(y)
t

.

One can compute the Clarke-Jahn generalized directional derivatives at x in the direction v ∈
T ClΩ (v) by passing at the limit, i.e. f o(x; v) = limd→v,d∈T HΩ (x) f

o(x; d) (see [15, Proposition
3.9] for a proof). Finally, the first-order constrained condition for nonsmooth MOO theorem
can be given.

Theorem 6 (First order conditions in constrained nonsmooth multiobjective optimization
(taken from [74])). Let f : Rn → (R ∪ {+∞})m be locally Lipschitz continuous near a point
x? ∈ Ω ⊆ Rn 6= ∅. x? is said to be Pareto-Clarke optimal if for all directions d ∈ T ClΩ (x),
there exists an index i(d) ∈ {1, 2, . . . ,m} such that f oi(d)(x; d) ≥ 0.

Descent directions

The concept of a descent direction is central in numerical optimization.

Definition 16 (Descent direction for single-objective optimization [20]). A direction d ∈ Rn

is said to be a descent direction of the function f : Rn → R at x ∈ Rn if and only if there
exists a scalar t̄ > 0 such that f(x + td) < f(x), ∀t ∈ (0, t̄ ].

When d ∈ Rn is a descent direction of a scalar-valued function f at x ∈ Rn, evaluating
f(x + td) for small values of t can lead to a better solution. The choice of relevant descent
directions in SOO depends on the properties of the objective function and the constraints.
Some well-known descent directions (a more detailed review can be found for example in [201,
Chapter 2]) are reminded:

• The steepest descent direction for SOO : d = −∇f(x), defined when f is C 1 at x ∈ Rn.

• The Newton direction for SOO: d = −(∇2f(x))−1∇f(x), assuming that f is C 2 and
∇2f(x) is positive definite at x ∈ Rn.
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• The Quasi-Newton direction for SOO: d = −H−1∇f(x), where H is a symmetric
positive definite approximation of the Hessian of f at x ∈ Rn, assuming f is C 2.

Many single-objective DFO methods use approximations of these descent directions.

The concept of descent direction for MOO is more recent. To the best of our knowledge,
the first extensions of classical descent directions from SOO to MOO date from 2000 and
are described in [117]. Since then, an important number of “descent-based” algorithms have
been proposed [9,116,117,193,194,209–211,236]. Although DFO methods do not have access
to derivatives, rendering the use of well-known descent directions impracticable, some of
them rely on approximations (e.g. [53, 126]), which are used to guide the search. It is then
interesting to mention them.

Definition 17. (Descent direction for multi-objective optimization (adapted from [116])).
A direction d ∈ Rn is said to be a descent direction of the function f : Rn → Rm at x ∈ Rn

if and only if there exists a scalar t̄ > 0 such that fi(x + td) < fi(x), ∀t ∈ (0, t̄] for all
i = 1, 2, . . . ,m.

Fliege and Svaiter [117] define the steepest descent direction for multiobjective optimization
as follows. Given f : Rn → Rm continuously differentiable at x ∈ Rn, the steepest descent
direction d of f at x is defined as the solution of the following optimization problem

min
d∈Rn

max
i∈{1,2,...,m}

∇fi(x)>d + 1
2‖d‖

2.

Note that this problem can be reformulated as a quadratic convex program with linear
constraints:

min
(α,d)∈R×Rn

α + 1
2‖d‖

2

s.t ∇fi(x)>d ≤ α, i = 1, 2, . . . ,m

which has a unique solution. The optimal value of this problem can also be used as a stopping
criterion. When m = 1, the solution reduces to d = −∇f(x).

Similarly, Fliege et al [116] define the Newton descent direction for multiobjective optimization
as follows. Given f : Rn → Rm twice continuously differentiable at x ∈ Rn, the Newton
direction of f at x is defined as the solution of the following subproblem:

min
d∈Rn

max
i∈{1,2,...,m}

∇fi(x)>d + 1
2d>∇2fi(x)d,

assuming ∇2fi(x) is symmetric positive definite for all i = 1, 2, . . . ,m.
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A Quasi-Newton descent direction for MOO is similarly defined [193,210] by replacing∇2fi(x)
in the previous problem by Bi, where Bi is a symmetric positive definite approximation of
the i-th objective function Hessian.

2.2 Derivative-free optimization methods for single-objective optimization

Many blackbox and derivative-free MOO methods are extensions of single-objective DFO
algorithms. To understand their design, it is thus important to know their relative single-
objective version. This section aims to provide a short summary of the principal ones used
in this work. In this part, f is a scalar-valued function. The reader is invited to refer to the
following books [20,67] and the extensive recent surveys [21,160,164] for more information.

Deterministic DFO methods can be broadly classified into two categories [20, 67]. The first
are direct search methods, which attempt to find solutions by only evaluating and comparing
points, without any other information. The second are Model-based methods. They encom-
pass, among others, linesearch and trust-region procedures, build an approximation of the
objective and constraints functions, the so-called model. They use the model to guide future
iterations. Model-based algorithms are very effective when the functions are smooth (even if
gradients are not analytically available), whereas the choice of direct search methods is more
pertinent when dealing with nonsmooth functions. This classification is nevertheless more
and more approximative. Indeed, new hybrid methods (see [66,70,75,182] for example) have
emerged for these last years, which combine properties of these two groups to overcome their
limitations and improve their efficiency. Nonetheless, for simplicity, this work will conserve
the classification into the two categories.

2.2.1 Direct search methods

The use of direct search methods in engineering applications can be traced to the works
of Fermi and Metropolis [113] on the Coordinate Search (CS) algorithm. But it is Hooke
and Jeeves [143] who use the term of “direct search” methods for the first time. According
to Kolda, Lewis and Torczon in their monumental review on this topic [160], direct search
algorithms possess the two following features:

• They do not make any use of gradient-based information, contrary to model-based DFO
methods.

• They are iterative procedures. They work from a point, the so-called best solution
found until the previous iteration, and examine a given and finite set of decision vectors
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in its “neighbourhood” (this notion is not mathematical here, and the definition of a
neighbourhood in a direct search context depends on the choice of the method). At
the end of the iteration, if a better candidate is found, it is then designated as the best
new solution point. Otherwise, a parameter linked to the size of the neighbourhood is
decreased, resulting in a more refined search for the next iteration.

The Mesh Adaptive Direct Search algorithm for constrained optimization

The Mesh Adaptive Direct Search (MADS) algorithm [15] is a generalization of Generalized
Pattern Search (GPS) methods [13, 244], which themselves generalize pattern search algo-
rithms (including the CS algorithm) to nonsmooth constrained optimization. The treatment
of these methods in this section is different from the traditional approach adopted in the main
references on DFO [20, 67]. Usually, an introduction to these methods follows a historical
perspective: it begins with the CS algorithm, then GPS, to conclude with MADS. Here, the
description focuses more on MADS, as it is one of the most elaborate and efficient direct
search methods. Particular cases such as CS and GPS are derived from it. The presentation
is inspired from [20]. Before starting, one needs the following definitions [81].

Definition 18 (Positive spanning set). A set of finite vectors D in Rn is said to be a positive
spanning set for Rn if the set of all positive combinations of D spans Rn, i.e.,

pspan(D) =


|D|∑
j=1

λjdj, λj ≥ 0,dj ∈ D

 = Rn.

An important property of positive spanning sets is that every open half-space of Rn contains
at least one of their elements [67, Theorem 2.3]. In the unconstrained differentiable case, it
implies that for a given point such that ∇f(x) 6= 0, there exists an element of the positive
spanning set d ∈ D such that d is a descent direction of f at x ∈ Rn [67, 160]. Intuitively,
exploring around directions of a positive spanning set can lead to a decrease of the value of
f . It is then interesting to look for positive spanning sets of minimum size that span Rn.

Definition 19 (Positive basis). A positive basis is a minimum positive spanning set in the
sense of inclusion, i.e., all strictly subsets of this set do not positively span Rn.

MADS [15] is a direct search algorithm designed to solve single-objective BBO constrained
problems, i.e.,

min
x∈Ω

f(x)
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Figure 2.5 Examples of positive spanning sets in R2 (inspired by [20, 67]): on the left, a
positive basis with 2n = 4 directions; in the center, a minimal positive basis with n+ 1 = 3
directions; on the right, a positive spanning set which is not a positive basis with 5 directions.

where Ω ⊆ Rn 6= ∅, int(Ω) 6= ∅ and f : Rn → R ∪ {+∞}. Allowing the objective function f
to take infinity values means the evaluations of f at a given decision vector can fail.

At each iteration k, MADS attempts to find better points in the decision space, belonging
to the current mesh Mk.

Definition 20 (Mesh [15]). Let G ∈ Rn×n be a non-singular matrix and Z ∈ Zn×nD be such
that the columns of Z form a positive spanning set for Rn. Define D = GZ. At iteration k,
the current mesh of coarseness δk > 0, generated by D is defined by

Mk =
⋃

x∈V k

{
x + δkDz : z ∈ NnD

}
⊂ Rn

where V k is the set of points already evaluated by the start of iteration k.

The mesh is roughly speaking a discretization of the decision space parametrized by its mesh
size parameter δk > 0 and generated by a positive spanning matrix D (as G is non singular).
Classical choices for G and Z are Z = [−In In] and G = In, where In is the identity matrix
of size n, so D = [−In In]. With this configuration, projecting points on the mesh is easier,
but other choices are possible [67]. When the evaluations are expensive, it is common to save
evaluated points in a cache V k to avoid unnecessary evaluations.

Each iteration is organized around two steps: a search and a poll. The search is an optional
step, as it does not play any role in the convergence analysis. During the search, the user
can use any technique to generate trial points, as long as they lie on the mesh Mk and their
number is finite. The poll is less flexible, as the convergence analysis depends on it. The poll
consists in a local exploration around the best feasible decision vector found until iteration k
denoted as xkF ∈ Ω. More precisely, the poll candidates must belong to a subset of the mesh
called a (MADS) frame [15].
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Definition 21 (Frame). At iteration k, the frame is defined to be the set

P k =
{
xkF + δkd : d ∈ Dk∆

}
where Dk∆ is a positive spanning set such that 0 /∈ Dk∆ and for each d ∈ Dk∆,

• d can be written as a nonnegative integer combination of the directions in D, and
d = Du for some vector u ∈ NnD that may depend on the iteration number k;

• the distance from the frame center xkF to a frame point xkF +δkd ∈ P k is bounded above
by a constant times the frame size parameter ∆k: δk‖d‖ ≤ ∆k max {d′ : d′ ∈ D}, where
0 < δk ≤ ∆k and

lim
k∈K

δk = 0 if and only if lim
k∈K

∆k = 0 for every infinite subset of indices K.

To satisfy the last point of the definition above, implementations of MADS set the following
relation between the mesh size and the frame size parameter: δk = min{∆k, (∆k)2} ⇔ ∆k =
max{

√
δk, δk} [20]. As the frame size parameter decreases, the mesh size parameter decreases

faster. The mesh refines, and the number of potential candidates increases. Examples of
frames can be found on Figure 2.6. To take into account the scale of variables, it is common
to associate to each variable its own frame and mesh size parameter [18, 26, 167]. MADS
can use different strategies to generate polling directions [2, 15, 18, 22, 26]. One of the most
efficient is the OrthoMADS strategy, proposed in [2].
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Figure 2.6 Examples of frames and meshes in R2 (inspired by [20]).

A poll can be opportunistic (as soon as the algorithm finds a better candidate, the poll is
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interrupted) or complete (all candidates are evaluated), as it does not affect the convergence
analysis.

Once the poll and the search are complete, the mesh is updated. If the algorithm does not
find a better incumbent during iteration k, the mesh size and frame size parameters are
reduced, increasing the mesh resolution to evaluate at the next iteration trial points closer
to the best incumbent xkF . Otherwise, the current incumbent is updated, and the mesh and
frame size parameters are increased. Care must be taken on the strategies of updating the
frame and the mesh for the convergence (for example, by using the same mesh size adjustment
parameter τ for the increasing or coarsening of the mesh).

Algorithm 5 summarizes the main steps of MADS.

Algorithm 1 The mesh adaptive direct search algorithm (MADS) (inspired by [20])
Given f : Rn → R ∪ {+∞}, x0

F ∈ Ω a starting point, choose ∆0 > 0 the initial frame size
parameter, τ ∈ Q ∩ (0; 1) the mesh size adjustment parameter, and D = GZ a positive
spanning set matrix.
for k = 0, 1, 2, . . . do
Set the mesh size parameter at δk = min

{
∆k,

(
∆k
)2
}
.

1. Search step (optional): Evaluate f at a finite set of points Sk ⊂ Mk. If successful,
go to 3.
2. Poll step: Select a positive spanning set Dk∆ ⊂ D. Evaluate f at the set of poll
points P k = {xkF + δkd : d ∈ Dk∆} ⊂ F k where F k is the frame of extent ∆k.
3. Parameter update:
if the iteration is successful (there exists ts ∈ Sk or tp ∈ P k such that f(ts) < f(xkF ) or
f(tp) < f(xkF )) then
set xk+1

F := ts or tp and ∆k+1 := τ−1∆k.
else
set xk+1

F := xkF and ∆k+1 := τ∆k.
end if

end for

MADS stops when one of the following stopping criteria is satisfied: either a maximal number
of blackbox evaluations is reached or the frame/mesh size parameter is below a threshold value
provided by the user.

Under mild assumptions 1, the MADS convergence analysis [15] guarantees the existence of an
accumulation point x̂F ∈ Ω such that its Clarke generalized derivative satisfies f o(x̂F ; d) ≥
0 for all directions d ∈ Rn belonging to the Clarke tangent cone T ClΩ (x̂F )2. This strong

1There exists a feasible starting point, its objective value is finite and all iterates xkF lie in a compact set;
a work that relaxes the first assumption can be found at [16].

2If int(Ω) 6= ∅ and x̂F ∈ int(Ω), then T HΩ (x̂F ) 6= ∅, and consequently, T ClΩ (x̂F ) 6= ∅.
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convergence result holds only if MADS generates poll directions which are asymptotically
dense in the unit sphere. Some polling strategies which satisfy this criterion can be found at [2,
15,18,22,26]. When the objective function is strictly differentiable at the limit point x̂F ∈ Ω,
this solution satisfies first-order stationarity conditions [15]. Second-order convergence results
can be found in [1]. Convergence analysis in the discontinuous case is also derived in [253].

As it is mentioned at the beginning of this subsection, the MADS framework generalizes many
other direct search methods. To obtain the Generalized Pattern Search (GPS) algorithm [13,
244], one needs to remove the asymptotically dense direction property. More precisely, during
iteration k, all candidates must still be evaluated on a meshMk. Poll candidates must belong
to the set P k = {xkF + δkd : d ∈ Dk∆} ⊂ Mk, where Dk∆ is a positive spanning set. However,
the set of directions

⋃
k∈N

Dk along all iterations is finite, contrary to MADS. The frame size

parameter is no more required. Under the same assumptions as for MADS, one can show
GPS generates an accumulation point x̂F ∈ Ω such that its Clarke generalized derivative
satisfies f o(x̂F ; d) ≥ 0 for all d ∈ D, where D is a positive basis (one of the positive basis
selected for an infinity of iterations when building the poll set).

The Coordinate Search (CS) algorithm for unconstrained optimization uses the positive basis
[In − In] to build its poll directions. It does not possess a search step. The step size
parameter δk is kept constant when the iteration is successful and divided by 2 when the
iteration is a failure (i.e., τ = 1

2). Assuming f possesses bounded level sets and is continuously
differentiable, one can show that CS generates a sequence of iterates which converges to a
stationary point x̂ ∈ Rn for unconstrained optimization, i.e., ∇f(x̂) = 0 (see for example [20,
Chapter 3]). These results are similar as the ones of GPS.

Since its conception in 2006 [15], MADS has benefited from important theoretical and prac-
tical improvements. A filter approach to take into account blackbox constraints based on a
progressive barrier is detailed in [16]. Other poll strategies can be found in [22, 248]. Imple-
mentations of efficient search steps are also explored in [29,66]. Theoretical results of MADS
with stochastic/noisy blackboxes are found in [19].

Remark. The direct search Generating Search Set (GSS) algorithm framework [160] is a
direct-search method with the same global convergence properties than the MADS algo-
rithm, i.e., it guarantees the existence of a Clarke-optimal accumulation point x̂ under mild
assumptions. This algorithm removes the restriction that all iterates should lie on the mesh
Mk (designed too in the literature as integer lattices [67]). Nonetheless, it imposes a sufficient
decrease condition on the choice of a new incumbent point, i.e., xk+1 6= xk is accepted as a
new incumbent if

f(xk+1) < f(xk)− ρ(δk)



24

where the forcing function ρ : R+ → R+ is continuous, positive and satisfies

lim
t↘0

ρ(t)
t

= 0 and ρ(t1) ≤ ρ(t2) if t1 < t2.

Common examples of forcing functions are ρ : t ∈ R+ 7→ t1+a for some scalar a > 0.

From a practical point of view, the MADS framework exploits all evaluations. Indeed, some
points for the GSS framework can be discarded, as they do not satisfy the sufficient decrease
condition. For an engineer, if a blackbox is costly, it can be difficult to accept that a new
candidate is not used even if it possesses a better objective value. Adjusting the mesh to
consider integer and binary variables is also straightforward [18]. On the other hand, many
derivative-free algorithms with equality constraints use GSS, as it is easier to use projections,
or adapt the generation of directions without the mesh (see for example [54,160,162,170,171])
to deal with these constraints. To the best of our knowledge, complexity results have also
been explored only within the GSS framework [124,131,132,252].

The Implicit Filtering algorithm

The Implicit Filtering (IF) algorithm, proposed by Gilmore and Kelley [129, 154], can be
seen as a hybrid between a pattern search algorithm and a Newton-based linesearch method.
IF targets derivative-free bound-constrained problems with continuously differentiable func-
tions. From the rest of this subsection, the feasible decision set will be given as Ω =
{x ∈ Rn : l ≤ x ≤ u} with l,u ∈ Rn such that li < ui for i = 1, 2, . . . , n. IF is initially
given a starting point x0 ∈ Ω, a stepsize δ0 and a fixed decrease parameter τ ∈ (0; 1).

At each iteration k, IF starts from the current solution xk, with its associated step size
δk > 0. IF first builds a stencil by evaluating the following points of this set:

{xk + δkd : d ∈ D}

where D = [In − In] is the set of stencil directions, In the identity matrix of size n × n.
As for GSS, the stepsize is decreased when the stencil step fails (i.e., no better current
solution is found). Note that contrary to GSS or MADS methods, the stencil is not evaluated
opportunistically.

When there is no stencil failure, i.e., there exists a descent direction, a linesearch is then
conducted. IF constructs a central difference-based approximated gradient

∇δf(x) =
(
f(x + δei)− f(x− δei)

2δ

)
1≤i≤n
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(it can be adapted to take into account the bounds, see [126] for an illustration) where ei is
the i-th coordinate vector. An approximated Hessian (or identity matrix) Hk is provided to
compute a descent direction, given by:

dk = −
(
Hk
)−1
∇δkf(xk)

if the norm of the approximated gradient is not below δk. Then IF performs a linesearch
along dk using the following Armijo backtracking procedure: find the least integer l ∈
{0, 1, . . . , lmax} such that

f(xk + αldk)− f(xk) ≤ η αl ∇δkf(xk)>dk

where lmax ∈ N, η, α ∈ (0; 1) are user-specified parameters.

At the end of the iteration, IF updates the current solution (i.e. xk+1 := xk + αldk if the
linesearch is successful; xk+1 := xk otherwise), and if there is failure in both steps, decreases
δk, i.e., δk+1 := τδk.

The algorithm stops when δk is below a user tolerance (not too low due to numerical issues)
or the evaluation budget is exhausted.

Assuming f is C 1, IF converges to a first-order stationary solution. This algorithm may not
be a good choice when solving blackbox problems, where functions are not differentiable or
evaluations may fail.

2.2.2 Linesearch-based methods

Linesearch-based DFO techniques, as their name implies, are inspired by gradient-based
algorithms, which search for a better incumbent along a promising direction by solving
a unidimensional minimization subproblem. One can trace them back to the following
works [82, 134]. This subsection only discusses the Derivative-Free Nonsmooth (DFN) al-
gorithm [109] which belongs to this group of methods. On the one hand, DFN addresses the
resolution (without derivatives) of general nonsmooth (but Lipschitz continuous) constrained
optimization problems. On the other hand, DFN is one of the principal inspirations for the
conception of the Derivative-Free Multiobjective Optimization (DFMO) algorithm, described
in Section 2.3.2. DFN may be thought as a variant of a GSS direct search method, which
would exploit only one direction at each iteration.
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DFN considers the following SOO problem:

min
x∈Ω⊂Rn

f(x)

where Ω = {x ∈ Rn : l ≤ x ≤ u and cj(x) ≤ 0 for j ∈ J }, with l < u. It also assumes that
the objective function f and the inequality functions cj : Rn → R for j ∈ J are Lipschitz
continuous and the bound variables l and u are finite. The following penalized problem is
then defined:

min
l≤x≤u

Zε(x) = f(x) + 1
ε

∑
j∈J

max {0, cj(x)}

where ε > 0 is a penalty parameter fixed by the user.

At iteration k, DFN selects a direction dk ∈ Rn such that ‖dk‖ = 1, where {dk}k∈N is a
sequence predefined by the user. The choice of such directions can involve various strategies:
coordinate search [109], OrthoMADS strategy [2, 109], and so on. DFN then performs a
search along the two directions ±dk. If a sufficient reduction of the penalized objective
function is obtained, DFN tries to find a suitable steplength parameter for the next iteration
via an extrapolation along the direction dk. Otherwise, if the two initial evaluations fail,
the tentative steplength is decreased, which enables a finest exploration around the current
best solution. Note that during the whole iteration, the algorithm systematically executes a
projection such that all iterates remain in the bound set X = {x ∈ Rn : l ≤ x ≤ u}.

It can be shown that the algorithm generates an accumulation point which is stationary for
the initial constrained problem assuming the penalty parameter is sufficiently small. Thus,
the numerical performance of the algorithm may be linked to the choice of this external
parameter. DFN also assumes that all involved functions are Lipschitz continuous. This
assumption may be too restrictive in a BBO context. Extensions of this algorithm to mixed
integer derivative-free problems can be found in [178,179,181]. Other variants [177,183] have
been developed for the linear inequality case, with stronger assumptions (i.e. differentiabil-
ity).

2.2.3 Model-based approaches

Even though the blackbox does not return derivatives and it is impracticable to compute them
by finite differences, the underlying functions can still be smooth. Model-based approaches
are mainly designed to address these problems. The principal idea behind these methods
is to approximate the objective (and the constraints) function by a “good” model, which is
used to guide the optimization process. This subsection summarizes the main points of these
approaches. For more details, the reader is referred to [20,21,67].
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The theoretical convergence and practical performance of model-based methods is strongly
related to the way the model “is close” to the true blackbox. Formally, the characterization
of a “good” model is expressed by its error bounds. The most common classes of “good”
surrogates are fully linear and fully quadratic models [67]. Roughly speaking, a model is said
to be fully linear on an open ball if the error on the function value scales at most quadrati-
cally, and if the error on the function gradient scales at most linearly with the radius of the
open ball. Similarly, a model is said to be fully quadratic on an open ball if the error on the
function value, gradient and hessian scale at most respectively cubically, quadratically and
linearly with the radius of the open ball. Fully quadratic models are more precise if stronger
assumptions on the blackbox are satisfied. Order N function accuracy and order N subgra-
dient accuracy generalize fully linear and quadratic models to nonsmooth optimization [21].
They respectively impose an error bound on the function and its subgradient which scales at
most N times with the radius of the open ball.

As highlighted in [21], this terminology enables to decouple the construction of models from
the design of model-based algorithms. It is common for researchers to start from a derivative-
based “basic” framework. The use of an accurate model enables to guarantee error bounds
on the value, gradient or Hessian of the true function. The model can then be directly
incorporated into the derivative-based framework, without changing the convergence analysis
(multiplied by the complexity cost required to build the model). One can find an example of
such an algorithm in [20, Chapter 11].

Thus, the conception of many model-based DFO algorithms has started from derivative-based
methods and exploits their properties. For example, the integration of radial basis functions
models into convergent-based algorithms has been proposed in [216, 261, 262]; Sampaio and
Toint [224] developed a funnel DFO trust-region algorithm that takes into account smooth
equality constraints; and Augustin and Marzouk [33] adapted a trust-region algorithm to treat
DFO constrained problems. Note that many of these methods assume that the problem is
smooth even if derivatives are not available. To the best of our knowledge, Liuzzi et al [182]
are the first to propose a model-based approach for nonsmooth problems that does not exploit
its composite structure. Their quadratic model possesses two characteristics which enables
them to prove their algorithm convergence to a Clarke stationary point. It exploits dense
directions in the unit sphere to approximate its linear part. The maximal eigenvalue of its
Hessian is bounded by a negative power of the trust-region radius (which itself converges to
0). We invite the reader to refer to [21,164] for a more thorough review.

All procedures mentioned above are local in the sense that they approximate the function in
a local region of the decision space. Global surrogate approaches, which have gained a lot
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of popularity for these last years, remove this property. The idea is to substitute the true
function by a global surrogate, which is used to guide the search for better points. There
exists various surrogates: Kriging (in the context of Bayesian optimization [153,191,230,268]),
radial basis functions [196,197,212,264], Delaunay-based approaches [7] or other [156]. Many
of these methods are heuristics or converge in a probabilistic sense (even though the true
function is not noisy) [203, 214], which can lead to reliability issues, e.g., convergence to a
non-stationary point.

Finally, model-based approaches can be combined with direct search methods to enhance
practical performance. In [76], the authors propose to use simplex gradients to order polling
directions. In [55,66,75], the authors incorporate an efficient search step based on linear and
quadratic models. More precisely, Custódio et al [75] target GSS, whereas Burmen et al [55]
and Conn and Le Digabel [66] tackle MADS. Burmen et al [55] exploit the generation of
dense directions in the unit sphere to build an approximation of the Hessian. This technique
requires only 2 evaluations, outperforming (at the time of the publication) the search step
based on quadratic models proposed by [66]. The approximation of constraint functions by
linear models [55] instead of quadratic surrogates as it is done in [66] can also explain this
performance gap. Indeed, a quadratic problem with linear constraints is generally simpler to
solve than a quadratically constrained quadratic problem. Integration of global surrogates
in MADS is described in [238].

2.2.4 Metaheuristics

Metaheuristics are popular approaches to tackle BBO. Their functioning is often based on
physical or biological analogies. In this category, one can find evolutionary algorithms [99],
particle-swarm methods [207], or simulating annealing [157]. The reader is referred to the
following references [127, 237] for a general overview. Although they are versatile and par-
allelizable, these methods often require an important number of functions evaluations to
work, possess arbitrary stopping criteria and many algorithmic parameters to tune to make
them efficient. However, some hybrid works which combine direct search methods (using
sufficient decrease) and evolutionary algorithms have been proposed with convergence guar-
antees [95,96].

2.3 Derivative-free optimization methods for multiobjective optimization

The methods presented in this section aim at generating a discrete representation of the
Pareto front for a given MOO problem. Indeed, they are practically limited by the total
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budget of evaluations imposed by the engineering context. In general, generating the whole
Pareto front is then out of reach, since it is often composed of an infinite number of elements,
or the cardinality of the Pareto front is too large to be captured with the provided budget of
evaluations. These algorithms are classified into two families: scalarization-based approaches
(or with a prior articulation of preferences), and methods with a posteriori articulation of
preferences [74].

2.3.1 Scalarization-based approaches

The principle behind scalarization-based methods is to reformulate the initial MOO problem
into a series of parameterized single-objective formulations. The solution of a subproblem by
an adequate SOO solver is typically a local Pareto optimal decision vector. Different local
Pareto solutions are obtained by changing the parameters of the formulation and resolving
the new subproblem. Classical formulations are detailed below.

Weighted sum method. The weighted sum method [190] consists of converting the MOO
problem into a SOO problem which minimizes a convex sum of objective functions:

min
x∈Ω

m∑
i=1

wifi(x)

where wi ≥ 0 for i = 1, 2, . . . ,m are weights such that
m∑
i=1

wi = 1.

Simple to implement and intuitive to understand, the weighted sum method cannot generate
any point on the non-convex part of the Pareto front [80]. Furthermore, this formulation can
be redundant, i.e., the same solutions can be reached for different combinations of weights.

Augmented weighted Tchebysheff method. The augmented weighted Tchebysheff
method [260] aggregates objective functions into a SOO problem defined by

min
x∈Ω

max
1≤i≤m

{wi (fi(x)− ri)}+ ρ
m∑
i=1

(fi(x)− ri)

where r ∈ Rm is a fixed reference point, wi ≥ 0 for i = 1, 2, . . . ,m are weights such that
m∑
i=1

wi = 1, and ρ > 0 is an external parameter sufficiently small.

Contrary to the weighted sum method, the augmented weighted Tchebyscheff method can
generate points on the non-convex part of the Pareto front. The surrogate-based evolutionary
algorithm ParEGO [158] for multiobjective BBO is based on this approach.
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When ρ = 0, the resulting formulation is known as the weighted Tchebysheff method. The
Multi-Objective Nonlinear Simplex Search (MONSS) algorithm [267] extends the Nelder-
Mead algorithm [198] to MOO via a scalarization approach based on this formulation.

ε-constraint method. The ε-constraint method [138] selects one criterion as the objective
function of the single-objective formulation and adds to the feasible set the other objectives
as inequality constraints. The ε-constraint formulation is given as follows:

min fl(x)
subject to fj(x) ≤ εεεj, j = 1, 2, . . . ,m : j 6= l

x ∈ Ω

where εεε ∈ Rm−1 such that the problem is still feasible, and l ∈ {1, 2, . . . ,m} the index of one
objective function.

By varying the ε parameter, this method can generate points on the Pareto front. This
method possesses several drawbacks. Firstly, it increases the size of the set of constraints,
as it adds several of them to the original problem. The second difficulty is the choice of
the ε parameter, which has to be carefully tuned so that the formulation remains feasible or
numerically solvable once new constraints are added.

The constrained MOO surrogate-based blackbox p-ARGONAUT algorithm [39] uses the ε-
constraint method to reformulate the MOO problem into a single-objective optimization
formulation. This problem is then solved by the ARGONAUT algorithm [43] for several
values of ε to get different non-dominated points.

The reader is invited to consult the following survey about scalarization formulations [259].
For the rest of this section, the algorithms presented here will be treated with more detail,
as they are sometimes used in the rest of this manuscript.

Direct search methods: BiMADS and MultiMADS

The BiMADS algorithm is a scalarization-based algorithm for constrained biobjective BBO
proposed in [27]. It generates a Pareto front approximation by solving a succession of single-
objective optimization problems using MADS [15]. More precisely, each formulation combines
a reference point r ∈ Rm and all criteria functions fi for i = 1, 2, . . . ,m into a scalar-valued
function ψr : x ∈ Ω → R ∪ {∞} which must satisfy the requirements presented in the
following definition [27].
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Definition 22. Consider the single-objective optimization problem:

Rr : min
x∈Ω

ψr(x) with ψr(x) = φr (f(x)) ,

where φr : Rm → R is parameterized with respect to some reference point r ∈ Rm. Then Rr

is said to be a single-objective formulation at r of MOP if the following conditions hold:

• If f is Lipschitz near some x̃ ∈ Ω, then ψr is also Lipschitz near x̃ ∈ Ω.

• If f is Lipschitz near some x̃ ∈ Ω with f(x̃) < r component-wise, and if d ∈ T ClΩ (x̃) is
such that f oi (x̃; d) < 0 for i = 1, 2, . . . ,m then ψor(x̃; d) < 0.

The first condition ensures the preservation of local Lipschitz continuity of the objective
function f when reformulated into a SOO problem. The second condition involves Clarke
descent directions for the fi criteria for i = 1, 2, . . . ,m, and ψr.

BiMADS uses the single-objective product formulation. Let r ∈ Rm be a reference point in
the objective space. The single-objective product formulation is defined as

Rprod
r : min

x∈Ω
ψprodr (x) with ψprodr (x) = φprodr (f1(x), f2(x), . . . , fm(x)) = −

m∏
i=1

(
(ri − fi(x))+

)2

where (ri − fi(x))+ = max{ri − fi(x), 0} for i = 1, 2, . . . ,m. Audet et al [27] show that
the single-objective product formulation is a single-objective formulation at r of MOP in the
sense of Definition 22.

At the initialization step, BiMADS solves the two SOO problems

min
x∈Ω

f1(x) and min
x∈Ω

f2(x)

using MADS to get approximations of the extreme elements of the Pareto set. BiMADS
stores all the non-dominated points found during the two resolutions in a list L0.

BiMADS uses the fact that non-dominated points can be (lexicographically) ordered in the
biobjective space. At each iteration, the reference point rk ∈ Rm is chosen such that it
emphasizes the search towards zones in the objective space where three consecutive points
are the most spaced. Due to the nature of the single-objective formulation problem, trial
points are most likely to be in the dominance zone with respect to rk.

The main steps of BiMADS are summarized in Algorithm 2. The reader is invited to con-
sult [27] for more details.
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Algorithm 2 The BiMADS algorithm (adapted from [27])
Given f : Rn → (R ∪ {+∞})2, and V 0 ⊂ Ω a finite set of initial points,
Initialization: Solve the single-objective problems min

x∈Ω
fi(x) for i = 1, 2 using the MADS

algorithm starting from V 0.
Let L0 := {x1,x2, . . . ,x|L0|} ⊂ Ω be the set of non-dominated points obtained from the
two previous subproblem resolutions such that f1(x1) < f1(x2) < . . . < f1(x|L0|) and
f2(x1) > f2(x2) > . . . > f2(x|L0|). Initialize the weights w (xj) = 0 for all xj ∈ L0.
for k = 0, 1, 2, . . . do
Choice of the reference point:

1. If |Lk| = 1, set χk := χ

w(x1) + 1 where χ is some positive constant. Then solve

again the single-objective problems min
x∈Ω

fi(x) for i = 1, 2 using the MADS al-
gorithm until the mesh size parameter is below O(χk) and continue to the step:
update Lk.

2. If |Lk| = 2, set χk := ‖f(x2)− f(x1)‖2

w(x2) + 1 and rk = (f1(x2), f2(x1))>.

3. If |Lk| > 2, for each j = 2, 3, . . . , |Lk| − 1, compute

χk,j := ‖f(xj+1)− f(xj)‖2 + ‖f(xj)− f(xj−1)‖2

w(xj) + 1 .

Let j0 ∈ arg max
j∈{2,3,...,|Lk|−1}

χk,j. Set rk = (f1(xj0+1), f2(xj0−1))> and χk :=

maxj∈{2,3,...,|Lk|−1} χ
k,j.

Resolution of a single-objective problem using the reference point rk and the
objective function by MADS. Terminate MADS when the mesh size parameter is below
O(χk) or when the maximum budget of evaluations is reached.
Update Lk. Remove the dominated points of Lk, set Lk+1 := Lk. For each xj ∈ Lk,
update their weight: w(xj) := w(xj) + 1.

end for

The weights provide a flexible way to avoid staying in the same zone for too long during
successive iterations of BiMADS. An illustration is given in Figure 2.7.

Under mild assumptions, the MADS convergence analysis guarantees that for each single-
objective reformulation Rr ofMOP at some reference point r ∈ Rm, there exists a limit point
x̂ ∈ Ω generated by MADS such that for all direction d ∈ Rn belonging to the Clarke tangent
cone T ClΩ (x̂) (with T HΩ (x̂) 6= ∅), there exists an index i(d) such that the corresponding Clarke
generalized derivative f oi(d)(x̂; d) ≥ 0. Essentially, it means there does not exist any direction
in the hypertangent cone which is a descent direction for all objective functions.
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(a) Determination of the reference point rk.
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(b) Single objective-minimization.

Figure 2.7 An iteration of BiMADS (inspired by [27]).

Audet et al [28] propose an extension of BiMADS to tackle multiobjective blackbox optimiza-
tion problems with more than two objectives, named MultiMADS. As BiMADS, MultiMADS
solves several multiobjective single-objective reformulations Rr of MOP at some reference
point r ∈ Rm. But its functioning is similar to the Normal Boundary Intersection (NBI)
method [80]. MultiMADS starts by computing the extreme elements of the Pareto front by
minimizing each criterion fi separately. These objective vectors are used to compute the con-
vex hull of individual minima [28] (CHIM). At each iteration, MultiMADS selects an element
of the CHIM as the reference vector rk ∈ Rm and solves a single-objective formulation using
it. All non-dominated points are collected and added to a list as for BiMADS. Unfortunately,
no implementation is available.

Several issues are raised with such scalarization-based methods. The first is the number of
evaluations to allocate to each single-objective problem: too few and no promising points can
be reached; too many and the algorithm can lack budget to explore potential promising zones
in the objective space. Futhermore, at the end of each resolution, the frame and mesh size
parameters are reset. These parameters provide valuable information on the zone of research
in the decision space to find better solutions, but they are not exploited by both algorithms.
BiMADS and MultiMADS use an important number of evaluations to refine the mesh, when
this budget could rather be dedicated to enrich the Pareto front approximation.
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Trust-region based approaches

The extension of single-objective trust-region DFO algorithms to MOO has been very limited.
As far as we know, three convergent-based methods, all based on scalarization reformulations,
have been investigated [208,223,242].

The BOTR algorithm. The BiObjective Trust-Region (BOTR) algorithm [223] is a DFO
unconstrained method for biobjective optimization strongly inspired by BiMADS. Similarly
to BiMADS, BOTR keeps a list of non-dominated points which gets closer to the Pareto
front as long as the algorithm unfolds. Each element of the list possesses its own trust-region
radius.

At iteration k, BOTR selects one element xk of the list with its associated trust-region radius
∆k as the current incumbent. It then constructs the fully linear models (quadratic minimum
Frobenius norm or regression) in a trust-region of radius ∆̃k ≤ ∆k:

• f̃k1 and f̃k2 are the quadratic models of objective functions f1 and f2.

• ψ̃kr is the quadratic model of the single-objective formulation ψprodr of MOP at r =
f(xk), i.e.

∀x ∈ Rn, ψprodr (x) = −
m∏
i=1

(
(ri − fi(x))+

)2

with (ri − fi(x))+ = max {ri − fi(x), 0} for i = 1, 2, . . . ,m.

As in the single-objective case, a test is performed to estimate the quality of these models
according to f1, f2 and ψprodr . If the test fails, the trust-region radius ∆̃k is reduced, and the
models are reconstructed using sample points belonging to this new zone. When the three
models are accurate enough, the trust-region radius ∆k is adjusted using the gradient of all
models evaluated at xk and the radius ∆̃k.

BOTR then solves the three SOO trust-region subproblems in the zone of radius ∆k. BOTR
computes the reduction ratios of the generated solutions. BOTR also computes the reduction
ratios of the points involved in the construction of the models using ψprodr . Sample points
with insufficient reduction ratio value are discarded, since their ψprodr value is not significantly
better or worse than the current incumbent xk.

BOTR affects a trust-region radius superior or equal to ∆k to all sample points satisfying
the reduction ratio condition. The three approximated or exact solutions of trust-region
subproblems are given a trust-region radius whose value depends on their reduction ratio.
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All these points are added to the list of non-dominated decision vectors, and the set of
non-dominated points is then updated.

At iteration k, the choice of xk depends on two factors:

• Either all generated points at iteration k− 1 have an insufficient reduction ratio value.
In this case, xk := xk−1 and ∆k := τ∆k−1 with τ ∈ (0; 1).

• Or xk is selected in the list of non-dominated points as the most isolated in the objective
space according to the Euclidean distance between three consecutive points if its trust-
region radius is above a certain tolerance ∆tol (see [223] for more details).

When all elements of the list have their trust-region radius below ∆tol, BOTR stops.

The authors of [223] show that under strict assumptions (notably that f1, f2 and ψprodr are
C 1 and their gradients are Lipschitz continuous on some specific open set), BOTR generates
a subsequence of iterates xk converging to at least one first-order critical point for one of the
three functions f1, f2 or ψprodr . Numerical experiments show that BOTR, on the analytical
benchmarks presented in this article, captures some parts of the Pareto front, even though
the problem is not differentiable everywhere. However, to the best of our knowledge, no im-
plementation is available. This algorithm may not be practical to deal with general blackbox
problems as the number of assumptions is too restrictive.

The (Expensive) Multiobjective (heterogeneous) Trust-region algorithm. The
Multiobjective Heterogeneous Trust-region (MHT) [242] and the Expensive Multiobjective
Trust-region (EMT) [208] algorithms are two variants of the same method specifically de-
signed to solve expensive unconstrained MOO problems. Both guarantee (under some strict
assumptions implying the differentiability of the function) to generate only one locally Pareto
optimal point. MHT [242] considers heterogeneous MOO problems, mixing differentiable and
expensive blackbox objectives. EMT [208] targets multiobjective BBO problems, where all
objective functions are expensive simulations. A short description is done ; more details of
these two works can be found in [241].

At iteration k, EMT constructs quadratic interpolation models (or linear models when the
number of variables is large) f̃ki for i = 1, 2, . . . ,m in a ball B∆k(xk) of radius ∆k and centre
xk. Then the ideal objective vector of model f̃k in the ball B∆k(xk) is computed, i.e.

ỹI,k =
(

min
x∈B∆k (xk)

f̃k1 (x), min
x∈B∆k (xk)

f̃k2 (x), . . . , min
x∈B∆k (xk)

f̃km(x)
)>

.
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EMT and MHT look for a sufficient decrease in the function values. The authors propose to
move as long as the trust region allows in the direction of ỹI,k, using the Pascoletti-Serafini
scalarization [206], given by

min t

s.t. fi(xk) + t vki − f̃ki (x) ≥ 0, i = 1, 2, . . . ,m
t ∈ R,x ∈ B∆k(xk)

where vk = f(xk)− ỹI,k.

For each objective i = 1, 2, . . . ,m, EMT computes a reduction ratio ρki . The ratio used for
the trial acceptance test is defined as ρ̃k = mini=1,2,...,m ρ

k
i . Depending on this ratio, the

trust-region radius is updated.

MHT constructs second order approximations of the analytical objective if Hessian and
derivatives are available. The acceptance test for MHT uses the ratio ρkφ defined by:

ρkφ = φ(xk)− φ(xtrial)
φ̃k(xk)− φ̃k(xtrial)

where φ = max
1≤i≤m

fi and φ̃k = max
1≤i≤m

f̃ki . This ratio guarantees only the existence of a descent
direction for at least one objective, whereas EMT forces a descent direction for all objectives.

Assuming that the objective functions are twice differentiable, both algorithms generate a
subsequence of iterates which converges to a local Pareto critical point. However, they remain
restricted as they are only designed to find one local Pareto optimal solution.

Others

In the context of scalarization-based methods, many researchers have investigated the use
of surrogate-based algorithms. Among the works not yet mentioned in the previous subsec-
tions [43, 158], one can mention the extension of single-objective Bayesian optimization via
the use of the hypervolume indicator [279]. Given a set of non-dominated points in the objec-
tive space, the hypervolume indicator represents the volume of the space dominated by these
points and bounded above by a reference objective vector (see Chapter 4 of this document
for a more thorough description). This indicator is to be maximized. As far as we know,
this research starts by Emmerich [101] which proposes the Expected Hypervolume Improve-
ment Indicator. This formulation transforms a multiobjective optimization problem into a
single-objective one which can be passed to efficient existing solvers. However, this indicator
is computationally expensive, as its complexity increases exponentially with the number of
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objectives [57]. To handle this issue, researchers have proposed stochastic approximations of
the hypervolume [44,111,112,269], faster to compute at the detriment of accuracy.

2.3.2 Methods with a posteriori articulation of preferences

Methods with a posteriori articulation of preferences do not aggregate any of the objective
functions. They directly work with the original MOO problem. All derivative-free convergent-
based approaches presented in this subsection follow the same mechanism. They maintain a
current solution set, composed of all non-dominated points found. The algorithm improves
this solution set along the iterations, using some iteration rules. From a theoretical point of
view, these methods guarantee the convergence of this solution set towards a local Pareto
optimal point, under reasonable assumptions (e.g., existence of local minima or (locally)
Lipschitz objectives). Practically, it can be observed on analytical benchmarks [74] that
the list of non-dominated points gets closer to the Pareto front, as the number of iterations
increases.

Direct search methods

The Direct MultiSearch algorithm The Direct Multisearch (DMS) algorithm [74] is a
framework which extends classical SOO direct search algorithms (e.g., GSS) to MOO. As
in SOO, each iteration is built around two steps: an optional search and a poll, on which
convergence depends.

DMS adopts an extreme barrier approach to deal with constraints, by setting:

fΩ(x) =

f(x) if x ∈ Ω,

(+∞,+∞, . . . ,+∞)> otherwise.

At iteration k, DMS starts from a list of previously evaluated non-dominated feasible points,
with their own associated step size parameters. This iterate list is denoted as Lk. DMS
then selects an element (xk, δk) of the iterate list Lk as the current incumbent. The search
enables the practitioner to evaluate a finite number of candidates according to an user-based
strategy. During the poll step, the algorithm generates poll points belonging to the poll set,
defined as:

P k =
{
xk + δkd : d ∈ Dk

}
where Dk is a positive spanning set.

All new evaluated candidates are submitted to a multiobjective sufficient decrease test as
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follows. Let D(Lk) be the subset of the objective space non-dominated by the points of Lk

and ρ : R+ → R+ a forcing function. During the search step, x ∈ Rn is said to be non-
dominated with respect to the iterate list Lk if the l∞ distance between f(x) and D(Lk) is
larger than ρ

(
δk
)
. During the poll step, xk + δkd ∈ Rn is said to be non-dominated with

respect to the iterate list Lk if the l∞ distance between f(xk + δkd) and D(Lk) is larger than
ρ
(
δk‖d‖

)
where d is a polling direction.

DMS adds all evaluated sufficiently non dominated points to the list Lk with an associated
step size parameter δ ≥ δk. Lk is then filtered to remove all new dominated points.

An iteration is said to be successful if the list Lk changes at the end of iteration k. Otherwise,
it is unsuccessful and δk is decreased. Algorithm 3 summarizes the main steps of DMS.

Algorithm 3 Direct MultiSearch (DMS) (adapted from [74])
Given f : Rn → (R ∪ {+∞})m, choose x0 ∈ Ω the initial starting point, δ0 > 0 the initial
step size parameter, 0 < β1 ≤ β2 < 1 and γ ≥ 1. Let D be a (possibly infinite) union of
positive spanning sets. Initialize the list of non-dominated points L0 = {(x0, δ0)}.
for k = 0, 1, 2, . . . do
Selection of the current incumbent point: Select one element

(
xk, δk

)
of Lk as the

current incumbent.
Search step (optional): Evaluate fΩ at a finite set of points Sk. Set Ladd := {(x, δk) :
x ∈ Sk}.
Call Lfiltered := filter(Lk, Ladd) to remove all dominated points from Lk ∪ Ladd using
sufficient decrease to see if points in Ladd are nondominated relatively to Lk. If Lk 6=
Lfiltered, set Lk+1 := Lfiltered, declare the iteration as successful and skip the poll step.
Poll step: Select a positive spanning set Dk from the set D. Evaluate fΩ at the set of
poll points P k = {xk + δkd : d ∈ Dk}. Set Ladd := {(x, δk) : x ∈ P k}.
Call Lfiltered := filter(Lk, Ladd) to remove all dominated points from Lk ∪ Ladd using
sufficient decrease to see if points in Ladd are nondominated relatively to Lk. If Lk 6=
Lfiltered, set Lk+1 := Lfiltered and declare the iteration as successful. Otherwise, declare
the iteration as unsuccessful.
Parameter update: If the iteration was successful, replace all elements

(
x, δk

)
of

Lk+1 \ Lk by
(
x, δk+1

)
with δk+1 = γδk; replace also (xk, δk), if in Lk+1, by (xk, δk+1).

Otherwise replace the poll center (xk, δk) by (xk, δk+1) with δk+1 ∈ [β1δ
k, β2δ

k].
end for

The choice of the current incumbent remains flexible. Custódio et al [74] propose two strate-
gies to choose it. The current incumbent is chosen as the first point of the iterate list. New
found non-dominated points are added to the end of the list. The current incumbent is then
moved to the end of the list at the end of the iteration. This strategy enables to diversify the
search in the feasible space Ω. Another strategy consists in selecting the current incumbent
as the one in the least dense zones of the approximated Pareto front using a spread distance.



39

More details can be found in [74].

Under mild assumptions, the DMS convergence analysis given in [74] guarantees the existence
of at least one accumulation point x̂ such that for each direction d belonging to the Clarke
tangent cone T ClΩ (x̂) [59] (if T HΩ (x̂) 6= ∅), there exists an index i(d) ∈ {1, 2, . . . ,m} with its
Clarke generalized derivative f 0

i(d)(x̂; d) ≥ 0. Practically, computational experiments have
shown that DMS is able to get several elements of the Pareto front.

The DMS framework adapts easily to the MADS algorithm by using integer lattices [74]
instead of sufficient decrease defined by a forcing function. Convergence results remain
similar.

Practically, DMS uses a complete polling strategy with the set D = [In − In] where In is the
identity matrix of size n× n and the constant forcing function ρ : t ∈ R+ 7→ 0 (which is the
same to use the classical non-dominated relation). Computational experiments show that
the spread distance strategy is more efficient than the FIFO (First In First Out) strategy.

A globalization strategy of the DMS algorithm can be found in [73]. A model-based search
strategy, inspired by [75], is proposed in [53]. The authors show that the incorporation of
quadratic models in DMS provides computational improvements compared to the original
DMS algorithm. However, it adds additional complexity (the search strategy requires the
resolution of at worst 2m − 1 subproblems, which is only acceptable when m is small [53]).
Theoretical complexity results for DMS are derived in [77]. New parallel strategies are
explored in [240]. A variant of DMS is equally proposed in [90].

Multiobjective Optimization Implicit Filtering The Multiobjective Optimization Im-
plicit Filtering (MOIF) algorithm [126] is an extension of the single-objective Implicit Fil-
tering method [154] to bound-constrained MOO. For the rest of this description, the feasible
set is given by Ω = {x ∈ Rn : l ≤ x ≤ u} with l,u ∈ Rn. Although two versions of MOIF are
described, the description focuses on its “front” version, which aims at capturing the Pareto
front.

Similar to DMS, MOIF considers a list of non-dominated points

Lk =
{(

xj, δj
)
,xj ∈ Ω, j = 1, 2, . . . |Lk|

}
with their associated stepsize δj > 0 for j = 1, 2, . . . , |Lk|.

At the beginning of iteration k, MOIF selects one element (xk, δk) (using the same criteria
as DMS) of the list Lk as the current incumbent. With this pair, MOIF evaluates a set of
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stencil points [126], defined as

{
xk + δke1,xk + δke2, . . . ,xk + δken,xk − δke1,xk − δke2, . . . ,xk − δken

}
with ei the i-th coordinate vector of dimensions n. In other terms, a stencil centered in xk

of stepsize δk is equivalent to a poll set of center xk and stepsize δk with polling directions
[In − In] where In is the identity matrix of dimensions n × n. A temporary copy of Lk

denoted as L̃k collects all feasible points with an associated stepsize whose value is equal to
δk. If L̃k is different from Lk, the iteration is considered as successful and L̃k becomes Lk+1.

Otherwise, the algorithm has not found any other new non dominated point. In this case,
MOIF attempts a linesearch. Using pre-evaluated candidates on the stencil set, MOIF com-
putes an approximated gradient of each objective function at xk ∈ Ω. Given x ∈ Ω and
δ > 0, the approximated gradient ∇δfi(x) for i = 1, 2, . . . ,m at x ∈ Ω is defined as

∇δfi(x) =
(
∂δfi
∂x1

(x), ∂δfi
∂x2

(x), . . . , ∂δfi
∂xn

(x)
)>

where for all j = 1, 2, . . . ,m,

∂δfi
∂xj

(x) =



fi(x + δej)− fi(x− δej)
2δ if x + δej ∈ Ω, x− δej ∈ Ω;

fi(x + δej)− fi(x)
δ

if x + δej ∈ Ω, x− δej /∈ Ω;
fi(x)− fi(x− δej)

δ
if x + δej /∈ Ω, x− δej ∈ Ω;

+∞ otherwise.

If all components of ∇δkfi(xk) are finite, the following approximated steepest descent direc-
tion dk, solution of the following linear problem (inspired by [117])

βk = min
d∈Rn

max
i∈{1,2,...,m}

∇δkfi(xk)>d

s.t xk + d ∈ Ω

is computed.

If βk satisfies the following tolerance criterion βk ≥ −τδk, where τ ∈ (0; 1) is a fixed param-
eter, the line search is not executed. Otherwise, MOIF performs a Goldstein linesearch. If
it exists, the new point found at the end of this strategy is then added to Lk. Lk is then
filtered to remove non dominated points, resulting in the new iterate list Lk+1. Otherwise,
the iteration is considered as a failure.
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When the iteration is marked as unsuccessful, the stepsize δk of the current incumbent xk is
then reduced and the counter iteration is increased.

Under smoothness assumptions, it is proved than MOIF generates a subsequence of iterates
converging to a Pareto stationary point satisfying first order conditions [126].

The performance of this algorithm partly depends on the approximation of the gradient
used in the linesearch. If the true function is nonsmooth, this descent direction may not be
accurate. However, the integration of a stencil phase (as in DMS) could still keep it robust.

Line search approaches : the Derivative Free MultiObjective algorithm

The Derivative Free MultiObjective (DFMO) algorithm [180] is a constrained derivative-free
linesearch algorithm for multiobjective optimization inspired by DMS. This algorithm deals
with inequality constraints via an exact penalty approach.

Precisely, given the constrained problem (MOP) where Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J } with
X = {x ∈ Rn : l ≤ x ≤ u} defined as bound constraints, a parameter ε > 0, the following
penalty functions are defined as

Zi(x; ε) = fi(x) + 1
ε

∑
j∈J

max{0, cj(x)} for i = 1, 2, . . . ,m.

The penalized bound constrained problem is then considered:

min
x∈X

Z(x; ε) = [Z1(x; ε), Z2(x; ε), . . . , Zm(x; ε)]> .

Similarly to DMS, DFMO updates a list of non-dominated points (according to the Z func-
tion) defined at each iteration k by

Lk = {(xj, δj), xj ∈ X , δj > 0, j = 1, 2, . . . , |Lk|}

where δj is the trial step associated with point xj.

At iteration k, DFMO creates a temporary copy L̃k of Lk. For each point of the iterate list
Lk, the algorithm starts a linesearch along a direction dk projected onto the decision set X .
If the direction dk guarantees a sufficient decrease, i.e. there exists at least one objective
function that decreases enough for a new generated point along dk for each point in L̃k, then
the algorithm executes a “larger” search along this direction, generating a new set of points.
Otherwise, the trial step is reduced. Algorithm 4 summarizes the main points of DFMO.
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Algorithm 4 The DFMO algorithm (adapted from [180])
Given f : Rn → Rm, cj : Rn → R for j ∈ J , choose ε > 0, γ > 0, τ ∈ (0; 1), L0 =
{(xj, αj), xj ∈ X , αj > 0, j = 1, 2, . . . , |L0|}, a sequence {dk} ⊂ Rn such that ‖dk‖ = 1
for all k.
for k = 0, 1, 2, . . . do
Set L̃k := Lk.
for j = 1, 2, . . . , |Lk| do
Let (xj, δj) be the j-th element of Lk.
if Z([xj + δjdk][l;u]; ε) 6> Z(xl; ε)− γ (δj)2 e for all xl ∈ L̃k then
Apply a linesearch-based method along the dk direction; add new non-dominated
points and remove new dominated points from L̃k.

else
Failure Step: If (xj, αj) ∈ L̃k, set L̃k :=

(
L̃k \ {(xj, δj)}

)
∪ {(xj, τδj)}.

end if
Set Lk+1 := L̃k.

end for
end for

DFMO possesses an important drawback. At each iteration, it evaluates at least |Lk| points,
whereas an iteration of DMS involves at most the evaluation of 2n points (during the poll
step). If |Lk| is large, it may become a bargain. However, DFMO guarantees the convergence
of Lk to a set of locally Pareto-Clarke optimal points, assuming that the objective functions
fi for i = 1, 2, . . . ,m and the cj functions for j ∈ J are Lipschitz continuous on X . On
the contrary, DMS only guarantees the convergence to one local Pareto-Clarke stationary
point. In [126], the authors also claim that DMS is better than DFMO for bound-constrained
problems. However, it remains one of the few algorithms to manage constraints in derivative-
free multiobjective optimization.

Last notes

The most common algorithms in blackbox multiobjective optimization are evolutionary algo-
rithms [84,89], as shown by the important literature on this topic [88,89]. Nonetheless, they
are heuristics and require an important number of evaluations to work (the authors of [266]
use a maximal budget of between 2× 105 and 5× 105), which is not practical when functions
are expensive. When combined with surrogate models, this last drawback can be removed.
Surrogate methods combining RBF models and evolutionary approaches can for example be
found in [3, 196, 214, 257]. They do not get a convergence certificate, or if it is the case, it is
stochastic-based [214].
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CHAPTER 3 ORGANIZATION OF THE THESIS

This chapter details the organization of the research done in this thesis. It also exhibits the
motivation points and the initially expected results.

The previous chapter has described several state-of-the-art MOO derivative-free and blackbox
methods. It is more difficult to assess the performance of new multiobjective BBO solvers
empirically than it is for SOO algorithms. Indeed, in a multiobjective context, the solution
is often a set (i.e., the Pareto front); the total ordering induced by a scalar-valued objective
function is lost, making it difficult to rank approximation sets obtained by different solvers.
Researchers have often employed visualization techniques, as in [27,28,223]. However, these
tools do not generalize when more than three objectives are involved. They fail to quantify
the difference in quality between different approximation sets. They can only highlight the
efficiency of a method on one problem. Performance indicators, which map solution sets to
a real value, capture several properties of a Pareto front approximation. They can be used
to offer a ranking of different algorithms.

Chapter 4 corresponds to [11], which has been published in European Journal of Operational
Research. This survey classifies a set of 63 performance indicators according to their proper-
ties (cardinality, convergence, distribution and spread), lists their advantages and potential
drawbacks, and describes some applications. The first intent of this work is to identify good
quality metrics which can provide a baseline to implement reliable and intuitive benchmark-
ing comparison tools (similar to what is introduced in [74]), or to guide the search in the
objective space towards better solutions. Note that when this survey was into peer-reviewed
revision, the study [175] was published, whose authors list more performance indicators (ex-
actly 100). But their work is mostly oriented towards the evolutionary community. The
reader is invited to consult it as a useful complement to our work.

Chapters 5 and 6 are dedicated to the presentation of a new extension of MADS to multi-
objective constrained optimization, designed as DMulti-MADS. Each chapter focuses on a
facet of this new algorithm.

As detailed in the previous chapter, there already exist two extensions of MADS to con-
strained MOO: the BiMADS [27] and MultiMADS [28] algorithms. The main drawback
with such scalarization-based methods is the poor management of the total budget of black-
box evaluations, distributed over single-objective subproblems. Indeed, these algorithms can
waste some evaluation calls in a part of the objective space where no improving solution lies.
This budget could be dedicated to the exploration of more promising zones in the objective
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space. Besides, each time these algorithms start the resolution of a new single-objective
problem, they lose information given by the frame and mesh size parameters at the end of
the previous optimization. On the other hand, DMS introduced by Custódio et al. [74],
presented in the previous chapter, is a framework which generalizes all types of direct search
methods to MOO. It maintains a list of non-dominated points, and selects at every iteration
a center to perform a poll. It then wastes fewer evaluations, and exploits more of the knowl-
edge of the step size parameter associated to the current poll center. However, DMS only
guarantees that it generates at least a sequence of points which converge to a local stationary
Pareto point. In a multiobjective context, one would want to find methods which ensure
convergence to a set of local Pareto stationary points. DFMO [180] paves the way toward
such approaches, but it appears to be less efficient than DMS [126] on bound-constrained
problems. As indicated before, it is too restrictive in its convergence assumptions within a
blackbox context.

The core of the DMulti-MADS algorithm is presented in Chapter 5, which corresponds to [40],
published in Computational Optimization and Applications. DMulti-MADS is an extension of
MADS to many objectives. From BiMADS, it conserves the same success condition criterion
(dominance according to a point and not a list). It also possesses a similar center selection
strategy, which is not limited to two objectives. As for DMS, it keeps a list of non-dominated
points with their mesh and frame size parameters, from which a poll center is selected. It
exploits more efficiently its evaluation budget to improve the current solution set. The main
difference with DMS is that DMulti-MADS imposes a restriction on the choice of the poll
center. This condition, combined with a convergence analysis close to DMS, enables DMulti-
MADS to guarantee convergence to a set of locally stationary points, under more general
assumptions than DFMO. Numerical experiments are conducted to evaluate the performance
of DMulti-MADS over state-of-the-art algorithms on a set of 100 analytical MOO problems.
A DMS variant is implemented to see how the new features affect performance. This chapter
also defines data profiles involving the hypervolume indicator [279], based on the conclusions
of the previous survey [11]. The hypervolume indicator is intuitive and considers the distance
to the Pareto front. This is not the case with the purity metric [74]. Expected results are
a better efficiency compared to Nomad (BiMADS), and performance at least similar to other
state-of-the-art algorithms (NSGA-II, MOIF, DMS).

DMulti-MADS like DMS imposes the use of a feasible starting point. This condition is not
always available in a real engineering context. Similarly to SOO [16], it could be beneficial to
conceive multiobjective BBO methods which can violate constraints during the optimization
process, to converge faster later toward feasible solutions. The deterministic multiobjective
DFO literature is rather scarce on this topic. To the best of our knowledge, only the DFMO
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algorithm [180], which relies on a penalty-based strategy, has been proposed. BiMADS, which
uses MADS as its constrained SOO solver could also exploit general constraints. However,
the conception of BiMADS precedes the development of the progressive barrier approach for
SOO [16]. For this reason, the integration of the progressive barrier into BiMADS has never
been theoretically investigated.

Chapter 6, which corresponds to the last article [41], aims at closing this gap. It proposes
two new approaches to handle blackbox inequality constraints for multiobjective BBO prob-
lems. These two extensions of DMulti-MADS aggregate inequality constraints into a single
constraint violation function. The first is a two-phase approach. It searches from a feasi-
ble solution by minimizing the aggregation function from an infeasible point. It uses this
point for the optimization process detailed in Chapter 5. The second is an extension of the
progressive barrier approach to MOO denoted DMulti-MADS-PB. At each iteration, DMulti-
MADS-PB aims to improve a feasible and infeasible incumbent. The infeasible incumbent has
a constraint violation function value below a threshold, which gradually decreases along the
iterations. For both variants, convergence results are proved. Numerical experiments com-
pare these two extensions with the penalty-based approach proposed by [180] using analytical
benchmarks and three “real” engineering applications with other state-of-the-art solvers (Bi-
MADS, DFMO, NSGA-II). The objective is to show than the two variants outperform the
penalty-based approach and are at least as efficient as NSGA-II, DFMO or BiMADS.

The three articles are now detailed in the next three chapters.
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CHAPTER 4 ARTICLE 1: PERFORMANCE INDICATORS IN
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Did gyre and gimble in the wabe:
All mimsy were the borogoves,
And the mome raths outgrabe.

Lewis Caroll, Jabberwocky

Authors Charles Audet, Jean Bigeon, Dominique Cartier, Sébastien Le Digabel and Lu-
dovic Salomon
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Abstract In recent years, the development of new algorithms for multiobjective optimiza-
tion has considerably grown. A large number of performance indicators has been introduced
to measure the quality of Pareto front approximations produced by these algorithms. In this
work, we propose a review of a total of 63 performance indicators partitioned into four groups
according to their properties: cardinality, convergence, distribution and spread. Applications
of these indicators are presented as well.

Keywords multiobjective optimization, quality indicators, performance indicators.

4.1 Introduction

Since the eighties, a large number of methods has been developed to treat multiobjective
optimization problems (e.g [45, 65, 71, 83, 235]). Given that conflicting objectives are pro-
vided, the set of solutions, the Pareto set, is described as the set of best decision vectors
corresponding to the best trade-off points in the objective space. Knowledge of the Pareto
set enables the decision maker to visualize the consequences of his/her choices in terms of
performance for a criterion at the expense of one or other criteria, and to make appropriate
decisions.

Formally, a feasible vector x1 is said to (Pareto)-dominate another feasible vector x2 if x1 is at
least as good as x2 for all the objectives, and strictly better than x2 for at least one objective.
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The decision vectors in the feasible set that are not dominated by any other feasible vector
are called Pareto optimal. The set of non-dominated points in the feasible set is the set of
Pareto solutions, whose images (by the objective functions) constitute the Pareto front.

In single-objective minimization problems, the quality of a given solution is trivial to quantify:
the smaller the corresponding objective function value, the better. However, evaluating
the quality of an approximation of a Pareto set is non trivial. The question is important
for the comparison of algorithms, the definition of stopping criteria, or even the design of
multiobjective optimization methods. According to [276], a Pareto set approximation should
satisfy the following:

• The distance between the Pareto front and its representation in the objective space
should be minimized.

• A good (according to some metric) distribution of the points of the corresponding
approximated front in the objective space is desirable.

• The extent of the corresponding approximated front should be maximized, i.e., for each
objective, a wide range of values should be covered by the non-dominated points.

To answer this question, many metrics called performance indicators [204, 277] have been
introduced. Performance indicators can be considered as mappings that assign scores to
Pareto front approximations.

Surveys of performance indicators already exist but they focus only on some specific proper-
ties. In [65, chapter 7], the authors list some performance indicators to measure the quality of
a Pareto front approximation. In [204], an exhaustive survey is conducted on a vast number
of performance indicators which are grouped according to their properties. Mathematical
frameworks to evaluate performance indicators are proposed in [159, 280] and additional
measures and algorithms are listed in [110]. In [58], the authors review some performance
indicators and analyze their drawbacks. In [151], an empirical study focuses on the correla-
tions between different indicators with their computational complexity on concave and convex
Pareto fronts. Finally, the usage of indicators proposed by the multiobjective evolutionary
optimization community prior to 2013 is analyzed in [218].

Another survey [175] on the quality evaluation of solution sets was recently published. It
complements the present study by categorizing more performance indicators, but presents
them at a higher level of description. Most of the indicators in the present work are listed
in [175], but not all of them (e.g., the ones proposed in [74]). While [175] is mainly ori-
ented toward the evolutionary algorithms community, the present work addresses the whole
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operational research community, and also addresses some issues in more detail, such as com-
plexity computational costs, as well as data and performance profiles. The reader is invited
to consult their survey as a useful complement.

The present work is an attempt to propose a survey offering a panorama on all important
aspects of performance indicators contrary to the previous surveys, addressed to the whole
multiobjective optimization community. This work systematically analyzes 63 performance
indicators by partitioning them into these four categories: Cardinality, Convergence, Distri-
bution and spread, Convergence and distribution. The use of performance metrics targets
four cases: comparison of algorithms, embedding of performance indicators into multiobjec-
tive methods, suggestion of stopping criteria for multiobjective optimization and identifica-
tion of promising distribution-based performance indicators. Table 4.1 lists these indicators
and their category, classifies them based on their properties, and indicates the section in
which they are discussed. This work is organized as follows. Section 4.2 introduces the
notations and definitions related to multiobjective optimization and performance indicators.
Section 4.3 is the core of this work, and is devoted to the classification of the indicators
according to their specific properties. Finally, Section 4.4 presents some applications.

Table 4.1 A summary of performance indicators. The 9 rightmost columns indicate refer-
ences where the indicators are presented.

Category Performance indicators Section [58] [65] [159] [280] [204] [110] [151] [218] [175]

Cardinality 4.3.1 C-metric/Two sets Coverage [279] 4.3.1 3 3 3 3 3 3 3

Error ratio [249] 4.3.1 3 3 3 3 3 3

Generational non dominated vector generation [250] 4.3.1 3 3 3 3

Generational non dominated vector generation
ratio [250]

4.3.1 3 3 3

Mutual domination rate [187] 4.3.1 3

Nondominated vector additional [250] 4.3.1 3 3 3

Overall nondominated vector generation [249] 4.3.1 3 3 3 3 3 3 3 3

Overall nondominated vector generation ratio [249] 4.3.1 3 3 3 3 3 3 3

Ratio of non-dominated points by the reference
set [139]

4.3.1 3 3 3

Ratio of the reference points [139] 4.3.1 3 3 3

Convergence 4.3.2 Degree of Approximation [93] 4.3.2 3

ε-family [280] 4.3.2 3 3 3 3

Generational distance [249] 4.3.2 3 3 3 3 3 3 3 3

γ-metric [84] 4.3.2 3 3 3 3 3

Maximum Pareto front error [249] 4.3.2 3 3 3 3 3 3 3

M?
1 -metric [276] 4.3.2 3 3 3 3 3 3

Progression metric [249] 4.3.2 3

Seven points average distance [226] 4.3.2 3 3 3

Standard deviation from the Generational
distance [249]

4.3.2 3

Distribution Cluster [263] 4.3.3 3 3 3 3 3 3

and spread 4.3.3 ∆-index [84] 4.3.3 3 3 3 3 3

∆′-index [84] 4.3.3 3 3 3 3

∆? spread metric [272] 4.3.3 3 3 3 3

Distribution metric [271] 4.3.3
Diversity comparison indicator [172] 4.3.3 3

Diversity indicator [56] 4.3.3 3

Entropy metric [108] 4.3.3 3 3 3 3 3

Evenness [189] 4.3.3 3 3

Extension [188] 4.3.3 3 3

Γ-metric [74] 4.3.3 3
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Table 4.1 A summary of performance indicators. The 9 rightmost columns indicate refer-
ences where the indicators are presented.

Category Performance indicators Section [58] [65] [159] [280] [204] [110] [151] [218] [175]

Hole Relative Size [64] 4.3.3 3 3 3 3

Laumanns metric [166] 4.3.3 3

Modified Diversity indicator [8] 4.3.3 3

M?
2 -metric [276] 4.3.3 3 3 3 3 3 3

M?
3 -metric [276] 4.3.3 3 3 3 3 3 3 3 3

Number of distinct choices [263] 4.3.3 3 3 3 3 3

Outer diameter [277] 4.3.3 3 3

Overall Pareto Spread [263] 4.3.3 3 3 3 3 3 3

Riesz S-Energy [140] 4.3.3
Sigma diversity metric [195] 4.3.3 3 3

Spacing [226] 4.3.3 3 3 3 3 3 3 3 3

U-measure [169] 4.3.3 3 3

Uniform assessment metric [176] 4.3.3 3

Uniform distribution [239] 4.3.3 3 3 3

Uniformity [225] 4.3.3 3 3

Uniformity [188] 4.3.3 3 3

Convergence and Averaged Hausdorff distance [227] 4.3.4 3 3

distribution 4.3.4 Cone-based hypervolume [100] 4.3.4
Dominance move [174] 4.3.4 3

D-metric/Difference coverage of two sets [274] 4.3.4 3 3 3 3 3 3

DR-metric [78] 4.3.4 3 3 3 3 3

Hyperarea difference [263] 4.3.4 3 3 3 3 3

Hypervolume indicator (or S-metric) [276] 4.3.4 3 3 3 3 3 3 3 3 3

Hypervolume Sharpe-ratio indicator [265] 4.3.4
Inverted generational distance [62] 4.3.4 3 3 3 3

Inverted generation distance with non contributed
solutions detection [243]

4.3.4 3

G-metric [184] 4.3.4 3

Logarithmic hypervolume indicator [123] 4.3.4
Modified inverted generational distance [147] 4.3.4 3

Performance comparison indicator [173] 4.3.4 3

p, q-averaged distance [251] 4.3.4 3

R-metric [139] 4.3.4 3 3 3 3 3 3

4.2 Notations and definitions

To apprehend performance indicators, the first part of this section describes the main concepts
related to multiobjective optimization. The second part focuses on the theory of Pareto set
approximations and performance indicators.

4.2.1 Multiobjective optimization and Pareto dominance

We consider the following continuous multiobjective optimization problem:

min
x∈X

f(x) = (f1(x), f2(x), . . . , fm(x))>

where X ⊆ Rn 6= ∅ is called the feasible set, and fi : Rn → R are m objective functions
for i = 1, 2, . . . ,m, with m ≥ 2. The image of the feasible set Y = {f(x) ∈ Rm : x ∈ X}
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is called the (feasible) objective set. The sets Rn and Rm are respectively denoted as the
decision space and the objective space.

To compare functions objective values, the following cone order relation is adopted [98].

Definition 23 (Dominance relations between objective vectors [79]). Given two objective
vectors y1 and y2 in the objective space Rm, we write:

• y1 5 y2 (y1 weakly dominates y2) if and only if y1
i ≤ y2

i for all i = 1, 2, . . . ,m.

• y1 ≤ y2 (y1 dominates y2) if and only if y1 5 y2 and y1 6= y2.

• y1 < y2 (y1 strictly dominates y2) if and only if y1
i < y2

i for all i = 1, 2, . . . ,m.

In the case when neither y1 65 y2 nor y2 65 y1, y1 and y2 are said to be incomparable.

We can now present the concept of dominance relations for the decision vectors.

Definition 24 (Dominance relations for decision vectors [27]). Given two decision vectors
x1 and x2 in the feasible set X ⊆ Rn, we write:

• x1 � x2 (x1 weakly dominates x2) if and only if f(x1) 5 f(x2).

• x1 ≺ x2 (x1 dominates x2) if and only if f(x1) ≤ f(x2).

• x1 ≺≺ x2 (x1 strictly dominates x2) if and only if f(x1) < f(x2).

• x1 ∼ x2 (x1 and x2 are incomparable) if neither x1 weakly dominates x2 nor x2 weakly
dominates x1.

With these relations, we now precise the concept of solution in the multiobjective optimization
framework.

Definition 25 (Pareto optimality and Pareto solutions [98]). The vector x ∈ X is a Pareto-
optimal solution if there is no other vector in X that dominates it. The set of Pareto-optimal
solutions is called the Pareto set, denoted XP , and the image of the Pareto set is called the
Pareto front, denoted YP .

In single-objective optimization, the set of optimal solutions is often composed of a singleton.
In the multiobjective case, the Pareto front usually contains many elements (an infinity in
continuous optimization and an exponential number in discrete optimization [98]). For a
problem with m objectives, the Pareto front YP is at most of dimension m − 1. For three
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objectives, the Pareto front is a surface, a curve, a point, or combinations of surfaces, curves
and/or points, or the empty set. For two objectives, the Pareto front can be a curve or a
point or a combination of curves and/or points, or the empty set. Also, it is interesting to
define some bounds on this set.

Definition 26 (Ideal and nadir objective vectors). The ideal objective vector yI [98] is de-
fined as the objective vector whose components are the solutions of each single-objective
problem min

x∈X
fi(x), i = 1, 2, . . . ,m. The nadir objective vector yN is defined as the objective

vector whose components are the solutions of the single-objective problems max
x∈XP

fi(x), i =
1, 2, . . . ,m.

For computational reasons, the nadir objective vector is often approximated by ỹN for which
the coordinates are defined the following way: let xk,? be the solution of the single-objective
problem min

x∈X
fk(x) for k = 1, 2, . . . ,m. The ith coordinate of ỹN is given by:

ỹNi = max
k=1,2,...,m

fi(xk,?).

For a biobjective optimization problem, yN equals ỹN . It is not always the case when m ≥ 3.

An illustration is given in Figure 4.1 where the Pareto front is piecewise continuous. To
simplify the notation, continuous Pareto and piecewise continuous Pareto fronts will be re-
spectively designed as continuous and discontinuous Pareto fronts.

Remark. In a multiobjective optimization problem, objectives are not necessarily contradic-
tory, and the set of Pareto solutions may be a singleton. In this study, we assume that this
is not the case.

4.2.2 Approximation sets and performance indicators

Generally, whether in the context of continuous or discrete optimization, it is not possible to
find or enumerate all elements of the Pareto front. Hence to solve a multiobjective problem,
one must look for the best discrete representation of the Pareto front. Evaluating the quality
of a Pareto front approximation is not trivial. It itself involves several factors such as the
closeness to the Pareto front and the coverage in the objective space. Indicators should
capture these factors. To compare multiobjective optimization algorithms, the choice of a
good performance indicator is crucial [159]. Hansen and Jaszkiewicz [139] are the first to
introduce a mathematical framework to evaluate the performance of indicators according to
the comparison of methods. In their work, they define what can be considered as a good
measure to evaluate the quality of Pareto front. This work has been extended in [159,277,280].
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f1

f2

•
yI

•
yN = ỹN

Y

YP

Figure 4.1 Objective space, Pareto front YP , ideal objective vector yI and nadir objective
vector yN (inspired by [98]).

We next define the notion of an approximation.

Definition 27 (Pareto set approximation [277]). A set of decision vectors XN in the feasible
set is called a Pareto set approximation if no element of this set is weakly dominated by any
other. The image of such a set in the objective space is called a Pareto front approximation
denoted YN = f(XN) ⊆ Rm. The set of all Pareto set approximations is denoted by Ψ and
the set of all Pareto front approximations is denoted by Ω.

By definition, the Pareto front approximation corresponding to a given Pareto set approxi-
mation possesses only distinct elements, i.e., two different elements of the Pareto set approx-
imation cannot map to the same point in the objective space. Consequently, for all XN ∈ Ψ,
|XN | = |YN |.

Remark. We use the terms Pareto set approximation and Pareto front approximation in the
remaining of the paper.

Zitzler et al. [280] propose an extension of the relation order for objective vectors to Pareto
front approximations. They are summarized in Table 4.2. These relations orders can be
naturally extended to Pareto set approximations.
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Table 4.2 Comparison relations between Pareto front approximations [280].
Note that Y 1

N ≺≺ Y 2
N =⇒ Y 1

N ≺ Y 2
N =⇒ Y 1

N C Y
2
N =⇒ Y 1

N � Y 2
N .

Relation Objective vectors y1 and y2 Pareto front approximations Y 1
N and Y 2

N
Strictly dominates y1 < y2 y1 is better than y2 in all objectives Y 1

N ≺≺ Y 2
N Every y2 ∈ Y 2

N is strictly dominated by at
least one y1 ∈ Y 1

N
Dominates y1 ≤ y2 y1 is not worse than y2 in all objectives

and better in at least one objective
Y 1
N ≺ Y 2

N Every y2 ∈ Y 2
N is dominated by at least

one y1 ∈ Y 1
N

Weakly dominates y1 5 y2 y1 is not worse than y2 in all objectives Y 1
N � Y 2

N Every y2 ∈ Y 2
N is weakly dominated by at

least one y1 ∈ Y 1
N

Is better Y 1
N C Y

2
N Every y2 ∈ Y 2

N is weakly dominated by at
least one y1 ∈ Y 1

N and Y 1
N 6= Y 2

N
Is incomparable Neither y1 weakly dominates y2 nor y2

weakly dominates y1
Y 1
N ‖ Y 2

N Neither Y 1
N weakly dominates Y 2

N nor Y 1
N

weakly dominates Y 2
N

Measures are defined on Pareto front approximations. They are designed as quality indicators
or performance indicators [280].

Definition 28 (Performance indicator [280]). A k-ary performance indicator is a function
I : Ωk → R which assigns to each collection Y 1

N , Y
2
N , . . . , Y

k
N of k Pareto front approximations

a real value I(Y 1
N , Y

2
N , . . . , Y

k
N).

A performance indicator may consider several Pareto front approximations. The most com-
mon ones are mappings that take only one or two Pareto front approximations as arguments.
They are known respectively as unary and binary performance indicators. With such a qual-
ity indicator, one can define a relation order between different Pareto front approximations.
The interesting indicators are those that capture the Pareto dominance in the objective space.

Definition 29 (Monotonicity [277]). Assuming a greater indicator value is preferable, a
performance indicator I : Ω→ R is monotonic if and only if

for all Y 1
N , Y

2
N ∈ Ω, Y 1

N � Y 2
N =⇒ I(Y 1

N) ≥ I(Y 2
N).

Similarly, assuming a greater indicator value is preferable, a performance indicator I : Ω→
R is strictly monotonic if and only if

for all Y 1
N , Y

2
N ∈ Ω, Y 1

N C Y 2
N =⇒ I

(
Y 1
N

)
> I(Y 2

N).

Once the notion of performance indicator is defined, the definition of comparison method
can be introduced.

Definition 30 (Comparison method [280]). Let Y 1
N , Y

2
N ∈ Ω be two Pareto front approxi-

mations, I = (I1, I2, . . . , Ik) a combination of performance indicators and E : Rk × Rk →
{true, false} a Boolean function taking two vectors of size k as arguments. If all Ii for
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i = 1, 2, . . . , k are unary, the comparison method CI,E(Y 1
N , Y

2
N) is defined as a Boolean func-

tion by the following formula:

CI,E(Y 1
N , Y

2
N) = E

(
I(Y 1

N), I(Y 2
N)
)

where for all YN ∈ Ω, I(YN) = (I1(YN), I2(YN), . . . , Ik(YN)).

If every Ii for i = 1, 2, . . . , k is binary, the comparison method CI,E(Y 1
N , Y

2
N) is defined as a

Boolean function by
CI,E(Y 1

N , Y
2
N) = E

(
I(Y 1

N , Y
2
N), I(Y 2

N , Y
1
N)
)

where for all Y 1
N , Y

2
N ∈ Ω, I(Y 1

N , Y
2
N) = (I1(Y 1

N , Y
2
N), I2(Y 1

N , Y
2
N), . . . , Ik(Y 1

N , Y
2
N)).

If I is composed of a single indicator I0, we adopt the notation CI0,E (Y 1
N , Y

2
N) instead of

CI,E(Y 1
N , Y

2
N).

Informally, a comparison method is a true/false answer to: “Is a Pareto front approximation
better than another one according to the combination of performance indicators I?” A simple
comparison method is the following: given an unary performance indicator I and two Pareto
front approximations Y 1

N , Y
2
N ∈ Ω,

if the proposition (CI,E(Y 1
N , Y

2
N) = (I(Y 1

N) > I(Y 2
N))) is true, then Y 1

N is said to
be better than Y 2

N according to the indicator I, assuming a greater indicator
scalar value is preferable.

To compare several Pareto front approximations, one can be interested in defining comparison
methods that capture the Pareto dominance in the objective space, i.e. given two Pareto
front approximations Y 1

N , Y
2
N ∈ Ω provided by Algorithms 1 and 2,

Y 1
N weakly dominates/strictly dominates/is better than Y 2

N ⇒ (CI,E(Y 1
N , Y

2
N) is true).

More precisely, good comparison methods should always be compliant with the C- rela-
tion [280]. On a given problem, Algorithm 1 should not be considered as less performant
than Algorithm 2 if Y 1

N is better than Y 2
N . The following definition summarizes these points:

Definition 31 (Compatibility and completeness [280]). LetR be an arbitrary binary relation
on Pareto front approximations (typically, R ∈ {≺,≺≺,�,C}). The comparison method
CI,E is denoted as R-compatible if either for any Y 1

N , Y
2
N Pareto front approximations, we

have:
CI,E(Y 1

N , Y
2
N)⇒ Y 1

N R Y 2
N
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or for any Y 1
N , Y

2
N Pareto front approximations, we have:

CI,E(Y 1
N , Y

2
N)⇒ Y 2

N R Y 1
N .

The comparison method is denoted as R-complete if either for any Y 1
N , Y

2
N Pareto front

approximations, we have:
Y 1
N R Y 2

N ⇒ CI,E(Y 1
N , Y

2
N)

or for any Y 1
N , Y

2
N Pareto front approximations, we have:

Y 2
N R Y 1

N ⇒ CI,E(Y 1
N , Y

2
N).

For any Pareto front approximations Y 1
N , Y

2
N ∈ Ω, there are no combination I of unary per-

formance indicators such that Y 1
N C Y 2

N ⇔ CI,E(Y 1
N , Y

2
N) [280].

The mathematical properties of the performance indicators mentioned in this survey are
summarized in Tables 4.3, 4.4 and 4.5 in the appendices.

Remark. Throughout the rest of the paper, the following notations will be used. A discrete
representation of the Pareto front is denoted by YP ⊆ YP , called the Pareto optimal solution
set [204]. The Pareto front approximation at iteration k will be denoted by YN(k). In many
cases, the Pareto front is unknown. The user needs to specify a set of objective vectors in
the objective space, called a reference set and denoted by YR ⊆ Rm. Note that a Pareto
front (approximated or not) contains only feasible objective vectors, i.e. each element of a
Pareto front approximation belongs to Y . It implies that if an algorithm does not find any
feasible points then YN(k) is empty. For the following definitions to apply, we impose that
the iteration counter k is set to 0 at the iteration where a first feasible point has been found.

4.3 A classification of performance indicators

We classify performance indicators into the four following groups [151,204,218]:

• Cardinality indicators 4.3.1: Quantify the number of non-dominated points generated
by an algorithm.

• Convergence indicators 4.3.2: Quantify how close a set of non-dominated points is from
the Pareto front in the objective space.
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• Distribution and spread indicators 4.3.3: Quantify the distribution of a Pareto front
approximation. Coverage measures how well every region of the objective space is
represented. Spread focuses on the aspect that points should be far away from each
other (typically this drives them to the boundary). The difference is discussed in [102,
155]. Extent refers to a more precise property, i.e., if the Pareto front approximation
contains the extreme points of the Pareto front. Uniformity only considers how well
the points are equally spaced [110, 225]. Spread and uniformity properties constitute
the diversity of a Pareto front approximation [151].

• Convergence and distribution indicators 4.3.4: Capture both the properties of conver-
gence and distribution.

4.3.1 Cardinality indicators

These indicators focus on the number of non-dominated points generated by a given algo-
rithm. Some of them require the knowledge of the Pareto front.

Overall Non-dominated vector generation (ONV G) [249]

ONV G returns the number of elements in the Pareto front approximation generated by the
algorithm:

for all YN ∈ Ω, ONV G(YN) = |YN |.

This indicator is to be maximized. Nonetheless, this is not a pertinent measure. For example,
consider a Pareto front approximation Y 1

N composed of one million non-dominated points and
a Pareto front approximation Y 2

N with only one point, such as this point dominates all the
other points of Y 1

N . Y 1
N outperforms Y 2

N for this indicator but Y 2
N is clearly better than

Y 1
N [159].

Overall Non-dominated vector generation ratio (ONV GR) [249]

ONV GR represents the ratio of a number of elements in the Pareto front approximation
with respect to a Pareto optimal solution set. Formally,

ONV GR(YN ;YP ) = |YN |
|YP |

where |YP | is the cardinality of a Pareto optimal solution set and |YN | the number of points
of the Pareto front approximation. A higher value is considered to be better. Note that this
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indicator is just ONV G (4.3.1) divided by a scalar. Consequently, it suffers from the same
drawbacks as the previous indicator.

Generational indicators (GNV G, GNV GR and NV A) [249]

GNV G(YN ; k) (generational non-dominated vector generation) returns the number of non-
dominated points |YN(k)| generated at iteration k for a given iterative algorithm.
GNV GR(YN ;YP , k) (generational non-dominated vector generation ratio) is the ratio of non-
dominated points |YN(k)| generated at iteration k over the cardinality of YP where YP is a
set of points from the Pareto front. NV A(YN ; k) (non-dominated vector addition) represents
the variation of non-dominated points in the objective space generated between successive
iterations. It is given by:

NV A (YN ; k) = |YN(k)| − |YN(k − 1)| for k > 0.

These indicators can be used to follow the evolution of the generation of non-dominated points
along iterations of a given algorithm. It seems difficult to use them as a stopping criterion
as the number of non-dominated points can evolve drastically between two iterations.

Error ratio (ER) [249]

This indicator considers the number of non-dominated objective vectors which belong to the
Pareto front. It is given by the following formula:

E(YN) = 1
|YN |

∑
y∈YN

1Rm\YP (y)

where for all y ∈ Rm,

1Rm\YP (y) =

0 if y belongs to the Pareto front.
1 otherwise.

The lower the indicator value, the better it is considered.

The author of [249] does not mention the presence of rounding errors in their indicator. A
suggestion should be to consider an external accuracy parameter ε, quantifying the belonging
of an element of the Pareto front approximation to the Pareto front with ε near to correct
rounding errors.

This indicator requires the analytical expression of the Pareto front. Consequently, an user
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can only use it on analytical benchmark tests. Moreover, this indicator depends mostly on
the cardinality of the Pareto front approximation, which can misguide interpretations. [159]
illustrate this drawback with the following example. Consider two Pareto front approxima-
tions. The first one has 100 elements, one in the Pareto front and the others close to it.
Its error ratio is equal to 0.99. The second one has only two elements, one in the Pareto
front, the other far from it. Its ratio is equal to 0.5. It is obvious that the first Pareto
front approximation is better, even if its error ratio is bad. However, it is straightforward to
compute.

Similarly to the error ratio measure, [139] defines the C1R metric (called also ratio of the
reference points). Given a reference set YR (chosen by the user) in the objective space, it is
the ratio of the number of objectives vectors found in YR over the cardinality of the reference
set YR. A higher value is desirable.

C-metric or coverage of two sets (C) [274]

Let Y 1
N and Y 2

N be two Pareto front approximations. The C-metric captures the proportion of
points in a Pareto front approximation Y 2

N weakly dominated by the Pareto front approxima-
tion Y 1

N . This binary performance indicator maps the ordered pair (Y 1
N , Y

2
N) to the interval

[0, 1] and is defined by:

C(Y 1
N , Y

2
N) = |{y

2 ∈ Y 2
N , there exists y1 ∈ Y 1

N such that y1 5 y2}|
|Y 2
N |

.

If C(Y 1
N , Y

2
N) = 1, all the elements of Y 2

N are dominated by (or equal to) the elements of
Y 1
N . If C(Y 1

N , Y
2
N) = 0, no element of Y 2

N is weakly dominated by an element of Y 1
N . Both

orderings have to be computed, as C(Y 1
N , Y

2
N) is not always equal to 1− C(Y 2

N , Y
1
N).

Knowles et al. [159] point out the limits of this measure. If C(Y 1
N , Y

2
N) 6= 1 and if C(Y 2

N , Y
1
N) 6=

1, the two sets are incomparable. If the distribution of the sets or the cardinality is not the
same, it gives some unreliable results. Moreover, it does not give an indication of “how much”
a Pareto front approximation strictly dominates another.

Similarly to the C-metric, given a reference set YR in the objective space, the C2R metric
(Ratio of non-dominated points by the reference set) introduced in [139] is given by:

C2R(YN ;YR) = |{y ∈ YN : there does not exist r ∈ YR such that r ≤ y}|
|YN |

.

A higher C2R value is considered to be better. This indicator has the same drawbacks as the
C-metric.
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Mutual domination rate (MDR) [187]

The authors of [187] use this performance indicator in combination with a Kalman filter
to monitor the progress of evolutionary algorithms along iterations and thus providing a
stopping criterion. At a given iteration k, MDR captures how many non-dominated points
at iteration k − 1 are dominated by non-dominated points generated at iteration k and
reciprocally. Given two Pareto front approximations Y 1

N and Y 2
N , the function ∆(Y 1

N , Y
2
N)

returns the set of elements of Y 1
N that are dominated by at least one element of Y 2

N . Formally,

MDR(YN ; k) = |∆ (YN(k − 1), YN(k))|
|YN(k − 1)| − |∆ (YN(k), YN(k − 1))|

|YN(k)|

where YN(k) is the Pareto front approximation generated at iteration k. IfMDR(YN ; k) = 1,
the set of non-dominated points at iteration k totally dominates its predecessor at iteration
k− 1. If MDR(YN ; k) = 0, no significant progress has been observed. MDR(YN ; k) = −1 is
the worst case, as it results in a total loss of domination at the current iteration.

Cardinality indicators have a main drawback. They fail to quantify how well-distributed
the Pareto front approximation is, or to quantify how it converges during the course of an
algorithm.

4.3.2 Convergence indicators

Most of these measures require the knowledge of the Pareto Front to be evaluated. They
capture the degree of proximity between a Pareto front and its approximation.

Generational distance (GD) [249]

The GD indicator captures the average distance between each element of a Pareto front
approximation and its closest neighbor in a discrete representation of the Pareto front. This
indicator is given by the following formula:

GD(YN ;YP ) = 1
|YN |

 ∑
y1∈YN

min
y2∈YP

‖y1 − y2‖p
 1

p

where |YN | is the number of points in a Pareto front approximation and YP ⊆ YP a discrete
representation of the Pareto front. Generally, p = 2. In this case, it is similar to the M?

1 -
measure defined in [276]. When p = 1, it is equivalent to the γ-metric defined in [84]. For all
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these indicators, a lower value is considered to be better.

GD is straightforward to compute but very sensitive to the number of points found by a
given algorithm. In fact, if the algorithm identifies a single point in the Pareto front, the
generational distance will equal 0. An algorithm can then miss an entire portion of the Pareto
front without being penalized by this indicator. This measure favors algorithms returning a
few non-dominated points close to the Pareto front versus those giving a more distributed
representation of the Pareto front. As suggested by Colette and Siarry [65], it could be used
as a stopping criteria. A slight variation of the generational distance GD (YN(k), YN(k + 1))
between two successive iterations, as long as the algorithm is running, could mean a conver-
gence towards the Pareto front. It can be applied on continuous and discontinuous Pareto
front approximations.

Standard deviation from the generational distance (STDGD) [249]

It measures the deformation of the Pareto front approximation according to a discrete rep-
resentation of the Pareto front. It is given by the following formula:

STDGD(YN ;YP ) = 1
|YN |

∑
y1∈YN

(
min

y2∈YP
‖y1 − y2‖ −GD(YN ;YP )

)2

.

The same critics as with the generational distance apply.

Seven points average distance (SPAD) [226]

As it is not practical to obtain the Pareto front, an alternative is to use a reference set YR
in the objective space. The SPAD indicator defined for biobjective optimization problems
uses a reference set composed of seven points 1:

YR = {(0, 0)} ∪
{(

j

3 max
x∈X

f1(x), 0
)

1≤j≤3

}
∪


(

0, l3 max
x∈X

f2(x)
)

1≤l≤3

 .
SPAD captures the average distance of the elements of the reference set YR to their closest
neighbor in the Pareto front approximation. Formally,

SPAD(YN ;YR) = 1
|YR|

∑
r∈YR

min
y∈YN

‖y− r‖.

1The formula written in the article is wrong. It has been corrected.
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A lower value is considered to be better.

This indicator raises same critics as above. Note that the computational cost to solve the
single-objective problems maxx∈X fi(x) for i = 1, 2 is not negligible. Also, the points in the
reference set can fail to capture the whole form of the Pareto front. Its limitation to two
objectives is also an inconvenient. Nonetheless, it does not require the knowledge of Pareto
front.

Maximum Pareto front error (MPFE) [249]

This indicator, defined in [249], is another measure that evaluates the distance between a
discrete representation of the Pareto front and the Pareto front approximation obtained by
a given algorithm. It corresponds to the largest minimal distance between elements of the
Pareto front approximation and their closest neighbors belonging to the Pareto front. This
indicator is to be minimized. It is expressed with the following formula (generally, p = 2):

MPFE(YN ;YP ) = max
y1∈YN

(
min

y2∈YP

m∑
i=1

∣∣∣y1
i − y2

i

∣∣∣p) 1
p

.

When YN ⊆ YP , the value MPFE(YN ;YP ) is zero. The indicator is not relevant, as pointed
out in [159]. Consider two Pareto fronts approximations in which the first possesses only one
element in the Pareto front and the second has ten elements: nine of them belong to the
Pareto front and one is at some positive distance from it. As MPFE considers only largest
minimal distances, it favors the first Pareto front approximation. But the second is clearly
better. However, it is straightforward and cheap to compute and may be used on continuous
and discontinuous problems.

Progress metric (Pg) [249]

This indicator introduced in [34] measures the progression of the Pareto front approximation
given by an algorithm towards the Pareto front in function of the number of iterations for a
given objective function i. It is defined by:

Pg(YN ; i, k) = ln

√√√√√√ min
y∈YN (0)

yi

min
y∈YN (k)

yi
.



62

The author of [249] modifies this metric to take into account whole Pareto front approxima-
tions:

RPg(YN ;YP , k) = ln

√√√√GD(YN(0);YP )
GD(YN(k);YP )

where GD(YN(k);YP ) is the generational distance (4.3.2) of the Pareto front approximation
YN at iteration k.

Pg is not always defined, for example when values of min
y∈YN (0)

yi or min
y∈YN (k)

yi are negative or

null. If GD is positive2, RPg is well defined, but it requires the knowledge of the Pareto
front.

Pg, when it exists, provides an estimation of the speed of convergence of the associated
algorithm. RPg captures only the variations of the generational distance along the number
of iterations. The drawbacks of the generational distance do not apply in this case. Finally,
a bad measure of progression does not necessarily mean that an algorithm performs poorly.
Some methods less deeply explore the objective space, but reach the Pareto front after a
more important number of iterations.

ε-indicator (Iε) [280]

An objective vector y1 ∈ Rm is ε-dominating, for ε > 0, an objective vector y2 ∈ Rm if:

for all i = 1, 2, . . . ,m, y1
i ≤ ε y2

i .

The multiplicative ε-indicator for two Pareto front approximations Y 1
N and Y 2

N is defined as
the minimum factor one has to multiply a Pareto front approximation to make it weakly
dominate another one. It is given by

Iε×(Y 1
N , Y

2
N) = inf

ε>0

{
y2 ∈ Y 2

N : ∃y1 ∈ Y 1
N such that y1 is ε-dominating y2

}
.

It can be calculated the following way:

Iε×(Y 1
N , Y

2
N) = max

y2∈Y 2
N

min
y1∈Y 1

N

max
1≤i≤m

y1
i

y2
i

.

Given a discrete representation of the Pareto front YP , the unary metric Iε×(YN ;YP ) (with a
semicolon) is defined as Iε×(YP , YN).

Similarly, Zitzler et al. [280] define an additive ε-indicator based on the following additive
2This first part of the sentence has been modified according to the article.
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ε-domination. It is said that an objective vector y1 is additively ε-dominating an objective
vector y2 for ε > 0 if for all i = 1, 2, . . . ,m, y1

i ≤ ε+ y2
i . This indicator is then calculated by:

Iε+(Y 1
N , Y

2
N) = max

y2∈Y 2
N

min
y1∈Y 1

N

max
1≤i≤m

y1
i − y2

i .

A value inferior to 1 (respectively 0) for the binary multiplicative ε-indicator (respectively
additive ε-indicator) indicates that Y 1

N weakly dominates Y 2
N .

Binary additive and multiplicative ε-indicators possess desirable properties. They are Pareto
compliant and compatible [280], do not require the knowledge of the Pareto front, and rep-
resent natural extensions for approximation schemes in optimization theory. However, the
main problem with the ε-indicator is that its evaluation value involves only one particular
element in each Pareto front approximation, which can misguide quality comparison be-
tween different Pareto front approximations. Furthermore, the ε-indicator focuses only on
one objective when comparing different objective vectors, as noticed in [174]. For example,
consider y1 = (0, 1, 1) and y2 = (1, 0, 0) in a tri-objective maximization problem. Although
y1 performs better than y2 in two different objectives, the additive ε-indicators are identical:

Iε+
(
{y1}, {y2}

)
= Iε+

(
{y2}, {y1}

)
.

On the contrary, it is straightforward to compute. It can be used for continuous and discon-
tinuous approximations of Pareto fronts.

Degree of approximation (DOA) [93]

By taking into account the dominance relation in the objective space, DOA captures an
average degree of proximity from a discrete representation of the Pareto front to a Pareto
front approximation. A lower value is considered to be better. This indicator is proved to be
≺-complete (see Definition 31). It aims to compare algorithms when the Pareto fronts are
known.

Given y2 an objective vector belonging to YP , the set D(y2, YN) in the objective space is
defined as the subset of points belonging to the Pareto front approximation YN dominated
by the objective vector y2. The minimum Euclidean distance between y2 ∈ YP and D(y2, YN)
(which may be empty) is computed with

d(y2, YN) =


min

y1∈D(y2,YN )
‖y2 − y1‖ if |D(y2, YN)| > 0

∞ if |D(y2, YN)| = 0.
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Similarly, d+ (y2, YN \ D(y2, YN)) is defined for y2 ∈ YP by considering the set of points of
YN that do not belong to D(y2, YN) as:

d+
(
y2, YN \ D(y2, YN)

)
=


min

y1∈YN\D(y2,YN )
‖(y1 − y2)+‖ if |YN \ D(y2, YN)| > 0

∞ if |YN \ D(y2, YN)| = 0

where (y1 − y2)+ = (max(0,y1
i − y2

i ))i=1,2,...,m.

The DOA indicator is finally given by

DOA(YN ;YP ) = 1
|YP |

∑
y2∈YP

min
{
d(y2, YN), d+

(
y2, YN \ D(y2, YN)

)}
.

The value of DOA does not depend on the number of points of YP , i.e. if |YP | � |YN | [93].
In fact, this indicator partitions YN into subsets in which each element is dominated by a
point y ∈ YP . Its computational cost is quite low (in O(m |YN | × |YP |)). It can be used for
discontinuous and continuous approximations of Pareto fronts.

4.3.3 Distribution and spread indicators

According to [74], “the spread metrics try to measure the extents of the spread achieved
in a computed Pareto front approximation”. They are not really useful to evaluate the
convergence of an algorithm, or at comparing algorithms, but rather the distribution
of the points along Pareto front approximations. They only make sense when the Pareto set
is composed of several solutions corresponding to distinct objective vectors.

Spacing (SP ) [226]

The SP indicator captures the variation of the distance between elements of a Pareto front
approximation. A lower value is considered to be better. This indicator is computed with

SP (YN) =

√√√√√ 1
|YN | − 1

|YN |∑
j=1

(
d̄− d1 (yj, YN \ {yj})

)2

where d1 (yj, YN \ {yj}) = miny∈YN\{yj} ‖y − yj‖1 is the l1 distance of yj ∈ YN to the set
YN \ {yj} and d̄ is the mean of all d1(yj, YN \ {yj}) for j = 1, 2, . . . , |YN |.

This method cannot account for holes in the Pareto front approximation as it takes into
account the distance between an objective vector and its closest neighbor. The major issue
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with this indicator is it gives some limited information when points given by the algorithm
are clearly separated, but spread into multiple groups. On the contrary, it is straightforward
to compute.

Delta indexes (∆′, ∆ and ∆?) [84,272]

Deb et al. [84] introduce the ∆′ index for biobjective problems, which captures the variation of
distance between consecutive elements of the Pareto front approximation into the biobjective
space. Formally,

∆′(YN) =
|YN |−1∑
j=1

∣∣∣dc (yj, YN \ {yj})− d̄c
∣∣∣

|YN | − 1

where dc (yj, YN \ {yj}) is the Euclidean distance between consecutive elements of the Pareto
front approximation YN , and d̄c the mean of the dc (yj, YN \ {yj}) for j = 1, 2, . . . , |YN | − 1.
As this indicator considers Euclidean distances between consecutive objective vectors, it
can be misleading if the Pareto front approximation is piecewise continuous. The ∆′ index
does not generalize to more than 2 objectives, as it uses lexicographic order in the biobjective
objective space to compute the dc (yj, YN \ {yj}). In addition, it does not consider the extent
of the Pareto front approximation, i.e. distances between extreme points of the Pareto front.

The ∆ index is an indicator derived from the ∆′ index to take into account the extent of the
Pareto front approximation for biobjective problems:

∆(YN ;YP ) =

2∑
i=1

min
y∈YN

‖yi,? − y‖+
|YN |−1∑
j=1

∣∣∣dc (yj, YN \ {yj})− d̄c∣∣∣
2∑

k=1
min
y∈YN

‖yk,? − y‖+ (|YN | − 1) d̄c

where miny∈YN ‖yi,? − y‖ for i = 1, 2 are the Euclidean distances between the extreme
solutions of the Pareto front (i.e. yi,? = f(xi,?) ∈ YP where xi,? is solution to the i-th single-
objective problem) and the boundary solutions of the Pareto front approximation. The other
notations remain the same as before. This indicator requires the resolution of each single-
objective optimization problem. This indicator is extended to Pareto fronts with more than
two objectives by [272] to the generalized ∆?-index:

∆?(YN ;YP ) =

m∑
i=1

d2(yi,?, YN) +
|YN |∑
j=1

∣∣∣d2(yj, YN \ {yj})− d̄2
∣∣∣

m∑
i=1

d2(yi,?, YN) + |YN | d̄2
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where d2(yi,?, YN) = min
y∈YN

‖yi,? − y‖ with yi,? = F (xi,?) ∈ YP the extreme objective vector
corresponding to xi,? solution to the i-th single-objective problem and d2(yj, YN \ {yj}) =

min
y∈YN\{yj}

‖yj − y‖ the minimal Euclidean distance between two points of the Pareto front

approximation. d̄2 is the mean of all d2(yj, YN \ {yj}) for j = 1, 2, . . . , |YN |. As it considers
the shortest distances between elements of the Pareto front approximation, the ∆? index
suffers from the same drawbacks as the spacing metric. Moreover, it requires the knowledge
of the extreme solutions of the Pareto front.

For these three indicators, a lower value is considered to be better.

Two measures proposed by [74] (Γ and ∆)

Given a Pareto set approximationXN = {x1,x2, . . . ,xN} to which two additional ‚ “extreme”
points indexed by 0 and N + 1 are added, for each objective i for i = 1, 2, . . . ,m, elements
xj for j = 0, 1, . . . , N + 1 of the Pareto set approximation are sorted so that,

fi(x0) ≤ fi(x1) ≤ fi(x2) ≤ . . . ≤ fi(xN+1).

Custódio et al. [74] introduce the following metric Γ > 0 defined by:

Γ(YN) = max
i∈{1,2,...,m}

max
j∈{0,1,...,N}

δi,j

where δi,j = fi(xj+1) − fi(xj) and YN = f(XN). When considering a biobjective problem
(m = 2), the metric reduces to consider the maximum distance in the infinity norm between
two consecutive points in the Pareto front approximation as it is shown in Figure 4.2.

To take into account the extent of the Pareto front approximation, the authors of [74] define
the following indicator by

∆(YN) = max
i∈{1,2,...,m}

δi,0 + δi,N +∑N−1
j=1

∣∣∣δi,j − δi∣∣∣
δi,0 + δi,N + (N − 1)δi


where δi, for i = 1, 2, . . . ,m, is the mean of all distances δi,j for j = 1, 2 . . . , N − 1.

The Γ and ∆ indicators do not use the closest distance between two points in the objective
space. Consequently, they do not have the same drawbacks as the spacing metric. However,
the δi,j distance captures holes in the Pareto front if this one is piecewise discontinuous.
For these two indicators, a lower value is desirable. These two metrics are more adapted to
continuous Pareto front approximations.
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f1
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◦
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•

δN,2

δN−1,2

δ0,2

δ0,1 δN−1,1 δN,1

◦ Computed points

• Computed extreme points

Figure 4.2 Illustration of the Γ metric for a biobjective problem (inspired by [74]).

Remark. The authors of [74] suggest two ways to compute extreme points x0 and xN+1. For
benchmark tests, the Pareto front is known and extreme points correspond to the ones of
the Pareto set. Otherwise, the Γ and ∆ indicators use the extreme points of the Pareto set
approximation XN .

Hole relative size (HRS) [64]

This indicator identifies the largest hole in a Pareto front approximation for a biobjective
problem. It is given by

HRS(YN) = (1/d̄) max
j=1,2,...,|YN |−1

dj

where YN is a Pareto front approximation whose elements have been sorted in ascendant order
according to the first objective, dj = ‖yj−yj+1‖2 is the l2 distance between the two adjacent
objective vectors yj ∈ YN and yj+1 ∈ YN and d̄ the mean of all dj for j = 1, 2, . . . , |YN | − 1.

A lower indicator value is desirable. As it takes into account holes in the objective space,
this indicator is more adapted to continuous Pareto front approximations.
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Zitzler’s metrics M?
2 and M?

3 [276]

The M?
2 metric returns a value in the interval [0; |YN |] where YN is the Pareto front approx-

imation. It reflects the number of subsets of the Pareto front approximation YN of a certain
radius (σ). A higher value is considered to be better. Its expression is given by

M?
2 (YN ;σ) = 1

|YN | − 1
∑

y2∈YN
|{y1 ∈ YN , ‖y2 − y1‖ > σ}|.

If M?
2 (YN ;σ) = |YN |, it means that for each objective vector, no other objective vector

within the distance σ can be found. It is straightforward to compute but it can be difficult
to interpret.

The authors of [239] introduce the Uniform distribution indicator, based too on the search
of niches of size σ, given by

UD(YN ;σ) = 1
1 +Dnc(YN , σ)

where Dnc(YN , σ) is the standard deviation of the number of niches around all the points of
the Pareto front approximation YN defined as

Dnc(YN , σ) =

√√√√√√ 1
|YN | − 1

|YN |∑
j=1

nc(yj, σ)− 1
|YN |

|YN |∑
l=1

nc(yl, σ)
2

with nc(yj, σ) = |{y ∈ YN , ‖y− yj‖ < σ}| − 1. The UD indicator is to be minimized.

Finally, the M?
3 metric defined by Zitzler [276], considers the extent of the front:

M?
3 (YN) =

√√√√ m∑
i=1

max
j∈{1,2,...,|YN |}

max
y∈YN\{yj}

‖yj − y‖.

A higher value is considered to be better. The M?
3 metric only takes into account the

extremal points of the computed Pareto front approximation. Consequently, it is sufficient
for two different algorithms to have the same extremal points to be considered as equivalent
according to this metric. It can be used on continuous and discontinuous approximations of
Pareto fronts as it only gives information on the extent of the Pareto front.
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Uniformity (δ) [225]

This is the minimal distance between two points of the Pareto front approximation. This
measure is straightforward to compute and easy to understand. However, it does not re-
ally provide pertinent information on the distribution of the points along the Pareto front
approximation.

Evenness (ξ) [189]

The ξ-evenness indicator captures the uniformity quality of a Pareto front approximation
by integrating distance values between its elements into a coefficient of variation. More
specifically, two scalar values are associated to each element y ∈ YN of the Pareto front
approximation. dl(y, YN \ {y}) is the minimum Euclidean distance between objective vector
y and its closest neighbor in the objective space. du(y, YN \ {y}) is the maximal Euclidean
distance between an element y ∈ YN and another element of YN such that no other point of
YN is within the (hyper)sphere of diameter du(y, YN \ {y}). ξ is then defined as

ξ(YN) = σD

D̂

where σD and D̂ are respectively the standard deviation and the mean of the set of minimum
distances dl(y, YN \ {y}) and maximum diameters du(y, YN \ {y}) for each element y of YN .
The closest ξ is to 0, the better the uniformity is.

It can be considered as a coefficient of variation. It is straightforward to compute. In the
case of continuous Pareto front, it can account for holes in the Pareto front approximation.

Reference [128] also defines the evenness as

E(YN) =
max

y1∈YN
min

y2∈YN\{y1}
‖y1 − y2‖

min
y1∈YN

min
y2∈YN\{y1}

‖y1 − y2‖
.

The lower the value, the better the distribution with a lower bound E(YN) = 1.

Binary uniformity (SPl) [188]

Contrary to others indicators, this indicator aims to compare the uniformity of two Pareto
front approximations. This indicator is inspired by the wavelet theory.

Let Y 1
N and Y 2

N be two Pareto front approximations. The algorithm is decomposed in several
steps:
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Set l = 1.

1. For each element y1 ∈ Y 1
N and y2 ∈ Y 2

N , compute the respective distances to their
closest neighbor d2

l (y1, Y 1
N \ {y1}) and d2

l (y2, Y 2
N \ {y2}) given by

d2
l (y, YN \ {y}) = min

yv∈YN\{y}
‖y− yv‖.

2. For both sets, compute the average distances d2
l (Y 1

N) and d2
l (Y 2

N) between neighbor
points given by

d2
l (YN) = 1

|YN |
∑

y∈YN
d2
l (y, YN \ {y}).

3. For each set, compute the spacing measures SP l(Y 1
N) and SP l(Y 2

N) given by

SP l(YN) =

√√√√√ ∑
y∈YN

(
1− ψ

(
d2
l (y, YN \ {y}), d2

l (YN)
))2

|YN | − 1

with ψ(a, b) =


a
b

if a > b

b
a

otherwise.

4. If SP l(Y 1
N) < SP l(Y 2

N), then Y 1
N has better uniformity than Y 2

N and reciprocally. If
SP l(Y 1

N) = SP l(Y 2
N) and l ≥ min (|Y 1

N | − 1, |Y 2
N | − 1) then Y 1

N has the same uniformity
as Y 2

N . Else if SP l(Y 1
N) = SP l(Y 2

N) and l < min (|Y 1
N | − 1, |Y 2

N | − 1), then increment l by
1, and recompute the previous steps by removing the smallest distance d2

l (y1, Y 1
N \{y1})

and d2
l (y2, Y 2

N \ {y2}) until the end.

The value of the binary uniformity indicator is difficult to interpret but can be computed
easily. It does not take into account the extreme points of the Pareto front.

U-measure (U) [169]

This indicator measures the uniformity of a Pareto front approximation based on distance
between its elements according to each objective. For each objective vector in the Pareto
front approximation YN , Euclidean distance to their nearest neighbors with respect to each
objective axis is determined, as well as distances of reference objectives (objective vectors
corresponding to solutions of the single-objective optimization problems or determined by
the user) to their nearest neighbors. Let χ be the set of distances between nearest neighbors
and χ̄0 the set of distances between reference objective vectors and their closest neighbor.
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Small variability in the set χ would reflect uniform distribution, and values close to 0 for the
set χ̄0 would reflect good coverage properties. For ease of computation, each distance in χ̄0

is summed up with the average value of the distances in χ, resulting in the new set χ̄. The
U -measure captures the discrepancy among the scalar elements of the set χ̄ and is given by

U(YN) = 1
|χ̄|

∑
d′∈χ̄

∣∣∣∣∣ d′

dideal
− 1

∣∣∣∣∣
where dideal = 1

|χ̄|
∑
d′∈χ̄

d′.

d′

dideal
− 1 can be interpreted as the percentage deviation from the ideal distance if it is

multiplied by 100%. The U-measure is then the mean of this ratio along all elements of the
set χ̄. A small U indicator value can be interpreted as a better uniformity.

It attempts to quantify the uniformity of found points along the Pareto front approximation.

The same problems as for the previous indicators can be raised. Especially, the formula
works only if there are several points. Moreover, this indicator can take time to compute
when computing the minimal distances. As for the spacing metric (4.3.3), this last one does
not account for holes in the Pareto front approximation as it takes only into account closest
neighbors. It is then more pertinent on continuous Pareto front approximations.

Overall Pareto spread (OS) [263]

This indicator only captures the extent of the front covered by the Pareto front approxima-
tion. The larger the better it is. It is given by

OS(YN) =
m∏
i=1

∣∣∣∣max
y∈YN

yi − min
y∈YN

yi
∣∣∣∣∣∣∣ỹiI − ỹiM

∣∣∣
where ỹM is an approximation of the maximum objective vector (objective vector composed
of the maxima of each single-objective optimization problem assuming they exist) or the
maximum objective vector and ỹI an approximation of the ideal objective vector or the ideal
objective vector.

This is an indicator for which the values are among the values 0 and 1. The maximum
and ideal objective vectors need to be computed for more precise results, resulting in 2 m
single-objective problems to solve. The indicator does not take into account the distribution
of points along the Pareto front approximation.
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Outer diameter (IOD) [277]

Analogously to the overall Pareto spread metric, the outer diameter indicator returns the
maximum distance along all objective dimensions pondered by weights w ∈ Rm+ chosen by
the user. A higher indicator value is desirable. It is given by:

IOD(YN) = max
1≤i≤m

wi

(
max
y∈YN

yi − min
y∈YN

yi
)
.

The weights can be used to impose an order on criteria importance relatively to the modeling
of a specific problem but it is not mandatory. Although this indicator is cheap to compute,
it only takes into account the extent of the Pareto front approximation. By the way, it can
result in an information loss of the extent of the Pareto front approximation, as it focuses
only on the largest distance along a single dimension.

Distribution metric (DM) [271]

This indicator introduced by [271] aims to correct several drawbacks of the spacing mea-
sure [226] and add some information about the extent of the Pareto front. As it is mentioned,
the “spacing metric does not adopt normalized distance, which may result in a bias conclu-
sion, especially when the orders of magnitudes of the objectives differ considerably”. Moreover,
it cannot account for holes in the Pareto front, as it considers only closest neighbors. An
example pointing out the drawbacks of the spacing metric (4.3.3) is given in Figure 4.3.

f1

f2

•
•

•

•
•

Considered distances
Ignored distances

Figure 4.3 An example showing the weaknesses of the spacing metric (inspired by [271]): the
spacing metric ignores the gap drawn in dashed lines

.
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The DM indicator is given by

DM(YN) = 1
|YN |

m∑
i=1

(
σi
µi

)
∣∣∣yIi − yNi

∣∣∣
max
y∈YN

yi − min
y∈YN

yi



with σi = 1
|YN | − 2

|YN |−1∑
j=1

(
dji − di

)2
, µi = 1

|YN | − 1

|YN |−1∑
j=1

dji where |YN | is the number of non-

dominated objective vectors, yI and yN are respectively the ideal and nadir objective vectors.
dji is the distance of the j-th interval between two adjacent solutions corresponding to the
i-th objective, σi and µi are the standard deviation and mean of the distances relative to the
i-th objective, and σi

µi
is the coefficient of variance relative to the i-th objective.

A smaller DM indicates better distributed solutions. It takes into account the extent and
distribution of the points along the Pareto front approximation. However, it requires the
nadir and ideal objective vectors, which may be computationally expensive. As it accounts
for holes, this indicator is more relevant for continuous Pareto front approximations.

Uniform assessment metric (ID) [176]

The ID indicator measures the variation of distances between elements of a Pareto front
approximation based on the construction of a minimum spanning tree. The indicator value
is comprised between 0 and 1. The closest to 1, the better. Let YN be a Pareto front
approximation such that |YN | > 2. The computation of this indicator is decomposed into
several steps:

1. A minimum spanning tree TG covering all the elements of YN based on the Euclidean
distance in the objective space is built.

2. Each element y ∈ YN has at least one neighbor in the spanning set, i.e a vertex adjacent
to y. Let NTG(y) be the set of adjacent vertices to y in the spanning tree TG.
For each yv ∈ NTG(y), we define a “neighborhood” [176]

Nyv(y) =
{
y2 ∈ YN , ‖y2 − y‖ ≤ ‖yv − y‖

}
which corresponds to the subset of YN contained in the closed ball of radius ‖yv − y‖
and centered in y. Note that {y,yv} ∈ Nyv(y). The neighborhoods that contain only
two elements, i.e. y and yv, are not considered.
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3. For all y ∈ YN and yv ∈ NTG(y), a distribution relation is defined by

ψ(y,yv) =


0 if |Nyv(y)| = 2,∏
y2∈Nyv (y)\{y}

‖y− y2‖
‖y− yv‖

otherwise.

4. There are 2|YN | − 2 neighborhoods. Among them, Nr corresponds to the number of
neighborhoods that only contain two elements. The uniform assessment metric is then
defined by

ID(YN) = 1
2|YN | −Nr − 2

∑
y∈YN

∑
yv∈NTG (y)

ψ(y,yv)

which corresponds to the mean of the distribution relation for neighborhoods containing
more than two elements.

This indicator does not require external parameters. Due to the definition of the neighbor-
hood, it takes into account holes in the Pareto front. Indeed, contrary to the spacing metric,
it does not consider only closest distances between objective vectors.

Extension measure (EX) [188]

This indicator aims to measure the extent of the Pareto front approximation. It is given by

EX(YN ;YP ) = 1
m

√√√√ m∑
i=1

d2(yi,?, YN)2

where d2(yi,?, YN) is the minimal Euclidean distance between the objective vector correspond-
ing to the solution to the ith single-objective problem and the set of non-dominated points
obtained by a given algorithm in the objective space.

This indicator requires the resolution of m single-objective optimization problems. It pe-
nalizes well-distributed Pareto front approximations neglecting the extreme values. It is
straightforward to compute.

Diversity indicator based on reference vectors (DIR) [56]

As its name indicates, this indicator uses reference vectors in the objective space to measure
the diversity of a Pareto front approximation. The lower this indicator is, the better. Let
YR = {r1, r2, . . . , r|YR|} be a set of uniformly generated reference vectors in Rm. For each
element of a Pareto front approximation y ∈ YN , the closeness between y and the reference
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vector rj, for j = 1, 2, . . . , |YR|, is given by

angle(rj,y) = arccos (rj)T (y− yI)
‖rj‖‖y− yI‖

.

If a reference vector rj is the closest to an element y of YN relatively to the closeness metric,
it is said that y “covers the reference vector rj” [56]. The coverage vector c of size |YN |
represents for each y ∈ YN the number of reference vectors that y covers. DIR is the
normalized standard deviation of the coverage vector c, defined as

DIR(YN ;YR) =

√√√√√ 1
|YN |

|YN |∑
i=1

(ci − c̄)2 ÷
(
|YR|
|YN |

√
|YN | − 1

)

where c̄ is the mean of all ci for i = 1, 2, . . . , |YN |. It is intuitive to understand and cheap
to compute (in O (m |YN | × |YR|) [56]). It captures both the distribution and the spreading.
Nonetheless, it requires the knowledge of the ideal point. The number of reference vectors to
choose (at least greater than |YN | to be more pertinent) equally plays an important role. It
can be biased when the Pareto front is piecewise continuous.

The Riesz s-energy indicator (Es) [105,140]

The Riesz s-energy indicator [140] aims at quantifying a good distribution of points in d-
dimensional manifolds. Given a Pareto front approximation YN , this indicator is defined
as:

Es(YN) =
∑

y1∈YN

∑
y2∈YN\{y1}

1
‖y1 − y2‖s

where s > 0 is a fixed external parameter which controls the degree of uniformity of the
elements of YN .

An uniformly distributed Pareto front approximation must have a minimal Riesz s-energy
value. In [141], it is proved that configurations of points in a rectifiable d−dimensional
manifold that have minimum Riesz s-energy possess asymptotically uniformly distribution
properties for s ≥ d. Moreover, s does not depend on the shape of the manifold [141].

Use of the Riesz s-energy indicator to assess generation of an uniformly distributed Pareto
front approximation can be found in [105].
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Laumanns metric (IL) [165,166]

The Laumanns metric measures the normalized volume of the objective space dominated
by a Pareto front approximation and bounded above by an approximated nadir objective
vector. Given a vector y in the objective space Rm , let D(y) = {y2 ∈ Rm, y ≤ y2} be the
set of objective vectors dominated by y. Given a Pareto front approximation YN , D(YN) is
designed as the dominated space by the set YN and is defined as

D(YN) =
⋃

y∈YN
D(y).

Let yj,? be the j-th outer point of the Pareto front approximation YN defined by: for all
i = 1, 2, . . . ,m,

(yj,?i ) =


max
y∈YN

yi if i 6= j,

min
y∈YN

yi otherwise.

We introduce the hypercubeH(YN) =
{

y ∈ Rm : y = yI +
m∑
i=1

ai(yi,? − yI), ai ∈ [0; 1]
}
where

yI is the ideal point. The Laumanns metric is defined as the ratio of the Lebesgue measure
of the intersection of D and H, with the Lebesgue measure of H:

IL(YN) = λm(D(YN) ∩H(YN)))
λm(H(YN))

where λm(A) is the m-dimensional Lebesgue measure of the bounded set A ⊂ Rm. The
metric returns a value between 0 and 1. The higher the better. An illustration is given in
Figure 4.4.

f1

f2

1

1

•
y1,?

•

•
• y2,?

H(YN ) ∩ D(YN )

Figure 4.4 The intersection of H(YN) and D(YN) for a biobjective minimization problem.

This indicator is biased in favor of convex and extended fronts. Moreover, its computational



77

complexity in O(|YN |
m
3 poly log |YN |) [57] explodes when the objective space dimension in-

creases: in fact, it is similar to the hypervolume indicator (4.3.4) when the reference point is
chosen such as ỹN .

Similarly, the convex hull surface indicator [270] measures the volume of the convex hull
formed by the Pareto front approximation and a reference point r ∈ Rm dominated by all
the elements of the Pareto front approximation. The greater the value of this indicator is,
the better. Computational cost increases exponentially with the number of objectives. As it
only considers points on the boundaries of the convex hull, it is more pertinent to use it on
convex Pareto front approximations.

Other distribution indicators

Some other indicators are mentioned in this subsection. They require external parameters
chosen by the user that can be crucial to their performance. The reader can consult the
provided references.

1. Entropy measure [108]: For each element of YN , an influential function (a Gaussian
function centered in y for y ∈ YN) is defined, which enables the creation of a density
function considered as the sum of influential functions for each element y ∈ YN . Peaks
and valleys in the objective space are considered as places where information can be
measured. A “good” Pareto front approximation should have an uniform density func-
tion in the objective space. The subset of the objective space bounded by the nadir and
ideal objective vectors is firstly normalized, then divided into boxes, whose the number
is decided by the user. Based on this discretization of the objective space, the indicator
is computed using the values of the density function for each center of each box and
the Shannon formula of entropy [231]. The higher the value, the better.

2. Cluster CLµ and Number of Distinct Choices NDCµ [263]: Given two respective good
(ideal objective vector) and bad (maximum objective vector assuming it exists) objec-
tive vectors ỹI and ỹM , the objective space (preliminary normalized) is divided into
hyperboxes of size µ (∈ (0; 1]). NDCµ is defined as the number of hyperboxes con-
taining elements of the Pareto front approximation. For this indicator, a higher value
is desirable. CLµ is then defined as CLµ(YN) = |YN |

NDCµ(YN ) . A higher value of the CLUµ
indicator is the consequence of a more clustered distribution of the elements of a Pareto
front approximation and so a lower value is considered to be better.

3. Sigma diversity metrics σ and σ [195]: The objective space is divided into zones delim-
ited by uniformly distributed reference lines starting from the origin whose the number
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equals |YN |. The indicator value is the ratio of the number of objective vectors that are
sufficiently close to the reference lines according to the Euclidean norm with a threshold
d chosen by the user, over the total number of reference lines. The higher the value,
the better.

4. Diversity comparison indicator DCI [172]: It is a k-ary spread indicator. The zone of
interest in the objective space delimited by lower and upper bounds is divided into a
number of hyperboxes. For each Pareto front approximation, a contribution coefficient
is computed relatively to the hyperboxes where non-dominated points are found. For
each Pareto front approximation, DCI returns the mean of contribution coefficients
relatively to all hyperboxes of interest. A variant is the M–DI indicator [8] (Mod-
ified Diversity Indicator) which considers a distributed reference set in the objective
space instead of the set of non-dominated points from the union of the k Pareto front
approximations.

A drawback of these indicators is the choice of external parameters (d threshold, µ size,
number of hyperboxes) that can wrongly favor Pareto front approximations over others. σ
and CLµ can be considered as cardinal indicators too and therefore suffer from the same
drawbacks as the above cardinal indicators.

4.3.4 Convergence and distribution indicators

These indicators are of two types: some enable to compare several Pareto approximations in
term of distribution and Pareto dominance. The others give a value that capture distribution,
spreading and convergence at the same time.

Inverted generational distance (IGD) [62]

IGD has a quite similar form than GD. It captures the average minimal distance from an
element of a discrete representation of the Pareto front to the closest point in the Pareto
front approximation. It is given by

IGD(YN ;YP ) = 1
|YP |

 ∑
y2∈YP

(
min

y1∈YN
‖y1 − y2‖

)p 1
p

.

Generally, p = 2. A lower value is considered to be better. Pros and cons are the same as
for the GD indicator (4.3.2).
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When an element of the Pareto front approximation YN does not belong to the set of nearest
points to the Pareto optimal set YP , it is ignored by the IGD indicator. The authors of [243]
propose a variant of the IGD indicator, named IGD–NS, which takes into account these
non-contributed elements in an Euclidean distance-based indicator. Let

YNC =
{

y ∈ YN : ∀y2 ∈ YP , ‖y− y2‖ 6= min
y1∈YN

‖y1 − y2‖
}

be the set of non-contributed elements of YN . The IGD–NS indicator is defined by

IGD–NS(YN ;YP ) =
∑

y2∈YP
min

y1∈YN
‖y1 − y2‖+

∑
y2∈YP

min
y1∈YNC

‖y1 − y2‖.

A lower indicator value is desirable.

Averaged Hausdorff distance (∆p) [227]

In [227], the authors combine GD (4.3.2) and IGD (4.3.4) into a new indicator, called the
averaged Hausdorff distance ∆p defined by

∆p(YN ;YP ) = max {GDp(YN ;YP ), IGDp(YN ;YP )}

where GDp and IGDp are slightly modified versions of the GD and IGD indicators defined
as

GDp(YN ;YP ) =
 1
|YN |

∑
y1∈YN

(
min

y2∈YP
‖y1 − y2‖

)p 1
p

and

IGDp (YN ;YP ) =
 1
|YP |

∑
y2∈YP

(
min

y1∈YN
‖y1 − y2‖

)p 1
p

.

This indicator is to be minimized. It is straightforward to compute and to understand. On
the contrary, it requires the knowledge of the Pareto front. The authors of [227] introduce
this new indicator to correct the drawbacks of the GD and IGD indicators. It can be used
to compare continuous and discontinuous approximations of Pareto fronts.

In [251], the authors propose an extension of the averaged Hausdorff distance indicator, called
the p, q-averaged distance ∆p,q for p, q ∈ R \ {0}. Given two finite sets of objective vectors
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Y 1 ⊂ Rm, Y 2 ⊂ Rm, the generational distance GDp,q for p, q ∈ R \ {0} is defined as

GDp,q(Y 1, Y 2) =

 1
|Y 1|

∑
y1∈Y 1

 1
|Y 2|

∑
y2∈Y 2

‖y1 − y2‖q


p
q


1
p

.

When p < 0 or q < 0, GDp,q exists if and only if Y 1⋂Y 2 = ∅. Given a Pareto front
approximation YN and a discrete representation of the Pareto front YP ⊆ Yp, the p, q-averaged
distance indicator is defined as

∆p,q(YN ;YP ) = max (GDp,q (YN , YP \ YN) , GDp,q (YP , YN \ YP )) .

As the averaged Hausdorff distance, this indicator is not Pareto compliant [251]. However,
once that the values of p and q are selected, it is straightforward to compute and to under-
stand.

Modified inverted generational distance (IGD+) [147]

Although the GD (4.3.2) and IGD (4.3.4) indicators are commonly used due to their low
computational cost [218], one of their major drawbacks is that they are non monotone [147].
The ∆p indicator (4.3.4) has the same problem [227].

Also, the authors of [147] propose a slightly different version of the IGD indicator named
IGD+ integrating the dominance relation computable in O(m |YN | × |YP |) where YP is a
fixed Pareto optimal solution set. It is weakly Pareto compliant, i.e. :

for all Y 1
N , Y

2
N ∈ Ω such that Y 1

N � Y 2
N , IGD

+(Y 1
N ;YP ) ≤ IGD+(Y 2

N ;YP ).

The IGD+ indicator is defined by

IGD+(YN ;YP ) = 1
|YP |

∑
y2∈YP

min
y1∈YN

‖(y1 − y2)+‖

where (y1 − y2)+ = (max(0,y1
i − y2

i ))i=1,2,...,m.

As opposed to the IGD indicator, IGD+ takes into account the dominance relation between
an element of YP and an element of YN when computing their Euclidean distance. A reference
set YR can also be used instead of YP : the authors of [146] analyze the choice of such reference
sets. This indicator can be used with discontinuous and continuous Pareto fronts.
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Similarly to IGD+, given a reference set YR ⊂ Rm, Dist1R [78] is given by

Dist1R(YN ;YR) = 1
|YR|

∑
r∈YR

min
y∈YN

max
i=1,2,...,m

{0, wi(yi − ri)}

with wi a relative weight assigned to objective i. For all these indicators, a lower value is
desirable.

R1 and R2 indicators [139]

Let Y 1
N and Y 2

N be two Pareto front approximations, U a set of utility functions u : Rm → R
mapping each point in the objective space into a measure of utility, and p a probability
distribution on the set U . To each u ∈ U are associated u?(Y 1

N) = maxy∈Y 1
N
u(y) and

u?(Y 2
N) = maxy∈Y 2

N
u(y). The two indicators measure to which extent Y 1

N is better than Y 2
N

over the set of utility functions U . The R1 indicator is given by

R1(Y 1
N , Y

2
N ;U , p) =

∫
u∈U

C(Y 1
N , Y

2
N , u) p(u) du

where

C(Y 1
N , Y

2
N , u) =


1 if u?(Y 1

N) > u?(Y 2
N),

1/2 if u?(Y 1
N) = u?(Y 2

N),

0 if u?(Y 1
N) < u?(Y 2

N).

The R2 indicator defined as

R2(Y 1
N , Y

2
N ;U , p) = E

(
u?(Y 1

N)
)
− E

(
u?(Y 2

N)
)

=
∫
u∈U

(
u?(Y 1

N)− u?(Y 2
N)
)
p(u)du.

is the expected difference in the utility of a Pareto front approximation Y 1
N with another

one Y 2
N . In practice, these two indicators use a discrete and finite set U of utility functions

associated with an uniform distribution over U [277]. The two indicators can then be rewritten
as

R1(Y 1
N , Y

2
N ;U) = 1

|U|
∑
u∈U

C(Y 1
N , Y

2
N , u) and R2(Y 1

N , Y
2
N ;U) = 1

|U|
∑
u∈U

u?
(
Y 1
N

)
− u?(Y 2

N).

If R2(Y 1
N , Y

2
N ;U) > 0, then Y 1

N is considered as better than Y 2
N . Else if R2(Y 1

N , Y
2
N ;U) ≥ 0,

Y 1
N is considered as not worse than Y 2

N .

The authors of [139] recommend to use the utility set U∞ = (uw)w∈W of weighted Tchebycheff
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utility functions, with
uw(y) = − max

i=1,2,...,m
(wi |yi − ri|)

for y ∈ Rm where r is a reference objective vector chosen so that any objective vector of the
feasible objective set does not dominate r (or as an approximation of the ideal point [51,52,
277]) and w ∈ W a weight vector such that for all w ∈ W and i = 1, 2, . . . ,m,

wi ≥ 0 and
m∑
i=1

wi = 1.

Zitzler et al. [277] suggest using the set of augmented weighted Tchebycheff utility functions
defined by

uw(y) = −
(

max
i=1,2,...,m

wi |yi − ri|+ ρ
m∑
i=1
|(yi − ri|

)

where ρ is a sufficiently small positive real number.

As given in [51], for m = 2 objectives, W can be chosen such that:

1. W =
{

(0, 1) ,
(

1
k−1 , 1− 1

k−1

)
,
(

2
k−1 , 1− 2

k−1

)
, . . . , (1, 0)

}
is a set of k weights uniformly

distributed in the space [0; 1]2.

2. W =
{(

1
1+tanϕ ,

tanϕ
1+tanϕ

)
, ϕ ∈ Φk

}
where Φk =

{
0, π

2(k−1) ,
2π

2(k−1) , . . . ,
π
2

}
is a set of weights

uniformly distributed over the trigonometric circle.

The IR2 indicator [51] is an unary indicator derived from R2 defined as (in the case of weighted
Tchebycheff utility functions)

IR2(YN ;W ) = 1
|W |

∑
w∈W

min
y∈YN

{
max

i=1,2,...,m
(wi |yi − ri|)

}
.

The lower this index, the better.

As Knowles et al. [159] remark, “the application of R2 depends up on the assumption that
it is meaningful to add the values of different utility functions from the set U . This simply
means that each utility function in U must be appropriately scaled with respect to the others
and its relative importance”. R-indicators are only monotonic, i.e. I(Y 1

N) ≥ I(Y 2
N) in case

Y 1
N weakly dominates Y 2

N . They do not require important computations as the number of
objectives increases. The reference point has to be chosen carefully. Studies concerning the
properties of the R2 indicator can be found in [51,52,254].
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G-metric [184]

This indicator enables to compare k Pareto front approximations based on two criteria: the
repartition of their elements and the level of domination in the objective space. It is compliant
with the weak dominance relation as defined above. Its computation decomposes into several
steps: given k Pareto front approximations (Y 1

N , Y
2
N , . . . , Y

k
N):

1. Scale the values of the objective vectors corresponding to the images of the decision
vectors in the k sets, i.e. extract the non-dominated objective vectors from the union
k⋃
j=1

Y j
N , then normalize all objective vectors according to the extreme values of the

objective vectors of this set.

2. Group the Pareto front approximations according to their degree of dominance. In level
L1 will be put all Pareto front approximations which are not dominated by the union
of the k Pareto front approximations; remove them from the considered Pareto front
approximations; then in L2, will be put the Pareto front approximations which are not
dominated by the union of the remaining Pareto front approximations, and so on.

3. For each level of dominance Lq for q = 1, 2, . . . , Q, where Q is the number of levels,
dominated points belonging in the set

⋃
YN∈Lq

YN are removed. Each objective vector in

each set of the same level possesses a zone of influence. It is a ball of radius ρ centered in
this last one. The radius ρ considers distances between neighbors objective vectors [169]
from the k Pareto front approximations. For each Pareto front approximation belonging
to the same level of dominance, a measure of dispersion is computed. This last one
takes into account the zone of influence that the union of non-dominated elements of
the set cover in the objective space. The smaller the value, the closer the points are.

4. The G-metric associated to an Pareto front approximation is the summation of the
dispersion measure of this set and the largest dispersion measure of Pareto front ap-
proximations of lower dominance degree for each level. The bigger, the better.

The computation cost is quite important (in O(k3 × maxj=1,2,...,k |Y j
N |2) [184]) but the cost

can be decreased when one considers a small number of Pareto front approximations. Note
that this indicator highly depends on the computation of the radius ρ when defining zones of
influence. This indicator can be used for continuous and discontinuous Pareto fronts, espe-
cially to compare two Pareto front approximations, in terms of dominance and distribution
in the objective space.
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Performance comparison indicator (PCI) [173]

The Performance Comparison indicator [173] PCI was conceived to rectify the main draw-
back of the ε-indicator. PCI enables to compare k Pareto front approximations taking into
account their level of dominance and their distribution in the objective space. PCI uses a
reference set composed of all non-dominated points taken from the union of the k Pareto
front approximations. Using extreme values of the reference set, all objective vectors of the k
Pareto front approximations are normalized. Then PCI divides the set into different clusters
based on a distance threshold σ. PCI estimates the minimum distance move of the points
in the Pareto front approximations to weakly dominate all points in the clusters. A lower
value reflects better closeness of the Pareto front approximation to the reference set.

This indicator possesses a quadratic computational cost and is Pareto compliant when only
two Pareto front approximations are considered [173]. The authors propose the following
choice for the threshold, i.e.

σ ≈ 1
m−1
√
|YR|(m− 1)!− (m/2)

where |YR| is the size of the reference set, which enables this indicator to be external-
parameter-free.

The recent binary dominance move indicator [174] DoM is a generalization of the PCI
indicator, as it computes the minimum distance move from one Pareto front approximation
to weakly dominate another. A polynomial algorithm is proposed in [174] in the biobjective
case. To the best of our knowledge, no extension of the DoM indicator to more objectives
has been proposed yet.

Hyperarea/hypervolume metrics (HV ) [274]

Named also S-metric, the hypervolume indicator is described as the volume of the space in the
objective space dominated by the Pareto front approximation YN and delimited from above
by a reference objective vector r ∈ Rm such that for all y ∈ YN , y ≤ r. The hypervolume
indicator is given by

HV (YN ; r) = λm

 ⋃
y∈YN

[y; r]


where λm is the m-dimensional Lebesgue measure. An illustration is given in Figure 4.5 for
the biobjective case (m = 2). This indicator is to be maximized.
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Figure 4.5 Illustration of the hypervolume indicator for a biobjective problem.

If the Pareto front is known, the Hyperarea ratio is given by

HR(YN , YP ; r) = HV (YN ; r)
HV (YP ; r) .

The greater the ratio is (converges toward 1), the better the approximation is.

The hypervolume indicator and some closely related metrics are the only known unary
indicators to be strictly monotonic [106, 123, 275, 277], i.e. if a Pareto front approxima-
tion Y 1

N is better than another Pareto front approximation Y 2
N , HV (Y 1

N ; r) > HV (Y 2
N ; r)

assuming that all elements of the two Pareto front approximations are in the interior of
the region which dominates the reference point. The best known complexity upper cost is
O(|YN |

m
3 poly log |YN |) [57]. To the best of our knowledge, no implementation of this algo-

rithm is available. Practically, efficient implementations of the exact hypervolume indicator
can be found in [37,150,163,221,222,258]. The second drawback is the choice of the reference
point, as illustrated in Figure 4.6. A practical guide to specify the reference point can be
found in [145].

For the biobjective case, it was shown [31] that the optimal distribution of non-dominated
points which maximizes the hypervolume indicator depends on the slope of the Pareto front.
Consequently, if the Pareto front is highly nonlinear, a non-uniform Pareto front approxima-
tion may have a higher hypervolume value according to another incomparable Pareto front
approximation. Other theoretical results can be found in [46–48]. Due to its properties, it is
widely used in the evolutionary community in the search of potential interesting new points
or to compare algorithms.

Similarly, [274] introduces the Difference D of two sets Y 1
N and Y 2

N . D(Y 1
N , Y

2
N) enables to
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Figure 4.6 The relative value of the hypervolume metric depends on the chosen reference
point r1 or r2 (inspired by [159]). On the top, two non-dominated Y 1

N and Y 2
N sets are shown,

with HV (Y 1
N ; r1) > HV (Y 2

N ; r1). On the bottom, HV (Y 2
N ; r2) > HV (Y 1

N ; r2).

measure the size of the area dominated by Y 1
N but not by Y 2

N in the objective space.

The Hyperarea Difference was suggested by [263] to compensate the lack of information about
the theoretical Pareto front. Given a good objective vector ỹI and a bad objective vector
ỹM , we can approximate the size of the area dominated by the Pareto front (or circumvent
the objective space by a rectangle). The Hyperarea Difference is just the normalization of
the dominated space by the Pareto front approximation in the objective space over the given
rectangle.

More recently, a pondered hypervolume by weights indicator was introduced by [275] to
give a preference of an objective according to another. More volume indicators can be
found in [263]. Some other authors [152] (for biobjective optimization problems) suggest
to compute the hypervolume defined by a reference point and the projection of the points
belonging to the Pareto front approximation on the line delimited by the two extreme points.
This measure enables to better estimate the distribution of the points along the Pareto front
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(in fact, it can be shown that for a linear Pareto front, an uniform distribution of points
maximizes the hypervolume indicator: see [30–32,234] for more details about the properties
of the hypervolume indicator). A logarithmic version of the hypervolume indicator called the
logarithmic hypervolume indicator [123] is defined by

logHV (YN ; r) = λm

 ⋃
y∈YN

[log y; log r]


with the same notations as previously. Note that this indicator can only be used with positive
vectors in Rm. Finally, we can mention a generalization of the hypervolume indicator called
the cone-based hypervolume indicator that was introduced recently by [100] and an extension
of the hypervolume indicator to reference point free weighted hypervolume indicators based
on set monotonic and desirability functions [103].

Hypervolume Sharpe-Ratio indicator IHSR [265]

The conception of this indicator proposed by [265] lies on an analogy between the financial
Portfolio Selection problem [186] and the quality of a Pareto front approximation. This
analogy interprets the elements of the approximation set as assets with expected returns. An
investor must allocate capital to maximize the expected return of the assembled portfolio
while minimizing the expected variance (associated to risk).

To solve the financial Portfolio Selection problem, it is common to look for a strategy which
maximizes the financial performance index known as reward-to-volatility ratio or Sharpe
ratio [68]. Let A = {a1, a2, . . . , a|A|} be a non-empty set of assets, let ra ∈ R|A| be the
expected return of these assets and Q ∈ R|A|×|A| the covariance matrix of asset returns. The
Sharpe-Ratio maximization problem is defined as

max
z∈[0,1]|A|

hA(z) = (ra)> z− rf√
z>Qz

such that
|A|∑
i=1

zi = 1

where rf ∈ R is the return of a riskless asset. This non-linear problem which may be difficult
to solve can be transformed (see [68] for more details) into the following convex problem
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(under the condition that Q be symmetric positive)

min
w∈R+|A|

gA(w) = wTQw

such that
|A|∑
i=1

(rai − rf )wi = 1.

The optimal strategy z? of the first problem is given by z? = w?/
(∑|A|

i=1 w?
i

)
where w? is the

solution of the constrained quadratic problem defined above.

The authors of [265] define the Hypervolume Sharpe-Ratio indicator as

IHSR(YN ; yl,yu) = max
z∈Zsr

hYN (z)

where Zsr ⊂ [0; 1]|YN | is the set of feasible strategies of the Sharpe ratio maximization problem
and yl ∈ Rm and yu ∈ Rm two reference points such that yl < yu. The definition of the
covariance matrix and the asset returns inspired by the hypervolume indicator are given by

r|YN |j =
λm

(
[yl; yu] ∩ [yj; +∞[

)
λm ([yl; yu]) =

∏m
k=1 max

(
yuk −max(yjk,ylk), 0

)
∏m
k=1(yuk − ylk)

and

Qi,j =
λm

(
[yl; yu] ∩ [yi; +∞[∩[yj; +∞[

)
λm ([yl; yu]) =

∏m
k=1 max

(
yuk −max(yik,y

j
k,ylk), 0

)
∏m
k=1(yuk − ylk)

for i, j ∈ {1, 2, . . . , |YN |} where λm is the m-dimensional Lebesgue measure. The riskless
asset value is set to rf = 0. The greater the indicator value is, the better.

The IHSR indicator has desirable properties: providing that yu 5 y < yl for all y ∈ YN , the
IHSR indicator is proved to be monotonic [136,137], but not strictly monotonic [137]. Other
theoretical results can be found in [136, 137]. Due to its relation with a financial model, it
is interpretative. However, it is sensitive to the choice of the reference point yu [137]. Its
main drawback is its computational cost, directly linked to the resolution of the quadratic
formulation of the Sharpe ratio maximization problem. Assuming the associated correlation
matrix Q is symmetric positive, this indicator can be computed in O(|YN |3) operations (for
theoretical complexity results, the reader is invited to refer to [199]; see also [201, chapter
16]). Practically, existing quadratic constrained solvers can efficiently compute the indicator
value for a given Pareto front approximation (see [201, chapter 16] for a list of quadratic
solvers).
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4.3.5 Quality assessment of Pareto set approximations in decision space

By definition, performance indicators enable to characterize properties of Pareto front ap-
proximations with respect to their diversity, spread and convergence. Moreover, it is possible
to build indicators which assess the quality of Pareto set approximations in the decision space,
i.e. to design mappings I : Ψ → R. Some research works explore the design of such indica-
tors. For example, Zitzler et al. [276] propose the M1, M2 and M3 indicators to respectively
assess convergence, diversity and extension properties of Pareto set approximations. In [225],
the author suggests using a cardinality indicator that returns the number of non-dominated
points |XN |, coverage indicator or uniformity indicator in the feasible set. In [246], the
authors conceive diversity indicators based on diversity preference relations in the feasible
set. In [87], the authors define diversity crowding-distance indicator in the decision space.
Indicators to take into account diversity both in the decision space and the objective space
can be found in [233, 247]. Finally, in [102], the authors present some measures to qualify
approximation sets in level set approximations, which are subsets of the feasible set.

Sayin [225] states that the decision maker is firstly interested by the quality of the best trade-
off solutions found in the objective space as long as corresponding decision variables satisfy
the constraints. Furthermore, the number of objectives is usually smaller than the number
of variables, which makes the Pareto front approximation easier to study/visualize.

4.4 Some usages of performance indicators

This section focuses on four applications of performance indicators: comparison of algo-
rithms for multiobjective optimization, embedding performance indicators in multiobjective
optimization algorithms, definition of stopping criteria, and the use of relevant distribution
and spread indicators for assessing the diversity characterization of a Pareto front approxi-
mation.

4.4.1 Comparison of algorithms

The first use of performance indicators is to evaluate the performance of algorithms on a
multiobjective problem. In single-objective optimization, the most used graphical tools to
compare algorithms include performance profiles [97] and data profiles [192] (see also [36]
for a detailed survey on the tools to compare single-optimization algorithms). More specif-
ically, let S be a set of solvers and P the set of benchmarking problems. Let tp,s > 0 be
a performance measure of solver s ∈ S on problem p ∈ P : the lower, the better. Perfor-
mance and data profiles combine performance measures of solvers tp,s to enable a general
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graphic representation of the performance of each solver relatively to each other on the set
of benchmarking problems P .

To the best of our knowledge, Custódio et al. [74] are the first to use data and performance
profiles for multiobjective optimization. For each problem p ∈ P , they build a Pareto front
approximation Y p

N =
⋃
s∈S

Y p,s
N composed of the union of all Pareto front approximations Y p,s

N

generated by each solver s ∈ S for the problem p. All dominated points are then removed.
Pareto front approximations and relative Pareto optimal solution sets are then compared
using cardinality and Γ and ∆ metrics proposed by [74].

One of the critics we can make with this approach is the use of distribution and cardinality in-
dicators that do not capture order relations between two different sets. The choice of
(weakly) monotonic indicators or (≺-complete / ≺-compatible) C-complete / C-compatible
comparisons methods is more appropriated in this context [139,159,277,280]. Among them,
dominance move (4.3.4), G-metric (4.3.4), binary ε-indicator (4.3.2), Hypervolume Sharpe-
Ratio indicator (4.3.4) and volume-space metrics (4.3.4) have properties corresponding to
these criteria. Mathematical proofs can be found in [31, 51, 52, 136, 137, 159, 174, 184, 280])
and are synthesized in Appendices. An example of performance profile using the hyper-
volume indicator (4.3.4) can be found in [180]. The use of performance indicators such as
GD (4.3.2) or IGD (4.3.4) as it is done in [4, 52] is not a pertinent choice due to their in-
ability to capture dominance relation. Instead, we suggest to use their weakly monotonic
counterpart IGD+ (4.3.4) or DOA (4.3.2), that can be cheaper to compute than for example
the hypervolume indicator when the number of objectives is high. It is equally possible to
build Pareto-compliant indicators by considering a combination of weakly Pareto compliant
indicators with at least one strictly Pareto compliant indicator as it is proposed in [106].

The attainment function [122] is another tool for the performance assessment of multiob-
jective (stochastic) solvers. Assuming a multiobjective solver has produced k Pareto front
approximations Y j

N for j = 1, 2, . . . , k on a given problem, the empirical attainment function
α : Rm → [0, 1] is defined as

α(y) = 1
k

k∑
j=1

1{Y j
N � {y}}.

For a given y ∈ Rm, the attainment function estimates the probability that the multiobjective
solver reaches (in term of dominance in the objective space) the objective vector y. The
interested reader can refer to [49,119,120,122,277] for additional information.
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4.4.2 Embedding performance indicators in multiobjective optimization algo-
rithms

Performance indicators are able to quantify properties a good Pareto front approximation
should possess. It is then logical to incorporate them into multiobjective optimization meth-
ods. By optimizing directly the indicator, one can hope to obtain approximations of the
Pareto front satisfying demanding properties. For these last years, the evolutionary multi-
objective community has frequently adopted this approach.

For example, performance indicators such as R2 [245] or HV [38], Iε [278], IGD+ [105,185],
IGD–NS [243] are used in selection mechanisms in evolutionary algorithms.The reader is
invited to consult the recent survey [104] for more information on indicator-based multiob-
jective evolutionary algorithms. Similarly, the Γ-indicator [74] enables to identify holes in the
Pareto front approximation around which the algorithm can explore to improve diversity. In
global stochastic optimization, some methods integrate hypervolume indicator [44, 101, 111]
and its variants [112] or R2 [91] to better explore the decision space. In [3], the authors
use Radial Basis models and the hypervolume indicator to identify next promising points to
evaluate. In [5], the authors propose a multiobjective optimistic algorithm using the additive
ε-indicator (4.3.2) and analyse its link with the weighted Tchebysheff approach.

The transformation of a multiobjective optimization problem into a single-objective quality
indicator based problem implies a loss of information. Indeed, the choice of a specific perfor-
mance indicator reflects the personal preferences of the decision user. It is then important to
understand the bias of this choice on the solution set found. Given a performance indicator,
the concept of optimal µ-distribution [31] refers to the study of the optimal distributions of
non-dominated points of size µ which belong to the Pareto front and maximize (or minimize)
the performance indicator for a given multiobjective problem. Their study enables to under-
stand bias of considered indicators and analyze the behavior of bounded size indicator-based
algorithms. The first ones were done for the hypervolume indicator and some of its variants
in the biobjective case [31,32,100] then extended to more objectives in [30,234]. Theoretical
results for the R2 indicator [51], the ∆p indicator [220] or the Hypervolume Sharpe-Ratio
indicator [137] for the biobjective case exist too.

4.4.3 Stopping criteria of multiobjective algorithms

To generate a Pareto front approximation, two approaches are currently considered. The first
category, named as scalarization methods, consists in aggregating the objective functions
and to solve a series of single-objective problems. Surveys about scalarization algorithms
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can be found for example in [259]. The second class, designed as a posteriori articulations
of preferences [74] methods, aims at obtaining the whole Pareto front without combining
any objective function in a single-objective framework. Evolutionary algorithms, Bayesian
optimization methods [101] or deterministic algorithms such as DMS [74] belong to this
category.

For scalarization methods, under some assumptions, solutions to single-objective problems
can be proved to belong to the Pareto front or a local one. So, defining stopping criteria results
in choosing the number of single-objective problems to solve via the choice of parameters and
a single-objective stopping criterion for each of them. Stopping at a predetermined number
of function evaluations is often used in the context of blackbox optimization [27]. The use of
performance indicators also is not relevant.

A posteriori methods consider a set of points in the objective space (a population) that is
brought to head for the Pareto front along iterations. Basically, a maximum number of
evaluations is still given as a stopping criterion but it remains crucial to give an estimation
to how far from a (local) Pareto front the approximation set is. For multiobjective Bayesian
optimization [101], the goal is to find at next iteration the point that maximizes the hyperarea
difference between old non-dominated set of points and the new one. The performance
indicator is directly embedded into the algorithm and could be used as a stopping criterion.
For evolutionary algorithms, surveys on stopping criteria for multiobjective optimization can
be found in [187,255]. The approach is to measure the progression of the current population
combining performance indicators (hypervolume, MDR, etc.) and statistic tools (Kalman
filter [187], χ2-variance test [256], etc.) These last ones enable to detect a stationary state
reached by the evolving population.

We believe that the use of monotonic performance indicators or binary ones that capture the
dominance property seems to be the most efficient one in the years to come to follow the
behavior of population-based algorithms along iterations.

4.4.4 Distribution and spread

The choice of spread and distribution indicators has only a sense when one wants to measure
the distribution of points in the objective space, no matter how close from the Pareto front the
approximated set is. Spread and distribution metrics can put forward global properties (for
example statistics on the distribution of the points or extent of the front) or local properties
such as the largest distance between closest non-dominated points that can be used to conduct
search such as Γ indicator. Typically, the construction of a distribution or spread indicator
requires two steps. The first consists in defining a distance between two points in the objective
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space. Many distribution indicators in the literature use minimum Euclidean or Manhattan
distance between points such as the SP metric (4.3.3), the ∆ index (4.3.3), HRS (4.3.3), and
so on. The DM (4.3.3) and Γ-metric (4.3.3) indicators use a “sorting distance”; ID (4.3.3)
a “neighborhood distance” based on a spanning tree, and so on. Once this is done, many
of the existing distribution indicators are built by using statistic tools on this distance:
mean (∆ (4.3.3), U measure (4.3.3), DM (4.3.3) for example), mean square (SP (4.3.3),
Dnc (4.3.3)), and so on.

To use a distribution or spread indicator, it should satisfy the following properties:

1. The support of scaled functions, which enables to compare all objectives in an equivalent
way (DM (4.3.3), OS (4.3.3), IOD (4.3.3), ∆ (4.3.3), Γ (4.3.3)).

2. For piecewise continuous or discontinuous Pareto front approximations, a good distri-
bution indicator should not be based on the distance between closest neighbors, as it
can hide some holes [271]. Some indicators possess this property such as DM (4.3.3),
Γ (4.3.3), ∆ (4.3.3), Es (4.3.3) or evenness indicators (4.3.3).

3. Distribution and spread performance indicators should not be based on external pa-
rameters, such as Zitzler’s metric M?

2 (4.3.3), UD (4.3.3), or entropy measure (4.3.3).

4. An easy interpretation: a value returned by an indicator has to be “intuitive” to un-
derstand. For example, the binary uniformity (4.3.3) is extremely difficult to interpret
and should not be used. This remark applies for all types of performance indicators.

One could directly include spread control parameters in the design of new algorithms. The
Normal Boundary Intersection method [80] controls the spread of a Pareto front approxima-
tion. This method is also used in the context of blackbox optimization [28].

4.5 Discussion

In this work, we give a review of performance indicators for the quality of Pareto front
approximations in multiobjective optimization, as well as some usages of these indicators.

The most important application of performance indicators is to allow comparison and analysis
of results of different algorithms. In this optic, among all these indicators, the hypervolume
indicator and its binary counterpart, the hyperarea difference can be considered until now
as the most relevant. The hypervolume indicator possesses good mathematical properties,
it can capture dominance properties and distribution and does not require the knowledge
of the Pareto front. Empirical studies [151, 204] have confirmed its efficiency compared to
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other performance indicators. That is why it has been deeply used in the evolutionary
community [218]. However, it has some limitations: the exponential cost as the number of
objectives increases and the choice of the reference point. To compare algorithms, it can
be replaced with other indicators capturing lower dominance relation such as dominance
move, G-metric, binary ε-indicator, Hypervolume Sharpe-Ratio indicator, modified inverted
generated distance or degree of approximation whose computational cost is less important.

Future research can focus on the discovery of new performance indicators that correct some
drawbacks of the hypervolume indicator but keeps its good properties, and the integration
of performance indicators directly into algorithms for multiobjective optimization.
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4.6 A summary of performance indicators

Table 4.3 draws a summary of all indicators described in Section 4.3. Most of complexity
cost indications for computing indicators are drawn from [151]. YP ⊆ YP corresponds to
the Pareto optimal solution set and YN is a Pareto front approximation returned by a given
algorithm. The symbol “7” indicates that the performance indicator does not satisfy the
monotony property. The “-” symbol corresponds to binary indicators, for which monotonicity
has no meaning.

Table 4.3 A summary of performance indicators.

Category Performance indicators Section Symbol Parameters Comparison sets Computational
complexity

Monotone

Cardinality C-metric/Two sets
Coverage [279]

4.3.1 C None Binary indicator O(m |Y 1
N | × |Y

2
N |) -

4.3.1 Error ratio [249] 4.3.1 ER None Pareto front YP Low 7

Generational non
dominated vector
generation [250]

4.3.1 GNVG None None Low 7

Generational non
dominated vector
generation ratio [250]

4.3.1 GNVGR None Pareto front YP Low 7

Mutual domination
rate [187]

4.3.1 MDR None None Low 7

Nondominated vector
additional [250]

4.3.1 NVA None None Low 7

Overall nondominated
vector generation [249]

4.3.1 ONVG None None Low 7

Overall nondominated
vector generation
ratio [249]

4.3.1 ONVGR None Pareto front YP Low 7

Ratio of non-dominated
points by the reference
set [139]

4.3.1 C2R None Reference set YR O(m |YN | × |YR|) 7

Ratio of the reference
points [139]

4.3.1 C1R None Reference set YR O(m |YN | × |YR|) 7

Convergence Degree of
Approximation [93]

4.3.2 DOA None Pareto front YP O(m |YN | × |YP |) Not strictly

4.3.2 ε-family [280] 4.3.2 Iε None Pareto front YP O(m |YN | × |YP |) Not strictly
Generational
distance [249]

4.3.2 GD None Pareto front YP O(m |YN | × |YP |) 7

γ-metric [84] 4.3.2 γ None Pareto front YP O(m |YN | × |YP |) 7

Maximum Pareto front
error [249]

4.3.2 MPFE None Pareto front YP O(m |YN | × |YP |) 7

M?
1 -metric [276] 4.3.2 M?

1 None Pareto front YP O(m |YN | × |YP |) 7

Progression metric [249] 4.3.2 - None None O(m |YN |) 7

Seven points average
distance [226]

4.3.2 SPAD None Reference set YR O(m |YN |) 7

Standard deviation from
the Generational
distance [249]

4.3.2 STDGD None Pareto front YP O(m |YN | × |YP |) 7

Distribution Cluster [263] 4.3.3 CLµ A parameter µ None High 7

and spread ∆-index [84] 4.3.3 ∆ None Pareto front YP O(m |YN |2 +m |YN | ×
|YP |)

7

4.3.3 ∆′-index [84] 4.3.3 ∆′ None None O(m |YN |2) 7

∆? spread metric [272] 4.3.3 ∆? None Pareto front YP O(m |YN |2 +m |YN | ×
|YP |)

7

Distribution metric [271] 4.3.3 DM None None O(m |YN |2) 7

Diversity comparison
indicator [172]

4.3.3 DCI A parameter div k-ary indicator
comparing
Y 1
N , Y

2
N , . . . , Y

k
N

non-dominated sets

O
(
m (k |Ymax

N |)2
)

7

Diversity indicator [56] 4.3.3 DIR None Reference set YR O(m |YN | × |YR|) 7
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Table 4.3 A summary of performance indicators.

Category Performance indicators Section Symbol Parameters Comparison sets Computational
complexity

Monotone

Entropy metric [108] 4.3.3 - A parameter
grids

None High 7

Evenness [189] 4.3.3 ξ None None O(m |YN |2) 7

Extension [188] 4.3.3 EX None Pareto front YP O(m |YN | × |YP |) 7

Γ-metric [74] 4.3.3 Γ None None O(m |YN |2) 7

Hole Relative Size [64] 4.3.3 HRS None None O(m |YN |2) 7

Laumanns metric [166] 4.3.3 - None None O(|YN |
m
3 poly log |YN |) 7

Modified Diversity
indicator [8]

4.3.3 M–DI A parameter δ Reference set YR O(m |YN |2 × |YR|)

M?
2 -metric [276] 4.3.3 M?

2 Niche radius σ None O(m |YN |2) 7

M?
3 -metric [276] 4.3.3 M?

3 None None O(m |YN |2) 7

Number of distinct
choices [263]

4.3.3 NDCµ A parameter µ None High 7

Outer diameter [277] 4.3.3 IOD None None O(m |YN |) 7

Overall Pareto
Spread [263]

4.3.3 OS None ỹI and ỹM O(m |YN |) 7

Riesz S-energy [140] 4.3.3 ES A parameter s None O(m |YN |2) 7

Sigma diversity
metric [195]

4.3.3 σ A parameter
lines

None High 7

Spacing [226] 4.3.3 SP None None O(m |YN |2) 7

U-measure [169] 4.3.3 U None None O(m |YN |2) 7

Uniform assessment
metric [176]

4.3.3 ID None None O(m |YN |2) 7

Uniform distribution [239] 4.3.3 UD Niche radius σ None O(m |YN |2) 7

Uniformity [225] 4.3.3 δ None None O(m |YN |2) 7

Uniformity [188] 4.3.3 - None Binary Quadratic 7

Convergence
and

Averaged Hausdorff
distance [227]

4.3.4 ∆q None Pareto front YP O(m |YN | × |YP |) 7

distribution Cone-based
hypervolume [100]

4.3.4 - Angle γ and
Reference point
r

None O(|YN |
m
3 poly log |YN |) Strictly

4.3.4 Dominance move [174] 4.3.4 DoM None Binary indicator O(|YN | log |YN |) -
D-metric/Difference
coverage of two sets [274]

4.3.4 - Reference point
r

Binary indicator O(|YN |
m
3 poly log |YN |) -

DR-metric [78] 4.3.4 - None Reference set YR O(m |YN | × |YR|) Not strictly
Hyperarea difference [263] 4.3.4 HD Reference point

r
None O(|YN |

m
3 poly log |YN |) Strictly

Hypervolume indicator (or
S-metric) [276]

4.3.4 HV Reference point
r

None O(|YN |
m
3 poly log |YN |) Strictly

Hypervolume Sharpe-ratio
indicator [265]

4.3.4 IHSR Reference points
yl and yu

None Polynomial Not strictly

Inverted generational
distance [62]

4.3.4 IGD None Pareto front YP O(m |YN | × |YP |) 7

Inverted generation
distance with non
contributed solutions
detection [243]

4.3.4 IGD–NS None Pareto front YP O(m |YN | × |YP |) 7

G-metric [184] 4.3.4 - None k-ary indicator
comparing
Y 1
N , Y

2
N , . . . , Y

k
N

non-dominated sets

O(k3 |Ymax
N |2) Not strictly

Logarithmic hypervolume
indicator [123]

4.3.4 logHV Reference point
r

None O(|YN |
m
3 poly log |YN |) Strictly

Modified inverted
generational distance
[147]

4.3.4 IGD+ None Pareto front YP O(m |YN | × |YP |) Not strictly

Performance comparison
indicator [173]

4.3.4 PCI σ distance k-ary indicator
comparing
Y 1
N , Y

2
N , . . . , Y

k
N

non-dominated sets

Quadratic Not strictly

p, q-averaged
distance [251]

4.3.4 ∆p,q None Pareto front YP Quadratic 7

R-metric [139] 4.3.4 YR A set W of
weights vectors

Reference set YR O(m |YN | × |YR| × |W |)Not strictly
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4.7 Compatibility and completeness

Tables 4.4 and 4.5 summarize compatibility and completeness properties. Only the strongest
relationships are kept. Some of them are drawn from [280]. All spread and distribution
indicators are not compatible with Pareto front approximation relations.

Table 4.4 Compatibility and completeness of unary performance indicators.

Category Performance indicators Section Symbol Boolean function Compatible Complete

Cardinality Error ratio [249] 4.3.1 ER ER(Y 1
N ) < ER(Y 2

N ) 7 7

4.3.1 Generational non dominated
vector generation [250]

4.3.1 GNVG - - -

Generational non dominated
vector generation ratio [250]

4.3.1 GNVGR - - -

Mutual domination rate [187] 4.3.1 MDR - - -
Nondominated vector
additional [250]

4.3.1 NVA - - -

Overall nondominated vector
generation [249]

4.3.1 ONVG ONVG(Y 1
N ) > ONVG(Y 2

N ) 7 7

Overall nondominated vector
generation ratio [249]

4.3.1 ONVGR ONVGR(Y 1
N ;YP ) > ONVGR(Y 2

N ;YP ) 7 7

Ratio of non-dominated points
by the reference set [139]

4.3.1 C2R C2R(Y 1
N ;YR) > C2R(Y 2

N ;YR) 7 7

Ratio of the reference
points [139]

4.3.1 C1R C1R(Y 1
N ;YR) > C1R(Y 2

N ;YR) 7 7

Convergence Degree of Approximation [93] 4.3.2 DOA DOA(Y 1
N ;YP ) < DOA(Y 2

N ;YP ) Not better than ≺
4.3.2 Generational distance [249] 4.3.2 GD GD(Y 1

N ;YP ) < GD(Y 2
N ;YP ) 7 7

γ-metric [84] 4.3.2 γ γ(Y 1
N ;YP ) < γ(Y 2

N ;YP ) 7 7

Maximum Pareto front
error [249]

4.3.2 MPFE MPFE(Y 1
N ;YP ) < MPFE(Y 2

N ;YP ) 7 7

M?
1 -metric [276] 4.3.2 M?

1 M?
1 (Y 1

N ;YP ) < M?
1 (Y 2

N ;YP ) 7 7

Progression metric [249] 4.3.2 - - - -
Seven points average
distance [226]

4.3.2 SPAD SPAD(Y 1
N ;YP ) < SPAD(Y 2

N ;YP ) 7 7

Standard deviation from the
Generational distance [249]

4.3.2 STDGD - - -

Distribution Cluster [263] 4.3.3 CLµ - - -
and spread ∆-index [84] 4.3.3 ∆ ∆(Y 1

N ;YP ) < ∆(Y 2
N ;YP ) 7 7

4.3.3 ∆′-index [84] 4.3.3 ∆′ ∆′(Y 1
N ) < ∆′(Y 2

N ) 7 7

∆? spread metric [272] 4.3.3 ∆? ∆?(Y 1
N ;YP ) < ∆?(Y 2

N ;YP ) 7 7

Distribution metric [271] 4.3.3 DM DM(Y 1
N ) < DM(Y 2

N ) 7 7

Diversity indicator [56] 4.3.3 DIR DIR(Y 1
N ) < DIR(Y 2

N ) 7 7

Entropy metric [108] 4.3.3 - - - -
Evenness [189] 4.3.3 ξ ξ(Y 1

N ) < ξ(Y 2
N ) 7 7

Extension [188] 4.3.3 EX EX(Y 1
N ;YP ) < EX(Y 2

N ;YP ) 7 7

Γ-metric [74] 4.3.3 Γ Γ(Y 1
N ) < Γ(Y 2

N ) 7 7

Hole Relative Size [64] 4.3.3 HRS HRS(Y 1
N ) < HRS(Y 2

N ) 7 7

Laumanns metric [166] 4.3.3 - IL(Y 1
N ) > IL(Y 2

N ) 7 7

Modified Diversity
indicator [8]

4.3.3 M–DI M–DI(Y 1
N ;YR) > M–DI(Y 2

N ;YR) 7 7

M?
2 -metric [276] 4.3.3 M?

2 M?
2 (Y 1

N ;σ) > M?
2 (Y 2

N ;σ) 7 7

M?
3 -metric [276] 4.3.3 M?

3 M?
3 (Y 1

N ) > M?
3 (Y 2

N ) 7 7

Number of distinct
choices [263]

4.3.3 NDCµ NDCµ(Y 1
N ) > NDCµ(Y 2

N ) 7 7

Outer diameter [277] 4.3.3 IOD IOD(Y 1
N ) > IOD(Y 2

N ) 7 7

Overall Pareto Spread [263] 4.3.3 OS OS(Y 1
N ) > OS(Y 2

N ) 7 7

Riesz S-energy [140] 4.3.3 ES ES(Y 1
N ) < ES(Y 2

N ) 7 7

Sigma diversity metric [195] 4.3.3 σ σ(Y 1
N ; d) > σ(Y 2

N ; d) 7 7

Spacing [226] 4.3.3 SP SP (Y 1
N ) < SP (Y 2

N ) 7 7

U-measure [169] 4.3.3 U U(Y 1
N ) < U(Y 2

N ) 7 7

Uniform assessment
metric [176]

4.3.3 ID ID(Y 1
N ) > ID(Y 2

N ) 7 7

Uniform distribution [239] 4.3.3 UD UD(Y 1
N ;σ) < UD(Y 2

N ;σ) 7 7

Uniformity [225] 4.3.3 δ δ(Y 1
N ) < δ(Y 2

N ) 7 7

Convergence Averaged Hausdorff
distance [227]

4.3.4 ∆q ∆q(Y 1
N ;YP ) < ∆q(Y 2

N ;YP ) 7 7
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Table 4.4 Compatibility and completeness of unary performance indicators.

Category Performance indicators Section Symbol Boolean function Compatible Complete

and Cone-based hypervolume [100] 4.3.4 - χ(Y 1
N ) > χ(Y 2

N ) Not better than C

distribution
4.3.4

DR-metric [78] 4.3.4 - DR(Y 1
N ;YR) < DR(Y 2

N ;YR) Not better than ≺≺

Hyperarea difference [263] 4.3.4 HD HD(Y 1
N ) < HD(Y 2

N ) Not better than C

Hypervolume indicator (or
S-metric) [276]

4.3.4 HV HV (Y 1
N ; r) > HV (Y 2

N ; r) Not better than C

Hypervolume Sharpe-ratio
indicator [265]

4.3.4 IHSR IHSR(Y 1
N ; yl,yu) > IHSR(Y 2

N ; yl,yu) Not better than ≺

Inverted generational
distance [62]

4.3.4 IGD IGD(Y 1
N ;YP ) < IGD(Y 2

N ;YP ) 7 7

Inverted generation distance
with non contributed solutions
detection [243]

4.3.4 IGD–NS IGD–NS(Y 1
N ;YP ) < IGD–NS(Y 2

N ;YP ) 7 7

Logarithmic hypervolume
indicator [123]

4.3.4 logHV logHV (Y 1
N ; r) > logHV (Y 2

N ; r) Not better than C

Modified inverted generational
distance [147]

4.3.4 IGD+ IGD+(Y 1
N ;YP ) < IGD+(Y 2

N ;YP ) Not better than �

p, q-averaged distance [251] 4.3.4 ∆p,q ∆p,q(Y 1
N ;YP ) < ∆p,q(Y 1

N ;YP ) 7 7

Table 4.5 Compatibility and completeness of binary performance indicators (inspired
by [280]): a - means there is no comparison method which is complete and compatible
for the given relation, a 7 that the indicator is not even monotone.

Category Performance
indicators

Section Symbol Relation

C � = ‖

Cardinality
4.3.1

C-metric/Two
sets
Coverage [279]

4.3.1 C
C(Y 1

N , Y
2
N ) = 1

C(Y 2
N , Y

1
N ) < 1

C(Y 1
N , Y

2
N ) = 1 C(Y 1

N , Y
2
N ) = 1

C(Y 2
N , Y

1
N ) = 1

C(Y 1
N , Y

2
N ) > 1

C(Y 2
N , Y

1
N ) > 1

Convergence
4.3.2

Additive
ε-indicator [280]

4.3.2 Iε
Iε(Y 1

N , Y
2
N ) ≤ 0

Iε(Y 2
N , Y

1
N ) > 0

Iε(Y 1
N , Y

2
N ) ≤ 0 Iε(Y 1

N , Y
2
N ) = 0

Iε(Y 2
N , Y

1
N ) = 0

Iε(Y 1
N , Y

2
N ) > 0

Iε(Y 2
N , Y

1
N ) > 0

Distribution
and spread

Diversity
comparison
indicator [172]

4.3.3 DCI 7 7 7 7

4.3.3 Uniformity [188] 4.3.3 - 7 7 7 7

Convergence
and

Dominance
move [174]

4.3.4 DoM
DoM(Y 1

N , Y
2
N ) = 0

DoM(Y 2
N , Y

1
N ) > 0

DoM(Y 1
N , Y

2
N ) = 0

DoM(Y 2
N , Y

1
N ) ≥ 0

DoM(Y 1
N , Y

2
N ) = 0

DoM(Y 2
N , Y

1
N ) = 0

DoM(Y 1
N , Y

2
N ) > 0

DoM(Y 1
N , Y

2
N ) > 0

distribution
4.3.4

D-metric/Dif-
ference coverage
of two sets [274]

4.3.4 - D(Y 1
N , Y

2
N ) > 0

D(Y 2
N , Y

1
N ) = 0

D(Y 1
N , Y

2
N ) ≥ 0

D(Y 2
N , Y

1
N ) = 0

D(Y 1
N , Y

2
N ) = 0

D(Y 2
N , Y

1
N ) = 0

D(Y 1
N , Y

2
N ) > 0

D(Y 2
N , Y

1
N ) > 0

G-metric [184] 4.3.4 - - - - -
Performance
comparison
indicator [173]

4.3.4 PCI - - - -

R-metric [139] 4.3.4 R - - - -
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Abstract The context of this research is multiobjective optimization where conflicting
objectives are present. In this work, these objectives are only available as the outputs of
a blackbox for which no derivative information is available. This work proposes a new
extension of the mesh adaptive direct search (MADS) algorithm to multiobjective derivative-
free optimization with bound constraints. This method does not aggregate objectives and
keeps a list of non dominated points which converges to a (local) Pareto set as long as the
algorithm unfolds. As in the single-objective optimization MADS algorithm, this method
is built around a search step and a poll step. Under classical direct search assumptions,
it is proved that the so-called DMulti-MADS algorithm generates multiple subsequences of
iterates which converge to a set of local Pareto stationary points.

Finally, computational experiments suggest that this approach is competitive compared to
the state-of-the-art algorithms for multiobjective blackbox optimization.

Keywords Multiobjective optimization, derivative-free optimization, blackbox optimiza-
tion, mesh adaptive direct search, Clarke analysis.

5.1 Introduction

This work considers the following multiobjective optimization problem:

MOP : min
x∈Ω

f(x) = (f1(x), f2(x), . . . , fm(x))>
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where Ω = [l; u] is the feasible decision set and l,u ∈ Rn with li < ui for i = 1, 2, . . . , n. The
functions fi : Rn → R ∪ {+∞} for i = 1, 2, . . . ,m ≥ 2, are the outputs of a blackbox, which
means that no analytical form is known. Derivatives are not available so that gradient-based
techniques cannot be considered. Allowing f to take infinity values refers to the possibility
that evaluations of f can fail. In these cases, blackbox or derivative-free optimization tech-
niques [20, 67] are particularly relevant. The mapping of Ω by the objective function f is
designed as the feasible objective set. The sets Rn and Rm are denoted the decision space
and the objective space, respectively.

The goal is then to find the best set of trade-off solutions in the objective space, named as
the Pareto front, given a finite budget of functions evaluations. These solutions can then be
presented to the decision maker, who can decide of the most adequate design dependently
for her/his problem [63,89,98].

Multiobjective heuristics such as evolutionary/genetic algorithms [85] or particule-swarm op-
timization [142] are commonly used. However, they do not possess mathematical convergence
background and require a significantly large amount of functions evaluations, which is not
affordable in this research context where problems involve costly blackbox functions. This
last limitation has partly been removed: by using cheaper surrogate models such as radial
basis functions [196] or krigging metamodeling [158], one can identify the most promising
points to be evaluated with the true objective function.

Among supported convergence-based methods, a first approach is to aggregate all objective
functions in one parameterized single-objective formulation. By solving the resulting problem
with convergence-proved derivative-free techniques, one is able to get a local optimal Pareto
solution. The procedure can be used again to obtain different Pareto solutions by changing
the parameters of the current formulation. The BiMADS [27] and MultiMADS [28] methods
follow these approaches. They are both based on the Mesh Adaptive Direct Search (MADS)
algorithm [15] for single-objective constrained optimization. BiMADS is only designed for
biobjective problems contrary to MultiMADS that takes into account more objectives. Sev-
eral issues are raised with such scalarization-based methods. A first one is the number of
evaluations to allocate to each single-objective problem: too few and no promising points
can be found; too many and the algorithm can lack budget to explore potential promising
zones in the objective space. A second drawback is the large amount of evaluations that the
user can fix to obtain points close to the Pareto front. Function evaluations could rather be
used to enrich the non dominated set of points constituting the approximated Pareto front
returned by the algorithm.

Recently, new convergence-proved methods for derivative-free multiobjective optimization
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have emerged, which keep a population of non dominated points that gets closer to the
Pareto front as long as the algorithm unfolds [74,126,180]. To the best of our knowledge, [74]
is the first to propose the DMS framework that extends single-objective direct search algo-
rithms to multiobjective optimization. They prove the existence of at least one subsequence
of iterates that converges to a local Pareto point. This approach is used again to build con-
strained line-search methods for multiobjective optimization [180], implicit-filtering methods
for multiobjective optimization [126] and derivative-free trust-region methods for biobjective
optimization [223].

Inspired by the works of [74] and [180], this work proposes a new way to extend the MADS
algorithm to nonsmooth constrained multiobjective optimization with alternative1 conver-
gence results than the DMS algorithm. More precisely, under mild assumptions, the DMS
algorithm generates at least a sequence of points which converges to a local Pareto optimal
solution. This research goes a step further. It is proved that under the same assumptions, the
proposed method generates sequences of points which converge to a set of Pareto stationary
points. This result is equally stronger than the one proposed in [180], as their proof requires
that their objective functions be Lipschitz continuous.

This work is organized as follows. Section 5.2 introduces the notations and definitions rela-
tive to multiobjective optimization. Section 5.3 summarizes the core elements of the MADS
algorithm. Section 5.4 presents the new extension of the MADS algorithm to multiobjective
optimization. Section 5.5 is dedicated to the convergence analysis of the proposed method.
Finally, Section 5.6 reports computational experiments and discussions, followed by the con-
clusion.

5.2 Multiobjective optimization and Pareto dominance

In order to compare objective vectors, the following relation order is used [98]:

∀(y1,y2) ∈ (Rm)2 , y1 ≤ y2 ⇔ y2 − y1 ∈ Rm+ ⇔ ∀i = 1, 2, . . . ,m, y1
i ≤ y2

i .

The relation notations <, > and ≥ are similarly defined according to the cone Rm+ .
The concept of Pareto dominance can now be introduced:

Definition 32. Given two decision vectors x1 and x2 in the feasible decision set, it is said
that:

• x1 � x2 (x1 weakly dominates x2) if and only ∀i = 1, 2, . . . ,m, fi(x1) ≤ fi(x2).
1We replace the term “stronger” by alternative.
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• x1 ≺ x2 (x1 dominates x2) if and only ∀i = 1, 2, . . . ,m, fi(x1) ≤ fi(x2) and it exists at
least one index i0 such that fi0(x1) < fi0(x2).

• x1 ∼ x2 (x1 and x2 are indifferent) if x1 does not dominate x2 and x2 does not dominate
x1.

This definition is illustrated in Figure 5.1 for a biobjective minimization problem in the
feasible objective set which is a subset of R2 delimited by the closed curve. Depending on
the x1 point, three zones in the objective space are considered. The dominance zone is the
set of feasible points which dominate x1. The dominated zone is the set of feasible points
which are dominated by x1. The indifference zone is the set of points which are indifferent
to x1. In this case, x4 ≺ x1, x1 ≺ x2 and x3 ∼ x1.

f1

f2

f(x1)
◦

f(x2)
•f(x3) •

f(x4)
•

Dominance zone

Dominated zone

Indifference zone

Indifference zone

Figure 5.1 An illustration of the Pareto dominance for a minimization biobjective problem.
x4 ≺ x1, x1 ≺ x2, x4 ≺ x2 and x3 ∼ x4.

The above definition enables to define optimality for multiobjective optimization problems.

Definition 33 (Global Pareto optimal solution). A point x∗ ∈ Ω is a global Pareto optimal
solution of MOP if there does not exist any other point x ∈ Ω such that x ≺ x∗.

Definition 34 (Local Pareto optimal solution). A point x∗ ∈ Ω is a local Pareto optimal
solution of MOP if there does not exist any other point x ∈ Ω ∩ N (x∗) such that x ≺ x∗,
where N (x∗) is a neighbourhood of x∗.

The set of global Pareto optimal solutions in the feasible decision set Ω is called the Pareto
set denoted by XP and its mapping by the objective function f is the Pareto front denoted
by YP . The image of a set of local Pareto optimal points is called a local Pareto front.
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The Pareto set is usually composed of many elements [98], which cannot be all enumerated.
Solving a multiobjective optimization problem aims at finding a good representative subset of
the Pareto front [225]. It is then convenient to introduce the concept of Pareto approximation
set [280].

Definition 35 (Pareto set and front approximation). A set of vectors XN in the feasible
decision set Ω is called a Pareto set approximation if no element of this set is dominated by
another. Its image in the objective space is called a Pareto front approximation.

All elements of a Pareto set approximation have to be non dominated relatively to each other.
A Pareto set approximation should ideally contain elements of the Pareto set. The algorithm
described in this work guarantees convergence towards a Pareto set approximation whose
elements are locally Pareto optimal.

Ideally, a Pareto set approximation should contain extreme points of the Pareto set. Extreme
points of the Pareto set are decision vectors that are the solutions of each single-objective
subproblem minx∈Ω fi(x) for i = 1, 2, . . . ,m, which are non dominated. With the knowledge
of extreme Pareto points, one can get the ideal objective vector yI of MOP , defined by

yI =
(

min
x∈Ω

f1(x),min
x∈Ω

f2(x), . . . ,min
x∈Ω

fm(x)
)
.

Figure 5.2 illustrates these concepts.

f1

f2

•
yI

YP

Figure 5.2 Objective space, Pareto front YP (represented in black) and ideal objective vector
yI for a minimization biobjective problem.
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5.3 The MADS algorithm

The proposed algorithm is an extension of the MADS algorithm [15] to multiobjective opti-
mization. It differs from the existing BiMADS and MultiMADS methods [27, 28], as it does
not rely on a scalarization-based approach. This section summarizes the main steps of the
MADS algorithm. All the definitions come from [20]. The reader is invited to consult [15]
for more details.

The MADS algorithm is a direct search method initially designed to solve optimization
single-objective optimization blackbox problems, i.e., minx∈Ω f(x), with f : Rn → R ∪ {∞}
a scalar-valued function and Ω the same subset of Rn as defined for MOP .

Definition 36. Let G ∈ Rn×n be a non-singular matrix and Z ∈ Zn×nD be such that the
columns of Z form a positive spanning set for Rn. Define D = GZ. At iteration k, the
current mesh of coarseness δk > 0, generated by D is defined by

Mk =
⋃

x∈V k

{
x + δkDz : z ∈ NnD

}

where V k is the set of points already evaluated by the start of iteration k.

At each iteration k, MADS attempts to find a better point in the decision space, belonging
to the current mesh defined above.

V 0 represents the set of starting points indicated by the user. The mesh is generated with
a finite set of nD directions D ⊂ Rn scaled with the mesh size parameter δk > 0. Generally,
one considers the positive spanning set D = [In,−In] where In is the identity matrix of size
n but other choices are possible [15].

Each iteration is composed of two steps: the search and the poll. The search step enables the
user to define its own search strategy as long as new evaluated points remain on the mesh
Mk. If a better point is found during the search step, the poll step is not executed. As the
convergence analysis depends on the poll step, it is more rigidly defined. It generates points
on the mesh around an incumbent solution xk ∈ V k. The poll points must belong to the
frame of extent ∆k centered at xk defined below.

Definition 37. Let G ∈ Rn×n be a non-singular matrix and Z ∈ Zn×nD be such that the
columns of Z form a positive spanning set for Rn. Let δk > 0 be the mesh size parameter
and let ∆k be such that δk ≤ ∆k. At iteration k, the frame of extent ∆k generated by D,
centered at xk is defined by

F k =
{
x ∈Mk : ‖x− xk‖∞ ≤ ∆kb

}
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with b = max {‖ d′ ‖∞: d′ ∈ D} and ∆k is the frame size parameter such that δk ≤ ∆k.

The initial frame size parameter ∆0 ∈ R+ can be provided by the user or automatically
fixed according to the bound constraints of the optimization problem or the coordinates of
an initial starting point [18, 26].

The new candidates in the poll step must belong to the poll set P k defined by

P k =
{
xk + δkd : d ∈ Dk∆

}
⊂ F k

where Dk∆ is a positive spanning set of directions. To satisfy these properties, the authors
of [15] propose the following relation between δk and ∆k:

δk = min
{

∆k,
(
∆k
)2
}
.

Poll points can be evaluated opportunistically (as soon as a better solution is found, the
poll step is interrupted) or completely (all candidates are evaluated) as it does not affect the
convergence analysis. If a better point is found after the search and poll steps, the iteration
is marked as successful. If not, it is considered as unsuccessful. In the first case, the frame
size parameter is increased or kept constant. In the second case, the frame size parameter is
reduced, increasing the mesh resolution and reducing the exploration field around the current
incumbent point xk. Directions d ∈ Dk∆ may be generated according to the OrthoMADS
instantiation of MADS [2]. Algorithm 5 summarizes the main steps of MADS. More details
can be found in [16,26].

Under mild assumptions, the MADS convergence analysis provided in [15] guarantees the
existence of an accumulation point x̂ such that its Clarke generalized derivative f 0(x̂; d) is
non negative [59] for all the directions d ∈ Rn belonging to the hypertangent cone T HΩ (x̂) [59].
More details are given in the convergence analysis of the new algorithm in Section 5.5.

5.4 The mesh adaptive direct multisearch algorithm (DMulti-MADS) for mul-
tiobjective optimization

This section presents the new bound-constrained blackbox algorithm for multiobjective op-
timization, named DMulti-MADS. It is divided into three subsections. The first subsection
gives a high-level description of DMulti-MADS. The two other subsections address specific
points: the updating of the mesh size and frame size parameters of the list of non dominated
points and the choice of the current incumbent point.
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Algorithm 5 The mesh adaptive direct search algorithm (MADS)
Input : Choose a set of initial starting points V 0 ⊂ Rn, ∆0 > 0 and D = GZ be a positive
spanning set matrix.
for k = 0, 1, 2, . . . do
Set δk = min

{
∆k,

(
∆k
)2
}
.

1. Search step (optional): Evaluate f at a finite set of points Sk on the mesh Mk. If
successful, go to 3.
2. Poll step : Select a positive spanning set Dk∆ ⊂ D. Evaluate f at the set of poll
points P k ⊂ F k where F k is the frame of extent ∆k.
3. Parameter update: Update the cache V k+1, the incumbent xk+1 and the frame size
parameter ∆k.

end for

Figure 5.3 A simplified version of the MADS algorithm.

5.4.1 The DMulti-MADS algorithm

DMulti-MADS deals with constraints via the extreme barrier approach [74]. Specifically, the
objective function f is extended to an extreme barrier function by setting

fΩ(x) =

 f(x) if x ∈ Ω,
(+∞,+∞, . . . ,+∞)> otherwise.

Concretely, all the points that do not satisfy constraints are affected an infinite objective
value.

Similarly to the DMS [74] and DFMO [180] algorithms, DMulti-MADS generates a Pareto
set approximation at each iteration. More specifically, at each iteration k, DMulti-MADS
keeps a finite set Lk which stores all feasible non dominated points found until iteration k,
called an iterate list. For each k, Lk is a finite set defined as

Lk =
{

(xj,∆j) : xj ∈ Ω and ∆j > 0, j = 1, 2, . . . , lk
}

where lk = |Lk| and ∆j is the frame size parameter associated to the j-th non dominated
element xj of the list Lk. δj = min

{
∆j, (∆j)2} is the mesh size parameter associated with

xj.

The DMulti-MADS algorithm is an extension of the direct search method MADS. As in single-
objective optimization, its functioning is organized around a poll step and a search step, this
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last one being optional as the convergence analysis does not depend on it. All notations
P k, Mk, F k have the same mathematical meaning as in single-objective optimization (see
Section 5.3). The algorithm is described in Algorithm 6.

Algorithm 6 DMulti-MADS algorithm with extreme barrier
Input : Choose x0 ∈ Ω, ∆0 > 0, D = GZ be a positive spanning set matrix, τ ∈ (0; 1)∩Q
the frame size adjustment parameter and w+ ∈ N a fixed integer parameter. Initialize the
list of non dominated points L0 = {(x0,∆0)}.
for k = 0, 1, 2, . . . do
Selection of the current incumbent point: Select

(
xk,∆k

)
element of Lk such that

(xk,∆k) := selectCurrentIncumbent(Lk, w+, τ) (see Algorithm 8).
Set δk = min

{
∆k,

(
∆k
)2
}
. Initialize Ladd := ∅.

Search step (optional): Evaluate fΩ at a finite set of points Sk on the mesh Mk ={
xk + δkDz : z ∈ Np

}
. Set Ladd := {(x,∆k) : x ∈ Sk}.

If t ≺ xk for some t ∈ Sk, declare the iteration as successful and skip the poll step.
Poll step : Select a positive spanning set Dk∆ ⊂ D. Evaluate fΩ at the set of poll points
P k = {xk + δkd : d ∈ Dk∆} subset of the frame F k of extent ∆k. Set Ladd := {(x,∆k) :
x ∈ P k} ∪ Ladd.
If t ≺ xk for some t ∈ P k, declare the iteration as successful. Otherwise declare the
iteration as unsuccessful.
Parameter update: Remove all dominated points of Ladd. Call the procedure Lk+1 :=
updateList(Lk, Ladd, τ) (see Algorithm 7).
If the iteration is unsuccessful, replace the poll center (xk,∆k) by (xk,∆k+1) with ∆k+1 <
∆k, i.e., ∆k+1 := τ∆k.

end for

Figure 5.4 Description of the DMulti-MADS algorithm with extreme barrier.

At the beginning of iteration k, an element
(
xk,∆k

)
of the list Lk is selected as the current

incumbent point at iteration k. The choice of the current incumbent point is crucial in the
convergence analysis and will be detailed later on. A temporary list of points Ladd is initialized
to keep track of all the new generated points during iteration k with the associated frame
size parameter ∆k.

As for the MADS algorithm for single-objective optimization, the search step is optional: it
aims at improving the performance of the algorithm by evaluating points on the mesh of
coarseness δk. The poll step obeys to the same rules as in single-objective optimization. To
guarantee convergence, evaluated points during the poll step must belong to the poll set P k.

An iteration is said to be successful as soon as a new point dominating the current incumbent
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xk is found. Otherwise, it is said to be unsuccessful. As in single-objective optimization, one
can choose the opportunistic or the complete polling strategy.

The two next subsections address main details left open during the description of DMulti-
MADS.

5.4.2 Updating the list Lk

At the end of iteration k, Lk is updated as described in Algorithm 7.

Algorithm 7 updateList(Lk, Ladd, τ)
1: for j = 0, 1, 2, . . . , |Ladd| do
2: if there exists at least an element (x,∆) ∈ Lk such that xj ≺ x then
3: set Lk := Lk \

{
(x,∆) ∈ Lk : xj ≺ x

}
∪ (xj, τ−1∆j).

4: else if there exists i = 1, 2, . . . ,m such that fi(xj) < minx∈Lk fi(x) then
5: set Lk := Lk ∪ (xj, τ−1∆j).
6: else if xj ∼ x for all (x,∆) ∈ Lk then
7: set Lk := Lk ∪ (xj,∆j).
8: end if
9: end for
10: return Lk.

Figure 5.5 Procedure to update the iterate list Lk.

The updateList procedure successively adds new points found during iteration k to the
current list Lk and remove dominated points from Lk. At the end of the procedure, the
updated Lk+1 list contains only non dominated points. Let emphasize that before calling
the updateList procedure, Ladd has been filtered to remove dominated points; in Algorithm
7, Ladd contains only non dominated points relatively to each other. By construction, all
elements of Ladd have the same associated frame size parameter value ∆k.

At iteration k, the DMulti-MADS algorithm attempts to find at least a new point dominating
the current incumbent xk. If found, the iteration is marked as successful. In this case, Ladd

contains at least a point dominating the current incumbent xk. The first condition of Lines
2−3 of Algorithm 7 ensures the replacing of element (xk,∆k) by the new element (xj,∆j) with
xj ≺ xk and ∆j > ∆k. In case of an unsuccessful iteration, no element of Ladd dominates the
current incumbent xk. Consequently, the element (xk,∆k) ∈ Lk is substituted by (xk,∆k+1)
with ∆k+1 < ∆k as described in Algorithm 6.
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During the search and poll steps, the algorithm can generate points which improve the Pareto
set approximation Lk without dominating the current poll center xk. Typically, a good Pareto
set approximation should verify three criteria [11, 279]:

• Its representation in the objective space should be as close as possible to the Pareto
front.

• A good (uniform) distribution of the non dominated points in the objective space should
be assessed.

• The extent of its representation in the objective space should be maximized, i.e., single-
objective non dominated solutions should be part of the Pareto set approximation.

By increasing the mesh and frame size parameters for new promising elements by a factor
τ−1, τ ∈ (0, 1) ∩ Q, DMulti-MADS enables a larger exploration in the zone around these
new points if they are selected as poll centers in the following iterations (Lines 3 and 5 of
Algorithm 7). The updateList procedure considers the following points as promising:

• The ones that dominate a portion of the actual list of non dominated points Lk (Line
2 of Algorithm 7). The images of these points are closer to the Pareto front.

• The ones which improve the extent of the Pareto set approximation in the objective
space (Line 4 of Algorithm 7), i.e., that reach a better value for at least one of the
objectives.

On the contrary, the updateList procedure does not consider as promising new points that
fill the approximated Pareto front, i.e. new non dominated points that neither dominate the
current points or extend the approximated Pareto front (Line 6 of Algorithm 7). For these
indifferent points, the frame size parameter value is kept as ∆j (Line 7 of Algorithm 7). One
may hope to find new non dominated points that locally improve the density of the Pareto
front approximation around these new points. Figure 5.6 illustrates these concepts.

Let emphasize that the convergence analysis requires that new elements added to the list
Lk must have a frame size parameter ∆ ≥ ∆k. The updateList procedure satisfies these
requirements.

5.4.3 Choice of the current incumbent xk

Contrary to the DMS algorithm [74], the choice of the incumbent point xk at iteration k

is less flexible, since the convergence analysis depends on it. More precisely, at iteration k,
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• Lk

Figure 5.6 Zone of interests relatively to a set Lk for a biobjective minimization problem in
the objective space.

element (xk, ∆k) of the list Lk must verify

(xk,∆k) ∈
{

(x,∆) ∈ Lk : τw+∆k
max ≤ ∆ ≤ ∆k

max

}
where τ ∈ (0, 1) ∩ Q is the frame size adjustement parameter, w+ ∈ N a fixed integer
parameter (chosen by the user) and ∆k

max the maximum frame size parameter at iteration k
defined by

∆k
max = max

j=1,2,...,|Lk|
∆j.

Having w+ = 0 means that the current incumbent xk at iteration k is chosen among the ones
which have maximum frame size parameters. When w+ is set to a sufficiently large value,
the selection criterion is similar to the one of the DMS algorithm [74]: all elements of the list
Lk at iteration k are potential current incumbents.

As new evaluated points at iteration k are initialized with the ∆k value, it is possible to have
several elements of Lh satisfying the above condition for h ≥ k. One can ask how to choose
the current incumbent point xk at iteration k among the ones which satisfy the frame size
parameter selection criterion.

Following the recommendations of [74], a first approach should be to take the first element
of the list Lk which satisfies the frame size parameter selection condition as the current
incumbent and add all new non dominated points at the end of the list to diversify the
search. To fill gaps into the Pareto front approximation, a second approach consists in
choosing elements satisfying the frame size parameter selection criterion in the least-dense
zone of the Pareto front approximation.
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Audet et al. [27] consider the distance between three consecutive points in biobjective op-
timization; the point in the middle is taken as the current incumbent. The crowding dis-
tance [85] extends this result to more objectives. For each objective, values of the non
dominated points are sorted in ascendant order. The crowding distance for a given point
is the sum of the normalized distance between this point and its two adjacent neighbors
according to each objective. Its computational cost is in O(m × |Lk| × log(|Lk|)). But the
crowding distance does not consider the extreme points of the current approximated Pareto
front. Based on these remarks and the work of [27], a new way to select a current incumbent
point xk with frame size parameter ∆k is proposed, as described in Algorithm 8.

Algorithm 8 selectCurrentIncumbent(Lk, w+, τ)

Let Lselect :=
{

(x,∆) ∈ Lk : τw+∆k
max ≤ ∆ ≤ ∆k

max

}
with ∆k

max = max
j=1,2,...,|Lk|

∆j.

if |Lselect| = 1 then
return (x,∆) with Lselect = {(x,∆)}.

else if |Lselect| = 2 and |Lk| = 2 then
Let j0 ∈ arg max

j=1,2
max

i=1,2,...,m
fi(xj).

return (xj0 ,∆j0).
else
Let j0 ∈ arg max

j=1,2,...,|Lselect|
max

i=1,2,...,m
γi(xj).

return (xj0 ,∆j0).
end if

Figure 5.7 A procedure to select the current incumbent at iteration k taking into account
the spacing between elements of the iterate list Lk in the objective space.

The selectCurrentIncumbent procedure firstly stores elements of the list Lk satisfying the
frame size parameter selection criterion into a temporary list Lselect. If Lk possesses two
elements, the procedure selects as current incumbent the one with the higher objective value
among all objectives. By exploring the region around this incumbent, one can expect to find
non dominated points with lowest objective values and then close to the Pareto front. If
|Lselect| ≥ 2 and Lk has more than two elements, the element of the list Lselect in the least
dense zone of the current Pareto set approximation Lk in the objective space is selected,
according to our new distance-based indicator γi for i = 1, 2, . . . ,m.

For each objective i = 1, 2, . . . ,m, Lk = {(x1,∆1), (x2,∆2), . . . , (x|Lk|,∆|Lk|)} is ordered such
that

fi(x1) ≤ fi(x2) ≤ . . . ≤ fi(x|L
k|).
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γi corresponds to the scaled distance between three consecutive points according to objective
i for i = 1, 2, . . . ,m. It is then defined, for j = 1, 2, . . . , |Lk|, by

γi(xj) =



2 fi(x2)− fi(x1)
fi(x|Lk|)− fi(x1) if j = 1,

2 fi(x|L
k|)− fi(x|L

k|−1)
fi(x|Lk|)− fi(x1) if j = |Lk|,

fi(xj+1)− fi(xj−1)
fi(x|Lk|)− fi(x1) otherwise.

If xj is the first or last element of the sorted list Lk, the double scaled distance between this
point and its closest neighbor for objective i is considered.

The point which is chosen as the current incumbent at iteration k is the one which satisfies
the frame size parameter selection criterion in the least dense zone according to

γ = max
j=1,2,...,|Lselect|

max
i=1,2,...,m

γi(xj).

Figure 5.8 illustrates this distance-based indicator for two objectives.

f1

f2
• f(x1)

•f(x2)

•f(x3)
•f(x4)
•f(x5)
•f(x6)
•f(x7)

γ = γ1(x3)

Figure 5.8 An example of the γ distance-based indicator in biobjective optimization. γ
corresponds to the largest scaled distance between three consecutive points according to one
objective i, for i = 1, 2, . . . ,m. Here, γ = γ1(x3).

Remark. In the implementation of direct search methods, the DMulti-MADS algorithm stops
as soon as the mesh size parameter of the current poll center is lower than a threshold
value chosen by the user or after a maximal budget of evaluations is reached. In the case
where the considered budget of evaluations is important, to avoid premature stopping, the
selectCurrentIncumbent procedure does not store in Lselect the elements of Lk whose as-
sociated mesh size parameters are lower than the threshold value. If Lselect is empty, an
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element with maximal frame size parameter is returned and the algorithm will stop at the
next iteration.

5.5 Convergence analysis of the DMulti-MADS algorithm

The previous section describes the DMulti-MADS algorithm. This section is devoted to
its convergence analysis, inspired by the works of [74, 180]. Basically, the following result
is shown: under mild assumptions, DMulti-MADS produces (at the limit) a set of local
stationary points of the constrained multiobjective problem. As in the classical analysis of
MADS [15], the objective is to show that there exists a subsequence of mesh size and frame
size parameters converging to zero. However, contrary to [74], the analysis distinguishes
between the Pareto set approximation and its elements. To guarantee this condition, the
following assumption is required given a feasible starting point x0.

Assumption 5.5.1. The level set L(x0) = ⋃m
i=1{x ∈ Ω : fi(x) ≤ fi(x0)} is compact. Each

component fi of the objective function f is bounded from above and below for i = 1, 2, . . . ,m.

Although this algorithm deals with bound-constrained multiobjective optimization problems,
the convergence analysis can be generalized to any general feasible set Ω ⊆ Rn. In this section,
all the results are proved with this generalization.

5.5.1 Preliminaries

This subsection is dedicated to the analysis of the convergence of the mesh and frame size
parameters, based on the works of [15,74,244].

Theorem 7. Let Assumption 5.5.1 hold. Then DMulti-MADS generates a sequence of
Pareto set approximations iterates satisfying

lim
k→∞

inf δkmax = 0 and lim
k→∞

inf ∆k
max = 0.

Proof. Suppose by contradiction that there exists a strictly positive lower bound on the
mesh size parameter δkmax for all k ≥ 0. As in single-objective optimization [13, 15], similar
arguments enable to show that all the points evaluated by DMulti-MADS lie on an integer
lattice. Since the intersection of an integer lattice and a compact set, as assumed by As-
sumption 5.5.1, is a finite set, then only a finite number of points can be added to the Pareto
set approximation. There remains to prove that the DMulti-MADS algorithm cannot cycle
among these points.
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When an element of the Pareto set approximation is removed, it is because it is dominated
by a new point. By transitivity, it cannot be added to the Pareto set approximation again.
At each successful iteration, at least one non-dominated point is added to the current Pareto
set approximation. At each unsuccessful iteration, one non-dominated point may be added
to the current Pareto set approximation2. As the number of points that can be added is
finite, the number of times the maximal mesh size parameter of the approximated Pareto set
can be increased or kept constant is finite. Given the update rule of the mesh size parameter,
this contradicts the existence of a strictly positive lower bound on the mesh size parameter.

The second part of the theorem is based on the fact that δkmax = min
{

∆k
max,

(
∆k

max

)2
}
, which

concludes the proof.

Let highlight that when the iteration k is marked as unsuccessful, the maximal mesh size
parameter of the current Pareto set approximation is not always decreased. Indeed, new non
dominated points can be added to the Pareto set approximation even though the algorithm
does not find new points dominating the current incumbent xk. Furthermore, the Pareto set
approximation can contain elements with the same mesh size parameter.

The following corollary puts into relief a statistical relation between the elements of the
list Lk. For a given subsequence of Pareto set approximations, the mesh and frame size
parameters converge in average towards zero.

Corollary 7.1. Let Assumption 5.5.1 hold. Let {Lk}k∈N with

Lk =
{

(xjk ,∆jk) : xjk ∈ Ω and ∆jk > 0, jk = 1, 2, . . . , |Lk|
}

be the sequence of current Pareto set approximations generated by the DMulti-MADS algo-
rithm. Then

lim
k→∞

inf δ̄k = 0 and lim
k→∞

inf ∆̄k = 0

with

δ̄k = 1
|Lk|

|Lk|∑
jk=1

δjk and ∆̄k = 1
|Lk|

|Lk|∑
jk=1

∆jk .

Proof. Since δkmax = maxjk=1,2,...,|Lk| δ
jk for k = 0, 1, 2, . . ., one has δ̄k ≤ δkmax for all k ∈ N.

Theorem 7 states that there exists a subset of indexes k ∈ K such that {δkmax}k∈K converges
to zero. By the squeeze theorem, one gets limk∈K δ̄k = limk∈K δkmax = 0. The proof with the
frame size parameter is equivalent.

2We replace “at most” by “may be” in this sentence.
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Intuitively, this corollary claims that either the cardinality of Lk converges to infinity or all
the mesh and frame size parameters converge to zero for a given set of indexes k ∈ K.

Theorem 7 analyzes the convergence of mesh size parameters relatively to the list of non
dominated points Lk. One has to go deeper to analyze the behavior of mesh size and frame
size parameters of specific elements of the list to prove convergence of the DMulti-MADS
algorithm to stationary points. To do that, the concept of linked sequence, taken from [180]
is introduced.

Definition 38. Let {Lk}k∈N with Lk =
{

(xj,∆j) : xj ∈ Ω and ∆j > 0, j = 1, 2, . . . , |Lk|
}
be

the sequence of current Pareto set approximations generated by the DMulti-MADS algorithm.
A linked sequence is defined as a sequence {(xjk ,∆jk)} such that for any k = 1, 2, . . ., the pair
(xjk ,∆jk) ∈ Lk is generated at iteration k−1 of DMulti-MADS from the pair (xjk−1 ,∆jk−1) ∈
Lk−1.

The relation between the pair (xjk ,∆jk) ∈ Lk and (xjk−1 ,∆jk−1) ∈ Lk−1 is precised below.

1. Successful iteration : the algorithm generates at least one point that dominates the
current incumbent point xk−1. All non dominated points at iteration k − 1 which are
not dominated at the end of iteration k−1 are inserted in the Pareto set approximation
Lk.

Then one has:

• ∀(xjk ,∆jk) ∈ Lk \ Lk−1,

xjk = xk−1 + δk−1Dzk−1 for some zk−1 ∈ Nl and ∆jk ∈ {∆k−1, τ−1∆k−1}.

• ∀(xjk ,∆jk) ∈ Lk ∩ Lk−1,

xjk = xjk−1 and ∆jk = ∆jk−1 .

2. Unsuccessful iteration : The algorithm does not generate a point that dominates the
current incumbent point xk−1. However, it is possible that the algorithm finds new non
dominated points which are inserted into the Pareto set approximation.

Then one has:

• ∀(xjk ,∆jk) ∈ Lk \ Lk−1,

xjk = xk−1 + δk−1Dzk−1 for some zk−1 ∈ Nl and ∆jk ∈ {∆k−1, τ−1∆k−1}.
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• ∀(xjk ,∆jk) ∈ Lk ∩ Lk−1 \ {(xk−1,∆k−1)},

xjk = xjk−1 and ∆jk = ∆jk−1 .

• ∀(xjk ,∆jk) ∈ {(xk−1,∆k−1)},

xjk = xjk−1 and ∆jk = τ∆jk−1 .

Note that the current incumbent at iteration k − 1 is not always the same at
iteration k.

As proved below, linked sequences generate subsequences of points whose mesh size and
frame size parameters converge to 0.

Theorem 8. Let Assumption 5.5.1 hold. Let {Lk}k∈N with

Lk =
{

(xj,∆j) : xj ∈ Ω and ∆j > 0, j = 1, 2, . . . , |Lk|
}

be the sequence of current approximated Pareto sets generated by the DMulti-MADS algo-
rithm. Then every linked sequence {(xjk ,∆jk)} is such that

lim
k→∞

inf δjk = 0 and lim
k→∞

inf ∆jk = 0.

Proof. ∀k ∈ N, 0 ≤ δjk ≤ δkmax. Using Theorem 7 and the squeeze theorem, one gets

lim
k→∞

inf δjk = lim
k→∞

inf δkmax = 0.

As δjk = min
{

∆jk , (∆jk)2}, it results that
lim
k→∞

inf ∆jk = 0.

Note that due to the update strategy, the mesh and frame size parameters for a linked
sequence {(xjk ,∆jk)} can only decrease when there exists an index k ∈ N such that xk = xjk

and iteration k is marked as unsuccessful.
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5.5.2 Refining subsequences and directions

The theory of classical direct search methods consists in analyzing the behavior at limit points
of unsuccessful iterates. The concept of refining subsequences in the context of multiobjective
optimization, previously introduced in [15], is adapted.

Definition 39. A subsequence {xk}k∈K of iterates corresponding to unsuccessful poll steps is
said to be a refining subsequence if {δk}k∈K converges to 0. The limit point x̂ of a convergent
refining subsequence {xk}k∈K is said to be a refining point3.

By Assumption 5.5.1 and Theorem 8, every linked sequence produced by the DMulti-MADS
algorithm contains a refining subsequence.

Theorem 9. Let Assumption 5.5.1 hold. Let {Lk}k∈N with

Lk =
{

(xj,∆j) : xj ∈ Ω and ∆j > 0, j = 1, 2, . . . , |Lk|
}

be the sequence of current Pareto set approximations generated by the DMulti-MADS algo-
rithm. Then every linked sequence {(xjk ,∆jk)} is such that {xjk}k∈K is a refining subse-
quence.

This theorem is different than the one proposed by [74] where the DMS algorithm generates
at least one refining subsequence 4.

As the DMulti-MADS convergence analysis is based on the study of generalized directional
derivatives along certain limits directions at refined points, the concept of a refining direc-
tion [15] is introduced.

Definition 40. Given a refining subsequence {xjk}k∈K and its corresponding refining point
x̂, a direction d is said to be a refining direction if and only if there exists an infinite subset
K ′ ⊆ K such that dk ∈ Dk∆ with xjk + δjkdk ∈ Ω and limk∈K′

dk
‖dk‖ = d

‖d‖ .

5.5.3 Tangent cones and generalized derivatives

The main convergence result of DMulti-MADS is that a limit point of a refining subsequence
of a linked sequence generated by the algorithm is Pareto-Clarke stationary. It requires
some concepts linked to stationarity in the context of nonsmooth constrained multiobjective
optimization.

3This sentence was modified according to the published article
4This sentence was modified according to the published article.
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Classical theory of direct-search methods in the context of constrained single-objective opti-
mization makes use of the hypertangent cone, which is a generalization of the tangent cone at
x, i.e. the set of directions that point inside Ω. Definition and notations are taken from [15].

Definition 41. A vector d ∈ Rn is said to be a Clarke tangent vector to the set Ω ⊆ Rn

at the point x in the closure of Ω if for every sequence {yk} of elements of Ω that converges
to x and for every sequence of positive real numbers {tk} converging to zero, there exists a
sequence of vectors {wk} converging to d such that yk + tkwk ∈ Ω.

The set of all Clarke tangent vectors to Ω at x is called the Clarke tangent cone at x and is
denoted by T ClΩ (x). The interior of this cone is defined as the hypertangent cone.

Definition 42. A vector d ∈ Rn is said to be a hypertangent vector to the set Ω ⊆ Rn at
the point x ∈ Ω if and only if there exists a scalar ε > 0 such that

y + tw ∈ Ω, ∀y ∈ Ω ∩ Bε(x), w ∈ Bε(d) and 0 < t < ε

where Bε(d) is the open ball centered at x of radius ε.

The set of all hypertangent directions vectors to Ω at x is called the hypertangent cone to Ω
at x, and is denoted by T HΩ (x).

Note that the Clarke tangent cone can be considered as the closure of the hypertangent
cone. The convergence analysis requires the assumption that the objective function f is
locally Lipschitz continuous in Ω, i.e., each of its components fi, for i = 1, 2, . . . ,m, is locally
Lipschitz continuous in Ω. Assuming this assumption is satisfied, the Clarke-Jahn generalized
derivatives [59] of each function fi along directions d in the hypertangent cone to Ω at x
exist and are defined by

f oi (x; d) = lim sup
y→x, y∈Ω

t↘0, y+td∈Ω

fi(y + td)− fi(y)
t

, i = 1, 2, . . . ,m.

Audet et al [15] show that the directions v in the Clarke tangent cone can be expressed by
taking the limit, i.e.,

f oi (x; v) = lim
d∈T HΩ (x)

d→v

f oi (x; d), i = 1, 2, . . . ,m.

Stationarity conditions for the DMulti-MADS algorithm can now be defined.
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Definition 43. Let f be Lispchitz continuous near a point x̂ ∈ Ω. x̂ is said to be a Pareto-
Clarke critical point of f in Ω for all directions d ∈ T ClΩ (x̂) if there exists i = i(d) ∈
{1, 2, . . . ,m} such that f oi (x̂; d) ≥ 0.

If the objective function f is differentiable, this definition can be reformulated using the
gradient of each component of the objective function f .

Definition 44. Let f be differentiable at a point x̂ ∈ Ω. x̂ is said to be a Pareto-Clarke KKT
critical point of f in Ω for all directions d ∈ T ClΩ (x̂) if there exists i = i(d) ∈ {1, 2, . . . ,m}
such that ∇fi(x̂)>d ≥ 0.

5.5.4 Convergence results

The main convergence results of the DMulti-MADS algorithm can now be given. It states
that every limit point of a refining subsequence generated by DMulti-MADS is Pareto-Clarke
optimal under the condition that the set of refining directions is dense in the unit sphere.
Thus, every limit point of a refining subsequence of a linked sequence generated by DMulti-
MADS is Pareto-Clarke optimal. The proof follows the classical theory of direct-search
methods and in particular of the DMS algorithm [74].

Theorem 10. Let {xjk}k∈K be a refining subsequence converging to x̂ ∈ Ω and a refining
direction d ∈ T HΩ (x̂). Assume that f is Lipschitz continuous near x̂. Then there exists
i = i(d) ∈ {1, 2, . . . ,m} such that f oi(d)(x̂; d) ≥ 0.

Proof. Let {xjk}k∈K be a refining subsequence converging to a refined point x̂ ∈ Ω and
d ∈ THΩ (x̂) a refining direction for x̂. By definition of a refining direction, there exists an
infinite subsequence K ′ of the set of indices K of unsuccessful iterations, with poll directions
dk ∈ Dk∆ such that xjk + δkdk ∈ Ω and limk∈K′

dk
‖dk‖ = d

‖d‖ for all k ∈ K ′. Let ν be the
Lipschitz constant of f near x̂.
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For i ∈ {1, 2, . . . ,m}, one has

f oi

(
x̂; d
‖d‖

)
= f oi

(
x̂; d
‖d‖

)
+ lim sup

k∈K′

νδk‖dk‖
∥∥∥ dk
‖dk‖ −

d
‖d‖

∥∥∥
δk‖dk‖

≥ f oi

(
x̂; d
‖d‖

)
+ lim sup

k∈K′

∣∣∣fi(xjk + δkdk)− fi(xjk + δk‖dk‖ d
‖d‖)

∣∣∣
δk‖dk‖

≥ lim sup
k∈K′

fi(xjk + δk‖dk‖ d
‖d‖)− fi(x

jk)
δk‖dk‖

+ lim sup
k∈K′

∣∣∣fi(xjk + δkdk)− fi(xjk + δk‖dk‖ d
‖d‖)

∣∣∣
δk‖dk‖

≥ lim sup
k∈K′

fi(xjk + δkdk)− fi(xjk + δk‖dk‖ d
‖d‖) + fi(xjk + δk‖dk‖ d

‖d‖)− fi(x
jk)

δk‖dk‖

= lim sup
k∈K′

fi(xjk + δkdk)− fi(xjk)
δk‖dk‖

.

As {xjk}k∈K is a refining subsequence, each k ∈ K ′ ⊆ K corresponds to an unsuccessful
iteration, and xjk + δkdk ∈ Ω for dk ∈ Dk∆ does not dominate xjk . One can find for k ∈ K ′ a
component of the objective function of index i(k) such that fi(k)(xjk + δkdk)− fi(k)(xk) ≥ 0.
As the objective function has a finite number of components, one can consider a subset of
iteration indexes K ′′ ⊂ K ′ such that there exists at least one index i = i(d) such that:

f oi

(
x̂; d
‖d‖

)
≥ lim sup

k∈K′′
fi(xjk + δkdk)− fi(xjk)

δk‖dk‖
≥ 0.

If f is strictly differentiable at a refining point, one can state the following corollary.

Corollary 10.1. Let {xjk}k∈K be a refining subsequence converging to x̂ ∈ Ω and a refining
direction d ∈ THΩ (x̂). Assume that f is strictly differentiable at x̂. Then there exists an
i ∈ {1, 2, . . . ,m} such that ∇fi(x̂)>d ≥ 0.

Proof. It comes from the fact that when f is strictly differentiable at a point x ∈ Ω, f oi (x; d) =
∇fi(x)>d for d ∈ Rn, i = 1, 2, . . . ,m (see [59]).

Assuming that the set of refining directions is dense in the hypertangent cone at a refining
point x̂5, one can state the following theorem, which complies with the DMS algorithm
convergence analysis.

5The following works [2, 15] describe various strategies to generate such sets of refining directions.
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Theorem 11. Let {xjk}k∈K be a refining subsequence converging to x̂ ∈ Ω. Assume that f
is Lipschitz continuous near x̂ and T HΩ (x̂) 6= ∅. If the set of refining directions for x̂ is dense
in T ClΩ (x̂), then x̂ is a Pareto-Clarke critical point. In addition, if f is strictly differentiable
at x̂, then x̂ is a Pareto-Clarke KKT critical point.

Proof. As proved in [15], given a direction v in the Clarke tangent cone, one has

f oi (x̂; v) = lim
d∈T HΩ (x̂)

d→v

f oi (x̂; d), i = 1, 2 . . . ,m.

As the set of refining directions for x̂ is dense in T ClΩ (x̂), there exists a sequence of refining
directions {dr}r∈R ∈ T HΩ (x̂) for x̂ such that limr∈R dr = v. Since the number of components
of the objective function is finite, considering a subset R′ ⊆ R of indexes, one gets v =
limr∈R′ dr with f oi(v)(x̂; dr) ≥ 0 for all r ∈ R′ by Theorem 10. Passing at the limit concludes
the proof. The second statement of the theorem can be deduced easily.

5.6 Computational experiments

This section is devoted to the numerical experiments of DMulti-MADS on bound-constrained
multiobjective problems taken from [74]. The first part introduces the considered test prob-
lems and solvers. The second part presents an extension of the classical data profiles [192]
for multiobjective blackbox optimization, based on the hypervolume indicator [279]. Sev-
eral variants of DMulti-MADS are then compared using this tool in a third part. In the last
part, the performance of DMulti-MADS is analysed versus other state-of-the-art solvers. The
DMulti-MADS code is freely available at https://github.com/bbopt/DMultiMadsEB.

5.6.1 Bound-constrained problems and algorithms tested

All algorithms are tested on the benchmark set of multiobjective optimization problems
taken from [74]. It is composed of 100 problems, with a number of variables n ∈ [1, 30] and
a number of objective functions m ∈ {2, 3, 4}. It has 69 problems with m = 2, 29 problems
with m = 3, and 2 problems with m = 4. A modeling of these problems in AMPL can be found
at www.mat.uc.pt/dms/. Their implementations coded in Matlab and C++ can be found at
https://github.com/bbopt/DMultiMadsEB. In the numerical experiments, the following
solvers are tested:

• BiMADS (Bi-objective Mesh Adaptive Direct Search) [27] tested only for m = 2 objec-
tives – www.gerad.ca/nomad/.

https://github.com/bbopt/DMultiMadsEB
www.mat.uc.pt/dms/
https://github.com/bbopt/DMultiMadsEB
www.gerad.ca/nomad/
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• DMS (Direct MultiSearch) [74], version 0.3. – www.mat.uc.pt/dms/

• MOIF (MultiObjective Implicit Filtering) [126], version 0.1 – www.iasi.cnr.it/~liuzzi/
DFL/.

• NSGA-II (Non Dominated Sorting Algorithm II) [85]; implemented in the Pymoo Li-
brary [42], version 0.3.2 – pymoo.org/.

BiMADS, DMS and MOIF are deterministic algorithms, whereas NSGA-II is a stochastic
solver. All numerical results can be found at https://github.com/bbopt/DMultiMadsEB.

5.6.2 Data profiles for multiobjective blackbox optimization

In single-objective optimization, data profiles [192] enable the user to assess the performance
of a method on a set of problems for a given budget of function evaluations. Assume one wants
to solve minx∈Ω f(x) where f is a single-objective function and Ω the set of constraints. Let
P be the set of problems and A the set of considered algorithms. A data profile associated to
a solver a ∈ A is a cumulative distribution function which returns the percentage of problems
in P solved by a ∈ A for a given budget of group of function evaluations k ∈ N, i.e.

da(k) = 1
|P|
|{p ∈ P : Na,p ≤ k(np + 1)}| (5.1)

where Na,p is the number of functions evaluations required by solver a ∈ A to solve the
problem p ∈ P and np the dimension of the problem p ∈ P . By convention, if a problem
has not been solved given a maximum budget of function evaluations, then Na,p = +∞.
The np + 1 term on the right part of the inequality in Equation (5.1) is added based on the
assumption that a problem with higher dimension requires more function evaluations to be
solved than a problem with lower dimension. np + 1 is equally the number of points needed
to construct a simplex gradient in Rnp .

The definition of a convergence test to claim a problem has been solved is a critical phase
in the construction of a data profile. For single-objective optimization, let xb be the best
feasible point found by all algorithms on a given problem, and xe be the best feasible point
found by a given algorithm on this problem after e evaluations. Then the problem is said to
be solved by this algorithm with accuracy ετ > 0 if

f(x0)− f(xe) ≥ (1− ετ )(f(x0)− f(xb)),

where x0 is the feasible initial starting point.

www.mat.uc.pt/dms/
www.iasi.cnr.it/~liuzzi/DFL/
www.iasi.cnr.it/~liuzzi/DFL/
pymoo.org/
https://github.com/bbopt/DMultiMadsEB
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Several works describe the construction of data profiles for multiobjective blackbox optimiza-
tion, based on the use of quality indicators (see [11, 175] for surveys on quality indicators).
Since the works of [74], which to the best of our knowledge, introduced data and performance
profiles for multiobjective blackbox optimization, many researchers have adopted this frame-
work to assess the performance of their methods [126, 180, 213]. However, these frameworks
rely on spread and cardinality metrics, which are not Pareto compliant [11] with the domi-
nance order for multiobjective optimization. The use of Pareto compliant quality indicators
such as the hypervolume indicator is addressed in [180] for the construction of performance
profiles [192] for multiobjective blackbox optimization. Nonetheless, performance profiles pos-
sess the following drawbacks: they are sensitive to the number of considered solvers [74,130]
and are more difficult to interpret than the data profiles [50].

In this work, a new extension of data profiles for multiobjective optimization is proposed,
which relies on the hypervolume indicator. Note that the use of the hypervolume indicator
in data profiles is not new, as it is done in [50]. Some similarities between this work and [50]
are present. The main differences are highlighted:

• This work is more detailed in the description of the integration of the hypervolume
indicator into the convergence criterion, specifically the scaling of the objective vectors
and the positioning of the reference point.

• Variability of stochastic algorithms is included in this work based on the research of [228,
229].

The hypervolume indicator [279] represents the volume of the space in the objective space
dominated by a Pareto front approximation YN and delimited above by an objective vector
r ∈ Rm such that ∀y ∈ YN ,y < r. An illustration of the hypervolume indicator is shown in
Figure 5.9.

The hypervolume indicator enjoys many properties: it is Pareto compliant with the dom-
inance ordering, its interpretation is simple and it can serve as a metric for convergence,
cardinality, spread and extension of a Pareto front approximation [11,175]. On the contrary,
its computation is exponential in the number of objectives [11, 175]. Practically, there ex-
ist several libraries (see for example [121]) which can compute the hypervolume indicator
value in less than some milliseconds on modern machines for a small number of objectives
(m ∈ {1, 2, 3, 4}). Indeed, one has to keep in mind that the construction time of the data
profiles is not important in these experiments.

To build the convergence test for the multiobjective optimization case, one needs to consider
a Pareto front reference Y p for the problem p ∈ P . From this Pareto front reference, let
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f1

f2

•

•
•

•

•

◦ r

HV (YN ; r) • Pareto front approximation

◦ Reference objective vector

Figure 5.9 Illustration of the hypervolume indicator (HV) for a biobjective minimization
problem, delimited above by the reference objective vector r ∈ R2. The higher, the better.

extract the approximated ideal objective vector

ỹI,p =
(

min
y∈Y p

y1, min
y∈Y p

y2, . . . , min
y∈Y p

ymp
)
,

and the approximated Nadir objective vector

ỹN,p =
(

max
y∈Y p

y1,max
y∈Y p

y2, . . . ,max
y∈Y p

ymp
)
,

where mp is the number of objectives considered in problem p ∈ P .

Let Y e be the Pareto front approximation found after e evaluations by a given deterministic
algorithm. To avoid privileging an objective function against another, a transformation T is
applied to the Pareto front reference, the Pareto front approximation and the approximated
Nadir objective vector. This transformation is defined by: ∀y ∈ Y e ∪ Y p ∪ {ỹN,p}

T (y) =

(y− ỹI,p)� (ỹN,p − ỹI,p) if ỹI,p 6= ỹN,p

y− ỹI,p otherwise

where � is the element-wise divisor operator. Thus all objective vectors are scaled and
translated such that T (ỹI,p) = 0Rmp and T (ỹN,p) = 1Rmp if ỹN,p exists. Note that this
translation does not modify the dominance ordering, i.e. y1 ≤ y2 implies T (y1) ≤ T (y2)
with y1, y2 two objective vectors. Finally, the multiobjective problem p ∈ P is said to be
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solved by this algorithm with accuracy ετ > 0 if

HV
(
T (Y e);T (ỹN,p)

)
HV (T (Y p);T (ỹN,p)) ≥ 1− ετ

where HV (YN , r) is the hypervolume indicator value of the Pareto front approximation de-
limited from above by the reference objective vector r. By convention, the hypervolume
indicator does not consider elements of YN which do not dominate r. If all elements of YN
do not dominate r, then HV (YN ; r) = 0.

Given a problem p ∈ P , the Pareto front reference Y p is constructed using the best feasible
non dominated points found by all considered solvers on this problem for a maximum budget
of evaluations. More precisely, the Pareto front reference is computed by removing the
dominated points found in the union of the Pareto front approximations generated by the
set of solvers on Problem p ∈ P once the budget of functions evaluations is exhausted.

Stochastic algorithms are commonly used to tackle blackbox multiobjective optimization
problems. To include them into the data profiles framework, one can consider that different
instances of a given problem obtained by different random seeds constitute different problems.
This augmented set of problems can be used to construct classical data profiles as explained
above. The authors in [50] adopt this approach. However, this approach does not enable to
visualize the variability of stochastic algorithms on a given set of problems P . This work
proposes another approach, inspired by [228,229].

Consider a stochastic algorithm a ∈ A and a set of problems P . Assume the algorithm
has generated after e evaluations different Pareto front approximations Y e

a1,p, Y
e
a2,p, . . . , Y

e
aq ,p

corresponding to q = |Ia| different instances for all the problems p ∈ P . For each instance,
compute the respective hypervolume values hea1,p, h

e
a2,p, . . . , h

e
aq ,p as described previously. A

specific instance aj ∈ Ia of the stochastic algorithm a ∈ A is said to solve the problem p ∈ P
with accuracy ετ > 0 if:

hea,p
HV (T (Y p), T (ỹN,p)) ≥ 1− ετ

where Y p is the Pareto front reference of Problem p and ỹN,p its associated approximated
Nadir objective vector.

With this convergence test, one can associate a unique data profile daj for each of the instances
aj ∈ Ia of the stochastic algorithm a ∈ A (designed as an operational characteristic in [228,



126

229]). The average data profile of the stochastic algorithm a ∈ A is then defined as

d̄a : k ∈ N 7→ 1
|Ia|

|Ia|∑
j=1

daj(k).

Similarly, the lower bound and upper bound data profiles of the stochastic algorithm a ∈ A
are respectively defined as

dla : k ∈ N 7→ min
1≤j≤|Ia|

daj(k)

and
dua : k ∈ N 7→ max

1≤j≤|Ia|
daj(k).

These two data profiles delimit the variations of the performance of a given stochastic algo-
rithm for a given set of instances.

5.6.3 Comparing different variants of DMulti-MADS

The aim of the tests presented in this section is to understand the impact of the different
algorithmic options of Dmulti-MADS on its computational efficiency. The experiments focus
on three parameters:

• The success iteration condition: for DMulti-MADS, an iteration is said to be successful
if the algorithm generates a new point which dominates the current poll center, named
the strict success strategy. In order to compare with the DMS success strategy, a
DMS strategy version of the DMulti-MADS algorithm is implemented. Specifically, an
iteration of the DMS strategy version is marked as a success if a new non dominated
point is found. The selection of the poll center and the update step of the new points
remain the same; in case of a success, the poll center mesh size and frame size parameters
remain constant. Note that with these conditions, it is possible to prove the same
convergence results as for the DMulti-MADS algorithm.

• The choice of the current incumbent. Two selection strategies are considered. The first
one picks the first element of the iterate list with the maximum mesh size and frame
size parameters. The second one selects the poll center according to Algorithm 8, which
includes the spread of the current non dominated points in its selection criterion.

• The opportunistic strategy. If the opportunistic strategy is activated, the iteration is
stopped as soon as the algorithm finds a new point which triggers the success condition.
Otherwise, the iteration continues until the end of the poll step.
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These 8 variants are implemented in Julia and can be found at https://github.com/
bbopt/DMultiMadsEB. For all variants, a speculative search strategy is implemented on the
model of [15], as follows: considering the incumbent point xk at iteration k > 0 generated
during iteration l < k with incumbent poll center xl, one can build the target direction [22]
wk = xk−xl. If no failure iteration was ever observed at xk, the search point sk = xk+wk is
firstly evaluated before executing the poll step. Moreover, our implementation of the DMulti-
MADS exploits the target direction wk to reduce the number of polling directions generated
by OrthoMADS to n + 1 directions without models as described in [22]. Preliminary tests
show that this approach is more efficient than the classical OrthoMADS strategy [2] with 2n
polling directions. This implementation is also the standard one in the NOMAD software when
all models are deactivated for single objective optimization.

The mesh is implemented using the granular mesh strategy devised in [18]. All variants stop
as soon as one component of the mesh size vector is below 10−9 or reach a maximum number
of 30, 000 evaluations. For each problem, the variants start from the same set of initial points
using the linesearch starting strategy exposed in [74]. For each problem and each variant,
10 replications are run by changing the random seed which controls the generation of the
polling directions.

All variants use the fixed integer parameter w+ = 3. For more details about this choice, the
reader is invited to consult Appendix 5.8.

Figure 5.10 shows the data profiles for the set of variants implementing the strict success
strategy with tolerance accuracies ετ ∈ {10−2, 5 × 10−2, 10−1}. From these graphs, one can
note that both strict strategy variants coupled with the spreading strategy outperform the
remaining variants without the spreading strategy. From this figure, one can equally observe
that the strict success strategies without opportunistic polling slightly perform better than
their counterpart variants with opportunistic polling. Similar observations can be done for
the set of DMulti-MADS variants with DMS strategy, as shown in Figure 5.11.

To select the most efficient strategy variants among all DMulti-MADS variants, Figure 5.12
shows the data profiles for the four best variants with tolerance accuracies ετ ∈ {10−2, 5 ×
10−2, 10−1}. From these graphs, one can observe that for a lower budget of evaluations
(i.e. inferior to 200 (n + 1) evaluations), strict success strategies variants with spread solve
slightly more problems than DMS strategies variants with spread. However, for a larger
budget of evaluations, using the DMS strategy performs better than using the strict strategy
with and without opportunity. For the DMS strategy and strict strategy variants and for any
budget on this set of problems, evaluating points opportunistically does not bring considerable
advantages. For the remaining tests below, only the strict success and DMS success strategies

https://github.com/bbopt/DMultiMadsEB
https://github.com/bbopt/DMultiMadsEB
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(b) ετ = 5× 10−2.
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(c) ετ = 10−1.

Figure 5.10 Data profiles obtained on 10 replications from 100 multiobjective optimization
problems from [74] for DMulti-MADS strict success strategy variants with tolerance ετ ∈
{10−2, 5× 10−2, 10−1}.

variants without opportunistic evaluation are kept.

5.6.4 Comparing DMulti-MADS with other algorithms

This section presents the comparison of the two best DMulti-MADS variants coded in Julia
with other multiobjective derivative-free solvers BiMADS, DMS, MOIF and NSGA-II. The
DMS and MOIF solvers have been used with their default settings as described in [74, 126].
Two variants of BiMADS, based on NOMAD version 3.9.1, are considered. The first uses the
default settings of the MADS algorithm as implemented in NOMAD with state-of-the-art search
step heuristics (see [22, 29, 66] for more details). The second one deactivates the search step
heuristics such that the settings are equivalent to the DMulti-MADS implementation for a
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(b) ετ = 5× 10−2.
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(c) ετ = 10−1.

Figure 5.11 Data profiles obtained on 10 replications from 100 multiobjective optimiza-
tion problems from [74] for DMulti-MADS variants with DMS strategy with tolerance
ετ ∈ {10−2, 5× 10−2, 10−1}.

fairer comparison. Specifically, the number of poll directions is set to n+1, with a speculative
search step strategy enabled and an opportunistic polling strategy. For both variants, all
single-objective runs terminate when the mesh or step size parameter is below a threshold
value (see [27] for specific details). All these deterministic solvers have a maximum budget of
evaluations equal to 30, 000 and start from the same set of initial points as described before.

For NSGA-II, the population size is fixed to 100 points, with a total number of generations
equal to 300, which is equivalent to a budget of 30, 000 blackbox evaluations. 50 instances of
this stochastic solver are considered, corresponding to 50 different random seeds.

Figure 5.13 presents the data profiles obtained by the different solvers for the whole set of
multiobjective problems. As BiMADS is a biobjective method, it is then not presented. For
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(b) ετ = 5× 10−2.
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Figure 5.12 Data profiles obtained on 10 replications from 100 multiobjective optimization
problems from [74] for the four best DMulti-MADS variants with tolerance ετ ∈ {10−2, 5 ×
10−2, 10−1}.

the lowest tolerance ετ = 10−2, DMS is better than the other methods for small to medium
budgets of evaluations. The DMS success strategy variant of DMulti-MADS outperforms
DMS when the allowed budget is high and dominates MOIF and NSGA-II in average 5.13(a).
From Figures 5.13(b) and 5.13(c), one can observe that the two DMulti-MADS variants
outperform all the other deterministic solvers; the performance of NSGA-II is better for
high budgets of evaluations (i.e. for example in a situation when blackbox functions are
cheap to evaluate). Choosing the DMS success strategy increases the global performance of
DMulti-MADS for medium to high budgets of evaluations.

From the data profiles obtained on the set of problems for m = 2 in Figure 5.14, where NOMAD
(BiMADS) is added, similar results can be observed. The DMS solver is better than the others
solvers with a small to moderate budget of blackbox evaluations but gets outperformed
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Figure 5.13 Data profiles using DMS, DMulti-MADS, MOIF and NSGA-II obtained on 100
multiobjective optimization problems (69 with m = 2, 29 with m = 3 and 2 with m = 4)
from [74] with 50 different runs of NSGA-II with tolerance ετ ∈ {10−2, 5× 10−2, 10−1}.

by the DMulti-MADS DMS success strategy variant when one chooses a high budget of
evaluations, for the lowest tolerance. For higher tolerances, Figures 5.14(b) and 5.14(c)
illustrate the fact that the two DMulti-MADS variants are the dominating algorithms for a
low to moderate budget of evaluations. For a high budget of evaluations and higher tolerances,
NOMAD (BiMADS) outperforms DMulti-MADS. However, it exploits surrogate models which
considerably improve its performance. When they are deactivated, DMulti-MADS is better
for all considered budgets and all considered tolerances.
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Figure 5.14 Data profiles using NOMAD (BiMADS), DMS, DMulti-MADS, MOIF and NSGA-II
obtained on 69 biobjective optimization problems from [74] with 50 different runs of NSGA-II
with tolerance ετ ∈ {10−2, 5× 10−2, 10−1}.

5.7 Conclusion

This work proposes a new extension of the MADS algorithm to multiobjective optimization,
inspired by the works of [27, 74]. Contrary to the BIMADS and MultiMADS methods,
the DMulti-MADS algorithm does not solve a succession of single-objective parameterized
formulations. It directly updates a current list of non dominated points which gets closer
to the Pareto front. This enables a better management of a given budget of evaluations
to explore the feasible objective set. As in single-objective optimization, each iteration is
built around a search and poll step. Theoretically, it is proved under mild assumptions
that DMulti-MADS generates sequences of points whose stationary points are local Pareto
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optimal6. This convergence result is an alternative to the proof presented in [74] which
guarantees that the DMS algorithm is able to converge to at least one local Pareto optimal
point7. However, the flexibility to choose the poll center, as it is the case for DMS, is lost.
Computational results show that DMulti-MADS is competitive compared to other state-of-
the-art blackbox multiobjective optimization techniques.

The selection mechanism of the poll center is a central part of the strong convergence prop-
erties of DMulti-MADS. Future research directions could adapt the convergence analysis of
DMulti-MADS to other multiobjective optimization derivative-free methods with a posteriori
preferences of articulations [126, 180, 223]. Indeed, all these methods look for improvements
of a list of non dominated points possessing their own optimization parameter (trust-region
radius, line step, and stepsize). Maximum optimization parameter selection could be tested
on these methods.

In addition, many extensions could be implemented to improve performance of DMulti-
MADS: search strategies assisted by surrogate models [53,66] or global search strategies [73],
parallelism, taking into account general inequality constraints [180] and so on. An integration
of this algorithm in NOMAD is also planned.

6This sentence was modified according to the published article.
7This sentence was modified according to the published article.
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5.8 A study of the influence of the integer parameter w+ on the performance of
the DMulti-MADS algorithm

This appendix presents some experiments which led to the choice of the value of the inte-
ger parameter w+. For readability, only the DMulti-MADS variants without opportunistic
polling and the spread strategy are considered. For the set of w+ integer values presented
here, similar observations can be done as the ones presented in Subsection 5.6.3 concerning
the influence of opportunistic polling and the spread strategy on the concrete performance
of the DMulti-MADS algorithm. Thus, the variants compared here are the better ones for
each considered w+ value. They use the same settings as the ones described at the beginning
of Subsection 5.6.3.
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Figure 5.15 Data profiles obtained on 10 replications from 100 multiobjective optimization
problems from [74] for DMulti-MADS variants with strict success strategy without oppor-
tunistic polling and with spread strategy for tolerance ετ ∈ {10−2, 5× 10−2, 10−1}.
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Figure 5.15 presents data profiles of the DMulti-MADS strict success strategy variants for
several integer values of w+. Fixing w+ to 0 means that only points with maximum frame size
parameter in the current Pareto front approximation can be selected as current poll centers.
When w+ is high (for example w+ ∈ {10, 14, 20}), the poll selection of the algorithm is similar
to the one of the DMS algorithm: all points of the current incumbent list can be chosen as poll
centers. From Figure 5.15, one can note that allowing only points with maximum frame size
parameters to be selected as poll centers grandly decreases the performance of DMulti-MADS
for all considered tolerances. However, removing all restrictions on the choice of the current
incumbent as long as it belongs to the current incumbent list is not the most performant
variant (i.e. for example with w+ ∈ {10, 14, 20}). Indeed, for the lowest tolerance 5.15(a),
the data profiles reveal than strict strategy variants with high value of w+ ∈ {10, 14, 20}
solve slightly less problems compared to the choice of w+ = 5. For higher tolerances, a value
w+ ∈ {3, 5} is preferable, as shown in Figures 5.15(b) and 5.15(c).

One can make similar observations when comparing DMulti-MADS variants with DMS suc-
cess strategy for different w+ values, as shown on Figure 5.16. For the DMS success strategy,
a w+ integer value comprised between 3 and 5 implies a better performance.
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Figure 5.16 Data profiles obtained on 10 replications from 100 multiobjective optimiza-
tion problems from [74] for DMulti-MADS variants with DMS strategy with tolerance
ετ ∈ {10−2, 5× 10−2, 10−1}.

5.9 Comparing DMulti-MADS with other algorithms: performance profiles

This appendix reports comparison results between the two best DMulti-MADS variants and
the other multiobjective solvers BiMADS, DMS, MOIF and NSGA-II in term of the purity
metric, spread metrics Γ and ∆ metrics as described and used in [74]. All settings for running
the solvers are the same as the ones described in Subsection 5.6.4. Specifically the maximal
allowed number of evaluations for each problem and each solver is fixed to 30, 000. Algorithms
are compared in pairs (see [74,130] for an explanation).

When looking at Figure 5.17, one can observe that the two variants of DMulti-Mads are more
efficient in terms of purity than DMS and MOIF. On the contrary, they are less efficient than
BiMADS (with and without models) and NSGA-II (worst and best versions) in terms of
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Figure 5.17 Purity performance profiles using NOMAD (BiMADS), DMS, DMulti-MADS, MOIF
and NSGA-II obtained on 100 multiobjective optimization problems (69 with m = 2, 29 with
m = 3 and 2 with m = 4) from [74] with 50 different runs of NSGA-II.

purity metric. This can be explained by the fact that BiMADS generates more points in
the Pareto front reference, due to its scalarization approach when DMulti-MADS generates
points that are close to the Pareto front reference, but not part of it. Concerning NSGA-II, a
closer look at the runs shows that all deterministic solvers can stop before the exhaustion of
the whole budget of evaluations (because the solver reaches a threshold), which can prevent
them from exploring potential interesting areas in the objective space. NSGA-II always
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exploits its full budget of evaluations, which allows to generate more points in the Pareto
front reference, and consequently to have a better purity metric.
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Figure 5.18 ∆ spread performance profiles using NOMAD (BiMADS), DMS, DMulti-MADS,
MOIF and NSGA-II obtained on 100 multiobjective optimization problems (69 with m = 2,
29 with m = 3 and 2 with m = 4) from [74] with 50 different runs of NSGA-II.

In terms of ∆ spread metric results, reported in Figure 5.18, one can see that the two DMulti-
MADS variants are slightly less performant than the other algorithms. For DMS and MOIF,
the use of coordinate directions seems to play a role in the distribution of their generated
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points for this set of problems. However, the use of dense directions enables DMulti-MADS
to find new non-dominated points contrary to DMS and MOIF as shown in Figure 5.17.
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Figure 5.19 Γ spread performance profiles using NOMAD (BiMADS), DMS, DMulti-MADS with
DMS strategy, MOIF and NSGA-II obtained on 100 multiobjective optimization problems
(69 with m = 2, 29 with m = 3 and 2 with m = 4) from [74] with 50 different runs of
NSGA-II.

In terms of Γ spread metric, both variants of DMulti-MADS generate less dense Pareto
front approximations than BiMADS and NSGA-II, as shown in Figure 5.19. The DMulti-
MADS variant with DMS strategy performs better when compared to MOIF and DMS than
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the DMulti-MADS variant with strict success strategy. Thus, for an important budget of
evaluations, the DMulti-MADS variant with DMS strategy generates denser Pareto front
approximations.
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Abstract This work proposes the integration of two new constraint-handling approaches
into the blackbox constrained multiobjective optimization algorithm DMulti-MADS, an ex-
tension of the Mesh Adaptive Direct Search (MADS) algorithm for single-objective con-
strained optimization. The constraints are aggregated into a single constraint violation func-
tion which is used either in a two-phase approach, where the search for a feasible point is
prioritized if not available before improving the current solution set, or in a progressive bar-
rier approach, where any trial point whose constraint violation function values are above a
threshold are rejected. This threshold is progressively decreased along the iterations. As in
the single-objective case, it is proved that these two variants generate feasible and/or infea-
sible sequences which converge either in the feasible case to a set of local Pareto optimal
points or in the infeasible case to Clarke stationary points according to the constraint viola-
tion function. Computational experiments show that these two approaches are competitive
with other state-of-the-art algorithms.

Keywords Multiobjective optimization, derivative-free optimization, blackbox optimiza-
tion, constrained optimization, Clarke analysis.

6.1 Introduction

This work considers the following constrained multiobjective optimization problem

MOP : min
x∈Ω

f(x) = (f1(x), f2(x), . . . , fm(x))>
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where Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J } ⊂ Rn is the feasible decision set, and X a subset
of Rn. Rn and Rm are respectively designed as the decision space and the objective space.
The functions fi : Rn → R ∪ {+∞} for i = 1, 2, . . . ,m and cj : Rn → R ∪ {+∞} for j ∈ J
are the outputs of a program seen as a blackbox. In this context, no gradient is available
nor cannot be approximated and one cannot make any assumption on the structure of the
problem (differentiability, continuity, convexity) in absence of analytical expressions for the
objective and the constraint functions. Many engineering applications, which involve several,
costly and conflicting objectives, over a given set of constraints, fit into this framework (see
for example [6, 92, 107, 232]). For more general information on derivative-free methods, the
reader is referred to [20,67,164].

The description of the feasible decision set Ω enables the modeller to distinguish different
types of constraints [168]. The set X is the set of unrelaxable constraints, which cannot
be violated along the optimization process (e.g., strict bound constraints). The constraints
cj(x) ≤ 0, j ∈ J , constitute the set of relaxable and quantifiable constraints, that can be
violated during the optimization, i.e., the blackbox will execute and the constraints outputs
can be aggregated as a measure of violation of the constraints. Finally, hidden constraints
constitute the set of points in the decision space for which the blackbox does not return any
value, typically when the blackbox fails to execute. Allowing the fi and cj functions to take
infinity values refers to this last type of constraints.

Furthermore, in a multiobjective optimization context, due to the conflict between different
objectives, a solution is not always optimal for all criteria. The goal is then to provide the
set of best trade-off solutions to the decision maker [45,65,190].

In single-objective optimization, many algorithms have been proposed to solve blackbox
constrained optimization problems: direct search methods via the use of a filter [14, 16],
a merit function [133] or an augmented Lagrangian [161], a derivative-free linesearch algo-
rithm coupled with a penalty function [177], or quadratic model-based approaches (see for
example [12,33,94]). The reader can refer to [164, Section 7] for a more thorough review.

Evolutionary algorithms [45] are popular methods to tackle constrained multiobjective op-
timization blackbox problems. Firstly investigated in the context of bound-constrained or
unconstrained blackbox optimization, researchers have adapted some of them to take into
account inequality constraints (see [266, 273] for more details). However, these methods are
mostly stochastic heuristics. They practically require an important number of evaluations to
perform. For example, the authors in [266] suggest a budget comprised between 2× 105 and
5× 105 function evaluations in their experiments, which can be impracticable when evalua-
tions are too costly. Surrogate models remove this limitation by substituting true blackboxes
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by less expansive surrogates, such as radial basis functions (see [215]), or Gaussian processes
(see [111]).

Recently, researchers have proposed extensions of convergence-based deterministic single-
objective methods to multiobjective constrained optimization. Among the first ones, Bi-
MADS [27] and MultiMADS [28] are scalarization-based algorithms. These two algorithms
reformulate the multiobjective optimization problem into a succession of single-objective
subproblems. Each of them is solved by the single-objective constrained blackbox MADS
algorithm [15, 16]. Practically, it can be difficult to correctly allocate the total budget of
evaluations between all the subproblems, potentially resulting in a loss of evaluations re-
quired to improve the diversity and density of the current solution set.

The Direct MultiSearch (DMS) [74], its variants [53,73,90], and Derivative-Free MultiObjec-
tive (DFMO) [180] algorithms consider a different approach. They all keep a list of current
feasible best non-dominated solutions that they improve along the iterations. DMS extends
single-objective direct search algorithms to constrained multiobjective optimization. It re-
jects non-feasible points via the use of an extreme barrier function approach, i.e., non feasible
points are assigned infinity values. This approach does not exploit knowledge of constraint vi-
olations values, which could potentially help to improve the solution set. Furthermore, DMS
imposes the use of a feasible starting point, which is not practically available (too costly) in a
real engineering context. DFMO extends a derivative-free linesearch algorithm to constrained
multiobjective optimization. By aggregating constraints with the objective functions via the
use of a penalty function, DFMO reduces the initial constrained multiobjective optimization
problem to a simple bound constrained multiobjective optimization problem, easier to solve.
However, its convergence assumptions are a bit restrictive in a blackbox optimization con-
text, i.e., constraints functions and objective functions must be Lipschitz continuous. On the
contrary, DMS requires that objective functions should satisfy locally Lipschitz continuity.
Besides, penalty function approaches can be sensitive to the scale of constraints (not always
available in a blackbox context) and their penalty parameters values.

Based on these remarks, this work proposes two other ways to handle blackbox constraints,
based on the DMulti-MADS algorithm [40]. DMulti-MADS is an extension of the MADS
algorithm to multiobjective optimization, strongly inspired by the DMS and BiMADS algo-
rithms. It possesses convergence properties similar to DMS. At the same time, experiments
have shown its competitiveness according to state-of-the-art solvers on synthetic bound-
constrained problems [40]. Similarly to DMS, the first version of DMulti-MADS, described
in [40] requires a feasible starting point. The two extensions described below remove this lim-
itation. The first one is an extension of the two-phase MADS algorithm described in [17] to
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constrained multiobjective optimization, named DMulti-MADS-TEB. The second version is
an extension of the MADS algorithm with progressive barrier [16] to constrained multiobjec-
tive optimization, designed as DMulti-MADS-PB. Contrary to a penalty function approach,
this last method

• is less sensitive to the scale of the outputs of the blackbox as it does not aggregate the
constraints with the objective function;

• allows to explore around several incumbent points and not just one;

• proves convergence results assuming local Lipschitz continuity of the problem func-
tions1.

This work is organized as follows. Section 6.2 provides a summary of multiobjective opti-
mization concepts. Section 6.3 introduces the core elements of the DMulti-MADS algorithm.
Section 6.4 describes the DMulti-MADS-TEB and DMulti-MADS-PB variants to handle
blackbox constraints. Main convergence results are detailed in Section 6.5. Finally, exper-
iments are conducted in Section 6.6 on synthetic benchmarks and three real engineering
applications in comparison with other state-of-the-art solvers.

6.2 Pareto dominance and optimal solutions in multiobjective optimization

This section summarizes some notation and concepts of multiobjective optimization. In order
to characterize optimal solutions, one needs the concept of Pareto dominance [190].

Definition 45. Given two feasible decision vectors x1 and x2 in Ω,

• x1 � x2 (x1 weakly dominates x2) if and only if fi(x1) ≤ fi(x2) for i = 1, 2, . . . ,m.

• x1 ≺ x2 (x1 dominates x2) if and only if fi(x1) ≤ fi(x2) for i = 1, 2, . . . ,m and there
exists at least an index i0 ∈ {1, 2, . . . ,m} such that fi0(x1) < fi0(x2).

• x1 ∼ x2 (x1 and x2 are incomparable) if and only if x1 does not dominate x2 and x2

does not dominate x1.

With this definition, one is able to characterize locally optimal solutions and global optimal
solutions in a multiobjective context.

1This sentence was modified according to the submitted article.
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Definition 46. A feasible decision vector x? ∈ Ω is said to be (globally) Pareto optimal if
it does not exist any other decision vector x ∈ Ω which dominates x?.

Definition 47. A feasible decision vector x? ∈ Ω is said to be locally Pareto optimal if it
exists a neighbourhood N (x?) of x? such that there does not exist any other decision vector
x ∈ N (x?) ∩ Ω which dominates x?.

The set of all Pareto optimal solutions in Ω is called the Pareto set denoted by XP and its
image by the objective function is designed as the Pareto front denoted by YP ⊆ Rm. Any
set of local Pareto optimal solutions is called a local Pareto set. Ideally, one would wish to
find the entire Pareto set and consequently the entire Pareto front. But the Pareto set may
be composed of an infinite number of solutions. In practice, an algorithm tries to find a
representative set of nondominated points, denoted as a Pareto set approximation [277] (its
mapping by the objective function f is designed as a Pareto front approximation). In the
best case, a Pareto set approximation should be a subset of the Pareto set or a locally Pareto
set, but this condition is not always satisfied.

Several objective vectors, i.e., points in the objective space, play an important role in multiob-
jective optimization as bounds on the Pareto front. The ideal objective vector [190] yI ∈ Rm

bounds the Pareto front from below and is defined as

yI =
(

min
x∈Ω

f1(x),min
x∈Ω

f2(x), . . . ,min
x∈Ω

fm(x)
)>

.

From each component of the ideal objective vector, one can obtain information on the extreme
points of the Pareto set, i.e., the elements of the Pareto set and solutions of each single-
objective problem minx∈Ω fi(x) for i = 1, 2, . . . ,m. The nadir objective vector [190] yN ∈ Rm

provides an upper bound on the Pareto front. It is defined as

yN =
(

max
x∈XP

f1(x),max
x∈XP

f2(x), . . . ,max
x∈XP

fm(x)
)>

.

6.3 The DMulti-MADS algorithm

DMulti-MADS [40] is a direct search iterative method designed to solve constrained multi-
objective blackbox optimization problems. It is an extension of the MADS [15] algorithm to
multiobjective optimization, strongly inspired by the DMS [74] and BiMADS algorithms [27].
The notations and following definitions are taken from [16,20].
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Definition 48. At iteration k, the set of feasible incumbent solutions is defined as

F k =
{

arg min
x∈V k

{f(x) : x ∈ Ω}
}

where V k ⊂ X is the set of trial points which have been evaluated by the start of iteration k.

Thus, all points in V k satisfy the set of unrelaxable constraints X . V 0 6= ∅ ⊂ X is then
the set of starting points provided by the user. DMulti-MADS keeps an iterate list of best
feasible incumbents found until iteration k, denoted as LkF and defined as

LkF =
{

(xl,∆l) : xl ∈ F k and ∆l > 0, l = 1, 2, . . . , |LkF |
}

where ∆l is the frame size parameter associated to the lth non-dominated point xl of the list
LkF . As LkF keeps only feasible non-dominated points, it is possible that |F k| 6= |LkF |.

At the beginning of each iteration k, DMulti-MADS selects an element (xk,∆k) of the list
LkF as the current feasible frame center, and generates a finite number of new candidates. To
ensure the convergence properties, all generated candidates during iteration k must belong
to the mesh Mk defined by

Mk =
⋃

x∈V k
{x + δkDz : z ∈ NnD} ⊂ Rn

where δk > 0 is the mesh size parameter ; D = GZ ∈ Rn×nD is a matrix whose columns
form a positive spanning set for Rn (see [20, Chapter 6] or [67, Chapter 2]) for some non-
singular matrix G ∈ Rn×n and some integer matrix Z ∈ Zn×nD . Note that G,Z and D do
not depend on the iteration indexes. Generally, G and Z are chosen such as G = In and
Z = [In −In] = D, with In the identity matrix of dimensions n×n. Furthermore, the current
incumbent selection must satisfy at least the following condition:

(xk,∆k) ∈
{

(x,∆) ∈ LkF : τw+∆k
max ≤ ∆ ≤ ∆k

max

}
where τ ∈ Q ∩ (0; 1) is the frame size adjustment parameter, w+ ∈ N a fixed integer and
∆k

max the maximum frame size parameter at iteration k defined as

∆k
max = max

(x,∆)∈LkF
∆.

The mesh size parameter δl and frame size parameter ∆l associated to the lth non-dominated
point xl of LkF are linked to each other such that 0 < δl ≤ ∆l. When a subsequence of one
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of them goes to 0, so does the other. Typically, the following relation δl = min
{

∆l, (∆l)2
}

meets these requirements.

Each iteration is decomposed into two steps: the search and the poll. The search is an optional
and flexible step which enables the user to design any strategy as long as the proposed trial
points belong to the mesh Mk and their number is finite. A common strategy is the use of
surrogate models, proposed for example in [53]. The finite set of points used in the search is
denoted by Sk.

The poll is more rigorously defined, as the convergence analysis depends on it. The trial
points involved in this step, named the poll set and denoted by P k, must satisfy some
specific requirements. More precisely, the construction of P k involves the use of the current
incumbent xk and its associated frame size ∆k and mesh size δk parameters to obtain a
positive spanning set Dk∆. Each column of Dk∆ must be a nonnegative integer combination
of the directions in D; the distance from the current incumbent xk to a poll point must be
bounded by a multiple of the frame size parameter ∆k. Note that the relation between δk

and ∆k given above meets these requirements. Formally, P k is described as

P k = {xk + δkd : d ∈ Dk∆} ⊂Mk.

All new candidates generated during the search and the poll are assigned a frame size param-
eter value larger or equal to the frame size parameter of the current feasible frame center.

If a new generated candidate dominates the current feasible incumbent, the iteration is
marked as a success. Otherwise, it is a failure and the frame size parameter (and so the
mesh size parameter) of the current feasible frame center is decreased. The iteration can be
opportunistic, meaning that as soon as it is successful, the remaining candidates (if they exist)
are not evaluated. In all cases, the iterate list LkF is filtered to keep only best non-dominated
feasible points found until the end of this iteration.

More details can be found in [40] (see Chapter 6).

6.4 Handling of constraints with DMulti-MADS

This section details several strategies to handle constraints with DMulti-MADS. The set of
quantifiable and relaxable constraints is given by Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J }. A relax-
able constraint can be violated during the optimization and still returns meaningful outputs
for the blackbox. A quantifiable constraint provides a measure of violation of feasibility. All
other types of constraints (unrelaxable, hidden, non quantifiable), if present are considered
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to be in X 2.

6.4.1 The constraint violation function

Exploiting constraints to guide the algorithm towards optimal solutions requires a way to
quantify constraint violations. The strategies described below rely on the constraint violation
function h : Rn → R ∪ {+∞} used in [16] and defined by

h(x) =


∑
j∈J

(max {cj(x), 0})2 if x ∈ X ,

+∞ otherwise.

With this definition, x belongs to Ω if and only if h(x) = 0, and 0 < h(x) < +∞ when x is
infeasible but belongs to X \ Ω. The use of a squared function instead of common `1 norm
enables some conservation of first-order smoothness properties.

6.4.2 The extreme barrier (EB)

Similarly to DMS [74], the original version of the DMulti-MADS algorithm [40] treats con-
straints via the use of an extreme barrier approach. It replaces the objective function f

by

fΩ(x) =

(+∞,+∞, . . . ,+∞)> if x /∈ Ω,

f(x) otherwise.

In other terms, all infeasible points are assigned an infinite value. This approach requires
a feasible starting point, which is not always available in an engineering context. To allow
the use of an infeasible starting point, this work proposes a Two-phase Extreme Barrier
(TEB) approach, in the continuation of [17]. When starting from an infeasible point, the
new strategy, called DMulti-MADS-TEB, performs a single-objective minimization of the h
constraint violation function using the MADS algorithm. As soon as a feasible point is found,
DMulti-MADS-TEB moves to the second phase, which is the minimization of 6.1 from the
feasible point found in the first phase.

Although this approach is simple, its performance has never been investigated in the context
of deterministic multiobjective derivative-free optimization. It also shares some convergence
properties with MADS and DMulti-MADS, summarized in Section 6.5. Note that this strat-
egy can be applied to any multiobjective blackbox algorithm.

2This sentence was modified according to the submitted article.
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6.4.3 The progressive barrier (PB)

This subsection introduces the DMulti-MADS-PB extension of the single-objective MADS-
PB algorithm [16] for multiobjective derivative-free optimization.

Feasible and infeasible incumbents

Similarly to the MADS-PB algorithm [16], DMulti-MADS-PB constructs two sets of incum-
bent solutions from V k. F k still denotes the set of feasible incumbent solutions. To define
the set of infeasible incumbent solutions, one needs to extend the notion of dominance for
infeasible solutions, as it is required in the design of filter algorithms [114,115].

Definition 49 (Dominance relation for constrained multiobjective optimization). In the
context of constrained multiobjective optimization, x1 ∈ X is said to dominate x2 ∈ X if

• Both points are feasible and x1 ∈ Ω dominates x2 ∈ Ω, denoted as x1 ≺f x2.

• Both points are infeasible and fi(x1) ≤ fi(x2) for i = 1, 2, . . . ,m and h(x1) ≤ h(x2)
with at least one strict inequality, denoted as x1 ≺h x2.

This extension of the dominance relation is different from the definition proposed in [213].
Indeed, in this work, feasible and infeasible points are never compared, and the dominance
relation takes into account both objective function values and the constraint violation func-
tion values. Another extension of dominance to constrained optimization appears in [118],
but as in the previous case, it allows the comparison of feasible and infeasible points. Note
that if m = 1, the dominance relation reduces into the dominance relation of MADS-PB [16].

With this dominance relation, one can define the set of infeasible nondominated points.

Definition 50. At iteration k, the set of infeasible nondominated points is defined as

Uk =
{
x ∈ V k \ Ω : there is no y such that y ≺h x

}
.

As for the MADS-PB algorithm, DMulti-MADS-PB relies on a nonnegative barrier threshold
hkmax, set at each iteration k, to construct the set of infeasible incumbent solutions.

Definition 51. At iteration k, the set of infeasible incumbent solutions is

Ik =
{

arg min
x∈Uk

{
f(x) : 0 < h(x) ≤ hkmax

}}
.
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All evaluated points having a value of h above hkmax are automatically rejected by the algo-
rithm. Furthermore, the barrier threshold is nonincreasing with the iteration number k. Its
value at each iteration is detailed in Section 6.4.3.

Figure 6.1 illustrates these definitions. Note that Ik is not a singleton. The images of
fourteen trial points generated at the beginning of iteration k, i.e., V k, in the “augmented”
objective space (a triobjective space with two objectives f1, f2 and the constraint violation
function h) for a biobjective minimization optimization problem are represented. The set of
feasible incumbent solutions, indicated by black bullets, contains four elements. Two other
feasible generated points are equally visible, but each of them is dominated by a feasible
incumbent solution. These six generated trial points belong to the biobjective space. The
set of infeasible non-dominated points contains six elements, identified by black lozenges and
diamonds. Among them, only three qualify to be infeasible incumbent solutions. Indeed,
one element among the others is above the threshold value hkmax. The two other ones are
dominated by at least one solution of Ik in terms of f objective values. Two elements of Uk

dominate the two last remaining trial points, marked by × symbols. Notice that all elements
among Ik and F k could have been generated before iteration k − 1, by definition of V k.

From the sets F k and Ik, DMulti-MADS constructs two lists of incumbent solutions, the
iterate list of best feasible incumbents found until iteration k,

LkF =
{

(xl,∆l) : xl ∈ F k and ∆l > 0, l = 1, 2, . . . , |LkF |
}

and the iterate list of best infeasible incumbents found until iteration k

LkI =
{

(xl,∆l) : xl ∈ Ik and ∆l > 0, l = 1, 2, . . . , |LkI |
}
.

Each element of both lists possesses its own associated frame size parameter ∆l.

An iteration of the DMulti-MADS-PB algorithm

As for the single-objective optimization MADS-PB algorithm [16], the search and the poll
which constitute the two steps of an iteration for DMulti-MADS-PB are organized around
two iterate incumbents at iteration k: a feasible one (xkF ,∆k

F ) ∈ LkF and an infeasible one
(xkI ,∆k

I ) ∈ LkI . However, as the frame size parameters associated to the feasible incumbent
xkF and infeasible incumbent xkI can be distinct, it is necessary to adapt the definition of the
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Figure 6.1 An example of feasible and infeasible incumbent solutions at iteration k for a
biobjective minimization problem in the “augmented” objective space (a triobjective space
with the two objectives f1, f2 and the constraint violation function h). On the left, a 3D
view; on the right, the projection on the biobjective space.

mesh Mk. At iteration k, Mk is defined as

Mk =


⋃

x∈V k
{x + δkFDz : z ∈ NnD} if LkF 6= ∅;⋃

x∈V k
{x + δkIDz : z ∈ NnD} otherwise,

where δkF > 0 and δkI > 0 are respectively the mesh size parameters associated to the
feasible and infeasible incumbents xkF and xkI defined as δkF = min

{
∆k
F , (∆k

F )2
}
and δkI =

min
{

∆k
I , (∆k

I )2
}
. In other terms, the configuration of the mesh Mk at iteration k is primar-

ily based on the selection of the feasible frame center if this last one exists.

It is then possible to adapt the definition of the poll set P k. At iteration k, P k is defined as

P k =


P k(xkF ,∆k

F ) for some (xkF ,∆k
F ) ∈ LkF if LkI = ∅,

P k(xkI ,∆k
I ) for some (xkI ,∆k

I ) ∈ LkI if LkF = ∅,

P k(xkF ,∆k
F ) ∪ P k(xkI ,∆k

F ) for some (xkF ,∆k
F ) ∈ LkF and (xkI ,∆k

I ) ∈ LkI , otherwise,
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where P k(x,∆k) = {x + δkd : d ∈ Dk∆} ⊂ Mk represents the poll set centered at x at
iteration k with δk = min

{
∆k, (∆k)2

}
.

Figure 6.2 illustrates a construction of the poll set P k when both the feasible frame center
xkF and the infeasible frame center xkI exist. Here, Ω ⊂ R2. All poll candidates belong to
one of the frames generated by xkF or xkI of size ∆k

F > 0 (this is not mandatory as long
as the definition of the poll holds). The set P k is the union of the sets P k(xkF ,∆k

F ) =
{p1,p2,p3,p4} and P k(xkI ,∆k

I ) = {p5,p6}. Section 6.4.3 gives more implementation details
on the construction of the poll set.

• xkF

•
p1

•
p2

•
p3

•p4

•
xkI

•p5

•
p6

∆k
F

δkF

Ω

Figure 6.2 Example of a poll set pk = {p1,p2,p3,p4,p5,p6} for Ω ⊂ R2 when both xkF and
xkI exist (inspired by [16]).

It remains to address the choice of the feasible and infeasible frame centers at iteration k. In
the case of the MADS-PB algorithm, the set of feasible and infeasible incumbent solutions
are often singletons (or composed of points which have the same objective function value and
the same h-constrained value). Their selection is then unambiguous.

When LkF possesses at least one element, the choice of the current feasible frame center must
satisfy the same condition as described in Section 6.3. Practically, to get a good Pareto
front approximation, it is also recommended to take into consideration the gap between the
different non-dominated solutions found until iteration k, as it is done in [40].

If LkF is empty, the infeasible frame center must satisfy

(xkI ,∆k
I ) ∈

{
(x,∆) ∈ LkI : ∆k

hmin ≤ ∆
}
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where ∆k
hmin is defined as

(xkhmin ,∆
k
hmin) ∈ arg min

(x,∆)∈LkI
h(x).

The idea behind this selection criterion is to prioritize exploration along the least infeasible
point with the best objective values hoping to find a “good” feasible point. At the same time,
this selection criterion allows to explore some potentially interesting regions of the objective
space. Intuitively, the infeasible current best incumbents associated with a frame size pa-
rameter value superior to the least current infeasible point are the ones which have not yet
been explored or are promising, due to the update procedure, detailed in Section 6.4.3. Sev-
eral infeasible incumbents can satisfy this criterion. Then, following the selection procedure
described in [40], this work proposes Algorithm 9 to take into account the density of the set
of best infeasible incumbents in the objective space.

There remains the case where LkF and LkI are both non-empty. A first approach would be to
independently select the feasible and infeasible frame centers, based for example on a spacing
criterion to densify the set of best feasible and best infeasible current solutions. However,
this strategy does not exploit the “dominance” order which exists between both sets. More
precisely, one could hope that exploring around a carefully chosen infeasible incumbent leads
to the generation of a new feasible point which significantly improves the set of current
feasible solutions. The proposed approach is inspired by the works of [174].

At iteration k, considering the non-empty iterate list of feasible incumbents LkF , this work
introduces the function ψLkF : X → R given as

ψLkF (x) = ΦLkF
(f(x))

=



min
(xF ,∆)∈LkF

m∑
i=1

[
fi(xF )−min

{
fi(x), fi(xF )

}]
if there is no (xF ,∆) ∈ LkF such that

fi(xF ) ≤ fi(x) for i = 1, 2, . . . ,m;

− min
(xF ,∆)∈LkF

m∑
i=1

[
fi(x)−min

{
fi(x), fi(xF )

}]
otherwise.

The level sets of ΦLkF
are depicted in Figure 6.4. Note that all potential feasible decision

vectors which are not dominated by a current feasible incumbent solution of LkF are given
a positive ψLkF value. All dominated feasible decision vectors correspond to a negative ψLkF
value.

The current infeasible frame center is then chosen as the element of LkI which maximizes the
ψLkF function, i.e.,

(xkI ,∆k
I ) ∈ arg max

(x,∆)∈LkI
ψLkF (x).
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Algorithm 9 selectCurrentInfeasibleIncumbent(LkI )

Let LselectI :=
{

(x,∆) ∈ LkI : ∆k
hmin
≤ ∆

}
with ∆k

hmin
= arg min

(x,∆)∈LkI
h(x).

if |LselectI | = 1 then
return (x,∆) with LselectI = {(x,∆)}.

else if |LselectI | = 2 and |LkI | = 2 then
Let l0 ∈ arg max

l=1,2
maxi=1,2,...,m fi(xl).

return (xl0 ,∆l0).
else

for i = 1, 2, . . . ,m do
Order LkI =

{
(x1,∆1), (x2,∆2), . . . , (x|LkI |,∆|LkI |)

}
such that

fi(x1) ≤ fi(x2) ≤ . . . ≤ fi(x|L
k|).

for l = 1, 2, . . . , |LkI | do
Compute γi(xl) defined as

γi(xl) =



2 fi(x2)− fi(x1)
fi(x|L

k
I |)− fi(x1)

if l = 1,

2fi(x
|LkI |)− fi(x|L

k
I |−1)

fi(x|L
k
I |)− fi(x1)

if l = |LkI |,

fi(xl+1)− fi(xl−1)
fi(x|L

k
I |)− fi(x1)

otherwise.

end for
end for
Let l0 ∈ arg max

l=1,2,...,|LselectI |
maxi=1,2,...,m γi(xl).

return (xl0 ,∆l0).
end if

Figure 6.3 A procedure to select the current incumbent at iteration k taking into account the
spacing between elements of the iterate list of best infeasible incumbents LkI in the objective
space, inspired by [40].

Intuitively, exploring around an infeasible frame center with a large positive value can lead
to the generation of a feasible point which significantly improves the current Pareto front
approximation. If the selected infeasible frame center possesses a negative value, one could
expect it to be potentially “close” to the non-dominated zone relative to the current Pareto
front approximation. An exploration around it can still improve the current feasible set3.

3This sentence was modified according to the submitted article
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Figure 6.4 Level sets in the objective space of ΦLkF
for a biobjective minimization problem.

Update of the mesh parameter at the end of an iteration

At the end of the search and the poll at iteration k, DMulti-MADS-PB has evaluated a
finite number of candidates on the mesh Mk. The cache V k+1 is then the union of the cache
V k at the beginning of iteration k and all the candidates evaluated during iteration k. As
for MADS-PB [16], the values of f and h stored in V k+1 for DMulti-MADS-PB determine
the way the threshold value hk+1

max (see (6.1)) and the mesh and frame size parameters of the
elements of iterate lists of feasible and infeasible incumbents Lk+1

F and Lk+1
I are updated.

Similarly to MADS-PB [16], this work uses the concept of dominating, improving and unsuc-
cessful iteration. A dominating iteration occurs when DMulti-MADS-PB generates a trial
point which dominates a current frame incumbent. An improving iteration is not dominat-
ing but improves the feasibility of the infeasible frame center. Otherwise, the iteration is
unsuccessful. More precisely,

• Iteration k is said to be dominating whenever a trial point xt ∈ V k+1 dominates one
frame incumbent, i.e.,

h(xt) = 0 and xt ≺f xkF or h(xt) > 0 and xt ≺h xkI

is found.

• Iteration k is said to be improving if it is not dominating, but generates a trial point
xt ∈ V k+1 which satisfies

0 < h(xt) < h(xkI ) and there exists i0 ∈ {1, 2, . . . ,m} such that fi0(xkI ) < fi0(xt).
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• Iterations which are neither dominating nor improving are labelled as unsuccessful. It
happens when every trial point xt ∈ V k+1 is such that

h(xt) = 0 and xt ⊀f xkF , or h(xt) = h(xkI ) and xt ⊀h xkI or h(xt) > h(xkI ).

These three cases are described in Figure 6.5.

f1 f2

h

•(
f(xkI ), h(xkI )

)

•(
f(xkF ), 0

)

Dominating iteration

f1 f2

h

•(
f(xkI ), h(xkI )

)

•(
f(xkF ), 0

)

Improving iteration

f1 f2

h

•(
f(xkI ), h(xkI )

)

•(
f(xkF ), 0

)

Unsuccessful iteration

Figure 6.5 Iterations cases for DMulti-MADS-PB.

All points generated during iteration k are given a frame size parameter ∆ ≥ ∆k where ∆k

is the frame size parameter associated to Mk. More precisely, for any trial element (xt,∆)
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generated during iteration k,

(xt,∆) =



(xt, τ−1∆k) if h(xt) = 0 and there exists at least x ∈ F k such that xt ≺f x, or

(xt, τ−1∆k) if h(xt) = 0 and there exists at least an index i0 ∈ {1, 2, . . . ,m} such

that fi0(xt) < minx∈Fk fi0(x), or

(xt, τ−1∆k) if h(xt) > 0 and there exists at least x ∈ Ik such that xt ≺h x, or

(xt, τ−1∆k) if 0 < h(xt) ≤ maxx∈Ik h(x) and for i = 1, 2, . . . ,m,

fi(xt) ≤ minx∈Ik fi(x) with at least one index i0 ∈ {1, 2, . . . ,m}

such that fi0(xt) < minx∈Ik fi0(x),

(xt,∆k) otherwise;

where τ ∈ (0, 1) ∩ Q is the frame size adjustment parameter chosen by the user. Thus,
all candidates which dominate one of the points in LkF or LkI or improve the extent of the
objectives values covered by at least one of the iterate list have their associated frame size
parameter increased. When LkF is empty and no feasible point has been generated at iteration
k, these candidates are likely to be potential frame center candidates at iteration k+1. If LkF is
not empty, the update of the frame size parameter associated to a new feasible generated point
is similar to the one proposed in the original DMulti-MADS-EB algorithm [40]. If the iteration
is labelled as unsuccessful, no generated point at the end of iteration k dominates at least
one of the frame center incumbents. In this case, DMulti-MADS-PB replaces (xkcenter,∆k

center)
by (xkcenter, τ∆k) with τ ∈ (0; 1) ∩ Q and xkcenter ∈ {{xkF}, {xkI}, {xkF ,xkI}} relatively to the
emptiness of the iterate lists LkF or LkI . If the iteration is improving, the frame size parameters
associated to the existing frame center incumbents keep the same value as in iteration k.

Figure 6.6 illustrates the frame update rules for a biobjective minimization problem in the
“augmented” objective space (a triobjective space with two objectives f1, f2 and the con-
straint violation function h). All candidates whose image is outside combined gray areas are
affected a frame size parameter ∆ := ∆k.

The threshold barrier is then updated according to the following rules:

hk+1
max :=



max
xt∈V k+1

{
h(xt) : h(xt) < h(xkI )

}
if iteration k is improving,

h(xkI ) if h(xkI ) = max
x∈Ik

h(x),

max
xt∈V k+1

{
h(xt) : h(xkI ) ≤ h(xt) < max

x∈Ik
h(x)

}
otherwise.

(6.1)

The threshold update rule guarantees in the case where an iteration is considered as not
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Figure 6.6 An example of an increasing zone for frame size parameters at iteration k for a
biobjective minimization problem. On the left, a 3D view of the “augmented” objective space
(a triobjective space with the two objectives f1, f2 and the constraint violation function h);
on the right, projection on the biobjective space.

improving that the set Ik will change if the infeasible frame incumbent does not possess
the maximum violation function value h among the elements of Ik at iteration k. Another
consequence (similar to MADS-PB [16]) is that hkmax is nonincreasing with iteration k and
that if Ik 6= ∅, Iq 6= ∅ for all iteration indexes q ≥ k.

Note that even if an iteration is marked as unsuccessful, the algorithm can still gener-
ate new feasible non-dominated points or infeasible non-dominated points below the value
maxx∈Ik h(x), which may be used as frame incumbents in some next iteration.

Remark. It is also possible to set the update rules of the threshold hk+1
max according to the

h(xkI ) barrier value. Nonetheless, in some preliminary experiments, it has been observed that
this approach prevents the algorithm to explore some parts of the objective space, potentially
interesting to greatly improve the current feasible solution set.

Finally, the iterate lists LkF and LkI are filtered to add new non-dominated points generated
during iteration k and remove potential resulting dominated elements.

Algorithm 10 summarizes the different steps of the DMulti-MADS-PB algorithm.

Remark. Whenm = 1, the classification of the different type of iterations used in the DMulti-
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Algorithm 10 The DMulti-MADS-PB algorithm for constrained optimization
Initialization : Given a finite set of points V 0 ⊂ X , choose ∆0 > 0, D = GZ a positive
spanning set matrix, τ ∈ (0; 1) ∩ Q the frame size adjustment parameter, and w+ ∈ N a fixed
integer parameter. Define the frame trigger parameter ρ > 0 (optional). Initialize the lists L0

F ={
(xlF ,∆0), l = 1, 2, . . . , |L0

F |
}
and L0

I =
{

(xlI ,∆0), l = 1, 2, . . . , |L0
I |
}
for some (xlF ,xlI) ∈ V 0.

for k = 0, 1, 2, . . . do
Selection of the current infeasible frame centers. Select feasible and/or infeasible ele-
ments of respective iterate lists LkF and LkI as described in [40] and Algorithm 9. Define the
current frame size parameter ∆k according to the associated frame size parameters of the fea-
sible incumbent element (xkF ,∆k

F ) and/or infeasible current incumbent element (xkI ,∆k
I ). Set

δk = min
{

∆k,
(
∆k
)2
}
. Initialize Ladd := ∅.

Search (optional) : Evaluate f and h at a finite set of points Sk ⊂ X on the mesh Mk =⋃
x∈V k{x + δkDz : z ∈ NnD}. Set Ladd := {(x,∆k) : x ∈ Sk}.

If an improving or dominating success criterion is satisfied, the search may terminate. In this
case, skip the poll and go to the parameter update step.
Poll : Select a positive spanning set Dk∆. Evaluate f and h on the poll set P k ⊂Mk as defined
in Subsection 6.4.3. Set Ladd := Ladd ∪

{
(x,∆k) : x ∈ P k

}
. If an improving or dominating

criterion is satisfied, the poll may terminate opportunistically.
Parameter update : Define V k+1 as the union of V k and all new candidates evaluated in X
during the search and the poll. Classify the iteration as dominating, improving or unsuccessful.
Update hk+1

max according to Section 6.4.3. Remove points above the threshold from LkI . Update
the iterate lists Lk+1

F and/or Lk+1
I by adding new non-dominated points from Ladd with their

updated associated frame center ∆ ∈ {∆k, τ−1∆k}, as explained in Section 6.4.3. Remove new
dominated points from LkF and/or LkI .
If the iteration is unsuccessful, replace (if they exist) the frame center elements (xkF ,∆k

F ) and
(xkI ,∆k

I ) respectively by (xkF ,∆k+1), (xkI ,∆k+1) with ∆k+1 := τ∆k.
end for

Figure 6.7 A summary of the DMulti-MADS-PB algorithm, inspired by [40].

MADS-PB context is equivalent to the one used for the MADS-PB algorithm [16]. There also
exists many configurations of iteration classifications criteria such that the generalization of
the MADS-PB algorithm for multiobjective optimization and the convergence properties still
hold. For example, one can declare an iteration as dominating when a trial point changes the
set Ik. Practically, not all of them have the same performance. The definitions used below
correspond to the most efficient variant observed on some preliminary experiments.
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A frame center selection rule for the DMulti-MADS-PB algorithm

The constrained single-objective MADS-PB algorithm uses a classification of its two frame
centers to practically improve the performance of the poll step. More precisely, the two
frame centers are ordered, based on their objective values into primary and secondary poll
centers. MADS-PB concentrates more efforts (based on the number of poll directions) on
the primary poll center than the secondary poll center [16]. Inspired by this strategy, this
subsection proposes an extension of the so-called frame center selection rule to constrained
multiobjective optimization.

As in the single-objective case, DMulti-MADS-PB executes the poll around at least one frame
center. When LkF = ∅ or LkI = ∅, there is only one frame center, designed as the primary
frame center. A complete set of poll points can be evaluated based on a positive spanning
set Dk∆ composed of at least of n+ 1 directions (more details for the construction of Dk∆ can
be found in [2, 22]).

When LkF and LkI are both non-empty, polling is done around a feasible and an infeasible
frame centers. DMulti-MADS-PB orders these two frame centers into a primary frame center
and a secondary frame center. This ordering is based on an user-supplied parameter ρ > 0,
called the frame trigger parameter.

Recall that if LkF and LkI are nonempty, the selection of the infeasible frame center is done
based on the ψLkF : X → R function parametrized by LkF , defined in Section 6.4.3. The
following frame center selection rule is then proposed.

Definition 52 (frame center selection rule). Let ρ > 0 provided by the user and suppose that
LkF 6= ∅ and LkI 6= ∅. Let (xkF ,∆k

F ) ∈ LkF be the feasible current incumbent and (xkI ,∆k
I ) ∈ LkI

be the infeasible current incumbent. If ψLkF (xkI )− ρ ξ(LkF ) > 0, where ξ(LkF ) is given by

ξ(LkF ) =
m∑
i=1

µ

(
max

(x,∆)∈LkF
fi(x), min

(x,∆)∈LkF
fi(x)

)

with µ : R× R→ R+ defined as

µ(a, b) =

|a− b| if a 6= b,

|a| otherwise;

then the primary poll center is chosen as xkI and the secondary poll center is chosen as xkF ,
otherwise the primary poll center is chosen as xkF and the secondary poll center is chosen as
xkI .
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As for the single-objective MADS-PB algorithm, DMulti-MADS-PB puts more effort on the
primary frame center than on the secondary frame center. The implementation of the poll
strategy in this work follows the one developed in [22]: n + 1 directions are used for the
primary frame center and 2 directions for the secondary frame center by taking the negative
of the first one.

If there exists at least one element (x,∆) ∈ LkF such that fi(x) ≤ fi(xkI ) for i = 1, 2, . . . ,m,
then xkF will be chosen as the primary poll center. Figure 6.8 illustrates the zone in the
biobjective space where Ik elements must be to be considered as potential primary poll
centers. One could hope that putting more effort on the infeasible frame center in this case
should enable it to reach a better part of the feasible decision region [16].

f1

f2

•

•

•

•

ξ(LkF )

ρ ξ(LkF )

Primary poll zone for Ik

• Set of feasible non dominated

points Fk

Figure 6.8 Representation of the selection of Ik frame incumbent as primary poll in the
objective space for a biobjective minimization problem.

Remark. If m = 1, the frame center selection rule is equivalent to f(xkI ) < f(xkF )− ρ|f(xkF )|,
used in [12]. In this work, this rule was privileged to the original one in [12] f(xkF )−f(xkI ) > ρ,
as it takes into account the scale of the objective function values. A corresponding frame
center selection rule extension to multiobjective optimisation would have been ψLkF (xkI ) −
mρ > 0.

6.5 Convergence analysis

This section is devoted to the convergence analysis of the DMulti-MADS-TEB and DMulti-
MADS-PB algorithms, inspired by [16,40]. This work makes use of the following assumptions,
taken from [16]:
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Assumption 6.5.1. There exists some point x0 in the user-provided set V 0 such that x0 ∈ X
and f(x0) and h(x0) are both finite.

Assumption 6.5.2. All iterates considered by the algorithm lie in a bounded set.

If Assumption 6.5.1 is not satisfied, DMulti-MADS cannot start. Assumption 6.5.2 is ensured
if one imposes the existence of a bounded set in Rn containing V k for all k ∈ N. As V k for
k ∈ N is always composed of points satisfying the unrelaxable constraints, it is sufficient to
guarantee that the set of unrelaxable constraints is itself a bounded set. For example, many
engineering problems possess bound variables constraints, which cannot be violated.

As in single-objective MADS-PB algorithm [16], combining assumptions 6.5.1 and 6.5.2 and
the structure of the mesh Mk enables to show that lim

k→+∞
inf ∆k = lim

k→+∞
inf δk = 0 (see for

example [74, Theorem A.1]). The classical convergence analysis of direct search methods
focuses on subsequences of generated frame centers for which corresponding mesh size and
frame size parameters converge to zero. The following notations and definitions are adapted
from [16].

Let U ⊂ N the set of unsuccessful iterations indexes. The poll generates one or several trial
points around at least one of the two feasible and infeasible incumbents. If k ∈ U and the poll
is executed around the feasible current frame center xkF , this last one is designed as a feasible
minimal frame center. Otherwise, if k ∈ U and the poll is executed around the infeasible
current frame center xkI , this last one is designed as an infeasible minimal frame center. From
the rest of this work, these subsequences of frame centers are investigated separately. Note
that for the DMulti-MADS-TEB variant, studying a subsequence of infeasible minimal frame
centers means that the algorithm does not manage to find a feasible point.

Definition 53. A subsequence {xk}k∈K of DMulti-MADS frame centers, for some infinite
subset of indexes K ⊆ U is said to be a refining subsequence if {∆k}k∈K converges to 0. The
limit point x̂ of a convergent refining subsequence is called a refining point.

Definition 54. Given a corresponding refining subsequence {xk}k∈K and its refining point
x̂, a direction d is said to be a refining direction if and only if there exists an infinite subset
of indexes K ′ ⊆ K such that dk ∈ Dk∆ with xk + δkdk ∈ X and d = limk∈K′

dk
‖dk‖ .

The convergence analysis also requires some mathematical tools from nonsmooth analysis.
The following definitions are taken from [16].

Definition 55. A vector d ∈ Rn is said to be a Clarke tangent vector to the set Ω ⊆ Rn

at the point x in the closure of Ω if for every sequence {yk} of elements of Ω that converge
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to x and for every sequence of positive real numbers {tk} converging to zero, there exists a
sequence of vectors {wk} converging to d such that yk + tkwk ∈ Ω.

The set of all Clarke tangent vectors to Ω at x is the Clarke tangent cone to Ω at x denoted
as T ClΩ (x). The DMulti-MADS analysis in a general constrained optimization context makes
use of the hypertangent cone [219], which is the interior of the Clarke tangent cone, defined
as:

T HΩ (x) = {d ∈ Rn : ∃ ε > 0 such that y + tw ∈ Ω, for all y ∈ Ω ∩ Bε(x),w ∈ Bε(d), and 0 < t < ε}

where Bε(x) is the open ball of radius ε > 0 centered at x.

The DMulti-MADS analysis also requires that the objective function f is locally Lipschitz
continuous in X , i.e., each of its components fi for i = 1, 2, . . . ,m is locally Lipschitz contin-
uous in X . If this condition is satisfied, the Clarke-Jahn generalized derivatives [59] of fi at
x ∈ X in the direction d ∈ Rn exist and are defined by

f oi (x; d) = lim sup
y→ x, y ∈ X

t↘ 0, y + td ∈ X

f(y + td)− f(y)
t

, for i = 1, 2, . . . ,m.

This work can then introduce the main stationary conditions.

Definition 56. Let f be Lipschitz continuous near a point x̂ ∈ Ω. x̂ is a Pareto-Clarke
critical point of f in Ω if for all directions d ∈ T ClΩ (x̂), there exists i(d) ∈ {1, 2, . . . ,m} such
that f oi(d)(x̂; d) ≥ 0.

With the additional assumption that f is equally strictly differentiable at x̂ (i.e. the cor-
responding Clarke generalized is a singleton containing only the gradient of one objective
component at x̂), the previous definition can be reformulated.

Definition 57. Let f be strictly differentiable at a point x̂ ∈ Ω. x̂ is a Pareto-Clarke-KKT
critical point of f in Ω if for all directions d ∈ T ClΩ (x̂), there exists i(d) ∈ {1, 2, . . . ,m} such
that ∇fi(d)(x̂)>d ≥ 0.

As in the single-objective case [16], this work divides the convergence analysis into two cases:
the study of subsequences of feasible minimal frame centers and the study of subsequences
of infeasible minimal frame centers. For each case, the following methodology is used:

1. Prove that a subsequence of mesh size parameters and frame size parameters converges
to zero.
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2. Determine a particular sequence of iterate points associated to the previous subsequence
of parameters, i.e. a so-called refined subsequence.

3. This sequence of iterate points converges to a refined point. Prove that this point
satisfies some stationary properties.

6.5.1 Feasible case: results for f

As in [40], one wants to show that starting from a set of feasible points, DMulti-MADS
produces at the limit locally stationary points for the constrained multiobjective optimization
problem. To do that, this work proves the existence of finer refining subsequences, as it is
done in [40]. The following analysis is a summary of the convergence analysis developed
in [40] and covers the two variants DMulti-MADS-TEB and DMulti-MADS-PB.

Theorem 12. Let Assumptions 6.5.1 and 6.5.2 hold and suppose DMulti-MADS generates
a sequence of feasible iterates lists {LkF} with LkF = {(xj,∆j), j = 1, 2 . . . , |LkF |}. Then

lim
k→+∞

inf δkmax = lim
k→+∞

inf ∆k
max = 0.

Proof. Combining assumptions 6.5.1, 6.5.2, and the selection criterion of the feasible frame
center with the structure of the mesh has been shown to be enough to ensure lim

k→+∞
inf δkmax =

lim
k→+∞

inf ∆k
max = 0 (see [40, Theorem 5.1] for more details).

This work wants to prove the convergence of specific elements of the feasible iterate list
generated by DMulti-MADS to stationary points. The concept of a feasible linked list,
adapted from [40,180], is then introduced.

Definition 58. Suppose DMulti-MADS generates the sequence of feasible iterate lists {LkF}k≥k0

with LkF = {(xl,∆l), l = 1, 2, . . . , |LkF |} and k0 ∈ N the iteration index such that k0 ∈
arg min

{
k ∈ N : F k 6= ∅

}
. A feasible linked sequence is defined as a sequence {(xlk ,∆lk)}

such that there exists an iteration index `0 ≥ k0 such that for any k = `0 + 1, `0 + 2, . . .,
the pair

{
(xlk ,∆lk)

}
∈ LkF is generated at iteration k − 1 of DMulti-MADS from the pair

(xlk−1 ,∆lk−1) ∈ Lk−1
F .

For the DMulti-MADS-PB variant algorithm, the following cases can occur:

1. Dominating iteration: either the algorithm generates at least one point which domi-
nates the feasible frame center xk−1

F , or it generates some infeasible points which have
triggered the dominating success condition in the infeasible case.
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• ∀(xlk ,∆lk) ∈ LkF \ Lk−1
F ,

xlk = xk−1 + δk−1Dzk−1 for some zk−1 ∈ NnD and ∆lk ∈ {∆k−1, τ−1∆k−1}

with xk−1 ∈ {xk−1
F ,xk−1

I }.

• ∀(xlk ,∆lk) ∈ LkF ∩ Lk−1
F ,

xlk = xlk−1 and ∆lk = ∆lk−1 .

2. Improving iteration: the algorithm may generate some new feasible non-dominated
points without dominating the feasible frame incumbent.

• ∀(xlk ,∆lk) ∈ LkF \ Lk−1
F ,

xlk = xk−1 + δk−1Dzk−1 for some zk−1 ∈ NnD and ∆lk ∈ {∆k−1, τ−1∆k−1}

with xk−1 ∈ {xk−1
F ,xk−1

I }.

• ∀(xlk ,∆lk) ∈ LkF ∩ Lk−1
F ,

xlk = xlk−1 and ∆lk = ∆lk−1 .

3. Unsuccessful iteration: the algorithm may generate some new feasible non-dominated
points without dominating the feasible frame incumbent.

• ∀(xlk ,∆lk) ∈ LkF \ Lk−1
F ,

xlk = xk−1 + δk−1Dzk−1 for some zk−1 ∈ NnD and ∆lk ∈ {∆k−1, τ−1∆k−1}

with xk−1 ∈ {xk−1
F ,xk−1

I }.

• ∀(xlk ,∆lk) ∈ (LkF ∩ Lk−1
F ) \ {(xk−1

F ,∆k−1
F )},

xlk = xlk−1 and ∆lk = ∆lk−1 .

• ∀(xlk ,∆lk) ∈ {(xk−1
F ,∆k−1

F )},

xlk = xk−1
F and ∆lk = τ∆k−1.

Similar relations can be drawn for the DMulti-MADS-TEB variant algorithm : note that for
all k > k0, no point at iteration k can be generated from an infeasible point at iteration k−1.
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One can then prove that feasible linked sequences contain a feasible refining subsequence.
The original proof can be found in [40], but for better understanding, it is restated below.

Theorem 13. Let assumptions 6.5.1 and 6.5.2 hold and suppose DMulti-MADS generates
the sequence of feasible iterate lists {LkF}k≥k0 with LkF = {(xl,∆l), l = 1, 2, . . . , |LkF |} and
k0 ∈ N the iteration index such that k0 ∈ arg min

{
k ∈ N : F k 6= ∅

}
. Then every feasible

linked sequence {(xlk ,∆lk)} contains a refining subsequence {xlk}k∈K for some infinite subset
of indexes K ⊂ U.

Proof. ∀k ≥ k0, 0 ≤ ∆lk ≤ ∆k
max. By combining Theorem 12 and the squeeze theorem, one

gets
lim

k→+∞
inf ∆lk = lim

k→+∞
inf ∆k

max = 0,

which implies by definition the existence of a refining feasible subsequence within {(xlk ,∆lk)}.

The analysis which follows is similar to [40].

Theorem 14. Let assumptions 6.5.1 and 6.5.2 hold and suppose DMulti-MADS generates a
feasible refining subsequence {xkF}k∈K, with xkF ∈ F k, converging to a refining point x̂F ∈ Ω.
Assume that f is Lipschitz continuous near x̂F . If d ∈ T HΩ (x̂F ) is a refining direction for
x̂F , then there exists an objective index i(d) ∈ {1, 2, . . . ,m} such that f oi(d)(x̂F ; d) ≥ 0.

Proof. Let {xkF}k∈K , with xkF ∈ F k, be a refining subsequence converging to a feasible refining
point x̂F ∈ Ω and d = limk∈K′

dk
‖dk‖ ∈ T

H
Ω (x̂F ) a refining direction for x̂F , where K ′ ⊆ K

is an infinite subsequence of some infinite subset of unsuccessful iteration indexes, with poll
directions dk ∈ Dk∆ such that xkF + δkd ∈ Ω. Denote by ν ≥ 0 the Lipschitz constant of f
near x̂F .

Then, for i ∈ {1, 2, . . . ,m}, the inequality

fi(x̂F ; d) = f oi (x̂F ; d) + lim sup
k∈K′

ν δk‖dk‖
∥∥∥ dk
‖dk‖ − d

∥∥∥
δk‖dk‖

≥ f oi (x̂F ; d) + lim sup
k∈K′

|fi
(
xkF + δkdk

)
− fi

(
xkF + δk‖dk‖d

)
|

δk‖dk‖

≥ lim sup
k∈K′

fi
(
xkF + δk‖dk‖d

)
− f(xkF )

δk‖dk‖

+ lim sup
k∈K′

|fi
(
xkF + δkdk

)
− fi

(
xkF + δk‖dk‖d

)
|

δk‖dk‖
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≥ lim sup
k∈K′

f(xkF + δkdk)− fi
(
xkF + δk‖dk‖d

)
+ fi

(
xkF + δk‖dk‖d

)
− fi(xkF )

δk‖dk‖

= lim sup
k∈K′

fi(xkF + δkd)− fi(xkF )
δk‖dk‖

is satisfied.

{xkF}k∈K being a refining subsequence, the infinite subset of indexes K ′ ⊆ K corresponds to
unsuccessful iterations. Consequently, the point xkF + δkd ∈ Ω does not dominate xkF . One
can then find an infinite subsequence of indexes K ′′ ⊂ K ′ such that there exists an index
i(d) ∈ {1, 2, . . . ,m} satisfying

fi(d)(x̂F ; d) ≥ lim sup
k∈K′′

fi(d)(xkF + δkd)− fi(d)(xkF )
δk‖dk‖

≥ 0.

When the set of refining directions is dense in a non-empty hypertangent cone at Ω, Pareto
Clarke stationarity is ensured, similarly to the analysis conducted in [40,74].

Theorem 15. Let assumptions 6.5.1 and 6.5.2 and suppose DMulti-MADS generates a
feasible refining subsequence {xkF}k∈K, with xkF ∈ F k, converging to a refining point x̂F ∈ Ω.
Assume that f is Lipschitz continuous near x̂F and T HΩ (x̂F ) 6= ∅. If the set of refining
directions for x̂F is dense in T ClΩ (x̂F ), then x̂F is a Pareto-Clarke critical point of (MOP ).

Proof. The authors in [15] prove than for any direction v in the Clarke tangent cone,

f 0
i (x̂F ; v) = lim

d ∈ T HΩ (x̂F )
d→ v

f oi (x̂F ; d) for i = 1, 2, . . . ,m.

By hypothesis, the set of refining directions for x̂F ∈ Ω is dense in TClΩ (x̂F ). Then there
exists a sequence of refining directions {dr}r∈R ∈ T HΩ (x̂F ) such that limr∈R dr = v. Since the
number of components of the objective function is finite, one can find a subsequence {dr}r∈R′
with R′ ⊆ R such that v = limr∈R′ dr and fi(v)(x̂F ; v) ≥ 0 by Theorem 14 for all indexes
r ∈ R′. Passing at the limit concludes the proof.

6.5.2 Infeasible case: results for h

In this subsection, the goal is to analyse refining subsequences of infeasible points according
to the h violation function as in [16] for the single-objective constrained case. Two cases can
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occur. The refining point x̂I of an infeasible refining subsequence satisfies h(x̂I) = 0. In this
case, it means that the feasible set is non-empty, and that x̂I is a global minimum for the
single-objective problem minx∈X h(x). Otherwise, this work proves than x̂I satisfies some
stationarity results relatively to h. Note that the DMulti-MADS-TEB variant generates an
infeasible refining subsequence if and only if it starts from an infeasible point belonging to
V 0 and generates no feasible points along the iterations.

Contrary to the feasible case, this work does not characterize particular infeasible sequences
of points within the sequence of infeasible frame incumbents.

Theorem 16. Let assumptions 6.5.1 and 6.5.2 hold and suppose DMulti-MADS generates a
refining subsequence {xkI}k∈K, with xkI ∈ Ik, converging to a refining point x̂I ∈ X . Assume
that h is Lipschitz continuous near x̂I . If d ∈ T HX (x̂I) is a refining direction for x̂I , then
ho(x̂I ; d) ≥ 0.

Proof. The proof is similar to that of Theorem 14, h and X playing respectively the roles of
fi for a fixed objective index i ∈ {1, 2, . . . ,m} and Ω.

The next theorem’s proof is identical to 15.

Theorem 17. Let assumptions 6.5.1 and 6.5.2 hold and suppose DMulti-MADS generates a
refining subsequence {xkI}k∈K, with xkI ∈ Ik, converging to a refining point x̂I ∈ X . Assume
that h is Lipschitz continuous near x̂I and T HX (x̂I) 6= ∅. If the set of refining directions is
dense for x̂I in T ClX (x̂I), then x̂I is a Clarke stationary point for

min
x∈X

h(x).

Proof. The authors in [15] prove than for any direction v in the Clarke tangent cone,

h0(x̂I ; v) = lim
d ∈ T HX (x̂I)

d→ v

ho(x̂I ; d).

By hypothesis, the set of refining directions for x̂I ∈ X is dense in T ClX (x̂I). Then there exists
a sequence of refining directions {dr}r∈R ∈ T HX (x̂I) such that limr∈R dr = v. By Theorem 16,
for all r ∈ R, ho(x̂I ; d) ≥ 0. Passing at the limit concludes the proof.
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6.6 Computational experiments

This section is devoted to the computational experiments of DMulti-MADS on constrained
multiobjective problems. The first part presents the considered solvers. The second part is
dedicated to the comparison of all solvers and DMulti-MADS variants on a set of analyt-
ical problems using data profiles for multiobjective optimization [40]. The last part shows
comparison of solvers on “real” engineering problems using convergence profiles.

To assess the performance of different algorithms, this work relies on the use of data profiles
for multiobjective optimization [40] and convergence profiles. Both tools require the defi-
nition of a convergence test for a given computational problem, based on the hypervolume
indicator [279].

The hypervolume indicator represents the volume of the objective space dominated by a
Pareto front approximation YN and delimited from above by a reference point r ∈ Rm such
that for all y ∈ YN , yi < ri for i = 1, 2, . . . ,m. The hypervolume possesses many useful
properties: Pareto compliant with the dominance ordering, it can capture many properties
of a Pareto front approximation as spread, cardinality, convergence to the Pareto front, or
extension [11,175].

The convergence test requires a Pareto front approximation reference Y p for a given problem
p ∈ P , where P is the set of considered problems, from which the approximated ideal objective
vector

ỹI,p =
(

min
y∈Y p

y1, min
y∈Y p

y2, . . . , min
y∈Y p

ymp
)>

and the approximated nadir objective vector

ỹN,p =
(

max
y∈Y p

y1,max
y∈Y p

y2, . . . ,max
y∈Y p

ymp
)>

are extracted, with mp the number of objectives of problem p ∈ P . Y p is constructed using
the set of best non dominated points found by all algorithms on problem p ∈ P for a maximal
budget of evaluations.

Assuming Y e is a Pareto front approximation generated after e evaluations by a given deter-
ministic solver for problem p, a scaling and translating transformation is applied to this last
one defined by: ∀y ∈ Y e ∪ Y p ∪ {ỹN,p},

T (y) =

(y− ỹI,p)� (ỹN,p − y) if ỹN,p 6= ỹI,p,

y− ỹI,p otherwise;
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where � is the element wise-divisor operator. Note that this transformation conserves the
dominance order relation. The computational problem is said to be solved by the algorithm
with tolerance ετ > 0 if

HV
(
T (Y e);T (ỹN,p)

)
HV (T (Y p);T (ỹN,p)) ≥ 1− ετ

where HV (YN ; r) is the hypervolume indicator value of the volume dominated by the Pareto
front approximation YN and delimited above by the reference point r ∈ Rm. All elements of
YN which are dominated by r ∈ Rm are removed during the computation of the hypervolume
indicator. If no element of YN dominates r, then HV (YN ; r) = 0. In other terms, the
hypervolume indicator is not computed in this case.

Data profiles show the proportion of all computational problems solved by an algorithm in
function of the number of groups of n+ 1 evaluations required to build a simplex gradient in
Rn. In these experiments, stochastic solvers are also considered. In this case, data profiles
are modified to take into account their performance variability, as described in [40].

6.6.1 Tested solvers and variants of DMulti-MADS

The following constrained solvers are considered:

• the deterministic solver NOMAD [167] which implements the BiMADS algorithm (Bi-
objective Mesh Adaptive Direct Search) [27] tested only for m = 2 objectives - www.
gerad.ca/nomad/;

• the deterministic solver DFMO (Derivative-Free Multi Objective) [180] - http://www.
iasi.cnr.it/~liuzzi/DFL/;

• the stochastic heuristic solver NSGA-II (Non Dominating Sorting Algorithm II) [84]; a
constrained version is implemented in the Pymoo Library [42] version 0.4.2.2 - https:
//pymoo.org.

For the BiMADS algorithm, two variants based on NOMAD 3.9.1 are considered. The first uses
the default settings of the MADS algorithm, detailed in [18,22,29,66]. The second deactivates
models and other heuristics such that BiMADS relies only on the MADS algorithm with n+1
directions, a speculative search and an opportunistic polling strategy, for a fairer comparison
with DMulti-MADS. DFMO and NSGA-II are used with their default settings. NSGA-II
uses an initial population with 100 elements.

In these experiments, this work considers another variant of DMulti-MADS for constrained
multiobjective optimization based on the penalty approach used in [180]. More specifically,

www.gerad.ca/nomad/
www.gerad.ca/nomad/
http://www.iasi.cnr.it/~liuzzi/DFL/
http://www.iasi.cnr.it/~liuzzi/DFL/
https://pymoo.org
https://pymoo.org
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given the constrained multiobjective problem (MOP ), the authors of [180] introduce the
following penalty functions

Zi(x; ε) = fi(x) + 1
ε

∑
j∈J

max{0, ci(x)}, i = 1, 2, . . . ,m

where ε > 0 is an external parameter and consider the following multiobjective problem

(MOPp) : min
x∈X

Z(x) = (Z1(x; ε), Z2(x; ε), . . . , Zm(x; ε))> .

The DMulti-MADS-Penalty variant uses the DMulti-MADS-TEB variant on the modified
(MOPp) multiobjective problem. The external parameter ε > 0 is set to the default value
proposed by [180]. Note that this approach has already been used by these authors to compare
DMS (which cannot start from infeasible points) and DFMO on constrained multiobjective
problems [180]. As the first strategy proposed to handle constraints with convergence results,
it is natural to see if this approach performs well compared to the two new variants proposed
in this paper.

For all constrained variants of DMulti-MADS, a speculative search strategy is implemented as
in [40] for one or both feasible and infeasible current incumbents if they exist, combined with a
polling strategy with n+1 directions [22]. The implementation of the mesh follows a granular
mesh strategy [18]. All variants stop as soon as one component of the mesh size vector is
below 10−9 or after running out of evaluations budget. All variants use an opportunistic
strategy: as soon as a new candidate dominates at least one current incumbent, the iteration
stops. All variants also apply a spread selection with parameter value w+ = 1. For the
DMulti-MADS-PB variant, the trigger parameter is set to ρ = 0.1. When DMulti-MADS-
TEB switches from the first phase to the second phase, the frame and mesh size parameters
of the generated feasible points are not resettled to their respective initial values ∆0 and δ0.

Finally, the implementation of the progressive barrier in NOMAD 3.9.1 for the BiMADS algo-
rithm diverges from the description given in [16] for efficiency gains. The DMulti-MADS-PB
algorithm variant equally incorporates these modifications for a fairer comparison with the
implementation of NOMAD 3.9.1. Precisely, the threshold hkmax is updated according to the
set Uk+1 ⊆ V k+1, which enables it to decrease faster. Furthermore, in the implementation,
an iteration k is considered as improving if the algorithm generates a point xt ∈ V k+1 \ V k

satisfying improving conditions. Note that the convergence properties for infeasible refining
subsequences still hold. However, it may exist a point x ∈ ∪k∈NV k with 0 < h(x) < h(x̂I)
where x̂I ∈ X is an infeasible refining point.

The code used for experiments can be found at https://github.com/bbopt/DMultiMadsPB.

https://github.com/bbopt/DMultiMadsPB
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6.6.2 Comparing solvers on synthetic benchmarks

In this subsection, this work considers a set of 214 analytical multiobjective optimization
problems proposed by [180], with n ∈ [3, 30], m ∈ {2, 3, 4} and |J | ∈ [3, 30]. Among them,
103 problem possess m = 2 objectives.

In a first part, this work compares the three variants of DMulti-MADS on this set of problems.
The three of them use a maximum budget of 30, 000 evaluations. For each problem, the three
variants start from the same set of initial points, using the linesearch strategy described
in [74]. Each variant on each problem executes 10 replications by changing the random seed
which controls the generation of polling directions.
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Figure 6.9 Data profiles obtained from 10 replications from 214 multiobjective analytical
problems taken from [180] for DMulti-MADS-PB, DMulti-MADS-TEB and DMulti-MADS-
Penalty with tolerance ετ ∈ {10−2, 5× 10−2, 10−1}.

The data profiles given in Figure 6.9 show that for the three tolerance values considered,
DMulti-MADS-Penalty solves slightly less problems than the two other variants introduced
in this work. One can equally observe than DMulti-MADS-PB performs better for a medium
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to high budget of evaluations for the lowest tolerance ετ = 10−2. For the largest tolerance ετ =
10−1, DMulti-MADS-PB solves more problems for a high budget of evaluations. However,
for medium tolerance, the performance of DMulti-MADS-PB is similar to DMulti-MADS-
Penalty. A closer look at the considered problems shows than in this case, it is better to
firstly look for feasible solutions than to explore the infeasible decision space. It then gives an
advantage to DMulti-MADS-TEB over the two other variants. For the rest of this subsection,
only DMulti-MADS-PB and DMulti-MADS-TEB are kept, as they are more performant.

For the comparison with the other algorithms, the same maximum budget of 30, 000 function
evaluations is kept. Practically, for NSGA-II, the total number of population generations is
fixed to 300, with a fixed population size equal to 100. For each problem, the deterministic
solvers start from the same initial points using the linesearch strategy [74]. For each problem,
NSGA-II is run 30 times with different seeds to capture stochastic behavior and analyze its
performance variation.
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Figure 6.10 Data profiles using NOMAD (BiMADS), DFMO, DMulti-MADS-PB and NSGA-II
obtained on 103 biojective analytical problems from [180] with 30 different runs of NSGA-II
with tolerance ετ ∈ {10−2, 5× 10−2, 10−1}.
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Figure 6.11 Data profiles using DFMO, DMulti-MADS-PB and NSGA-II obtained on 214
multiobjective analytical problems from [180] with 30 different runs of NSGA-II with toler-
ance ετ ∈ {10−2, 5× 10−2, 10−1}.

From Figures 6.10 and 6.11, one can see that DMulti-MADS-PB outperforms the other solvers
on this set of analytical functions, for all tolerances considered. The same conclusions can
be drawn for DMulti-MADS-TEB. From these figures, one can also observe than DFMO
displays better performance on biojective problems than for the whole set (see Figure 6.10).

6.6.3 Comparing solvers on real engineering benchmarks

In this subsection, this work considers three multiobjective optimization problems: the biob-
jective SOLAR8 and SOLAR9 design problems and the triobjective STYRENE design prob-
lem [10,28]. These three applications are more costly to solve than the analytical benchmarks
considered in the previous subsection. The use of data profiles to compare solvers on these
problems is then difficult to put into practice.

To assess the performance of solvers on these problems, an adaptation of convergence profiles
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(see [20, Appendix A] for a description) to multiobjective optimization is proposed. Conver-
gence profiles for multiobjective optimization make use of the normalized hypervolume value,
presented at the beginning of Section 6.6 and given by:

HV
(
T (Y e);T (ỹN,p)

)
HV (T (Y p);T (ỹN,p))

where Y p is the Pareto front approximation reference for problem p, Y e the Pareto front
approximation generated after e evaluations by a given solver on an instance of problem p, T
a scaling and translating transformation applied and ỹN,p the approximated nadir objective
vector of Y p.

Convergence profiles for multiobjective optimization on a given problem p visualize the evo-
lution of the normalized hypervolume indicator for a given solver against the number of
evaluations used. Consequently, a normalized hypervolume value equal to 1 means that the
solver has solved the problem p. A normalized hypervolume equal to 0 means that the solver
has not generated points which dominate the approximated nadir objective vector of the
Pareto front approximation reference.

Comparing solvers on the SOLAR8 and SOLAR9 design problems

SOLAR8 and SOLAR9 are two biobjective optimization problems derived from a numerical
simulator coded in C++ of a solar plant with a molten salt heat storage system [125]. The
simulation is composed of three steps. The heliostats field captures sun rays which are
transmitted to a central cavity receiver. The sun energy is given to the thermal storage
which converts it to thermal energy. This last one activates the powerblock, which triggers
a steam turbine, generating electrical power output. Numerical simulations intervene all
along the different phases of the process, which make it impossible to provide gradients.
For more details, the reader can refer to [125]. The simulator can be found at https:
//github.com/bbopt/solar.

For the two considered problems, a blackbox evaluation can take more than 10 seconds (on
a machine with 8 Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz 16G RAM). Experiments
equally reveal the presence of hidden constraints. Tables 6.12 and 6.13 describe the objectives,
constraints and starting points used for each problem.

SOLAR8 and SOLAR9 both possess integer decision variables. In the experiments, the only
solver which can treat integer variables is NOMAD (BiMADS). Consequently, for the other
solvers, all integer variables are fixed to their starting values along the optimization. For the

https://github.com/bbopt/solar
https://github.com/bbopt/solar
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Constraints/Objectives Description of constraints and objectives
−f1 Maximize heliostat field performance (absorbed energy)
f2 Minimize cost of field, tower and receiver
Heliostat design constraints Four constraints related to the dimensions of the heliostat field
Receiver constraints Three constraints related to the design of the receiver
Energy constraints Two constraints which depend on the energy production
Variables Description and type
Heliostats field Nine variables related to the dimensions of the heliostats field

Eight real and one integer
Heat transfer loop Four variables related to the design of the heat transfer system

Three real and one integer
Starting point (infeasible) (11.0, 11.0, 200.0, 10.0, 10.0, 2650, 89.0, 0.5, 8.0, 36, 0.30, 0.020, 0.0216)

Figure 6.12 Objectives, constraints, variables and starting point of the SOLAR8 problem.

Constraints/Objectives Description of constraints and objectives
f1 Minimize production costs
−f2 Maximize energy production
Heliostats design constraints Four constraints related to the dimensions of the heliostat field
Heat storage constraints Four constraints relative to the molten salt heat thermic/pressure

storage system
Receiver design constraints Two constraints which depend on the tube size and diameter receiver
Steam constraints Five constraints related to steam temperature, power output

and steam design.
Variables Description and type
Heliostats field Nine variables related to the dimensions of the heliostats field

Eight real and one integer
Heat transfer loop Nineteen variables related to the design of the heat transfer system

Fourteen real and five integer
Powerblock One variable: type of turbine; integer
Starting point (infeasible) (9.0, 9.0, 150.0, 6.0, 8.0, 1000, 45.0, 0.5, 5.0, 900.0,

9.0, 9.0, 0.30, 0.20, 560.0, 500, 0.30, 0.0165, 0.018, 0.017,
10.0, 0.0155, 0.016, 0.20, 3, 12000, 1, 2, 2)

Figure 6.13 Objectives, constraints, variables and starting point of the SOLAR9 problem.

SOLAR8 problem, three variants of NOMAD (BiMADS) are considered: two for which integer
variables are fixed and one which treat mixed integer (MI) problems. For this last variant,
the algorithmic parameters are chosen by default.

Remark. For SOLAR9, NOMAD (BiMADS) completely outperforms the other algorithms when
it can modify integer variables. After investigation, this behaviour is not related to the
performance of the algorithm, but the initial choice of the integer variables. However, for the
sake of reproducibility, these values are kept.
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All deterministic algorithms are allocated a maximal budget of 5, 000 evaluations and start
from the same infeasible point for each problem. NSGA-II does not take starting points as
arguments. To compare it with the others, NSGA-II is run 10 times to capture stochastic
behaviour, with a population size fixed to 100 and a total number of generations equal to 50.
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Figure 6.14 (a) On the left, convergence profiles for the SOLAR8 problem using DFMO,
DMulti-MADS, NOMAD (BiMADS) and NSGA-II with 10 different runs of NSGA-II for a
maximal budget of 5, 000 evaluations. (b) On the right, Pareto front approximations obtained
at the end of the resolution of SOLAR8 for DFMO, DMulti-MADS, NOMAD (BiMADS) and
an instance of NSGA-II in the objective space.

From Figure 6.14(a), one can see that DMulti-MADS-PB performs better than the other
algorithms on SOLAR8. When looking at the Pareto front plottings (Figure 6.14(b)), one can
note that DMulti-MADS-PB captures a portion of the Pareto front on the top left. DMulti-
MADS-TEB is slightly better than DMulti-MADS-Penalty and compares well in terms of
performance with NOMAD (BiMADS) when allowing the use of mixed integer variables. DFMO
does not perform well on this problem, due to the different scales on the constraints included
in the penalty objective function, which impacts its efficiency.

Figure 6.15(a) shows the convergence profiles for the SOLAR9 problem for different solvers.
On this problem, NOMAD (BiMADS) are the most efficient, even if DMulti-MADS-PB catches
it for the last evaluations. As shown on Figure 6.15(b), the extent of the Pareto front ap-
proximation reference is low, which favours scalarization-based approaches such as BiMADS.
This problem also illustrates the default of penalty-based approaches against other methods.
As the constraint functions possess different amplitudes, the penalized optimization problem
differs from the original, which explains why DFMO and DMulti-MADS-Penalty fail.
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Figure 6.15 (a) On the left, convergence profiles for the SOLAR9 problem using DFMO,
DMulti-MADS, NOMAD (BiMADS) and NSGA-II with 10 different runs of NSGA-II for a
maximal budget of 5, 000 evaluations. (b) On the right, Pareto front approximations obtained
at the end of the resolution of SOLAR9 for DFMO, DMulti-MADS, NOMAD (BiMADS) and
an instance of NSGA-II in the objective space.

Comparing solvers on the STYRENE design problem

STYRENE is a triobjective optimization problem related to the production of styrene, as
described in [10,28]. Styrene production process is composed of four steps: reactants prepa-
ration, catalytic reactions, a first distillation to recover styrene and a second one to recover
benzene. The second distillation equally involves the recycling of unreacted ethylbenzaline,
reintroduced into the styrene production as an initial reactant. The proposed triobjective
optimization problem, based on a numerical implementation coded in C++, aims at maxi-
mizing the net present value associated to the process (f1), the purity of produced styrene
(f2), and the overall ethylbenzene conversion into styrene (f3). This application possesses
eight bounded variables, and nine general inequality constraints related to the chemical pro-
cess (e.g., environmental regulations), or costs (e.g., investment). More details can be found
in [28].

A simulation takes around 1 second to run, starting from a feasible point (on a machine
with 8 Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz 16G RAM). This problem has hidden
constraints. Even when starting from a feasible point, the simulation can sometimes fail to
produce a finite numerical value.

A maximal budget of 20, 000 evaluations is allocated for all deterministic solvers, which all
start from the same feasible point. This experiment does not consider NOMAD (BiMADS), as
it only treats biojective problems. NSGA-II is run 10 times, with a population size fixed to
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100, and a maximal number of generations equal to 200.
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Figure 6.16 (a) On the left, convergence profiles for the STYRENE design problem using
DFMO, DMulti-MADS, and NSGA-II with 10 different runs of NSGA-II for a maximal
budget of 20, 000 evaluations. (b) On the right, Pareto front approximations obtained at the
end of the resolution of STYRENE for DFMO, DMulti-MADS, and an instance of NSGA-II
in the objective space.

Figure 6.16(a) shows the convergence profiles obtained for the STYRENE design triobjective
problem. This figure shows that DMulti-MADS-PB performs better than the other solvers,
followed by DMulti-MADS-TEB. From Figure 6.16(b), one can observe that DMulti-MADS-
PB captures more parts of the Pareto front reference than all the other methods. Finally,
even when taking into account variability, NSGA-II is less efficient than all the other solvers
on this problem.

6.7 Discussion

This work proposes two extensions of the DMulti-MADS algorithm [40] to handle blackbox
constraints, generalizing the works conducted for the single-objective MADS algorithm [16,
17]. It is proved that these two extensions possess the same convergence properties than
DMulti-MADS [40] when studying feasible sequences generated by these two extensions.
Convergence analysis for the infeasible case is also derived, as in [16].

Experiments show that these two variants are competitive comparing to other state-of-the-art
methods, and more robust on real engineering applications than a penalty-based approach,
as proposed in [180]. These experiments also reveal that a two-phase approach performs sur-
prisingly well on blackbox multiobjective optimization problems, contrary to single-objective
ones [17]. Future work involves the integration of surrogate methods into a search strat-
egy [53,66], and the use of parallelism. An integration in the NOMAD solver is also planned.
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CHAPTER 7 GENERAL DISCUSSION

7.1 Summary of Works

This section summarizes the contributions detailed in Chapter 4 (the survey on performance
indicators), Chapter 5 (DMulti-MADS) and Chapter 6 (DMulti-MADS-TEB and DMulti-
MADS-PB), and examines the obtained results.

The first objective was to conduct a state-of-the-art survey on performance indicators for
MOO. Thus, 63 metrics have been listed and classified into four groups: cardinality, conver-
gence, distribution and spread, and convergence and distribution. This survey analyses their
main properties in relation with the theory of Pareto front and set approximations proposed
by [159,277,280]. Finally, it presents four application cases of performance indicators: com-
parison of algorithms, their embedding into multiobjective methods, their use as stopping
criteria for MOO, and the identification of promising distribution-based metrics. The com-
parison and performance analysis of different algorithms are the most important application
in our context. The use of Pareto compliant metrics, i.e., which take into consideration
Pareto dominance in the objective space is then critical. The hypervolume indicator can be
considered the most relevant of all of them. Intuitive to understand, it captures convergence
and distribution properties and does not require the knowledge of the Pareto front. Its main
drawback is its complexity, which grows exponentially as the number of objectives increases.
However, efficient algorithms exist for the low-dimensional case (for two to four objectives),
which encompasses all our engineering applications.

In Chapter 5, the objective was to design an a posteriori articulation of preferences method ex-
tending MADS for MOO as efficient as state-of-the-art deterministic MOO methods. DMulti-
MADS generalizes MADS to several objectives. It is not restricted to biobjective BBO prob-
lems, contrary to BiMADS. Inspired by DMS, it generates sequences of sets of points whose
stationary points are locally Pareto optimal. Chapter 5 also introduces hypervolume-based
data profiles for MOO. As in SOO, this tool examinates the robustness and efficiency of an
algorithm in function of its evaluation budget (contrary to performance profiles). Using the
hypervolume indicator, it offers a finer analysis than purity-based data profiles [74]. Nu-
merical experiments show that DMulti-MADS is competitive according to state-of-the-art
algorithms on a set of 100 bound-constrained analytical problems. More precisely, it is more
efficient for a low to medium budget of evaluations with high tolerance, whereas NSGA-II
and BiMADS display better performance for a large budget of evaluations.
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Chapter 6 introduces two new extensions of DMulti-MADS to handle general inequality
constraints, inspired by the works done on MADS [16, 17]: a two-phase approach, designed
as DMulti-MADS-TEB, and an extension based on the progressive barrier for SOO [16],
named DMulti-MADS-PB. This chapter develops new convergence analysis results for the
constrained case for both methods. Their performance is put into perspective with a penalty-
based approach proposed in [180]. These two algorithms bring important gains on analytical
problems compared to other methods such as DFMO, NSGA-II and BiMADS. They equally
perform well on three real engineering applications compared to state-of-the-art algorithms.
Numerical experiments reveal than these two methods are more robust than a penalty-based
approach, whose performance highly depends on the choice of penalty parameters. DMulti-
MADS-PB is more difficult to implement than DMulti-MADS-TEB, but performs slightly
better on real engineering problems. However, the two-phase approach is very reliable and
efficient on all benchmarks, without introducing new algorithmic parameters.

7.2 Limitations

This thesis proposes to advance the state-of-the-art in deterministic multiobjective BBO and
benchmarking tools to compare them. However, the following limitations can be pointed out:

• Enforcing a selection-based criterion enables DMulti-MADS to obtain stronger conver-
gence properties than DMS. However, it introduces a new algorithmic parameter which
requires to be tuned, as it impacts the performance. The latest version of DMulti-
MADS uses a parameter value equal to w+ = 1, but it may exist more efficient options
depending on the polling strategy.

• Contrary to BiMADS, DMulti-MADS needs to loop over all feasible incumbents and
infeasible undominated solutions to choose its frame centers. When the number of
elements in the Pareto front approximation increases, this can result in a slowdown.
If the blackbox is not expensive and one requires the computation of a Pareto front
approximation in a short time, DMulti-MADS may not be a good choice, as it does not
impose a limit on the solution set size.

• DMulti-MADS is specifically suited for nonsmooth MOO blackbox problems. However,
some engineering applications possess smoothness properties even though derivatives
are not available. DMulti-MADS does not exploit this information.

• The analytical benchmarks used in Chapters 5 and 6 represent an extensive database
to compare new MOO methods. However, one needs to be careful not to rely too much
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on them, but also use more realistic benchmarks (if possible). Indeed, all analytical
constrained problems [180] used in Chapter 6 have smooth constraints. More problem-
atic is that 23 of the 100 bound-constrained problems (with n ≥ 2 variables) collected
in [74] and used in Chapter 5, have as an objective a function of one variable (more
often x1). One could also artificially extend this set of problems by considering differ-
ent starting points as described in [18], instead of executing an unique initial linesearch
strategy [74]. The experimental settings used in these two chapters are the result of
a compromise between accuracy (for example, to capture the stochastic behaviour of
NSGA-II; and to not advantage a solver according to another by not starting from
the same points, when available), resource constraints (data profiles for multiobjective
optimization are extremely memory consuming) and time.

• DMulti-MADS is not designed to deal with equality-constraint problems. Indeed, trans-
forming equality constraints into two inequalities results in theoretical convergence is-
sues and performance losses, as in SOO [23].
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

C’est une toile d’environ un mètre soixante sur un mètre vingt, peinte en blanc.
Le fond est blanc et si on cligne des yeux, on peut apercevoir de fins liserés blancs
transversaux.

Yasmina Reza, Art

This thesis proposes a new generalization of MADS to multiobjective BBO designed as
DMulti-MADS, competitive with other state-of-the-art methods. As many research works,
this thesis certainly opens more questions than it answers. However, some seem important
for us to mention.

Since its conception in 2006, MADS has benefited from several extensions which considerably
improve its performance. It is natural to try to include them in DMulti-MADS.

• DMulti-MADS could integrate quadratic models. For example, BoostDMS implements
a quadratic search for DMS [53] which could be added to our algorithm. One could
go further and use surrogates to sort polling directions, as it is done in SOO [66]. In
our opinion, the two following research directions deserve to be investigated: the use
of single-objective formulations [27, 28] or single-objective quadratic models according
to the nature of the selected frame incumbent; the use of the φLk function, introduced
in Chapter 6, combined with quadratic models, equally opens interesting possibilities.

• The Nelder-Mead search, introduced in [29] is a powerful heuristic used in SOO for
MADS. One could extend it to DMulti-MADS, inspiring by BiMADS single-objective
reformulations.

• DMulti-MADS remains a convergence-based local method. However, one could inte-
grate some heuristics, in the lineage of GLODS and MultiGLODS [72, 73], or Variable
Neighbourhood Search [10].

• DMulti-MADS is a sequential procedure. Making it parallel represents an interesting
research challenge. Some works have already been conducted for DMS [240].

• Finally, the adaptation of DMulti-MADS to take into account integer and binary vari-
ables or linear equality constraints is straightforward [18,23].

The future integration of DMulti-MADS into NOMAD [24,25] should make the development of
these new extensions straightforward, especially since the new architecture of this software
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has considerably improved its maintainability.

The convergence and numerical results developed in Chapter 5 and 6, inspired by [16,74,180]
raise interesting questions.

• State-of-the art a posteriori articulation of preference methods for deterministic MODFO
employ one of the following iteration schemes. The first involves iterating over all ele-
ments of the current Pareto front approximation before updating it. DFMO subscribes
to this category, but is not efficient (see Chapter 6 and [126]). The second consists
in choosing a current incumbent from the list of non-dominated solutions, perform-
ing some optimization steps, and updating the current solution set. DMS, MOIF and
BOTR belong to this group. Although less effective, the first mechanism enforces con-
vergence to a set of Pareto stationary points. Numerical experiments conducted in
Chapter 5 show that imposing a selection-based strategy to guarantee “convergence to
a set” does not penalize the performance of DMulti-MADS. Consequently, it may be
possible to strengthen convergence results of these methods by adapting the selection
mechanism of DMulti-MADS to these algorithms (adding a selection restriction using
the trust-region radius, stepsize, or approximated gradient of the current incumbent)
without performance loss. Some derivative-based MOO algorithms could also adopt
this mechanism (e.g. [60,61,118]).

• A further topic should be to extend direct search methods for multiobjective optimiza-
tion to multicriteria optimization [98] using more general ordering cones than the cone
Rm+ . Two potential applications are lexicographic BBO (see [69]) and construction of
ε-efficient set approximations (see [200] for a definition).

• Finally, Chapter 5 formalizes hypervolume-based data profiles for MOO, following Au-
det et al. [11] recommendations. Researchers may use them to conduct an extensive
comparison study of multiobjective BBO solvers. Such review would benefit the whole
optimization community. One can look at [202,217] for some examples.



185

REFERENCES

[1] M. Abramson and C. Audet, Convergence of mesh adaptive direct search to second-
order stationary points, SIAM Journal on Optimization 17 no. 2 (2006), 606–619.
https://doi.org/Doi:10.1137/050638382.

[2] M. Abramson, C. Audet, J. Dennis, Jr., and S. Le Digabel, OrthoMADS:
A Deterministic MADS Instance with Orthogonal Directions, SIAM Journal on
Optimization 20 no. 2 (2009), 948–966. https://doi.org/10.1137/080716980.

[3] T. Akhtar and C. Shoemaker, Multi objective optimization of computation-
ally expensive multi-modal functions with RBF surrogates and multi-rule selection,
Journal of Global Optimization 64 no. 1 (2016), 17–32. https://doi.org/10.1007/
s10898-015-0270-y.

[4] A. Al-Dujaili and S. Suresh, BMOBench: Black-Box Multi-Objective Optimization
Benchmarking Platform, Tech. Report 1605.07009, arXiv, 2016. Available at https:
//arxiv.org/abs/1605.07009.

[5] A. Al-Dujaili and S. Suresh, Revisiting norm optimization for multi-objective
black-box problems: a finite-time analysis, Journal of Global Optimization 73 no. 3
(2018), 659–673. https://doi.org/10.1007/s10898-018-0709-z.

[6] S. Alexandropoulos, C. Aridas, S. Kotsiantis, and M. Vrahatis,
Multi-Objective Evolutionary Optimization Algorithms for Machine Learning: A
Recent Survey, pp. 35–55, Springer International Publishing, Cham, 2019. Available
at https://doi.org/10.1007/978-3-030-12767-1_4.

[7] R. Alimo, P. Beyhaghi, and T. Bewley, Delaunay-based derivative-
free optimization via global surrogates. part III: nonconvex constraints,
Journal of Global Optimization 77 no. 4 (2020), 743–776. https://doi.org/10.
1007/s10898-019-00854-2.

[8] M. Asafuddoula, T. Ray, and H. Singh, Characterizing
Pareto Front Approximations in Many-objective Optimization, in
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation,
ACM, New York, NY, USA, 2015, pp. 607–614. https://doi.org/10.1145/2739480.
2754701.

https://doi.org/Doi:10.1137/050638382
https://doi.org/10.1137/080716980
https://doi.org/10.1007/s10898-015-0270-y
https://doi.org/10.1007/s10898-015-0270-y
https://arxiv.org/abs/1605.07009
https://arxiv.org/abs/1605.07009
https://doi.org/10.1007/s10898-018-0709-z
https://doi.org/10.1007/978-3-030-12767-1_4
https://doi.org/10.1007/s10898-019-00854-2
https://doi.org/10.1007/s10898-019-00854-2
https://doi.org/10.1145/2739480.2754701
https://doi.org/10.1145/2739480.2754701


186

[9] P. B. Assunção, O. P. Ferreira, and L. F. Prudente, Conditional gradient
method for multiobjective optimization, Computational Optimization and Applications
78 no. 3 (2021), 741–768. https://doi.org/10.1007/s10589-020-00260-5.

[10] C. Audet, V. Béchard, and S. Le Digabel, Nonsmooth optimization
through Mesh Adaptive Direct Search and Variable Neighborhood Search, Journal
of Global Optimization 41 no. 2 (2008), 299–318. https://doi.org/10.1007/
s10898-007-9234-1.

[11] C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, and L. Salomon, Performance
indicators in multiobjective optimization, European Journal of Operational Research
292 no. 2 (2021), 397–422, Invited Review. https://doi.org/10.1016/j.ejor.2020.
11.016.

[12] C. Audet, A. Conn, S. Le Digabel, and M. Peyrega, A progressive bar-
rier derivative-free trust-region algorithm for constrained optimization, Computational
Optimization and Applications 71 no. 2 (2018), 307–329. https://doi.org/10.1007/
s10589-018-0020-4.

[13] C. Audet and J. Dennis, Jr., Analysis of generalized pattern searches, SIAM
Journal on Optimization 13 no. 3 (2003), 889–903. https://doi.org/Doi:10.1137/
S1052623400378742.

[14] C. Audet and J. Dennis, Jr., A pattern search filter method for nonlinear program-
ming without derivatives, SIAM Journal on Optimization 14 no. 4 (2004), 980–1010.
https://doi.org/10.1137/S105262340138983X.

[15] C. Audet and J. Dennis, Jr., Mesh Adaptive Direct Search Algorithms for Con-
strained Optimization, SIAM Journal on Optimization 17 no. 1 (2006), 188–217.
https://doi.org/10.1137/040603371.

[16] C. Audet and J. Dennis, Jr., A Progressive Barrier for Derivative-Free Nonlinear
Programming, SIAM Journal on Optimization 20 no. 1 (2009), 445–472. https://doi.
org/10.1137/070692662.

[17] C. Audet, J. Dennis, Jr., and S. Le Digabel, Globalization strategies for Mesh
Adaptive Direct Search, Computational Optimization and Applications 46 no. 2 (2010),
193–215. https://doi.org/10.1007/s10589-009-9266-1.

https://doi.org/10.1007/s10589-020-00260-5
https://doi.org/10.1007/s10898-007-9234-1
https://doi.org/10.1007/s10898-007-9234-1
https://doi.org/10.1016/j.ejor.2020.11.016
https://doi.org/10.1016/j.ejor.2020.11.016
https://doi.org/10.1007/s10589-018-0020-4
https://doi.org/10.1007/s10589-018-0020-4
https://doi.org/Doi:10.1137/S1052623400378742
https://doi.org/Doi:10.1137/S1052623400378742
https://doi.org/10.1137/S105262340138983X
https://doi.org/10.1137/040603371
https://doi.org/10.1137/070692662
https://doi.org/10.1137/070692662
https://doi.org/10.1007/s10589-009-9266-1


187

[18] C. Audet, S. L. Digabel, and C. Tribes, The Mesh Adaptive Direct Search Al-
gorithm for Granular and Discrete Variables, SIAM Journal on Optimization 29 no. 2
(2019), 1164–1189. https://doi.org/10.1137/18M1175872.

[19] C. Audet, K. Dzahini, M. Kokkolaras, and S. Le Digabel, Stochastic
mesh adaptive direct search for blackbox optimization using probabilistic estimates,
Computational Optimization and Applications 79 no. 1 (2021), 1–34. https://doi.
org/10.1007/s10589-020-00249-0.

[20] C. Audet andW. Hare, Derivative-Free and Blackbox Optimization, Springer Series
in Operations Research and Financial Engineering, Springer, Cham, Switzerland, 2017.
https://doi.org/10.1007/978-3-319-68913-5.

[21] C. Audet andW. Hare, Model-Based Methods in Derivative-Free Nonsmooth Optimization,
pp. 655–691, Springer International Publishing, 2020. https://doi.org/10.1007/
978-3-030-34910-3_19.

[22] C. Audet, A. Ianni, S. Le Digabel, and C. Tribes, Reducing the Number of
Function Evaluations in Mesh Adaptive Direct Search Algorithms, SIAM Journal on
Optimization 24 no. 2 (2014), 621–642. https://doi.org/10.1137/120895056.

[23] C. Audet, S. Le Digabel, and M. Peyrega, Linear equalities in blackbox op-
timization, Computational Optimization and Applications 61 no. 1 (2015), 1–23.
https://doi.org/10.1007/s10589-014-9708-2.

[24] C. Audet, S. Le Digabel, V. Rochon Montplaisir, and C. Tribes,
NOMAD version 4: Nonlinear optimization with the MADS algorithm, Tech.
Report G-2021-23, Les cahiers du GERAD, 2021. Available at http:
//www.optimization-online.org/DB_HTML/2021/04/8351.html.

[25] C. Audet, S. Le Digabel, and C. Tribes, NOMAD user guide, Tech. Report G-
2009-37, Les cahiers du GERAD, 2009. Available at https://www.gerad.ca/nomad/
Downloads/user_guide.pdf.

[26] C. Audet, S. Le Digabel, and C. Tribes, Dynamic scaling in the mesh adaptive
direct search algorithm for blackbox optimization, Optimization and Engineering 17
no. 2 (2016), 333–358. https://doi.org/10.1007/s11081-015-9283-0.

[27] C. Audet, G. Savard, and W. Zghal, Multiobjective Optimization Through a Se-
ries of Single-Objective Formulations, SIAM Journal on Optimization 19 no. 1 (2008),
188–210. https://doi.org/10.1137/060677513.

https://doi.org/10.1137/18M1175872
https://doi.org/10.1007/s10589-020-00249-0
https://doi.org/10.1007/s10589-020-00249-0
https://doi.org/10.1007/978-3-319-68913-5
https://doi.org/10.1007/978-3-030-34910-3_19
https://doi.org/10.1007/978-3-030-34910-3_19
https://doi.org/10.1137/120895056
https://doi.org/10.1007/s10589-014-9708-2
http://www.optimization-online.org/DB_HTML/2021/04/8351.html
http://www.optimization-online.org/DB_HTML/2021/04/8351.html
https://www.gerad.ca/nomad/Downloads/user_guide.pdf
https://www.gerad.ca/nomad/Downloads/user_guide.pdf
https://doi.org/10.1007/s11081-015-9283-0
https://doi.org/10.1137/060677513


188

[28] C. Audet, G. Savard, and W. Zghal, A mesh adaptive direct search algorithm
for multiobjective optimization, European Journal of Operational Research 204 no. 3
(2010), 545–556. https://doi.org/10.1016/j.ejor.2009.11.010.

[29] C. Audet and C. Tribes, Mesh-based Nelder-Mead algorithm for inequality con-
strained optimization, Computational Optimization and Applications 71 no. 2 (2018),
331–352. https://doi.org/10.1007/s10589-018-0016-0.

[30] A. Auger, J. Bader, and D. Brockhoff, Theoretically Investigating Opti-
mal µ-Distributions for the HyperVolume Indicator: First Results for Three Objec-
tives, in Parallel Problem Solving from Nature, PPSN XI (R. Schaefer, C. Cotta,
J. Kołodziej, and G. Rudolph, eds.), Springer, Berlin, Heidelberg, 2010, pp. 586–
596. https://doi.org/10.1007/978-3-642-15844-5_59.

[31] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, Theory of the HyperVol-
ume Indicator: Optimal µ-distributions and the Choice of the Reference Point, in
Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms,
ACM, New York, NY, USA, 2009, pp. 87–102. https://doi.org/10.1145/1527125.
1527138.

[32] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, HyperVolume-based multi-
objective optimization: Theoretical foundations and practical implications, Theoretical
Computer Science 425 (2012), 75–103. https://doi.org/10.1016/j.tcs.2011.03.
012.

[33] F. Augustin and Y. Marzouk, NOWPAC: A provably convergent derivative-free
nonlinear optimizer with path-augmented constraints, Tech. report, arXiv, 2014. Avail-
able at https://arxiv.org/abs/1403.1931.

[34] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms, Oxford University Press, New York,
NY, USA, 1996. Available at https://dl.acm.org/doi/book/10.5555/229867.

[35] A. Bagirov, N. Karmitsa, and M. Mkel, Introduction to Nonsmooth
Optimization: Theory, Practice and Software, Springer Publishing Company,
Incorporated, August 2014. Available at https://www.ebook.de/de/product/
22426715/adil_bagirov_napsu_karmitsa_marko_m_maekelae_introduction_to_
nonsmooth_optimization.html.

https://doi.org/10.1016/j.ejor.2009.11.010
https://doi.org/10.1007/s10589-018-0016-0
https://doi.org/10.1007/978-3-642-15844-5_59
https://doi.org/10.1145/1527125.1527138
https://doi.org/10.1145/1527125.1527138
https://doi.org/10.1016/j.tcs.2011.03.012
https://doi.org/10.1016/j.tcs.2011.03.012
https://arxiv.org/abs/1403.1931
https://dl.acm.org/doi/book/10.5555/229867
https://www.ebook.de/de/product/22426715/adil_bagirov_napsu_karmitsa_marko_m_maekelae_introduction_to_nonsmooth_optimization.html
https://www.ebook.de/de/product/22426715/adil_bagirov_napsu_karmitsa_marko_m_maekelae_introduction_to_nonsmooth_optimization.html
https://www.ebook.de/de/product/22426715/adil_bagirov_napsu_karmitsa_marko_m_maekelae_introduction_to_nonsmooth_optimization.html


189

[36] V. Beiranvand,W. Hare, andY. Lucet, Best practices for comparing optimization
algorithms, Optimization and Engineering 18 no. 4 (2017), 815–848. https://doi.
org/10.1007/s11081-017-9366-1.

[37] N. Beume, C. Fonseca, M. Lopez-Ibanez, L. Paquete, and J. Vahrenhold,
On the Complexity of Computing the HyperVolume Indicator, IEEE Transactions on
Evolutionary Computation 13 no. 5 (2009), 1075–1082. https://doi.org/10.1109/
tevc.2009.2015575.

[38] N. Beume, B. Naujoks, and M. Emmerich, SMS-EMOA: Multiobjective selection
based on dominated hypervolume, European Journal of Operational Research 181 no. 3
(2007), 1653–1669. https://doi.org/10.1016/j.ejor.2006.08.008.

[39] B. Beykal, F. Boukouvala, C. Floudas, and E. Pistikopoulos, Optimal design
of energy systems using constrained grey-box multi-objective optimization, Computers
& Chemical Engineering 116 (2018), 488–502. https://doi.org/https://doi.org/
10.1016/j.compchemeng.2018.02.017.

[40] J. Bigeon, S. Le Digabel, and L. Salomon, DMulti-MADS: Mesh adap-
tive direct multisearch for bound-constrained blackbox multiobjective optimization,
Computational Optimization and Applications 79 no. 2 (2021), 301–338. https:
//doi.org/10.1007/s10589-021-00272-9.

[41] J. Bigeon, S. Le Digabel, and L. Salomon, Handling of constraints in
multiobjective blackbox optimization, Tech. Report G-2022-10, Les cahiers du GERAD,
2022. Available at http://www.optimization-online.org/DB_HTML/2022/04/8857.
html.

[42] J. Blank and K. Deb, Pymoo: Multi-objective optimization in python, IEEE Access
8 (2020), 89497–89509. https://doi.org/10.1109/access.2020.2990567.

[43] F. Boukouvala, M. F. Hasan, and C. Floudas, Global optimization of general
constrained grey-box models: new method and its application to constrained PDEs
for pressure swing adsorption, Journal of Global Optimization 67 no. 1 (2017), 3–42.
https://doi.org/10.1007/s10898-015-0376-2.

[44] E. Bradford, A. Schweidtmann, and A. Lapkin, Efficient multiobjective op-
timization employing Gaussian processes, spectral sampling and a genetic algorithm,
Journal of Global Optimization 71 no. 2 (2018), 407–438. https://doi.org/10.1007/
s10898-018-0609-2.

https://doi.org/10.1007/s11081-017-9366-1
https://doi.org/10.1007/s11081-017-9366-1
https://doi.org/10.1109/tevc.2009.2015575
https://doi.org/10.1109/tevc.2009.2015575
https://doi.org/10.1016/j.ejor.2006.08.008
https://doi.org/https://doi.org/10.1016/j.compchemeng.2018.02.017
https://doi.org/https://doi.org/10.1016/j.compchemeng.2018.02.017
https://doi.org/10.1007/s10589-021-00272-9
https://doi.org/10.1007/s10589-021-00272-9
http://www.optimization-online.org/DB_HTML/2022/04/8857.html
http://www.optimization-online.org/DB_HTML/2022/04/8857.html
https://doi.org/10.1109/access.2020.2990567
https://doi.org/10.1007/s10898-015-0376-2
https://doi.org/10.1007/s10898-018-0609-2
https://doi.org/10.1007/s10898-018-0609-2


190

[45] J. Branke, K. Deb, K. Miettinen, and R. Slowiński,
Multiobjective optimization: Interactive and evolutionary approaches, 5252,
Springer, 2008. https://doi.org/10.1007/978-3-540-88908-3.

[46] K. Bringmann and T. Friedrich, Approximating the Volume of unions and in-
tersections of high-dimensional geometric objects, Computational Geometry 43 no. 6
(2010), 601–610. https://doi.org/10.1016/j.comgeo.2010.03.004.

[47] K. Bringmann and T. Friedrich, Tight Bounds for the Approximation Ratio
of the HyperVolume Indicator, in Parallel Problem Solving from Nature, PPSN XI
(R. Schaefer, C. Cotta, J. Kołodziej, and G. Rudolph, eds.), Springer, Berlin,
Heidelberg, 2010, pp. 607–616. Available at https://link.springer.com/chapter/
10.1007/978-3-642-15844-5_61.

[48] K. Bringmann and T. Friedrich, Approximation quality of the hyperVolume in-
dicator, Artificial Intelligence 195 (2013), 265–290. https://doi.org/10.1016/j.
artint.2012.09.005.

[49] D. Brockhoff, A. Auger, N. Hansen, and T. Tušar, Quantitative Performance
Assessment of Multiobjective Optimizers: The Average Runtime Attainment Func-
tion, in Evolutionary Multi-Criterion Optimization (H. Trautmann, G. Rudolph,
K. Klamroth, O. Schütze, M. Wiecek, Y. Jin, and C. Grimme, eds.), Springer,
Cham, 2017, pp. 103–119. https://doi.org/10.1007/978-3-319-54157-0_8.

[50] D. Brockhoff, T. Tran, and N. Hansen, Benchmarking Numerical Multiobjective
Optimizers Revisited, in Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, GECCO ’15, 2015, pp. 639–646. https://doi.org/10.
1145/2739480.2754777.

[51] D. Brockhoff, T. Wagner, and H. Traut-
mann, On the Properties of the R2 Indicator, in
Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation,
ACM, New York, NY, USA, 2012, pp. 465–472. https://doi.org/10.1145/2330163.
2330230.

[52] D. Brockhoff, T. Wagner, andH. Trautmann, 2 Indicator-Based Multiobjective
Search, Evolutionary Computation 23 no. 3 (2015), 369–395. https://doi.org/10.
1162/EVCO_a_00135.

https://doi.org/10.1007/978-3-540-88908-3
https://doi.org/10.1016/j.comgeo.2010.03.004
https://link.springer.com/chapter/10.1007/978-3-642-15844-5_61
https://link.springer.com/chapter/10.1007/978-3-642-15844-5_61
https://doi.org/10.1016/j.artint.2012.09.005
https://doi.org/10.1016/j.artint.2012.09.005
https://doi.org/10.1007/978-3-319-54157-0_8
https://doi.org/10.1145/2739480.2754777
https://doi.org/10.1145/2739480.2754777
https://doi.org/10.1145/2330163.2330230
https://doi.org/10.1145/2330163.2330230
https://doi.org/10.1162/EVCO_a_00135
https://doi.org/10.1162/EVCO_a_00135


191

[53] C. Brás and A. Custódio, On the use of polynomial models in multiobjective di-
rectional direct search, Computational Optimization and Applications 77 no. 3 (2020),
897–918. https://doi.org/10.1007/s10589-020-00233-8.

[54] L. Bueno, A. Friedlander, J. Martínez, and F. Sobral, Inexact restoration
method for derivative-free optimization with smooth constraints, SIAM Journal on
Optimization 23 no. 2 (2013), 1189–1213. https://doi.org/10.1137/110856253.

[55] A. Bűrmen, J. Olenšek, and T. Tuma, Mesh adaptive direct search with
second directional derivative-based hessian update, Computational Optimization
and Applications 62 no. 3 (2015), 693–715. https://doi.org/10.1007/
s10589-015-9753-5.

[56] X. Cai, H. Sun, and Z. Fan, A diversity indicator based on reference vectors for
many-objective optimization, Information Sciences 430-431 (2018), 467–486. https:
//doi.org/10.1016/j.ins.2017.11.051.

[57] T. Chan, Klee’s Measure Problem Made Easy, in
IEEE 54th Annual Symposium on Foundations of Computer Science, IEEE, 2013,
pp. 410–419. https://doi.org/10.1109/FOCS.2013.51.

[58] S. Cheng, Y. Shi, and Q. Qin, On the Performance Metrics of Multiobjec-
tive Optimization, in Advances in Swarm Intelligence (Y. Tan, Y. Shi, and Z. Ji,
eds.), Springer, Berlin, Heidelberg, 2012, pp. 504–512. https://doi.org/10.1007/
978-3-642-30976-2_61.

[59] F. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York,
1983, Reissued in 1990 by SIAM Publications, Philadelphia, as Vol. 5 in the series Clas-
sics in Applied Mathematics. Available at http://www.ec-securehost.com/SIAM/
CL05.html.

[60] G. Cocchi, M. Lapucci, and P. Mansueto, Pareto front approximation through
a multi-objective augmented lagrangian method, EURO Journal on Computational
Optimization 9 (2021), 100008. https://doi.org/10.1016/j.ejco.2021.100008.

[61] G. Cocchi, G. Liuzzi, S. Lucidi, and M. Sciandrone, On the conver-
gence of steepest descent methods for multiobjective optimization, Computational
Optimization and Applications 77 no. 1 (2020), 1–27. https://doi.org/10.1007/
s10589-020-00192-0.

https://doi.org/10.1007/s10589-020-00233-8
https://doi.org/10.1137/110856253
https://doi.org/10.1007/s10589-015-9753-5
https://doi.org/10.1007/s10589-015-9753-5
https://doi.org/10.1016/j.ins.2017.11.051
https://doi.org/10.1016/j.ins.2017.11.051
https://doi.org/10.1109/FOCS.2013.51
https://doi.org/10.1007/978-3-642-30976-2_61
https://doi.org/10.1007/978-3-642-30976-2_61
http://www.ec-securehost.com/SIAM/CL05.html
http://www.ec-securehost.com/SIAM/CL05.html
https://doi.org/10.1016/j.ejco.2021.100008
https://doi.org/10.1007/s10589-020-00192-0
https://doi.org/10.1007/s10589-020-00192-0


192

[62] C. Coello and N. Cortés, Solving Multiobjective Optimization Problems Using
an Artificial Immune System, Genetic Programming and Evolvable Machines 6 no. 2
(2005), 163–190. https://doi.org/10.1007/s10710-005-6164-x.

[63] Y. Collette and P. Siarry, Optimisation multiobjectif, Eyrolles, 2002. Available
at http://goo.gl/s1PHG.

[64] Y. Collette and P. Siarry, Three new metrics to measure the convergence of
metaheuristics towards the Pareto frontier and the aesthetic of a set of solutions in
biobjective optimization, Computers and Operations Research 32 no. 4 (2005), 773–
792. https://doi.org/https://dx.doi.org/10.1016/j.cor.2003.08.017.

[65] Y. Collette andP. Siarry, Multiobjective optimization: principles and case studies,
Springer, 2011. https://doi.org/10.1007/978-3-662-08883-8.

[66] A. Conn and S. L. Digabel, Use of quadratic models with mesh-adaptive direct
search for constrained black box optimization, Optimization Methods and Software 28
no. 1 (2013), 139–158. https://doi.org/10.1080/10556788.2011.623162.

[67] A. Conn, K. Scheinberg, and L. Vicente,
Introduction to Derivative-Free Optimization, MOS-SIAM Series on Optimization,
SIAM, Philadelphia, 2009. https://doi.org/10.1137/1.9780898718768.

[68] G. Cornuéjols, J. Peña, and R. Tütüncü, Optimization Methods in Finance,
Cambridge University Press, 2018. https://doi.org/10.1017/9781107297340.

[69] P. Côté, C. Audet, N. Amaioua, E. Bigeon, Q. Desreumaux,
A. Ihaddadene, Y. Mir, J. Rodriguez, and L. Zéphyr,
Planning of the maintenance outages for a set of hydroelectric turbogenerators,
Tech. Report CRM-3350, Centre de Recherches Mathématiques, 2015.

[70] A. Custódio, J. Dennis, Jr., and L. Vicente, Using simplex gradients of nons-
mooth functions in direct search methods, IMA Journal of Numerical Analysis 28 no. 4
(2008), 770–784. https://doi.org/10.1093/imanum/drn045.

[71] A. Custódio, M. Emmerich, and J. Madeira, Recent Developments in Derivative-
Free Multiobjective Optimization, Computational Technology Reviews 5 no. 1 (2012),
1–30. https://doi.org/10.4203/ctr.5.1.

[72] A. Custódio and J. Madeira, GLODS: Global and Local Optimization using Direct
Search, Journal of Global Optimization 62 no. 1 (2015), 1–28. https://doi.org/10.
1007/s10898-014-0224-9.

https://doi.org/10.1007/s10710-005-6164-x
http://goo.gl/s1PHG
https://doi.org/https://dx.doi.org/10.1016/j.cor.2003.08.017
https://doi.org/10.1007/978-3-662-08883-8
https://doi.org/10.1080/10556788.2011.623162
https://doi.org/10.1137/1.9780898718768
https://doi.org/10.1017/9781107297340
https://doi.org/10.1093/imanum/drn045
https://doi.org/10.4203/ctr.5.1
https://doi.org/10.1007/s10898-014-0224-9
https://doi.org/10.1007/s10898-014-0224-9


193

[73] A. Custódio and J. Madeira, MultiGLODS: global and local multiobjective opti-
mization using direct search, Journal of Global Optimization 72 no. 2 (2018), 323–345.
https://doi.org/10.1007/s10898-018-0618-1.

[74] A. Custódio, J. Madeira, A. Vaz, and L. Vicente, Direct multisearch for mul-
tiobjective optimization, SIAM Journal on Optimization 21 no. 3 (2011), 1109–1140.
https://doi.org/10.1137/10079731X.

[75] A. Custódio, H. Rocha, and L. Vicente, Incorporating minimum Frobenius norm
models in direct search, Computational Optimization and Applications 46 no. 2 (2010),
265–278. https://doi.org/10.1007/s10589-009-9283-0.

[76] A. Custódio and L. Vicente, Using Sampling and Simplex Derivatives in Pattern
Search Methods, SIAM Journal on Optimization 18 no. 2 (2007), 537–555. https:
//doi.org/10.1137/050646706.

[77] A. Custódio, Y. Diouane, R. Garmanjani, and E. Riccietti, Worst-Case
Complexity Bounds of Directional Direct-Search Methods for Multiobjective Opti-
mization, Journal of Optimization Theory and Applications 188 no. 1 (2020), 73–93.
https://doi.org/10.1007/s10957-020-01781-z.

[78] P. Czyzżak and A. Jaszkiewicz, Pareto simulated annealing–a metaheuristic tech-
nique for multiple-objective combinatorial optimization, Journal of Multi-Criteria
Decision Analysis 7 no. 1 (1998), 34–47. https://doi.org/10.1002/(sici)
1099-1360(199801)7:1<34::aid-mcda161>3.0.co;2-6.

[79] K. Dächert, K. Klamroth, R. Lacour, and D. Vanderpooten, Efficient com-
putation of the search region in multi-objective optimization, European Journal of
Operational Research 260 no. 3 (2017), 841–855. https://doi.org/10.1016/j.ejor.
2016.05.029.

[80] I. Das and J. Dennis, Jr., Normal-Boundary Intersection: A New Method for
Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems,
SIAM Journal on Optimization 8 no. 3 (1998), 631–657. https://doi.org/10.1137/
S1052623496307510.

[81] C. Davis, Theory of positive linear dependence, American Journal of Mathematics
76 (1954), 733–746. Available at http://www.ams.org/mathscinet-getitem?mr=16:
211e.

https://doi.org/10.1007/s10898-018-0618-1
https://doi.org/10.1137/10079731X
https://doi.org/10.1007/s10589-009-9283-0
https://doi.org/10.1137/050646706
https://doi.org/10.1137/050646706
https://doi.org/10.1007/s10957-020-01781-z
https://doi.org/10.1002/(sici)1099-1360(199801)7:1<34::aid-mcda161>3.0.co;2-6
https://doi.org/10.1002/(sici)1099-1360(199801)7:1<34::aid-mcda161>3.0.co;2-6
https://doi.org/10.1016/j.ejor.2016.05.029
https://doi.org/10.1016/j.ejor.2016.05.029
https://doi.org/10.1137/S1052623496307510
https://doi.org/10.1137/S1052623496307510
http://www.ams.org/mathscinet-getitem?mr=16:211e
http://www.ams.org/mathscinet-getitem?mr=16:211e


194

[82] R. De Leone, M. Gaudioso, and L. Grippo, Stopping criteria for linesearch meth-
ods without derivatives, Mathematical Programming 30 (1984), 285–300. Available at
http://www.ams.org/mathscinet-getitem?mr=86g:90093.

[83] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley
and Sons, New York, NY, USA, 2001.

[84] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, A Fast Elitist Non-
dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-
II, in Parallel Problem Solving from Nature PPSN VI (M. Schoenauer, K. Deb,
G. Rudolph, X. Yao, E. Lutton, J. Merelo, and H.-P. H.P. Schwefel,
eds.), Springer, Berlin, Heidelberg, 2000, pp. 849–858. https://doi.org/10.1007/
3-540-45356-3_83.

[85] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiob-
jective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation
6 no. 2 (2002), 182–197. https://doi.org/10.1109/4235.996017.

[86] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, Scalable multi-objective
optimization test problems, in Proceedings of the 2002 Congress on Evolutionary
Computation. CEC’02 (Cat. No.02TH8600), 1, IEEE, 2002, pp. 825–830 vol.1. https:
//doi.org/10.1109/CEC.2002.1007032.

[87] K. Deb and S. Tiwari, Omni-optimizer: A generic evolutionary algorithm for single
and multi-objective optimization, European Journal of Operational Research 185 no. 3
(2008), 1062–1087. https://doi.org/10.1016/j.ejor.2006.06.042.

[88] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley &
Sons, Inc., New York, NY, USA, 2001.

[89] K. Deb andK. Miettinen, Multiobjective optimization: interactive and evolutionary
approaches, 5252, Springer Science & Business Media, 2008.

[90] S. Dedoncker, W. Desmet, and F. Naets, An adaptive direct multisearch method
for black-box multi-objective optimization, Optimization and Engineering (2021).
https://doi.org/10.1007/s11081-021-09657-5.

[91] A. Deutz, M. Emmerich, and K. Yang, The Expected R2-
Indicator Improvement for Multi-objective Bayesian Optimization, in
Evolutionary Multi-Criterion Optimization (K. Deb, E. Goodman, C. Coello,

http://www.ams.org/mathscinet-getitem?mr=86g:90093
https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/CEC.2002.1007032
https://doi.org/10.1109/CEC.2002.1007032
https://doi.org/10.1016/j.ejor.2006.06.042
https://doi.org/10.1007/s11081-021-09657-5


195

K. Klamroth, K. Miettinen, S. Mostaghim, and P. Reed, eds.), Springer,
Cham, 2019, pp. 359–370. https://doi.org/10.1007/978-3-030-12598-1_29.

[92] F. Di Pierro, S. Khu, D. Savić, and L. Berardi, Efficient multi-objective op-
timal design of water distribution networks on a budget of simulations using hy-
brid algorithms, Environmental Modelling & Software 24 no. 2 (2009), 202–213.
https://doi.org/https://doi.org/10.1016/j.envsoft.2008.06.008.

[93] E. Dilettoso, S. Rizzo, and N. Salerno, A Weakly Pareto Compliant Quality
Indicator, Mathematical and Computational Applications 22 no. 1 (2017). https:
//doi.org/10.3390/mca22010025.

[94] M. Diniz-Ehrhardt, J. Martinez, and L. Pedroso, Derivative-free meth-
ods for nonlinear programming with general lower-level constraints, To appear in
Journal of Computational and Applied Mathematics (2011). Available at http://www.
optimization-online.org/DB_HTML/2010/06/2663.html.

[95] Y. Diouane, S. Gratton, and L. Vicente, Globally convergent evolution strate-
gies, Mathematical Programming 152 no. 1 (2015), 467–490. https://doi.org/10.
1007/s10107-014-0793-x.

[96] Y. Diouane, S. Gratton, and L. Vicente, Globally convergent evolution strategies
for constrained optimization, Computational Optimization and Applications 62 no. 2
(2015), 323–346. https://doi.org/10.1007/s10589-015-9747-3.

[97] E. Dolan and J. Moré, Benchmarking optimization software with performance pro-
files, Mathematical Programming 91 no. 2 (2002), 201–213. https://doi.org/10.
1007/s101070100263.

[98] M. Ehrgott, Multicriteria Optimization, Volume 491 of Lecture Notes in Economics
and Mathematical Systems, 2nd ed., Springer, Berlin, 2005. Available at https://www.
springer.com/gp/book/9783540213987.

[99] A. Eiben and J. Smith, Introduction to Evolutionary Computing, 2nd ed., 53,
Springer, July 2015. Available at https://www.ebook.de/de/product/22721904/a_
e_eiben_j_e_smith_introduction_to_evolutionary_computing.html.

[100] M. Emmerich, A. Deutz, J. Kruisselbrink, and P. Shukla, Cone-Based
HyperVolume Indicators: Construction, Properties, and Efficient Computation, in

https://doi.org/10.1007/978-3-030-12598-1_29
https://doi.org/https://doi.org/10.1016/j.envsoft.2008.06.008
https://doi.org/10.3390/mca22010025
https://doi.org/10.3390/mca22010025
http://www.optimization-online.org/DB_HTML/2010/06/2663.html
http://www.optimization-online.org/DB_HTML/2010/06/2663.html
https://doi.org/10.1007/s10107-014-0793-x
https://doi.org/10.1007/s10107-014-0793-x
https://doi.org/10.1007/s10589-015-9747-3
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://www.springer.com/gp/book/9783540213987
https://www.springer.com/gp/book/9783540213987
https://www.ebook.de/de/product/22721904/a_e_eiben_j_e_smith_introduction_to_evolutionary_computing.html
https://www.ebook.de/de/product/22721904/a_e_eiben_j_e_smith_introduction_to_evolutionary_computing.html


196

Evolutionary Multi-Criterion Optimization (R. Purshouse, P. Fleming, C. Fon-
seca, S. Greco, and J. Shaw, eds.), Springer, Berlin, Heidelberg, 2013, pp. 111–127.
https://doi.org/10.1007/978-3-642-37140-0_12.

[101] M. Emmerich, K. Yang, A. Deutz, H. Wang, and C. Fonseca,
A Multicriteria Generalization of Bayesian Global Optimization, pp. 229–242,
Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-29975-4_12.

[102] M. Emmerich, A. Deutz, and J. Kruisselbrink,
On Quality Indicators for Black-Box Level Set Approximation, pp. 157–185, Springer,
Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-32726-1_4.

[103] M. Emmerich, A. Deutz, and I. Yevseyeva, On Reference Point Free Weighted
HyperVolume Indicators based on Desirability Functions and their Probabilistic In-
terpretation, Procedia Technology 16 (2014), 532–541. https://doi.org/10.1016/j.
protcy.2014.10.001.

[104] J. Falcón-Cardona and C. C. Coello, Indicator-Based Multi-Objective Evolu-
tionary Algorithms: A Comprehensive Survey, ACM Computing Surveys 53 no. 2
(2020), 1–35. https://doi.org/10.1145/3376916.

[105] J. Falcón-Cardona, C. C. Coello, and M. Emmerich, CRI-EMOA: A
Pareto-Front Shape Invariant Evolutionary Multi-objective Algorithm, in Evolutionary
Multi-Criterion Optimization (K. Deb, E. Goodman, C. C. Coello, K. Klam-
roth, K. Miettinen, S. Mostaghim, and P. Reed, eds.), Springer, Cham, 2019,
pp. 307–318.

[106] J. Falcón-Cardona, M. Emmerich, and C. C. Coello,
On the Construction of Pareto-Compliant Quality Indicators, in
Proceedings of the Genetic and Evolutionary Computation Conference Companion,
ACM, 2019, pp. 2024–2027. https://doi.org/10.1145/3319619.3326902.

[107] H. Fang, M. Rais-Rohani, Z. Liu, and M. Horstemeyer, A comparative study
of metamodeling methods for multiobjective crashworthiness optimization, Computers
& Structures 83 no. 25-26 (2005), 2121–2136. https://doi.org/https://doi.org/
10.1016/j.compstruc.2005.02.025.

[108] A. Farhang-Mehr and S. Azarm, An Information-Theoretic Entropy Metric for
Assessing Multi-Objective Optimization Solution Set Quality, Journal of Mechanical
Design 125 no. 4 (2004), 655–663. https://doi.org/10.1115/1.1623186.

https://doi.org/10.1007/978-3-642-37140-0_12
https://doi.org/10.1007/978-3-319-29975-4_12
https://doi.org/10.1007/978-3-642-32726-1_4
https://doi.org/10.1016/j.protcy.2014.10.001
https://doi.org/10.1016/j.protcy.2014.10.001
https://doi.org/10.1145/3376916
https://doi.org/10.1145/3319619.3326902
https://doi.org/https://doi.org/10.1016/j.compstruc.2005.02.025
https://doi.org/https://doi.org/10.1016/j.compstruc.2005.02.025
https://doi.org/10.1115/1.1623186


197

[109] G. Fasano, G. Liuzzi, S. Lucidi, and F. Rinaldi, A Linesearch-Based
Derivative-Free Approach for Nonsmooth Constrained Optimization, SIAM Journal
on Optimization 24 no. 3 (2014), 959–992. https://doi.org/10.1137/130940037.

[110] S. Faulkenberg and M. Wiecek, On the quality of discrete representations in
multiple objective programming, Optimization and Engineering 11 no. 3 (2009), 423–
440. https://doi.org/10.1007/s11081-009-9099-x.

[111] P. Feliot, J. Bect, and E. Vazquez, A Bayesian approach to constrained single-
and multi-objective optimization, Journal of Global Optimization 67 no. 1–2 (2017),
97–133. https://doi.org/10.1007/s10898-016-0427-3.

[112] P. Feliot, J. Bect, and E. Vazquez, User Preferences in Bayesian Multi-
objective Optimization: The Expected Weighted HyperVolume Improvement Crite-
rion, in Machine Learning, Optimization, and Data Science (G. Nicosia, P. Parda-
los, G. Giuffrida, R. Umeton, and V. Sciacca, eds.), Springer, Cham, 2019,
pp. 533–544. https://doi.org/10.1007/978-3-030-13709-0_45.

[113] E. Fermi and N. Metropolis, Numerical solution of a minimum problem, Los
Alamos Unclassified Report LA–1492, Los Alamos National Laboratory, Los Alamos,
USA, 1952.

[114] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function,
Mathematical Programming Series A, 91 (2002), 239–269. https://doi.org/10.
1007/s101070100244.

[115] R. Fletcher, S. Leyffer, and P. Toint, On the global convergence of a filter–SQP
algorithm, SIAM Journal on Optimization 13 no. 1 (2002), 44–59. https://doi.org/
10.1137/S105262340038081X.

[116] J. Fliege, L. G. Drummond, and B. Svaiter, Newton’s method for multiobjective
optimization, SIAM Journal on Optimization 20 no. 2 (2009), 602–626. https://doi.
org/10.1137/08071692x.

[117] J. Fliege and B. Svaiter, Steepest descent methods for multicriteria optimization,
Mathematical Methods of Operations Research 51 no. 3 (2000), 479–494. https://
doi.org/https://doi.org/10.1007/s001860000043.

[118] J. Fliege and A. Vaz, A method for constrained multiobjective optimization based
on SQP techniques, SIAM Journal on Optimization 26 no. 4 (2016), 2091–2119. https:
//doi.org/10.1137/15M1016424.

https://doi.org/10.1137/130940037
https://doi.org/10.1007/s11081-009-9099-x
https://doi.org/10.1007/s10898-016-0427-3
https://doi.org/10.1007/978-3-030-13709-0_45
https://doi.org/10.1007/s101070100244
https://doi.org/10.1007/s101070100244
https://doi.org/10.1137/S105262340038081X
https://doi.org/10.1137/S105262340038081X
https://doi.org/10.1137/08071692x
https://doi.org/10.1137/08071692x
https://doi.org/https://doi.org/10.1007/s001860000043
https://doi.org/https://doi.org/10.1007/s001860000043
https://doi.org/10.1137/15M1016424
https://doi.org/10.1137/15M1016424


198

[119] C. Fonseca, V. da Fonseca, and L. Paquete, Exploring the Performance of
Stochastic Multiobjective Optimisers with the Second-Order Attainment Function,
in Evolutionary Multi-Criterion Optimization (C. Coello, A. H. Aguirre, and
E. Zitzler, eds.), Springer, Berlin, Heidelberg, 2005, pp. 250–264. https://doi.
org/10.1007/978-3-540-31880-4_18.

[120] C. Fonseca, A. Guerreiro, M. López-Ibáñez, and L. Pa-
quete, On the Computation of the Empirical Attainment Function, in
Evolutionary Multi-Criterion Optimization (R. Takahashi, K. Deb, E. Wan-
ner, and S. Greco, eds.), Springer, Berlin, Heidelberg, 2011, pp. 106–120.
https://doi.org/10.1007/978-3-642-19893-9_8.

[121] C. Fonseca, L. Paquete, and M. Lopez-Ibanez, An Improved Dimension-Sweep
Algorithm for the Hypervolume Indicator, in 2006 IEEE International Conference
on Evolutionary Computation, 2006, pp. 1157–1163. https://doi.org/10.1109/cec.
2006.1688440.

[122] V. da Fonseca, C. Fonseca, and A. Hall, Inferential Performance
Assessment of Stochastic Optimisers and the Attainment Function, in
Evolutionary Multi-Criterion Optimization (E. Zitzler, L. Thiele, K. Deb,
C.A.C., and D. Corne, eds.), Springer, Berlin, Heidelberg, 2001, pp. 213–225.
https://doi.org/10.1007/3-540-44719-9_15.

[123] T. Friedrich, K. Bringmann, T. Voß, and
C. Igel, The Logarithmic HyperVolume Indicator, in
Proceedings of the 11th Workshop Proceedings on Foundations of Genetic Algorithms,
ACM, New York, NY, USA, 2011, pp. 81–92. https://doi.org/10.1145/1967654.
1967662.

[124] R. Garmanjani and L. Vicente, Smoothing and worst-case complexity for direct-
search methods in nonsmooth optimization, IMA Journal of Numerical Analysis 33
(2013), 1008–1028. https://doi.org/10.1093/imanum/drs027.

[125] M. L. Garneau, Modelling of a solar thermal power plant for benchmarking
blackbox optimization solvers, Master’s thesis, Polytechnique Montréal, 2015, Available
at https://publications.polymtl.ca/1996/. Available at https://publications.
polymtl.ca/1996/.

[126] G.Cocchi, G.Liuzzi, A.Papini, and M.Sciandrone, An implicit filtering algorithm
for derivative-free multiobjective optimization with box constraints, Computational

https://doi.org/10.1007/978-3-540-31880-4_18
https://doi.org/10.1007/978-3-540-31880-4_18
https://doi.org/10.1007/978-3-642-19893-9_8
https://doi.org/10.1109/cec.2006.1688440
https://doi.org/10.1109/cec.2006.1688440
https://doi.org/10.1007/3-540-44719-9_15
https://doi.org/10.1145/1967654.1967662
https://doi.org/10.1145/1967654.1967662
https://doi.org/10.1093/imanum/drs027
https://publications.polymtl.ca/1996/
https://publications.polymtl.ca/1996/
https://publications.polymtl.ca/1996/


199

Optimization and Applications 69 no. 2 (2018), 267–296. https://doi.org/10.1007/
s10589-017-9953-2.

[127] M. Gendreau, J. Potvin, and others, Handbook of Metaheuristics, 2, Springer,
2019. Available at https://www.ebook.de/de/product/34313206/handbook_of_
metaheuristics.html.

[128] D. Ghosh and D. Chakraborty, A direction based classical method to obtain
complete Pareto set of multi-criteria optimization problems, Opsearch 52 no. 2 (2015),
340–366. https://doi.org/10.1007/s12597-014-0178-1.

[129] P. Gilmore and C. Kelley, An implicit filtering algorithm for optimization of func-
tions with many local minima, SIAM Journal on Optimization 5 no. 2 (1995), 269–285.
https://doi.org/10.1137/0805015.

[130] N. Gould and J. Scott, A Note on Performance Profiles for Benchmarking Software,
ACM Transactions on Mathematical Software 43 no. 2 (2016), 1–5. https://doi.org/
10.1145/2950048.

[131] S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang, Direct search
based on probabilistic feasible descent for bound and linearly constrained prob-
lems, Computational Optimization and Applications 72 no. 3 (2019), 525–559. https:
//doi.org/10.1007/s10589-019-00062-4.

[132] S. Gratton, C. Royer, L. Vicente, and Z. Zhang, Direct search based on
probabilistic descent, SIAM Journal on Optimization 25 no. 3 (2015), 1515–1541.
https://doi.org/10.1137/140961602.

[133] S. Gratton and L. Vicente, A Merit Function Approach for Direct Search, SIAM
Journal on Optimization 24 no. 4 (2014), 1980–1998. https://doi.org/10.1137/
130917661.

[134] L. Grippo, F. Lampariello, and S. Lucidi, Global convergence and stabilization
of unconstrained minimization methods without derivatives, Journal of Optimization
Theory and Applications 56 no. 3 (1988), 385–406. Available at http://www.ams.org/
mathscinet-getitem?mr=89f:90165.

[135] I. Griva, S. Nash, and A. Sofer, Linear and Nonlinear Optimization, Society for
Industrial and Applied Mathematics, 2009.

https://doi.org/10.1007/s10589-017-9953-2
https://doi.org/10.1007/s10589-017-9953-2
https://www.ebook.de/de/product/34313206/handbook_of_metaheuristics.html
https://www.ebook.de/de/product/34313206/handbook_of_metaheuristics.html
https://doi.org/10.1007/s12597-014-0178-1
https://doi.org/10.1137/0805015
https://doi.org/10.1145/2950048
https://doi.org/10.1145/2950048
https://doi.org/10.1007/s10589-019-00062-4
https://doi.org/10.1007/s10589-019-00062-4
https://doi.org/10.1137/140961602
https://doi.org/10.1137/130917661
https://doi.org/10.1137/130917661
http://www.ams.org/mathscinet-getitem?mr=89f:90165
http://www.ams.org/mathscinet-getitem?mr=89f:90165


200

[136] A. Guerreiro and C. Fonseca, HyperVolume Sharpe-Ratio
Indicator: Formalization and First Theoretical Results, in
Parallel Problem Solving from Nature – PPSN XIV, 2016, pp. 814–823. https:
//doi.org/10.1007/978-3-319-45823-6_76.

[137] A. Guerreiro and C. Fonseca, An analysis of the HyperVolume Sharpe-Ratio
Indicator, European Journal of Operational Research 283 no. 2 (2020), 614–629.
https://doi.org/10.1016/j.ejor.2019.11.023.

[138] Y. Haimes, On a bicriterion formulation of the problems of integrated system identifi-
cation and system optimization, IEEE Transactions on Systems, Man, and Cybernetics
1 no. 3 (1971), 296–297. https://doi.org/10.1109/TSMC.1971.4308298.

[139] M. Hansen and A. Jaszkiewicz, Evaluating the quality of approximations to the
non-dominated set, IMM, Department of Mathematical Modelling, 1998.

[140] D. Hardin and E. Saff, Discretizing manifolds via minimum energy points, Notices of
the AMS 51 no. 10 (2004), 1186–1194. Available at https://pdfs.semanticscholar.
org/1a89/17bddab57cd22706bbffda13385c090a6f4a.pdf.

[141] D. Hardin and E. Saff, Minimal Riesz energy point configurations for rectifiable
d-dimensional manifolds, Advances in Mathematics 193 no. 1 (2005), 174–204. https:
//doi.org/10.1016/j.aim.2004.05.006.

[142] M. Hasanoglu and M. Dolen, Multi-objective feasibility enhanced particle swarm
optimization, Engineering Optimization 50 no. 12 (2018), 2013–2037. https://doi.
org/10.1080/0305215X.2018.1431232.

[143] R. Hooke and T. Jeeves, “Direct Search" Solution of Numerical and Statistical
Problems, Journal of the Association for Computing Machinery 8 no. 2 (1961), 212–
229. https://doi.org/10.1145/321062.321069.

[144] S. Huband, P. Hingston, L. Barone, and L. While, A review of multiob-
jective test problems and a scalable test problem toolkit, IEEE Transactions on
Evolutionary Computation 10 no. 5 (2006), 477–506. https://doi.org/10.1109/
TEVC.2005.861417.

[145] H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, How to Specify a Refer-
ence Point in HyperVolume Calculation for Fair Performance Comparison, Evolutionary
Computation 26 no. 3 (2018), 411–440. https://doi.org/10.1162/evco_a_00226.

https://doi.org/10.1007/978-3-319-45823-6_76
https://doi.org/10.1007/978-3-319-45823-6_76
https://doi.org/10.1016/j.ejor.2019.11.023
https://doi.org/10.1109/TSMC.1971.4308298
https://pdfs.semanticscholar.org/1a89/17bddab57cd22706bbffda13385c090a6f4a.pdf
https://pdfs.semanticscholar.org/1a89/17bddab57cd22706bbffda13385c090a6f4a.pdf
https://doi.org/10.1016/j.aim.2004.05.006
https://doi.org/10.1016/j.aim.2004.05.006
https://doi.org/10.1080/0305215X.2018.1431232
https://doi.org/10.1080/0305215X.2018.1431232
https://doi.org/10.1145/321062.321069
https://doi.org/10.1109/TEVC.2005.861417
https://doi.org/10.1109/TEVC.2005.861417
https://doi.org/10.1162/evco_a_00226


201

[146] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima, Dif-
ficulties in specifying reference points to calculate the inverted gen-
erational distance for many-objective optimization problems, in
IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making,
2014, pp. 170–177. https://doi.org/10.1109/mcdm.2014.7007204.

[147] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima, Modified Dis-
tance Calculation in Generational Distance and Inverted Generational Distance, in
Evolutionary Multi-Criterion Optimization (A. Gaspar-Cunha, C. H. Antunes,
and C. Coello, eds.), Springer, Cham, 2015, pp. 110–125. https://doi.org/10.
1007/978-3-319-15892-1_8.

[148] J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer, Berlin,
2004.

[149] J. Jahn, Introduction to the theory of nonlinear optimization, third
ed., Springer, 2007. Available at http://www.bibsonomy.org/bibtex/
232e94fe35083c3aa63e38f3d517e21e4/dblp.

[150] A. Jaszkiewicz, Improved quick hyperVolume algorithm, Computers and Operations
Research 90 (2018), 72–83. https://doi.org/10.1016/j.cor.2017.09.016.

[151] S. Jiang, Y. Ong, J. Zhang, and L. Feng, Consistencies and Contradictions of Per-
formance Metrics in Multiobjective Optimization, IEEE Transactions on Cybernetics
44 no. 12 (2014), 2391–2404. https://doi.org/10.1109/tcyb.2014.2307319.

[152] S. Jiang, S. Yang, and M. Li, On the use of hypervol-
ume for diversity measurement of Pareto front approximations, in
2016 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2016,
pp. 1–8. https://doi.org/10.1109/SSCI.2016.7850225.

[153] D. Jones, M. Schonlau, and W. Welch, Efficient Global Optimization of Expen-
sive Black Box Functions, Journal of Global Optimization 13 no. 4 (1998), 455–492.
https://doi.org/10.1023/A:1008306431147.

[154] C. Kelley, Implicit Filtering, Society for Industrial and Applied Mathematics,
Philadephia, PA, 2011. https://doi.org/10.1137/1.9781611971903.

[155] M. Kidd, R. Lusby, and J. Larsen, Equidistant representations: Connecting cov-
erage and uniformity in discrete biobjective optimization, Computers and Operations
Research 117 (2020), 104872. https://doi.org/10.1016/j.cor.2019.104872.

https://doi.org/10.1109/mcdm.2014.7007204
https://doi.org/10.1007/978-3-319-15892-1_8
https://doi.org/10.1007/978-3-319-15892-1_8
http://www.bibsonomy.org/bibtex/232e94fe35083c3aa63e38f3d517e21e4/dblp
http://www.bibsonomy.org/bibtex/232e94fe35083c3aa63e38f3d517e21e4/dblp
https://doi.org/10.1016/j.cor.2017.09.016
https://doi.org/10.1109/tcyb.2014.2307319
https://doi.org/10.1109/SSCI.2016.7850225
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1137/1.9781611971903
https://doi.org/10.1016/j.cor.2019.104872


202

[156] C. Kieslich, F. Boukouvala, and C. Floudas, Optimization of black-
box problems using smolyak grids and polynomial approximations, Journal
of Global Optimization 71 no. 4 (2018), 845–869. https://doi.org/10.1007/
s10898-018-0643-0.

[157] S. Kirkpatrick, C. G. Jr., and M. Vecchi, Optimization by Simulated Annealing,
Science 220 no. 4598 (1983), 671–680. Available at http://www.jstor.org/stable/
1690046.

[158] J. Knowles, ParEGO: A hybrid algorithm with on-line landscape approximation for
expensive multiobjective optimization problems, IEEE Transactions on Evolutionary
Computation 10 no. 1 (2006), 50–66. https://doi.org/10.1109/tevc.2005.851274.

[159] J. Knowles and D. Corne, On metrics for comparing nondominated sets, in
Evolutionary Computation, 1, IEEE, Honolulu, HI, 2002, pp. 711–716. https://doi.
org/10.1109/CEC.2002.1007013.

[160] T. Kolda, R. Lewis, andV. Torczon, Optimization by direct search: New perspec-
tives on some classical and modern methods, SIAM Review 45 no. 3 (2003), 385–482.
https://doi.org/10.1137/S003614450242889.

[161] T. Kolda, R. Lewis, and V. Torczon, A generating set direct search augmented
Lagrangian algorithm for optimization with a combination of general and linear
constraints, Tech. Report SAND2006-5315, Sandia National Laboratories, USA, 2006.

[162] T. Kolda, R. Lewis, and V. Torczon, Stationarity results for generating set search
for linearly constrained optimization, SIAM Journal on Optimization 17 no. 4 (2006),
943–968. https://doi.org/10.1137/S1052623403433638.

[163] R. Lacour, K. Klamroth, and C. Fonseca, A box decomposition algorithm to
compute the hyperVolume indicator, Computers and Operations Research 79 (2017),
347–360. https://doi.org/10.1016/j.cor.2016.06.021.

[164] J. Larson, M. Menickelly, and S. Wild, Derivative-free optimization methods,
Acta Numerica 28 (2019), 287–404. https://doi.org/10.1017/S0962492919000060.

[165] M. Laumanns, R. Günter, and H. Schwefel, Approximating the Pareto set:
Concepts, diversity issues, and performance assessment, Secretary of the SFB 531, 1999.
Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.
1332&rep=rep1&type=pdf.

https://doi.org/10.1007/s10898-018-0643-0
https://doi.org/10.1007/s10898-018-0643-0
http://www.jstor.org/stable/1690046
http://www.jstor.org/stable/1690046
https://doi.org/10.1109/tevc.2005.851274
https://doi.org/10.1109/CEC.2002.1007013
https://doi.org/10.1109/CEC.2002.1007013
https://doi.org/10.1137/S003614450242889
https://doi.org/10.1137/S1052623403433638
https://doi.org/10.1016/j.cor.2016.06.021
https://doi.org/10.1017/S0962492919000060
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.1332&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.1332&rep=rep1&type=pdf


203

[166] M. Laumanns, E. Zitzler, and L. Thiele, A Unified Model for Multi-Objective
Evolutionary Algorithms with Elitism, in Congress on Evolutionary Computation, 1,
Piscataway, New Jersey, USA, 2000, pp. 46–53. https://doi.org/10.1109/CEC.2000.
870274.

[167] S. Le Digabel, Algorithm 909: NOMAD: Nonlinear Optimization with the MADS
algorithm, ACM Transactions on Mathematical Software 37 no. 4 (2011), 44:1–44:15.
https://doi.org/10.1145/1916461.1916468.

[168] S. Le Digabel and S. Wild, A Taxonomy of Constraints in Simulation-Based Optimization,
Tech. Report G-2015-57, Les cahiers du GERAD, 2015. Available at http:
//www.optimization-online.org/DB_HTML/2015/05/4931.html.

[169] Y. Leung and Y. Wang, U-measure: a quality measure for multiobjective program-
ming, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans 33 no. 3 (2003), 337–343. https://doi.org/10.1109/TSMCA.2003.817059.

[170] R. Lewis and V. Torczon, A globally convergent augmented Lagrangian pattern
search algorithm for optimization with general constraints and simple bounds, SIAM
Journal on Optimization 12 no. 4 (2002), 1075–1089. https://doi.org/10.1137/
S1052623498339727.

[171] R. Lewis and V. Torczon, A Direct Search Approach to Nonlinear Programming
Problems Using an Augmented Lagrangian Method with Explicit Treatment of Linear
Constraints, Tech. report, College of William and Mary, 2010. Available at http://
citeseerx.ist.psu.edu/viewdoc/summary?Doi=10.1.1.156.8677.

[172] M. Li, S. Yang, and X. Liu, Diversity Comparison of Pareto Front Approximations
in Many-Objective Optimization, IEEE Transactions on Cybernetics 44 no. 12 (2014),
2568–2584. https://doi.org/10.1109/TCYB.2014.2310651.

[173] M. Li, S. Yang, and X. Liu, A Performance Comparison Indica-
tor for Pareto Front Approximations in Many-Objective Optimization, in
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation,
ACM, New York, NY, USA, 2015, pp. 703–710. https://doi.org/10.1145/2739480.
2754687.

[174] M. Li and X. Yao, Dominance Move: A Measure of Comparing Solution Sets
in Multiobjective Optimization, Tech. Report 1702.00477, arXiv, 2017. Available at
https://arxiv.org/abs/1702.00477.

https://doi.org/10.1109/CEC.2000.870274
https://doi.org/10.1109/CEC.2000.870274
https://doi.org/10.1145/1916461.1916468
http://www.optimization-online.org/DB_HTML/2015/05/4931.html
http://www.optimization-online.org/DB_HTML/2015/05/4931.html
https://doi.org/10.1109/TSMCA.2003.817059
https://doi.org/10.1137/S1052623498339727
https://doi.org/10.1137/S1052623498339727
http://citeseerx.ist.psu.edu/viewdoc/summary?Doi=10.1.1.156.8677
http://citeseerx.ist.psu.edu/viewdoc/summary?Doi=10.1.1.156.8677
https://doi.org/10.1109/TCYB.2014.2310651
https://doi.org/10.1145/2739480.2754687
https://doi.org/10.1145/2739480.2754687
https://arxiv.org/abs/1702.00477


204

[175] M. Li andX. Yao, Quality Evaluation of Solution Sets in Multiobjective Optimisation:
A Survey, ACM Computing Surveys 52 no. 2 (2019), 26:1–26:38. https://doi.org/
10.1145/3300148.

[176] M. Li, J. Zheng, and G. Xiao, Uniformity assessment for evolutionary multi-
objective optimization, in IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence), 2008, pp. 625–632. https://doi.org/10.
1109/CEC.2008.4630861.

[177] G. Liuzzi and S. Lucidi, A derivative-free algorithm for inequality constrained
nonlinear programming via smoothing of an `∞ penalty function, SIAM Journal on
Optimization 20 no. 1 (2009), 1–29. https://doi.org/10.1137/070711451.

[178] G. Liuzzi, S. Lucidi, and F.Rinaldi, Derivative-free methods for bound constrained
mixed-integer optimization, Computational Optimization and Applications 53 no. 2
(2012), 505–526. https://doi.org/10.1007/s10589-011-9405-3.

[179] G. Liuzzi, S. Lucidi, and F. Rinaldi, Derivative-Free Methods for Mixed-Integer
Constrained Optimization Problems, Journal of Optimization Theory and Applications
164 no. 3 (2015), 933–965. https://doi.org/10.1007/s10957-014-0617-4.

[180] G. Liuzzi, S. Lucidi, and F. Rinaldi, A Derivative-Free Approach to Constrained
Multiobjective Nonsmooth Optimization, SIAM Journal on Optimization 26 no. 4
(2016), 2744–2774. https://doi.org/10.1137/15M1037810.

[181] G. Liuzzi, S. Lucidi, and F. Rinaldi, An algorithmic framework based on primitive
directions and nonmonotone line searches for black-box optimization problems with
integer variables, Mathematical Programming Computation 12 no. 4 (2020), 673–702.
https://doi.org/10.1007/s12532-020-00182-7.

[182] G. Liuzzi, S. Lucidi, F. Rinaldi, and L. Vicente, Trust-region methods for
the derivative-free optimization of nonsmooth black-box functions, SIAM Journal on
Optimization 29 no. 4 (2019), 3012–3035. https://doi.org/10.1137/19M125772X.

[183] G. Liuzzi, S. Lucidi, and M. Sciandrone, Sequential penalty derivative-free meth-
ods for nonlinear constrained optimization, SIAM Journal on Optimization 20 no. 5
(2010), 2614–2635. https://doi.org/10.1137/090750639.

[184] G. Lizarraga-Lizarraga, A. Hernandez-Aguirre, and S. Botello-Rionda,
G-Metric: An M-ary Quality Indicator for the Evaluation of Non-dominated Sets, in

https://doi.org/10.1145/3300148
https://doi.org/10.1145/3300148
https://doi.org/10.1109/CEC.2008.4630861
https://doi.org/10.1109/CEC.2008.4630861
https://doi.org/10.1137/070711451
https://doi.org/10.1007/s10589-011-9405-3
https://doi.org/10.1007/s10957-014-0617-4
https://doi.org/10.1137/15M1037810
https://doi.org/10.1007/s12532-020-00182-7
https://doi.org/10.1137/19M125772X
https://doi.org/10.1137/090750639


205

Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation,
ACM, New York, NY, USA, 2008, pp. 665–672. https://doi.org/10.1145/1389095.
1389227.

[185] E. Lopez and C. Coello, IGD+-EMOA: A multi-objective evolutionary algorithm
based on IGD+, in 2016 IEEE Congress on Evolutionary Computation (CEC), 2016,
pp. 999–1006. https://doi.org/10.1109/CEC.2016.7743898.

[186] H. Markowitz, Portfolio selection, Journal of Finance 7 no. 1 (1952), 77–91.

[187] L. Martí, J. García, A. Berlanga, and J. Molina, A stopping criterion for multi-
objective optimization evolutionary algorithms, Information Sciences 367-368 (2016),
700–718. https://doi.org/10.1016/j.ins.2016.07.025.

[188] H. Meng, X. Zhang, and S. Liu, New Quality Measures for Multiobjective Pro-
gramming, in Advances in Natural Computation (L. Wang, K. Chen, and Y. Ong,
eds.), Springer, Berlin, Heidelberg, 2005, pp. 1044–1048. https://doi.org/10.1007/
11539117_143.

[189] A. Messac and C. Mattson, Normal Constraint Method with Guarantee of Even
Representation of Complete Pareto Frontier, AIAA Journal 42 no. 10 (2004), 2101–
2111. https://doi.org/10.2514/1.8977.

[190] K. Miettinen, Nonlinear Multiobjective Optimization, 1999.

[191] J. Mockus, V. Tiesis, and A. Zilinskas, The application of Bayesian methods for
seeking the extremum, pp. 117–129, North-Holand, 1978.

[192] J. Moré and S. Wild, Benchmarking Derivative-Free Optimization Algorithms,
SIAM Journal on Optimization 20 no. 1 (2009), 172–191. https://doi.org/10.1137/
080724083.

[193] V. Morovati, H. Basirzadeh, and L. Pourkarimi, Quasi-Newton methods for
multiobjective optimization problems, 4OR 16 no. 3 (2017), 261–294. https://doi.
org/10.1007/s10288-017-0363-1.

[194] V. Morovati and L. Pourkarimi, Extension of zoutendijk
method for solving constrained multiobjective optimization problems,
European Journal of Operational Research 273 no. 1 (2019), 44–57. https:
//doi.org/https://doi.org/10.1016/j.ejor.2018.08.018.

https://doi.org/10.1145/1389095.1389227
https://doi.org/10.1145/1389095.1389227
https://doi.org/10.1109/CEC.2016.7743898
https://doi.org/10.1016/j.ins.2016.07.025
https://doi.org/10.1007/11539117_143
https://doi.org/10.1007/11539117_143
https://doi.org/10.2514/1.8977
https://doi.org/10.1137/080724083
https://doi.org/10.1137/080724083
https://doi.org/10.1007/s10288-017-0363-1
https://doi.org/10.1007/s10288-017-0363-1
https://doi.org/https://doi.org/10.1016/j.ejor.2018.08.018
https://doi.org/https://doi.org/10.1016/j.ejor.2018.08.018


206

[195] S. Mostaghim and J. Teich, A New Approach on Many Objective Diversity Measure-
ment, in Practical Approaches to Multi-Objective Optimization (J. Branke,K. Deb,
K. Miettinen, and R. Steuer, eds.), Dagstuhl Seminar Proceedings no. 04461,
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany, Dagstuhl, Germany, 2005. Available at http://drops.dagstuhl.
de/opus/volltexte/2005/254.

[196] J. Müller, SOCEMO: Surrogate Optimization of Computationally Expensive Mul-
tiobjective Problems, INFORMS Journal on Computing 29 no. 4 (2017), 581–596.
https://doi.org/10.1287/ijoc.2017.0749.

[197] J. Müller and M. Day, Surrogate Optimization of Computationally Expensive
Black-Box Problems with Hidden Constraints, INFORMS Journal on Computing 31
no. 4 (2019), 689–702. https://doi.org/10.1287/ijoc.2018.0864.

[198] J. Nelder andR. Mead, A simplex method for function minimization, The Computer
Journal 7 no. 4 (1965), 308–313. https://doi.org/10.1093/comjnl/7.4.308.

[199] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex
Programming, Society for Industrial and Applied Mathematics, 1994. https://doi.
org/10.1137/1.9781611970791.

[200] J. Niebling and G. Eichfelder, A branch–and–bound-based algorithm for non-
convex multiobjective optimization, SIAM Journal on Optimization 29 no. 1 (2019),
794–821. https://doi.org/10.1137/18M1169680.

[201] J. Nocedal and S. Wright, Numerical Optimization, second ed., Springer Series in
Operations Research and Financial Engineering, Springer, Berlin, 2006. Available at
http://www.springer.com/mathematics/book/978-0-387-30303-1.

[202] N.Ploskas and N. Sahinidis, Review and comparison of algorithms and software for
mixed-integer derivative-free optimization, Journal of Global Optimization 82 no. 3
(2021), 433–462. https://doi.org/10.1007/s10898-021-01085-0.

[203] L. Nuñez, R. Regis, and K. Varela, Accelerated Random Search for con-
strained global optimization assisted by Radial Basis Function surrogates, Journal of
Computational and Applied Mathematics 340 (2018), 276–295. https://doi.org/10.
1016/j.cam.2018.02.017.

http://drops.dagstuhl.de/opus/volltexte/2005/254
http://drops.dagstuhl.de/opus/volltexte/2005/254
https://doi.org/10.1287/ijoc.2017.0749
https://doi.org/10.1287/ijoc.2018.0864
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1137/1.9781611970791
https://doi.org/10.1137/1.9781611970791
https://doi.org/10.1137/18M1169680
http://www.springer.com/mathematics/book/978-0-387-30303-1
https://doi.org/10.1007/s10898-021-01085-0
https://doi.org/10.1016/j.cam.2018.02.017
https://doi.org/10.1016/j.cam.2018.02.017


207

[204] T. Okabe, Y. Jin, and B. Sendhoff, A critical survey of performance indices for
multi-objective optimisation, in Evolutionary Computation, 2, Canberra, Australia,
2003, pp. 878–885. https://doi.org/10.1109/CEC.2003.1299759.

[205] P. Pardalos, A. Žilinska, and J. Žilinskas, Non-Convex Multi-Objective
Optimization, Springer International Publishing, 2017. https://doi.org/10.1007/
978-3-319-61007-8.

[206] A. Pascoletti and P. Serafini, Scalarizing vector optimization problems, Journal
of Optimization Theory and Applications 42 no. 4 (1984), 499–524. https://doi.org/
10.1007/bf00934564.

[207] R. Poli, J. Kennedy, and T. Blackwell, Particle swarm optimization, Swarm
Intelligence 1 no. 1 (2007), 33–57. https://doi.org/10.1007/s11721-007-0002-0.

[208] S. Prinz, J. Thomann, G. Eichfelder, T. Boeck, and J. Schumacher, Ex-
pensive multi-objective optimization of electromagnetic mixing in a liquid metal,
Optimization and Engineering 22 no. 2 (2020), 1065–1089. https://doi.org/10.
1007/s11081-020-09561-4.

[209] L. L. Pérez and L. Prudente, Nonlinear Conjugate Gradient Methods for Vector
Optimization, SIAM Journal on Optimization 28 no. 3 (2018), 2690–2720. https:
//doi.org/10.1137/17M1126588.

[210] S. Qu, M. Goh, and F. Chan, Quasi-newton methods for solving multiobjective
optimization, Operations Research Letters 39 no. 5 (2011), 397–399. https://doi.
org/https://doi.org/10.1016/j.orl.2011.07.008.

[211] S. Qu, M. Goh, and B. Liang, Trust region methods for solving multiobjective
optimisation, Optimization Methods and Software 28 no. 4 (2013), 796–811. https:
//doi.org/10.1080/10556788.2012.660483.

[212] R. Regis, Constrained optimization by radial basis function interpolation for high-
dimensional expensive black-box problems with infeasible initial points, Engineering
Optimization 46 no. 2 (2014), 218–243. https://doi.org/10.1080/0305215X.2013.
765000.

[213] R. Regis, Multi-objective constrained black-box optimization using radial basis func-
tion surrogates, Journal of Computational Science 16 (2016), 140–155. https://doi.
org/https://doi.org/10.1016/j.jocs.2016.05.013.

https://doi.org/10.1109/CEC.2003.1299759
https://doi.org/10.1007/978-3-319-61007-8
https://doi.org/10.1007/978-3-319-61007-8
https://doi.org/10.1007/bf00934564
https://doi.org/10.1007/bf00934564
https://doi.org/10.1007/s11721-007-0002-0
https://doi.org/10.1007/s11081-020-09561-4
https://doi.org/10.1007/s11081-020-09561-4
https://doi.org/10.1137/17M1126588
https://doi.org/10.1137/17M1126588
https://doi.org/https://doi.org/10.1016/j.orl.2011.07.008
https://doi.org/https://doi.org/10.1016/j.orl.2011.07.008
https://doi.org/10.1080/10556788.2012.660483
https://doi.org/10.1080/10556788.2012.660483
https://doi.org/10.1080/0305215X.2013.765000
https://doi.org/10.1080/0305215X.2013.765000
https://doi.org/https://doi.org/10.1016/j.jocs.2016.05.013
https://doi.org/https://doi.org/10.1016/j.jocs.2016.05.013


208

[214] R. Regis, On the convergence of adaptive stochastic search methods for con-
strained and multi-objective black-box optimization, Journal of Optimization
Theory and Applications 170 no. 3 (2016), 932–959. https://doi.org/10.1007/
s10957-016-0977-z.

[215] R. Regis, On the properties of positive spanning sets and positive bases,
Optimization and Engineering 17 no. 1 (2016), 229–262. https://doi.org/10.1007/
s11081-015-9286-x.

[216] R. Regis and S. Wild, CONORBIT: constrained optimization by radial basis function
interpolation in trust regions, Optimization Methods and Software 32 no. 3 (2017),
552–580. https://doi.org/10.1080/10556788.2016.1226305.

[217] L. Rios and N. Sahinidis, Derivative-free optimization: a review of algorithms and
comparison of software implementations, Journal of Global Optimization 56 no. 3
(2013), 1247–1293. https://doi.org/10.1007/s10898-012-9951-y.

[218] N. Riquelme, C. V. Lücken, andB. Baran, Performance metrics in multi-objective
optimization, in Latin American Computing Conference, IEEE, 2015, pp. 1–11. https:
//doi.org/10.1109/CLEI.2015.7360024.

[219] R. Rockafellar, Augmented Lagrange Multiplier Functions and Duality in Non-
convex Programming, SIAM Journal on Control 12 no. 2 (1974), 268–285. https:
//doi.org/10.1137/0312021.

[220] G. Rudolph, O. Schütze, C. Grimme, C. Domínguez-Medina, and H. Traut-
mann, Optimal averaged Hausdorff archives for bi-objective problems: theoretical and
numerical results, Computational Optimization and Applications 64 no. 2 (2016), 589–
618. https://doi.org/10.1007/s10589-015-9815-8.

[221] L. Russo and A. Francisco, Quick HyperVolume, IEEE Transactions on
Evolutionary Computation 18 no. 4 (2014), 481–502. https://doi.org/10.1109/
TEVC.2013.2281525.

[222] L. Russo and A. Francisco, Extending quick hyperVolume, Journal of Heuristics
22 no. 3 (2016), 245–271. https://doi.org/10.1007/s10732-016-9309-6.

[223] J. h. Ryu and S. Kim, A derivative free trust region method for biobjective optimiza-
tion, SIAM Journal on Optimization 24 no. 1 (2014), 334–362. https://doi.org/10.
1137/120864738.

https://doi.org/10.1007/s10957-016-0977-z
https://doi.org/10.1007/s10957-016-0977-z
https://doi.org/10.1007/s11081-015-9286-x
https://doi.org/10.1007/s11081-015-9286-x
https://doi.org/10.1080/10556788.2016.1226305
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1109/CLEI.2015.7360024
https://doi.org/10.1109/CLEI.2015.7360024
https://doi.org/10.1137/0312021
https://doi.org/10.1137/0312021
https://doi.org/10.1007/s10589-015-9815-8
https://doi.org/10.1109/TEVC.2013.2281525
https://doi.org/10.1109/TEVC.2013.2281525
https://doi.org/10.1007/s10732-016-9309-6
https://doi.org/10.1137/120864738
https://doi.org/10.1137/120864738


209

[224] P. Sampaio and P. Toint, A derivative-free trust-funnel method for equality-
constrained nonlinear optimization, Computational Optimization and Applications 61
no. 1 (2015), 25–49. https://doi.org/10.1007/s10589-014-9715-3.

[225] S. Sayın, Measuring the quality of discrete representations of efficient sets in multiple
objective mathematical programming, Mathematical Programming 87 no. 3 (2000),
543–560. https://doi.org/10.1007/s101070050011.

[226] J. Schott, Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm
Optimization, Tech. report, Air force Institute Of Tech Wright-Patterson AFB OH,
1995. Available at http://hdl.handle.net/1721.1/11582.

[227] O. Schutze, X. Esquivel, A. Lara, and C. Coello, Using the Averaged Hausdorff
Distance as a Performance Measure in Evolutionary Multiobjective Optimization, IEEE
Transactions on Evolutionary Computation 16 no. 4 (2012), 504–522. https://doi.
org/10.1109/TEVC.2011.2161872.

[228] Y. Sergeyev, D. Kvasov, and M. Mukhametzhanov, Operational zones for
comparing metaheuristic and deterministic one-dimensional global optimization al-
gorithms, Mathematics and Computers in Simulation 141 (2017), 96–109. https:
//doi.org/10.1016/j.matcom.2016.05.006.

[229] Y. Sergeyev, D. Kvasov, and M. Mukhametzhanov, On the efficiency of nature-
inspired metaheuristics in expensive global optimization with limited budget, Scientific
Reports 8 no. 1 (2018), 453. https://doi.org/10.1038/s41598-017-18940-4.

[230] B. Shahriari, K. Swersky, Z. Wang, R. Adams, and N. D. Freitas, Taking the
human out of the loop: A review of Bayesian optimization, Proceedings of the IEEE
104 no. 1 (2015), 148–175. https://doi.org/10.1109/JPROC.2015.2494218.

[231] C. Shannon, A mathematical theory of communication, ACM SIGMOBILE mobile
computing and communications review 5 no. 1 (2001), 3–55. https://doi.org/10.
1145/584091.584093.

[232] S. Sharma and G. Rangaiah, Multi-Objective Optimization Applications in
Chemical Engineering, ch. 3, pp. 35–102, John Wiley & Sons, Ltd, 2013. https:
//doi.org/10.1002/9781118341704.ch3.

[233] O. Shir, M. Preuss, B. Naujoks, and M. Emmerich, Enhancing
Decision Space Diversity in Evolutionary Multiobjective Algorithms, in

https://doi.org/10.1007/s10589-014-9715-3
https://doi.org/10.1007/s101070050011
http://hdl.handle.net/1721.1/11582
https://doi.org/10.1109/TEVC.2011.2161872
https://doi.org/10.1109/TEVC.2011.2161872
https://doi.org/10.1016/j.matcom.2016.05.006
https://doi.org/10.1016/j.matcom.2016.05.006
https://doi.org/10.1038/s41598-017-18940-4
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1145/584091.584093
https://doi.org/10.1145/584091.584093
https://doi.org/10.1002/9781118341704.ch3
https://doi.org/10.1002/9781118341704.ch3


210

Evolutionary Multi-Criterion Optimization (M. Ehrgott, C. Fonseca,
X. Gandibleux, J.-K. Hao, and M. Sevaux, eds.), Springer, Berlin, Heidel-
berg, 2009, pp. 95–109. https://doi.org/10.1007/978-3-642-01020-0_12.

[234] P. Shukla, N. Doll, and H. Schmeck, A Theoreti-
cal Analysis of Volume Based Pareto Front Approximations, in
Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation,
ACM, New York, NY, USA, 2014, pp. 1415–1422. https://doi.org/10.1145/
2576768.2598348.

[235] R. Slowinski and J. Teghem, Stochastic Versus Fuzzy Approaches to Multiobjective
Mathematical Programming under Uncertainty, Springer, 1990. https://doi.org/10.
1007/978-94-009-2111-5.

[236] S.Qu, C. Liu, M. Goh, Y. Li, and Y. Ji, Nonsmooth multiobjective programming
with quasi-newton methods, European Journal of Operational Research 235 no. 3
(2014), 503–510. https://doi.org/10.1016/j.ejor.2014.01.022.

[237] E.-G. Talbi, Metaheuristics: from design to implementation, 74, John Wiley &
Sons, June 2009. Available at https://www.ebook.de/de/product/8201863/talbi_
el_ghazali_talbi_metaheuristics.html.

[238] B. Talgorn, C. Audet, M. Kokkolaras, and S. Le Digabel, Lo-
cally weighted regression models for surrogate-assisted design optimization,
Optimization and Engineering 19 no. 1 (2018), 213–238. https://doi.org/10.1007/
s11081-017-9370-5.

[239] K. Tan, T. Lee, and E. Khor, Evolutionary Algorithms for Multi-Objective Op-
timization: Performance Assessments and Comparisons, Artificial Intelligence Review
17 no. 4 (2002), 251–290. https://doi.org/10.1023/A:1015516501242.

[240] S. Tavares, C. Brás, A. Custódio, V. Duarte, and P. Medeiros,
Parallel Strategies for Direct Multisearch, Tech. report, Arxiv, 2021. Available at
http://arxiv.org/abs/2105.03000.

[241] J. Thomann, A trust region approach for multi-objective heterogeneous optimization,
Ph.D. thesis, Ilmenau, March 2019, Technische Universität Ilmenau, Dissertation, 2019.
Available at https://www.db-thueringen.de/receive/dbt_mods_00038302.

https://doi.org/10.1007/978-3-642-01020-0_12
https://doi.org/10.1145/2576768.2598348
https://doi.org/10.1145/2576768.2598348
https://doi.org/10.1007/978-94-009-2111-5
https://doi.org/10.1007/978-94-009-2111-5
https://doi.org/10.1016/j.ejor.2014.01.022
https://www.ebook.de/de/product/8201863/talbi_el_ghazali_talbi_metaheuristics.html
https://www.ebook.de/de/product/8201863/talbi_el_ghazali_talbi_metaheuristics.html
https://doi.org/10.1007/s11081-017-9370-5
https://doi.org/10.1007/s11081-017-9370-5
https://doi.org/10.1023/A:1015516501242
http://arxiv.org/abs/2105.03000
https://www.db-thueringen.de/receive/dbt_mods_00038302


211

[242] J. Thomann andG. Eichfelder, A Trust-Region Algorithm for Heterogeneous Mul-
tiobjective Optimization, SIAM Journal on Optimization 29 no. 2 (2019), 1017–1047.
https://doi.org/10.1137/18M1173277.

[243] Y. Tian,X. Zhang, R. Cheng, andY. Jin, A multi-objective evolutionary algorithm
based on an enhanced inverted generational distance metric, in 2016 IEEE Congress
on Evolutionary Computation (CEC), IEEE, 2016, pp. 5222–5229. https://doi.org/
10.1109/cec.2016.7748352.

[244] V. Torczon, On the convergence of pattern search algorithms, SIAM Journal on
Optimization 7 no. 1 (1997), 1–25. https://doi.org/10.1137/S1052623493250780.

[245] H. Trautmann, T. Wagner, and D. Brockhoff, R2-EMOA: Fo-
cused Multiobjective Search Using R2-Indicator-Based Selection, in
Learning and Intelligent Optimization (G. Nicosia and P. Pardalos, eds.),
Springer, Berlin, Heidelberg, 2013, pp. 70–74. https://doi.org/10.1007/
978-3-642-44973-4_8.

[246] T. Ulrich, J. Bader, and L. Thiele, Defining and Optimiz-
ing Indicator-Based Diversity Measures in Multiobjective Search, in
Parallel Problem Solving from Nature, PPSN XI (R. Schaefer, C. Cotta,
J. Kołodziej, and G. Rudolph, eds.), Springer, Berlin, Heidelberg, 2010,
pp. 707–717. https://doi.org/10.1007/978-3-642-15844-5_71.

[247] T. Ulrich, J. Bader, and E. Zitzler, Integrating Decision
Space Diversity into HyperVolume-based Multiobjective Search, in
Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation,
ACM, New York, NY, USA, 2010, pp. 455–462. https://doi.org/10.1145/1830483.
1830569.

[248] B. Van Dyke and T. Asaki, Using QR Decomposition to Obtain a New Instance of
Mesh Adaptive Direct Search with Uniformly Distributed Polling Directions, Journal
of Optimization Theory and Applications 159 no. 3 (2013), 805–821. https://doi.
org/10.1007/s10957-013-0356-y.

[249] D. Van Veldhuizen, Multiobjective evolutionary algorithms: classifications,
analyses, and new innovations, Tech. report, School of Engineering of the Air Force
Institute of Technology, Dayton, Ohio, 1999. Available at http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.42.1823.

https://doi.org/10.1137/18M1173277
https://doi.org/10.1109/cec.2016.7748352
https://doi.org/10.1109/cec.2016.7748352
https://doi.org/10.1137/S1052623493250780
https://doi.org/10.1007/978-3-642-44973-4_8
https://doi.org/10.1007/978-3-642-44973-4_8
https://doi.org/10.1007/978-3-642-15844-5_71
https://doi.org/10.1145/1830483.1830569
https://doi.org/10.1145/1830483.1830569
https://doi.org/10.1007/s10957-013-0356-y
https://doi.org/10.1007/s10957-013-0356-y
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.1823
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.1823


212

[250] D. Van Veldhuizen and G. Lamont, On measur-
ing multiobjective evolutionary algorithm performance, in
Proceedings of the 2000 Congress on Evolutionary Computation, 1, 2000, pp. 204–
211. https://doi.org/10.1109/CEC.2000.870296.

[251] A. Vargas and J. Bogoya, A Generalization of the Averaged Hausdorff Distance,
Computación y Sistemas 22 no. 2 (2018), 331–345. https://doi.org/10.13053/
CyS-22-2-2950.

[252] L. N. Vicente, Worst case complexity of direct search, EURO Journal on
Computational Optimization 1 no. 1 (2013), 143–153. https://doi.org/10.1007/
s13675-012-0003-7.

[253] L. Vicente andA. Custódio, Analysis of direct searches for discontinuous functions,
Mathematical Programming 133 no. 1-2 (2012), 299–325. https://doi.org/10.1007/
s10107-010-0429-8.

[254] T. Wagner, H. Trautmann, and D. Brockhoff, Preference Articulation by
Means of the R2 Indicator, in Evolutionary Multi-Criterion Optimization (R. Pur-
shouse, J. Fleming, C. Fonseca, S. Greco, and J. Shaw, eds.), Springer, Berlin,
Heidelberg, 2013, pp. 81–95. https://doi.org/10.1007/978-3-642-37140-0_10.

[255] T. Wagner, H. Trautmann, and L. Martí, A Taxonomy of Online
Stopping Criteria for Multi-Objective Evolutionary Algorithms, in Evolutionary
Multi-Criterion Optimization (R. Takahashi, K. Deb, E. Wanner, and S. Greco,
eds.), Springer, Berlin, Heidelberg, 2011, pp. 16–30. https://doi.org/10.1007/
978-3-642-19893-9_2.

[256] T. Wagner, H. Trautmann, and B. Naujoks, OCD: Online Convergence
Detection for Evolutionary Multi-Objective Algorithms Based on Statistical Test-
ing, in Evolutionary Multi-Criterion Optimization (M. Ehrgott, C. Fonseca,
X. Gandibleux, J.-K. Hao, and M. Sevaux, eds.), Springer, Berlin, Heidelberg,
2009, pp. 198–215. https://doi.org/10.1007/978-3-642-01020-0_19.

[257] W. Wang, T. Akhtar, and C. Shoemaker, Integrating ε-dominance and rbf sur-
rogate optimization for solving computationally expensive many-objective optimiza-
tion problems, Journal of Global Optimization (2021). https://doi.org/10.1007/
s10898-021-01019-w.

https://doi.org/10.1109/CEC.2000.870296
https://doi.org/10.13053/CyS-22-2-2950
https://doi.org/10.13053/CyS-22-2-2950
https://doi.org/10.1007/s13675-012-0003-7
https://doi.org/10.1007/s13675-012-0003-7
https://doi.org/10.1007/s10107-010-0429-8
https://doi.org/10.1007/s10107-010-0429-8
https://doi.org/10.1007/978-3-642-37140-0_10
https://doi.org/10.1007/978-3-642-19893-9_2
https://doi.org/10.1007/978-3-642-19893-9_2
https://doi.org/10.1007/978-3-642-01020-0_19
https://doi.org/10.1007/s10898-021-01019-w
https://doi.org/10.1007/s10898-021-01019-w


213

[258] L. While, L. Bradstreet, and L. Barone, A Fast Way of Calculating Exact
HyperVolumes, IEEE Transactions on Evolutionary Computation 16 no. 1 (2012), 86–
95. https://doi.org/10.1109/TEVC.2010.2077298.

[259] M. Wiecek, M. Ehrgott, and A. Engau, Continuous multiobjective programming,
in Multiple Criteria Decision Analysis, Springer New York, 2016, pp. 739–815. https:
//doi.org/10.1007/978-1-4939-3094-4_18.

[260] A. Wierzbicki, On the completeness and constructiveness of parametric characteriza-
tions to vector optimization problems, Operations-Research-Spektrum 8 no. 2 (1986),
73–87. https://doi.org/10.1007/BF01719738.

[261] S. Wild, R. Regis, and C. Shoemaker, ORBIT: Optimization by Radial Basis
Function Interpolation in Trust-Regions, SIAM Journal on Scientific Computing 30
no. 6 (2008), 3197–3219.

[262] S. Wild and C. Shoemaker, Global convergence of radial basis function trust region
derivative-free algorithms, SIAM J. Optimization 21 no. 3 (2011), 761–781. https:
//doi.org/10.1137/09074927X.

[263] J. Wu and S. Azarm, Metrics for Quality Assessment of a Multiobjective Design
Optimization Solution Set, Journal of Mechanical Design 123 no. 1 (2000), 18–25.
https://doi.org/10.1115/1.1329875.

[264] W. Xia and C. Shoemaker, GOPS: efficient RBF surrogate global optimization
algorithm with high dimensions and many parallel processors including application to
multimodal water quality PDE model calibration, Optimization and Engineering 22
no. 4 (2020), 2741–2777. https://doi.org/10.1007/s11081-020-09556-1.

[265] I. Yevseyeva, A. Guerreiro, M. Emmerich, and C. Fonseca, A Portfolio
Optimization Approach to Selection in Multiobjective Evolutionary Algorithms, in
Parallel Problem Solving from Nature – PPSN XIII, 2014, pp. 672–681. https://doi.
org/10.1007/978-3-319-10762-2_66.

[266] J. Yuan, H.-L. Liu, Y.-S. Ong, and Z. He, Indicator-based Evolutionary Algorithm
for Solving Constrained Multi-objective Optimization Problems, IEEE Transactions
on Evolutionary Computation (2021), 1–1. https://doi.org/10.1109/TEVC.2021.
3089155.

https://doi.org/10.1109/TEVC.2010.2077298
https://doi.org/10.1007/978-1-4939-3094-4_18
https://doi.org/10.1007/978-1-4939-3094-4_18
https://doi.org/10.1007/BF01719738
https://doi.org/10.1137/09074927X
https://doi.org/10.1137/09074927X
https://doi.org/10.1115/1.1329875
https://doi.org/10.1007/s11081-020-09556-1
https://doi.org/10.1007/978-3-319-10762-2_66
https://doi.org/10.1007/978-3-319-10762-2_66
https://doi.org/10.1109/TEVC.2021.3089155
https://doi.org/10.1109/TEVC.2021.3089155


214

[267] S. Zapotecas-Martínez and C. C. Coello, MONSS: A multi-objective nonlinear
simplex search approach, Engineering Optimization 48 no. 1 (2015), 16–38. https:
//doi.org/10.1080/0305215x.2014.992889.

[268] D. Zhan and H. Xing, Expected improvement for expensive optimization: a review,
Journal of Global Optimization 78 no. 3 (2020), 507–544. https://doi.org/10.1007/
s10898-020-00923-x.

[269] R. Zhang and D. Golovin, Random hypervolume scalarizations for provable multi-
objective black box optimization, in Proceedings of the 37th International Conference
on Machine Learning, Proceedings of Machine Learning Research 119, 2020, pp. 11096–
11105. Available at http://proceedings.mlr.press/v119/zhang20i.html.

[270] J. Zhao, L. Jiao, F. Liu, V. Fernandes, I. Yevseyeva, S. Xia, and M. Em-
merich, 3D fast convex-hull-based evolutionary multiobjective optimization algorithm,
Applied Soft Computing 67 (2018), 322–336. https://doi.org/10.1016/j.asoc.
2018.03.005.

[271] K. Zheng, R. Yang, H. Xu, and J. Hu, A new distribution metric for compar-
ing Pareto optimal solutions, Structural and Multidisciplinary Optimization 55 no. 1
(2017), 53–62. https://doi.org/10.1007/s00158-016-1469-3.

[272] A. Zhou, A. Jin, Q. Zhang, B. Sendhoff, and E. Tsang,
Combining Model-based and Genetics-based Offspring Generation
for Multi-objective Optimization Using a Convergence Criterion, in
IEEE International Conference on Evolutionary Computation, IEEE, 2006, pp. 892–
899. https://doi.org/10.1109/CEC.2006.1688406.

[273] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. Suganthan, and Q. Zhang,
Multiobjective evolutionary algorithms: A survey of the state of the art,
Swarm and Evolutionary Computation 1 no. 1 (2011), 32–49. https://doi.org/
https://doi.org/10.1016/j.swevo.2011.03.001.

[274] E. Zitzler, Evolutionary algorithms for multiobjective optimization : methods and
applications, Ph.D. thesis, Institute of Technology, Zurich, Swiss Federal, 1999.

[275] E. Zitzler, D. Brockhoff, and L. Thiele, The HyperVolume Indicator Re-
visited: On the Design of Pareto-compliant Indicators Via Weighted Integration,
in Evolutionary Multi-Criterion Optimization (S. Obayashi, K. Deb, C. Poloni,

https://doi.org/10.1080/0305215x.2014.992889
https://doi.org/10.1080/0305215x.2014.992889
https://doi.org/10.1007/s10898-020-00923-x
https://doi.org/10.1007/s10898-020-00923-x
http://proceedings.mlr.press/v119/zhang20i.html
https://doi.org/10.1016/j.asoc.2018.03.005
https://doi.org/10.1016/j.asoc.2018.03.005
https://doi.org/10.1007/s00158-016-1469-3
https://doi.org/10.1109/CEC.2006.1688406
https://doi.org/https://doi.org/10.1016/j.swevo.2011.03.001
https://doi.org/https://doi.org/10.1016/j.swevo.2011.03.001


215

T. Hiroyasu, and T. Murata, eds.), Springer, Berlin, Heidelberg, 2007, pp. 862–
876. https://doi.org/10.1007/978-3-540-70928-2_64.

[276] E. Zitzler, K. Deb, and L. Thiele, Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results, Evolutionary Computation 8 no. 2 (2000), 173–195.
https://doi.org/10.1162/106365600568202.

[277] E. Zitzler, J. Knowles, and L. Thiele, Quality assessment of Pareto set approx-
imations, in Multiobjective Optimization, Springer, Berlin, Heidelberg, 2008, pp. 373–
404. https://doi.org/10.1007/978-3-540-88908-3_14.

[278] E. Zitzler and S. Künzli, Indicator-Based Selection in Multiobjective Search, in
Parallel Problem Solving from Nature - PPSN VIII (X. Yao, E. Burke, J. Lozano,
J. Smith, J. Merelo-Guervós, J. Bullinaria, J. Rowe, P. Tiňo, A. Kabán,
and H.-S. Schwefel, eds.), Springer, Berlin, Heidelberg, 2004, pp. 832–842. https:
//doi.org/10.1007/978-3-540-30217-9_84.

[279] E. Zitzler and L. Thiele, Multiobjective optimization using evolutionary algorithms
– A comparative case study, in Parallel Problem Solving from Nature – PPSN V
(A. Eiben, T. Bäck, M. Schoenauer, and H. Schwefel, eds.), Springer, Berlin,
Heidelberg, 1998, pp. 292–301. https://doi.org/10.1007/BFb0056872.

[280] E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and V. da Fonseca,
Performance assessment of multiobjective optimizers: an analysis and review, IEEE
Transactions on Evolutionary Computation 7 no. 2 (2003), 117–132. https://doi.
org/10.1109/tevc.2003.810758.

https://doi.org/10.1007/978-3-540-70928-2_64
https://doi.org/10.1162/106365600568202
https://doi.org/10.1007/978-3-540-88908-3_14
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1007/BFb0056872
https://doi.org/10.1109/tevc.2003.810758
https://doi.org/10.1109/tevc.2003.810758

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS
	LIST OF SYMBOLS
	1 INTRODUCTION
	1.1 Context
	1.2 Research objectives
	1.3 Research contributions
	1.4 Plan

	2 LITERATURE REVIEW
	2.1 Multiobjective optimization: concepts and notations
	2.1.1 Definitions
	2.1.2 Optimality conditions

	2.2 Derivative-free optimization methods for single-objective optimization
	2.2.1 Direct search methods
	2.2.2 Linesearch-based methods
	2.2.3 Model-based approaches
	2.2.4 Metaheuristics

	2.3 Derivative-free optimization methods for multiobjective optimization
	2.3.1 Scalarization-based approaches
	2.3.2 Methods with a posteriori articulation of preferences


	3 ORGANIZATION OF THE THESIS
	4 ARTICLE 1: PERFORMANCE INDICATORS IN MULTIOBJECTIVE OPTIMIZATION
	4.1 Introduction
	4.2 Notations and definitions
	4.2.1 Multiobjective optimization and Pareto dominance
	4.2.2 Approximation sets and performance indicators

	4.3 A classification of performance indicators
	4.3.1 Cardinality indicators
	4.3.2 Convergence indicators
	4.3.3 Distribution and spread indicators
	4.3.4 Convergence and distribution indicators
	4.3.5 Last remarks

	4.4 Some usages of performance indicators
	4.4.1 Comparison of algorithms
	4.4.2 Embedding performance indicators in multiobjective optimization algorithms
	4.4.3 Stopping criteria of multiobjective algorithms
	4.4.4 Distribution and spread

	4.5 Discussion
	4.6 A summary of performance indicators
	4.7 Compatibility and completeness

	5 ARTICLE 2: DMULTI-MADS: MESH ADAPTIVE DIRECT MULTISEARCH FOR BOUND-CONSTRAINED BLACKBOX MULTIOBJECTIVE OPTIMIZATION
	5.1 Introduction
	5.2 Multiobjective optimization and Pareto dominance
	5.3 The MADS algorithm
	5.4 The mesh adaptive direct multisearch algorithm (DMulti-MADS) for multiobjective optimization
	5.4.1 The DMulti-MADS algorithm
	5.4.2 Updating the list Lk
	5.4.3 Choice of the current incumbent xk

	5.5 Convergence analysis of the DMulti-MADS algorithm
	5.5.1 Preliminaries
	5.5.2 Refining subsequences and directions
	5.5.3 Tangent cones and generalized derivatives
	5.5.4 Convergence results

	5.6 Computational experiments
	5.6.1 Bound-constrained problems and algorithms tested
	5.6.2 Data profiles for multiobjective blackbox optimization
	5.6.3 Comparing different variants of DMulti-MADS
	5.6.4 Comparing DMulti-MADS with other algorithms

	5.7 Conclusion
	5.8 A study of the influence of the integer parameter w+ on the performance of the DMulti-MADS algorithm
	5.9 Comparing DMulti-MADS with other algorithms: performance profiles

	6 ARTICLE 3: HANDLING OF CONSTRAINTS IN MULTIOBJECTIVE BLACKBOX OPTIMIZATION
	6.1 Introduction
	6.2 Pareto dominance and optimal solutions in multiobjective optimization
	6.3 The DMulti-MADS algorithm
	6.4 Handling of constraints with DMulti-MADS
	6.4.1 The constraint violation function
	6.4.2 The extreme barrier (EB)
	6.4.3 The progressive barrier (PB)

	6.5 Convergence analysis
	6.5.1 Feasible case: results for f
	6.5.2 Infeasible case: results for h

	6.6 Computational experiments
	6.6.1 Tested solvers and variants of DMulti-MADS
	6.6.2 Comparing solvers on synthetic benchmarks
	6.6.3 Comparing solvers on real engineering benchmarks

	6.7 Discussion

	7 GENERAL DISCUSSION
	7.1 Summary of Works
	7.2 Limitations

	8 CONCLUSION AND RECOMMENDATIONS
	REFERENCES

