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RÉSUMÉ

Ce présent mémoire présente les avancées récentes apportées à la technologie overset du lab-
oratoire de recherche du professeur Éric Laurendeau à Polytechnique Montréal. L’approche
overset est vastement utilisée dans l’industrie aérospatiale pour supporter la résolution de
simulations hautement complexes en mécanique des fluides numérique. La méthode présen-
tée dans ce mémoire assemble des maillages individuels contenant différentes géométries ou
parties de géométries. On peut donc représenter une géométrie complexe par le biais de
différents sous-maillages conçus pour les requis locaux de discrétisation. En référence à la
mythologie grecque, la méthode est parfois appelée chimère.

La flexibilité que procure cette méthode minimise les coûts et risques associés à la généra-
tion de maillages. Un préprocesseur est typiquement utilisé pour assembler les différents
maillages utilisés dans une simulation. Une connectivité est définie pour permettre aux
maillages de communiquer entre eux à chaque itération dans le solveur Computational fluid
dynamics (CFD). Ce préprocesseur permet de facilement ajouter, retirer ou modifier une aile
horizontale lors de la simulation sur un avion complet par exemple.

Dans le cadre de cette maitrise, un préprocesseur overset tridimensionnel est développé.
La technologie est intégrée au logiciel de mécanique des fluides numérique tridimensionnel
CHApel Multi-Physics Simulation (CHAMPS) et vise à s’attaquer à des problèmes industriels
d’actualité. L’approche chimère est typiquement composée d’une étape de coupure de trou
qui permet l’identification des cellules hors du domaine de calcul et d’une étape de création
de la connectivité entre les sous-maillages. Une première implémentation de la technologie
dans le laboratoire de professeur Laurendeau permet une utilisation de l’approche avec des
maillages overset bidimensionnel exempts de chevauchement impliquant plus d’une géométrie.
Afin d’optimiser la robustesse et la flexibilité de l’approche sur des cas tridimensionnels plus
complexes, une revue de littérature a été faite.

Le premier développement de ce présent projet permettant l’application de la méthode à
des cas tridimensionnels complexes est une méthode de découpage beaucoup plus robuste.
L’approche des rayons X permet le découpage précis autour des géométries convexes et con-
caves avec une précision contrôlable. La méthode génère, avec les paramètres et ressources
appropriés, des résultats sans défaut sur des applications industrielles complexes.

L’application de la méthode sur des géométries complexes implique la plupart du temps des
duplications de surface solide. Les maillages de type collant, aussi connu comme collar grid
sont utilisés pour redéfinir des parties du maillage qui sont critiques et/ou mal définis. Ces
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maillages sont notamment utilisés pour redéfinir la région entourant les intersections entre
géométries solides. Des progrès pour utiliser ce type de maillage sont implantés.

La création de la connectivité, qui est définie par un schéma d’interpolation, est supportée
par une structure de type oct-tree qui permet une évolutivité du temps de calcul considérable
sur plusieurs noeuds de calcul.

Finalement, l’étude de cas met en lumière les capacités de la technologie chimère développée.
La méthode est testée sur des cas industriels d’actualité tels que ceux utilisés aux ateliers 4th
Drag Prediction Workshop (DPW4) et 5th Drag Prediction Workshop (DPW5) présentés par
la American Institute of Aeronautics and Astronautics (AIAA). Les résultats obtenus sont
en accord avec ceux de la littérature ainsi que ceux obtenus avec l’approche traditionnelle
utilisant un seul maillage. Cela montre une implémentation adéquate et robuste de la méth-
ode compte tenu de la complexité des géométries étudiées. Bien que la génération de maillage
soit habituellement facilitée par l’utilisation de l’approche chimère, générer des maillages tels
que ceux utilisés à ces ateliers est hors du cadre du projet et donc des maillages disponibles
en ligne seront utilisés durant sur projet.

Cette contrainte complique l’évaluation exacte des limites de la méthode telle qu’elle a été
implantée dans CHAMPS, car les maillages utilisés ont été conçus pour différents schémas.
La formulation vertex-centred pour représenter les variables plutôt que cell-centred comme
dans CHAMPS est un exemple de différence qui peut critique. Avec l’approche cell-centred
on a de disponible une couche de cellules de chevauchement de moins ce qui egendre parfois
un manque. Ce manque de chevauchement prévient la définition adéquate de la connectivité
pour des schémas de dissipation de deuxième ordre par exemple.
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ABSTRACT

The present thesis presents the recent advances brought to the overset technology in the
research laboratory of Professor Éric Laurendeau at Polytechnique Montréal. The overset
approach is widely used in the aerospace industry to support flow resolution on complex sim-
ulations in CFD. The method presented in this thesis assembles individual grids containing
different solid bodies or part of them. It is therefore possible to represent a complex geometry
via different sub-grids generated to fit their local discretization requirements. In reference to
the Greek mythology, the method is sometimes referred as chimera.

The flexibility brought by the method minimizes the risks and costs associated with the grid
generation process. Typically, a preprocessor is used to build the grid to grid connectivity
linking the different grids. This connectivity allows the communication of the flow variable’s
information at each iteration of the flow solver. The approach allows to easily add, remove
or modify a horizontal stabilizer onto an aircraft configuration, for example.

The scope of this thesis is to develop a three-dimensional overset preprocessor within the
CHAMPS framework, which is a three-dimensional CFD solver, and aim to tackle industrial
applications. The method is usually composed of a hole cutting step that allows identifi-
cation of the grid cells outside of the computational domain and a connectivity step that
build the interpolation stencil linking the grids. A first implementation of the technology in
Professor Eric Laurendeau’s laboratory allows applications on bi-dimensional case exempt of
intersection between solid bodies.

The first advancement to allow applications on more complex three-dimensional cases was to
implement a more robust hole cutting method. The X-ray approach allows a precise cutting
around both concave and convex bodies. With the appropriate inputs, the method generates
results without default on complex industrial cases.

The application of the method on more complex geometries often implies surface duplication.
The collar grid approach uses auxiliary grids to define critical or ill-defined regions of the
domain. They are often defining the regions surrounding an intersection between multiple
solid bodies. Considerations for the use of the collar grid are brought to the implementation
in order to increase the robustness. First, the surface integration to compute the aerodynamic
forces must consider the surface duplications. Then, an auxiliary method helps accelerate
the hole cutting in these often fine regions.

The grid to grid connectivity, which is defined by an interpolation scheme, is supported by
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an oct-tree type data structure that allows the optimization of the method on shared and
distributed memory.

Finally, the case study puts to light the capabilities of the chimera technology as implemented
during this thesis. The method is tested on industrial cases as presented at workshops hosts
by AIAA such as the DPW4 and DPW5. The results obtained on industrial applications
are in agreements with the literature as well as with the results obtained with the standard
single grid approach. This shows a proper and robust implementation. Although the grid
generation process is known to be simplified by the overset approach, generating grids of
industrial quality is a challenge outside of this thesis scope. The overset technology developed
within CHAMPS during this thesis was thus able to use the overset approach in industrial
applications.

Using other laboratory’s grids complicates the precise evaluation of the limits of the method
developed because of the fact that they were initially designed for different solvers. The
vertex-centred approach to represent the flow variables in contrast to the cell-centred approach
used in CHAMPS is an example of difference that might be critical in some cases. This has
an impact when using a second order dissipation scheme which requires more overlap for
example.
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CHAPTER 1 INTRODUCTION

Modern CFD technology helps engineers in design and analysis by providing numerical sim-
ulations to the equations that govern fluid motion. The technology reduces the need for
real life tests (e.g., wind tunnel, flight tests) which are time and money expensive. This is
of great interest in the aerospace industry to simulate flow around geometries and predict
their aerodynamic properties. Chemical reactions, internal combustions and internal flows
are other types of CFD applications. External compressible flows are studied in this thesis.

One approach CFD is to solve the Reynolds Averaged Navier-Stokes (RANS) equations [2,
4]. As presented by [5], various methods can be used to solve these equations, but all
go through a physical and temporal computation which both require discretization. The
Finite Element Method (FEM), the Finite Volume Method (FVM) and the Finite Difference
Method (FDM) are popular approaches for spatial discretization. In the FVM, which is
the approach adopted in this thesis, the properties are either defined at the centroid or
the vertexes of the control volumes and assumed constant throughout these volumes. The
spatial discretization is ensured by grid(s) generated to define the computational domain to
study. The quality of those grids has a major impact on the CFD simulations ; it was shown
that two different discretizations of the same domain could lead to substantially different
results [6]. Producing quality grids is therefore a critical step for all CFD users as it can often
represent around 50% of the overall time of the CFD process [7]. Traditionally, structured grid
methods relying on arrays of quadrilateral cells (or hexahedral in 3D) are used to discretize
the computational domain. Structured grids connectivity is expressed implicitly by the two-
or three-dimensional arrays of grid connectivity, memory speaking. For complex geometries,
however, unstructured grids based on explicit irregular connectivity provide greater flexibility.
Details about the two approaches are listed in table 1.1.

From these approaches, others were developed. A hybrid structured/unstructured grid ap-
proach is sometimes used to take advantages of the two, for example. It consists of mixing
zones with different grid types within the computational domain. Connectivity between the
regions is then ensured with conformal matching frontiers. Ensuring conformal matching
frontiers, however, can be a considerable design requirement. Being able to bypass this re-
quirement of perfect frontiers matching would therefore make the grid generation process
considerably easier and faster. The overset approach suggests decomposing complex com-
ponents of the domain into simpler ones. Each sub-grid can then be tailored for their local
requirements without being constrained by the exact definition of the frontiers. The only re-
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Table 1.1: Some advantages of the structured and unstructured grid approach

Structured grids Unstructured grids
Higher degree of quality and control. Faster grid generation process.
Anisotropy is typically almost achieved
implicitly because of grid lines and flow
alignments with the contour of the geom-
etry.

Better flexibility with complex geometries.

Less memory and time consuming due to
implicit connectivity.

Less experience is required from the grid
developer.
Explicit connectivity is built when reading
the grid.This is not as straightforward.

quirement of this approach is to have a satisfactory overlap between each grid. This provides
a new considerable flexibility to the CFD users. Some of the most difficult CFD problems
are now solved using this approach. The Integrated Space Shuttle Launch Vehicle (SSLV)
in Figure 1.1, for example, was one of the first cases that drove the emergence of the overset
technology [8] toward complex industrial applications.

Figure 1.1 Space shuttle. Figure from [1].

1.1 Constraints

The overset technology has already been explored in the research laboratory of Professor Eric
Laurendeau in large part because of the advantages presented in the previous section. Also
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for the sake of continuation, the overset approach is thus further developed in this thesis to
test its capacities and limitations on three-dimensional industrial applications.

In regard to the current state of the technology, most of the developments were done in
the Navier-Stokes CODE (NSCODE) framework. NSCODE is a two-dimensional structured
flow simulation solver written in C and Python developed in Professor Éric Laurendeau’s
laboratory. The implementation of the overset technology within this framework showed
good results on two-dimensional high-lift airfoil sections. Limitations were, however, stated
in regard to multiple bodies either intersecting each other or with narrow gaps between them.
Furthermore, three-dimensional capabilities are necessary to further test the robustness of the
overset method on industrial cases. NSCODE is therefore currently limiting the development
of the technology. This leads to the development of the technology within CHAMPS, a three-
dimensional CFD software developed within Professor Éric Laurendeau’s laboratory. The tool
will have to be compatible with the unstructured topology of CHAMPS which is written in
the Chapel HPC language. Furthermore, the technology will have to be compatible with the
solver part of the CHAMPS framework.

1.1.1 More On CHAMPS

The CHAMPS software uses a finite volume approach with a second order cell-centred spa-
tial discretization and unstructured grids to solve the RANS equations. The capabilities of
this University software was verified and validated on different critical cases [9,10]. Different
options are available in CHAMPS to solve a flow simulation. The Runge-Kutta (RK), Lower-
Upper Symmetric Gauss–Seidel (LU-SGS) and Generalized Minimal RESidual (GMRES)
solvers are available to compute the time iterations. The Green-Gauss (GG) and Weighted
Least Squares (WLS) gradients are available to allow second order capabilities in the dis-
cretization of the convective and viscous fluxes.

Chapel Language

NASA’s CFD Vision 2030 identify the development of highly scalable and robust algorithms in
CFD applications as one of its key goals [11]. Traditionally Message Passing Interface (MPI)
is used to handle the communication through distributed memory. C, C++ and Fortran
are the most popular language used to optimize the performances of CFD software. The
Chapel programming language, on which CHAMPS is based, offers a flexible approach to
develop scalable CFD software without the need for OpenMP nor MPI libraries [12]. The
performances of CHAMPS with an emphasis on the Chapel language verified on different
applications and showed a good scaling on up to 256 compute nodes, totalling 1264 cores, as
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presented by Parenteau et al. [9]. The scalability of the implementation done in this thesis
will therefore be of importance and verified.

1.2 The Overset RANS Approach

The approach was introduced by Benek et al. [13] in the 1980s for steady state problems
on structured grids to accommodate easily generated grids [13]. The approach is also often
referred as the Chimera approach after the Greek creature composed of different animal parts
[14]. The concept is to decompose a complex geometry (or domain) into simpler components.
This decomposition allows each sub-grids to be tailored for its local requirements to optimize
the overall quality. Furthermore, the method allows to add, remove and modify parts of the
grid assembly with ease and minimum user effort. A grid to grid connectivity must, however,
be built so the flow solver can compute simulations on the global domain. The use of the
method in unstructured solvers like it is the case in this thesis is not uncommon [15] [16]. In
the author’s experience, the unstructured approach has shown to simplify the grid generation.

Elements Of The Overset Problematic

The different grids composing an overset assembly initially have no information about each
other nor about their relative position. Each grid solves its own part of the flow but have
to communicate with the other grid in some way. This communication is usually ensured by
interpolation in the overlapping regions, but other approaches such as domain reconstruction
exists. Furthermore, control volumes outside of the computational domain must be located so
they are not considered. Figure 1.2 presents a simple overset case for which the connectivity
process can be fairly straightforward. As mentioned above, however, the modern aerospace
applications deal with considerably more complex geometries. The overset grid in Figure
1.3, for example, involves intersections between the solid bodies which requires more precise
methods to correctly, and in an acceptable lapse of time, interpret the overlaps and build the
connectivity. Furthermore, interpolation in the boundary layer where gradients can be high
requires robust considerations to properly capture the aerodynamic features like the shocks
and recirculations.

A preprocessor can be used to build a grid to grid connectivity and store the associated in-
formation. Such preprocessors are usually composed of similar steps : (1) the control volume
overlapping solid components of the domain are located and taken out of the computational
domain and (2) a connectivity is built to allow information to be passed between the grids.
More than one approach exists to build this connectivity, but they usually rely on either inter-
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Figure 1.2 Grid of a multi-element wing section using the overset approach. The different
colours represent the different overset grids. The overlapping regions have been blanked for
better visualization.

Figure 1.3 Grid of an aircraft using the overset approach. The different colours represent the
different overset grids.
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polation or grid reconstruction. The preprocessor interprets the grids in order to determine
the following information :

• Which grid cells are computed.

• Which grid cells are part of the grid to grid connectivity.

• Which grid cells are to be taken out of the computational domain.

Definition

Here are some definitions that will be used throughout this thesis. Figure 1.4 illustrates the
approach applied to a multi-element wing section composed of a slat, flap and main elements
similarly to the application presented in Figure 1.2. It is evident that grid cells from Grid
1, for example, will be found within the flap, slat and main components of the airfoil. Such
grid cells are referred as invalid and are excluded from the computational domain using a
hole cutting algorithm. Through the rest of the domain, computed and interpolated
grid cells are defined using different criteria that traditionally reflects the grid cell quality :
this step is the overset connectivity step.

X

Y

Z

Grid 1

Grid 2

Grid 3

Grid 4

Figure 1.4 Illustration of a multi-element airfoil meshed using the overset approach.
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1.3 Objectives

The development of an overset approach capable of treating solid intersections is a bottleneck
in the creation of a robust method. When fully taking advantages of the overset approach,
such intersections are inevitable when dealing with industrial applications. The main ob-
jective of this thesis is therefore to develop a preprocessor capable of treating the overset
intersections in overset grids. From the overset technology already developed within the
research’s laboratory, this objective will be reached through the following steps :

• Implement a hole cutting method which is robust and efficient enough to generate valid
holes around complex geometries.

• Investigate treatment of overset connectivity close to the wall (i.e., high gradient re-
gions).

• Investigate post-treatment requirements of overset grids with solid intersections.

Events like the 4th and 5th Drag Prediction Workshops, to only name those, offers great
examples of modern and relevant CFD applications in the industry. The overset grids studied
at these workshops will serve as final applications of the overset technology developed in this
thesis.

Since CHAMPS’s creation in 2019, many students have used the software as a technological
canvas for their research. Performances and robustness of the overall algorithm is therefore
important in order to stay relevant for the CHAMPS software to continue using the overset
approach in the future. The implementation will also have to consider the different schemes
used and their stencils to correctly integrate the technology to the software.

1.4 Outline Of Thesis

A literature review is presented in the next section. The method is further presented as well
as its challenges. The literature review revealed many different approaches that could provide
robustness and precision to the technology. The preprocessor developed is then presented
with canonic verifications. Finally, numerical results of industrial applications present the
capabilities and limitations of the current implementation.



8

CHAPTER 2 LITERATURE REVIEW

The literature review presented in this thesis focuses on the developments of an overset
method applied to complex geometries. Such overset grids generally have solid intersections
which require additional treatments. The experience developed through the years have shown
the overset approach as prone to automation [17–19] which will also be of consideration in
this literature review.

2.1 History Of The Overset Method

Generating acceptable meshes around complex geometries has been a challenging bottle-
neck in the overall CFD process for a long time. Joseph Steger [20] defines two groups of
methods that help mitigate these difficulties : (1) domain decomposition methods and (2)
grid-adapting methods.

The overset approach is part of the first group : the domain decomposition. By decomposing
the computational domain into simpler subdomains, the grid generation process becomes
more straightforward. Each subdomain can be meshed separately with the only requirement
on having a sufficient overlap between each of them to allow proper connectivity construction.
While this minimum overlap varies from a solver to another, they are usually simple to ensure
when generating the grids and thus the overlap can remain fairly arbitrary [17, 21]. The
flexibility offered by the overset approach has shown to significantly improve the grid quality
compared to the standard single grid approach [20]. Furthermore, it is possible, with this
approach, to add, remove or move any subdomain by simply reprocessing the subdomains
with different user inputs. In addition to save time, this allows freedom of motion between
the subdomains. The standard single grid approach fails to satisfy all of the requirements
for such simulations [21].

The idea behind the approach can be traced to Joseph Steger, a NASA Ames researcher, in
the late 1970s and 1980s [20,21]. Since its first introduction, the overset approach has proved
to be suited to provide accurate solutions when working with complex geometries [17]. The
technology becomes more and more integrated in many well-known verified CFD software,
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like OVERFLOW1, elsA2 and ADflow3 to only name those.

2.2 The Overset RANS Approach

Figure 2.1 presents the standard approach for building an overset connectivity. The invalid
grid cells are located using a hole cutting method and the grid to grid connectivity
is usually built by either reconstructing the grid or defining an interpolation scheme in the
overlapping regions [5, 19–21,23].

For more complex cases including solid intersections, further steps are needed to ensure
robustness and proper connectivity. The boundary layer in Navier-Stokes flow computation
is significantly disturbed with the standard implementation of the overset approach [3]. This
is mainly caused by the different discretizations of the geometry by the different sub-grids
in the solid overlapping regions. Furthermore, the duplication of the surface must be taken
into consideration when computing the surface integration.

Methods to treat
solid intersecions

Hole-cutting
process

Create grid to
grid connectivity

a) Donor search
b) Role allocation (Donor/Receiver)
c) Computation of interpolation weights

Figure 2.1 A standard overset approach

The modern overset technology is so that it is now possible to simulate transonic flow around
a complete space shuttle using an overset grid with over 20 million grid points [24]. Robust-

1OVERFLOW 2.2 [7] is a widely used Reynolds-averaged Navier– Stokes (RANS) CFD code considered
reliable and accurate for analyzing modern transport configurations. Originally developed by NASA with
numerous contributions from academia and industry, it is a node-based solver specifically designed for struc-
tured overset grids where many options are available to the user, such as 2D/3D and steady/ unsteady
simulations, thin layer versus full Navier–Stokes, multiple turbulence models, and a quadratic constitutive
relation (QCR). [22]

2elsA is a cell-centred, finite volume, RANS code originally developed by ONERA and capable of using
both point-matched and overset grids. [22]

3ADflow is a finite-volume RANS code maintained by the Multidisciplinary Design Optimization Lab-
oratory (MDOlab) at the University of Michigan. A chimera overset grid method was implemented in
ADflow. [22]
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ness, automation, speed and memory consumption are the usual criteria for an ideal overset
connectivity preprocessor [25] and will therefore guide this literature review.

2.3 Hole Cutting

The possibility to generate independent grids with arbitrary overlaps frequently causes situ-
ations as presented in Figure 2.2 where grid cells of a certain mesh A may be found within
the solid body of a second mesh B. With a hole cutting methods, those grid cells are located,
taken out of the computational domain and surrounded by interpolated grid cells. By doing
so, in grid A, the invalid grid cells do not reach the stencils of the computed ones. Further-
more, these computed grid cells now have information coming from the solid component of
grid B through the interpolated grid cells defined around the invalid ones. The thickness of
the layer of interpolated grid cells depends on the stencils of the numerical methods used in
the flow solver.

Figure 2.2 Illustration of the hole cutting process in grid A by the solid body in a grid B

This step is one of the most complex and critical processes of the overset approach [26].
Handling large and complex cases remains difficult. The memory consumption and scalability
are the usual bottlenecks [26]. The hole cutting methods could be grouped in two categories
: the implicit methods and the explicit methods.



11

Implicit Hole Cutting Method

The concept of the implicit hole cutting method could be summarized in two points :

1. The invalid grid cells inside the solid components do not need to be explicitly located
or blanked from the solver to prevent contamination of the computational domain.

2. The list of blanked grid cells can be obtained in an alternative method without defining
exactly the hole boundary [27].

The implicit approaches use a donor search method. For each pair of overlapping grid cells, a
donor and a receiver is defined based on a user-defined criterion. The criterion traditionally
reflects the quality of the grid cells like its volume or wall distance. The position of the
communication interface will therefore be where overlapping grid cells have similar charac-
teristics. The grid cells within a certain distance of the solid bodies and for which no donor
was found, it is then supposed that they are within the solid body and are therefore in-
valid [28]. The implicit approach is thus a cell-selecting process that requires no hole cutting
step. The implicit methods have shown to allow proper cutting of a minimum hole in many
cases [26,27,29,30]. The simplicity of computation and implementation of the approach are
other important advantages.

This definition of the approach is, however, not really robust. Wrongly identified invalid grid
cells can leave an insufficient overlap to create the connectivity. This is especially critical
in cases with solid intersections or with minal overlap between the overset grids. In thoses
cases, however, the implicit approach can still help position the interfaces whilst auxiliary
explicit methods can be used to improved the overall robustness. More robust variations of
the implicit approach are presented by Stuart E. Rogers et al. and X.H. Chang et al. [26,30].

Optimum Overlap The position of the overset interface (i.e., the delimitation of computed
and fringe grid cells) obtained with the implicit approach is automatically optimum relative to
the criteria used in the donor search. The donor founds are automatically the best available
[27]. An optimum hole cut process is defined by an inter-grid communication occurring
between grid cells of compatible sizes. If not respected, solution accuracy and speed of
convergence can both be significantly impacted. For example, a low-resolution region cannot
properly capture the flow features that are formed in high resolution one [25,30].

In sight of this, the explicit approach is chosen to help properly define the overset interface.
However, one of the goal of this project is to develop an overset technology applicable to
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complex cases (e.g. complex geometries). Therefore, an explicit method is needed to ensure
a proper hole cutting.

Explicit Hole Cutting Method

The scope of this thesis is to use overset grids with solid intersections. The needed precision of
the hole cutting method with such cases increase ; every invalid grid points must be located,
no more, no less. Search based methods (i.e., implicit methods) will sometimes falsely mark
grid cells as invalid if the grids do not have enough overlap. In the explicit approach, the
first step is to explicitly locate the grid cells within the solid bodies. Then, the donor grid
cells for all the interpolated grid cells must be found. Explicit methods do not use auxiliary
approximation and are therefore the most accurate methods. They can, however, be quite
expensive in terms of time and memory [25, 31]. Many methods were developed [13, 31, 32]
and optimized [33] through the years.

In Suggar++, a method called "direct cutter" finds the grid cells directly intersecting the
surface grid to define the boundary holes [34]. The grid cells contained by the holes are then
identified using a flooding algorithm. The standard flooding algorithms, however, will not
work with open surfaces.

Benek, JA and Steger, JL and Dougherty, FC and Buning, PG presents a method developed
in PEGASUS [20] based on wall distance and surface normals. A surface C, for example, is
introduced into another subdomain. First, the normals are computed at each point defin-
ing the surface C. Then, a minimum hole is created around the body enclosing it whole.
Using a scalar product of the normal vectors and the distance vector, the grid points can
be positioned as either inside or outside of the solid body using the minimum hole as the
first requirement of invalidity. In many cases, this approach creates an appropriate hole that
allows building a proper connectivity. However, the normals can sometimes get difficult to
compute automatically in the case of discontinued geometries for example [30]. Furthermore,
cutting surfaces, viewed from the overlapping grid points, must be convex and closed [32] for
the approach to be robust.

Object X-ray Method The X-ray hole cutting method is a robust approach to locate
the grid cells within the solid bodies. The method borrows ideas from the hole-map and
ray casting methods as presented by Robert Meakin [32]. With a proper data structure, the
object X-ray method can be efficient enough for both static and unsteady applications with
moving complex bodies which requires computing the hole cutting process each time there
is a grid or body movement.
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Figure 2.3 illustrates the original X-ray method [25, 35]. First, an Axis-Aligned Bounding
Box (AABB) is created around the solid body. Then, rays are cast within the AABB and
the pierce points on the solid surface are computed. For a certain grid cell, the entry and
exit points of the surrounding rays are used to determine the inside-outside status. With a
proper data structure, the method can be robust and efficient [32]. The oct-tree data is used
in SUGGAR to quickly determine the grid cell close to the solid surface [25].

1. Create an axis-aligned bounding box around the solid body.

2. Cast rays in the axis-aligned bounding box.

3. Compute the pierce points of the rays in the solid body.

4. Test all points within the axis-aligned bounding box using the surrounding rays.

Figure 2.3 Illustration of the inside-outside test of the X-ray hole cutting method

The weaknesses of the object X-ray method were explored by Noah Kim and William M. Chan
[25] with the purpose of developing a more automated and precise X-ray method. A constant
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offset distance from the minimum hole can be used, for example, to avoid interpolation close to
the surface (i.e., in high flow gradient regions). However, a constant distance does not always
generate the best overlap, especially in cases with near components or solid intersections.

William M. Chan et al. [35] suggests a dual wall distance based function to define a variable
offset of the hole boundaries. An initial estimation of the interpolation boundaries using
auxiliary methods, for example, can significantly decrease the density of X-ray needed to
ensure robustness.

2.4 Grid To Grid Connectivity

In order for the subdomains to properly represent their part of the global domain, data must
be communicated between the oversetting grids through the interpolated grid cells. There
are two types of regions where grid cells are defined as interpolated [25] : (1) around the
hole boundaries created in the hole cutting process and (2) at the overlapped field bound-
ary conditions. This is illustrated in Figure 2.4 : here, for example, the domain grid gets
information from the component through the hole boundary and the component grid gets
information through the overset boundary condition.

Figure 2.4 Illustration of the two types of boundary condition in overset method (in orange)
: overset and hole boundaries

The interpolation methods can be grouper in two categories : non-conservative and conser-
vative interpolation.



15

Non-conservative Interpolation

A downside of solution interpolation is that global conservation of fluxes is not guaranteed.
It has been shown that a certain quantity of mass is generated along the fringe points bound-
aries, resulting in a pressure increase [36, 37]. This can even cause inconsistent boundary
condition and thus failure of the simulation. One way of resolving this issue is to gener-
ate grids that perfectly match along the overset boundaries [37]. A conservative internal
boundary treatment to transfer data between oversetting grids with complex geometries is,
however, possible as presented by J.A. Wright and W. Shyy [38].

The actual local or global effect of this is difficult to measure, but many agree that the
solutions are not degraded when the interpolation occurs in regions where sharp gradient,
shock or discontinuities are not present [29]. Many non-conservative methods exist, but
linear interpolation functions are the most popular due to their simplicity [29]. The Taylor
approximation, the inverse distance and trilinear methods are other examples of popular
non-conservative interpolation methods [20, 26]. Work on error analysis showed, however,
that an interpolation of higher order of the underlying discretization may be necessary to
preserve the accuracy in some region [29].

Conservative Interpolation

Cases in which shock waves or high gradients occur close to the interpolation regions, con-
servation is usually needed [36]. The conservative methods, however, are known to be sub-
stantially more complex than non-conservative. Furthermore, in three dimensions, it can
sometimes be almost impossible to apply. An approach called the zipper grid [36] is some-
times used to create new grid cells to replace the overlaps as illustrated in Figure 2.5. The
zipper grid approach first blank the grid points which are part of the overlap and then close
the gap with new grid cell elements.

2.5 Solid Intersections

For viscous flow around intersecting pieces of the geometry in overset grids, it is difficult
to generate proper grid to grid connectivity. The final resolution of the intersection region
is therefore negatively impacted. Tests have shown that in those cases, resolution of the
intersection region and geometric surface with respect to both grids had to be improved [39].
Different approaches can help solve this problem and they all share the same general idea :
in order to properly define solid intersections, one of the meshes needs to have knowledge of
the intersecting region of the geometry. Some approach extends the grid’s surface to cover a
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Figure 2.5 Zipper grid approach. (a) Overset grids with dominant grid cells only are not
blanked. (b) A triangulation algorithm adds new grid cells to cover the region (from [2])

part of the other component [4, 40], for example.

Collar Grid Approach

The collar grid method is another approach used to improve the resolution of any section of
a mesh, especially the regions around solid intersections. Collar grids are body fitted to both
intersecting bodies while the intersecting grids are only body-fitted to their own piece of the
body [41]. As illustrated in Figure 2.6, a hole is first created around the solid intersection,
then a new grid (i.e., the collar grid) is overset to properly defines the intersection and allows
proper communication between the surrounding grids.

Mismatch In Surface Discetizations The collar grids generally have a different surface
discretization than the underlying overlapped grids. This mismatch has two direct effects.
First, the donor-receiver pairs of grid cells have different values of wall distance (refer to
figures 2.7(c-d)) which has considerable effect in the turbulence model, especially when the
source term is dependent on the wall distance value. Furthermore, orphan grid points as
illustrated in Figure 2.7(a-b) can be observed because no valid donor is found. A simple
correction which was proposed by Schwarz [3] would be to virtually modify the interpolated
cells coordinates in the interpolation stencil. He was indeed able to correct a significant
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Figure 2.6 Illustration of the collar grid approach

error in the skin friction computation using his correction. The correction is based on the
projection of the overlapping surfaces onto each other. Using the projection vectors, and
before computing the donor search, the grid points are shifted to match their potential donor’s
wall distance. Because the problem occurs close to the wall, the extent of the application of
the method decrease far from the wall.

Surface Integration Aerodynamics properties are often used to verify and validate new
implementations. They can also be used to monitor numerical convergence of a simulation.
Thus, the duplication of the surface area when using collar grids must be considered to
avoid counting the same area twice in the surface integration. The zipper grid method can
also be used for force and moment computation [42] : the overlapping surface elements are
blanked and then a hybrid composite surface is generated using quadrilaterals and triangles
to fill the hole and connect the grids. FOMOCO is a software package developed at NASA
for computing flow coefficients on a collection of overset surfaces [43]. FOMOCO is a two-
step process. First, the MIXSUR code blank the overlapping areal regions and close the



18

Figure 2.7 Surface discretization of overlapping meshes for a convex geometry (a-c) and a
concave geometry (b-d), highlighting cells located outside of the computational domain (a-b)
and the improper interpolation donors (c-d).

holes with triangulation then OVERINT compute the aerodynamic forces and moments over
the new unique surface [44]. This method was, however, developed with the vertex-based
approach in mind. Furthermore, the triangulation process is often not robust. Wigton [45]
presents a solution to the later problem which avoid triangulation altogether. The algorithm,
which he called Polymixsur, applies the polygon Boolean difference operator to weight each
surface element. A weight between 0 and 1 is assigned to each areal element based on
its relative hierarchy and its overlap by other surface elements of higher hierarchy. These
weights then multiply the contribution of each surface element in the surface integration
step. This algorithm was shown to be more robust and more general than the original one
of FOMOCO. The bottleneck for the robustness of this approach depends on the underlying
polygon Boolean method used. Most of the method to compute the weights increase in
precision when refining the grids [44]. The algorithm steps are as follows [44] :
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1. Find pairs of overlapping surface elements. Collision of their axis-aligned bounding box
and dot product of the normals can be used to determine the validity of the pairs [44].

2. Based on the hierarchy of each grid, the relative dominance is defined.

3. Compute the polygon Boolean operations. This is the most important step of this
weighting algorithm. The polygon Boolean difference removes portions of the lower-
ranking overlapped surface elements.

4. The final weighting coefficient is computed as the ratio of the polygon region and the
original region.

Francisco Martínez, Carlos Ogayar, Juan R. Jiménez, Antonio J. Rueda [46] presents a simple
algorithm for Boolean operations on polygons. First, the edges of the polygons are subdivided
at their intersection points. Using the internal parts of the edges, a new polygon is created
within the overlapped surface element.

2.6 Acceleration Techniques

Speed and automation of the overset approach are two criteria of interest in this literature
review. Modern CFD applications are often composed of hundreds of millions of grid cells.
The implemented methods must be able to compute on multiple computational nodes in
parallel and must be scalable to some extent. This is achieved through coding techniques
applied in every part of the implementation. Different acceleration methods such as spatial
data structure can also help to speed up the processes. A very popular technic used in CFD
software is the oct-tree data structure.

2.6.1 Oct-tree Data Structure

The oct-tree data structure is an approximation of a dimensional object by a set of cubes
divided recursively [47]. The donor search step and the hole cutting step both require many
searches through the domain. To speed up the search process, the cubes are hierarchically
organized as illustrated in Figure 2.8 to reach the information faster. The oct-tree is initialized
by creating a bounding box around the grids ; this is the first level node. Then, recursively,
sub-nodes are added by dividing the previous one in eight new ones until certain criteria are
met [48]. The depth of the structure is usually controlled by user inputs like a maximum
depth or number of grid cells within the deeper level nodes.
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Figure 2.8 Illustration of the oct-tree data structure

The natural approach for computing the donor search becomes very expensive because of the
large quantity of grid points and possible pairs of overlapping grid cells that are possible. The
donor search for a specific grid cell consists of searching another overlapping grid cell that
encloses its centroid. With the oct-tree data structure, the actual quantity of containment
tests to do can substantially decrease. The oct-tree stores the grid points information in a
tree manner based on their coordinates. When searching a potential donor for a grid cell, the
oct-tree is passed starting from the top level following the nodes containing the grid cell. The
deeper node found containing the grid cell then allows to considerably narrow down the list
of grid cells to test [48]. The acceleration provided by the structure is so that the procedure
to get the narrowed list of grid cells is faster than simply do the containment tests on every
grid cells of the domain.
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CHAPTER 3 METHODOLOGY

This section presents the methods used to implement the overset technology in CHAMPS.
Creating the overset connectivity is essential in order to run flow simulation. This is usually
done with a preprocessor and written in the grid files so it is only done once. The main
purpose of an overset preprocessor is thus to analyze how the different grids overlap with
each other in order to create a connectivity. Figure 3.1 is a schematization of the overall
overset process as implemented in CHAMPS. The two main steps of the method are the hole
cutting and donor search steps. They are the most time and memory consuming steps of
the preprocessor. First, the definition of the donor search method in CHAMPS is presented.
Following, the X-ray hole cutting method as developed in this thesis to tackle the challenge
introduced by complex geometries is presented. Then, the definition of a more robust and
parallel X-ray method, which was a considerable challenge, is presented. The interpolation
stencil used in the overset method is then defined in order to respect the other numerical
stencils already in the CHAMPS software.

Start

Initialize oct-tree data structures

Hole cutting

Donor search

Store new connectivity information

End

Initialization

Connectivity

Store information

Figure 3.1 Illustration of the overall process of the overset preprocessor in CHAMPS

The oct-tree data structure implemented is also presented. The structure is built with the
sole purpose of accelerating the assembly part by allowing a faster nearest neighbour search.
Furthermore, the structure is implemented to manage and minimize the communication be-
tween computer nodes in the nearest neighbour search step. The considerations implemented
to allow the use of collar grids on solid surfaces are then presented. The scalability of the
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different steps of the preprocessor in terms of computational time when using additional
CPUs is also verified and discussed.

3.1 Grid To Grid Connectivity

To build the inter-grid connectivity, as presented in Figure 3.2, the hole cutting algorithm
is first executed. The X-ray hole cutting method was implemented for its robustness and
flexibility to work on complex geometries. Once the invalid grid cells are found, the implicit
method is used to identify the donor and receiver pair of grid cells. As it will be presented,
the implicit approach on its own fails to generate accurate results in some cases.

Hole cutting

Donor search

Connectivity

Figure 3.2 Creating the grid to grid connectivity

3.1.1 Implicit Approach

The first approach implemented in CHAMPS is the implicit hole cutting approach. As
explained in the literature review section, this approach is based on the idea that computing
the donor search algorithm for every grid cells of the domain will create the optimum overset
interfaces and implicitly isolate the grid cells to hole cut out of the computational domain.
In CHAMPS, an axis-aligned bounding boxes around the solid bodies are used to test the
grid cells that are not overlaped. In other words, every grid cells inside the bounding box for
which no valid donor from the component grid was found are considered invalid.

The donor algorithm consist of verifying which grid cells are overlapped by an other one.
A grid cell A is considered overlapped by a second grid cell B if its centroid lies inside the
grid cell B as it is illustrated in Figure 3.3. The inside-outside status is determined by the
equation 3.1 : the centroid is inside if equation 3.1 is verified at every face of the overlapping
grid cell. CHAMPS considere the standard CGNS linear grid elements [49] which are within
the limits of application of this test.
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if f⃗i · n⃗i > 0 , cell center is outside.

else f⃗i · n⃗i ≤ 0 , cell center is inside.
(3.1)

⃗fn,i⃗fn,i

⃗fn,i⃗fn,i

n⃗i

n⃗i

n⃗i

n⃗i
⃗fn,i

⃗fn,i

⃗fn,i ⃗fn,i

n⃗i

n⃗i

n⃗i

n⃗i

Point is contained Point is not containedf⃗n,i= Normal vector from facet center to point

n⃗i = Facet normal vector

= Current potential interpolated cell center

Figure 3.3

In some cases, however, the implicit approach is not applicable because of a lack of overlap.
Such problems were encountered in the application of the method on both two- and three-
dimensional cases.

Figures 3.4 is an example of such situation. As it is shown on top of figure 3.4, the extent of
the domain of the main component grid is fairly small and therefore the axis-aligned bounding
box around the solid component overlaps regions outside the extent of the grid domain. As
it is pointed by the red circles, this wrongly identifies invalid grid cells and thus leaves holes
in the final grid. Figures 3.5 is three-dimensional example of this problem : the axis-aligned
bounding box around the wing component reaches regions outside of the component grid.

Grid To Grid Communication

To communicate the information from the donor grid cells to the associated receiver grid
cells, the Taylor approximation as presented in equation 3.2 is used.

f(x) = f(a) + f
′(a)
1! (x − a) (3.2)

CHAMPS uses a cell-centred discretization of the flow variable to represent the flow. The
concept of this scheme is to compute fluxes through the faces of each control volume to
update the solution. The fluxes are computed on each face based on the value of the two
control volume sharing the face. In the overset grids, hole cut and interpolated grid cells
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Figure 3.4 Illustration of the limitation of the implicit hole cutting approach on a two-
dimensional case. Only computed grid cells are shown.

Figure 3.5 Illustration of the limitation of the implicit hole cutting approach on a three-
dimensional case. Only computed grid cells are shown.
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do not need to be updated. However, to correctly update the computed grid cells, the flux
through all its faces must be computed which means that the values in the immediate neigh-
bouring control volumes must also be accurate as shown in Figure 3.6. The grid cells with a
crossed centroid represent the neighbours used in the stencil. Blue control volumes represent
the computed neighbours. Yellow control volumes represent the interpolated neighbours. Pi

and Pc indices indicate that proper primitive flow variables are available in the control vol-
ume from interpolation or computation respectively. G and L indices indicate that proper
gradients and limiters are available in the control volume respectively. For a first-order flow
simulation in CHAMPS, only one layer of interpolated grid cells is necessary. In second order
schemes, however, the control volume sharing a face needs appropriate gradients to compute
the fluxes. The computation of the gradient also implies the immediate neighbouring grid
cells information which means that an additional layer is necessary to properly compute the
gradients in the interpolated grid cells sharing faces with one or more computed ones. Figure
3.7 presents the stencil of a second order scheme : the control volume with a black dot in its
centroid needs all its neighbours to have both values of primitives and gradients available and
correct. The first left neighbour of the control volume has its primitive values interpolated
and are therefore available. For the gradients to be available, they need to be reconstructed,
which uses the primitive values of the next neighbours : that is why an additional layer of
interpolated grid cells is added. When using limiters to limit extremum values of gradients,
an additional layer is again necessary. The stencil to compute the limiter uses the neighbours
gradients : Figure 3.8 presents the extent of the stencil when using limiters. When generating
our own grids, this requirement is not really restrictive. Generating grids for complex cases
such as a complete aircraft can, however, be a considerably challenging on its own and is not
within the scope of this thesis. That being, when using grids generated by others, lack of
overlap between the grids can prevent the definition of three layers of interpolated grid cells
as described here. Grids designed for a vertex-centred CFD solver automatically have an
additional layer of control volume compared to the cell-centred approach used in CHAMPS,
for example.

Pi Pc

Figure 3.6 Extent of the stencils, in one dimension, used in a first order scheme simulation
to update the solution in the grid cell marked with a black dotted centroid
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Pi, G Pc, GPi Pc, G

Figure 3.7 Extent of the stencils, in one dimension, used in a second order scheme simulation
to update the solution in the grid cell marked with a dotted centroid

Pi, G, L Pc, G, LPi, G Pc, G, LPi Pc, G, L

Figure 3.8 Extent of the stencils, in one dimension, used in a second order scheme simulation
using a limiter to update the solution in the grid cell marked with a dotted centroid

3.1.2 X-ray Hole Cutting Method

As already mentionned, a mix of an implicit and explicit hole cutting method is implemented
in CHAMPS. The implicit approach optimizes the position of the overset interfaces and the
explicit method ensures robustness with complex bodies.

The X-ray method is available in CHAMPS to strengthen the hole cutting step. As explained
in a previous section, the method cast rays onto the solid bodies to create a Cartesian mapping
of the surfaces and then position the overlapping grid cells as inside or outside. Figure 3.9
illustrates the overall process of the method.

1. Create Axis-Aligned Boxes : The AABB (Axis-Aligned Bounding Box) of a
component simply correspond to the box formed by the extremum’s coordinates of this
component. Using AABB allows speed up the method as grid points outside of those
boxes necessary does not intersect the components. These AABB are computed around
the simpler components of the overset grid.

2. Cast X-rays In Axis-Aligned Boxes : Based on a user-defined spacing, rays are
cast in the AABB. Based on the user inputs, rays can be cast, in CHAMPS, in X, Y
and Z direction. This can be useful to quickly adapt the method to different cases which
contains symmetry plane or open surfaces. The spacing can be separately defined for
each orientation which further increase the flexibility.

3. Create Cartesian Mapping With The Pierce Points : The intersection points
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Figure 3.9 Process of the X-ray hole cutting method

of the rays in the solid components are then computed. To do so, a collision detection
algorithm is used. CHAMPS uses unstructured grids and can therefore have surface
elements of different types. To standardize the process, the surface elements are divided
in triangular elements using the edges and the centroid. The algorithm to verify the
intersection of a line segment and a triangular face element as illustrated in Figure 3.10
is defined by algorithm 3.1 : this algorithm verifies the intersection for a ray oriented
parallel to the x-axis and was inspired by the work presented by Ericson [50].

4. Detection Of The Grid Cells To Hole Cut : Once all the collision points are
found, it is possible to know each entry and exit points. If a certain overlapping grid
cell is found to be within the AABB of a solid component, the four surrounding X-rays
need to be located. This can be done fairly easily and quickly with the Cartesian data
structure of the object X-ray method. For a distribution of rays oriented parallel to the
X-axis as illustrated in Figure 3.12, the code snippet presented in algorithm 3.2 shows
how to find the four surrounding rays : rays are uniformly ditributed and numbered
as illustrated in figure 3.11. Once this is done, the inside-outside status is determined
with the algorithm shown in equation 3.3.
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Figure 3.10 Intersection of line segments PQ against the triangular surface face ABC

Algorithm 3.1 Algorithm to verify the collision of a line segment P⃗Q and a triangular surface
ABC. This is illustrated in Figure 3.10

// Compute scalar and vectorial products

vector M = vectorial_product(PQ, PC)

float u = scalar_product(PB, M)

float v = - scalar_product(PA, M)

float w = scalar_product(vectorial_product(PQ, PB), PA)

// Test intersection of PQ against triangle ABC

if (checkSign(u) != checkSign(v)) then OUTSIDE

else if (checkSign(u) != checkSign(w)) then OUTSIDE

else if (u == 0.0 && v == 0.0 && w == 0.0) then OUTSIDE

else INSIDE

// Barycentric coordinates

barycentric_u = (u * denom) / (u + v + w)

barycentric_v = (v * denom) / (u + v + w)

barycentric_w = (w * denom) / (u + v + w)

COLLISION = u*a + v*b + w*c // Collision point
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Figure 3.11 Illustration of the distribution and numbering of the rays in X-ray hole cutting
method

Algorithm 3.2 Algorithm to get the index of the four rays surronding a certain point which
is within the AABB of a solid component. Refer to figure 3.11 for better understanding.

// Get spatial position of first ray in data structure

yMin = solid_component.axisAlignedBoundingBox_.yMin_;

zMin = solid_component.axisAlignedBoundingBox_.zMin_;

// 1. Locate the surronding rays

// 1.1 Get the cartesian mapping indexes

yIndex_1 = floor((point.y_ - yMin)/dy_) + 1

zIndex_1 = floor((point.z_ - zMin)/dz_) + 1

yIndex_2 = floor((point.y_ - yMin)/dy_) + 2

zIndex_2 = floor((point.z_ - zMin)/dz_) + 2

// 1.2 Get indexes for data structure

ray_1_index = yIndex1 + (zIndex1 * numberOfRaysInY_)

ray_2_index = yIndex2 + (zIndex1 * numberOfRaysInY_)

ray_3_index = yIndex1 + (zIndex2 * numberOfRaysInY_)

ray_4_index = yIndex2 + (zIndex2 * numberOfRaysInY_)
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Blankig =
4∑

n=1
Wi ∗ bi if Blankig < 0.5 then grid cell is hole cut

Where bi is either 1 or 0 : if the point is between points

P and Q for the X-ray "i", then bi = 1.

η and ζ represents the adimensionalized coordinates

of the point to test within the surronding rays.

(3.3)

W1 = (1 − η)(1 − ζ) (3.4)

W2 = (1 − η)ζ (3.5)

W3 = η(1 − ζ) (3.6)

W4 = ηζ (3.7)

Pointi

(W4, b4)

(W1, b1)

(W3, b3)

(W2, b2)
Pointi

η

ζ

Figure 3.12 Representation of an X-ray distribution. Point Pointi is surrounded by four
X-ray as illustrated by the green box.

The first verification was done by simply making sure that entry and exit collision points
were found for every cast rays. The verification of the implementation was done mainly
visually. Figure 3.13 illustrates the process of visually verifying the X-ray method. First,
it was observed that all pierce points were identified as expected as illustrated by the green
box in Figure 3.13. Then, blanking the hole cut grid cells or highlighting them in different
colours shows that every invalid grid cells are located (two boxes on the top of Figure 3.13).
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Figure 3.13 X-ray hole cutting method to create hole boundaries applied to an overset case
of a multi-element airfoil

More complex 3D cases are also successfully verified. The verification is again here mainly
done visually as illustrated in figures 3.14 and 3.15.

Parallel X-ray Hole Cutting Method The parallelization of the hole cutting method is
fairly straightforward once the pierce points are computed : each zone of the computational
domain, which is already balanced on the different CPUs, verify the inside-outside status
of their own local grid cells. The bottleneck is in the pierce points computation step when
working on distributed memory. When working on shared memory, it is easier and faster
to access the data of the different processes. On distributed memory, however, a step of
consolidation on the data is done to communicate the information between the compute
nodes. Chapel uses a global namespace which allows direct access to data on different memory
nodes without any special consideration. whilst accessing information on other compute
nodes is easy to program, continually doing so is not effective in term of time. To optimize
this step, a procedure based on the idea behind the MPI_BCAST call from the MPI library
is developed : the information that is necessary for each nodes is written and red once from a
common data base and then stored locally for futur access. As it will be presented is section
3.4, this approach only allowed to have a not so negative scaling when using distributed
memory. Review of the implementation could help improve the performances. Whilst this
has not been a bottleneck through this project, it could become one when working with very
large grids and limited computing ressources.
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Figure 3.14 Inside part of the cast X-rays on
a complete aircraft geometry

Figure 3.15 Hole cut cells from the X-ray hole
cutting approach on a complete aircraft ge-
ometry

Advances To The Hole Cutting Method Around Solid Intersections

Collar grids are usually used to connect to intersecting components. The most common use
would be to define the wing-fuselage intersection. The Commom Research Model (CRM)
configuration was meshed using the overset approach by Boeing and the grids were made
available on the DPW4’s website. As shown in Figure 3.16, the two grids (i.e., the fuselage
grid and wing grid) are only body fitted to their own geometry. A collar grid is applied to
properly connect the two grids and allow proper resolution of the flow in this region. Figure
3.17 presents the collar grid used to assemble the fuselage and wing grids. The X-ray hole
cutting algorithm would require high density of rays because of the small grid cell sizes in
the region and would therefore be considerably more time and memory consuming. This was
verified in CHAMPS. Considering that the collar grid was made especially for this region,
we could, however, assume that the collar grid is of better quality (i.e., dominant) than the
other background grids. That being said, an auxiliary distance-based method is implemented
to create a rough hole around the intersection line and thus alleviate the overall process.
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Figure 3.16 Solid intersection between a wing and fuselage. Grids were made available by
Boeing for the DPW4

Figure 3.17 Collar grid used to define the solid intersection between a wing and fuselage.
Grids were made available by Boeing for the DPW4.

The mean distance between the intersection line and the outer extremity of the different
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components as illustrated by the red arrow in Figure 3.18 are first computed.

Figure 3.18 Illustration of the distances used in the distance-based hole cutting method
around solid intersections

The minimum hole is then created around the intersection line. A fraction of the mean
distances as presented in Figure 3.18 is used to control the extent of the hole. To control this
fraction, a user input is used in CHAMPS. 70% of the mean distance is usually a good value
to compute a proper hole. The best fraction will vary from a case to another since the goal
is to position the hole boundary such as the fringe grid cells identified on the border have
similar characteristics than their donors. Figure 3.19 present the result of using the method
on a wing fuselage configuration assembled using a collar grid.
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Figure 3.19 Illustration of the distance based hole cutting method around a solid intersection

3.2 Collar Grids

3.2.1 Wall Treatment For The Mismatch In Discretization With Collar Grids

In CHAMPS, the collar grid approach was chosen to treat the solid intersection in overset grid.
As presented in the literature review, the collar grid method requires further considerations
in order to properly build the overset connectivity. To observe the problem and apply the
solution presented by Thorsten Schwarz [3], a similar overset grid is generated. First, orphan
grid cells are indeed observed after assembling collar grids. As it can be observed in Figure
3.20, some grid cells in green close to the wall are within the solid body of the overset grid
in black and therefore no potential donors can be found with the present method. Also,
donors that are defined for grid cells close to the wall will have significantly different wall
distance than their receiver counterpart which can have a negative impact especially on the
turbulence model [3].
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Figure 3.20 Illustration of the surface discretization mismatch under a collar grid

As illustrated in figure 3.21, grid cells can have different wall distance values depending on
the grid. Thorsten Schwarz proposes to modify the coordinates of the receiver’s centroid to
take the different discretizations into account. The algorithm 3.3 presents this correction.
The idea is to move the coordinates by epsilon, which represent the normal distance between
the overlapping solid facets closer to the grid cell. This correction, however, is gradually less
applied far from the wall.

Figure 3.21 Illustration of the wall discretization mismatch proposed by Thorsten Schwarz
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Algorithm 3.3 Implementation of the wall treatment proposed by Thorsten Schwarz.
// Get the coordinates of the grid cell to interpolate

vector P_coordinates = get_coordinates(P_index)

// Get distance between the two overlapping solid facets

vector epsilon = (d_interp - d_local)*normal

// Parameters to gradually decrease correction far from the wall

float d1 = 10.0*normL2(epsilon)

float d2 = 30.0*normL2(epsilon)

// Weight for the correction

float weight;

if d1==d2 && d1==0 then weight = 0.0;

else if d_local >= 0 && d_local < d1 then weight = 1.0;

else if d_local >= d1 && d_local < d2 then weight = (d2 - x_ps)/(d2 - d1);

else if d_local >= d2 then weight = 0.0;

// Apply correction

NEW_COORDINATES = P_coordinates + weight*epsilon
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Verification

Figures 3.22 and 3.23 present the reproduction of the problem observed by Thorsten Schwarz
[3] in the skin friction distribution using CHAMPS. The grid used here is presented in Figure
3.20 . The flow solver was set with the following parameters : Mach=0.8, AoA=1.25, second
order discretization and Spalart-Allmaras turbulence model. First, Figure 3.22 presents
the problem as expected. Then, the solution is indeed able to resolve the orphan grid cell
problems and to rectify the spike observed in the skin friction distribution as shown is Figure
3.23.

Figure 3.22 Skin friction around a NACA0012 airfoil using a collar grid on the leading edge.
No correction is applied here.

Figure 3.23 Skin friction around a NACA0012 airfoil using a collar grid on the leading edge.
The wall treatment proposed by Thorsten Schwarz [3] is applied here
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3.2.2 Surface Duplication

To properly compute surface integration, the overlapped surfaces must be weighted so no
area is counted twice. The method implemented in CHAMPS projects the faces of the solid
boundaries onto the underlying boundaries. A first loop through the boundary faces is done
to determine which face is completely covered by the projection : if every node of a face
is covered, the weight can be directly set to 0. A second loop is done on the faces onto
which only one of the two nodes is covered : the weight of these faces are between 0 and
1. The shadow areas on those faces are computed by computing the intersection between
the projected faces and the underlying ones as illustrated in Figure 3.24. Surface elements
can be of different shapes and the overlap is arbitrary. Therefore, the new shadow elements
can be of arbitrary shape also. To compute the area, the new surface element is divided in
sub-triangles using the edges and the centroid.

Figure 3.24 Weighting overlapped solid boundary faces by reconstructing projected faces

Verification

Integrating the faces normal around a closed body theoretically gives zero. In order to
properly compute the aerodynamic coefficients, which require surface integration, both the
overset communication and surface weighting need to be accurate. That being said, the
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first test is done using a collar grid perfectly coincident to the background discretization
as presented in Figure 3.25. The collar grid is used here to assemble the multi-blocks grid
without needing to create halo cells at the blocks interfaces. The results using the collar grid
approach and the standard single grid approach are expected to be the same since the final
grids are the same with the two approaches. Table 3.1 shows, as expected, similar results
within machine accuracy using the overset and single grid approach.

Figure 3.25 Coincident collar grids used to assemble a multiblock grid of the CRM wing
fuselage configuration

Table 3.1: Simulation on the CRM wing fuselage configuration using the overset and single
grid approach. Parameter : Mach=0.85, CL=0.5, Re=5e6

Overset Single grid abs(Delta)
CD 0.02628 0.02628 < 1e-14

AOA 2.2450 2.2450 < 1e-14
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It is more complicated to verify the algorithm with non-coincident collar grids : it is expected
that the method is not perfect since the geometry is not really closed by the approach. As
mentioned above, surface elements completely shadowed by the collar grid are easier to locate
and thus the errors due to the approximations in the method are concentrated at the interface
between the grids. In addition, such regions usually represent a small amount of the overall
surface area and thus do not have a great impact on the overall solution. It is also anticipated
that grid refinement will minimize this error.

The following test case presents the impact of using a non-coincident collar grid as presented
in Figure 3.26 on the solution. The overset grid is composed of a cylinder on which a collar
grid is applied. The collar grid used here has the same discretization as the background grid.
First, it is observed that the weighting method is not perfect as the surface’s integration on
the overset grid with non-coincident collar grid does not return a null value in comparison to
the assembly with the coincident one.

A grid convergence study is done to measure the impact of this on the solution. Similarly to
the last section, results with the coincident collar grids are similar to the single grid approach
within machine accuracy which is as expected because the final grids from the solver’s point
of view are the same. Figure 3.27 shows the grid convergence of the drag coefficient with
the overset and single grid approach. The results are at first sight highly similar. Figure
3.28 presents the difference between the two approaches compared to the grid refinement. As
anticipated, the results converge to the same value when refining the grids.

Figure 3.26 Overset grids : cylinder and collar grid. Coincident collar grid on the left and a
collar grid with the same discretization but translated on the surface on the right.
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Figure 3.27 Grid convergence analysis. Drag coefficients using the overset and single grid
approach
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Figure 3.28 Grid convergence analysis. Comparison between the overset and single grid
approach

3.3 Oct-tree Data Structure

As presented in the literature review, the oct-tree data structure is recursively constructed
from a starter node. The oct-tree structure is implemented to stay coherent to the fact that
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CHAMPS is a parallel CFD solver. With the overset approach, it is fairly straightforward to
solve the computation on multiple nodes by assigning a different sub-grid to each compute
nodes. Furthermore, CHAMPS divides the sub-grids in multiple zones to accelerate the
computations even more. To stay coherent with the overall CHAMPS framework, the oct-
tree data structure is therefore built on each zone in parallel.

In each zone, the first node of the oct-tree data structure is defined around the whole domain
of the zone. Starting from this first level, the domain is recursively divided into eight child
nodes until certain conditions are met. The user can control the depth of the structure by
fixing either a maximum depth or a maximum number of grid cells that are allowed within the
finer level nodes. Figure 3.29 illustrates the oct-tree structure created on the grid presented
by Vassberg and Jameson [51] for different parameters.

Figure 3.29 Illustration of the oct-tree structure created on a NACA0012 Euler grid. Illustra-
tion of the structure with one, three and five maximum levels of child nodes are compared.

The overall overset process requires many searches through the database to find grid cells
based on their approximate location. In the donor search algorithm, for example, a certain
grid cell is searched based on the coordinate of a point within it. The oct-tree data structure
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stores the different information in a tree manner so that given some coordinate, the structure
can quickly provide a shorten list of the surrounding grid cells. Starting from the top node
of the structure, the eight direct child nodes are tested to verify if it contains the given
coordinate : this is fairly easy and quick to verify if a certain coordinate is within a bounding
box. This is done recursively from the first node to their child nodes until the last child node
containing the coordinate is found. The length of the returned list compared to the total
number of grid cells depends on the depth of the oct-tree : the finer the last level is, the
shorter the returned list is, but also the heavier the structure in terms of memory.

The oct-tree data structure must be used with proper parameters. For a deeper oct-tree, the
cost of retrieving information increase. So whilst the oct-tree data structure decreases the
number of operations necessary, it needs to be adequately parameterized so the operations
to build the oct-tree and use it stay competitive compared to the time saved. The structure
is controlled by two parameters : (1) a maximum depth allowed for the oct-tree and (2) a
critical number of grid points in a single node. In CHAMPS, the first one is more important
than the latter.

To verify the implementation, the performances of the structure are verified on a three-
dimensional Cartesian grid containing 1 million grid cells. One hundred thousand points
were randomly generated in the domain to compute the donor search. From an oct-tree
with 1 level of nodes to an oct-tree with 6 levels, the algorithm accelerates the donor search
process as presented on the log-log graph of Figure 3.30. This analysis shows that fixing those
parameters in order to get finer child nodes containing around 0.03% of the total number of
grid points usually gives the best results. Some results of this are presented in Figure 3.31 :
in this test case, using four levels of child nodes provides the best acceleration. On the other
hand, when allowing five or six levels of child nodes, the time needed to build the oct-tree
becomes larger than the time saved.

3.4 Performance Of The Overset Preprocessor

The three most time consuming steps are the X-ray method, the donor search and the
wall distance computation. As predicted by reading the literature, the bottleneck is in the
scalability of the X-ray hole cutting algorithm. In the case of complex geometries, a large
number of rays are necessary to ensure a proper hole cutting. For each of those rays, many
pierce points can exist. To optimize the process, CHAMPS decomposed the sub-grids in
zones. This is done in a similar fashion than the multi-block approach often used with the
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Figure 3.30 Time to compute the donor search for one hundred thousand randomly generated
grid cells within a background grid composed of a million grid cells

Figure 3.31 Time (in seconds) to build oct-tree data structure and compute donor search for
different depths of oct-tree structure

structured grid approach. Those zones are distributed on different tasks that can potentially
be run on distributed memory. Therefore, a potentially very large number of piercing points
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information has to be communicated throughout the tasks.

The overset grids shown in Figure 3.32 are used to verify the performances of the overset
method in CHAMPS. There is a background grid with around three million grid cells and a
near-field grid containing a spherical solid body with around half a million grid cells. More
than fifty thousand X-rays are casted in the solid body to compute the hole cutting. This is
done on Compute Canada’s cluster called Graham using up to 64 CPUs. These nodes are
composed of 32 CPUs each. When using 64 CPUs, for example, 2 nodes of 32 CPUs are
used.

Figure 3.32 Overset grid used to verify the scalability of the overset method in CHAMPS

The results in Figure 3.33a show that the overall overset method can be accelerated by using
more CPUs (i.e., scalable). The preprocessor developed is fully parallel, which means that
every steps of the algorithm is split throughout the available CPUs. That being said, the
CPUs often needs considerable amounts of information generated by other CPUs. This is
straightforward in shared memory, but not as much in shared memory. The performance
of the different methods on more CPUs and compute nodes differ from one and other and
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mainly depends on how and the amount of information shared between shared and distributed
memory. The observations are as follow :

• The first observation is that the donor search (i.e. the orange squares in Figure 3.33a)
is the most dominant function in terms of time. In this test case, each time the number
of CPUs is doubled, the algorithm speedup is between 1.5 a 1.95.

• Because of the dominance of the pierce points computation in the hole cutting step,
it was considered separately. Locating the piercing points coordinates is next in time
consumption : this step does not scale when using more CPUs, and even stays close
to constant as it is presented by the blue stars in Figure 3.33a. The step becomes
more time expensive than the donor search when using more than 8 CPUs. From the
author’s point of view, the time of this step is acceptable considering the quantity of
X-rays and tests that ought to be done : it did not limit the application of the overset
method during this thesis.

• The algorithms to compute the wall distances and to locate the invalid grid cells show
scalability similar to the donor search step when using more CPUs as shown in figures
3.33b and 3.33c.

• To avoid too much communication in the donor search step, the oct-tree data structure
is duplicated on each node. Figure 3.33e shows that building the oct-tree data structure
using more CPUs on a single node allows scalability. In Figure 3.33d, however, it can
be observed that when using an additional compute node (i.e., distributed memory),
the step becomes significantly more time consuming. This can be expected because of
the relatively large amount of data that is communicated to consolidate the information
through the compute nodes. Furthermore information necessary to the donor search
step is also communicated and store in the oct-trees in order to speed up the donor
search step.
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CHAPTER 4 RESULTS FROM TWO-DIMENSIONAL APPLICATIONS

Two test cases are presented here. First, Koji Morinishi [52] presents numerical results
for a transonic flow over two NACA0012 airfoils staggered from each other using a 105x81
structured grid. With the overset approach, two Euler grids from Vassberg and Jameson [51]
are assembled by CHAMPS to represent the domain. The results are in accordance with the
literature and show sharp capture of the shock between the two airfoils.

Secondly, as part of the Mesh Effects for CFD Solutions special session at AIAA Aviation
2020, a set of eighteen overset grids were custom tailored at NASA to yield wake clustering
that is appropriate for this test case which is an airfoil section of the CRM [53]. Those grids
provide a pertinent benchmark for two-dimensional overset applications in the industry. The
results obtained with CHAMPS are in general accordance with the literature, but further
analysis of the results indicate limitations with the grids.

4.1 Staggered NACA0012 Airfoils

Two 129x129 grids as presented in Figure 4.1 are used : the first grid is centred at the origin
and the second one is staggered horizontally and vertically by half a chord length. The
implicit approach is used for this assembly using the wall distance values as criteria in the
donor search step. This means that the grid cells closer to an overlapping solid body are
to be interpolated. This created a smooth interface as presented in Figure 4.1. The first
two layers of interpolated grid cells close to the interface are defined as computed in order
to distanciate the interfaces. This help smooth the communication and make sur to avoid
implicit interpolation between two grid cells [54].

Figure 4.2 presents the isobar lines of pressure in the flow field around the airfoils. The result
is smooth and in agreement with the literature. Figure 4.3 shows the pressure distribution on
the two airfoils in comparison with the results of Koji Morinishi [52]. The strong shock wave
is properly captured on the overset assembled mesh as shown on Figure 4.3, which indicates
a proper communication stencil between the meshes. Differences between Morinishi and
CHAMPS can be explained by the difference in the numerical scheme and grids.

4.2 Airfoil Section Of The CRM-HL Configuration

Figure 4.4 presents the coarser set of eighteen overset grids developed by NASA. From what
the author has understood, the solver for which those grids were generated uses a vertex-
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Figure 4.1 Two staggered NACA0012 airfoils. Overset grid composed of two 129x129 Euler
grids.

centred approach. As already mentioned, an additional layer is available with the same
grid when using the vertex-centred approach. Only two layers of grid cells were available
in most overlap region to build the connectivity and as presented in a previous section
CHAMPS would need three layers in order to properly compute the gradients and limiters.
The gradients of the donor grid cells are therefore used in this simulation to compute the
limiters. Furthermore, in this case, the interpolation occurs in high gradients regions close to
the surface. As mentioned in the literature review section, this can have a negative impact on
the converged solution when using a non-conservative interpolation method, which CHAMPS
does. Those are two possible error sources that are kept in mind in the result analysis.
However, it is anticipated that such errors will decrease with a grid refinement.

The grid convergence study presented in Figure 4.5 shows the results obtained with CHAMPS
using different limiters. The results are compared with FUN3D on two families of grids using
the single grid approach. First, the results are all in general agreements with the references
(i.e. results on the single grid approach and the FUN3D results). The lift coefficients obtained
with the overset approach without any limiter are higher than the references. From the
literature review, such increase could be expected considering the non conservation of the
interpolation method.
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Figure 4.2 Isobar lines of pressure in the flow field around two NACA0012 airfoils staggered
by half a chord length

Figure 4.3 Pressure distribution on two NACA0012 airfoils staggered by half a chord length.
On the left is the centred airfoil, and on the right the staggered one.



52

Figure 4.4 Overset grid developed at NASA of an airfoil section of CRM-HL. Overset con-
nectivity created with CHAMPS.

Furthermore, the results obtained with limiters which are more limiting seems to be closer to
the other results. The fact that they are more dissipating could minimize the error resulting
from the non-conservation. Figures 4.6 and 4.7 presents the pressure and skin distribution
respectively on the second finest set of overset grids compared to results from FUN3D [53].
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Figure 4.5 Lift coefficients obtained on different levels of the grid refinement. CHAMPS
Results using the overset and single grid approach compared. Results are compared to
FUN3D.

Figure 4.6 Pressure distribution on an airfoil section of the HL-CRM configuration. Results
from FUN3D were generated with a single grid approach containing about 5 million grid cell
and CHAMPS used overset grids composed of around 4 million grid cells.
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Figure 4.7 Skin friction distribution on an airfoil section of the HL-CRM configuration.
Results from FUN3D were generated with a single grid approach containing about 5 million
grid cell and CHAMPS used overset grids composed of around 4 million grid cells.
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CHAPTER 5 RESULTS FROM THREE-DIMENSIONAL APPLICATIONS

Industrial applications are often three-dimensional and require the overset method to be
able to treat solid intersections. Such intersections often, if not always, imply collar grid
and surface overlaps. Using grids available on the website of the fourth and fifth drag
prediction workshops [55, 56], it is possible to further verify the limits of the new overset
method. Different overset cases are presented to verify the proper implementation of the
solid intersection capabilities. The geometry analyzed is the NASA Common Research
Model (CRM). This model was created to improve the state-of-the-art in CFD applications
by Langley Research Center and Ames Research Center [57]. This test case is therefore highly
relevant for the present thesis.

5.1 Canonic Test Case With Coincident Collar Grids

Here, two coincident collar grids are applied on the geometry. Coincident means that the
collar grid and the background grid have the same discretization in their overlapping domain.
The final global grid obtains is identical to the single grid approach from the point of view of
the flow solver. Flow simulations with the single grid and overset approach should therefore
give the same numerical results. Figure 5.1 present the overset grids. Pressure distribution
from the overset and single grid approach are compared at two positions on the wing which
are both near the collar grids as shown in Figure 5.2.

5.1.1 First Order Simulation

The flow solver is set up using the parameters described in the table 5.1. Simulations with
a first order discretization scheme gives the same numerical results within the accuracy to
which the simulation was computed. The simulation is converged with a order of precision
smaller than 1.0e-4.5 on the density residual as shown in table 5.2. Figures 5.3 and 5.4 show
the pressure distributions and the convergence of the density and lift coefficient respectively.
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Figure 5.1 NASA Common Research Model (CRM), wing-body. Coincident collar grids on
the wing-body intersection and on the wing.

Figure 5.2 Position of the slide used for data comparison
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Table 5.1: Parameters used for the simulation on the CRM Wing-Body configuration. First-
order accuracy.

Parameter Value
Mach Number 0.85

Reynolds Number 5’000’000
Angle-of-Attack 2.5

Turbulence Model Spalart-Allmaras
Solver LU-SGS (implicit)

Convective fluxes Roe first order

Table 5.2: Comparison between the overset and single grid approach. Grids are presented in
Figure 5.1 and flow solver parameters are described in table 5.1.

Approach CL CD
Overset grid 4.4874781e-01 8.425674e-02
Single grid 4.4874782e-01 8.425675e-02

Figure 5.3 Pressure distribution using a coincident collar grid on the CRM Wing-Body

5.1.2 Second Order Simulation

On the same global overset assembly, a second order flow simulation is tested. The flow
solver is set up using the parameters described in table 5.3. Again, the results obtained using
the overset approach is equal to the single grid approach within expected accuracy : the
difference between the two results is smaller than the simulation convergence level. Table
5.4 shows the results. Again, the simulation is converged with an order of precision smaller
than 1.0e-4.5 on the density. Figures 5.5 and 5.6 shows the pressure distributions and the
convergence of the density and lift coefficient respectively.

Those canonic test cases verified that the implementation and the use of the overset approach
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Figure 5.4 Density and lift convergence using a coincident collar grid on the CRM Wing-Body

Table 5.3: Parameters used for the simulation on the CRM Wing-Body configuration.
Second-order accuracy.

Parameter Value
Mach Number 0.85

Reynolds Number 5’000’000
Angle-of-Attack 2.5

Turbulence Model Spalart-Allmaras
Solver LU-SGS (implicit)

Convective fluxes Roe second order

Table 5.4: Comparison between the overset and single grid approach. Grids are presented in
Figure 5.1 and flow solver parameters are described in table 5.3.

Approach CL CD
Overset grid 5.365231e-01 2.8691996e-02
Single grid 5.365232e-01 2.8691998e-02

does not modify the results for a coincident collar grid. The global grid of the overset
grids used here is identical, in terms of computed domain, to the grid used in the single
grid approach. Hence, there is no error introduced by the overset communication and it
is demonstrated that the overset process introduces no error in the computation. This is
a first but important verification that gives confidence in the overall implementation for
three-dimensional applications.
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Figure 5.5 Density and lift convergence using a coincident collar grid on CRM Wing-Body

Figure 5.6 Density and lift coincident collar grid on CRM Wing-Body. The different curves
represent different restarts of the simulation to finally converged without a limiter.

5.2 Industrial Application Of The Collar Grid Approach

Here, two non-coincident collar grids are applied to solve the wing-body intersection region.
Such application is more frequent and therefore representative of industrial applications.
Figure 5.7 presents the overset grid.

In the previous section, the grids obtained from the overset and single grid approach were
identical. Therefore, identical results were expected. The application presented in this sec-
tion, on the other hand, uses collar grid with different discretizations than the underlying
grid. The final overset grid is now different than the single grid approach and therefore the
same results cannot be expected. Moreover, the overset communication through an interpo-
lation will introduce a numerical error. The flow solver is set up using the parameters listed
in Table 5.5. Figure 5.8 present the pressure distribution obtained on the overset grid and
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Figure 5.7 Industrial collar grid application on CRM Wing-Body configuration

the pressure distribution compared to the single grid approach. The left part of the figure
illustrates where the pressure cut is done on the wing.

Table 5.5: Parameters used for the simulation on the CRM Wing-Body configuration.
Second-order accuracy.

Parameter Value
Mach Number 0.85

Reynolds Number 5’000’000
Angle-of-Attack 2.5

Turbulence Model Spalart-Allmaras
Solver LU-SGS (implicit)

Convective fluxes Roe second order
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Figure 5.8 Pressure distribution : comparison between the overset and single grid approach.
Grids are presented in Figure 5.7 and flow solver parameters are described in table 5.5.

The results show a good robustness of the method to use the collar grid approach. The
intersection region was improved by the collar grid. As presented in Figure 5.9, the separation
bubble is not captured with the single grid approach. The collar grid was tailored for this
region and it can therefore be of better quality. The collar grid is finer than the underlying
grid.

Figure 5.9 Skin friction lines showing the separation bubble in the Body-Wing intersection
of CRM Wing-Body configuration when using the collar grid method. Mach=0.85, Re=5M,
second order accuracy.
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5.3 Full Industrial Overset Application On CRM Wing-Body-Tail Configuration

The grids used here was generated by Boeing and made available during the AIAA 4th drag
prediction workshop. The geometry studied at the DPW4 was the NASA Common Research
Model transonic Wing-Body-Tail. A set of 17 overset grids were generated to represent the
computational domain.

For the grid connectivity step, interpolation is set at the cell center in CHAMPS. The grids
only allow one layer of interpolated grid cells. As explained in a previous section, more than
one layer of interpolated grid cells are necessary to properly reconstruct the limited gradients.
OVERFLOW, for which the grids were initially designed, uses a vertex-center representation
and therefore benefits from an additional layer [58].

5.3.1 Wing-Body And Wing-Body-Tail Configuration

One advantage of the overset approach is to easily add or remove components of a geometry.
In this line of thought, the first simulation is done here using only the grids to represent the
Wing-Body part of the configuration. Figures 5.10 and 5.11 present the grids before and after
the creation of an overset connectivity respectively. The overset preprocessor allows adding a
tail to the initial configuration as presented in Figure 5.12. This shows the flexibility provided
by the overset approach.

Figure 5.10 NASA Common Research Model, Wing-Body configuration. Overset grids gen-
erated by Boeing for the 4th Drag Prediction Workshop.
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Figure 5.11 NASA Common Research Model, Wing-Body configuration. Overset connectivity
generated with CHAMPS

Figure 5.12 NASA Common Research Model, Wing-Body-Tail configuration. Overset con-
nectivity generated with CHAMPS

Flow Simulation On The Wing-Body Configuration

The flow solver is set up using the parameters presented in table 5.6. Figure 5.13 presents
the pressure distribution on the solid surface. It shows a smooth pressure distribution on the
aircraft surface. The region surrounding the collar grids are also smooth and does not present
any disturbtion. Figure 5.14 presents the convergence of the density and lift coefficient. The
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convergence is smooth and has adequate performances. The spikes especially apparent in
the density convergence are normal and expected, and represent the moment when the angle
of attack is updated : to converge toward the proper lift coefficient, CHAMPS update the
angle of attack every few iterations. The pressure distributions presented in Figure 5.15
are smooth and continue throughout the surface which is composed of many collar grids. As
better presented in Figure 5.16, surface segments from different grid and collar grid composed
the global surface. The surface used to compute pressure distribution are therefore also from
different grids and collar grids. This shows a proper implementation and effectiveness of the
different methods implemented in the overset preprocessor.

Figure 5.13 Pressure distribution on the CRM Wing-Body configuration. Flow solver param-
eters are presented in table 5.6

Table 5.6: Parameters used for the simulation on the CRM Wing-Body configuration using
full overset approach. First-order accuracy.

Parameter Value
Mach Number 0.85

Reynolds Number 5’000’000
Lift coefficient 0.5

Turbulence Model Spalart-Allmaras
Solver LU-SGS (implicit)

Convective fluxes Roe first order
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Figure 5.14 Convergence on the CRM Wing-Body using the full overset approach. On the
left is the convergence of density and on the right the lift coefficient. Flow solver parameters
are presented in table 5.6

Figure 5.15 Pressure distribution for three different cut sections along the wing of the CRM
Wing-Body configuration. Flow solver parameters are presented in table 5.6 and sections
position illustrated in Figure 5.13
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Figure 5.16 Zoom on the section of pressure cut. Green regions represent the collar grids.
Flow solver parameters are presented in table 5.6
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CHAPTER 6 CONCLUSION

6.1 Synthesis Of Work

This thesis presented the advances of the overset method developed in the in-house CFD
solver CHAMPS. The technology developed is able to generate good results on industrial
applications which was the initial objective of the project. Treating complex geometries
requires robust methods to allow a proper communication of the flow information. The
literature review helped design a preprocessor capable of creating a connectivity on such
cases.

The methods used to allow solid intersections in overset assembly were identified using the
literature :

• The X-ray hole cutting method is used. From the author’s experience, the X-ray method
can be valid with the proper inputs (i.e., enough rays and orientation(s)). The limit
of the method is rather imposed by the resources (memory and time) available to the
user.

• The flow solver of CHAMPS was reviewed in order to properly consider the different
numerical stencils in the definition of the overset connectivity. Higher order methods
require extended stencils and therefore additional grid cells are necessary at the overset
interfaces. The scope of this thesis is not to generate overset grids but to develop the
technology to execute simulations onto them. Therefore, the limitations come with
using other laboratory’s grids which are designed for other solvers.

• The overset connectivity close to the wall is more critical because of the high gradients
in the region. To better define those regions, a special type of grids called collar grids
are used to patch the regions.

• Initial verification using collar grids showed the necessity for treatments close to the
wall. Overset connectivity close to the wall is sensible to the different discretizations of
the geometry. Investigation of a correction method found in the literature corrected the
observed problem and thus allowed to generate good results around solid intersections.

• Collar grids generate surface duplication which distorts the results of surface integra-
tion. Before computing the aerodynamic coefficients, an algorithm weights the over-
lapping regions of the geometry to consider the duplication.
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The methods and their details are presented in chapter 3. Simple canonic tests are presented
to verify the proper implementation of the algorithms. The limits and errors are, when
possible, evaluated. Finally, the overall overset algorithm was verified with a grid convergence
study of a circular cylinder. The effect of the overset method is isolated using a collar grid
with the same discretization as the background grid. The hypothesis is made that an error
is introduced by translating the collar grid. Results showed that the weighting method used
with the collar grids was, as predicted, not perfect. The error can, however, be minimized
using finer grids.

The application of the technology on industrial applications generated results in agreement
with the single grid approach and the literature. Both two- and three-dimensional capabilities
of the preprocessor were verified. The final application of the overset method is the NASA
Commom Research Model geometry, which is a test case developed by NASA. Overset grids
of the CRM generated at Boeing for the 4th drag prediction workshop were used to verify
the capabilities of the overset technology in CHAMPS. The results show smooth pressure
distribution around the aircraft configuration. Limitation imposed by those grids, however,
only allowed to verify the first-order discretization stencil.

6.2 Future Work

6.2.1 Acceleration Of The X-ray Hole Cutting Method

While the applications presented in this thesis are of an industrial level, application with
considerably larger grids are frequent. To eventually address those larger cases, the X-ray
hole cutting algorithms needs to be reviewed to improve its scalability. Because of the large
size of the data buffer communicated between memory nodes in the algorithm, other tools
like external C libraries could help optimize the process. Furthermore, an auxiliary method
could help optimize the number of rays used in the method. Currently, the distribution is
constant through the components and thus sometime fairly dense distribution is needed in
order to accommodate a single isolated zone. The distribution could therefore be defined as
variable within a single component.

6.2.2 Conservative Interpolation Method

The overset grids used for the simulations on an airfoil section of the CRM-HL involve inter-
polation in high gradients region which is known to have a negative effect on the solution. A
grid convergence study shows a slightly different residual convergence when using the overset
approach in CHAMPS. The interpolation method used in CHAMPS is non-conservative and
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could therefore generate mass in the domain and could thus explaines these differences. The
results seem, however, to converge toward the literature’s results when refining the grids.

6.2.3 Minimize Impact Of Lack Of Overlap

The main difficulty encountered in the verification of the method was the lack of overlap which
prevents proper connectivity definition. A solution to minimize this problem is initiated :
it consists of locating an alternative donor when no valid one is initially found. The only
valid solution, however, is to eventually generate custom grids for CHAMPS or find ones
compatible. As mentioned in chapter 5, the cell-centred discretization used in CHAMPS
takes out an entire layer of grid cell available for the overset connectivity. From an idea
found in the literature [58], advances to the algorithm were therefore initiated in CHAMPS
to help minimize the impact of this lack of overlap. The approach consists of enlarging the
area of research in the donor search process.
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