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RÉSUMÉ

Avec la fin de la loi de Moore et de la mise à l’échelle de Dennard, les architectures à
usage général (par exemple, les CPU RISC) deviennent insuffisantes pour répondre à nos
besoins croissants en matière de calcul haute performance. Les architectures spécifiques à un
domaine (par exemple, le TPU de Google) sont optimisées pour des applications spécifiques et
peuvent donc atteindre de meilleures performances. Le développement de telles architectures
spécifiques à un domaine nécessite généralement l’écriture de programmes dans des langages
de description du matériel (HDL). Par rapport aux langages de programmation polyvalents
(GPPL) traditionnels (par exemple, C++, Java, Python), le développement de programmes
en HDL (par exemple, VHDL ou Verilog) a actuellement peu de soutien de la communauté
de génie logiciel. Un tel déséquilibre dans le soutien aux GPPL et aux HDL entravera les
progrès futurs des systèmes informatiques. L’une des raisons de ce déséquilibre semble être la
méconnaissance des défis posés par les langages de description du matériel. Afin d’améliorer
cette situation, dans ce mémoire, nous faisons une première tentative d’élucidation de ces
défis, en étudiant les pratiques et les défis du développement de programmes en HDL, en
examinant deux sources de données liées au développement de programmes HDL : 1) les
forums techniques où les développeurs posent des questions relatives aux HDL, et 2) les
projets open-source où les développeurs écrivent du code HDL.

Les développeurs posent généralement des questions techniques et y répondent sur des plate-
formes tels que les forums Stack Exchange. Ces questions peuvent communiquer les défis
rencontrés par ces derniers lors du développement de programmes HDL. Par conséquent,
notre première étude identifie et analyse plus de 16 000 questions relatives au HDL provenant
de deux forums Stack Exchange : Stack Overflow (SO) et Electrical Engineering (EE). Nous
analysons ces questions en combinant une analyse qualitative et une modélisation automa-
tique des sujets, afin de comprendre les défis auxquels sont confrontés les développeurs lors
du développement de programmes HDL.

Ces dernières années, l’accélération matérielle des réseaux neuronaux profonds (DNN) est
devenue un domaine d’application populaire de la co-conception matériel-logiciel spécifique à
un domaine. Par conséquent, dans notre deuxième étude, nous examinons 321 projets open-
source liés à l’accélération matérielle pour les réseaux neuronaux profonds, afin de mieux
comprendre les pratiques et les défis du développement HDL dans les projets du monde
réel. Nous étudions les catégories de projets qui exploitent l’accélération matérielle pour les
DNN, la distribution des langages de programmation et les profils des développeurs de ces
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projets, ainsi que les objectifs de l’utilisation de l’accélération matérielle pour les DNN dans
ces projets.

Notre travail a mis en évidence les différences entre le développement de programmes HDL et
GPPL, et a permis d’identifier des possibilités d’amélioration pour le développement HDL.
Nous espérons que notre travail contribuera à sensibiliser la communauté du génie logiciel sur
la nécessité de soutenir le développement HDL, afin d’éviter que les composants HDL ne de-
viennent des goulots d’étranglement dans le développement de futurs systèmes informatiques
spécifiques à un domaine.
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ABSTRACT

Modern computer systems typically consist of two indispensable components: general-purpose
hardware (e.g., CPU) and highly-versatile software (e.g., web applications). In this context,
Turing award winners John Hennessy and David Patterson, in their recent Turing lecture,
declared that computer architectures are at the point of shifting from a general-purpose ap-
proach to a domain-specific hardware-software co-design approach. Developing such domain
specific architectures typically requires writing programs in Hardware Description Languages
(HDLs). This work makes an initial attempt to understand the practices and challenges of
developing HDL programs and explore opportunities for the Software Engineering commu-
nity to support the practices of HDL program development, by examining two sources of data
related to HDL program development: 1) technical forums where developers ask HDL-related
questions, and 2) open-source projects where developers write HDL code.

Developers usually ask and answer technical questions on technical forums such as Stack
Exchange forums. These questions may communicate challenges faced by developers when
developing HDL programs. Therefore, our first study identifies and analyzes over 16,000
HDL-related questions from two Stack Exchange forums: Stack Overflow (SO) and Elec-
trical Engineering (EE) Stack Exchange. We analyze these HDL-related questions using a
combination of qualitative analysis and automated topic modelling, in order to understand
the challenges faced by developers when developing HDL programs.

In recent years, hardware acceleration for Deep Neural Networks (DNNs) have become a
popular application area of domain-specific hardware-software co-design. Therefore, in our
second study, we examine 321 open-source projects that are related to hardware acceleration
for DNNs, to further understand the practices and challenges of HDL development in real-
world projects. We study the categories of projects that leverage hardware acceleration for
DNN, the distribution of programming languages and developer profiles of these projects, as
well as the purposes of using hardware acceleration for DNN in these projects.

Our work highlights the differences between developing HDL programs and general-purpose
programming language (GPPL) programs and identified opportunities for improving HDL
development. We expect our work to draw the software engineering community’s attention to
supporting HDL development and prevent HDLs from becoming the bottleneck in developing
future domain-specific computer systems.
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CHAPTER 1 INTRODUCTION

Modern computer systems typically consist of two indispensable components: general-purpose
hardware (e.g., CPU) and highly-versatile software (e.g., web applications). However, with
Moore’s law and the Dennard scaling ending, it has been increasingly difficult to increase
the number of transistors on a chip, which poses critical challenges to enhancing the com-
puting power of general-purpose architectures (e.g., RISC) [2–4]. In this context, Turing
award winners John Hennessy and David Patterson, in their recent Turing lecture, declared
that computer architectures are at the point of shifting from a general-purpose approach to
a domain-specific hardware-software co-design approach [2]. Domain-specific architectures
(e.g., Google’s TPU, Apple’s Neural Engine, or Microsoft’s FPGAs for deep neural networks)
are more closely tailored to the application domain and can provide new opportunities to im-
prove the performance of computer systems. Developing such domain-specific architectures
typically requires writing programs in Hardware Description Languages (HDLs) [3]. However,
there exists an imbalance between the support for HDL program development and that for
developing programs in traditional general-purpose programming languages (GPPLs) (e.g.,
C++, Java, Python) [2–4]. We believe that such an imbalance in GPPLs and HDLs will im-
pede future advances in computer systems, particularly in domain-specific applications. This
work makes an initial attempt to understand the practices and challenges of developing HDL
programs and explore opportunities for the Software Engineering community to support the
practices of HDL program development. This work is organized through two perspectives:
1) mining technical forums where developers ask HDL-related questions to understand the
challenges of developing HDL programs, and 2) mining open-source projects where develop-
ers write HDL code, in particular, projects that leverage hardware acceleration for DNN, to
understand the practices of writing HDL in real-world projects.

1.1 Studying the challenges of developing HDL programs by mining technical
forums

Hardware description languages (HDLs) are programming languages with particular capa-
bilities for describing the concurrent nature of digital logic and electronics. On the time and
space dimensions, HDLs represent the structure and behavior of hardware. VHDL [5] and
Verilog [6] [7] are the two most widely used HDLs in reality applications. They are now the
bridges every design needs to traverse to access synthesis and implementation technologies,
independent of whatever HDL was used to generate it. Any HDL-capable programming lan-
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guage may be isolated from lower-level stages and tools by producing Verilog or VHDL code
from its synthesizable subset. Hardware designers are always searching for innovative ways
to save design time and expenses [3]. The fact that the hardware ecosystem is a monoculture
of a few chip designs from a few manufacturers limits design productivity. An ecosystem
of readily available intellectual property blocks that may be combined to generate new chip
designs is critical for the hardware industry. Improvements in HDLs will help this transition.
Modern high-level programming languages include several features that support modularity
and abstraction. A type system, for example, may restrict data at an interface [8]. How-
ever, most hardware description languages (HDLs) only offer a few of these features. We
use the term wires to describe the module’s interface, which may be further refined to in-
put or output. Hundreds of designs revealed that these interfaces have complex needs, not
only in terms of data use and processing but also in terms of compositions that contribute
to well-defined digital designs [8]. These languages lack strong abstraction capabilities seen
in contemporary software languages, reducing designer productivity by making component
reuse difficult. This new development paradigm raises concerns about how hardware devel-
opers should build and treat HDL implementations. This work makes an initial attempt to
understand the challenges of developing HDL programs and explore opportunities for the SE
community to support the practices of HDL program development. Developers usually ask
and answer technical questions on technical forums such as Stack Exchange forums1. These
questions may communicate challenges faced by developers when developing HDL programs.
Therefore, this work identifies and analyzes over 16, 000 HDL-related questions from two
Stack Exchange forums: Stack Overflow (SO) and Electrical Engineering (EE) Stack Ex-
change. We analyze these HDL-related questions using qualitative analysis and automated
topic modeling to understand developers’ challenges when developing HDL programs. Our
study is organized by answering the following three research questions (RQs):

RQ 1.1: What types of questions do developers ask about HDL?

We manually examined a statistically significant representative sample of HDL-related ques-
tions posted in the SO and EE forums to understand the types of information sought by
developers about HDL program development. We discovered ten types of questions by ex-
panding on a prior classification [1]. Our findings indicate the need for more resources and
tools to aid developers in understanding, verifying and diagnosing issues in HDL programs.

RQ 1.2: What are the topics in the HDL-related questions?

We use topic models to derive the semantic topics included in developers’ questions to under-
1https://stackexchange.com
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stand developers’ challenges in developing HDL programs. We observe that HDL program
development shares most of the challenges (e.g., syntax errors and file I/O) of GPPL program
development. However, some challenges (e.g., lower level operations such as bit operations
and register operations, or synchronization through clocked processes) are only notable for
HDLs.

RQ 1.3: What questions are difficult for developers to get answers?

We estimate the difficulty level of HDL-related questions by determining whether and how
fast a question receives an accepted answer. We observe that HDL-related questions are less
likely and take longer than questions related to GPPLs to get accepted answers. Besides,
the most difficult topics (e.g., file/memory IO, data transfer, state machines, syntax errors,
and testing and simulation) are consistent across different languages.

1.2 Studying the practices of developing HDL programs by mining open-source
projects that leverage hardware acceleration for DNN

Deep Neural Networks (DNNs), also known as Deep Learning, are a subset of AI, which,
according to John McCarthy, the computer scientist who invented the phrase in the 1950s, is
“the science and engineering of constructing intelligent computers that can achieve goals as
people do”. DNNs are the cutting-edge solutions for various applications, including computer
vision, speech recognition, and natural language processing, among others. Artificial Neural
Networks (ANNs) are a mathematical architecture that connects a vast number of essential
elements known as neurons, each of which can make simple mathematical decisions [9]. An
external neural network has only three layers: the input layer, one hidden layer, and the
output layer. As the number of hidden layers in a neural network grows, it becomes a Deep
Neural Network (DNN). As a result, Deep Learning can be thought of as a subset of Artificial
Neural Networks with many processing layers. They are more precise and continue to improve
as more neuron layers are added. Feed-Forward Neural Network, Recurrent Neural Network
(RNN), and Convolutional Neural Network (CNN) are three popular Deep Neural Network
models [9].

However, DNNs’ increased accuracy comes at the cost of significant computational complex-
ity. While general-purpose compute engines, particularly graphics processing units (GPUs),
have been the basis for much DNN processing, there is growing interest in more specialized
DNN acceleration. Over the last two decades, many DNN models have been built. A DNN
model is typically very complex and takes long time and expensive resources to perform train-
ing and inferences. Thus, researchers and practitioners have proposed various approaches to
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make DNN model training and inferences more efficient. These approaches typically fall
into two categories: 1) model optimization (the software way) and 2) hardware acceleration
(the hardware way). There has been recent evidence from the field of deep learning that
FPGAs (Field-Programmable Gate Arrays) are an important factor in the acceleration of
DNNs (Deep Neural Networks).An HDL (Hardware Description Language) vendor tool is
used to synthesize DNN from a high-level language such as python after manual transfor-
mation. HDL expertise is required for this transition, which limits the use of FPGAs [10].
In data centers, FPGAs are now widely used to offload GPU- and CPU-based inference en-
gines. Starting with targeted FPGAs, model development and optimization frameworks, and
an ecosystem of supported libraries, we are still in the early stages of defining, expanding,
and deploying such capabilities. Over the next five years, FPGA capabilities are expected
to rapidly improve, allowing them to tackle a wide range of real-world applications [9]. In
this thesis, we investigate hardware acceleration for DNN projects to answering the following
research questions (RQs):

RQ 2.1: What are the categories of the projects that leverage hardware acceler-
ation for DNN?
To determine the type of models used in the projects, we manually examined 321 projects
linked to hardware acceleration for DNN on GitHub. We also look at the kind of tasks that
may be aided by employing hardware acceleration.

RQ 2.2: What are the distributions of programming languages and developer
profiles in the projects leveraging hardware acceleration for DNN?
We extracted the programming languages used in the DNN hardware acceleration projects
and determine the portions of code corresponding to HDL and GPPL languages. In addition,
we collected and analyzed information about developers’ activities to identify their area of
expertise.

RQ 2.3: What are the purposes of using hardware acceleration in the projects
leveraging hardware acceleration for DNN?
The description of 321 DNN hardware acceleration projects were manually inspected in order
to identify the purpose of using hardware acceleration in these projects.

1.3 Contributions of the Thesis

In summary, this thesis makes the following contributions:
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• We observe that developing HDL programs face similar challenges as GPPL and iden-
tified challenges specific to HDLs (e.g., lower level operations such as bit and register
operations or synchronization through clocked processes).

• We also observe that it is more challenging for developers of HDL programs to receive
community support than GPPL (i.e., HDL-related questions are less likely and take
longer to get accepted answers), which calls for efforts to enhance developer engagement
or platform support in answering questions in technical forums (e.g., SO).

• Our work identified opportunities for the research community to improve the practices
of developing HDL programs, such as to improve the language abstraction for handling
bit/register operations or file/memory I/Os, provide actionable information to address
syntax errors, and–or to develop tools to improve testing and simulation.

• We investigate an application domain of hardware-software co-design: DNN hardware
acceleration, and the practices of real-world open source projects in this domain. Our
results provide insights for practitioners and researchers to understand the practices of
DNN acceleration as well as the practices and challenges of hardware-software co-design
in this context.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 introduces the concepts
and background that help to understand our research work related to hardware description
languages and DNN hardware acceleration. Chapter 3 examines the challenges of developing
Hardware Description Language Programs. Chapter 4 examines DNN hardware acceleration
practices in GitHub projects. Finally, Chapter 5 summarizes and concludes the thesis, and
discusses future work.
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW

2.1 Background

We first introduce some background related to our work, including the background on hard-
ware description languages and hardware acceleration for DNN.

2.1.1 Background on Hardware Description Languages (HDL)

Hardware Description Languages (HDLs) are programming languages used to describe the
structures and behaviors of digital logic circuits, which are the essential components of mod-
ern computer systems [11]. As illustrated in Figure 2.1, there are two types of digital logic
circuits: combinational logic circuits and sequential logic circuits. The inputs fully determine
the outputs of a combinational logic circuit. Examples of the combinational logic includes the
basic and, or, and xor gates and calculators for which outputs only depends on the inputs.
The outputs of a sequential logic circuit are determined by both the inputs and a previous
state. Examples of sequential logic include flip-flops and register circuits. A sequential logic
circuit needs a mechanism to control the timing of updating the state, either synchronously or
asynchronously; thus, sequential logic is further divided into synchronous and asynchronous
logic. The synchronous logic synchronizes the state changes by using a clock signal, while
the state changes in the asynchronous logic can occur in response to changes in the inputs.

HDLs typically support both combinational logic and sequential logic [3]. Thus, the most
significant difference between HDLs and GPPLs is the explicit inclusion of the notion of time
in HDLs [11]. The most popular HDLs include Verilog [12], VHDL [13], and SystemVer-

Combinational 
Logic

Inputs Outputs

State

Combinational 
LogicInputs OutputsCombinational 

logic circuit

Sequential 
logic circuit

Figure 2.1 Illustration of combinational logic circuits and sequential logic circuits
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ilog [14]. Verilog is the dominant HDL adopted by practitioners [3]. Verilog can describe,
verify, and simulate digital logic circuits its structure is inspired by C. It possesses most of
the same features as C, including a preprocessor, control flow, and operators. SystemVerilog
is an enhanced version of Verilog that extends Verilog by adding a rich and robust type
system, especially for user-defined systems, while still keeping weak typing for the built-in
Verilog types [15]. System-Verilog also extends Verilog by providing capabilities for interface
abstraction and packaging [15]. VHDL is another popular HDL, providing similar function-
alities as Verilog. However, VHDL is derived from the Ada programming language, and it is
firmly and richly typed. VHDL is usually more verbose than Verilog [15].

2.1.2 Background on Hardware Acceleration for DNN

Deep Neural Networks (DNN) have recently proved to be one of the most powerful machine
learning methods. DNNs owe their efficacy to their ability to learn complex models. Thus,
researchers and practitioners have proposed various approaches to make DNN model training
and inferences more efficient. There are two main approaches to improving DNN methods.
The model optimization methods are used in the first approach, which focuses on software
solutions. The Tensorflow Model Optimization Toolkit [16] is one of the tools in software-
based approaches with a concentration on aspects like post-training quantization, weight
clustering, quantization aware training, etc. [16]. The second approach, which we will focus on
in this study, is hardware-based methods concentrating on hardware acceleration. Hardwares
(including FPGA) are typically designed/programmed by hardware description languages
(HDLs) such as Verilog. A multi-language system that provides a framework for developing
solutions to these intellectual problems is presented by the authors of [2,3] in their discussion
of the challenges that researchers interested in hardware description language, compilers, and
formal methods face. They identify opportunities to apply programming language techniques
to address productivity issues in hardware design. One of the best-known solutions in this
category is Microsoft Azure FPGAs [17]. With Microsoft Azure FPGAs, developers will be
able to deploy machine learning models to field-programmable gate arrays (FPGAs).

2.2 Literature Review

In this section we review the related literature on domain-specific architectures, HDL devel-
opment, technical forum analysis, and hardware acceleration for DNN.
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2.2.1 Domain-Specific Architectures

With Moore’s law and the Dennard scaling ending, general-purpose architectures (e.g., RISC
CPU) are becoming insufficient to handle our growing needs for high-performance comput-
ing [2–4]. According to Turing award winners John Hennessy and David Patterson, computer
architectures are at the point of shifting from a general-purpose approach to a domain-specific
hardware/software co-design approach [2]. Domain specific architectures (e.g., Google’s TPU,
Apple’s Neural Engine, or Microsoft’s FPGAs for deep neural networks), trading off speci-
ficity for flexibility, are more closely tailored to the application and thus can achieve (order(s)
of magnitude) higher efficiency [18,19]. For example, prior work has proposed domain-specific
architectures to accelerate the training and inference of deep neural network models [20–24].
In addition, domain-specific architectures have found applications in a wide range of other
emerging domains that require intensive and efficient computations, such as security [25],
image processing [26, 27], simulation [28], bioinformatics [29], and big data [30]. Developing
such domain specific architectures typically requires writing programs in HDLs which are
then compiled into specifications of hardware units (e.g., transistors) and their interconnec-
tions [3]. The increasing demand and applications of domain-specific architectures
motivate us to study the challenges and opportunities in HDL program develop-
ment.

2.2.2 HDL Development

Prior work improves the practices of HDL development from two aspects: 1) HDL design and
2) HDL compilers and transpilers. The first line of work aims to improve the design of HDL.
In particular, recent studies have explored the opportunities of leveraging the advances in
GPPLs (e.g., meta-programming) to improve HDL [7, 31–38]. For example, Chisel [31] and
Magma [32] are HDLs based on the GPPLs Scala and Python, respectively, by embedding
hardware units in these GPPLs through meta-programming. The HDL SystemC [39] is
derived from C++ by providing a set of classes and macros for system-level design, modeling,
and verification. ASystemC [37] extends SystemC by adding the features of Aspect Oriented
Programming (AOP). Truong and Hanrahan [3] propose a vision for future HDLs that is
based on a meta-programming language, an embedded HDL, and a variety of domain-specific
languages.

Another line of work targets HDL compilers [40–45] and transpilers [36, 46–48]. To improve
the development of compilers, prior studies have developed common infrastructures (e.g.,
intermediate representations, or IR) for HDL compilers [40, 41, 43–45]. Prior studies have
also developed approaches to transform GPPLs to HDLs or vice-versa (i.e., transpilers).
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For example, Quokka [47] is a transpiler that can transform C# to HDLs. In contrast,
Verilator [46] can transforms Verilog and SystemVerilog to C++. Despite these efforts in
HDL language development, prior work did not investigate the practical issues
faced by HDL developers. Therefore, this work examines the questions and
answers in technical forums such as SO to understand developers’ challenges
when developing HDL programs.

2.2.3 Technical Forum Analysis

Extensive studies have been performed to study posts in technical forums, in particular, the
Stack Exchange forums [49]. Here we focus on the studies that are most relevant to our work:
1) studies that analyze the categories of questions and 2) studies that analyze the topics of
questions.

Categorization of technical forums questions.

Prior studies have investigated the categories of technical forum questions [1, 50–54].

For example, Rosen and Shihab [51] manually studied a random sample of 384 SO questions
related to mobile development and derived four categories of questions: why, how, what, and
other. Beyer et al. [1] surveyed these studies [50–54] and summarized a categorization of SO
questions, including seven categories of questions: API usage, discrepancy, errors, review,
conceptual, and API change. In this work, we study the categories of HDL-related questions
on two Stack Exchange forums, and we base on the categorization of the work of Beyer et
al. [1].

Topic analysis of technical forum posts.

Topic models are used extensively in prior work to understand the topics of general technical
forum posts and the topic trends [55], [56], [50]. Prior work also leverages topic models to
understand the topics of technical forum posts related to specific application development
domains, such as mobile application development [51,57], client application development [58],
concurrent programming [59], security-related development [60], big data development [61],
Swift programming [62], IoT development [63], and deep learning development [64]. In ad-
dition, prior work leverages topic models to understand non-functional requirements com-
municated in technical forum posts [65, 66]. Zhang et al. [67] use topic models to detect
duplicate questions in technical forums. Finally, Treude et al. [68] proposes an automated
approach to suggest configurations of topic models for analyzing technical forum data. Most
of these studies use the Latent Dirichlet Allocation (LDA) algorithm or its variants to extract
topics from the text of the technical forum posts. In this work, we also leverage the LDA
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algorithm to extract topics from technical forum posts related to HDLs. The increasing
demand for domain-specific architectures calls for our emphasis on HDL program
development. However, no work exists that studies the practical issues faced by
HDL developers. Therefore, this work makes an initial effort to study the chal-
lenges of HDL program development and identify opportunities to address these
challenges.

2.2.4 Hardware acceleration for DNN

Hardware acceleration refers to the technique of moving a complex computing operation from
the CPU to specialized hardware in order to achieve greater efficiency than would be possi-
ble with a traditional software implementation of the same task. Better models and a larger
dataset are needed to get real-time results that are as precise as possible. Taking time to
make a decision is also vital. Deep Learning models become increasingly complicated as they
evolve. A large number of procedures and parameters, as well as increased computational
resources, are required as a result of this expansion. GPUs, ASICs, and FPGAs are examples
of hardware accelerators [9]. The Versatile Tensor Accelerator (VTA) is a deep learning accel-
erator that is open, generic, and adaptable, according to the authors of [69]. Brandon Reagen
et al. [70] have introduced Minerva, a highly automated co-design technique to improve DNN
hardware accelerators across the algorithm, architecture, and circuit levels. Authors of [71]
have provided a comprehensive comparison of model compression methods and hardware
acceleration methods. They describe various hardware platforms used for DNNs and explain
different optimizations applied to improve throughput.

To speed up the simulation of ResNet networks using approximate multipliers, Filip Vaverka
et al. [72] developed a Tensor Flow extension TFApprox. Vojtech et al. [73] demonstrate
how a large number of approximate multipliers can be applied to do a resilience study of
a ResNet DNN hardware accelerator and to choose the best approximate multiplier for a
specific application. According to Charles Mackin and colleagues [74], a methodology for
selecting the best hardware circumstances under which to program weights, and its usefulness
in the face of substantial NVM variability, is examined via simulations. For wearable devices,
Johnson Loh et al. [75] designed a DSP (digital signal processing) accelerator for ECG data
categorization. An infrastructure for analyzing and exploring the architectural design space
of deep neural network (DNN) accelerators has been developed by Angshuman Parashar et
al [76]. A research by Siva Kumar Sastry Hari et al. [77] examines the propagation of soft
mistakes in DNN systems and proposes two effective protective measures to reduce their
influence and increase dependability. Using a cycle-accurate simulator called SCALE-SIM,
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Ananda Samajdar et al. [78] provide an analytical methodology for determining the best
scale-up vs. scale-out ratio for DNN inference given hardware restrictions. Maria I. Mera
Collantes et al. [79] proposed a Safe-TPU implementation with high parallelism and reuse
of current resources already deployed in the baseline DNN accelerator, as well as additional
protocol innovations that considerably decrease the space and time necessary to construct
proofs.

FPGA-based accelerators are more popular than GPU and ASIC-based accelerators due
to their high performance, customizable and flexible design, high throughput with large
parallelism, faster data transfer, and high speed of a DNN implemented on them [9]. Storage,
computational resources, and memory bandwidth are all concerns that must be addressed
when DNNs are implemented on FPGAs. The accuracy, latency, throughput, and portability
of the implementation are all used to evaluate the mapping of DNNs into FPGAs [10]. Some
of the effort in this field is centered on developing automated tools for rapidly deploying DNNs
to FPGAs. X. Wei et al. [80] the design of a framework using systolic arrays to accelerate DNN
inference. To ensure diverse network setups, the framework adopts a uniform RTL design for
CONV layers and runs software in the host CPU [81]. However, the Fully-connected (FC)
layers are not implemented on FPGA. Other frameworks for autonomously mapping DNNs
onto FPGAs using RTL [82, 83] or RTL-HLS [84] templates have been proposed. Zhang et
al. [85] have developed DNNBuilder, a tool for automatically developing high-performance
DNN hardware accelerators on FPGAs to bridge the gap between quick DNN generation
in software (e.g., Caffe, TensorFlow) and sluggish hardware implementation. FPGA-based
accelerators are more cost-effective than GPU and ASIC-based accelerators. Noronha et al.
provide an open-source tool-flow for transferring DNN numerical computing models developed
in Tensorflow to FPGA [86]. V. Sze and A. Shawahna et al. [87, 88] provide tutorials and
surveys of hardware acceleration for DNN. There are also many open-source projects on
FPGA-based model acceleration [89].

Prior work proposed different approaches that use hardware acceleration to im-
prove DNN model performance. However, no prior work has studied how hard-
ware acceleration is used in real-world DNN projects. Thus, this work studies
open-source GitHub projects that uses hardware acceleration for DNN, to un-
derstand the practices and challenges of DNN hardware acceleration.
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CHAPTER 3 STUDYING THE CHALLENGES OF DEVELOPING
HARDWARE DESCRIPTION LANGUAGE

The content of this chapter is currently under review for publication in the Information and
Software Technology Journal1.

Context: As Moore’s law and the Dennard scaling ended, general-purpose architectures
(e.g., RISC CPU) are becoming insufficient to handle our growing needs for high-performance
computing. Domain specific architectures (e.g., Google’s TPU) are more closely tailored
for specific applications and thus can achieve better performance. Developing such domain
specific architectures typically requires writing programs in Hardware Description Languages
(HDLs). Compared to traditional general-purpose programming languages (GPPLs) (e.g.,
C++, Java, Python), developing programs in HDLs (e.g., VHDL or Verilog) lacks support
from our community. Such an imbalance in the support for GPPLs and HDLs will impede
future advances in computer systems.

Objective: We believe that our software engineering community should pay more attention
to supporting HDL development. Thus, we make an initial attempt in this direction to study
the challenges of developing programs in HDLs by mining HDL-related questions in technical
forums.

Method: We identified 16,700 HDL-related questions in two Stack Exchange forums: Stack
Overflow (SO) and Electrical Engineering (EE) Stack Exchange. We examined the types of
questions, the questions’ topics, and identify the most challenging topics for developers.

Results: We identified ten types of HDL-related questions, including seven types identified
in prior work and three new types more relevant to HDLs (e.g., questions related to code
explanation and tool search). We also observed that most of the challenges facing HDL
developers are similar to those facing GPPL developers, while some challenges (e.g., lower-
level operations such as bit and register operations) are more specific to HDLs. Finally, we
observed that HDL-related questions are less likely and take a longer time to get accepted
answers than GPPL-related questions, and identified the most challenging topics of questions
(e.g., file/memory I/O).

Conclusion: Our work identified opportunities for the research community to improve the
practices of developing HDL programs, such as to improve the language abstraction of han-
dling bit/register operations or file/memory I/Os, to provide actionable information to ad-

1Fatemeh Yousefifeshki, Heng Li, Foutse Khomh, Studying the Challenges of Developing Hardware De-
scription Language Programs, Information and Software Technology, 2022 (under review).
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dress syntax errors, or to develop tools to improve testing and simulation. We hope that our
work can draw the software engineering community’s attention to HDLs and prevent HDLs
from becoming the bottleneck in developing future computer systems.

3.1 Introduction

Modern computer systems typically consist of two indispensable components: general-purpose
hardware (e.g., CPU) and highly-versatile software (e.g., web applications). Software talks
to hardware through a concise vocabulary called an instruction set architecture (ISA) (e.g.,
the reduced instruction set computer or RISC) [2]. Compilers (e.g., GCC) convert programs
written in high-level programming languages (e.g., C++) into machine-readable programs
based on the ISA-defined vocabulary. Advances in ISA and compilers allow modern com-
puter systems to achieve highly-diverse functionalities through general-purpose hardware and
highly-customizable software applications.

However, with Moore’s law and the Dennard scaling ending, it has been increasingly difficult
to increase the number of transistors on a chip, which poses critical challenges to enhancing
the computing power of general-purpose architectures (e.g., RISC) [2–4]. In this context,
Turing award winners John Hennessy and David Patterson, in their recent Turing lecture,
declared that computer architectures are at the point of shifting from a general-purpose ap-
proach to a hardware/software co-design approach [2]. Domain specific architectures (e.g.,
Google’s TPU, Apple’s Neural Engine, or Microsoft’s FPGAs for deep neural networks) are
more closely tailored to the application domain and can provide new opportunities to im-
prove the performance of computer systems. Developing such domain specific architectures
typically requires writing programs in hardware description languages (HDLs) (e.g., VHDL,
Chisel, or Verilog), which are then compiled into specifications of hardware units (e.g., tran-
sistors) and their interconnections [3]. For example, Google uses Chisel to develop Edge TPU.
However, there exists an imbalance between the support for HDL program development and
that for developing programs in traditional GPPLs (e.g., C++, Java, Python) [2–4]. We be-
lieve that such an imbalance in GPPLs and HDLs will impede future advances of computer
systems, in particular, in domain-specific applications; thus, our SE community should pay
more attention to supporting HDL program development.

This work makes an initial attempt to understand the challenges of developing HDL programs
and explore opportunities for the SE community to support the practices of HDL program
development. Developers usually ask and answer technical questions on technical forums
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such as Stack Exchange forums2. These questions may communicate challenges faced by
developers when developing HDL programs. Therefore, this work identifies and analyzes over
16, 000 HDL-related questions from two Stack Exchange forums: Stack Overflow (SO) and
Electrical Engineering (EE) Stack Exchange. We analyze these HDL-related questions using
qualitative analysis and automated topic modeling to understand the challenges developers
face when developing HDL programs. Our study is organized by answering the following
three research questions (RQs):

RQ1: What types of questions do developers ask about HDL?

We manually examined 376 statistically significant representative samples of HDL-related
questions posted in the SO and EE forums to understand the types of information sought
by developers about HDL program development. Our findings indicate the need for more
resources and tools to aid developers in understanding, verifying and diagnosing issues in
HDL programs.

RQ2: What are the topics in the HDL-related questions?

We use topic models to derive the semantic themes included in developers’ questions to
understand developers’ challenges in developing HDL programs. We observe that HDL pro-
gram development shares most of the challenges (e.g., syntax issues) of GPPL program
development. However, some challenges (e.g., lower level operations such as bit and register
operations or synchronization through clocked processes) are only notable for HDLs.

RQ3:What questions are difficult for developers to get answers?

We estimate the difficulty level of HDL-related questions by determining whether and how
fast a question receives an accepted answer. We observe that HDL-related questions are less
likely and take longer than questions related to GPPLs to get accepted answers. Besides, the
most difficult topics (e.g., file/memory IO, data transfer, testing and simulation, and state
machines) are consistent across different languages.

Our work highlights the challenges of HDL program development (e.g., lower level operations
such as bit and register operations or synchronization through clocked processes). It identifies
opportunities for the research community to improve the practices of HDL program devel-
opment, such as to improve the language abstraction of handling file/memory I/Os, provide
actionable information to address syntax errors, or develop tools to improve testing and sim-
ulation. We hope to draw the SE community’s attention to the importance of HDL program
development which may become a bottleneck in developing domain-specific systems that are
critical in increasing computing power in the future. We encourage researchers and practi-

2https://stackexchange.com
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tioners in the SE community to leverage the advanced methodology, techniques, and tools
in traditional software development to improve the practices of HDL program development.
To encourage and help future research, we share our replication package3

Chapter organization. The rest of the chapter is organized as follows. In Section 3.2
we describe the experiment setup of our study. In Section 3.3, we present and discuss our
results for answering our research questions. In Section 3.4, we discuss the implications of
our findings. Section 3.5 discusses threats to the validity of our findings. Finally, Section 3.6
we have a summary of the study.

3.2 Experiment Setup

This study aims to understand the challenges faced by developers during HDL program
development. The perspective is that of researchers and practitioners interested in developing
methodologies, techniques, and tools to support the development of HDL programs.

3.2.1 Context of the Study

To understand the challenges of developing HDL programs, we study Stack Exchange forums
where developers ask and answer technical questions, including HDL-related questions. We
manually examined all the Stack Exchange forums4 to identify the ones that contain HDL-
related questions. Specifically, we first read the description of each forum to identify the
ones that may potentially contain HDL-related questions. Then, we searched HDL-related
keywords (e.g., “VHDL”, “Verilog”) in these forums to confirm whether they indeed contained
HDL-related questions. In the end, we found two Stack Exchange forums that contain HDL-
related questions:

• Stack Overflow (SO)5 is a technical Q&A forum for professional, enthusiast, and stu-
dent programmers .

• Electrical Engineering (EE) Stack Exchange6 is a technical Q&A forum for electronics
and electrical engineering professionals, students, and enthusiasts.

This work extracts and studies the HDL-related questions in these two Stack Exchange forums
to understand the challenges of developing HDL programs.

3Replication package: https://github.com/mahkamehy/Developing-HDL-program.
4https://stackexchange.com/sites
5https://stackoverflow.com
6https://electronics.stackexchange.com
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Figure 3.1 shows an overview of our data extraction and analysis process. We first download
the datasets of SO questions and answers using SOTorrent [90] and EE questions and answers
using Stack Exchange Data Explorer [91] (Step 1).

Then, we identify the tags related to HDL and the related questions and their answers (Steps
2 and 3). A random sample of the questions is used to study the categories of HDL-related
questions (RQ1). Then, we preprocess all the HDL-related questions and answers (Step 4)
and use topic modeling to extract topics from these questions and answers (Step5). We
analyze the topics to answer RQ2. Finally, we analyze the level of difficulty of the HDL
questions related to different topics (Step 6) and answer RQ3. Below, we describe each of
these steps in detail.

Downloading Stack Overflow 

Dataset (P0)

RQ1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 1

Identifying tags relevant to HDL

HDL Questions and Answers 

Identification and Extraction (P) 

Preprocessing the HDL Posts P

Modelling and Labeling HDL 

Topics

Determining the level of difficulty 

of HDL topics

RQ2

RQ3

Figure 3.1 An overview of our data extraction and analysis process.

3.2.2 Data extraction and analysis steps

The SO and EE forums are selected because they include HDL-related postings and are com-
monly used for studying different GPPL and HDL topics [92].
Step 1 - Downloading SO Datasets.
We used SOTorrent [90] to download a dataset of SO (P0) containing questions, their asso-
ciated answers, and the associated metadata. The dataset was downloaded in May 2021.

Downloading EE datasets. We used Stack Exchange Data Explorer [91] to collect data
(P0) containing questions, answers, and metadata from the EE forum. The dataset includes
questions and answers that were posted until December 2021. In both forums (SO and EE),
for each question in the dataset, we obtain the question id, the title, the tag names, the
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question body, the creation time of the question, the view counts, the scores, the accepted
answer body (if any), and the creation time of the accepted answer (if any). Each question
can have up to five tags. An answer to a question is accepted, provided that the question’s
creator voted it as accepted.

Step 2 - Identifying SO and EE tags relevant to HDLs.
To identify and extract HDL-related questions on both SO and EE, we need to identify a set
of SO and EE tags related to HDLs. We follow the process used in prior work [93] to identify
the set of HDL-related tags for both SO and EE forums. While we follow the same process
to identify the HDL-related tags in the SO and EE forums, the tags of these two forums are
identified separately. The initial HDL tag set Ti was derived from the most popular HDLs
described in the background, i.e., tags “vhdl” , “verilog”, and “syetem-verilog”. Then, the
three tags in Ti were used to extract from each forum’s dataset P0 the set of questions Q
associated with these tags. In the next step, we extract all the tags in the question set Q
to form a more extensive set of tags Tj. It should be noted that not all the tags in Tj are
related to HDLs. Thus, we follow prior work [93] and use some heuristics to filter the tags
in Tj based on their relationships with the initial tag set Ti. For each tag t in Tj, we use the
significance and relevance scores defined below to determine if it is a HDL-related tag:

(Significance)S(t) = # of questions with tag t in Q
# of questions with tag t in P0

(3.1)

(Relevance)R(t) = # of questions with tag t in Q
# of questions in Q (3.2)

For a tag t to be selected, the value for significance (S(t)) and relevance (R(t)) should
be higher than a threshold. Based on prior work [93] and our experiments using different
thresholds, we finally set the optimal threshold for S and R as 0.2 and 0.005 respectively.
We further performed a manual inspection of the description and the top voted questions of
each of the selected tags and identified those that are genuinely associated with HDLs: we
only keep a tag in our final set if it is associated with one HDL programming
language (e.g., “vhdl”).

Finally, our tag set Tfinal for SO includes the tags: “vhdl,” “verilog,” “system-
Verilog,” “systemc,” “chisel,” “lava,” “hdl,” “vpi,” “system-verilog-dpi,” “system-
verilog-assertions”. Our final tag set Tfinal for the EE forum includes the tags:
“vhdl,” “verilog,” “system-verilog,” and “hdl”.

Step 3 - HDL Questions and Answers Identification and Extraction.
We used the tag set Tfinal identified in Step 2 to extract the HDL-related questions from
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the SO and EE datasets P0. In the end, we extracted 13,300 and 3,400 questions and their
corresponding answers from the SO and EE forums, respectively, as our final data set P . A
statistically representative 376 sample of these questions is manually examined to identify
type of questions to answer our RQ1.

Step 4 - Preprocessing the HDL Posts.
In this step, the final post set P was preprocessed for topic modeling (Step 5). The process
began by joining the title of each question and the question and answers’ body text to
generate one coherent final body. An issue with the extracted post texts was that they
contained HTML tags (such as tags representing a paragraph, URL, etc.) and code snippets.
Therefore, HTML tags like < p >< /p > and < a >< /a > and code snippets created by
< code >< /code > were removed from the post text. A further step was taken to remove
stop words such as numbers, articles (“a,” “an,” and “the”), different forms of “be” (“is,”
“are,” “been,” etc.), punctuation marks, as well as symbols and non-alphabetical characters,
as recognized by the MALLET’s stop words list. As the final step of the process, the Porter
stemmer [94] was used to clip words to their stemmed representation. We used stemmer
insted of lemmatization because it can use on a large scale to improve search results. By
searching not only the search phrase alone but also the word stems in the index, different
word forms can be overcome and the search can also be greatly accelerated. For instance, a
word like “developer” was reduced to “develop,” and words like “configuration,” “configure,”
and “configured” were all cut short to “configr.”
Step 5 – Modelling and Labeling HDL Topics.
In this step, we extracted the HDL topics from the preprocessed questions and answers from
the previous step (Step 4). We use the Latent Dirichlet Allocation (LDA) [95] algorithm
implemented by the MALLET [96] toolkit7. LDA is a probabilistic topic modeling technique
that models a topic based on a set of words co-occurring frequently. To enhance the quality
of topic modeling results, both uni-grams and bi-grams were considered as words in our topic
modeling process [97].

Three main hyper-parameters are typically configured to control the topic modeling results,
including K, α, and β, where K controls the number of topics, α controls the topic distribu-
tion in the documents (i.e., SO posts in our context), and β controls the word distribution
in the topics. Our used MALLET LDA implementation can automatically search for the op-
timal α and β values. We experiment with different K values (from 5 to 40 incremented by
one each time) to find the best K according to a coherence score which estimates the quality
of a topic by measuring the semantic similarity between the top words in the topic [98]. We

7Specifically, we used the Gensim wrapper of MALLET: gensim.models.wrappers.LdaMallet
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use the resulting topics with the highest average coherence score as our final topics. After the
automated topic modeling process generated the topics, we manually examined the resulting
topics to derive a meaningful label for each topic. To assign a meaningful label to a topic,
one author of this study first derived a label according to (1) the topic’s top 20 keywords and
(2) the top 10-15 most relevant questions associated with the topic. Then, the three authors
of the study reviewed the labels together in a meeting and reassigned the labels when needed.
The resulting topics from this step are analyzed to answer our RQ2.

Step 6 - Determining the level of difficulty of HDL topics
In this step, to understand how challenging and demanding the topics may be to developers,
the difficulty level of each topic was estimated by two widely used heuristics [51, 52, 60, 61]:
the percentages of questions of the topic receiving an accepted answer and the time taken
for these questions to receive an accepted answer. Intuitively, a more complicated topic is
when the related questions receive fewer accepted answers after a long waiting time. The
estimated difficulty level of the topics is used to answer our RQ3.

3.3 Experiment Results

In this section, we report and discuss the results of our three research questions. We first
present the motivation and approach for each research question, then discuss the results for
answering the research question.

RQ1: What types of questions do developers ask about HDLs?

Motivation

As part of our effort to better understand developers’ challenges, we should first discover the
types of questions they are asking. This is important because it allows us to identify the
types of help HDL developers seek (i.e., the areas where developers need more assistance).

In particular, we focus on the intent behind the questions asked by developers instead of the
topics of the questions, similar to prior work [1].

Approach

To understand the type of HDL-related questions developers ask in the studied technical
forums, we first calculate the distribution of the programming languages involved in the
questions, then manually analyze a statistically representative sample of the questions to
understand the developers’ intent behind these questions.
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Calculating the distribution of HDL programming languages in the questions.
Each of the 16,700 HDL-related questions that we identified (i.e., Step 3 in Section 3.2) is
associated with several tags, including at least one HDL programming language tag8 (e.g.,
“vhdl”). To understand the distribution of programming languages in the HDL-related ques-
tions, we count the number of questions associated with the corresponding tag for each lan-
guage. Please note that one question may be associated with more than one programming
language tag.

Sampling of questions for manual analysis. To further understand the categories of
developers’ questions, we perform a manual analysis on a statistically representative sample
of the HDL-related questions. Specifically, we randomly sample 376 questions from the
two forums using a stratified sampling approach. This sample represents a 95.0% level of
confidence within a 5.0% confidence interval.

Hybrid card sorting process. We adopted a hybrid card sorting process [99] to derive
the categories of HDL-related questions manually. This manual analysis was based on the
question categories derived in an earlier study [1]. One label was assigned to each question,
and if a question is related to more than one label, which is rarely the case, the most relevant
one was selected. In a joint effort, the three authors performed hybrid card sorting. The
sample data were randomly divided into three equal groups of questions, and the card sorting
process was done in two independent rounds, which was similar to an earlier work [100]. This
method of card sorting ensures that at least two authors examine all questions.

In the first round, each author independently examined and assigned labels to one-third of
the questions (i.e., one of the random groups). After that, we had discussions to ensure that
all authors do a consistent labeling method. We reached a set of agreed-upon labels during
these discussions. We then revisited our labels based on our consistent understanding and
the agreed-upon labels.

In the second round, each author labeled another one-third of the questions, which were
labeled by the other two authors in the first round. To avoid bias, each half of the one-third
questions (i.e., one-sixth of the total questions) was randomly drawn from another author’s
previously labeled questions in the first round. We made sure that each question was labeled
by two authors in the two rounds combined. We based our labeling on the results from the
first round, but the authors were free to assign new labels in this round. After the individ-
ual labeling, the second round of discussions was held to analyze the second-round labeling
results and verify the assigned labels’ consistency. To finalize the process of labeling the

8As described in Section 3.2, we only kept the tags that are associated with HDL programming languages
in our final tag set.
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questions, each author revisited its labels according to the second-round discussions. Finally,
we arranged another meeting to resolve the disagreement on the labeling results and decided
on the final agreed-upon label for each question.

Results
Developers’ questions are dominantly related to VHDL, Verilog, and System
Verilog. Table 4.4 shows the distribution of questions related to each hardware description
language. In the two studied forums, VHDL is associated with most of the questions (i.e.,
42.2%), followed closely by Verilog, which is associated with 40.5% of questions, and System
Verilog, which is associated with 16.7% of questions. Questions associated with at least one
of these top three languages account for 93.0% of all the questions; questions associated with
at least one of the top five languages account for 98.0% of all the HDL-related questions.
There is a minimal number of questions associated with some less-popular languages, such
as VPI and Lava, which are associated with only 15 (0.1%) and 11 (0.1%).

Table 3.1 The distributions of programming languages (tags) involved in the HDL-related
questions.

Language VHDL Verilog SystemVerilog HDL Chisel SystemC SystemVerilog
Assertions

SystemVerilog
DPI VPI Lava Total

SO Questions 5,544
(41.6%)

5,346
(40.1%)

2,651
(19.9%)

819
(6.1%)

565
(4.2 %)

265
(1.9%)

158
(1.1%)

49
(0.3%)

15
(0.1%)

11
(0.1%)

13,300
(100%)

EE Questions 1,701
(43.9%)

1,616
(41.7%)

310
(8.0%)

240
(6.2%) - - - - - - 3,867

(100%)

Total Questions 7,245
(42.2%)

6,962
(40.5%)

2,871
(16.7%)

1,059
(6.1%)

565
(3.2%)

265
(1.5%)

158
(0.9%)

49
(0.2%)

15
(0.1%)

11
(0.1%)

17,167
(100%)

Note: Each question may be associated with more than one programming lang-
uage tag.

Developers ask similar types of HDL-related questions as the questions related
to GPPLs (e.g., Java). Table 3.2 describes the type of questions asked about HDLs on
the SO and EE forums and their frequency. All seven types of questions identified in prior
work [1] were also identified in HDL-related questions, indicating that developers ask similar
types of questions across HDLs and GPPLs.

Compared to questions related to GPPLs, developers of HDLs ask more questions
related to error and reviews, and fewer questions related to API usage and API
change. In the 376 manual examined questions, the error category is the most frequently
occurring category, accounting for 28.9% of all occurrences. Developers in HDL- related posts
have more challenges related to code errors and compiler errors. Generally, questions in this
category are associated with “why,” e.g.,
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Table 3.2 A taxonomy of question categories which bases on and extends [1].

Category Description % in
SO

% in
EE

% in
Both

Error

When creating or running HLD
programs, this category of
questions looks for explanations
for “why” and answers to
errors and exceptions.

30.6 22.3 28.9

API usage

This kind of question is typically
characterised by the phrase “how to”,
such as “how to utilize an API” or
“how to implement a function”.

19.6 13.1 18.3

Discrepancy

Typically, questions in this category
seek explanations or answers for
unanticipated outcomes (e.g., “what is
the issue”, “why does it not work”).

17.0 17.1 17.0

Review

How/Why is this working? is an
example of a question in this area.
“Is there a better way?” In general,
these inquiries seek a better solution
to an issue or assistance in evaluating
the existing solution.

17.0 5.2 14.6

Conceptual
The background and fundamental
concept of an API are the subject
of questions in this area.

10.0 27.6 13.5

Learning

This category includes questions
about finding learning materials
such as documentation, research
papers, tutorials, and websites.

1.6 3.9 2.1

Tool search∗

“I’m searching for...”, “Is there a tool
for...”, or “Can the tool do...” are
examples of questions in this area.
These questions look for tools to
address a particular issue or to
evaluate a tool’s capabilities.

1.3 3.9 1.8

Code explanation∗
This category contains questions relating
to describing or defining code snippets
by the phrase “can someone explain” .

1.0 3.9 1.5

How to test∗
This category includes questions about
problem related to simulation test by
the phrase “how to test”

1.3 1.3 1.3

API change

This category of questions is
concerned with API changes
and the resulting compatibility
problems and other consequences.

0.3 1.3 0.5

New HDL question categories discovered∗.



23

Any ideas why it would just crash? I get no indication from the program
console

API usage is the second most common category, accounting for 18.3% of all instances. The
majority of inquiries in this category are identified by “how to,” e.g.,

I would like to write a task which leverages the Zynq Verification IP (and
associated API) inside it. I can’t figure out how I would implement this in
my testbench? I am new to SV, and am guessing that I need to pass the zynq
processing system object as an argument so I can access it’s API inside my
super-task.

The third and fourth most common categories are discrepancy and review. They account for
17.0% and 14.6% of all occurrences, respectively. Questions of the Review category usually
show a code snippet and ask for suggestions or better solutions.

Questions of the Discrepancy category usually describe an unexpected result and ask for
help. The following are examples of questions of the discrepancy and review categories,
respectively:

This is LSFR of 10 bits. I instentiated LSFR module in verilog. You can see
in the given code below. The output of LSFR is Current State. I want to access
each of its individual bits. But here i am getting 0 for Current State. It is not
updating. Please any one can help me.

I am stuck in converting my 4 bit std vector to 5 bit. I am supposed to do logic
operations and arithmetic operations with 4 bit inputs. (4 bit ALU) However,
for arithmetic operations, I might have a carry out bit and I don’t know how
to keep it. Here is my code, I tried to define a temp 5-bit vector and make
temp(4) to carry out. How can I seperate temp(4) and temp(3 downto 0) in
4-to-1 multiplexer?
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Developers of HDL ask three new types of questions, including code explanation,
how to test, and tool search.

Phrases such as “can someone explain,” “how to test,” and “is there any tool” are frequently
associated with these types of questions. The following is an example of a question in the
code explanation category.

I just want to know the difference between this two statement. Is there a
difference between both.

The tool search category includes questions about finding tools, frameworks, or libraries that
can help developers solve an HDL-related issue, as well as questions about validating if a
tool, framework, or library can assist them in solving a problem, for instance,

Is there any tool out there like this? If it could even get me 90 percent of the
way I’d be happy.

This category denotes the absence of well-established tools to assist in the creation of HDL
programs. The category of how to test indicates the challenge of testing HDL programs, for
example,

I have been working to design a UART in vhdl How do I test it though? I have
tested the transmitter using TeraTerm. Is it possible to send data using Tera
Term as well? If yes, could you tell me how?

Differences between the types of questions in SO and EE. One of the most sig-
nificant differences between the questions of SO and EE is the popularity of the conceptual
questions. The conceptual questions are the most popular category in the EE forum (with
27.6% questions in this category), while it is the fifth popular category in the SO forum
(with 10.0% questions in this category). Another big difference between the two forums is
the popularity of the review questions. While review is the third popular category in the SO
forum (with 17.0% questions), it is the fifth popular category in the EE forum (within only
5.2% questions).

Our observations indicate that HDL developers tend to ask background and conceptual ques-
tions in the EE forum while asking for code reviews or recommendations in the SO forum.
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The nature of the two forums can explain these differences: SO is a technical forum for pro-
gramming languages, while EE is a technical forum for experts and learners in the electronics
and electrical engineering domain.

.
Developers’ HDL-related questions on the SO and EE forums are dominantly associated
with the languages VHDL, Verilog, and System Verilog. We found ten types of HDL-
related questions, among which error and review are more frequent compared to GPPLs,
and code explanation, how to test and tool search are new categories. Our results indicate
the need to improve the understanding (review and code explanation), verification (how to
test) and diagnosis (error) of HDL programs.

RQ2: What are the topics in the HDL-related questions?

Motivation

Developers ask and answer HDL-related questions on technical forums such as SO and EE.
These questions may represent developers’ challenges when learning or creating HDL pro-
grams. We use topic modeling to extract meaningful topics from these questions to under-
stand these challenges.

Approach

Extracting and labeling topics. We used the process described in Section 3.2 (Steps
4 and 5) to process the HDL posts, use the topic model (LDA) to extract the topics, and
manually label the topic modeling results.

Distribution of topics. Each question contains a distribution of all the resulting topics
(each topic is assigned a probability), typically with one or more dominant topics. We assign
a topic to a question if the topic has the highest probability in the question. We then calculate
the distribution of the topics by measuring the percentage of questions associated with each
topic.

Comparing HDL-related topics with GPPL topics. In order to understand the rela-
tionship between the topics of HDL-related questions and the topics of GPPL-related ques-
tions, we compare our resulting topics with the topics reported in the literature that study the
topics of programming-related questions in technical forums, including the topics of program-
ming languages in general [101], mobile programming [51], security-related development [60],
client development [58], concurrent programming [59], big data programming [61], Swift pro-
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Table 3.3 Topics extracted from HDL related posts on Stack Overflow.
Topic (manual label) Keywords Description % Freq Similar Topics

Design and

implementation

SO: design, implement, code, exampl,
synthe, find, vhdl, logic, differ, case
EE: design, logic, synthe, implement,
exampl, case, differ, thing, code, find

HDL program design
and development

SO: 14.5
EE: 12.0
both: 14.0

OO programming
[58, 62,101]

Testing and simulation

SO: simul, code, output, work, write,
test, problem, time, result, wrong
EE: simul, code, error, work, problem,
output, write, expect, vhdl, follow

Simulation of the system
and checking the results
of the test

SO: 11.8
EE: 20.6
both: 13.7

Testing [101]
iOS testing [62]
Unit testing [58]

Syntax errors
SO: error, code, follow, compil, vhdl,
syntax, give, find, expect, problem
EE: N/A

Finding errors which
occure during compilation

SO: 10.0
EE: N/A
both: 7.9

Compiling [101]
Build troubleshoot [63]

Process statements

SO: process, statement, time, simul,
event, block, case, signal, wait, variabl
EE: process, statement, time, simul,
signal, vhdl, block, code, clock, exampl

time and statement of the
simulation process

SO: 7.1
EE: 7.4
both: 7.2

N/A

Bit operations

SO: bit, number, result, input, add,
sign, output, adder, vhdl, subtract
EE: bit, number, output, input, result,
shift, width, implement, vector, add

issue concerning bit
operations such as numbers,
input, and output

SO: 6.6
EE: 9.9
both: 7.1

N/A

File I/O

SO: file, project, find, work, simul,
vhdl, read, text, compil, design
EE: file, design, find, vhdl, program,
project, work, tool, hdl, test

File input and output issues
SO: 6.2
EE: 10.3
both: 7.1

File operation [51, 101]
File management [59]
IO troubleshoot [63]

Data containers
bit, vector, size, array, index,
width, variabl, number, length, concaten
EE: N/A

issue concerning vectors
and arrays such as
index, size and variable

SO:7.9
EE: N/A
both: 6.3

Data structures [51]

Signal I/O

SO: output, input, port, modul, wire,
connect, signal, drive, declar, top
EE: output, input, port, connect, wire,
modul, warn, drive, signal, pin

Signal input and
output matters

SO: 5.7
EE: 6.6
both: 5.9

Signal troubleshoot [63]

State machines

SO: state, code, lead, work, display,
counter, switch, problem, output, vhdl
EE: state, output, input, lead,
reset, display, set, high, switch, start

Problems concerning
machines states such as
display, counter, and switch

SO: 5.6
EE: 7.1
both: 5.9

N/A

Type issues

SO: type, declar, vhdl, function, element,
constant, error, std-logic-vector, conver, record
EE: type, declar, function, vhdl,
error, constant, variabl, vector, defin, size

Issues and errors
concerning typing different
programming elements

SO: 4.8
EE: 8.0
both: 5.5

Data types [62]

Classes and objects
SO: function, call, class, variabl, task, object,
systemverilog, declar, pass, system
EE: N/A

Issues concerning functions
such as calling one, variable
declaration and object
oriented programming

SO:5.9
EE: N/A
both: 4.8

Value passing
& methods [51]

General programming [61]
Method call session [58]

Clocked processes
SO: clock, time, reset, input,
high, output, signal, pul, set, clk
EE: N/A

Issues concerning the
generation of clock, time,
and clocked processing

SO: 3.6
EE: 9.0
both: 4.7

N/A

Memory I/O

SO: read, write, memori, address,
datum, regist, instruct, ram, store, bit
EE: read, write, datum, address, memori,
ram, store, regist, block, instruct

Memory and registering
issues such as addressing,
instructing, reading and writing

SO: 3.1
EE: 5.1
both: 3.5

Memory/Pointer [101]
Memory [60]

Memory consistency [59]
Memory management [63]

Data transfer

SO: datum, send, receiv, serial, bit,
driver, monitor, sequenc, read, transact
EE: datum, bit, send, byte, receiv,
serial, start, packet, charact, uart

Issues concerning data
transfer including sending,
receiving, monitoring
and sequencing

SO: 2.3
EE: 3.4
both: 2.5

Networking [62, 101]
Serial port

communication [63]

Register operations
SO: regist, shift, bit, warn, latch,
constant, block, signal, find, design
EE: N/A

Issues concerning
register operations

SO: 2.0
EE: N/A
both: 1.6

N/A

Our topic modeling results produced 16 topics. As we cannot find a meaning label for one topic, we removed the topic from our analysis.
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gramming [62], IoT programming [63], and deep learning development [64]. We identify a
similar topic if the definition or keywords of a topic reported in the literature is similar to
one of our extracted topics.

Topic popularity. Following earlier work [93] [61] we assessed two metrics for each topic to
identify developers’ interest in each topic: 1) the median/average view count of the related
questions, and 2) the median/average score of the associated questions.

Distribution of topics for each programming language. We first identify the questions
associated with each programming language and each topic. Then, for each language, we
calculate the distribution of each topic in the questions associated with that language. We
focus on the top five languages (VHDL, Verilog, SystemVerilog, HDL, and Chisel), as they
account for 98.0% of all HDL-related questions.

Results

We derived 15 topics in the HDL-related questions. While some topics (e.g.,
syntax errors) are common among GPPL (e.g., Java), others (e.g., bit opera-
tions) are only notable in HDL-related questions. We extracted 16 topics from the
HDL-related questions in the SO forum. However, we could not assign a meaningful label to
one topic; thus, we removed the topic from our analysis. The removed topic only accounts
for 2.1% of SO questions. We also extracted 11 topics from the HDL-related questions in
the EE forum, all of which can be mapped to the topics extracted from the SO forum (i.e.,
the mapped topics share similar keywords). Table 3 shows our final 15 topics extracted from
the two forums, their associated keywords, and their frequency in the two forums.. Overall,
design and implementation, testing and simulation, and syntax errors are the most important
topics in HDL-related questions.

Design and implementation. The most frequently discussed topic is design and imple-
mentation, which accounts for 14.0% of all questions from both forums. The following is an
example question (with over 33K views) associated with the topic of design and implemen-
tation:

I am in the process of writing some Verilog modules for an FPGA design. I
looked around the internet to find out how I best parametrize my modules. I
see two different methods occurring often. I included an example hereunder
of the two different methodologies. Which of these methods is the best way to
parametrize modules? What is the difference?
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Testing and simulation is the second most popular topic, accounting for 13.7% of all
posts in both forums. Testing is a piece of software that validates that the system performs
as expected, and simulation refers to executing a circuit design in a software environment.
For instance, one of the most viewed questions associated with this topic is:

I have tried this multiple ways, I am a bit desperate now. I have tried to make
this clock in my testbench the problem is in simulation it doesn’t work or my
simulation seems to freeze. I know it has to be the clock.

Syntax errors is the third most frequently discussed topic, accounting for 7.9% of all
postings. A compiler error is a condition that occurs when a compiler fails to build a piece
of computer source code, either related to code errors or, more rarely, compiler errors. One
of the most viewed questions associated with this topic is:

“I’m new to VHDL and am trying to compile the simple exampprovided. . . I
followed the project creation steps in the. . . bu when I try to compile the project
I get the error.

The topics of process statements, bit operations, state machines, clocked pro-
cesses, and register operations are only observed in HDL-related questions. These
topics are associated with the particular characteristics of HDLs in contrast to GPPL. For
example, one of the most important differences between HDLs and GPPL is that HDLs con-
sider a notion of time [11]. Thus, HDL developers face the challenges of the synchronization
of the computing logic (i.e., the topic of clocked processes). In addition, in contrast to GPPL,
HDLs describe the computing logic at a lower level; thus, low-level operations such as bit
operations and register operations are also challenges faced by HDL developers.

HDL-related questions received similar community attention as questions related
to GPPL. Table 4 shows the popularity of the HDL-related questions related to each topic
in both forums. In the SO forum, questions related to type issues, data containers, syntax
errors, and bit operation receive the most attention (i.e., most views) from the community;
in the EE forum, questions related to process statements, file I/O, signal I/O, and type issues
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receive the most attention. According to prior studies on mobile programming [51], big data
programming [61], concurrent programming [62], and IoT programming [63], the view counts
and scores of these HDL-related questions are similar to those associated with GPPL.

Table 3.4 Popularity of HDL-related topics on both forums.

Topic Forums Number of
questions

Median
View

Average
View

Median
Score

Average
Score

Process statements SO
EE

934
252

625
542

2,472
3,024

0.0
1.0

1.0
1.2

File I/O SO
EE

816
352

681
696

2,193
2,095

1.0
1.0

1.1
2.8

Testing and simulation SO
EE

1,541
702

435
448

1,575
1780

0.0
0.0

0.5
0.6

Bit operations SO
EE

826
338

722
447

3,403
2,559

0.0
0.0

0.6
0.9

Signal I/O SO
EE

742
227

579
550

2,874
2,544

0.0
1.0

0.7
1.0

Clocked processes SO
EE

470
307

572
480

2,076
1,938

0.0
1.0

0.6
1.3

State machines SO
EE

738
243

501
462

1,614
1,349

0.0
1.0

0.3
0.8

Memory I/O SO
EE

412
175

575
513

1,570
1,767

0.0
0.0

0.5
0.9

Data containers SO
EE

1,033
NA

750
NA

4,014
NA

1.0
NA

1.1
NA

Syntax errors SO
EE

1,302
NA

743
NA

2,725
NA

0.0
NA

0.3
NA

Type issues SO
EE

636
275

793
905

3,131
3,655

1.0
1.0

1.2
1.5

Classes and objects SO
EE

796
NA

621
NA

2,048
NA

1.0
NA

1.0
NA

Register operations SO
EE

266
NA

595
NA

2,140
NA

0.0
NA

0.4
NA

Data transfer SO
EE

308
118

451
498

978
1,368

0.0
1.0

0.4
1.0

Design and
implementation

SO
EE

1,891
410

610
445

2,604
2,644

1.0
1.0

1.4
2.2

The most important topics are consistent among the programming languages.

Table 3.5 shows the distribution of topics in the questions related to each programming
language. As shown in the table, the most critical topics in the two forums, which are
testing and simulation and design and implementation, are consistent among the top five
programming languages. In addition, the topics of syntax errors and file I/O are each among
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Table 3.5 Topic distribution (%) in questions related to each language

Topic Forums Vhdl Verilog System-
Verilog Hdl Chisel

Process statements SO
EE

7.8
9.0

6.0
5.8

5.6
8.1

5.7
5.4

1.8
NA

File I/O SO
EE

5.9
11.6

4.9
9.1

5.2
11.9

4.4
19.2

11.7
NA

Testing and simulation SO
EE

19.4
21.0

23.3
20.5

23.6
19.4

23.7
17.9

22.8
NA

Bit operations SO
EE

6.3
8.9

6.6
11.2

3.3
11.6

5.5
7.5

2.0
NA

Signal I/O SO
EE

3.3
4.9

7.3
8.1

5.2
6.9

5.4
5.0

4.5
NA

Clocked processes SO
EE

3.6
7.8

3.5
10.6

2.4
5.2

3.0
12.1

1.8
NA

State machines SO
EE

7.0
6.9

4.7
7.6

1.6
4.5

5.0
5.0

1.4
NA

Memory I/O SO
EE

2.7
5.1

3.1
5.6

1.8
3.9

3.4
2.5

4.3
NA

Data containers SO
EE

5.8
NA

8.0
NA

10.5
NA

7.2
NA

7.8
NA

Syntax errors SO
EE

10.2
NA

8.8
NA

5.5
NA

9.1
NA

8.8
NA

Type issues SO
EE

8.0
10.5

1.2
4.2

3.1
15.2

2.5
7.1

3.9
NA

Classes and objects SO
EE

1.4
NA

4.3
NA

16.9
NA

4.6
NA

8.8
NA

Register operations SO
EE

1.9
NA

2.1
NA

1.1
NA

1.9
NA

2.2
NA

Data transfer SO
EE

2.1
4.0

1.5
3.1

2.8
1.3

1.7
1.3

0.6
NA

Design and implementation SO
EE

13.9
10.4

13.7
14.3

10.3
12.3

16.0
17.1

17.0
NA
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the most important topics of three languages in at least one of the two forums; type issues
is among the most significant topics of two languages (VHDL and System Verilog) in the
EE forum. Some exceptions exist, for example, data containers and classes and objects are
among the most important topics for System Verilog in the SO forum, while bit operations
and type issues are important topics for Verilog and VHDL in the EE forum, respectively.
Overall, our observations indicate that developers of different hardware description languages
face similar challenges.

Differences between the topics of questions in SO and EE.

Overall, we observe similar topics of questions in the two forums. We identified 15 topics and
11 topics from the questions in SO and EE, respectively. All 11 topics of the EE questions
can be mapped to the topics of SO questions. The four topics that only exist in SO questions
include syntax errors, data containers, classes and objects, and register operations. The
differences can be explained by the fact that SO is a technical forum for programmers, and
these four topics are all closely related to programming.

HDL developers share most of the challenges (e.g., syntax errors) with GPPL developers.
However, some challenges (e.g., lower level operations such as bit and register operations
or synchronization through clocked processes) are only notable in HDLs.
The most important topics in the questions are consistent among different HDLs. Future
efforts are needed to help HDL developers address the most important challenges (e.g.,
testing and simulation, syntax errors) in HDL development and the challenges specific to
HDLs (e.g., process statements, bit operations).

RQ3:What questions are difficult for developers to get answers?

Motivation

To understand the most challenging areas of developing HDL programs, we analyze the
difficulty level of the questions related to different HDLs and topics. Our results can provide
insights for future work to support these most challenging areas of HDL development.

Approach

Estimating the difficulty level of each language. We first obtain the set of questions
associated with the corresponding tag (e.g., “vhdl”). Then, we use the two heuristics de-
scribed in Section 3.2 (Step 6) to estimate the difficulty level of the questions associated with
the HDL. Specifically, for each HDL, we calculate the percentage of the associated questions
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receiving an accepted answer and the median and mean time taken to receive an accepted
answer. Similar to RQ2, we focus on the top five HDLs, which account for 98.0% of all the
HDL-related questions.

Estimating the difficulty level of each topic. First, we identify the dominant topic
for each question (i.e., the topic with the highest probability). Then, for each topic, we use
the two heuristics described in Section 3.2 (Step 6) to estimate the difficulty level of the
questions associated with the topics. Similarly, for each topic, we calculate the percentage of
the associated questions receiving an accepted answer and the median and mean time taken
to receive an accepted answer.

Estimating the difficulty level of each topic in each language.

To understand the difficulty level of each topic in each language, following previous ap-
proaches, we first identify the questions associated with a certain HDL and a specific topic.
Then, we use the two heuristics to estimate the difficulty level of these questions.

Results

HDL-related questions are more difficult than questions related to GPPL to
receive accepted answers. Table 3.6 shows the difficulty level of the top five programming
languages. Compared to technical forum questions related to GPPL, which present an average
ratio of 70.0% questions and a median time of 21 minutes to receive an accepted answer [51],
questions related to HDL are less likely and take longer to get accepted answers. Between the
two most popular HDLs: VHDL and Verilog, questions related to VHDL are less likely and
with a median time of 2:14 hours for SO and 2:09 hours for EE take longer time to receive
accepted answers. Moreover, questions related to VHDL (51.8% and 48.8% without accepted
answers in SO and EE, respectively) are least likely to get accepted answers. VHDL questions
also take the longest to receive accepted answers with 2:09 hours from the EE forum, while
Chisel questions with 8:25 hours take the longest to receive accepted answers from the SO
forum. We also observe that, in general, questions in the EE forum are more likely (e.g.,
51.8% and 48.8% of VHDL questions in SO and EE, respectively, do not have accepted
answers) and take a shorter median time (the median time to get accepted answers in SO
and EE are 2h19min and 1h44min, respectively) to get accepted answers than SO.

Questions related to file I/O,memory I/O, data transfer, state machines, syntax
errors, and testing and simulation are among the most difficult to get community
support in the SO and EE forums. Figure 3.2 and Figure 3.3 show the difficulty level of
the HDL-related topics in the two studied forums in terms of the two heuristics. We observe
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Table 3.6 Difficulty level of questions related to each language in both forums

Language Vhdl Verilog System
Verilog Hdl Chisel

% questions without
accepted answers (SO) 51.8 44.8 43.7 42.9 44.4

% questions without
accepted answers (EE) 48.8 44.9 46.1 45.8 N/A

Median time to get
accepted answer (hr:min) (SO) 2:17 1:49 2:28 2:00 8:25

Median time to get
accepted answer (hr:min) (EE) 2:09 1:26 1:46 2:04 N/A

Average time to get
accepted answer (hr:min) (SO) 159:31 114:51 128:58 274:19 464:32

Average time to get
accepted answer (hr:min) (EE) 168:26 60:33 44:18 82:10 N/A

that, in the SO forum, questions associated with the topics syntax errors, state machines,
and testing and simulation are least likely to get accepted answers, while questions associated
with the topics memory I/O, file I/O, data transfer, and state machines take the longest time
to get accepted answers. In the EE forum, questions related to memory I/O and testing and
simulation are least likely to get accepted answers, while questions related to data transfer
take the longest time to get accepted answers. These topics represent the most challenging
areas of HDL development and indicate opportunities for future work to improve the HDL
development practices (e.g., to improve the language abstraction of handling file/memory
I/Os, to provide actionable information to address syntax errors, or to develop tools to
improve testing and simulation). In particular, the topics of syntax errors and testing
and simulation are among both the most important challenges (RQ2) and the
most difficult challenges.

The most difficult topics are consistent among different programming languages.
Tables 3.7 and 3.8 show the difficult aspects of the questions associated with each language
and each topic in SO, and Tables 3.9 and 3.10 show that for questions in EE. In general, the
most difficult topics are consistent across the different languages. For example, the topics of
state machines and syntax errors in SO and the topics of memory I/O and data transfer
in EE consistently have the highest ratio of questions without accepted answers (only with
few exceptions). Similarly, the topics of file I/O, memory I/O and state machines in SO
and the topics of memory I/O and design and implementation in EE consistently take the
longest time to get accepted answers (with few exceptions). Our results indicate that the
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Figure 3.2 The difficulty aspect of HDL-related topics on SO.

most challenging areas of HDL development are consistent across different HDLs.

Differences between difficult questions in SO and EE. We observe that, in general,
the types of difficult questions in terms of programming languages and topics are similar
in the two studied forums. We also observe that, in general, questions in the EE forum are
more likely and take a shorter average time to get accepted answers, except for VHDL-related
questions. The difference may be explained by the fact that the EE forum is more focused on
hardware (i.e., with users more focused on HDLs), while SO covers both GPPLs and HDLs
and has more diverse users.
In general, HDL-related questions are less likely and take longer than questions related to
GPPL to get accepted answers. The most difficult topics (file/memory I/O, data trans-
fer, state machines, syntax errors, testing and simulation) are consistent across different
languages. Future efforts are needed to develop better resources and tools to support
these most challenging areas, such as improving the language abstraction for handling
file/memory I/Os, providing actionable information to address syntax errors, or develop-
ing tools to improve testing and simulation.
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Table 3.7 The percentage of questions without accepted answers in SO forum (per topic and
language)

Topic Vhdl Verilog System-
Verilog Hdl Chisel

Process statements 31.3 28.7 29.7 20.0 66.7
File I/O 56.7 45.7 43.4 46.2 38.6
Testing and simulation 65.0 52.6 51.4 58.1 45.2
Bit operations 55.3 40.8 43.3 30.6 40.0
Signal I/O 52.8 40.2 38.4 35.4 45.5
Clocked processes 50.2 46.6 54.3 37.0 44.4
State machines 66.8 53.6 61.7 50.0 71.4
Memory I/O 57.2 50.8 47.3 46.7 47.6
Data containers 44.5 35.1 34.0 29.7 42.1
Syntax errors 64.2 56.9 64.2 53.8 67.4
Type issues 33.9 31.0 34.8 22.7 36.8
Classes and objects 57.6 41.8 36.9 46.3 41.9
Register operations 59.1 50.0 54.5 52.9 18.2
Data transfer 66.9 49.5 41.5 53.3 33.3
Design and implementation 40.2 39.6 46.0 39.2 41.0

Table 3.8 The median time (hr:min) to get accepted answers in SO forum (per topic and
language)

Topic Vhdl Verilog System-
verilog hdl Chisel

Process statements 1:48 1:26 2:20 1:10 9:33
File I/O 4:16 3:43 4:54 3:16 7:12
Testing and simulation 2:44 1:30 2:53 1:31 9:45
Bit operations 2:33 2:03 1:35 2:36 12:31
Signal I/O 1:34 1:25 2:04 2:09 7:14
Clocked processes 1:53 2:47 4:54 1:25 15:21
State machines 4:27 3:05 2:57 4:16 86:47
Memory I/O 4:31 4:27 4:17 5:27 14:25
Data containers 1:22 1:12 1:20 2:06 6:02
Syntax errors 0:51 0:42 1:19 1:23 4:31
Type issues 2:06 1:31 2:30 2:34 7:07
Classes and objects 1:08 2:16 2:12 1:30 9:56
Register operations 1:37 1:59 3:30 0:26 15:06
Data transfer 3:24 3:31 6:14 1:08 1:54
Design and implementation 3:29 2:57 3:41 2:35 10:41
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Table 3.9 The percentage of questions in EE forum without accepted answers (per topic and
language)

Topic Vhdl Verilog System-
Verilog Hdl

Memory I/O 53.5 63.3 50.0 66.7
type issue 40.8 29.9 21.3 23.5
process statement 36.6 38.3 48.0 53.8
Design and implementation 40.3 34.6 60.5 43.9
Testing and simulation 64.1 56.8 53.3 55.8
Data tarnsfer 52.9 42.0 100.0 33.3
State machines 52.5 48.8 57.1 41.7
Bit operations 51.0 45.3 33.3 55.6
clocked processes 36.8 31.0 50.0 31.0
File I/O 46.7 53.1 56.8 47.8
Signal I/O 48.2 39.7 33.3 50.0

Table 3.10 The median time (hr:min) to get accepted answers in EE forum (per topic and
language)

Topic Vhdl Verilog System-
verilog hdl

Memory I/O 3:55 2:30 0:46 217:27
type issue 1:33 1:34 1:46 2:38
process statement 1:10 1:09 1:53 1:14
Design and implementation 3:08 1:06 2:29 4:45
Testing and simulation 2:44 1:51 2:44 1:38
Data tarnsfer 5:02 1:53 N/A 1:05
State machine 2:47 1:16 6:49 1:18
Bit operations 1:40 0:58 0:46 0:35
Clocked processes 1:29 1:39 1:02 3:36
File I/O 2:47 1:26 5:51 1:53
Signal I/O 1:36 1:14 1:16 2:22
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Figure 3.3 The difficulty aspect of HDL-related topics on the EE forum.

3.4 Discussions and Implications

Comparing technical questions related to HDLs and GPPLs. Computer architec-
tures are at the point of shifting from a general-purpose approach to a hardware/software
co-design approach (i.e., domain specific architecture) [2]. To efficiently develop such do-
main specific architectures, we need balanced support for developing programs in GPPLs
and HDLs. In our study, we observe that HDL developers ask new types of questions related
to code explanation, how to test, and tool search, which indicate the lack of resources and
tools to assist HDL developers in developing, understanding, and testing HDL programs. We
also observe that HDL-related questions include new topics such as bit operations and register
operations that are related to low-level programming, which indicate the need for more ab-
stract constructs and design patterns to improve the efficiency of HDL program development.
Finally, we observe that HDL-related questions are less likely and take a longer time to get
accepted answers in technical forums than GPPL-related questions, which may be explained
by the difficulty of HDL-related questions or the smaller size of the active HDL community in
the technical forums. The software engineering community should leverage its expe-
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rience in advancing GPPL development to help in advancing HDL development
languages and methodology, providing HDL development tools and resources,
and promoting community support in technical forums.

Comparing HDL-related questions in SO and EE. Unlike traditional GPPL program
development, HDL program development typically needs knowledge in programming and
circuit design. The SO forum has a large user base experienced in programming, while the
EE forum provides a user base with expertise in circuit design. On the one hand, we observe
that, overall, HDL developers ask a wider range of questions in SO than in EE. However,
they are more likely to ask background and conceptual questions in EE and programming
specific questions on SO. This difference can be explained by the fact that SO is a general
programming language forum, while EE is a forum for hardware practitioners and learners
to exchange hardware-related questions. On the other hand, we also observe that, in general,
questions in the EE forum are more likely to get accepted answers and faster, which may
indicate that HDL-related questions are relatively difficult for general SO users while being
easier for hardware practitioners and learners in the EE forum. Stack Exchange and its
moderators can leverage the community size and expertise in both forums to
collectively recommend experts to answer questions related to HDLs.

3.5 Threats to Validity

External validity. This work analyzes HDL-related questions on technical forums (SO and
EE) to understand the challenges of developing HDL programs. However, HDL developers
may also communicate their discussions in other forums or media (e.g., Code Review forums
and Google groups). Nevertheless, after searching available forums related to HDLs, we
found that the most recent posts related to HDL questions on the internet are available
on the studied SO and EE forums, while other forums with information related to HDL
languages are not as active. Future work considering other data sources may complement
our study. In addition, our identified and collected questions may not cover all the questions
on Stack Overflow. To alleviate this threat, we follow prior work [102] and use an iterative
method to identify the relevant tags.

Internal validity. We use topic modeling (LDA) to cluster the Stack Overflow questions
based on the intuition that the same clusters would have similar textual information. How-
ever, different clusters of questions may exist when a different approach is used. To ensure
the quality of the clusters, we manually reviewed the resulting topics and assigned meaningful
labels to them.

Construct validity. In RQ1, we manually analyze the categories of HDL-related questions
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on Stack Overflow. Our results may be subjective and depend on the researchers judgment
who conducted the manual analysis. The study’s three authors collectively conducted the
manual analysis and reached a consensus for each question to mitigate the bias. In RQ2 and
RQ3, the hyperparameters of the topic models (e.g., the number of topics K) may impact
our findings. We tuned the hyperparameters and used the topic coherence score to select the
most suitable parameters to mitigate this threat. In addition, in RQ3 maybe because of the
smaller size of HDL community, HDL-related questions are less likely and take longer than
questions related to GPPLs to get accepted answers.

3.6 Summary

This study considers the challenges that developers of HDLs face by examining HDL-related
technical questions in the SO and EE forums. We observe that developing programs in HDL
faces both similar challenges as GPPL and challenges specific to HDLs (e.g., lower level op-
erations such as bit and register operations or synchronization through clocked processes).
We also observe that it is more challenging for developers of HDL programs to receive com-
munity support than GPPL (i.e., HDL-related questions are less likely and take longer to
get accepted answers) which calls for efforts to enhance developer engagement or platform
support in answering questions in technical forums (e.g., SO). In addition, our work identi-
fied opportunities for the research community to improve the practices of developing HDL
programs, such as to improve the language abstraction for handling bit/register operations
or file/memory I/Os, to provide actionable information to address syntax errors, and–or to
develop tools to improve testing and simulation.
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CHAPTER 4 STUDYING DNN HARDWARE ACCELERATION
PRACTICES IN GITHUB PROJECTS

Context: Computer architectures are at the point of shifting from a general-purpose ap-
proach to a hardware-software co-design approach (i.e., domain specific architectures). In
recent years, hardware acceleration for deep neural networks (DNNs) has become a popular
application area of domain-specific hardware-software co-design.

Objectives: We aim to understand the practices and challenges of hardware description
language (HDL) development in real-world projects by examining open-source HDL-related
projects in the context of DNN hardware acceleration.

Method: We examine 321 public GitHub projects related to hardware acceleration for
DNNs, to understand the practices and challenges of developing HDL code in real-world
projects. We study the categories of projects that leverage hardware acceleration for DNN,
the distribution of programming languages, developer profiles of these projects, and the
purposes of using hardware acceleration for DNN in these projects.

Results: We observe that DNN developers leverage hardware acceleration for a variety of
DNN models (e.g., CNN and RNN). We also observe that HDLs (e.g., VHDL) contribute
to a higher portion of code than general-purpose-programming-languages (GPPLs) (e.g., C)
in the studied DNN acceleration projects. However, there are fewer developers working on
HDLs than those working on GPPLs. Finally, we observe that most of the projects leverage
hardware acceleration for DNN inference while only a small portion of them leverage hardware
acceleration for training DNN models.

Conclusion: Hardware-software co-design is increasingly popular in applications such as
DNN acceleration. However, there is an imbalance between HDL and GPPL development
(e.g., imbalance between HDL and GPPL developers). Our community should provide more
empathises to support HDL program development, to avoid the HDL-related components
being the bottlenecks of hardware-software co-design.

4.1 Introduction

Deep Neural Networks (DNNs), also known as Deep Learning, are a subset of AI, which,
according to John McCarthy, the computer scientist who invented the phrase in the 1950s, is
“the science and engineering of constructing intelligent computers that can achieve goals as
people do”. DNNs are the cutting-edge solutions for various applications, including computer
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vision, speech recognition, and natural language processing, among others. Artificial Neural
Networks (ANNs) are a mathematical architecture that connects a vast number of essential
elements known as neurons, each of which can make simple mathematical decisions [9]. An
external neural network has only three layers: the input layer, one hidden layer, and the
output layer. As the number of hidden layers in a neural network grows, it becomes a Deep
Neural Network (DNN). As a result, Deep Learning can be thought of as a subset of Artificial
Neural Networks with many processing layers. They are more precise and continue to improve
as more neuron layers are added. Feed-Forward Neural Network, Recurrent Neural Network
(RNN), and Convolutional Neural Network (CNN) are three popular Deep Neural Network
models [9].

However, DNNs’ increased accuracy comes at the cost of significant computational complex-
ity. A DNN model is typically very complex and takes a long time and expensive resources to
perform training and inferences. While general-purpose compute engines, particularly graph-
ics processing units (GPUs), have been the basis for much DNN processing, there is growing
interest in more specialized DNN acceleration. Researchers and practitioners have proposed
various approaches to make DNN model training and inferences more efficient. These ap-
proaches typically fall into two categories: 1) model optimization (the software way) and
2) hardware acceleration (the hardware way). In particular, hardware acceleration for DNN
models has drawn more and more attention [10, 71, 88, 103]. There has been recent evidence
from the field of deep learning that FPGAs (Field-Programmable Gate Arrays) is an essen-
tial factor in the acceleration of DNNs (Deep Neural Networks) [88]. AFTER MANUAL
TRANSFORMATION, an HDL (Hardware Description Language) vendor tool is used to
synthesize DNN from a high-level language such as Python. HDL expertise is required for
this transition, limiting the use of FPGAs [10]. In data centers, FPGAs are now widely
used to offload GPU- and CPU-based inference engines [9]. We are in the early stages of
defining, expanding, and deploying such capabilities, starting with targeted FPGAs, model
development and optimization frameworks, and an ecosystem of supported libraries. Over
the next five years, FPGA capabilities are expected to improve rapidly, allowing them to
tackle a wide range of real-world applications [9]. Despite the benefits and rapid growth of
hardware acceleration for DNNs, no work studies the practices of using hardware accelera-
tion for DNNs in real-world projects. In this research, we investigate 321 open-source GitHub
projects that use hardware acceleration for DNN models. Our research aims to answer the
following research questions (RQs):

RQ1: What are the categories of the projects that leverage hardware acceleration
for DNN? To understand the categories of the projects, we manually analyzed the 321
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projects and examined the types of DNN models and the associated tasks that leverage
hardware acceleration. DNN developers leverage hardware acceleration for a variety of DNN
models (e.g., CNN and RNN). The studied projects mainly leverage hardware acceleration
for CNN models, for the tasks such as image classification and object detection. On the other
hand, hardware acceleration is used much less frequently for RNNs.

RQ2: What are the distributions of programming languages and developer pro-
files in the projects leveraging hardware acceleration for DNN? We extracted the
programming languages used in the DNN hardware acceleration projects and analyzed the
distributions of HDL and GPPL languages in these projects. Further, we investigated the
profiles of the developers of these projects to understand the differences between the de-
velopers of HDLs and GPPLs. HDLs (e.g., VHDL) contribute to a higher portion of code
than GPPLs (e.g., C) in the studied DNN acceleration projects. However, there are fewer
developers working on HDLs than those working on GPPLs. Our observation indicates the
imbalance between HDL developers and GPPLs developers. Researchers are the most popu-
lar category of developers who work on the DNN acceleration projects, while the developers
contributing to GPPL code have more diverse profiles than those contributing to HDL code.

RQ3: What are the purposes of using hardware acceleration in the projects lever-
aging hardware acceleration for DNN? We manually analyzed the 321 DNN hardware
acceleration projects to identify the purposes of using hardware acceleration for DNNs in
these projects. Most of the projects leverage hardware acceleration for DNN inference while
only a small portion of them leverage hardware acceleration for training DNN models. In
addition, a small portion of projects use hardware acceleration for benchmarking purposes.
Our results can help practitioners and researchers understand the practices of DNN hard-
ware acceleration in real-world projects. Furthermore, the results can help to understand the
practices and challenges of HDL code development and software-hardware co-design in the
DNN acceleration context.

Chapter organization. The rest of the chapter is organized as follows. In Section 4.2
we describe the experiment setup of our study. In Section 4.3, we present and discuss our
results for answering our research questions. In Section 4.4, we discuss the implications of
our findings. Section 4.5 discusses threats to the validity of our findings. Finally, Section 4.6
gives the summary of the study.

4.2 Experiment Setup

This section describes the design of our study.
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4.2.1 Overview of the Study

This study aims to examine open-source projects that are related to hardware acceleration
for DNNs on GitHub 1 to understand the practices and challenges of DNN hardware acceler-
ation and HDL development in real-world projects. We study the categories of projects that
leverage hardware acceleration for DNN, the distribution of programming languages, devel-
oper profiles of these projects, and the purposes of using hardware acceleration for DNN in
these projects. In order to filter the DNN hardware acceleration projects, we initially used a
series of heuristic criteria and applied them to the repositories on GitHub. Then, we manu-
ally verified each of the resulting repositories to remove false positives. In RQ1, we manually
analyzed the categories of the projects that leverage hardware acceleration for DNN. In RQ2,
we automatically extracted the distributions of the programming languages used in hardware
acceleration for DNN projects. In addition, we manually extract the profile of developers who
participate in these projects. Finally, in RQ3, we manually analyzed the purpose of using
hardware acceleration for DNN projects. In the rest of the section, an in-depth description
of the details of our data collection procedure and analysis approaches is provided.

4.2.2 Data extraction and analyses steps

First, we extracted a database of related projects listed on GitHub as of January 2022.
Then, we took the three following steps to carefully extract the projects entitled Hardware
Acceleration for DNN. Figure 4.1 shows an overview of our data extraction and analysis
process. In this study we focus on FPGA-based acceleration projects because FPGA-based
accelerators are more popular than GPU and ASIC-based accelerators due to their high
performance, customizable and flexible design, high throughput with large parallelism, faster
data transfer, and high speed of a DNN implemented on them [9].

Two criteria were used to find projects related to hardware acceleration for DNN: First,
to better understand the nature of the project, its description must be provided in English.
Second, the project must be listed in a mainline repository, not in a fork or other repositories.

Step 1: Search candidate projects (first round).
We filtered the search results and identified the DNN acceleration related projects. First, au-
thors identified a set of keywords related to DNN acceleration, then they checked the relation
of the keywords with the DNN acceleration projects. Finlay ten initial keywords selected,
and added to the keyword “FPGA”. Our initial set of keywords includes “FPGA deep neural
network” , “FPGA” AND “accelerator”, “FPGA” AND “neural network” , “FPGA” AND

1https://github.com
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Figure 4.1 An overview of our data extraction and analysis process.

“network”, “FPGA” AND “learning”, “FPGA” AND “tensor flow”, “FPGA” AND “keras”,
“FPGA” AND “pytorch”, “FPGA” AND “TVM” and “FPGA”AND “caffe”.
Step 2: Manual verification (first round).
We ended up with 647 projects and extracted topics from the 647 projects and manually
analyzed extracted topics to find the related ones to hardware acceleration for DNN.
Step 3: Keyword expansion.
We selected 15 topics, including “FPGA” AND “CNN”, “hardware” AND “acceleration”,
“neural network” AND “Xilinx”, “FPGA” AND “high-level synthesis”, “FPGA” AND “neu-
ral network vivado”, “Altera” AND “FPGA” AND “neural network”, “TensorFlow” AND
“FPGA”, “OpenCL” AND “FPGA” AND “neural network”, “FPGA” AND “convolutional
neural networks” ,“pynq” AND “FPGA”, “Verilog” AND “FPGA” AND “neural network”,
“PyTorch” AND “FPGA”, “quantization” AND “acceleration”, “FPGA” AND “accelerators”
and “FPGA” AND “neural networks”.
Step 4: Search candidate projects (second round).
By using a new set of keywords in topic search and UI search, we extracted 1017 projects
from GitHub.
Step5: Manual verification (second round).
To improve the quality of the selected projects, the projects’ descriptions were manually
inspected, and those not closely relevant to hardware acceleration for DNN, like documen-
tation for hosting DNN acceleration and lecture notes, were removed. Finally, we arrived at
321 projects directly linked to hardware acceleration for DNN applications as final projects.
For the 321 selected projects, we used the GitHub Rest API 2 to obtain all relevant infor-

2https://docs.github.com/en/rest
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mation, including information on projects title, README file, the number of programming
languages, and the number of developers that participate in the projects. We analyze our
collected GitHub projects information to answer our research questions through the following
steps.
Step 6: Study the category of the projects.
In this step, we carefully reviewed the description and information linked with the projects to
determine the category of DNN models that leverage hardware acceleration for DNN projects
(e.g., CNN). In addition, to identify the type of tasks in DNN projects, we manually exam-
ined and classified the tasks applied in DNN hardware acceleration projects. The resulting
step is used to answer our RQ1.
Step 7: Study the programming languages
In this step, we extracted the numbers and distributions of programming languages involved
in each of the 321 projects by using the GitHub Rest API. In particular, we compared the
distribution of HDL and GPPL programming languages in these projects.
Step 8: Study the profile of developers.
In this step, we extracted the number of developers involved in three groups of programming
languages GPPL, HDL, and both GPPL-HDL) by using the GitHub Rest API. To classify
the developers, we studied the profiles of 72 developers who had contributed to HDL code and
a random sample of 72 developers who had only contributed to GPPL code. We extracted
their name, email address, and GitHub profile, followed by a manual investigation of their
LinkedIn profile, blog, and any information linked to developers from the web to identify
their background and area of work. Based on their background and current job we defined
the category and classified them. The results of steps 4 and 5 are used to answer our RQ2.
Step 9: Study the purpose of using hardware acceleration.
In this step, we manually examined the description and code of the projects to identify devel-
opers’ purposes of leveraging hardware acceleration for DNN models (e.g., for model training
or model inference).

4.3 Experiment Results

In this section, we report and discuss the results of our three research questions. We first
present the motivation and approach for each research question, then discuss the results for
answering the research question.
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RQ1: What are the categories of the projects that leverage hardware acceleration
for DNN?

Motivation

In order to understand the practices of using hardware acceleration in real-world DNN
projects, we first study the characteristics of these projects, including the types of DNN
models used in these projects and the associated high-level tasks that these DNN models are
used for. Our results can provide a high-level understanding of the current status of hardware
acceleration in the wild in real-world DNN projects.

Approach

Identify the category of the model. We manually analyzed the README file of the
projects and also examined codes and articles which are linked in the projects to identify the
type of DNN model used in them. Find more details of our manual analyses through the
following steps.
Step 1. One researcher independently examined the description, codes and papers available
in the projects to identify the type of the models.
Step 2. Another researcher reviewed and discussed with the first researcher about type of
the model that leverage hardware acceleration for DNN projects and check the labeling.
Step 3. Based on the common understanding, the first researcher revisited the labels and
defined the final category of the models.

Identify the category of the tasks. 321 projects were manually inspected to understand
the type of tasks in the projects that leverage hardware acceleration for better performance.
We followed a similar process as for identifying the category of models to identify the cate-
gories of the tasks.

Results

DNN developers leverage hardware acceleration for a variety of DNN models
(e.g., CNN and RNN), while CNN dominates the usage scenarios. Table 4.1 shows
our identified DNN models from the studied projects that leverage hardware acceleration.
The result shows that CNN uses hardware acceleration most frequently (accounting for 56.0%
of the cases) in the studied projects. In comparison, although developers also use hardware
acceleration for RNN models, it only accounts for 1.0% of the cases. Below, we describe each
type of models that leverage hardware acceleration in the studied projects.
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CNN (Convolution Neural Networks) is a form of artificial neural network used for im-
age/object identification and classification in Deep Learning. CNN is the most frequent
models using hardware acceleration since it is typically very computationally expensive.
PipeCNN [104] is an example of an OpenCL-based FPGA Accelerator for Large-Scale Convo-
lutional Neural Networks (CNNs) which aims to provide a generic, yet efficient OpenCL-based
design of CNN accelerator on FPGAs, and achies improved throughput in inference computa-
tion. The second most popular model applied in the hardware acceleration projects for DNN
is General Deep Neural Network model with 29.9 %. We considered this category since
we could not allocate some projects to any specific model, and put them under General Deep
Neural Network. SpooNN [105] is an example of general DNN implementation that enable
an end-to-end capability to perform inference on FPGAs; starting from training scripts using
Tensorflow to deployment on hardware.

The next popular DNN models areBNN with 2.1% and SNN with 1.8%. An example of BNN
Accelerator is developed in Google brain project [106] which performed a Go implementation
and corresponding APIs for acceleration of Binarized Neural Network (BNN) on FPGAs.
Gyro [107] is an example of FPGA-based Spiking Neural Network accelerator. As the results
show, RNN with 1.0% has the least popular among the DNN models, which is used in DNN
hardware acceleration projects.

Table 4.1 The categories of DNN models that use hardware acceleration in the studied
projects.

Type of model % Frequency
CNN (Convolution Neural Network) 56.0
General DNN (Deep Neural Networks) 37.0
BNN (Binarized Neural Network) 2.1
SNN (Spiking Neural Network) 1.8
RNN (Recurrent Neural Network) 1.0
Unknown 2.1

The studied projects dominantly leverage hardware acceleration for general pur-
poses or image Classification-related tasks. Table 4.2 shows the type of task that
leverages hardware acceleration for DNN projects. 57.6% of the tasks of the projects are re-
lated to General purpose. General purpose is the process related to general CNN models.
We could not determine the specific task in this category but the projects of this category
leverage hardware acceleration during the process. The second prevalent task to leverage
hardware acceleration for DNN projects is image classification.

Image Classification is the process of enhancing or extracting valuable information from
an image by performing various operations on it. For this form of signal processing, the input
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Table 4.2 The categories of high-level tasks that use hardware acceleration in the studied
projects.

Task % Frequency
General purpose 57.0
Image classification 26.4
Object detection 7.1
Text classification 2.4
Audio and video recognition 1.5
Unknown 5.6

is an image, and the output can either be that same picture or some of its characteristics or
attributes the following is example in image classification: Image Classification using CNN on
FPGA [108] is an example of designing a Trained Neural n/w (CIFAR-10 dataset) on FPGA
to classify an Image I/P using deep-learning concept(CNN- Convolutional Neural Network).
Another task that leverages hardware acceleration for the DNN projects is Object detection
with 7.1%. Object Detection is an area of computer vision and image processing that
focuses on identifying specific types of objects (such as people, buildings, and cars) in digital
photos and videos. the following is example in object detection: Inferno [109] is an example
of this category of tasks, which is a FPGA Deployable Fire Detection Model for Real-Time
Video Surveillance Systems Using Convolutional Neural Networks.

Text Classification is a category of algorithms for processing text data in big scales. Hard-
ware accelerated text classification allocate for 2.4% of tasks.

Audio and Video recognition is a capability which enables a program to process human
speech into a written format. Here we have an example for repository in audio and video
recognition: ECE 5775 [110] is a neural network-based method for recognizing speech com-
mands with fixed-latency on a Xilinx Zedboard. For the Unknown category, there is no
more information to identify tasks.

DNN developers leverage hardware acceleration for a variety of DNN models (e.g., CNN
and RNN). The studied projects mainly leverage hardware acceleration for CNN models,
for the tasks such as image classification and object detection. On the other hand, hardware
acceleration is used much less frequently for RNNs.
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RQ2: What are the distributions of programming languages and developer pro-
files in the projects leveraging hardware acceleration for DNN?

Motivation

To understand the practices and challenges of hardware-software co-design in the DNN ac-
celeration context, we analyze the distribution of programming languages used in the studied
projects and the profiles of the developers contributing to the code written in these pro-
gramming languages. Our results can provide insights for improving such hardware-software
co-design practices in the DNN hardware acceleration context and beyond.

Approach

In this RQ, we study the programming languages used in the studied DNN acceleration
projects and the characteristics of the developers contributing to these projects.

Analyzing the distribution of programming languages. The DNN hardware acceler-
ation projects employed 114 programming languages, which we extracted using REST API.
In addition, we extracted the line of codes for each programming language and calculated
the total written lines of code for each languages in 321 projects. Based on the percentage of
written code in each language and percentage of participating a language in the projects, we
keep those languages where the average proportion of codes in all projects is more than 1.0%.
Even though the percentage of code for Python and Jupyter Notebook is 0.2% and 0.6%,
respectively, their contribution to projects is more significant than 40%, and the authors
decided to keep them in the languages category. We calculate both the median and average
portion of contributions of each language in the projects.

Analyzing the profile of developers. By using the GitHub API we first extracted the
total number of developers. Then we extracted those developers who made changes to the
considered top 11 programming languages we identify previously. Finally, we check our final
data of developers and remove repeated names and ides and extract developers information
including developers’ names, email addresses, and GitHub profiles URL links. We manually
searched their LinkedIn profiles by using their GitHub profile information or googling their
email address and name and tried to find developers information from the web. Based on
the programming languages that developers work with, the authors classify the developers
in three groups, including:

• GPPL: the developers of this group only work on GPPL programming language group

• HDL: the developers of this group only work on HDL programming language group
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• Both GPPL-HDL groups: the developers of this group only work on at least one
language from HDL group and at least one language from GPPL group

The authors manually analyzed their current information and background and classified
them into the categories we obtained from our analyses. We have following steps to manual
labeling of the developers: Step 1. One researcher independently examined the description of
GitHub profile, work experience and Linkdin profile of developers to identify the category of
the developers. Step 2. Another researcher reviewed and discussed with the first researcher
about the category of the developers and check the labeling. Step 3. Based on the agreement,
the first researcher revisited the labels and defined the final category for developers.

Result

Developers use a wide range of programming languages in the DNN acceleration
projects, including HDLs (VHDL, Verilog, System-verilog), and GPPLs (Ada, C,
C++, Objective-C, Coq, Tcl, Jupyter notebook, Python). According to Table 4.4,
the most popular programming language in the studied DNN hardware acceleration projects
is VHDL on average accounting for 41.8% of the code in the studied projects. ADA is the
most commonly used language in the GPPL group, accounting for 10.9% of the code in the
projects.

Table 4.3 The distributions of programming languages code involved in the FPGA-related
projects.

Language VHDL* Ada Verilog* C C++ Objective
-C Coq System*

verilog Tcl Jupyter
notebook Python

Average percentage 41.8 14.1 12.9 10.9 7.1 2.5 1.7 1.3 1.0 0.6 0.2

Median percentage 33.3 0.0 4.4 2.5 1.0 0.0 0.0 0.0 0.2 0.0 0.0

Percentage of projects 28.6 2.4 38.0 44.8 41.4 9.0 8.4 17.4 30.2 16.5 45.7

The * sign indicates HDL programming languages

Overall, HDLs contribute to a bigger portion of code in the DNN accelera-
tion projects than GPPLs. Although the number of programming languages used in
the projects in the GPPL group is more significant than the number of programming lan-
guages used in the HDL group, HDLs contribute to more code than GPPLs. In fact, HDL
code contributes to 56.1% of the code in the studied projects on average, while GPPL code
contributes to 38.4% of the code on average.

More developers contribute to GPPL code than those contribute to HDL code
in the studied DNN acceleration projects. The distributions of developers involved
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in each programming language are shown in table 4.4. It should be mentioned that several
developers work with multiple programming languages. The results indicate that Python
with 42.8% is the most popular programming language among developers. Despite having
the highest percentage of codes in the projects, VHDL with 1.2% has the fewest developers
Table 4.5 shows that 55.5% of developers only contribute to GPPL code, while only 1.2% of
developers only contribute to HDL code; 16.3% of developers contribute to both GPPL and
HDL code.

Researchers are the most popular category of developers who work on the DNN
acceleration projects, while the developers working on GPPLs in the DNN ac-
celeration projects have more diverse profiles than the developers working on
HDLs. We classified developers’ profiles into eight categories, including researcher, software
engineer, student, AI/ML engineer, data scientist and data engineer, professor, hardware
acceleration developer and hardware engineer. As shown in table 4.6, Developers with all
categories of profiles contribute to GPPL code. Researchers, software engineers, students,
AI/ML engineers, and hardware engineers contribute to both GPPL code and HDL code.
Only students, professors, and hardware acceleration developers The result shows that in
GPPL-only and both GPPL-HDL groups, the highest percentage of developers are in the re-
searcher category. Software engineer is the second popular profile that contribute to GPPL
code, while hardware engineer is the second popular profile that contribute to both GPPL
and HDL code. 40% of the developers of the HDL-only group are Students and most of
their contributions in the projects are related to university projects. The other developers
include AI/ML engineers with 8.3% in GPPL-only and 3.0% in both GPPL-HDL groups.

HDLs (e.g., VHDL) contribute to a higher portion of code than GPPLs (e.g., C) in the
studied DNN acceleration projects. However, there are fewer developers working on HDLs
than those working on GPPLs. Our observation indicates the imbalance between HDL
developers and GPPLs developers. Researchers are the most popular category of developers
who work on the DNN acceleration projects, while the developers contributing to GPPL
code have more diverse profiles than those contributing to HDL code.

RQ3: What are the purposes of using hardware acceleration in the projects
leveraging hardware acceleration for DNN?

Motivation

DNN projects can leverage hardware acceleration for different purposes (e.g., model infer-
ence). However, the purposes of using hardware acceleration in real-world DNN projects are
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Table 4.4 The distributions of developers involved in the DNN acceleration projects according
to their involved programming languages.

Languge Number of contributers % Of contributors
Python 176 42.8
C 100 24.3
C++ 74 18.0
Coq 62 15.1
Verilog 62 15.1
Tcl 50 12.2
Jupyter Notebook 50 12.2
Objective-C 23 5.6
SystemVerilog 22 5.4
VHDL 5 1.2
Ada 0 0.0

Table 4.5 The distributions of developers involved in the FPGA-related projects.

Languge Number of contributers % Of developers
GPPL group 228 55.5
Both HDL - GPPL 67 16.3
HDL group 5 1.2

Table 4.6 classification of developers in the FPGA acceleration for DNN projects

Classification of contributors %GPPL-only %HDL-only %Both GPPL-HDL
Researcher 25.0 N/A 16.4
Software engineer 13.1 N/A 13.4
Student 11.1 40 13.4
AI/ML engineer 8.3 N/A 3.0
Data scientist and data engineer 6.9 N/A N/A
Professor 2.7 20 N/A
Hardware acceleration developer 2.7 20 N/A
Hardware engineer 1.3 N/A 13.4
Unknown 28.8 20 39.9
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not clear. Thus, in this RQ, we manually studied the DNN acceleration projects to under-
stand developers’ purposes of using hardware acceleration for their DNN models. Our results
can provide insights for future work to support or improve hardware acceleration to these
purposes.

Approach

Follow the previous approach used in (RQ1 and RQ2) we manually analyzed the description
of the projects and also examined code and papers in projects related to FPGA acceleration
for DNN when needed to identify the purpose of using hardware acceleration. In our manual
analyses one researcher independently examined the description, codes and papers available
in the projects to identify phase of the models which is used for hardware acceleration.
Another researcher reviewed and discussed with the first researcher about model phases
that leverage hardware acceleration for DNN projects and check the labeling. Based on the
common understanding, the first researcher revisited the labels and defined the final category
of the phase of model. We defined our categories in four phases, including training of the
model, inferencing, tuning of a model, and benchmarking of the model. Based on hardware
acceleration usage for DNN projects, we categorized them to determine in which part of the
project processing the benefits of hardware acceleration were used.

Table 4.7 The phase of models leveraging hardware a acceleration for DNN projects.

Phase of model %Freq
Inference 52.3
Training 14.3
Benchmarking 7.1
Unknown 26.3

Results

Table 4.7 shows the result of the purpose of using hardware acceleration in the DNN projects.
Based on our defined category for the proposition of using hardware acceleration in the DNN
project, Inference, Training, and Benchmarking phases were found. Result demonstrates that
52.3% of the projects use hardware acceleration in the inference phase of the models, and
14.3% of the projects use hardware acceleration in the training phase of the models.
Model Training and Model Inference are the two primary steps of machine learning.
During the training phase, a developer feeds their model a selected dataset to teach it what
it needs to know about the sort of data it will evaluate. The model may then make predic-
tions based on live data to provide actionable findings during the inference phase [111]. 7.1%
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the projects use hardware acceleration in the benchmarking phase.
Model Benchmarking. The neural network’s objective is to distinguish between Correct
and Incorrect orbital mechanics. This is the standard by which we can compare the perfor-
mance of various neural architectures. We can control how much disruption occurs because
we are producing our data [112]. For 26.3% of the projects, there is no more information
about the purposes of usage of hardware acceleration in the models and we put them in
Unknown category.

Most of the projects leverage hardware acceleration for DNN inference while only a small
portion of them leverage hardware acceleration for training DNN models. In addition, a
small portion of projects use hardware acceleration for benchmarking purposes.

4.4 Discussions and Implications

Computer architectures are at the point of shifting from a general-purpose approach to a
hardware/software co-design approach (i.e., domain specific architecture) [2]. To understand
the practices and challenges of hardware-software co-design in the DNN acceleration context,
in our study, we observe that DNN developers leverage hardware acceleration for a variety of
DNN models (e.g., CNN and RNN ). The studied projects mainly leverage hardware acceler-
ation for CNN models, for the tasks such as image classification and object detection, which
is indicate a high-level understanding of the status of hardware acceleration in the wild in
real-world DNN projects.

We also observe that there are fewer developers working on HDLs than those working on
GPPLs. Our observation indicates the imbalance between HDL developers and GPPLs de-
velopers. Researchers are the most popular category of developers who work on the DNN
acceleration projects, while the developers contributing to GPPL code have more diverse
profiles than those contributing to HDL code. It may explained by providing insights for
improving such hardware-software co-design practices in the DNN hardware acceleration
context and beyond. Finally, we observe that most of the projects leverage hardware accel-
eration for DNN inference while only a small portion of them leverage hardware acceleration
for training DNN models. In addition, a small portion of projects use hardware acceleration
for benchmarking purposes. The software engineering community should leverage its
experience in advancing GPPL development to help in advancing HDL develop-
ment languages, providing HDL development tools and resources, and promoting
community support in real world projects to have the balanced support for de-
veloping programs in GPPLs and HDLs.
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4.5 Threats to Validity

This work analyzes hardware acceleration for DNN projects on GitHub to understand how to
use hardware acceleration for DNN projects. This work may not cover all projects related to
DNN hardware acceleration. However, developers may share their DNN acceleration projects
in other media. Other data sources could be used to expand our research in the future.
In addition, we use a set of keywords to find and collect DNN acceleration projects from
GitHub. Some DNN hardware acceleration keywords may have escaped our notice. In RQ1
and RQ3, we manually analyze model categories, tasks, and the purposes of using hardware
acceleration for DNN in the related projects on GitHub. Our findings may be subjective and
rely on the researchers’ judgment during the manual analysis. To counteract the bias, two of
the research authors collaborated on manual analysis and came to a significant agreement,
showing the validity of the analytical results. To confirm the quality of the results, a third
author participated in the discussions during the manual analysis.

4.6 Summary

In recent years, hardware acceleration for deep neural networks (DNNs) has been a popular
domain-specific hardware-software co-design application. To further understand the tech-
niques and challenges of HDL development in real-world projects, we look at 321 open-source
projects linked to hardware acceleration for DNNs in our second study. We look at the types
of projects that use DNN hardware acceleration, the programming languages and developer
profiles used in these projects, and the goals of employing DNN hardware acceleration in
these projects.

DNN developers leverage hardware acceleration for a variety of DNN models (e.g., CNN
and RNN). The studied projects mainly leverage hardware acceleration for CNN models, for
the tasks such as image classification and object detection. On the other hand, hardware
acceleration is used much less frequently for RNNs. HDLs (e.g., VHDL) contribute to a higher
portion of code than GPPLs (e.g., C) in the studied DNN acceleration projects. However,
there are fewer developers working on HDLs than those working on GPPLs. Our observation
indicates the imbalance between HDL developers and GPPLs developers. Researchers are the
most popular category of developers who work on the DNN acceleration projects, while the
developers contributing to GPPL code have more diverse profiles than those contributing to
HDL code. Most of the projects leverage hardware acceleration for DNN inference while only
a small portion of them leverage hardware acceleration for training DNN models. In addition,
a small portion of projects use hardware acceleration for benchmarking purposes. Our results
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can help practitioners and researchers understand the practices of DNN hardware acceleration
in real-world projects, as well as the practices and challenges of HDL code development and
software-hardware co-design in the DNN acceleration context.
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CHAPTER 5 CONCLUSION

5.1 Summary

Studying the Challenges of Developing Hardware Description Language Programs consider
the challenges that developers of HDLs face by examining HDL-related technical questions
in the SO and EE forums. We observe that developing HDL programs face similar challenges
as GPPL and challenges specific to HDLs (e.g., lower level operations such as bit and register
operations or synchronization through clocked processes). We also observe that it is more
challenging for developers of HDL programs to receive community support than GPPL (i.e.,
HDL-related questions are less likely and take longer to get accepted answers) which calls
for efforts to enhance developer engagement or platform support in answering questions in
technical forums (e.g., SO). In addition, our work identified opportunities for the research
community to improve the practices of developing HDL programs, such as to improve the
language abstraction for handling bit/register operations or file/memory I/Os, to provide
actionable information to address syntax errors, and–or to develop tools to improve testing
and simulation.

In recent years, hardware acceleration for deep neural networks (DNNs) has been a pop-
ular domain-specific hardware-software co-design application. To further understand the
techniques and challenges of HDL development in real-world projects, we look at 321 open-
source projects linked to hardware acceleration for DNNs in our second study. We look at
the types of projects that use DNN hardware acceleration, the programming languages (
GPPL and HDL programming languages) and developer profiles used in these projects (eight
classifications identifier for developers), and the goals of employing DNN hardware acceler-
ation in these projects( improve performance in inference and training phases). We observe
that DNN developers leverage hardware acceleration for a variety of DNN models (e.g., CNN
and RNN). The studied projects mainly leverage hardware acceleration for CNN models, for
the tasks such as image classification and object detection. On the other hand, hardware
acceleration is used much less frequently for RNNs. We also observe that HDLs (e.g., VHDL)
contribute to a higher portion of code than GPPLs (e.g., C) in the studied DNN acceler-
ation projects. However, there are fewer developers working on HDLs than those working
on GPPLs. Our observation indicates the imbalance between HDL developers and GPPLs
developers. In addition, we observe that most of the projects leverage hardware acceleration
for DNN inference while only a small portion of them leverage hardware acceleration for
training DNN models.
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Our research discovered differences between developing HDL programs and general-purpose
programming language (GPPL) programs and ways to improve HDL development. We hope
that our study will call the attention of the software engineering community to the importance
of HDL development and prevent HDLs from becoming a bottleneck in the development of
future domain-specific computer systems.

5.2 Future Work

We hope to draw the SE community’s attention to the importance of HDL program develop-
ment which may become a bottleneck in developing domain-specific systems that are critical
in increasing computing power in the future. We encourage researchers and practitioners in
the SE community to leverage the advanced methodology, techniques, and tools in traditional
software development to improve the practices of HDL program development. Future efforts
are needed to help HDL developers address the most critical challenges (e.g., testing and
simulation, syntax errors) in HDL development and the challenges specific to HDLs (e.g.,
process statements, bit operations). These topics represent the most challenging areas of
HDL development and indicate opportunities for future work to improve the HDL devel-
opment practices (e.g., to improve the language abstraction of handling file/memory I/Os,
to provide actionable information to address syntax errors, or to develop tools to improve
testing and simulation). Nevertheless, after searching available forums related to HDLs, we
found that the most recent posts related to HDL questions on the internet are available on
the studied SO and EE forums, while other forums with information related to HDL lan-
guages are not as active. Future work considering other data sources may complement our
study. In addition, our identified and collected questions may not cover all the questions on
Stack Overflow and Electrical Engineering forums.

Our other contribution is about the hardware accelerators for DNNs. We study the categories
of projects that leverage hardware acceleration for DNN, the distribution of programming
languages, developer profiles of these projects, and the purposes of using hardware accelera-
tion for DNN in these projects. One future work can analyze the Hardware acceleration of
other machine learning algorithms like SVM. In our study, projects in the GitHub repository
are covered. Other repositories can be considered for similar analysis. In addition, the main
challenges and issues of hardware-accelerated DNN can be identified to help developers and
practitioners provide appropriate solutions. For this purpose, technical forums such as Stack
Exchange can be used as a data source for identifying the main challenges and issue reports
in this field.
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