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RÉSUMÉ

Les métasurfaces électromagnétiques sont de minces structures artificielles composées d’un
arrangement de particules conçues pour produire des propriétés électromagnétiques qui ne
sont pas présentes naturellement dans les matériaux conventionnels. Au cours des dernières
années, les métasurface ont démontré leur capacité sans précédent à contrôler les ondes
électromagnétiques. En effet, il a été démontré que les métasurfaces permettent le contrôle
de différents aspects fondamentaux des ondes électromagnétiques comme la polarisation, la
direction de propagation, la phase, l’amplitude et la forme des faisceaux.

Les métasurfaces étant des structures électromagnétiquement minces, elles peuvent être mod-
élisées comme étant une discontinuité électromagnétique dans l’espace ayant une épaisseur
nulle. Sous cette approximation, une généralisation des conditions aux limites convention-
nelles qui incluent des courants de polarisation de surface, appelées les Generalized Sheet
Transition Conditions (GSTCs), peuvent être utilisées pour modéliser les métasurfaces. Les
GSTCs permettent de modéliser non seulement des réponses électriques et magnétiques,
mais aussi des réponses électro-magnétiques/magnéto-électriques correspondant à de la bian-
isotropie. Cette modélisation bianisotropique des métasurfaces est essentielle puisqu’au cours
des dernières années, il a été démontré que de nombreuses opérations fondamentales pouvant
être effectuées par des métasurfaces nécessitent la présence de réponses bianisotropes pour
être réalisées de manière pleinement efficace. Dans cette thèse, nous présentons des avancées
liées aux métasurfaces bianisotropes réciproques et non-réciproques.

Dans la première partie, nous étudions le contrôle de la réfraction à l’aide de métasurfaces
bianisotropes passives et réciproques. Les premières métasurfaces conçues pour contrôler la
réfraction à l’aide de l’approche du gradient de phase avaient des problèmes pour de grands
angles de réfraction en raison de l’excitation d’ordres de diffraction indésirables ce qui lim-
itait leur efficacité. Heureusement, il a récemment été démontré théoriquement qu’inclure
des réponses bianisotropes permettrait de concevoir des métasurfaces réfractives pour des
grands angles avec une efficacité maximale. Dans ce travail, nous présentons la modélisation
mathématique, la conception, la simulation et la démonstration expérimentale de métasur-
faces bianisotropes réalisant la réfraction à grands angles sans ordres de diffraction indésir-
ables, et donc avec une efficacité optimale. Par la suite, nous étudions la généralisation,
avec l’utilisation de métasurfaces bianisotropes, d’un phénomène fondamental lié à la réfrac-
tion: l’effet de Brewster. L’effet de Brewster conventionnel consiste en la disparition de la
réflexion de la polarisation p à l’interface entre deux diélectriques à un angle spécifique qui
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dépend de l’indice de réfraction des deux milieux. Dans ce travail, nous généralisons l’effet de
Brewster à n’importe quel angle et à n’importe quelle polarisation en insérant une métasur-
face bianisotrope correctement conçue à l’interface entre les deux milieux. La modélisation
mathématique de ces métasurfaces, leur conception et leurs simulations sont présentées. Les
métasurfaces bianisotropes proposées peuvent servir de solution d’adaptation fortement sous
longueur d’onde entre différents milieux.

Dans la deuxième partie, nous étudions la réalisation de métasurfaces non-réciproques. La
non-réciprocité est une propriété essentielle pour la réalisation de plusieurs opérations fonda-
mentales tels que l’isolation ou la circulation. La non-réciprocité est habituellement obtenue
dans les systèmes électromagnétiques à l’aide de matériaux polarisés magnétiquement, par
exemple des ferrites, qui produisent le phénomène non-réciproque de rotation de Faraday.
Cependant, en raison de l’incompatibilité avec les circuits intégrés, de la grande taille et de
l’encombrement de l’aimant nécessaire à la polarisation, la technologie utilisant des matéri-
aux polarisés magnétiquement n’est pas facilement intégrable aux métasurfaces. Les mé-
tasurfaces doivent donc utiliser des technologies non-réciproques sans aimant telles que la
modulation spatio-temporelle ou l’utilisation de résonateurs chargés de transistors. Dans
ce travail, nous présentons plusieurs travaux sur les métasurfaces non-réciproques réalisés
à l’aide de résonateurs chargés de transistors. Nous présentons d’abord une métasurface
réalisant un isolateur spatial gyrotrope avec la modélisation théorique, la conception des ré-
sonateurs chargés de transistors et les simulations associées. Ensuite, nous présentons une
étude théorique de métasurfaces réalisant la rotation de Faraday en transmission. Par la
suite, nous présentons le concept d’une métasurface à gradient de phase non-réciproque réal-
isée à l’aide de cellules unitaires bianisotropes réalisant un déphasage non-réciproque. Enfin,
nous présentons une métasurface réalisant un isolateur spéculaire non-gyrotrope avec la mod-
élisation théorique, la conception de résonateurs chargés de transistors, la simulation et la
démonstration expérimentale associée.
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ABSTRACT

Electromagnetic metasurfaces are subwavelengthly thin artificial structures composed of an
arrangement of engineered scattering particles that exhibit electromagnetic properties that
are beyond those conventionally found in nature. Metasurfaces have been shown to offer an
unprecedented control of electromagnetic waves and can be seen as general purpose electro-
magnetic wave transformers. Indeed, they have been shown to enable the control of funda-
mental properties of electromagnetic waves such as the polarization, propagation direction,
phase, amplitude and beam shapes of electromagnetic waves.

Metasurfaces being electromagnetically thin structures can be modelled as a zero-thickness
electromagnetic discontinuity in space. Under this approximation, a generalization of con-
ventional boundary conditions that include surface polarization currents called the Gener-
alized Sheet Transition Conditions (GSTCs) can be used to model, synthesize and analyze
metasurfaces. The GSTCs allow the modeling of not only electric and magnetic responses,
but also electro-magnetic/magneto-electric responses corresponding to bianisotropy. This
bianisotropic modelling is critical since, in recent years, many fundamental metasurface op-
erations have been shown to require bianisotropy to be realized fully efficiently. In this thesis,
we present advances related to both reciprocal and nonreciprocal bianisotropic metasurfaces.

In the first part, we investigate the control of refraction with reciprocal and passive bian-
isotropic metasurfaces. Initial metasurfaces realizing generalized refraction designed with
the phase gradient approach had issues for large-angle refraction due to the excitation of
undesired diffraction orders and hence limited efficiency. Fortunately, recent theoretical
derivations have shown that metasurfaces with bianisotropic responses could realize fully
efficient large-angle refraction. In this work, we present the mathematical modelling, design,
full-wave simulations and experimental demonstration of bianisotropic metasurfaces realiz-
ing large-angle refraction without the excitations of undesired diffraction orders, and hence
with optimal efficiency. We next investigate the generalization, with the use of bianisotropic
metasurfaces, of a fundamental phenomenon related to refraction: the Brewster effect. The
conventional Brewster effect consists on the vanishment of the p-polarized reflection at a di-
electric interface at a specific angle that depends on the refractive indexes of both media. In
this work, we generalize the Brewster effect to arbitrary angle and polarization by inserting
properly designed bianisotropic metasurfaces at the interface between the two media. The
mathematical modeling of the metasurfaces, design of the scattering particles at microwave
frequencies and full-wave simulations are presented. The proposed bianisotropic metasurfaces
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provide deeply subwavelength matching solutions for initially mismatched media.

In the second part, we investigate the realization of nonreciprocal metasurfaces. Nonre-
ciprocity is essential for many fundamental operations such as isolation and circulation, and
is conventionally obtained in electromagnetics through magnetically-biased materials (e.g.
ferrites) relying on Faraday rotation. However due to the incompatibility with integrated
circuits, large size, heavy weight and bulkiness of the magnetized technology, nonrecipro-
cal metasurfaces need to rely on magnetless nonreciprocal technologies such as spacetime-
modulation or transistor-loaded resonators. In this work, we present several investigations of
magnetless nonreciprocal transistor-loaded metasurfaces. We first present a gyrotropic reflec-
tive isolator metasurface with the related theoretical modelling, design of transistor-loaded
scattering particles and full-wave simulations. Next, we present a theoretical investigation
metasurfaces performing transmissive faraday rotation. We then present the concept of
nonreciprocal phase gradient metasurfaces realized using bianisotropic nonreciprocal phase-
shifting unit cells. Finally, we present a nongyrotropic specular isolator metasurface with
the related theoretical modelling, design of transistor-loaded scattering particles, full-wave
simulations and experimental demonstration.
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CHAPTER 1 INTRODUCTION

This thesis presents advances in the domain of bianisotropic electromagnetic metasurfaces,
with both reciprocal and nonreciprocal applications. This introductory chapter will introduce
the research area of electromagnetic metasurfaces and provide the research motivation and
objectives of this work. This thesis by article includes three publications in peer-reviewed
journals included as chapters 4, 5 and 6.

1.1 Introduction to Metasurfaces

A metamaterial is defined as an artificial structure made of an arrangement of engineered par-
ticles that exhibit electromagnetic properties that are beyond those conventionally found in
nature [1]. The size of the engineered particles that compose the metamaterials, called meta-
particles, scattering particles or meta-atoms, is smaller than the wavelength of the incident
wave such that no diffraction is experienced and such that the structure can be homoge-
nized to obtain effective material parameters. In the last couple decades, electromagnetic
metamaterials have received a lot of interest due to impressive potential applications such
as cloaking [2] and perfect lensing with negative refraction [3]. However, it was soon real-
ized that they suffer from important drawbacks such as high losses, fabrication complexity,
bulkiness and limited scalability.
Metasurfaces are the two dimensional equivalent of metamaterials with a deeply subwave-
length thickness [4]. They have now received far more interest than their three dimensional
counterparts due to their relative ease of fabrication, lower losses and similar, although more
restricted, wave manipulation capabilities compared to three dimensional metamaterials.
Metasurfaces have been shown to offer an unprecedented control of electromagnetic waves
and can be seen as general purpose electromagnetic wave transformers. Indeed, they have
been shown to enable the control of fundamental properties of electromagnetic waves such as
the phase [5], amplitude [6], polarization [7], propagation direction [5] and beam shapes [8]
of electromagnetic waves.
One of the most fundamental operations that can be performed by metasurfaces is that of
generalized refraction, since it underlines many other wave transformations like lensing and
wavefront manipulations. Initial refractive metasurface were based on the phase-gradient ap-
proach [5]. They used metaparticles that provide equal strength electric and magnetic dipole
responses to realize fully transmissive unit cells with tunable phase [9]. Distinct unit cells,
providing different transmission phases, were then arranged in a periodic pattern, called su-
percell, which creates a phase-gradient and deflects the wave. However, this approach suffered
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from fundamental efficiency limitations for high-angles of deflection due to the excitation of
undesired diffraction orders [10]. It was subsequently shown that more sophisticated bian-
isotropic metasurfaces were required to get rid of those diffraction orders and obtain optimal
high-angle wave deflection [11].
Bianisotropic metasurfaces include magnetoelectric coupling in addition to direct electric
and magnetic dipole responses [12]. Bianisotropic responses have been theoretically shown
to be required for the optimal realization many fundamental wave transformations such as
generalized refraction and reflection [11], polarization transformations [7] and isolation. Even
more generally, it has been theoretically demonstrated that bianisotropic metasurfaces can
realize any wave transformation that respect local power conservation [13].
Most metasurfaces reported to date were limited by Lorentz reciprocity. Such a restriction
prohibits the realization of many potential metasurface applications such as spatial isolators
and circulators, which require a nonreciprocal response [14]. The realization of nonrecipro-
cal metasurfaces is particularly difficult since it requires a biasing force to break reciprocity.
Conventional electromagnetic nonreciprocal devices typically use materials such as ferrites
that exhibit Faraday rotation when biased by a magnet [15]. Due to the bulkiness of the re-
quired magnet and the non-integrability of this technology with integrated circuits, practical
nonreciprocal metasurface need to rely on magnetless nonreciprocal technologies [16] such as
nonlinearity, space-time modulation or transistor-loaded structures. The transistor-loaded
technology is of particular interest for many monochromatic nonreciprocal operations such
as isolation, circulation, or nonreciprocal phase shifting. While a few recent works have in-
vestigated the realization of nonreciprocal metasurfaces, there is an opportunity to model,
design and implement novel nonreciprocal spatial wave transformations with metasurfaces.

1.2 Motivation and Objectives

Bianisotropic metasurfaces have recently been recognized as possessing the proper charac-
teristics to realize optimally efficient fundamental operations. Specifically, the control of
refraction represents an indispensable operation for many metasurface applications. Phase
gradient metasurfaces that have realized generalized refraction have fundamental flaws for
high-angle deflection due to impedance mismatch between incident and refracted wave, which
causes the excitation of undesired diffraction orders. While theoretical works have shown that
bianisotropic responses in metasurfaces remove this mismatch and have the potential to re-
alize fully efficient generalized refracting structures, an experimental demonstration of such
metasurfaces is still lacking. An complete investigation of the control of refraction, and its
related effects, with bianisotropic metasurfaces is hence needed.
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Furthermore, given that the vast majority of metasurfaces reported so far have been restricted
to reciprocal responses, many nonreciprocal metasurface operations have yet to be realized.
The advent of magnetless nonreciprocal technologies now allow the practical implementation
of nonreciprocal responses in metasurfaces. The implementation of nonreciprocal metasur-
faces responses would allow the design of conventional nonreciprocal circuit operations such
as isolation and circulation in a spatial form and also generally increase the capabilities
and degrees of freedom of metasurfaces to go beyond simple passive metasurfaces. The
transistor-loaded technology is an especially promising magnetless nonreciprocal approach
to realize nonreciprocal linear time-invariant metasurfaces due to its simple bias and ease of
integration in the microwave regime. Hence, there exists a significant interest in developing
transistor-loaded metasurfaces to realize spatial nonreciprocal wave transformations and in
general to broaden the already vast capabilities of metasurfaces.
The general objective of this research is to leverage the recent advances in modelling, synthe-
sis and design of bianisotropic metasurface to demonstrate their potential in fundamentally
manipulating electromagnetic waves. We shall separate this general objective into two spe-
cific objectives: the study of reciprocal and passive bianisotropic metasurfaces applied to
controlling refraction and the study of nonreciprocal wave transformations with magnetless
transistor-loaded metasurfaces.
First, we investigate the optimal manipulation of refraction using reciprocal and passive
bianisotropic metasurface. Specifically, we first aim to demonstrate optimal bianisotropic
metasurfaces for large-angle generalized refraction. Next, we shall also study the general-
ization, with bianisotropic metasurfaces, of a phenomenon closely related to refraction: the
Brewster effect.
Secondly, we explore the realization of bianisotropic metasurfaces that break Lorentz reci-
procity. Specifically, we will investigate linear time invariant nonreciprocal metasurfaces
responses, apply them to realize spatial nonreciprocal operation such as isolation and circu-
lation, and propose related magnetless transistor-loaded metaparticle implementations.

1.3 Thesis Organisation

The thesis by article is organized as follows:
Chapter 2 presents a literature review of metasurfaces.
Chapter 3 presents the mathematical model based that will be subsequently used to synthesize
metasurfaces in the rest of the thesis, presents the metasurface design method and introduces
the three articles.
The next three chapters are three peer-reviewed articles given here as published.
Chapter 4 is the first article entitled "Susceptibility derivation and experimental demon-
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stration of refracting metasurfaces without spurious diffraction". This work presents the
synthesis and design of bianisotropic metasurface realizing generalized large-angle refraction
with optimal efficiency.
Chapter 5 is the second article entitled "Generalized brewster effect using bianisotropic meta-
surfaces". This work generalizes the Brewster effect by inserting a properly designed bian-
isotropic metasurface at the interface between two media allowing to arbitrary control the
polarization and angle of incidence of the Brewster effect.
Chapter 6 is the third article entitled "Magnetless reflective gyrotropic spatial isolator meta-
surface". This work presents a metasurface realizing reflective isolation between the two
orthogonal linear polarizations.
Chapter 7 presents complementary results relating to nonreciprocal metasurfaces. It presents
three different nonreciprocal metasurface problems. First, a theoretical synthesis of trans-
missive metasurface realizing Faraday rotation is presented. Second, the concept of nonre-
ciprocal phase-gradient metasurfaces is presented. The related nonreciprocal phase-shifting
bianisotropic unit cells are synthesized and a transistor-loaded implementation is proposed
and verified by full-wave simulations. Third, a nongyrotropic nonreciprocal specular isolator
metasurface is presented. The related susceptibility tensors including normal components are
derived, a transistor-loaded metaparticle is proposed and verified by both full-wave simulation
and an experimental prototype.
Chapter 8 presents a short general discussion of the entire work.
Finally, chapter 9 concludes the thesis and proposes directions for future works.
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CHAPTER 2 LITERATURE REVIEW

Metasurfaces Overview

Electromagnetic metasurfaces are defined as electromagnetically thin structures composed of
subwavelength metaparticles that are designed and optimized to exhibit electromagnetic re-
sponses beyond those found in conventional materials [4,17–26]. In recent years, metasurfaces
have sparked a lot of interest in the electromagnetic community due to their seemingly endless
capability to manipulate electromagnetic waves with applications ranging from microwaves
to optics. The idea of controlling electromagnetic waves with electrically thin structures
has obviously been around for a long time with frequency selective surfaces (FSS) [27–31],
reflectarrays [32–34], transmitarrays [35,36] and gratings [37–39]. Metasurfaces are, in many
ways, the successors of those technologies, with the main difference being that metasurfaces
are necessarily composed of subwavelengthly sized metaparticles, which allows these surfaces
to be homogenized and characterized by spatially varying surface parameters.
Metasurfaces have been applied to a vast number of applications due to their ability to act
as general purpose electromagnetic wave transformers. On a fundamental level, they have
been shown to enable precise manipulation of polarization [7, 40–46], reflection [11, 47, 48],
refraction [5, 49–53] and absorption [6, 54–59].
We shall next present a non-exhaustive overview of metasurface applications to illustrate their
versatility. The ability of metasurfaces to control the direction of propagation of waves in both
reflection and transmission through the use of phase gradients, conceptualized as the so-called
generalized law of refraction and reflection [5], lead to the realization of flat lenses [5,60–64],
beam shaping techniques [65–67], the generation of vortex beams carrying orbital angular
momentum [68–74] and the generation of holograms [8, 75–77]. Metasurfaces have also been
applied to different antenna applications [78–85], reconfigurable intelligent surfaces [86–88],
energy harvesting and wireless power transfer [89–91], radar cross section reduction [92–94]
and cloaking [2,95–101]. Another promising area of applications is that of analog computation
with metasurfaces [102,103] for applications including image processing [104–106], performing
mathematical operations [102,107–109] and machine learning [110–113].
Overall, metasurfaces have demonstrated great versatility in their ability to control electro-
magnetic waves for a plethora of applications all over the electromagnetic spectrum.
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Figure 2.1 Examples of metasurface wave transformations (a) Generalized refraction (b) Gen-
eralized reflection (c) Polarization control (d) Flat lensing (e) Generation of vortex beams
carrying orbital angular momentum

Metasurfaces Modelling, Synthesis and Analysis

The vast interest in the capabilities of metasurfaces naturally lead to a need to properly
model, synthesize and analyze their responses. Given that metasurfaces are electromag-
netically thin structures with deeply subwavelength thickness, and hence do not support
significant phase shifts or Fabry-Perot resonances, they are appropriately modeled as zero
thickness electromagnetic discontinuities in space. Such electromagnetic field discontinu-
ities, according to the Huygens principle, induce surface polarization current sheets on the
metasurface and these surface polarization currents can then be related to metasurface sur-
face properties. There exists three main perspectives to model these surface properties:
the impedance [10, 20, 26, 114, 115], polarizability [11, 42, 116–122] and susceptibility ap-
proaches [4, 25, 68, 123–128]. Those three approaches are often equivalent with the major
exception that the sheet impedance model is restricted to metasurfaces having no normal
polarization densities, which play an important role in certain metasurfaces [129–132]. The



7

susceptibility model is arguably the most general of the three since it takes into account
both tangential and normal polarizations, intrinsically includes coupling between the dif-
ferent cells composing the metasurface, can easily be extended to nonlinear [133, 134] and
time-varying metasurfaces [135], and leads to a powerful and straightforward metasurface
synthesis technique [25,124,126].
The susceptibility model is based on the General Sheet Transition Conditions (GSTCs) [123,
136,137], which provide rigourous boundary conditions for discontinuities in the electromag-
netic field. The fields averages and differences on both sides of the metasurfaces are related
through the GSTCs through its characteristic surface susceptibility tensors. A general synthe-
sis procedure which consists in specifying the desired fields on both sides of the metasurface
and calculating the required susceptibility tensors [124]. Once the susceptibility tensors are
found, they are discretized into subwavelength unit cells and appropriate scattering particles
are designed to realize the required responses. The susceptibility tensor description allows an
in-depth investigation of the different susceptibility responses in terms of the symmetries and
angular response of the metasurface [131,138,139]. Furthermore, several computational anal-
ysis tools have been developed that include the susceptibility-based GSTCs allowing to com-
putationally verify metasurface designs and analyze them for unspecified excitations. Theses
computational tools include susceptibility GSTCs-based finite-difference frequency-domain
(FDFD) [140, 141], finite-difference time-domain (FDTD) [142], fine-element method [143]
and integral equation [132,144] field solvers.
A particular strength of the aforementioned boundary conditions is the modeling of not
only electric and magnetic responses, but also electro-magnetic/magneto-electric responses
corresponding to bianisotropy [12, 145, 146]. The presence of bianisotropic responses is di-
rectly linked to the asymmetry of the structure [12,131]. In recent years, many fundamental
metasurface functionalities such as perfect control of refraction [11, 147–149], reflection [11],
polarization [7], surface wave conversion [150] and isolation [151] have been shown to re-
quire bianisotropic responses to be realized fully efficiently. More fundamentally, it has been
shown that any arbitrary wave transformations that respects local power conservation can
be realized by a passive, lossless and reciprocal bianisotropic metasurface [13]. The local
power conservation restriction can even be overcome by more sophisticated designs either by
specifying additional auxiliary evanescent waves on the metasurface [115] or by using a pair
of bianisotropic metasurface with multiple reflections between them [152,153], hence allowing
the realization of wave transformations that do not respect local power conservation.
Following the mathematical synthesis of a metasurface and its characterization in terms of
surface properties, appropriate scattering particles to realize the different unit cells of the
metasurfaces need to be designed. Typical unit cells can be based on cascaded metallic
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layers [41, 68, 114, 149] or purely dielectric resonators [45, 154–157] with the later being es-
pecially preferred at optical frequencies to avoid high plasmonic losses. It has been shown
that a scattering particle made of a cascade of three metallic layers can provide the necessary
degrees of freedom to obtain full transmission and a 2π phase coverage [9, 41]. A technique
based on transmission line theory and the modelling of each metallic layer as an admittance
was proposed to design bianisotropic unit cells in [41]. However, this technique is limited in
its accuracy since the metallic layers in metasurfaces are close to one another allowing large
evanescent coupling between them. A more sophisticated method to include the evanescent
coupling has been proposed [158], but the task of designing the scattering particles remains
computationally costly and often involves brute force optimization.

Generalized Refraction with Metasurfaces

One of the most fundamental operation that can be performed by metasurfaces is generalized
refraction, which consists in deflecting an incident towards an arbitrary direction, since it
underpins many other operations such as lensing or beamforming. The first generalized
refracting metasurfaces were based on the phase gradient concept [5,49,50,159] where multiple
subwavelength unit cells providing different transmission phases are appropriately arranged to
form a phase gradient which can control the wavefront of the incident wave [160] as illustrated
in Fig. 2.2. Considering an metasurface with a phase gradient along the x-direction, the
generalized law of refraction is written as

nt sin θt − ni sin θi = λ0

2π
dΦ
dx
, (2.1)

where nt and ni are the refractive indices of the transmitted and incident media respectively,
θi is the angle of incidence, θt is the angle of transmission and dΦ/dx is the phase gradient
along x. Note that the phase gradient concept is very similar to phased-array antenna
techniques that have been known for a long time [161] and to grating structures [37], especially
binary blazed gratings [162]. Still the nicely conceptualized generalized law of reflection
and refraction [49] based on phase gradients has had a significant impact on the field of
metasurfaces. The design procedure of a phase-gradient metasurface is first to determine
the phase function to be realized by the metasurface for the desired wave transformation,
discretize this function into subwavelength unit cells and then find appropriate scattering
particles able to provide full transmission and a 2π phase coverage. A suitable scattering
particle geometry to realize full transmission and a 2π phase coverage is using a cascade
of three patterned metallic sheets with the first and third layer being the same making
the structure symmetric [9] as shown in Fig. 2.2 (b). Such structures can realize the 2π
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phase coverage by providing equal strength magnetic and electric resonances which can be
understood in terms of odd and even modes of the structure as illustrated in Fig. 2.2 (c).

Figure 2.2 Phase gradient metasurface concept (a) Supercell composed of different unit cells
providing different transmission phases (b) Symmetric 3-layered metallic unit cell able to
provide full transmission and 2π phase coverage (c) Illustration of the magnetic and electric
resonances of the unit cell in (b)

However, it was soon realized that those simple designs had limited efficiency for large angle of
deflection due to scattering losses in undesired diffraction orders [10]. This was caused by the
fact that the incident and transmitted waves have different tangential wave impedances that
would need to be simultaneously matched by the metasurface. However, initial phase-gradient
metasurfaces were symmetric structures which could at best match only one of the two
waves. One technique to suppress those diffraction orders was to add dissipative losses in the
metasurface [163] in order to suppress the undesired diffraction orders, however, this limited
the power redirected in the desired diffraction order. It was then theoretically shown that
passive and reciprocal bianisotropic metasurfaces could get rid of the undesired diffraction
orders and realize optimally efficient refracting metasurfaces [11,147]. The asymmetric nature
of bianisotropic metasurfaces was shown to allow simultaneously matching both the incident
and transmitted waves [11,147–149]. Another technology that has recently emerged to realize
generalized refraction are the so-called metagratings [164–168], which replace the multiple
subwavelength unit cells of metasurfaces with a single (or a small number of) polarizable
particle(s).
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A fundamental phenomenon closely related to refraction is the Brewster effect [169]. The
conventional Brewster effect relates to the vanishment of the reflection of a p-polarized wave
when incident at a specific angle on a dielectric interface [170–172]. At the Brewster angle,
which, at a dielectric interface, is given by θB = arctan(n2/n1), where n1 and n2 are the
refractive indexes of the two media, all the energy of the incident wave is refracted into the
second media. The Brewster effect also exists in a more general form in magneto-electric
materials, which support either TM-polarization or TE-polarization Brewster transmission,
with both simultaneously possible only for normal incidence [173].
The recent advent of metasurfaces has created novel opportunities to extend the Brewster
effect. They have recently been shown to support Brewster-like, i.e., reflection-less, trans-
mission when surrounded at both sides by air in planar optical silicon nanodisk configura-
tion [174], high-refractive-index nanorod metasurfaces [175], non-planar microwave split-ring
resonator configuration [176,177] and all-angle Brewster transmission in a terahertz metasur-
face [178]. Moreover, they have been demonstrated to allow general Brewster transmission,
i.e., between two different media, in the particular case of normal incidence in a non-planar
bianisotropic loop-dipole configuration [152]. Recently, the Brewster effect at a dielectric
interface was generalized using destructive interference by placing a metasurface composed
of electric dipoles on top of the interface [179], similarly to anti-reflection coatings.

Nonreciprocal Metasurfaces

Nonreciprocity is a fundamental concept in science and technology that is essential to realize
many useful operations such as isolation, circulation and nonreciprocal phase shifting [14,180].
A nonreciprocal system is defined as a system that exhibits different received-transmitted field
rations when its sources and detectors are exchanged. The breaking of Lorentz reciprocity
requires a biasing force, which for electromagnetic systems has conventionally been through
magnetized materials, such as ferrites [15] or terbium garnet crystals [181], that exhibit the
Faraday effect. The polarization of a wave traveling through such magnetically biased ma-
terials will rotate in a direction dictated by the applied static magnetic field independently
of the direction of propagation [169]. However, magnetized materials have severe drawbacks
such as incompatibility with integrated circuit technologies and bulkiness due to the required
biasing magnets, which make them especially impractical for their implementation in meta-
surfaces. Hence, the vast majority of metasurfaces reported to date have been restricted to
following Lorentz reciprocity.
Fortunately, the recent advent of magnetless nonreciprocal technologies [16,182] offer promis-
ing solutions to the drawbacks of magnetic-based nonreciprocal technology and have al-
lowed the realization of some nonreciprocal metasurfaces. Magnetless nonreciprocity can be
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achieved either in linear or nonlinear forms. However, the nonlinear form is restricted to
fixed intensity ranges and non-simultaneous excitations in opposite directions [183–185], and
hence does not represent a generally viable solution for practical nonreciprocal devices [16].
In contrast, linear nonreciprocity may be highly efficient, while bearing potential for novel
types of nonreciprocities. In the microwave and millimeter-wave regimes, it subdivides into
space-time modulated systems (dynamic bias) [186–193] and transistor-loaded systems (static
bias) [151,194–206].
Introducing nonreciprocity in metasurfaces has the potential to extend conventional non-
reciprocal operations such as isolation and circulation, usually applied to guided waves, to
spatial wave manipulations, and to lead to novel metasurface-based wave transformations.
Nonreciprocal metasurfaces using both the space-time modulation route [193, 207–212] and
the transistor-loaded route [151, 200–206] have recently been demonstrated. The transistor
approach is particularly suitable for typical, monochromatic nonreciprocal operations (isola-
tion, circulation and nonreciprocal phase-shifting), given their simple, low consumption and
inexpensive (DC) biasing scheme, and immunity to spurious harmonics and intermodulation
products. Transistor-loaded nonreciprocal metasurfaces have been recently reported realizing
nonreciprocal polarization rotation in reflection [197, 198] and in transmission [201, 206], re-
flective spatial circulation [203], transmissive isolation [151,205] and nonreciprocal reflective
beamsteering [204].
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CHAPTER 3 APPROACH OF THE WHOLE RESEARCH

The different works that will be presented in this thesis will all rely on a modeling of the
metasurfaces using the susceptibility-based GSTCs. This chapter presents the related meta-
surface synthesis and design method, and introduces the three published articles of Chapters
3, 4 and 5.

3.1 Susceptibility-based Generalized Sheet Transition Conditions

A metasurface is a two-dimensional structure with a deeply subwavelength thickness (δ � λ)
making it negligible compared to the wavelength of its operating frequency. It is composed
of an arrangement of transversely subwavelength metaparticles (also referred to as scattering
particles or meta-atoms) that transforms incident waves into synthesizable reflected and
transmitted waves.
Figure 3.1 shows the metasurface synthesis problem. In general, we wish to determine the
susceptibility tensors of a metasurface that will transform a given incident field, Φi, into
specified reflected, Φr, and transmitted, Φt, fields. A set of related incident, reflected and
transmitted fields will be referred to as a wave transformation. As we will show, a general
bianisotropic metasurface can be synthesized to realize multiple independent wave transfor-
mations simultaneously.
As an electromagnetically thin structure, metasurfaces can be modelled as a zero-thickness
electromagnetic discontinuity in space. Under this approximation, rigourous boundary con-
ditions called the Generalized Sheet Transition Conditions (GSTCs) can be used to model
metasurfaces. Those conditions are a generalization of the conventional boundary conditions
via the addition of surface polarization currents. A derivation of the GSTCs for a flat meta-
surface is given in appendix A. They were first derived by Idemen [136] and were later applied
to metasurface structures by Kuester [123]. A general metasurface synthesis technique based
on susceptibility tensors was later developed by Achouri [124]. Those conditions, assuming
the time convention ejωt, are written as follows

ẑ ×∆H = jωP‖ − ẑ ×∇Mz, (3.1a)

ẑ ×∆E = −jωµM‖ −
1
ε
ẑ ×∇Pz, (3.1b)

where the ∆ symbol represents the difference of the fields on both side of the metasurface,
P and M are the electric and magnetic surface polarization densities respectively. Those
polarization densities can be expressed as function of the average fields on both sides of the
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Figure 3.1 General metasurface synthesis problem (a) Perspective view of a metasurface
transforming an incident field Φi into a reflected field Φr and a transmitted field Φt (b) Top
view of the metasurface problem

metasurface through surface susceptibility tensors that fully characterize the metasurface as

P = εχeeEav + 1
c
χemHav, (3.2a)

M = 1
η
χmeEav + χmmHav. (3.2b)

Assuming that the metasurface is placed in the xy-plane at z = 0, the field differences and
averages are

Φav = Φ0+ + Φ0−

2 , (3.3a)

∆Φ = Φ0+ −Φ0−, (3.3b)

where Φ denotes either the electric or magnetic field. It can be useful to express the field
differences and averages directly as a function of the incident, transmitted and reflected fields.
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For an incident wave propagating in the +z-direction as in Fig. 3.1, the field differences and
averages are

Φav = Φi + Φr + Φt

2 , (3.4a)

∆Φ = Φt − (Φi + Φr). (3.4b)

In the most general case, each susceptibility tensor is composed of 9 independent components
for a total of 36 independent susceptibility components between all the tensors. They read

χee =


χxxee χxyee χxzee

χyxee χyyee χyzee

χzxee χzyee χzzee

 , χmm =


χxxmm χxymm χxzmm

χyxmm χyymm χyzmm

χzxmm χzymm χzzmm

 , (3.5a)

χem =


χxxem χxyem χxzem

χyxem χyyem χyzem

χzxem χzyem χzzem

 , χme =


χxxme χxyme χxzme

χyxme χyyme χyzme

χzxme χzyme χzzme

 . (3.5b)

Each of the 36 susceptibility components represent a specific response due to a given excita-
tion. The second subscript and superscript describe the excitation, while the first subscript
and superscript describe the response. For instance, χyxme represents a magnetic response
along the y-direction due to an electric excitation along the x-direction, and so on for all
other components. Each specified wave transformation yields 4 scalar equations from the
GSTCs in (3.1). Hence, it is possible to specify up to 9 independent wave transformations
and obtain a full rank system of 4× 9 = 36 scalar equations for 36 unknowns susceptibility
components. In practice, for a given metasurface, some of those susceptibility components
would generally be zero.
The susceptibility characterization of metasurfaces is particularly useful since it can imme-
diately inform us on properties of the metasurface such as reciprocity and the presence of
gain or loss [128]. A reciprocal system is one that exhibits the same field transmit to re-
ceive ratios when its sources and detectors are exchanged. Following the Lorentz reciprocity
theorem [229], a metasurface is reciprocal if its susceptibility tensors respect the conditions

χee = χTee, χmm = χTmm and χem = −χTme. (3.6)
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Furthermore, the presence of gain or loss can be verified through the computation of the
bianisotropic Poynting theorem [145]. It can be shown that a metasurface will be gainless
and lossless if the following conditions are [128] respected

χ
T
ee = χ

∗
ee, χ

T
mm = χ

∗
mm and χ

T
em = χ

∗
me. (3.7)

In the case of a metasurface including normal susceptibility components, the spatial deriva-
tives in (3.1) leads to a system of coupled partial differential equations which greatly com-
plexifies the synthesis problem and will generally prohibit analytical susceptibility solutions.
However, the case of uniform metasurfaces including normal susceptibility components can
still be easily handled, since the susceptibilities are no longer a function of position on the
metasurface, and are hence no longer affected by the spatial derivatives in (3.1).
For many applications, considering only tangential susceptibility components is sufficient to
synthesize and design the required metasurfaces. This can be explained from the Huygens
principle, since electromagnetic fields can always be expressed in terms of tangential compo-
nents. Hence, a metasurface possessing both normal and tangential susceptibility components
may always be transformed into an equivalent metasurface with only tangential susceptibil-
ity components [129] when considering a specific incident wave. However, this reduces the
available degrees of freedom from 36 to 16, which reduces the number of independent wave
transformations being able to be specified from 9 to 4. Furthermore, certain operations where
the metasurface is required to realize different operations at different angles of incidence will
require normal susceptibilities [130,131]. An example of such a metasurface operation will be
presented in Sec. 7.3 with the nongyrotropic metasurface specular isolator. The rest of the
works presented in this thesis will use purely tangential susceptibility components. Under
such an assumption, inserting (3.2) into the GSTCs equations of (3.1) yields the simplified
purely tangential susceptibility GSTCs

ẑ ×∆H = jωεχeeEav + jkχemHav, (3.8a)

ẑ ×∆E = −jωµχmmHav − jkχmeEav, (3.8b)

where the susceptibility tensors χee, χem, χme and χmm are now each composed of 2× 2 = 4
components related only to the tangential components in the xy-plane given the synthesis
problem shown in Fig. 3.1.
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Equations (3.8) are two vectorial equations, whose projection onto the xy-plane yields four
scalar equations that can be conveniently written in matrix form as

∆Hy

∆Hx

∆Ey
∆Ex

 =


−jωεχxxee −jωεχxyee −jkχxxem −jkχxyem
jωεχyxee jωεχyyee jkχyxem jkχyyem

jkχxxme jkχxyme jωµχxxmm jωµχxymm

−jkχyxme −jkχyyme −jωµχyxmm −jωµχyymm




Ex,av

Ey,av

Hx,av

Hy,av

 . (3.9)

In this work, we propose a classification of the different types of susceptibility responses
of metasurfaces in terms of homoanisotropy, heteroanisotropy and bianisotropy as shown
in Fig. 3.2. An homoanisotropic response, from the latin prefix homo meaning the same, is
one whose field excitation and response are related the same field (either electric excitation
to electric response χee or magnetic excitation to magnetic response χmm). In contrast, an
heteroanisotropic response, from the latin prefix hetero meaning different, is one whose field
excitation and response are related to different fields (either electric excitation to magnetic
response χme or magnetic excitation to electric response χem). Finally, we shall call a meta-
surface that includes both homoanisotropic and heteroanisotropic responses as bianisotropic.

Figure 3.2 Classification of susceptibility responses in terms of homoanisotropy, het-
eroanisotropy and bianisotropy

Furthermore, we shall characterize metasurfaces as either gyrotropic or nongyrotropic. We
define a gyrotropic as a metasurface whose scattering when excited by a linearly polar-
ized wave (either p- or s-polarization) produces some fields that are orthogonally polarized
to the incident wave. In contrast, a nongyrotropic metasurface is one whose scattering
and excitation are all co-polarized when excited by a linearly polarized wave. For a purely
tangential metasurface, the susceptibility components producing a gyrotropic response are
χxyee , χ

yx
ee , χ

xy
mm, χ

yx
mm, χ

xx
em, χ

yy
em, χ

xx
me and χyyme.
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As previously mentioned, the purely tangential GSTCs contain 16 degrees of freedom that
allow up to 4 wave transformations to be performed independently. Extending equations (3.9)
to include multiple transformations yields a general system of equations including all 4 wave
transformations which can be used for synthesizing the susceptibilities

∆Hy1 ∆Hy2 ∆Hy3 ∆Hy4

∆Hx1 ∆Hx2 ∆Hx3 ∆Hx4

∆Ey1 ∆Ey2 ∆Ey3 ∆Ey4

∆Ex1 ∆Ex2 ∆Ex3 ∆Ex4

 =


−jωεχxxee −jωεχxyee −jkχxxem −jkχxyem
jωεχyxee jωεχyyee jkχyxem jkχyyem

jkχxxme jkχxyme jωµχxxmm jωµχxymm

−jkχyxme −jkχyyme −jωµχyxmm −jωµχyymm




Ex1,av Ex2,av Ex3,av Ex4,av

Ey1,av Ey2,av Ey3,av Ey4,av

Hx1,av Hx2,av Hx3,av Hx4,av

Hy1,av Hy2,av Hy3,av Hy4,av

 ,
(3.10)

where the subscripts 1, 2, 3 and 4 indicate the electromagnetic fields of the 4 different
independent wave transformations. Under this matrix form, the required susceptibilities can
be easily obtained by matrix inversion after calculating the fields differences and averages
of each specified wave transformation with (3.3). Depending on the requirements of the
metasurface to be synthesized, the matrix equations of (3.10) can be reduced to include less
than 4 wave transformations. In this case, some susceptibility components can be set to zero
to maintain a full rank system with a unique solution.
Using the previous equations, we can now perform the mathematical synthesis of a metasur-
face which yields the susceptibility tensors required to realize the specified wave transforma-
tions. Depending on the operation, the susceptibility tensors can be a function of position on
the metasurface, which will then be discretized into subwavelength unit cells. The next step
of the metasurface design is to find suitable scattering particles, or metaparticles, to realize
the required susceptibility tensors of each unit cell separately. The different unit cells can
then be assembled together to create the metasurface.
To design the different unit cells, a particularly useful mapping can be done between the
susceptibilities and the scattering parameters. We consider a single unit cell placed in pe-
riodic boundary conditions, which takes into account the interactions and coupling between
adjacent scatterers. This periodic array of scattering particles is uniform with subwavelength
periodicity, hence no propagating diffraction orders will be excited. We define ports 1 and 2
placed on either side of the metasurface for both x and y polarization and express the field
differences and averages in terms of the related scattering parameters for normal incidence.
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The system of equations (3.10) becomes

∆ = χ̃ · Av, (3.11a)

where

∆ =
−m/η + mS11/η + mS21/η −m/η + mS12/η + mS22/η

−nm− nmS11 + nmS21 nm− nmS12 + nmS22

 , (3.11b)

Av = 1
2

 I + S11 + S21 I + S12 + S22

n/η − nS11/η + nS21/η −n/η − nS12/η + nS22/η

 (3.11c)

and

χ̃ =


−jωεχxxee −jωεχxyee −jkχxxem −jkχxyem
jωεχyxee jωεχyyee jkχyxem jkχyyem

jkχxxme jkχxyme jωµχxxmm jωµχxymm

−jkχyxme −jkχyyme −jωµχyxmm −jωµχyymm

 , (3.11d)

with

m =
1 0

0 −1

 , n =
0 −1

1 0

 , I =
1 0

0 1

 and Sab =
Sxxab Sxyab
Syxab Syyab

 . (3.11e)

Hence, using Eqs. (3.11), we can relate a given set of susceptibilities to its scattering parame-
ters at normal incidence, which can be used to design the unit cell geometries. The scattering
parameters of a unit cell can be simulated using full-wave simulators (such as CST, HFSS or
COMSOL) and a proper scattering particle geometry for each unit cell can be optimized.
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3.2 Metasurface Synthesis and Design Method

This section will outline the general method for the mathematical synthesis of metasurface
using the susceptibility-based model and the design of the scattering particles from these
susceptibilities. A metasurface can be designed following the next 10 steps:
1) Specify the required number of wave transformations for the desired operation of the
metasurface. This involves specifying the electric and magnetic field on both sides of the
metasurface for each independent wave transformation. Note that to obtain a proper solution
from the following synthesis technique, the wave transformations specified need to be properly
posed. Some specifications can lead to an unsolvable system or wrong results. For instance,
specifying two different wave transformations for the same incident wave will not yield a
proper solution.
2) Select appropriate susceptibility components to realize the metasurface operation. We are
often interested in finding a unique analytical solution to the synthesis problem, which de-
pending on the number of specified wave transformations involves selecting a limited number
of susceptibility components as degrees of freedom to obtain a full-rank system of equa-
tions. Certain properties of the desired metasurface such as non/gyrotropy, non/reciprocity
or a/symettry can suggest the use of certain susceptibility components [128, 131, 139]. For
instance, specifying a gyrotropic wave transformation would require susceptibility terms cou-
pling excitations and responses of orthogonal polarizations (e.g. χxyee , χxxem, etc...). However,
it may not always be clear which susceptibility components to use to synthesize the metasur-
face and often there exists multiple solutions for the same metasurface operation that utilizes
different susceptibility components. Hence, using an heuristic approach at this step is often
justified. After finishing the mathematical synthesis with a chosen set of susceptibilities, we
shall analyze the results to verify first if we found a proper solution and second if it respects
certain desired properties such as non/reciprocity or passivity and losslessness.
3) Compute the field differences and averages of the electric and magnetic fields following
equations (3.3) for each wave transformation.
4) Arrange the computed field differences and averages into a matrix form, such as in equa-
tions (3.10).
5) Solve the system of equations by matrix inversion to find the susceptibility components.
6) Verify the correctness of the resulting susceptibility tensors. First, if the system of equa-
tions yielded no solution, the desired wave transformations are either ill-posed or the suscepti-
bility components chosen heuristically were not appropriate. Next, computational tools such
as FDFD or FDTD simulations specifically designed to include the susceptibility GSTCs [140]
can be used to simulate the resulting metasurface and verify its response at the specified
incidences and analyze it for other unspecified wave incidences. In the case of uniform meta-
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surfaces, the reflection and transmission coefficients as a function of the incidence angle for
a given set of susceptibilities can be analytically computed [128,138] and compared with the
desired response.
7) Discretize the susceptibility functions into subwavelength unit cells to be designed inde-
pendently.
8) Map the susceptibility tensors of each unit cell to the normal incidence scattering param-
eters of a perfectly periodic structure having the same uniform susceptibility tensors as the
unit cell using Eqs. (3.11).
9) Design of each unit cell separately using a commercial full-wave software such as CST
or HFSS. This design is done by optimizing the scattering particle geometry to realize the
scattering parameters mapped from the required susceptibilities. Each unit cell is simulated
in periodic boundary conditions to take into account coupling to adjacent cells. Figure 3.3
shows examples of unit cells for both reciprocal and passive metasurfaces in Fig. 3.3 (a) and
for nonreciprocal transistor-loaded unit cells in Fig. 3.3 (b).

(a) (b)

∼ λ/5∼ λ/10

transistor

x

y

z

Figure 3.3 Examples of unit cells realizing bianisotropic responses (a) Reciprocal unit cell
composed of three metallic jerusalem crosses separated by dielectric slabs (b) Nonreciprocal
transistor-loaded unit cell

10) In the case of a nonuniform periodic metasurface, arrange the different unit cell into
a supercell and simulate its response. Further optimization of the whole supercell can be
performed to take into account the different coupling between adjacent unit cells compared
to their respective simulations in periodic boundary conditions.
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Finally, we obtained the required physical dimensions of the metasurface. We can now
fabricate it and proceed with the experimental validation of the metasurface design.

3.3 Articles Introduction

The next three chapters are composed of three peer-reviewed journal publication that are
included here as they were published.
Chapter 4 is the first article entitled "Susceptibility derivation and experimental demon-
stration of refracting metasurfaces without spurious diffraction". Generalized refraction is a
fundamental operation that metasurfaces have initially been realized using the phase gradi-
ent concept. However, it was soon realized that such simple designs had limited efficiency
for high-angle refraction due to the excitations of spurious diffraction orders. It was subse-
quently theoretically derived that bianisotropy was required to realize a reciprocal, passive
and lossless metasurface realizing high-angle generalized refraction without spurious diffrac-
tion. This work presents the mathematical synthesis and design of bianisotropic metasurfaces
realizing this operation with optimal efficiency. It presents related simulation results and the
first experimental demonstration of overcoming the theoretical efficiency limit of lossless
homoanisotropic metasurfaces with bianisotropic metasurfaces for high-angle generalized re-
fraction1.
Chapter 5 is the second article entitled "Generalized Brewster effect using bianisotropic
metasurfaces". The conventional Brewster effect is the vanishment of the reflection of TM-
polarized wave at the interface between two dielectric media a specific angle of incidence,
which depends on the refractive indexes of the two media. This work generalizes the Brew-
ster effect by inserting a properly designed bianisotropic metasurface at the interface between
the two media to arbitrary control the incidence angle and polarization of the Brewster ef-
fect. The corresponding metasurface susceptibility tensors are derived and the generalized
Brewster angle is demonstrated by full-wave electromagnetic simulation.
The first two articles tackle the first specific research objective with the aim of controlling
refraction with bianisotropic metasurfaces.
Chapter 6 is the third article entitled "Magnetless reflective gyrotropic spatial isolator meta-
surface". This work presents a birefringent metasurface that reflects vertically polarized
incident waves into horizontally polarized waves, and absorbs horizontally polarized incident
waves. Thus, this metasurface realizes reflective isolation between the two orthogonal polar-
ization. We present the corresponding metasurface susceptibility tensors, propose a mirror-
backed transistor-loaded metaparticle implementation and demonstrate the metasurface by

1The metasurfaces were fabricated at Polytechnique Montréeal by the technicians of Poly-Grames and the
experiment was conducted by Guillaume Lavigne.
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full-wave simulations.
The third article and the complementary results of chapter 7 tackle the second specific re-
search objective aiming at designing magnetless nonreciprocal metasurfaces based on the
transistor-loaded technology.
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CHAPTER 4 ARTICLE 1: SUSCEPTIBILITY DERIVATION AND
EXPERIMENTAL DEMONSTRATION OF REFRACTING
METASURFACES WITHOUT SPURIOUS DIFFRACTION

Authors: Guillaume Lavigne, Karim Achouri, Viktar Asadchy, Sergei Tretyakov,
and Christophe Caloz
This work was published in the IEEE Transactions on Antennas and Propagation, Volume
66, Issue 3, pages 1321-1330, in March 2018.

Abstract

Refraction represents one of the most fundamental operations that may be performed by
a metasurface. However, simple phase-gradient metasurface designs suffer from restricted
angular deflection due to spurious diffraction orders. It has been recently shown, using
a circuit-based approach, that refraction without spurious diffraction, or diffraction-free,
can fortunately be achieved by a transverse (or in-plane polarizable) metasurface exhibiting
either loss-gain, nonreciprocity or bianisotropy. Here, we rederive these conditions using a
medium-based – and hence more insightfull – approach based on Generalized Sheet Transition
Conditions (GSTCs) and surface susceptibility tensors, and experimentally demonstrate,
for the first time beyond any doubt, two diffraction-free refractive metasurfaces that are
essentially lossless, passive, bianisotropic and reciprocal.

4.1 Introduction

Metasurfaces represent a powerful electromagnetic technology that has experienced spectac-
ular development over the past lustrum [20,21,213]. They have already lead to a diversity of
applications, including single-layer perfect absorption [54], polarization twisting [214], power
harvesting [89], orbital angular momentum multiplexing [71, 126], spatial processing [215]
and flat lensing [216], and there seems to be much more to be discovered and developed in
this area.
One of the most fundamental operations that a metasurface may perform is generalized
refraction and reflection [49], as most metasurface field transformations involve these phe-
nomena. Such operations have been achieved in blazed gratings [38, 39], and later in planar
phase-gradient metasurfaces [49], however with restriction to small angle differences between
the incident and refracted or reflected beams and with the presence of spurious diffraction
orders [126,160].
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Fortunately, it is possible to achieve refraction without spurious diffraction, that we shall
hereafter refer to as diffraction-free refraction for short, by introducing more complexity in
the metasurface design [11, 13]. This has been clearly demonstrated in [11], which shows
that such operation may be accomplished by a transverse1 metasurface if that metasurface
exhibits any one of the following three properties:

1. monoisotropy with loss and gain [163],

2. nonreciprocity [11], or

3. bianisotropy [147,148,217].

Among these properties, the practically most convenient is certainly the third one, since
it allows to achieve diffraction-free generalized refraction with a metasurface that is purely
lossless and passive, avoiding complex amplification, and at the same time reciprocal, avoiding
non-integrable magnetic materials [15] or complex magnetless structures [151,197,198].
The work reported in [147], and related experimentation [148], represents the first synthe-
sis of a diffraction-free generalized bianisotropic refractive metasurface. In that paper, the
authors use a circuit-based approach with generalized scattering parameters to match the
impedances of the oblique incident and transmitted waves across a layered metasurface struc-
ture. As a result, they obtain analytical expressions for the admittances of each of the layers
constituting the metasurface. Here, as an extension of the short report [217], we present a
fundamentally different and also more general approach of the same problem. This approach
uses surface susceptibilities synthesized [68,124,133] by Generalized Sheet Transition Condi-
tions (GSTCs) [136], and is therefore a medium-based rather than a circuit-based approach,
which inherently brings about greater insight into the physics of the problem. Moreover, it
treats the metasurface as a global entity, without any restriction regarding its structure, and
may therefore accommodate different implementations, via subsequent scattering parame-
ter mapping [124]. Secondly, starting from a completely general bianisotropic metasurface,
this approach naturally reveals the three diffraction-free conditions derived in [11], and ulti-
mately leads to closed-form expressions for the bianisotropic susceptibility tensors. Finally,
using a novel supercell optimization technique, we design and experimentally demonstrate
two diffraction-free bianisotropic reciprocal refractive metasurfaces which reach higher per-
formances than previously reported ones.

1A transverse metasurface is a metasurface characterized only by tensor components that are parallel
to the plane of the metasurface (i.e. “in-plane” or ‖) or, equivalently, perpendicular to the normal of the
metasurface. Including longitudinal (i.e. “off-plane” or ⊥) tensor components, i.e. components in the
direction of the normal of the metasurface, immediately brings about much greater complexity because, as
shown in [124], this transforms otherwise algebraic GSTC equations into differential equations. The reduction
of the general to a transverse metasurfaces reduces the four bianisotropic constitutive parameters from 3× 3
tensors (4× 9 = 36 elements) to 2× 2 tensors (4× 4 = 16 elements).
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The paper is organized as follows. Section 4.2.2 presents the GSTC synthesis of the meta-
surface susceptibility tensors and discusses the physics of the metasurfaces corresponding to
the three above options. Next, Sec. 4.3.3 maps the synthesized susceptibilities onto scatter-
ing parameters as an intermediate step to discretize the metasurface. Using this mapping,
Sec. 4.4.4 determines the scattering particles corresponding to each metasurface cell. Simu-
lation and experimental validations are provided in Sec. 4.5.5. Finally, conclusions are given
in Sec. 4.6.6.

4.2 Refractive Transverse Metasurface Synthesis

4.2.1 Generalized Refraction and GSTC Synthesis

The problem of diffraction-free generalized refraction by a metasurface is represented in
Fig. 4.1. The metasurface is placed at z = 0 in the xy-plane of a cartesian coordinate
system. We denote a and b the media, possibly having different electromagnetic properties,
bounding the metasurface at z < 0 and z > 0, respectively. A plane wave, with electric
and magnetic fields Ea1 and Ha1, respectively, impinges from medium a at angle θa onto the
metasurface. The metasurface transforms, without any spurious reflection and scattering,
this wave into a plane wave, with fields Eb1 and Hb1, propagating in medium b at angle θb.

medium a

medium b

x

z

111z = 0

Eb1,Hb1

Ea1,Ha1

Metasurface

θb

θa

Figure 4.1 Problem of diffraction-free generalized refraction by a metasurface

We shall next perform the synthesis of the diffraction-free generalized refractive metasurface
in Fig. 4.1 using the GSTC-susceptibility technique presented in [124]. This technique consists
in specifying the incident, reflected and transmitted fields and computing the corresponding
metasurface susceptibility tensors via GSTCs. According to the definition of diffraction-free
generalized refraction, the reflected field will be specified to be zero and the transmitted field
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will be specified as a pure plane wave without any spurious diffraction orders. In the case of
a general transverse bianisotropic metasurface, the GSTCs, defined at z = 0, are given as

ẑ ×∆H = jωε0χeeEav + jωχem
√
µ0ε0Hav, (4.1a)

∆E× ẑ = jωµ0χmmHav + jωµ0χme

√
ε0/µ0Eav, (4.1b)

where the ∆ symbol and ’av’ subscript represent the differences and averages of the tangential
electric or magnetic fields on both sides of the metasurface, and χee, χem, χme, χmm are
the bianisotropic susceptibility tensors describing the metasurface. In order to realize the
simplest and most fundamental generalized refraction operation, we require the metasurface
to be non-gyrotropic so as to avoid polarization alteration. As a result, the s-polarization
and p-polarization problems are independent from each other and can therefore be treated
separately.

4.2.2 Monoisotropic Metasurface

We heuristically start with a metasurface having the simplest possible constitutive param-
eters, namely a monoisotropic metasurface, which is characterized solely by the two scalar
parameters χee and χmm. However, such a metasurface is inadequate since it does not allow
independent syntheses for p-polarization and s-polarization, in contradiction with the last
statement of Sec. 4.2.1. Indeed, independent syntheses would require distinct χxxee –χyymm and
χyyee –χxxmm pairs for p-polarization and s-polarization, respectively.

4.2.3 Monoanisotropic Metasurface

The next simplest metasurface is thus a monoanisotropic metasurface. Note that similar
derivations for monoanisotropic metasurfaces were originally presented in [114,126]. In the p-
polarization case, for which the metasurface appears monoisotropic, the fields corresponding
to the scenario of Fig. 4.1 are

Ea1 = (cos θax̂+ sin θaẑ)e−j(kaxx+kazz),Ha1 = e−jkaxx

ηa
ŷ, (4.2a)

Eb1 = Tp(cos θbx̂+ sin θbẑ)e−j(kbxx+kbzz),Hb1 = Tp
e−jkbxx

ηb
ŷ, (4.2b)

where Tp is the (parallel-polarization) transmission coefficient, η(a,b) =
√
µ(a,b)/ε(a,b), and

k(a,b)x = ka,b sin θa,b, (4.3a)
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k(a,b)z = ka,b cos θa,b, (4.3b)

where k(a,b) = √µ(a,b)ε(a,b)k0 with k0 = ω/c0.
Based on the above assumption of a transverse metasurface, the GSTCs (4.1) involve only
the x and y components of these fields, evaluated at z = 0, which, also accounting for the
p-polarization monoisotropy, results into

χxxee = −∆Hy1

jωε0Ex,av1
, (4.4a)

χyymm = −∆Ex1

jωµ0Hy,av1
, (4.4b)

with
∆Ex1 = Ebx1 − Eax1 = Tp cos θbe−jkbxx − cos θae−jkaxx, (4.5a)

∆Hy1 = Hby1 −Hay1 = Tpe
−jkbxx/ηb − e−jkaxx/ηa, (4.5b)

Ex,av1 = Eax1 + Ebx1

2 = cos θae−jkaxx + Tp cos θbe−jkbxx
2 (4.5c)

Hy,av1 = Hay1 +Hby1

2 = e−jkaxx/ηa + Tpe
−jkbxx/ηb

2 (4.5d)

where the subscript ‘1’ has been introduced for later convenience. The only unknown in these
relations is the transmission coefficient, Tp. This coefficient may be obtained by enforcing
power conservation across the metasurface,

1
2Re

(
(Eax1x̂)× (H∗ay1ŷ)

)
= 1

2Re
(
(Ebx1x̂)× (H∗by1ŷ)

)
, (4.6)

whose resolution for Tp with (4.2) yields

Tp =
√
ηb cos θa
ηa cos θb

(4.7)

which is thus a fundamental condition for power conserving diffraction-free refraction.
Inserting (4.5) into (4.4) yields the periodic complex susceptibility functions

Re(χxxee ) = −2kakbTp(ηakbkaz + ηbkakbz) sin(αx)
ε0ωηaηb(k2

bk
2
az + k2

ak
2
bzT

2
p + 2kakazkbkbzTp cos(αx)) , (4.8a)

Im(χxxee ) =
2kakb(ηakakbzT 2

p − ηbkazkb + Tp(ηakbkaz − ηbkakbz) cos(αx)))
ε0ωηaηb(k2

bk
2
az + k2

ak
2
bzT

2
p + 2kakazkbkbzTp cos(αx)) ,

(4.8b)
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Re(χyymm) = −2ηaηb(etaakazkb + ηbkakbz)Tp sin(αx)
kakbµ0ω(η2

bη
2
aT

2
p + 2ηaηbTp) cos(αx) , (4.8c)

Im(χyymm) =
2ηaηb(ηakakbzT 2

p − ηbkazkb + (ηakakbzT 2
p − ηbkbkaz)T 2

p cos(αx))
kakbµ0ω(η2

bη
2
aT

2
p + 2ηaηbTp) cos(αx) ,

(4.8d)

with α = kax − kbx. Plots of these functions may be found in [126]. The non-zero imaginary
parts of χxxee and χyymm, tensorially corresponding to the loss and gain relations χTee 6= χ∗ee and
χTmm 6= χ∗mm, where the superscripts T and ∗ denote the transpose and conjugate operation
respectively [218], indicate the presence of loss (negative imaginary part) and gain (positive
imaginary part) alternating along the metasurface. This synthesis corresponds to the first
way of obtaining a diffraction-free refractive metasurface, as shown in [11].

4.2.4 Bianisotropic Metasurface

Since specifying a monoanisotropic (or monoisotropic) metasurface leads only to the loss
and gain option for diffraction-free refraction, as just found, complexity must be added to
the metasurface to obtain the nonreciprocity and bianisotropy options. The non-gyrotropy
assumption requires χxyee,mm = χyxee,mm = χxxem,me = χyyem,me = 0, and hence eliminates 8 of the 16
terms of a transverse metasurface, and, among the remaining 8 terms, 4 are for p-polarization
and 4 are for s-polarization. Therefore, still assuming p-polarization, only the bianisotropic
two terms χxyem and χyxme can be added to χxxee and χyymm. This 4-element susceptibility set
allows for two fundamentally new possibilities: a) χxyem 6= −χyxme, and b) χxyem = −χyxme. The
latter tensorially generalizes to χem = −χTme, where the superscript ‘T ’ represents the trans-
pose operation, which is the only condition for reciprocity in the prevailing non-gyrotropic
situation [218], and the former corresponds thus to a nonreciprocal metasurface. These two
possibilities correspond to options 2) and 3), respectively, in [11]. In each of the two cases,
one has to describe the phenomenon (reciprocity or nonreciprocity) by also specifying the
transformation in the reverse direction, namely the direction from medium b to medium a,
which brings about two additional equations, leading to a full-rank matrix system of order
4.
In the nonreciprocal case, one may specify any reverse transformation, such as for instance
refraction in different directions or absorption. However, as mentioned in Sec. 6.1, we are
primarily interested here in realizing a reciprocal metasurface. The corresponding reverse
transformation, involving the same angles as in Fig. 4.1, is shown in Fig. 4.2.
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Figure 4.2 Reverse transformation reciprocal to that of Fig. 4.1

Thus, the proper synthesis equations, including both the reciprocal direct (subscript ‘1’) and
reverse (subscript ‘2’) transformations, may be compactly written as

∆Hy1 ∆Hy2

∆Ex1 ∆Ex2

 =
−jωε0χ

xx
ee −jk0χ

xy
em

−jk0χ
yx
me −jωµ0χ

yy
mm

 Ex1,av Ex2,av

Hy1,av Hy2,av

 , (4.9)

whose first and second columns correspond to the direct and reverse transformations, respec-
tively. The fields corresponding to the reverse transformation [Fig. 4.2] read

Ea2 = −(cos θax̂+ sin θaẑ)ej(kaxx+kazz),Ha2 = ejkaxx

ηa
ŷ, (4.10a)

Eb2 = −Tp(cos θbx̂+ sin θbẑ)ej(kbxx+kbzz),Hb2 = Tp
ejkbxx

ηb
ŷ, (4.10b)

corresponding to

∆Ex2 = Ebx2 − Eax2 = −Tp cos θbejkbxx + cos θaejkaxx, (4.11a)

∆Hy2 = Hby2 −Hay2 = Tpe
jkbxx/ηb − ejkaxx/ηa, (4.11b)

Ex,av2 = Eax2 + Ebx2

2 = − cos θaejkaxx − Tp cos θbejkbxx
2 , (4.11c)

Hy,av2 = Hay2 +Hby2

2 = ejkaxx/ηa + Tpe
jkbxx/ηb

2 . (4.11d)

Inserting (4.5) and (4.11) into (4.9) finally yields the sought after transverse susceptiblity
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functions

χxxee =
−4kakbTp sin(αx))

ε0ω
(
Tp(ηakbkaz + ηbkakbz) cos(αx)) + ηakbkaz + ηbkakbzT 2

p

) , (4.12a)

χxyem =

2j
(
Tp(ηakbkaz − ηbkakbz) cos(αx))− ηbkbkaz + ηakakbzT

2
p

)
k0
(
Tp(ηakbkaz + ηbkakbz) cos(αx)) + ηakbkaz + ηbkakbzT 2

p

) , (4.12b)

χyxme =

2j
(
Tp(ηbkakbz − ηakbkaz) cos(αx))− ηbkbkaz + ηakakbzT

2
p

)
k0
(
Tp(ηakbkaz + ηbkakbz) cos(αx)) + ηakbkaz + ηbkakbzT 2

p

) , (4.12c)

χyymm =
−4ηaηbkazkbzTp sin(αx))

µ0ω
(
Tp(ηakbkaz + ηbkakbz) cos(αx)) + ηakbkaz + ηbkakbzT 2

p

) , (4.12d)

with α = kax − kbx. These relations are plotted in Fig. 4.3 for θa = 0◦ and θb = 70◦, and
considering air on both sides of the metasurface.
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Figure 4.3 Susceptibility functions (4.12) for θa = 0◦ and θb = 70◦ (a) χxxee (purely real)
(b) χxyem (purely imaginary) (c) χyxme (purely imaginary) (d) χyymm (purely real)

4.2.5 Properties of the Synthesized Metasurface

The metasurface characterized by the susceptibilities in (4.12) possesses the following prop-
erties:

• It is bianisotropic, as already noted in Sec. 4.2.4.2, since χxyem 6= 0 and χyxme 6= 0.

• As a result of bianisotropy, it is asymmetric, as will be shown in the corresponding
scattering parameters to be given in Sec. 4.3.3.

• It is reciprocal, as noted in Sec. 4.2.4.2, since χxyem = −χyxme, which is equivalent to
Tp =

√
ηb cos θa/ηa cos θb (power conservation), tensorially corresponding to the relation

χTme = −χem.

• It is passive and lossless, since χxxee , χyymm ∈ R and χxyem, χyxme ∈ I, tensorially corresponding
to the relations χTee = χ∗ee, χ

T
mm = χ∗mm and χTme = χ∗em [218].

• It is periodic in x with period kax−kbx, as seen in Fig. 4.3, corresponding to the periodic
field momentum transformation [219] operated by the metasurface.
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4.3 Scattering Parameter Mapping

The task now is to establish a proper link between the mathematical transverse suscep-
tibility functions (4.12) and the corresponding real metasurface, composed of an array of
scattering particles. Specifically, this includes discretizing these susceptibility functions in
subwavelength cells and determining the appropriate particle geometries for all the cells.
To build a metasurface with the assumed purely transverse susceptibility, χt, we shall proceed
as follows:

1. Map the synthesized susceptibility parameters onto normal-incidence scattering param-
eters. The reason to use normal incidence in the design procedure is twofold. First, this
is a necessary condition to ensure that only the transverse terms of the particle suscep-
tibilities or, more precisely, polarizabilities, get excited. Second, this will lead to the
simplest possible simulation set-up for each specific particle (step 3 below), obliqueness
being produced by the phase gradient between cells. For p-polarization, and assuming
that the metasurface is reciprocal and surrounded by air, the corresponding relations
are found, following the procedure in [124], as

Sxx11 = −2j (2k0η0χ
yx
me + µ0ωχ

yy
mm − η2

0ε0ωχ
xx
ee )

Dxx
, (4.13a)

Sxx22 = 2j (2k0η0χ
yx
me − µ0ωχ

yy
mm + η2

0ε0ωχ
xx
ee )

Dxx
, (4.13b)

Sxx21 = Sxx12 = −jη0 (4 + k2
0(χyxme)2 + µ0ε0ω

2χxxee χ
yy
mm)

Dxx
. (4.13c)

with

Dxx =− 2jµ0ωχ
yy
mn

+ η0
(
−4 + k2

0(χyxme)2 + εωχxxee (−2jη0 + µ0ωχ
yy
mm)

)
,

(4.13d)

where the x’s in the superscript xx correspond to the transverse component of the
p-polarized fields [Eqs. (4.2) and (4.10)], assuming also non-gyrotropy. We have thus
obtained the scattering matrix periodic functions Sxx(x, y) corresponding to χ‖(x, y).
As announced in Sec. 4.2.5.2, Eqs. (4.13a) and (4.13a) reveal that the metasurface
is asymmetric, since Sxx11 6= Sxx22 . This requirement of an asymmetric unit cell is in
agreement with previous works [11,13].

2. Discretize the periodic functions (4.13), or Sxx(x, y), in subwavelength cells in order
to ensure their safe sampling in terms of Nyquist theorem. This leads to the discrete
function Sxx(xi, yj), for i, . . . , Nx and j, . . . , Ny, where Nx and Ny represent the number
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of cells along the x and y directions, respectively.

3. Select a generic particle structure and geometry that may be adjusted to cover the
phase and amplitude range of Sxx(xi, yj) across the entire metasurface. For simplicity
and computational efficiency, compute the scattering parameters (under normal inci-
dence) of each cell separately and within periodic boundary conditions. Even though
the final metasurface will be locally aperiodic, i.e. made of different adjacent cells, peri-
odic boundary conditions will reasonably approximate the coupling to slightly different
neighbours.

4. Since Sxx(xi, yj) is periodic, the period includes the complete set of all the different cells,
and the overall structure will consist in the periodic repetition of the corresponding
super-cell. Now, simulate this supercell within periodic boundary conditions with the
specified incidence angle, and optimize the geometry of the particles so as to maximize
energy refraction in the specified direction, i.e., specifically, in the proper diffraction
order corresponding to the supercell.

Note that it is practically difficult to realize scattering particles with purely transverse polar-
izability and hence purely transverse susceptibility. Practical metasurfaces typically always
include small non-zero longitudinal susceptibility terms, χ⊥(x, y). Such terms are not excited
in 3) above, due to normal incidence, but would play a role in 4) above, given the oblique
angle2. We shall select a generic particle without longitudinal metallizations, to avoid strong
perpendicular electric moments, and without transverse loops, to avoid strong perpendicular
magnetic moments. We may therefore expect negligible χ⊥(x, y) and a design essentially
correspond to the assumed purely transverse one.

4.4 Design of Scattering Particles

We shall design here two diffraction-free refractive transverse metasurfaces to illustrate the
theory of the previous sections: the first metasurface with (θa, θb) = (20◦,−28◦) at 10 GHz
and the second with (θa, θb) = (0◦,−70◦) at 10.5 GHz. For this purpose, we shall follow the
procedure described in Sec. 4.3.3. For experimental simplicity, we assume that the metasur-
face is entirely surrounded by free space (ka = kb = k0, ηa = ηb = η0).

2The final design may thus, rigorously, include a small χ⊥(x, y) associated with a slightly modified χ‖(x, y).
Such a metasurface would strictly correspond to a diffraction-free-refraction design different than the initially
purely transverse one. This does not represent any contradiction since the synthesis corresponds to an inverse
problem, naturally admitting multiple solutions.
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As the step 1), we insert the susceptibilities given by (4.12), with ka = kb = k0, into (4.13).
This yields the scattering parameter functions

Sxx11 =
(−k2

0 + kazkbz) sin[(kax − kbx)x] + jk0(kaz − kbz) cos[(kax − kbx)x]
(k2

0 + kazkbz) sin[(kax − kbx)x] + jk0(kaz + kbz) cos[(kax − kbx)x] ,
(4.14a)

Sxx22 =
(−k2

0 + kazkbz) sin[(kax − kbx)x]− jk0(kaz − kbz) cos[(kax − kbx)x]
(k2

0 + kazkbz) sin[(kax − kbx)x] + jk0(kaz + kbz) cos[(kax − kbx)x] ,
(4.14b)

Sxx12 = Sxx21 =
2jk0
√
kazkbz

(k2
0 + kazkbz) sin[(kax − kbx)x] + jk0(kaz + kbz) cos[(kax − kbx)x] .

(4.14c)

It may a priori seem contradictory with the initial assumption of reflection-less refraction to
obtain Sxx11 6= 0 and Sxx22 6= 0. However, there is no contradiction if one recalls that Eqs. (4.13)
are associated in the design procedure with normal incidence, both to isolate out transverse
susceptibility components and to simulate the cells one by one, whereas the specified incidence
angle is generally nonzero. When excited under the specified oblique incidence angle, the
metasurface realized by this design methodology will naturally be reflection-less. Note that
the metasurface asymmetry predicted in Sec 4.2.5.2 is still clearly apparent from the fact
that Sxx11 6= Sxx22 , since asymmetry for normal incidence implies asymmetry.
As step 2), we discretize each of the two metasurfaces in 6 different unit cells of size 6×6 mm
(∼ λ0/5) for the metasurface with (θa, θb) = (20◦,−28◦) and 5.1× 5.1 mm (∼ λ0/5.6) for the
metasurface with (θa, θb) = (0◦,−70◦).
As step 3), we choose scattering particles made of three dog-bone shaped metallic layers
separated by 1.52 mm-thick (∼ λ0/20 = λd/11.55) Rogers 3003 (εr = 3, tan δ = 0.0013)
dielectric slabs3.
The generic dog-bone metallization is shown in Fig. 4.4 (a), while Fig. 4.4 (b) shows the
corresponding three-layer unit cell. Each unit cell is then optimized with periodic conditions
using a commercial software (CST Studio 2014), which provides a reasonable initial guess for
the geometry of the dog-bone patterns.

3The reason for the choice of three metallic layers is as follows. The metasurface, as specified by (4.14), is
a reciprocal and lossless two-port network for each unit cell. Such a network may be easily shown to support
3 independent parameters, specifically one magnitude and two phases in its characteristic (e.g. scattering)
parameters [220]. In order to realize the metasurface, we therefore need 3 independent degrees of freedom,
which may be provided by three cascaded admittances, and hence three metal layers.
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(a)

(b)

(c)

(d)

Figure 4.4 Metasurface scattering particles (a) Unit cell front view with dog-bone shaped
metallic particle (b) Unit cell perspective view with dielectric substrates made transparent
for visualisation (c) Supercell composed of 6 unit cells, front view (d) Supercell perspective
view

As step 4), we combine the six different unit cells into a supercell, which is periodically
repeated to form the whole metasurface. Figure 4.4 (c) and (d) show the generic structure of
the supercell. Finally, the supercell, automatically taking into account the exact (as opposed
to periodic) coupling between adjacent unit cells, is optimized. Specifically, we simulate the
Floquet space harmonics of the supercell and adjust the geometrical parameters so as to
maximize the energy in the desired mode. Given the high number of degrees of freedom of
the supercell (6 unit cells × 3 layers × 4 geometry parameters), we proceed as follows: i) we
optimize the first unit cell within the periodic supercell simulation setup, ii) we subsequently
update the supercell, iii) we move on to the second cell and iteratively repeat i) and ii) until
the last unit cell. This supercell optimization is done iteratively until the desired performance
is achieved. Moreover, in this process, we change only one parameters (W , L, G, S) in each
of the three unit cell layers, in order to minimize the computational effort. The dimensions
(in mm) of the metallic structures of the different unit cells are listed in Tabs. 4.1 and 4.2
for the two metasurfaces.

4.5 Simulation and Experiment

The full-wave simulated fields of the two diffraction-free bianisotropic reciprocal refractive
metasurfaces are plotted in Fig. 4.5. Being perfectly periodic, the metasurface supports in
principle an infinite number of space harmonics, as mentioned in the last item of Sec. 4.2.5.
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Table 4.1 Dimensions (in millimeter) of the unit
cells for the (θa, θb) = (20◦,−28◦) metasurface

W L G S
Layer 1 4.25 0.5 0.75 0.5

Cell 1 Layer 2 3.125 0.5 0.5 0.875
Layer 3 2.5 0.5 0.25 0.5
Layer 1 3.25 0.5 0.5 0.5

Cell 2 Layer 2 1.75 0.5 0.5 0.25
Layer 3 3.25 0.5 0.5 0.5
Layer 1 3.625 0.5 1 0.5

Cell 3 Layer 2 3 0.5 0.75 0.5
Layer 3 2.625 0.5 0.5 0.5
Layer 1 2.25 0.5 0.5 0.5

Cell 4 Layer 2 4.75 0.5 0.75 0.5
Layer 3 4.5 0.5 1 0.5
Layer 1 4.25 0.5 1 0.5

Cell 5 Layer 2 4.25 0.5 3.75 0.5
Layer 3 2.375 0.5 0.5 0.5
Layer 1 3 0.5 1.25 0.5

Cell 6 Layer 2 4.125 0.5 0.5 0.5
Layer 3 1.5 0.5 1 0.5

In both designs, only the space harmonics m = 0, m = −1 and m = +1 are propagating,
while the others are evanescent, and the incident and refracted waves correspond to the
space harmonics m = 0 and m = −1, respectively. Ideally, from synthesis, 100% of the
scattered power should reside in the m = −1 space harmonic. Practically, the harmonics R0,
R−1, R+1, T0 and T+1 are also weakly excited, due to the imperfections of the metasurface
associated with discretization and fabrication restrictions (essentially limited resolution of
the metallic particles), already taken into account at this simulation stage. At this point, it
would be interesting to compare the ideal susceptibility functions plotted in Fig. 4.3 for the
(θa, θb) = (0◦,−70◦) metasurface with the susceptibility function of the realized discretized
metasurface. However, access to this realized susceptibility is not trivial, and will therefore
be discussed in a future publication with specific emphasis on the modeling problem.
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Table 4.2 Dimensions (in millimeter) of the unit
cells for the (θa, θb) = (0◦,−70◦) metasurface

W L G S
Layer 1 3 0.5 0.375 0.5

Cell 1 Layer 2 2.5 0.5 0.375 0.5
Layer 3 4 0.5 0.25 0.5
Layer 1 3.25 0.5 0.25 0.5

Cell 2 Layer 2 3 0.5 0.5 0.5
Layer 3 2.5 0.5 0.25 0.5
Layer 1 4 0.5 0.75 0.5

Cell 3 Layer 2 3.75 0.5 0.75 0.5
Layer 3 2.5 0.5 0.5 0.5
Layer 1 3.25 0.5 0.625 0.5

Cell 4 Layer 2 1.5 0.5 1 0.5
Layer 3 2 0.5 0.875 0.5
Layer 1 4.5 0.5 0.75 0.5

Cell 5 Layer 2 4.5 0.5 0.625 0.5
Layer 3 4.25 0.5 1 0.5
Layer 1 3.25 0.5 0.875 0.5

Cell 6 Layer 2 4.25 0.5 0.5 0.5
Layer 3 4 0.5 1 0.5

The corresponding scattering parameter simulations are shown in Fig. 4.6 and Fig. 4.7 for
the (θa, θb) = (20◦,−28◦) metasurface and the (θa, θb) = (0◦,−70◦) metasurface, respectively.
As expected from synthesis, most of the incident power, except for small conducting and
dielectric dissipation loss and negligible coupling to undesired space harmonics, is refracted
to the specified direction. The T−1 space harmonic is −0.6185 dB at 9.94 GHz for the
(θa, θb) = (20◦,−28◦) metasurface and −0.7978 dB at 10.64 GHz for the (θa, θb) = (0◦,−70◦)
metasurface with reflection lower than−15 dB. In comparison, the simulation result before the
supercell optimization process (Sec. 4.4) yielded a T−1 space harmonic of −1.5045 dB for the
(θa, θb) = (20◦,−28◦) metasurface and of −1.6518 for the (θa, θb) = (0◦,−70◦) metasurface,
which is 0.886 dB and 0.854 dB worse, respectively.
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Figure 4.5 Full-wave simulated electric field magnitude for the two diffraction-free bian-
isotropic reciprocal refractive metasurfaces (a) Metasurface with (θa, θb) = (20◦,−28◦) at
10 GHz (b) Metasurface with (θa, θb) = (0◦,−70◦) at 10.5 GHz

The two metasurfaces were fabricated and measured. Figure 4.8 shows a photograph of them
and Fig. 4.9 shows the experimental setup used for the measurements. In the measurement,
we used a horn antenna placed ∼ 400 mm from the metasurface and a near-field probe
scanning over a plane parallel to the metasurface in the transmission region. We then applied
a near-field to far-field transformation [221] to evaluate the transmission response of the
metasurface. The measurement results are shown, superimposed with the simulations, in
Figs. 4.10 and 4.11 for the (θa, θb) = (20◦,−28◦) metasurface and the (θa, θb) = (0◦,−70◦)
metasurface, respectively.
Tables 4.3 and 4.4 compare the simulation and experimental results at the optimal frequency.
The slight discrepancy of the experimental frequency compared to the simulated one (3.7%
and 1.4% for the (θa, θb) = (20◦,−28◦) and (θa, θb) = (0◦,−70◦) metasurfaces, respectively) is
explained by the small air gaps existing between the two substrate layers in the metasurface
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Figure 4.6 Simulated scattering parameters of the (θa, θb) = (20◦,−28◦) 10 GHz metasurface
(a) Transmitted propagating space harmonics. (b) Reflected propagating space harmonics

assembly. The lower efficiency of the T−1 harmonic in the experiment compared to the
simulation is mostly due to more power diffracted into the T0 harmonic. While our experiment
did not directly measure reflections, the combined reflected and dissipated powers (reflection
+ loss) from the simulation and experiment are in fairly good agreement. The observed
discrepancies between simulation and measurement may be attributed to different factors,
including fabrication tolerance, horn antenna excitation (instead of ideal plane wave) and
probe antenna imperfection (spurious edge diffraction).
In [10], the authors established a theoretical limit in efficiency for a lossless monoanisotropic
metasurface, which is found to be ∼ 75% for (θa, θb) = (0◦,−70◦). Our bianisotropic metasur-
face exceeds this lossless monoanisotropic limit by around 4% despite the natural presence
of loss. This result suggests that bianisotropic metasurfaces can indeed realize refraction
with higher efficiencies than conventional designs. We believe this is the first experimen-
tal demonstration of overcoming the fundamental efficiency limit for anomalous refraction
using bianisotropic metasurface. In comparison, the experimental work in [148], for a sim-
ilar wide-angle refraction, had an overall efficiency lower to the efficiency limit of conven-
tional (monoanisotropic) designs due to higher scattering into other diffraction orders and
higher absorbtion compared to our metasurface. Note that the experimental efficiency of
the (θa, θb) = (20◦,−28◦) metasurface is lower than the theoritical efficiency of a lossless
monoanisotropic metasurface. This is mostly due to dissipation loss in the metal scatterers
and in the dielectric. Possible avenues for future work that may reduce the losses and lead to
higher efficiencies are to either use similar scattering particles but with less lossy materials
or to implement a fully dielectric bianisotropic metasurface.
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Figure 4.7 Simulated scattering parameters of the (θa, θb) = (0◦,−70◦) 10.5 GHz metasurface
(a) Transmitted propagating space harmonics (b) Reflected propagating space harmonics

Table 4.3 Simulation and experiment result at the optimal
frequency (θa, θb) = (20◦,−28◦) metasurface

Frequency T−1 T0 T+1 Reflections
+ Losses

(GHz) (dB) (dB) (dB) (dB)
Simulation 9.94 -0.6185 -21.12 < −80 -8.5243
Experiment 10.32 -1.44 -8.476 < −80 -8.5335

4.6 Conclusion

We have derived the conditions for diffraction-free refraction in a metasurface using a medium-
based approach based on Generalized Sheet Transition Conditions (GSTCs) and surface sus-
ceptibility tensors, and experimentally demonstrated two diffraction-free metasurfaces that
are essentially lossless, passive, bianisotropic and reciprocal.
Following [11], we have considered refractive metasurfaces possessing only transverse sus-
ceptibility components. However, diffraction-less refraction might also be achieved by meta-
surfaces including normal polarizabilities, which would lead to other possibilities than the
three reported in [11]. However, solving the synthesis problem for metasurfaces with nonzero
normal susceptibility components is not trivial since the corresponding GSTCs relations form
a set of differential equations instead of just algebraic equations. At this stage, the design of
such structures remains an open avenue for further investigation.
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(a) (b)

Figure 4.8 Photographs of the two fabricated metasurfaces (a) (θa, θb) = (20◦,−28◦) meta-
surface (b) (θa, θb) = (0◦,−70◦) metasurface

Table 4.4 Simulation and experiment result at the optimal
frequency (θa, θb) = (0◦,−70◦) metasurface

Frequency T−1 T0 T+1 Reflections
+ Losses

(GHz) (dB) (dB) (dB) (dB)
Simulation 10.64 -0.7978 -24.27 -32.02 -7.8663
Experiment 10.8 -1.0004 -14.28 -22.76 -7.8574
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Figure 4.9 Photograph of the experimental setup with the horn antenna on the right and the
metasurface being measured in the center surrounded by absorbers
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Figure 4.10 Measured (thick lines) and simulated (thin lines) scattering parameters in trans-
mission of the (θa, θb) = (20◦,−28◦) metasurface.
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Figure 4.11 Measured (thick lines) and simulated (thin lines) scattering parameters in trans-
mission of the (θa, θb) = (0◦,−70◦) metasurface
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Abstract

We show that a properly designed bianisotropic metasurface placed at the interface be-
tween two arbitrary different media, or coating a dielectric medium exposed to the air,
provides Brewster (reflectionless) transmission at arbitrary angles and for both the TM and
TE polarizations. We present a rigorous derivation of the corresponding surface suscepti-
bility tensors based on the generalized sheet transition conditions, and demonstrate by full-
wave simulations the system with planar microwave metasurfaces designed for polarization-
independent and azimuth-independent operations. The proposed bianisotropic metasurfaces
provide deeply subwavelength matching solutions for initially mismatched media. The re-
ported generalized Brewster effect represents a fundamental advance in optical technology,
where it may both improve the performance of conventional components and enable the
development of novel devices.

5.1 Introduction

The Brewster effect, which consists in the vanishment of the reflection of TM-polarized waves
at the interface between two dielectric media at a specific incidence angle [169], has a history
of more than 200 years. In 1808, Malus observed that unpolarized light becomes polarized
upon reflection under a particular angle at the surface of water [170]. Seven years later,
Brewster experimentally showed that this angle was equal to the inverse tangent of the ratio
the refractives indices of the two media [171]. Another six years later, in 1821, Fresnel
completed the understanding of the phenomenon using a mechanical model of the interface
system and derived the eponymic reflection and transmission coefficients [172], which embed
the Brewster effect. Finally, these formulas were generalized to magneto-electric materials,
which support either TM-polarization or TE-polarization Brewster transmission, with both
possible only for normal incidence, by Giles and Wild [173].
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The recent advent of metasurfaces has created novel opportunities to extend the Brewster
effect. Metasurfaces allow indeed unprecedented manipulations of electromagnetic waves [21,
25]; specifically, bianisotropic metasurfaces [12] may produce full polarization transforma-
tion [7], anomalous reflection [122] and diffractionless generalized refraction [149,222]. They
have recently been shown to support Brewster-like, i.e., reflection-less, transmission when
surrounded at both sides by air in planar optical silicon nanodisk configuration [174], high-
refractive-index nanorod metasurfaces [175], non-planar microwave split-ring resonator con-
figuration [176, 177] and all-angle Brewster transmission in a terahertz metasurface [178].
Moreover, they have been demonstrated to allow general Brewster transmission, i.e., between
two different media, in the particular case of normal incidence in a non-planar bianisotropic
loop-dipole configuration [152].
Here, following our initial suggestion in [223], we present a generalization of the Brewster
effect between two arbitrary different media, for arbitrary incidence angle and arbitrary
polarization, using a planar bianisotropic metasurface. We derive synthesis formulas of the
corresponding metasurface susceptibility tensors and demonstrate the generalized Brewster
angle by full-wave electromagnetic simulation.

5.2 Generalized Brewster Effect

Figure 5.1 shows the proposed metasurface-based generalized Brewster effect. Figure 5.1(a)
illustrates the suppression of reflection for arbitrary wave incidence angle and arbitrary po-
larization, Fig. 5.1(b) defines the corresponding problem in the plane of scattering, and
Fig. 5.1(c) depicts the metaparticule used in the paper as a proof of concept in the mi-
crowave regime. The metasurface is assumed to suppress reflection without altering the
direction of refraction prescribed by the Snell law for the initial pair of media and without
inducing any gyrotropy (polarization rotation), while being passive, lossless and reciprocal.
The preservation of the Snell law for the transmitted wave implies a uniform (without phase
gradient) metasurface, and hence a uniformly periodic metastructure.
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Figure 5.1 Metasurface-based generalized Brewster refraction between two media (a) Scat-
tering of a wave impinging on the interface under an arbitrary angle (θa), with conventional
Fresnel transmission and reflection for the case of the bare interface (left) and with reflection-
less (Brewster) transmission when a properly designed metasurface is placed at the interface
(right) (b) Brewster metasurface problem, for TE and TM polarizations, in the xz-plane
scattering plane (c) Proposed 2-layer conducting cross-potent metaparticle for a microwave
proof of concept

5.3 Susceptibility Tensor Derivation

5.3.1 Field Specifications

We consider the metasurface problem depicted in Fig. 5.1 (b), where a wave incident from the
medium a in the xz−plane at an arbitrary angle θa is fully transmitted, without reflection
(R = 0), into the medium b, at the Snell angle θb = arcsin(na

nb
sin θa). We assume the

time-harmonic complex convention exp(−iωt) through the paper, and we shall apply the
metasurface synthesis technique described in [124,128] to determine the susceptibility tensors
of the metasurface.
The first step in the synthesis is to define the desired tangential fields at both sides of the
metasurface in the plane z = 0. For a TM-polarized wave, these fields read

E‖a,TM = cos θae−ikxxx̂, (5.1a)

H‖a,TM = e−ikxx

ηa
ŷ, (5.1b)

E‖b,TM = T cos θbe−ikxxeiφTMx̂, (5.1c)

H‖b,TM = T
e−ikxx

ηb
eiφTM ŷ, (5.1d)
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while for a TE-polarized wave, they read

E‖a,TE = −e−ikxxŷ, (5.2a)

H‖a,TE = cos θa
e−ikxx

ηa
x̂, (5.2b)

E‖b,TE = −Te−ikxxeiφTE ŷ (5.2c)

H‖b,TE = T cos θb
e−ikxx

ηb
eiφTEx̂, (5.2d)

where kx is the (continuous) tangential wavenumber, η(a,b) is the wave impedance in medium
(a, b), and T is the transmission coefficient between the two media. The phase terms eiφTM,TE

in the transmitted fields are introduced here to account for the typical phase shifts imparted
to the wave by a pratical metasurface and to provide degrees of freedom that may be advan-
tageous in the design of the unit-cell metaparticle. In these relations, T must be properly
chosen to provide total transmission across the metasurface. It is obtained by enforcing
power conservation across the metasurface (passivity and losslessness assumptions), i.e., by
enforcing the continuity of the normal component of the Poynting vector at z = 0 [128]. This
leads, using the fields in (5.1) and (5.2), to

T =
√
ηb cos θa
ηa cos θb

, (5.3)

which is identical for the TE and TM polarizations.

5.3.2 Transition Conditions

The boundary conditions in the plane of the metasurface (z = 0) are the generalized sheet
transition conditions [25,124,128]

ẑ ×∆H = iωεχeeEav + iωχem
√
µεHav, (5.4a)

∆E× ẑ = iωµχme

√
ε

µ
Eav + iωµχmmHav, (5.4b)

where the symbol ∆ and the subscript ‘av’ represent the differences and averages of the
tangential fields at both sides of the metasurface, i.e.,

∆Φ = Φb −Φa, (5.5)

Φav = (Φa + Φb)/2, (5.6)
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where Φ = E,H, and χee, χem, χme and χmm are the bianisotropic surface susceptibility
tensors describing the metasurface. In this paper, we shall restrict our attention to purely
tangential susceptibility metasurfaces, corresponding to 2 × 2 tensors and hence 16 suscep-
tibility parameters in Equation (6.5), although metasurfaces involving normal susceptibility
components may offer further possibilities [128], as will be discussed later.

5.3.3 Homoanisotropic Metasurface

We heuristically start our quest for the design described in connection with Fig. 5.1 by con-
sidering the simplest type of metasurface, namely an homoanisotropic metasurface, which is
defined as a metasurface whose only nonzero susceptibility tensors are χee and χmm. The
nongyrotropy condition implies then χxyee = χyxee = χxymm = χyxmm = 0 [128], which decouples the
two polarizations with χxxee and χyymm for TM and χyyee and χxxmm for TE (see Fig. 5.1(b)). Insert-
ing the specifications (5.1) and (5.2) into the field differences and averages (5.5) and (5.6),
substituting the resulting expressions into into (6.5), and solving for the four nonzero sus-
ceptibility components yields

χxxee = 2iηaTeiφTM − 2iηb
ηaηbωε0 cos θa + ηaηbTωε0eiφTM cos θb

, (5.7a)

χyymm = −
2iηaηb

(
cos θa − TeiφTM cos θb

)
µ0ω (ηb + ηaTeiφTM) . (5.7b)

χyyee = 2iηaTeiφTE cos θb − 2iηb cos θa
ηaηbωε0 + ηaηbTωε0eiφTE

, (5.8a)

χxxmm =
iηaηb

(
−1 + TeiφTE

)
−ηbµ0ω cos θa + ηaµ0TωeiφTE cos θb

. (5.8b)

The complex nature of these susceptibilities indicates the presence of loss or gain, whereas we
are searching for a lossless and gainless metasurface. This attempt is therefore unsuccessful,
but it demonstrates the necessity for a really bianisotropic metasurface, as will be shown
next.

5.3.4 Bianisotropic Metasurface

At this point, we can still hope that adding heteroanisotropy, corresponding to the suscep-
tibilitity tensors χem and χme, may allow to remove the loss-gain constraint of the previous
design via the resulting extra degrees of freedom. Let us thus add the two heterotropic al-
lowed pairs of nongyrotropic components, namely χxyem and χyxme for TM and χyxem and χxyme for
TE. This increases the number of parameters to eight, and implies therefore the specification
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of an additional wave transformation for each polarization in order to make the system of
equations (6.5) full-rank and hence the synthesis problem exactly determined. Since some
forms of bianisotropy can lead to nonreciprocity [14], which is here prohibited, we shall
enforce reciprocity by specifying a second wave transformation corresponding to the time-
reversed version of the fields in (5.1) and (5.2) [224]. The resulting system of equations can
be compactly written as

∆Hy1 ∆Hy2

∆Ex1 ∆Ex2

 =
−iωε0χ

xx
ee −ik0χ

xy
em

−ik0χ
yx
me −iωµ0χ

yy
mm

Ex1,av Ex2,av

Hy1,avHy2,av

 , (5.9)

for the TM polarization, and as
∆Hx1 ∆Hx2

∆Ey1 ∆Ey2

 =
−iωε0χ

yy
ee −ik0χ

yx
em

−ik0χ
xy
me −iωµ0χ

xx
mm

Ey1,av Ey2,av

Hx1,avHx2,av

 , (5.10)

for the TE polarization, where the subscript 1 corresponds to the fields in (5.1) and (5.2),
and the subscript 2 corresponds to their time-reversed counterpart. Solving this system for
the eight susceptibility components yields

χxxee = − 8T sinφTM
ωε (Tα(ηb cosφTM + ηaT ) + 2 cos θa(ηb + ηaT cosφTM)) , (5.11a)

χxyem = −χyxme = −2i (Tα(ηb cosφTM − ηaT ) + 2 cos θa(ηb − ηaT cosφTM))
k (Tα(ηb cosφTM + ηaT ) + 2 cos θa(ηb + ηaT cosφTM)) , (5.11b)

χyymm = − 8ηaηbT cos θa sinφTM cos θb
uω (Tα(ηb cosφTM + ηaT ) + 2 cos θa(ηb + ηaT cosφTM)) (5.11c)

for the TM polarization and

χyyee = 8T cos θa sinφTE cos θb
ωε (ηaT (T + cosφTE)α + 2ηb cos θa(T cosφTE + 1)) , (5.12a)

χyxem = −χxyme = −2i (ηaT (T − cosφTE)α + 2ηb cos θa(T cosφTE − 1))
k (ηaT (T + cosφTE)α + 2ηb cos θa(T cosφTE + 1)) , (5.12b)

χxxmm = 8ηaηbT sinφTE
uωηaT (T + cosφTE)α + 2ηb cos θa(T cosφTE + 1) (5.12c)

for the TE polarization, with α =
√

2n2
a cos(2θa)
n2

b
− 2n2

a
n2

b
+ 4. [128]. The direct responses – χxxee ,

χyyee , χxxmm and χyymm – are purely real and the cross responses – χxyem, χyxem, χxyme and χyxme – are
purely imaginary, which indicates that the metasurface is lossless and gainless [128]. Thus,
this design satisfies all the chosen requirements: it provides Brewster (R = 0) transmis-
sion for arbitrary incidence and polarization while being lossless and gainless, nongyrotropic
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and reciprocal. Hence, inserting a metasurface having the surface susceptibilities of (5.11)
and (5.12) between two different media will achieve full transmission for the specified angle
of incidence for the TM and TE polarizations, respectively. The realized Brewster trans-
mission may be explained in terms of the metaparticles operating as Huygens’ sources, with
electric and magnetic dipole resonances that mutually couple so as to act as an impedance
transformer. [152].

5.4 Metaparticle Design

We now need to determine the shape of a metaparticle that realizes the susceptibilities in
(11) and (12). This shape can be devised upon the basis of a simple pair of conducting
wires, typically folded in a dog-bone shape for higher homogeneity, as shown in Fig. 5.2.
The notation pyxme represents the y component of the magnetic dipole response due to the x
component of the electric field excitation, and so on. The direct responses, χxxee and χyymm, can
be realized with identical wires, as shown in Fig. 5.2 (a). However, such a symmetric structure
does not support cross responses. Such responses, specifically the required components χyxme

and χxyem, can be obtained by breaking the symmetry of the wire-pair, as shown in Fig. 5.2 (b).
The exact values of these parameters can be obtained by tuning the level of asymmetry of
the structure. Repeating this reasoning for the perpendicular polarization leads to a double
dog-bone structure having the form of a cross potent, also often called Jerusalem cross in
the literature on metamaterials, which provides independent tuning [126] of the four other
susceptibility components – χyyee , χyymm, χxyme and χyxem.
The metaparticle obtained in this fashion will naturally induce some transmission phase,
depending on the amounts of asymmetry, and coupling between the two layers. In the
present application (Brewster transmission), this phase is not critical, and the design is
therefore fully satisfactory as such. If one would wish, for some reason, to add control over
the phase, an extra degree of freedom would need to be introduced in the structure. This
can be typically accomplished by inserting a third conducting layer – a three-layer structure
has been shown to provide full phase coverage with matching [128, 149, 222] – which can
be designed from scattering parametric mapping [25, 128, 222] or using a transmission-line
admittance model [149,158].

5.5 Results

As proofs of concept, we designed a series of two-layered metasurfaces composed of cross-
potent resonators, as shown in Fig. 5.1(c). The metasurfaces were designed and simu-
lated using CST Studio 2019 with periodic boundary conditions with the general param-
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Figure 5.2 Folded wire-pair metaparticle (half of the complete cross-potent metaparticle)
(a) Symmetric structure, supporting only the susceptibility components, χxxee and χyymm (b)
Asymmetric structure providing the four susceptibility components required in (5.11)

eters (εr,a, εr,b) = (1, 3) (bare-interface Brewster angle for the TM polarization at 60◦),
εr,subs = 3, d = 1.52 mm, s = 0.5 mm and g = 0.5 mm. Fig. 5.3 presents the results
for the metasurface design with the susceptibilities (5.11) and (5.12), which correspond to
polarization-independent (TE and TM) Brewster transmission in the xz-plane. Fig. 5.3 (a)
presents a Brewster angle at θa = 0 (normal incidence) with wyu = wxu = 3.9 mm and
wyl = wxl = 2.75 mm, Fig. 5.3 (b) present a Brewster angle at θa = 30◦ with wyu = 3.2 mm,
wxu = 3.3 mm, wyl = 2.2 mm and wxl = 2.2 mm and Fig. 5.3 (c) presents a Brewster angle
at θa = 75◦ with wyu = 3.35 mm, wxu = 3.9 mm, wyl = 2.65 mm and wxl = 2.45 mm.
These results show that the specifications are perfectly realized by the designed metasurfaces
for the chosen Brewster angles (θa of 0◦, 30◦ and 75◦) in the X-band frequency range and
also show the angular response of the metasurface system at the operating frequency of the
metasurface.



52

9 9.5 10 10.5 11

Frequency (GHz)

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d

e

R
T M

T
T M

R
T E

T
T E

0 20 40 60 80

Angle of incidence (°) 

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d

e

R
T M

T
T M

R
T E

T
T E

0 20 40 60 80

Angle of incidence (°) 

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d

e

R
T M

T
T M

R
T E

T
T E

9 9.5 10 10.5 11

Frequency (GHz)

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d

e

R
T M

T
T M

R
T E

T
T E

9 9.5 10 10.5 11

Frequency (GHz)

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d

e

R
T M

T
T M

R
T E

T
T E

0 20 40 60 80

Angle of incidence (°) 

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d

e

R
T M

T
T M

R
T E

T
T E

(a)

(b)

(c)

TM

TM

TM

TE

TE

TE

Figure 5.3 Full-wave simulated electric field amplitude distribution, frequency response and
angular response of the reflectance and transmittance for polarization-independent xz-plane
(ϕ = 0) Brewster metasurfaces (a) Brewster angle at θa = 0 (normal incidence) (b) Brewster
angle at θa = 30◦ (c) Brewster angle at θa = 75◦
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The design of Fig. 5.3, with coinciding TM and TE Brewster angles, provides full reflection
suppression for unpolarized light. However, this response is restricted to scattering in the
xz (φ = 0) plane. Indeed, according to Equations (5.11) and (5.12), we have χyyee 6= χxxee ,
χxxmm 6= χyymm, χxyem 6= χyxem and χxyme 6= χyxme, and therefore the metasurface structure is anisotropic
since the rotation (x, y)→ (y,−x) implies different susceptibilities and different susceptibility
cannot lead to the same scattering response.
This single scattering plane restriction can be lifted with the same set of (eight) susceptibility
parameters for one of the two polarizations (TM or TE) by combining the selected (TM
or TE) xz-plane equations in (5.11) and (5.12) with the corresponding yz-plane equations
obtained via the permutations (x, y) → (y,−x), which is in fact equivalent to making the
structure isotropic (χyyee = χxxee , χxxmm = χyymm, χxyem = χyxem and χxyme = χyxme) since the same
Brewster response is expected in the two planes for the selected polarization. The results for
corresponding metasurfaces are presented in Fig. 5.4. Fig. 5.4 (a) presents a TM-Brewster
angle at θa = 30◦, Fig. 5.4 (b) presents a TE-Brewster angle at θa = 30◦ Fig. 5.4 (c) presents
a TM-Brewster angle at θa = 75◦ and Fig. 5.4 (d) presents a TE-Brewster angle at θa = 75◦

with wyu = wxu = 3.55 mm and wyl = wxl = 2.85 mm. They further confirm the accuracy of
the proposed design.

5.6 Discussion

Although the eight-parameter metasurfaces considered here are restricted to either single-
plane or single-polarization Brewster transmission, bianisotropic metasurfaces involving a
greater number of susceptibility parameters might be able to provide universal Brewster
transmission. Since the possibilities of transverse (x and y) susceptibilities have been ex-
hausted, such metasurfaces would require resorting to normal z susceptibilities. Although
the related design is in principle still analytically tractable thanks to the uniformity of the
metasurface [128], it is considerably more involved and will therefore be deferred to a later
study.
Equations (5.11) and (5.12) do not only provide the sought after Brewster transmission
design. They point to an extra fundamental capability of an interfacing bianisotropic meta-
suface that occurs when φTM = φTE = 0, which can be achieved by phase compensation
or adjustment. In this case, we have χxxee = χyymm = χyyee = χxxmm = 0, which leads to the
heteroanisotropic generalized sheet transition conditions

ẑ ×∆H = jkχemHav, (5.13a)

∆E× ẑ = jkχmeEav, (5.13b)
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Figure 5.4 Full-wave simulated electric field amplitude distribution, frequency response and
angular response of the reflectance and transmittance for azimuth-independent (∀ϕ) single-
polarization (TM or TE) Brewster metasurfaces (a) TM-Brewster angle at θa = 30◦ (b) TE-
Brewster angle at θa = 30◦ (c) TM-Brewster angle at θa = 75◦ (d) TE-Brewster angle at
θa = 75◦
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with χem = −χT
em for reciprocity [14]. The corresponding reflection coefficients can easily be

computed from general field expressions [128]. They read

rTM = η1 cos θ1 − η2,TM,eff cos θ2

η1 cos θ1 + η2,TM,eff cos θ2
, (5.14a)

rTE = η2,TE,eff cos θ1 − η1 cos θ2

η2,TE,eff cos θ1 + η1 cos θ2
, (5.14b)

where
η2,TM,eff = η2

(2i− kχxyem)2

(2i+ kχxyem)2 , (5.15a)

η2,TE,eff = η2
(2i− kχyxem)2

(2i+ kχyxem)2 . (5.15b)

The relations (5.14) have the same mathematical form as the conventional Fresnel reflection
coefficients [169]. This reveals that the proposed [medium – bianisotropic metasurface –
medium] system is equivalent to a [medium – effective medium] system, with the effective
medium having the impedances given by Equations (5.15). Thus, inserting such a bian-
isotropic metasurface at the interface between two media or coating a dielectric medium
exposed to free space with it can change the effective bulk impedance of the transmission
medium, which enriches the design possibilities of existing materials.
Although the proof of concept systems in Figures 5.3 and 5.4 pertain to the microwave
regime, where bianisotropic metasurfaces (surrounded by air) have been well documented,
bianisotropic metasurfaces have also been recently demonstrated in all-dielectric configura-
tion [225, 226]. Therefore, the proposed concepts of metasurface-based generalized Brewster
effective refractive medium can be readily extended to the optical regime, where they may
be particularly beneficial in terms of reducing the insertion loss associated to impedance
mismatch in many common components.

5.7 Conclusion

In summary, we have shown that a properly designed bianisotropic metasurface placed at
the interface between two dielectric media or coating a dielectric medium exposed to the air
provides Brewster transmission at arbitrary angles and for both the TM and TE polariza-
tions. We have presented a rigorous derivation of the corresponding surface susceptibility
tensors and demonstrated the system by microwave proof-of-concept designs. Moreover, we
have noted that such a system leads to the concept of effective refractive media with tai-
lorable impedances. The proposed bianisotropic metasurfaces offer deeply subwavelength
matching solutions for initially mismatched media, and alternatively lead to the possibility
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of on-demand manipulation of the conventional Fresnel coefficients. They represent thus a
fundamental advance in optical science and posses a considerable potential for novel techno-
logical developments.
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Abstract

We present the concept of a magnetless Reflective Gyrotropic Spatial Isolator (RGSI) meta-
surface. This is a birefringent metasurface that reflects vertically polarized incident waves
into a horizontally polarized waves, and absorbs horizontally polarized incident waves, hence
providing isolation between the two orthogonal polarization. We first synthesize the meta-
surface using surface susceptibility-based Generalized Sheet Transition Conditions (GSTCs).
We then propose a mirror-backed metaparticle implementation of this metasurface, where
transistor-loaded resonators provide the desired magnetless nonreciprocal response. Finally,
we demonstrate the metasurface by full-wave simulation results. The proposed RGSI meta-
surface may be used in various electromagnetic applications, and may also serve as a step
towards more sophisticated magnetless nonreciprocal metasurface systems.

6.1 Introduction

Nonreciprocity is a fundamental concept in science and technology [14, 180]. It allows spe-
cial operations, such as isolation, circulation, nonreciprocal phase shifting and nonreciprocal
gyrotropy, that are crucial in a great variety of applications. In electromagnetics, nonreciproc-
ity is conventionally obtained through the use magnetized materials, such as ferrites [15] or
terbium garnet crystals [181]. However, magnetized materials have severe drawbacks, such
as incompatibility with integrated circuit technologies and bulkiness due to the required
biasing magnets. Recently, the concept of magnetless nonreciprocity has arisen as a po-
tential solution to these issues [16], with the transistor-loaded structures [151, 194–203] and
spacetime-modulated systems [186–191,193] being the main practical1 approaches.
Advances in magnetless nonreciprocity have recently been extended to metasurfaces, where
magnetized material technologies would be inapplicable. Metasurfaces have experience spec-
tacular developments over the past decade [21,25]. They have been shown to provide unprece-

1Magnetless nonreciprocity can also be obtained by nonlinearity combined by structural asymmetry [16,
185, 227]. However, the related systems are generally unpractical for engineering devices, due major issues
such as single excitation at a time, poor transmission and isolation performance, and intensity dependence.
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dented control over the fundamental properties of electromagnetic waves, such of polarization,
reflection, refraction, spin and orbital angular momentum. However, most of the studies on
metasurfaces reported so far have focused on reciprocal structures. Introducing nonreciproc-
ity in metasurfaces has the potential to extend conventional nonreciprocal operations such
as isolation and circulation, usually applied to guided waves, to spatial wave manipulations,
and to lead to novel metasurface-based wave transformations. As in other platforms, the
transistor-loaded route for nonreciprocity, compared spacetime-varying systems, has the ad-
vantage in metasurfaces to produce no spurious harmonic and intermodulation frequencies
while using the simplest form of biasing, namely a simple DC battery. Transistor-loaded
nonreciprocal metasurfaces have been demonstrated realizing nonreciprocal polarization ro-
tators in reflection [197] and in transmission [198], transmissive isolation using an antenna-
circuit-antenna approach [151], bianisotropic nonreciprocity [201] and meta-grating reflective
circulators [203].
The most fundamental and primary application of nonreciprocity in metasurfaces is probably
spatial isolation. Here, we introduce the concept of a reflective isolator metasurface, with
a pair of orthogonally-polarized ports coupled by reflective gyrotropy, and demonstrate a
corresponding magnetless Reflective Gyrotropic Spatial Isolator (RGSI).

6.2 Operation Principle

Figure 6.1 depicts the operation principle of the proposed RGSI metasurface. The metasur-
face includes reciprocity-breaking elements, and is designed in such a manner that, using bire-
fringence, it specularly2 reflects vertically-polarized incident waves into horizontally-polarized
waves, as shown in Fig. 6.1(a), and absorbs horizontally-polarized incident waves, as shown
in Fig. 6.1(b).
The resulting RGSI device is de facto a two-port reflective spatial isolator, with ports that we
denote here P1 and P2, as indicated in the figure. Its electromagnetic response may therefore
be described by the following scattering matrix:

SRGSI
spec =

SRGSI
11 SRGSI

12

SRGSI
21 SRGSI

22

 =
 0 0
Aeiφ 0

 , (6.1)

where A and φ are the amplitude and the phase, respectively, imparted by the metasurface
2“Specular,” from the Greek word “speculum” that means “mirror,” refers to reflection that occurs under

the same angle as the incidence angle, according to Snell law of reflection. We restrict here our attention to
specular reflection, as implicitly assumed from the equal incidence and reflection angles (θ) in Fig. 6.1(a).
However, the concept of reflective gyrotropic spatial isolator could naturally be extended to non-specular
reflection, with reflection angle differing from the incidence angle, by using metasurface gradient and bian-
isotropy [222].
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Figure 6.1 Operation principle of the proposed Reflective Gyrotropic Spatial Isolator (RGSI)
metasurface (a) A y-polarized incident wave, from port P1, is reflected with x-polarization,
to port P2 (b) An x-polarized incident wave, from port P2, is absorbed by the metasurface

to the rotated reflected-transmitted field. For the polarizations assumed in Fig. 6.1, the
metasurface may be alternatively described by the reflection matrix

RRGSI
spec =

RRGSI
xx RRGSI

xy

RRGSI
yx RRGSI

yy

 =
0 Aeiφ

0 0

 , (6.2)

so that RRGSI
spec = (SRGSI

spec )T.

6.3 Metasurface Design

6.3.1 GSTC Equations

Metasurfaces may be modeled as zero-thickness discontinuities of space via Generalized Sheet
Transition Conditions (GSTCs) and bianisotropic surface susceptibility tensors [25,124,128].
The GSTCs, assuming the harmonic time convention e+iωt, read

ẑ ×∆H = iωP− ẑ ×∇Mz, (6.3a)

ẑ ×∆E = −iωM− 1
ε
ẑ ×∇Pz, (6.3b)

where ∆H and ∆E are the differences of the magnetic or electric fields at both sides of the
metasurface, and where P and M are the induced electric and magnetic surface polarization
densities on the metasurface. The latter may be expressed in terms of surface susceptibility
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tensors as
P = εχeeEav + kχemHav, (6.4a)

M = kχmeEav + µχmmHav, (6.4b)

where Eav and Hav are the averages of the electric or magnetic fields at both sides of the
metasurface, and χee, χmm, χem, χme are the 3 × 3 bianisotropic susceptibility tensors char-
acterizing the metasurface. In this paper, we shall assume a purely tangential metasurface,
i.e., a metasurface with Mz = Pz = 0, for which the bianisotropic GSTCs simplify to

ẑ ×∆H = iωεχeeEav + ikχemHav, (6.5a)

∆E× ẑ = ikχmeEav + iωµχmmHav, (6.5b)

where χee, χmm, χem, χme are now 2× 2 tensors [228]. In these relations, the differences and
averages of the fields are explicitly given by

∆Φ = Φt − (Φi + Φr), (6.6a)

Φav = (Φt + Φi + Φr)/2, (6.6b)

where Φ = E,H, where the subscript t, i and r denote the transmitted, incident and reflected
fields, respectively.

6.3.2 Susceptibility Synthesis

The metasurface can be designed using the susceptibility synthesis procedure described
in [128]: 1) specify the desired field transformations, 2) compute the corresponding field
differences and averages, 3) insert the expressions for these differences and averages into the
susceptibility-GSTC equations, and 4) solve the resulting equations for the surface suscepti-
bility tensors.
The GSTCs assumed here, given by (6.5), form a linear system of 4 scalar equations in the 16
susceptibility components containing the 4 susceptibility tensors χee, χmm, χem, and χme of
dimensions 2× 2. The isolator operation in Fig. 6.1 involves 2 non-trivial3 transformations,
specular gyrotropic reflection-transmission from P1 to P2, and absorption by the metasurface
from P2, which implies 2× 4 = 8 scalar equations in the 16 susceptibility parameters. This
represents an undetermined system, requiring extra specifications for full-rank solvability.
Such specifications largely depend from the specific nature of the required transformations.

3By “non-trivial” transformations, we mean here transformations that would not be performed by the
simplest metasurfaces, i.e., passive, reciprocal and nongyrotropic metasurfaces.
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The transformations in Fig. 6.1 obviously involve gyrotropy and nonreciprocity. Nonreciproc-
ity implies χee 6= χTee or χmm 6= χTmm or χem 6= −χ

T
me [128], where the superscript “T” denotes

the transpose operation, while gyrotropy implies either off-diagonal components of χee and
χmm or diagonal components of χem and χme [128]. This leaves us with several possibilities to
eliminate 8 of the 16 susceptibility parameters for fully-specified resolution. We choose here,
and subsequently implement, a homoanisotropic design, characterized by the parameters χee

and χmm with χem = χme = 0, and discuss in Sec. 6.7.7 an alternative bianisotropic design4.
We are then left with the 8 parameters, with the gyrotropy condition χyxee , χ

xy
ee 6= 0 or/and

χyxmm, χ
xy
mm 6= 0 and the nonreciprocal condition χyxee 6= χxyee or/and χyxmm 6= χxymm, which leads

to a full-rank GSTC-susceptibility system.
Considering s-polarization (the p-polarization problem can be treated analogously) and as-
suming that the metasurface positioned in the plane z = 0, the 2 operations in Fig. 6.1
correspond to the following tangential field specifications:

Ei = e−ik0 sin θxŷ, Hi = e−ik0 sin θx cos θ/ηx̂, (6.7a)

Er = Ae−ik0 sin θx cos θeiφx̂, Hr = Ae−ik0 sin θxeiφ/ηŷ, (6.7b)

Et = 0, Ht = 0, (6.7c)

where θ is the angle of incidence and reflection, for the specular gyrotropic reflection-
transmission from P1 to P2, and

Ei = cos(−θ)e−ik0 sin(−θ)xx̂, Hi = −e−ik0 sin(−θ)x/ηŷ, (6.8a)

Er = 0, Hr = 0, (6.8b)

Et = 0, Ht = 0. (6.8c)

and for the absorption by the metasurface from P2.

4We follow here the convenient Greek prefix terminology used in [128], where homo- involves only the
parameters ee and mm, hetero- involves only the parameters em and me, and bi-, introduced by Kong [229],
involves both homo and hetero parameters.
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Substituting the field specifications (6.7) and (6.8) into (6.6), inserting the resulting expres-
sions into (6.5), and solving for the susceptibility tensors yields the sought-after susceptibility
synthesis result

χee =
χxxee χxyee

χyxee χyyee

 =
−2i sec θ

k
4iAeiφ
k

0 −2i cos θ
k

 (6.9a)

χmm =
χxxmm χxymm

χyxmm χyymm

 =
−2i sec θ

k
0

4iAeiφ
k

−2i cos θ
k

 , (6.9b)

where all the components are independent from the spatial variables x and y, as might have
been expected from the fact that the specified reflection is specular and hence momentum
conservative.

6.4 Metastructure Implementation

6.4.1 Metaparticle Configuration

The next step of the metasurface design is naturally to implement the synthesized suscep-
tiblities (6.9) in a real metasurface structure, with fully defined metaparticle material and
shape, and with specific nonreciprocal elements. For the latter, we shall use here transistors,
for their advantages of spectral purity (single-frequency operation), symmetry-breaking low-
cost source (DC battery) and biasing simplicity (DC circuit). Moreover, we shall consider
a normal-incidence (θ = 0) design, for simplicity, but the proposed procedure and structure
are easily extensible to the case of oblique incidence.
We propose the 2-layer metaparticle implementation shown in Fig. 6.2 to realize the re-
sponses (6.9). The metaparticle structure is composed of two identical L-shaped metal res-
onators, each loaded by a unilateral5 transistor chip at the corner of the L. The transistors are
biased in the non-amplifying regime where they exhibit the ideal-isolator scattering response
Stran = [0, 0; 1, 0], and they are oriented so that they pass currents flowing from the vertical
section to the horizontal section and block currents flowing in the opposite direction.
Figure 6.2(a) depicts the response of the metaparticle to an x-polarized wave. The x-direct
incident electric field induces an electric dipole moment along the x direction (χxxee ), without
inducing any response along the y direction due to transistor blocking (χyxee = 0), while the
y-directed incident magnetic field induces a magnetic dipole moment along the y direction
(χyymm) without response along the x direction (χxymm = 0). Figure 6.2(b) depicts the response
of the metaparticle to a y-polarized wave. In this case, the y-directed incident electric field

5In the case of a Field-Effect Transistor (FET), such a unilateral operation implies a common-source
configuration, as typically used in RF amplifiers [230], whereas the common-gate configuration, typically
used in logic electronics, is bilateral.
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Figure 6.2 Proposed 2-layer transistor-loaded metaparticle to realize the susceptibilities in
Eqs. (6.9) for the operation in Fig. 6.1 (a) x-polarization excitation (b) y-polarization exci-
tation

induces electric dipole moments along both the y and x directions (χyyee and χxyee ) via the
current passing across the transistor and, similarly, the x-directed incident magnetic field
induces magnetic dipole moments along both the x and y directions (χxxmm and χyxmm). Hence,
this configuration precisely provides the required non-zero and zero susceptibility components
in (6.9).
By symmetry, the metastructure in Fig. 6.2 is in fact equivalent, on the reflection side of the
metasurface, to the simpler structure where the back resonator is suppressed and replaced
by a mirror placed halfway between the two initial layers, as shown in Fig. 6.3. Indeed, the
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latter structure, according to the image equivalence principle, exhibits the same scattering
response as the former one. Given its greater simplicity, involving only one structured layer
and only half the number of transistors, we shall adopt here this configuration.

y

z

x

transistors

mirror

Figure 6.3 Equivalence in the z > 0 (reflection) half-plane, according to image theory, between
the initial metaparticle in Fig. 6.2, with structure recalled at the left, and the simpler mirror-
backed structure, shown at the right

6.4.2 Metaparticle Design

In the selected back-mirror metaparticle (right side in Fig. 6.3), the design task reduces to
determining the layer at top of the mirror. This layer represents a metasurface per se, which
is different from the overall effective metasurface that it forms with the mirror, and this
layer will therefore be subsequently considered as an independent metasurface, on top of a
mirror-backed substrate.
In order to account for the multiple scattering occurring between the top metasurface and
the mirror, we shall use the transmission-line model [7] shown in Fig. 6.4. The metasurface
and the mirror are modelled by the admittance matrices Y′ and Yc, respectively, and are
separated by a substrate of wave impedance ηd and thickness d. The admittance matrix of
the metasurface, whose parameters are to be determined, may be written as

Y′ =
Y xx′ Y yx′

Y yx′ Y yy′

 , (6.10)

while the admittance of the mirror, which will be realized by a simple conducting copper
plate, is given by

Yc = iσI, (6.11)

where σ is the conductivity of the mirror, with σ = 5× 107 1/Ω.
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Figure 6.4 Admittance model for the mirror-backed structure in Fig. 6.3

The transmission or ABCD matrix of the overall structure in Fig. 6.4 is then easily found by
as A B

C D

 =
 I 0
nY′ I

I cos βd −niηd sin βd
n i sinβd

ηd
I cos βd

 I 0
nYc I

 , (6.12)

where

I =
1 0

0 1

 and n =
0 −1

1 0

 (6.13)

are the identity matrix and the 90◦-rotation matrix, respectively. The transmission ma-
trix (6.12) can then be converted into its scattering matrix counterpart as [230]

S =
S11 S12

S21 S22

 =
−I Bn

η
+ A

n
η

Dn
η

+ C

−1 I Bn
η
−A

n
η

Dn
η
−C

 , (6.14)

whose Y′ (unknown) and other structural dependencies are naturally available from (6.12).
For the mirror-backed metasurface structure to realize the operation in Fig. 6.1, its reflection
block, S11 in (6.14), must equal the reflection matrix RRGSI

spec in (6.2), and hence (SRGSI
spec )T

in (6.2). Enforcing this equality and solving for Y′ yields

Y xx′ = Y yy′ = η2 sin(βd)− η2
d sin(βd) + iηηdσ cos(βd)

η2
dσ sin(βd)− η2

d sin(βd) + iηηd cos(βd) , (6.15a)

Y xy′ = 2Aeiφ, (6.15b)

Y yx′ = 0. (6.15c)
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To translate this admittance matrix into metasurface susceptibilities, we write the ABCD
matrix corresponding to Y′ as A′ B′

C′ D′

 =
 I 0
nY′ I

 . (6.16)

convert this matrix to its scattering counterpart by reusing the formula (6.14), and map
this matrix, which we shall call S′ = [S′11,S′12; S′21,S′22], to the surface susceptibility matrix
according to the procedure that is described in [25, 128], and that leads to the following
equation:

∆ = χ̃
′
· Av, (6.17a)

where

∆ =
−m/η + mS′11/η + mS′21/η −m/η + mS′12/η + mS′22/η

−nm− nmS′11 + nmS′21 nm− nmS′12 + nmS′22

 , (6.17b)

Av = 1
2

 I + S′11 + S′21 I + S′12 + S′22

n/η − nS11/η + nS′21/η −n/η − nS′12/η + nS′22/η

 (6.17c)

and

χ̃
′
=


−iωεχxx′ee −iωεχxy′ee −ikχxx′em −ikχxy′eme

iωεχyx′ee iωεχyy′ee ikχyx′em ikχyy′em

ikχxx′me ikχxy′me iωµχxx′mm iωµχxy′mm

−ikχyx′me −ikχyy′me −iωµχyx′mm −iωµχyy′mm

 , (6.17d)

with

m =
1 0

0 −1

 . (6.17e)

Substituting S′ into (6.17b) and (6.17c), inserting the resulting expressions into (6.17a),
and inverting the resulting system yields the explicit susceptibility solutions, corresponding
to (6.17d):

χxx′ee = χyy′ee = i

ωε

ηαiζ − ηdγ(σ − 1)ζ
η3
dγ

2 + η3
dσ

2γ2 − 2η3
dσγ

2 , (6.18a)

χxy′ee = i

ωε
2Aeiφ, (6.18b)

χyx′ee = 0, (6.18c)

where α = cos(βd), γ = sin(βd), ζ = (η2γ − η2
dγ + η2

dσγ + ηηdσαi) and A is the amplitude
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of the cross-polarized reflected wave as defined in (6.1). The other susceptibility tensors,
χmm, χem and χme, are found to zero, which reveals that the effective tensor χmm, required
from (6.9b), is automatically provided by xz-loops formed between the top metasurface and
the mirror, hence simplifying the former to a purely electrical homoanisotropic metasurface,
characterized by the sole χee susceptibility tensor.
The last step of the design is to perform geometrical-parameter full-wave simulation map-
ping, as described in [128]. Figure 6.5 shows the final metaparticle design, where we folded
the strips into C-section structure for better subwavelength confinement and hence better
homogenizability. Note that the currents in the parallel strips of the C-sections do not fully
cancel out due to resonance non-uniformity (zero current at the edges and maximum at the
center of the unfolded strip structure), which provides the same responses as those previously
described despite the smaller footprint.
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s

l
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Figure 6.5 Proposed practical implementation of the RGSI metasurface (a) Perspective view
(b) Front view of the unit cell

6.5 Results

This section present full-wave simulation results, using the commercial software CST Mi-
crowave Studio, for the RGSI metasurface implementation in Fig. 6.5. We shall consider and
compare two implementations: one using quasi-ideal unity-gain unilateral transistors, corre-
sponding to a quasi-ideal isolator with scattering matrix Strans = [0, I; 1, 0], with I = −30 dB,
and one using the HMC441LP3E transistor chip from Analog Devices, with (frequency de-
pendent) scattering parameters, including gain, given in the data sheet of the chip provided
by the company. The design frequency is set to 7.5 GHz. For both implementations, we shall



68

plot the simulated scattering parameters versus frequency, and the susceptibilities of the top
layer extracted from these scattering parameters for comparison with the ideal susceptibilities
given by (6.18)6.
Figures 6.6 and 6.7 present the results for the RGSI metasurface with the quasi-ideal unity-
gain unilateral transistor with a substrate of εr = 6.2 and for the parameters l = 0.5 mm,
d = 3 mm, w = 1 mm, b = 9 mm, s = 1.5 mm, and p = 14.8 mm. The desired RGSI
operation (Fig. 6.1) is clearly observed at the design frequency (7.5 GHz) in Fig. 6.6, where
the metasurface exhibits and isolation of around 40 dB between the cross-polarized ports Sxy11

and Syx11 , and a matching of −15 dB for both co-polarized reflections. Moreover, the design
results χxx′ee = χyy′ee of (6.18a), χxy′ee 6= 0 of (6.18b) and χyx′ee = 0 of (6.18c), satisfying the
nonreciprocity relation χyx′ee 6= χxy′ee , are verified in Fig. 6.7.
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Figure 6.6 Full-wave simulated scattering parameters for the RGSI metasurface in Fig. 6.5
using gain-less unilateral transistor

Figures 6.8 and 6.9 present the results for the RGSI metasurface with the HMC441LP3E
transistor chips. The spectrum observed in Fig. 6.8 is slightly different from the design
target, due to asymmetries of the chip that were not accounted for in the design; a better
operation frequency here could be 7.467 GHz, which features the best trade-off between gain,

6This extraction is done, following the method described in Sec. 6.4.2.4.2, as follows: 1) equating the
simulated scattering matrix to the scattering matrix (6.14) with (6.12), 2) solving the resulting equations for
the admittance matrix Y′, and 3) translating this so-obtained admittance matrix into surface susceptibilities
using (6.16) and (6.17a).
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Figure 6.7 Electric susceptibilities for the top metasurface layer in Fig. 6.5, extracted from
the scattering parameters in Fig. 6.6

isolation and matching. At this frequency, a good RGSI operation is achieved, with a gain
of 13 dB (Sxy11 ), an isolation of over 40 dB (with respect to Syx11 ) and equal port matching of
−12.9 dB (Sxx11 and Syy11 ). The extracted susceptibilities in Fig. 6.8, although quite different
from those obtained for the uasi-ideal unilateral transistors (in Fig. 6.7), still satisfy χxy′ee 6= 0
of (6.18b) and χyx′ee = 0 of (6.18c), whereas the relation (6.18a) is not satisfied anymore, due
the asymmetry of the transistor chip, fortunately without fatal consequence on the RGSI
operation of the metasurface, as we saw in Fig. 6.8



70

7 7.2 7.4 7.6 7.8 8

-30

-20

-10

0

10

frequency (GHz)

am
p
li
tu
d
e
(d
B
)

Sxx
11 = SRGSI

22

Sxy
11 = SRGSI

21

Syx
11 = SRGSI

12

Syy
11 = SRGSI

11

Figure 6.8 Full-wave simulated scattering parameters of the RGSI metasurface of Fig. 6.5
using the HMC441LP3E transistor chips, and for the same substrate and geometric param-
eters as in Fig. 6.6

6.6 Conclusion

We have presented the concept of a magnetless RGSI metasurface. We have derived the
surface susceptibility tensors required to realize this operation, and proposed a transistor-
based mirror-backed implementation of a corresponding RGSI metasurface. Finally, we have
demonstrated the device by full-wave simulations for both quasi-ideal unity-gain isolators and
commercial transistor chips with gain. This RGSI metasurface may be used in various elec-
tromagnetic applications and as a step towards more sophisticated magnetless nonreciprocal
systems.

6.7 Bianisotropic Design

In Sec. 6.3.2, we made the homoanisotropic choice of the 8 susceptiblity components χxxee , χxyee ,
χyxee , χyyee , χxxmm, χxymm, χyxmm and χyymm to implement the proposed magnetless gyrotropic reflective
spatial isolator metasurface, but we could have chosen a different set of eight susceptibility
components. Let us consider here the alternative axial bianisotropic set χxxee , χyyee , χxxmm, χyymm,
χxxem, χyyem, χxxme, χyyme, where the gyrotropic components are now χxxem, χyyem, χxxme and χyyme instead
of χxyee , χyxee , χxymm and χyxmm. Following the same procedure as in Sec. 6.3.2 for this alternative
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Figure 6.9 Electric susceptibilities for the top layer, extracted from the susceptibilities
in Fig. 6.8

set yields

χee =
χxxee χxyee

χyxee χyyee

 =
−2i sec θ

k
0

0 −2i cos θ
k

 , (6.19a)

χmm =
χxxmm χxymm

χyxmm χyymm

 =
−2i sec θ

k
0

0 −2i cos θ
k

 , (6.19b)

χem =
χxxem χxyem

χyxem χyyem

 =
−4iAeiφ sec θ

k
0

0 0

 , (6.19c)

χme =
χxxme χxyme

χyxme χyyme

 =
0 0

0 −4iAeiφ cos θ
k

 . (6.19d)

This alternative solution would naturally lead to different metaparticles than those used in the
paper. Particularly, the magnetodielectric coupling terms would imply chiral, z-asymmetric
metaparticles [231, 232], which could potentially be implemented by introducing transistors
into chiral metaparticles similar to those in [233].
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CHAPTER 7 COMPLEMENTARY RESULTS

In this chapter, we present three complementary results relating to nonreciprocal bian-
isotropic metasurfaces. First, the problem of performing Faraday rotation in transmission
with a metasurface is theoretically analyzed. Second, a the concept of a bianisotropic non-
reciprocal phase-gradient metasurface is presented. Third, a metasurface specular isolator
utilizing normal nonreciprocal susceptibilities is demonstrated.

7.1 Transmissive Faraday Rotation Metasurface

As mentioned in Sec. 2, conventional nonreciprocal systems usually rely on magnetized mate-
rials that provide Faraday rotation, in which the polarization of a linearly polarized wave ex-
periences the same rotation independently of the direction of propagation of the wave. Some
efforts have been made to realize this type of response using magnetless metamaterial struc-
tures. For instance, cross-polarized dipoles properly connected by a transistor-loaded circuit
were shown to realize nonreciprocal gyrotropy [198], and transistor-loaded ring resonators
were shown to produce a unidirectional rotating magnetic dipole moment that emulates the
electron spin precession in magnetized ferrites [197, 199, 200]. The later works focused on
reflective structures, but a transmissive structure following the same operation principle,
but with an open ground plane to allow transmission was proposed [202, 234]. However,
this transmissive structure was mismatched and a large amount of co- and cross-polarized
reflection limited the transmission efficiency of the structure. In this section, we analyze
the problem of realizing an efficient Faraday rotation metasurface in transmission and de-
rive suitable susceptibilities to realize this operation. We derive two types of nonreciprocal
metasurfaces that provides arbitrary-angle Faraday rotation with zero reflection.
We consider a uniform tangential metasurface surrounded by air and placed in the xy plane
at z = 0. We heuristically begin by assuming a nonbianisotropic metasurface, where χem and
χme are zero. Under this assumption, the GSTCs in (3.8) reduce to

ẑ ×∆H = jωεχeeEav, (7.1a)

ẑ ×∆E = −jωµχmmHav. (7.1b)
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Equations (7.1) are 2 vectorial equations, whose projection onto the xy-plane yields the four
scalar equations

−∆Hy = jωεχxxeeEx,av + jωεχxyeeEy,av, (7.2a)

∆Hx = jωεχyxeeEx,av + jωεχyyeeEy,av, (7.2b)

∆Ey = jωµχxxmmHx,av + jωµχxymmHy,av, (7.2c)

−∆Ex = jωµχyxmmHx,av + jωµχyymmHy,av. (7.2d)

Equations (7.2) form a system of 4 equations with 8 unknowns, and is hence undetermined.
We have thus the degrees of freedom required to specify two arbitrary distinct wave trans-
formations for the metasurface. The system of equations containing the two specified wave
transformations can be compactly written in the matrix form−∆Hy1 −∆Hy2

∆Hx1 ∆Hx2

 =
jωεχxxee jωεχxyee

jωεχyxee jωεχyyee

Ex1,av Ex2,av

Ey1,av Ey2,av

 , (7.3)

 ∆Ey1 ∆Ey2

−∆Ex1 −∆Ex2

 =
jωµχxxmm jωµχxymm

jωµχyxmm jωµχyymm

Hx1,av Hx2,av

Hy1,av Hy2,av

 , (7.4)

where the subscripts 1 and 2 represent the first and second specified wave transformations,
respectively. Resolving Eqs. (7.3) and (7.3) provides the 8 susceptibility components required
to perform the specified transformations.
The concept of a ‘perfect’ Faraday-rotation metasurface is illustrated in Fig. 7.1. A linearly
polarized wave incident on the metasurface in the forward direction is transmitted, without
any reflection and any absorption, with an arbitrary polarization rotation angle, θ, and that
wave, when sent back in the opposite direction, keeps rotating in the same direction so as
to reach the angle of 2θ. The angle accumulation in the return direction is a manifestation
of the nonreciprocity associated with the Faraday rotation phenomenon, contrasting with
reciprocal chiral polarization rotation.
Figure 7.2 shows the field specifications for the two wave transformations required to realize
a perfect Faraday-rotation metasurface. The first transformation rotates without reflection
a plane wave polarized along x and propagating along +z by the angle θ. The electric and
magnetic fields of this wave transformation read

Exa1 = 1, Hya1 = 1/η, (7.5a)

Eya1 = 0, Hxa1 = 0, (7.5b)
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Figure 7.1 Concept of a ‘perfect’ Faraday-rotation metasurface, corresponding to reflectionless
and absorptionless nonreciprocal polarization rotation by an arbitrary angle θ

Exb1 = Aejφ1 cos θ, Hyb1 = Aejφ1 cos θ/η, (7.5c)

Eyb1 = Aejφ1 sin θ, Hxb1 = −Aejφ1 sin θ/η, (7.5d)

where A is the forward transmission coefficient of the metasurface, φ1 is the forward trans-
mission phase, and the subscript a and b correspond to the two sides of the metasurface at
z = 0− and z = 0+ respectively.
The second transformation rotates without reflection a plane wave polarized along the angle
θ and propagating along −z by an additional angle θ leading to a final polarization angle of
2θ. The electric and magnetic fields of this wave transformation read

Exa2 = Bejφ2 cos 2θ, Hya2 = −Bejφ2 cos 2θ/η (7.6a)

Eya2 = Bejφ2 sin 2θ,Hxa2 = Bejφ2 sin 2θ/η (7.6b)

Exb2 = cos θ, Hyb2 = − cos θ/η (7.6c)

Eyb2 = sin θ, Hxb2 = sin θ/η (7.6d)

where B is the backward transmission coefficient of the metasurface and φ2 is the backward
transmission phase of the metasurface.
Inserting the field specifications of Eqs. (7.5) and (7.6) into Eqs. (7.3) and (7.4) yields the
desired susceptibility components as a function of the transmission coefficients A and B, of
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Figure 7.2 Field specifications for the transmission-type Faraday-rotation metasurface for
both specified wave transformations

the transmission phases φ1 and φ2, and of the polarization rotation angle θ as follows:

χxxee =
2j
(
Bejφ2

(
−2 cos θ + Aejφ1

)
+ 2Aejφ1 cos θ − 1

)
k (1 +Bejφ2 (2 cos θ + Aejφ1)) , (7.7a)

χyyee =
2j
(
Bejφ2

(
2 cos θ + Aejφ1

)
− 2Aejφ1 cos θ − 1

)
k (1 +Bejφ2 (2 cos θ + Aejφ1)) , (7.7b)

χxyee =
4j
(
Bejφ2 cos(2θ) csc θ − Aejφ1 cos θ cot θ

)
k (1 +Bejφ2 (2 cos θ + Aejφ1)) , (7.7c)

χyxee = 4jAejφ1 sin θ
µω (1 + ABej(φ1+φ2)) + 2Bkejφ2 cos θ , (7.7d)
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χxxmm =
2j
(
Bejφ2

(
2 cos θ + Aejφ1

)
− 2Aejφ1 cos θ − 1

)
k (1 +Bejφ2 (2 cos θ + Aejφ1)) , (7.7e)

χyymm =
2j
(
Bejφ2

(
−2 cos θ + Aejφ1

)
+ 2Aejφ1 cos θ − 1

)
k (1 +Bejφ2 (2 cos θ + Aejφ1)) , (7.7f)

χxymm = − 4jAejφ1 sin θ
µω (1 + ABej(φ1+φ2)) + 2Bkejφ2 cos θ , (7.7g)

χyxmm =
4j csc θ

(
Aejφ1 cos θ cot θ −Bejφ2 cos(2θ) csc θ

)
k (1 +Bejφ2 (2 cos θ + Aejφ1)) . (7.7h)

Equations (7.7) indicate that the reciprocity conditions, χee = χ
T
ee and χmm = χ

T
mm, are

both broken since χxyee 6= χyxee and χxymm 6= χyxmm. This result reveals that one way to obtain
a ‘perfect’ Faraday-rotation metasurface in transmission is to realize a metasurface having
both nonreciprocal magnetic and electric responses. A possible practical way to realize such
a metasurface would be by using properly designed transistor-loaded resonators of the type
presented in Fig. 6.2.
Assuming a lossless and gainless design (A = B = 1) with identical phases in the two
directions (φ1 = φ2 = φ), simplifies the susceptibilities in Eqs. (7.7) to

χxxee = − 2 sin(φ)
k cos(θ) + k cos(φ) , (7.8a)

χyyee = − 2 sin(φ)
k cos(θ) + k cos(φ) , (7.8b)

χxyee = − 2j sin(θ)
k cos(θ) + k cos(φ) , (7.8c)

χyxee = 2j sin(θ)
k cos(θ) + k cos(φ) , (7.8d)

χxxmm = − 2 sin(φ)
k cos(θ) + k cos(φ) , (7.8e)

χyymm = − 2 sin(φ)
k cos(θ) + k cos(φ) , (7.8f)

χxymm = − 2j sin(θ)
k cos(θ) + k cos(φ) , (7.8g)

χyxmm = 2j sin(θ)
k cos(θ) + k cos(φ) . (7.8h)

It appears that χxymm = −χyxmm and χxyee = −χyxee as is the case for lossless magnetized fer-
rites [220] and magnetized plasma, respectively [235]. Moreover, we verify the lossless condi-
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tions χT
ee = χ

∗
ee, and χ

T
mm = χ

∗
mm, consistent with the specification of A = B = 1.

At the start of this section, we heuristically considered a nonbianisotropic metasurface and
were able to find a solution using only χee and χmm. However, this is not necessarily the
unique possible solution. We shall next present an alternative bianisotropic solution provid-
ing the same response for the specified incidences, but using the 8 susceptibility components
χxxee , χyyee , χxxmm, χyymm, χxxem, χyyem, χxxme and χyyme. We replaced the electric and magnetic gy-
rotropic susceptibility components χxyee , χyxee , χxymm and χyxmm with the bianisotropic gyrotropic
components χxxem, χyyem, χxxme and χyyme.
Using those 8 susceptibility components, we write the tangential GSTCs as

−∆Hy = jωεχxxeeEx,av + jkχxxemHx,av, (7.9a)

∆Hx = jkχyyemHy,av + jωεχyyeeEy,av, (7.9b)

∆Ey = jωµχxxmmHx,av + jkχxxmeEx,av, (7.9c)

−∆Ex = jkχyymeEy,av + jωµχyymmHy,av. (7.9d)

Similarly to (7.3), the system of equations containing the two wave transformations of (7.5)
and (7.6) can be written in matrix form as

−∆Hy1 −∆Hy2

∆Ey1 ∆Ey2

 =
jωεχxxee jkχxxem

jkχxxme jωεχxxmm

Ex1,av Ex2,av

Hx1,av Hx2,av

 , (7.10)

 ∆Hx1 ∆Hx2

−∆Ex1 −∆Ex2

 =
jωµχxxmm jkχyyem

jkχyyme jωµχyymm

Ey1,av Ey2,av

Hy1,av Hy2,av

 , (7.11)

Inserting the field specifications of Eqs. (7.5) and (7.6) into Eqs. (7.10) and (7.11) with
A = B = 1 and φ1 = φ2 = φ as in (7.8) yields the susceptibility components

χxxee = 2j(e2jφ(1 + 2 cos(2θ))− 2ejφ − 1)
k(2 + 6e2jφ cos θ) + k(e2jφ(2 cos(2θ) + 1)− 2ejφ − 1) , (7.12a)

χyyee = 2j(e2jφ(2 cos(2θ) + 1) + 2ejφ − 1)
k(2 + 2e2jφ cos θ) + k(e2jφ(2 cos(2θ) + 1)− 2ejφ cos θ − 1) (7.12b)

χxxmm = 2j(e2jφ(2 cos(2θ) + 1) + 2ejφ cos θ − 1)
k(e2jφ(2 cos(2θ) + 1) + 4ejφ cos θ − 1) (7.12c)

χyymm = 2j(e2jφ(1− 2 cos(2θ)) + 2ejφ − 1)
k(e2jφ(2 cos(2θ) + 1) + 4ejφ − 1) (7.12d)

χxxem = − 4jejφ sin θ
k + 4ejφk cos θ + ke2jφ(1 + 2 cos(2θ)) (7.12e)
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χyyem = 4jejφ sin θ
k + 4ejφk cos θ + ke2jφ(2 cos(2θ) + 1) (7.12f)

χxxme = − 4jejφ sin θ
k + 4ejφk cos θ + ke2jφ(2 cos(2θ) + 1) (7.12g)

χyyme = 4jejφ sin θ
k + 4ejφk cos θ + ke2jφ(2 cos(2θ) + 1) (7.12h)

We can verify that this is indeed nonreciprocal since χxxem 6= −χxxme and χyyem 6= −χyyme, which
breaks the reciprocity tensorial relation χem = −χTme. This nonreciprocal response corre-
spond to Tellegen-type bianisotropic nonreciprocity [236]. However, this solution is not loss-
less/gainless since it does not follow the conditions χT

ee = χ
∗
ee, χ

T
mm = χ

∗
mm and χT

em = χ
∗
me.

Hence, equations (7.8) and (7.12) represent two different possible solutions to realize a trans-
missive Faraday rotation metasurface by using different susceptibility tensors. Each of those
solutions would require different scattering particle geometries to be implemented, but would
still provide the same response for the specified incident waves. Their angular response,
related to other unspecified incidence waves, would also be different.

7.2 Nonreciprocal Phase Gradient Metasurface

In this section, we introduce the concept of nonreciprocal phase gradient metasurfaces that ex-
hibit different phase gradients depending on the direction of propagation of the incident wave.
We will show that such a metasurface can be realized by using nonreciprocal bianisotropic
phase shifting unit cells that can be arranged into supercells exhibiting different phase gra-
dients for opposite directions of propagation. We will present numerical simulations of two
spatial circulators to illustrate the concept and propose a potential antenna-circuit-antenna
implementation backed by full-wave simulations.
Figure 7.3 presents the concept of the nonreciprocal phase gradient metasurface. As an
example, the metasurface in Fig. 7.3 (a) produces no gradient for a wave propagating in the
forward z-direction, but produces a phase gradient for a wave propagating in the backward z-
direction, which deflects it. Such a metasurface can be realized by arranging several different
nonreciprocal phase-shifting unit cells into supercell as illustrated in Fig. 7.3 (b). For the
forward direction (shown in red), all the unit cells produce the same relative phase of 0◦

and the wave propagation direction is unchanged. For the backward direction, each unit cell
produce a different phase, which produces a phase gradient and deflect the wave depending
on the period of the supercell. While, the current example provides no gradient in the forward
direction, we could in general provide different gradients in both directions. The required
unit cell to realize this would be of a general nonreciprocal phase-shifting unit cell, as shown
in Fig. 7.3 (c), which can produce a transmission phase φ1 for waves propagating in the
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forward z-direction and a transmission phase φ2 for waves propagating in the backward z-
direction. We shall next synthesize the susceptibilities of such a nonreciprocal phase-shifting
unit cell.

(a) (b)

x

xx

y

z

zz

(c)

metasurface supercell unit cell

φ1

φ2

Figure 7.3 Nonreciprocal phase gradient metasurface based on nonreciprocal phase shifting
unit cells (a) Illustration of a nonreciprocal phase gradient metasurface (b) Illustration of a
nonreciprocal phase gradient metasurface supercell composed of 8 discretized nonreciprocal
phase shifters (c) Required unit cell general response

We assume here a purely tangential metasurface and nongyrotropy. We can then synthesize
independently the response of the two polarization, with the x-polarized wave having related
susceptibility components χxxee , χxyem, χyxme and χyymm, and the y-polarized having the related
susceptibility components χyyee , χyxem, χxyme and χxxmm. The GSTCs in (3.8) then reduce to the
scalar equations

−∆Hy = jωεχxxeeEx,av + jkχxyemHy,av, (7.13a)

−∆Ex = jkχyxmeEx,av + jωµχyymmHy,av, (7.13b)

for the x-polarization and to

∆Hx = jkχyxemHx,av + jωεχyyeeEy,av, (7.14a)

∆Ey = jωµχxxmmHx,av + jkχxymeEy,av, (7.14b)

for the y-polarization.
We specify two field transformations for each polarization. First, in the forward z-direction,
we specify that a normally incident wave is fully transmitted with a phase φ1. Second, in
the backward z-direction, we specify that a normally incident wave is fully transmitted with
a different phase φ2. The field specifications are written as

Exa1 = 1, Hya1 = 1/η, (7.15a)
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Exb1 = 1ejφ1 , Hyb1 = 1ejφ1/η, (7.15b)

Exa2 = −1ejφ2 , Hya2 = 1ejφ2/η, (7.15c)

Exb2 = −1, Hyb2 = 1/η, (7.15d)

for an x-polarized wave and similarly

Eya1 = 1, Hxa1 = −1/η, (7.16a)

Eyb1 = 1ejφ1 , Hxb1 = −1ejφ1/η, (7.16b)

Eya2 = −1ejφ2 , Hxa2 = −1ejφ2/η, (7.16c)

Eyb2 = −1, Hxb2 = −1/η, (7.16d)

for an y-polarized wave. The subscript a and b correspond to the two sides of the metasurface
at z = 0− and z = 0+ respectively, and the subscript 1 and 2 represent the first and
second wave transformations respectively. We can now write the synthesis problem for each
polarization in matrix form as∆Hy1 ∆Hy2

∆Ex1 ∆Ex2

 =
−jωεχxxee −jkχxyem
−jkχyxme −jωµχyymm

Ex1,av Ex2,av

Hy1,av Hy2,av

 , (7.17a)

for the x-polarization and∆Hx1 ∆Hx2

∆Ey1 ∆Ey2

 =
jωεχyyee jkχyxem

jkχxyme jωµχxxmm

 Ey1,av Ey2,av

Hx1,av Hx2,av

 , (7.17b)

for the y-polarization. Substituting the field definitions of (7.15) and (7.16) into (3.3) to
calculate the differences and averages of the fields, inserting those into (7.17) and solving for
the required susceptibility components yields

χxxee = tan(φ1/2) + tan(φ2/2)
k

, (7.18a)

χyymm = tan(φ1/2) + tan(φ2/2))
k

, (7.18b)

χxyem = tan(φ1/2)− tan(φ2/2)
k

, (7.18c)

χyxme = tan(φ1/2)− tan(φ2/2)
k

, (7.18d)
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for the x-polarization and

χyyee = tan(φ1/2) + tan(φ2/2)
k

, (7.19a)

χxxmm = tan(φ1/2) + tan(φ2/2))
k

, (7.19b)

χyxem = tan(φ2/2)− tan(φ1/2)
k

, (7.19c)

χxyme = tan(φ2/2)− tan(φ1/2)
k

, (7.19d)

for the y-polarization. Those susceptibilities can now be used to design different nonrecip-
rocal phase-shifting unit cells to be assembled into a supercell realizing nonreciprocal phase
gradients.
To verify the results, we simulated, using a FDFD simulation code including the susceptibility
GSTCs [140], two metasurfaces with nonreciprocal phase gradients for an x-polarized wave.
Figure 7.4 presents FDFD simulation results for the first metasurface realizing no gradient in
the forward z-direction and a gradient realizing a 45◦ deflection for the backward z-direction.
The metasurface is composed of supercells of period

√
2λ0, corresponding to the phase gra-

dient period for 45◦ deflection of a normally incident wave. This supercell is discretized in
8 unit cells synthesized following (7.18). In this simulation setup, 6 ports are placed in the
directions corresponding to the 6 propagating diffraction orders of the supercell period as il-
lustrated in Fig. 7.4. As can be seen, for propagation in the forward z-direction, the incident
wave is transmitted without being deflected and for propagation in the backward direction,
the wave is deflected by the phase gradient. Interestingly, this metasurface operates as a 6-
port spatial circulator with circulation following the sequence 1→ 4→ 3→ 5→ 2→ 6→ 1.

The FDFD simulation of a second metasurface realizing phase gradients deflecting waves
in opposite directions for propagation in the forward and backward z-direction is shown
in Fig. 7.5. The period of the supercell is the same as in Fig. 7.4, deflecting a normally
incident wave at 45◦ towards the −x-direction for forward propagation along the z-direction
and deflecting a normally incident wave at 45◦ towards the +x-direction for backward prop-
agation along the z-direction. This metasurface realizes two 3-port spatial circulators, with
circulation following 1→ 3→ 5→ 1 and 2→ 6→ 4→ 2.
The results of Fig. 7.4 and Fig. 7.5 only represent two examples; other devices can be realized
by appropriately designing the forward and backward phase gradients. In addition to real-
izing spatial circulation, such metasurfaces can be used to realize nonreciprocal receive and
transmit radiation patterns. For instance, placing an antenna at the port 5 of Fig. 7.5, would
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Figure 7.4 FDFD-simulated real part of Ex of a nonreciprocal phase gradient metasurface
with no phase gradient for forward propagation along the z-direction and a phase gradient
deflecting a normally incident wave by 45◦ for a backward propagating wave along the z-
direction which realizes a spatial 6-port circulator

create a system with a transmit radiation pattern pointing towards port 1 (−x-direction)
and a receive radiation pattern pointing towards port 3 (+x-direction). In general, such a
metasurface could be used to realize independently tunable receive and transmit radiation
patterns.
We next present a potential implementation of this type of nonreciprocal bianisotropic meta-
surface using an antenna-circuit-antenna architecture that has been previously used to realize
transistor-loaded nonreciprocal metasurfaces [151, 206]. Specifically, the work in [151] pre-
sented an isolator metasurface composed of patch antennas and connected through transistor
circuits that were shown to be realize a nonreciprocal bianisotropic response. Figure 7.6
presents the nonreciprocal phase-shifting unit cell. Figure 7.6 (a) and (b) show the perspec-
tive view and front view of the unit cell respectively. It is composed of two c-shaped dipoles
oriented in the x-direction on the outer layers of the structures with a separating ground
plane in the middle layer. The two c-shaped dipoles are connected through a nonreciprocal
circuit shown in Fig. 7.6 (c). The circuit is composed of two resistive power divider, two
isolators and two phase shifter. One phase shifter is used to control the phase of transmis-
sion φ1 in the forward direction and the other to control the phase of transmission in the
backward direction φ2. This allows independent control of the phase of transmission in both
direction of propagation. However, due to the presence of the resistive power dividers and of
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x

z

Figure 7.5 FDFD-simulated real part of Ex of a nonreciprocal phase gradient metasurface
with the same phase gradient for forward and backward propagation, but with opposite
direction which realizes a spatial 3-port circulator

the isolators, the transmission efficiency is limited to −6 dB.
Figure 7.7 presents the simulation of the unit cell of Fig. 7.6 for the forward excitation of an
x-polarized wave. Figure 7.7 (a) presents the amplitude of S21 and S11 for different phase
of transmission φ1, while keeping a constant phase φ2 for the backward direction. As can
be seen at the operating frequency of 7.1 GHz, the amplitude of transmission is constant at
around 0.5 (−6 dB) as the phase of transmission varies for full 360◦ phase coverage as seen
in Fig. 7.7 (b). The same frequency response is also obtained for the backward excitation (S12

and S22) with independent control of the phase of transmission φ2.
A supercell composed of 4 of the unit cells of Fig. 7.6 was assembled to realize the nonrecip-
rocal phase gradient metasurface as shown in Fig. 7.8. The period of the supercell is 1.4λ
at the operating frequency of 7.1 GHz, which corresponds to a wave deflection of 45.58◦.
The phases of transmission of each unit cells in the forward and backward were set to realize
opposite phase gradients as in Fig. 7.5, which should realize a 3 port circulator. From left
to right the forward phases of transmission φ1 are 0◦, 90◦, 180◦ and 270◦, and the backward
phases of transmission φ2 are 270◦, 180◦, 90◦ and 0◦.
Figure 7.8 (b) present the simulation results of the supercell for excitations at the 3 ports
shown in Fig. 7.8 (a). The simulation results for excitations from ports 5 and 1 are in
agreement with what we expected for the circulation operation of Fig. 7.5, but with the
limited efficiency due to the circuit. However, excitation from port 3 reveals a large coupling
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(a) (b) (c)

power divider

phase shifter isolator

ground plane

φ1

φ2

Figure 7.6 Nonreciprocal phase-shifting unit cell based on the antenna-circuit-antenna con-
figuration (a) Perspective view of the unit cell (b) Front view of the unit cell (c) Circuit
connecting the two sides of the unit cell composed of power dividers, isolators and phase
shifters

S13 which completely impedes the structure to act as a 3 port spatial circulator. Further study
and optimization of the structure would be required to remove the parasitic S13 reflection.
Still, the structure did realize a nonreciprocal phase gradient as seen from the response of
S15 and S53 and, hence, could be used to provide nonreciprocal transmission and reception
radiation patterns for an antenna placed at port 5.
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7.3 Magnetless Metasurface Specular Isolator

This section reports a transistor-loaded magnetless nonreciprocal metasurface providing spec-
ular isolation, i.e. reflecting the wave incident from one direction as a mirror and absorbing
the wave incident from the opposite direction. The related asymmetric reflection coefficient
is realized by leveraging nonreciprocal normal metasurface susceptibilities [108, 131]. The
specular isolation operation is demonstrated by both full-wave simulation and prototype
measurement.

Specular Isolator Concept

Figure 7.9 depicts the concept of the proposed metasurface specular isolator. A wave incident
in the xz-plane at an angle θi = sin−1(kx,i/k) = θ0, with k = ω/c, where θ0 is the operation
angle, is specularly reflected, while a wave incident at the angle θi = −θ0 is absorbed by the
metasurface.

(a) (b)
x

y
zθr = θi

θi = −θ0 < 0

θi = θ0 > 0

Figure 7.9 Concept of the metasurface specular isolator (a) A wave incident at an angle
θi = θ0 is specularly reflected (b) A wave incident at an angle θi = −θ0 is absorbed by the
structure without reflections

This operation implies the following three conditions on the metasurface. First, the specular
nature of the reflection (θr = θi) requires that the metasurface has no phase gradient, which
implies that it must be uniform. Second, the fact that there is only one scattered wave, and
hence no diffraction orders, implies, assuming a periodic metasurface structure of period d,
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that d < |λ/(sin θi ± 1)|. Third, the spatial asymmetry of the reflection implies breaking
Lorentz reciprocity, which means that the metasurface must be nonreciprocal.
In addition, we assume that the metasurface is nongyrotropic, i.e., that it does not rotate
the polarization of the incident wave upon reflection. Moreover, we shall consider only the
p-polarized problem with incidence in the xz-plane, whose nonzero electromagnetic field
components are Ex, Ez and Hy, the s-polarized problem being solvable in an analog fashion.

Required Susceptibility Components

To realize the proposed specular isolator, the susceptibility components should be indepen-
dent on x and y to satisfy the metasurface uniformity condition. Moreover, the required
nonreciprocity implies the global condition [14,128]

χee 6= χTee, χmm 6= χTmm or χem 6= −χ
T
me. (7.20)

The nongyrotropy and p-polarized incidence assumptions eliminate 24 out of the 36 suscep-
tibility components, simplifying the bianisotropic susceptibility tensors to

χee =


χxxee 0 χxzee

0 0 0
χzxee 0 χzzee

 , χem =


0 χxyem 0
0 0 0
0 χzyem 0

 , (7.21a)

χme =


0 0 0
χyxme 0 χyzme

0 0 0

 , χmm =


0 0 0
0 χyymm 0
0 0 0

 , (7.21b)

which include overall 9 parameters, where the nonreciprocity condition (7.20) translate into

χxzee 6= χzxee , χxyem 6= −χyxme or χzyem 6= −χyzme. (7.22)

The corresponding metasurface for the s-polarization would involve the dual susceptibility
components χxxmm, χxzmm, χzxmm, χzzmm, χyxem, χyzem, χxyme, χzyme and χyyee , with the nonreciprocity
condition χxzmm 6= χzxmm, χyxem 6= −χxyme or χyzem 6= −χzyme .
Inserting (3.2) into (3.1) with (7.21) leads the following explicit scalar GSTC equations

∆Hy = −jωεχxxeeEav,x − jωεχxzeeEav,z − jkχxyemHav,y, (7.23a)

∆Ex =− jωµχyymmHav,y − jkχyxmeEav,x − jkχyzmeEav,z

− χxzee ∂xEav,z − χzzee∂xEav,z − ηχzyem∂xHav,y,
(7.23b)
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where ∂x denotes the spatial derivative versus x. Assuming plane wave incidence, which
allows the substitution ∂x → −jkx, where kx = k sin θ, reduces then (7.23) to

∆Hy = −jωεχxxeeEav,x − jωεχxzeeEav,z − jkχxyemHav,y, (7.24a)

∆Ex =− jωµχyymmHav,y − jkχyxmeEav,x − jkχyzmeEav,z

+ jkxχ
xz
eeEav,z + jkxχ

zz
eeEav,z + jkxηχ

zy
emHav,y,

(7.24b)

which are the final GSTCs equations for the problem at hand.
In these relations, the field differences and averages are found from (3.3) in terms of the
reflection and transmission coefficients, R and T . Assuming incidence in the +z direction,
theses quantities read

∆Ex = kz
k

(T − 1−R), (7.25a)

∆Hy = (−1 +R + T )/η, (7.25b)

Eav,x = kz
2k (1 +R + T ), (7.25c)

Eav,z = kx
2k (1 + T −R), (7.25d)

Hav,y = (1 + T −R)/2η, (7.25e)

where kz = k cos θ. Substituting (7.25) into (7.24), and solving for R gives [131]

R = 2
C
{k2

xχ
zz
ee − k2

zχ
xx
ee − kz[kx(χxzee − χzxee )− k(χxyem − χyxme)]

− kkx(χzyem + χyzme) + k2χyymm},
(7.26a)

where

C =2[k2
zχ

xx
ee + k2

xχ
zz
ee − kkx(χzyem + χyzme) + k2χyymm]

+ k2(χxxee χyymm − χxyemχyxme)− jkz{k2
x(χxzeeχzxee − χxxee χzzee )

+ 4− kkx[χzxeeχxyem + χxzeeχ
yx
me − χxxee (χzyem + χyzme)]}.

(7.26b)

Realizing the specular isolation operation (see Fig. 7.9) requires breaking the symmetry of
the reflection coefficient with respect to x or, equivalently, with respect to kx. In other words,
the reflection coefficient (7.26) must be a non-even function of kx, i.e.,

R(kx) 6= R(−kx). (7.27)
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Inspecting (7.26) reveals that this condition requires

χxzee 6= χzxee or χzyem 6= −χyzme, (7.28)

which correspond to the first and third relations in (7.22), respectively. Thus, breaking
reciprocity in reflection can be accomplished only via normal susceptibilities (under the
prevailing nongyrotropy assumption). It can be shown that the second relation in (7.22),
involving tangential susceptibilities, breaks reciprocity in the z-direction [131], which is useful
for transmission-type nonreciprocity like in Sec. 7.2.

Metasurface Design

Susceptibility Derivation

We shall specify two field transformations related to the desired operation in Fig. 7.9. The
first field transformation is the specular reflection of the wave incident in the +z-direction
at the operation angle θ0 [Fig. 7.9 (a)]. The related fields are

E1,i = cos θ0e
−jkxxx̂− sin θ0e

−jkxxẑ, H1,i = (e−jkxx/η)ŷ, (7.29a)

E1,r = − cos θ0e
jφe−jkxxx̂− sin θ0e

jφe−jkxxẑ, H1,r = (ejφe−jkxx/η)ŷ, (7.29b)

where φ is the reflection phase induced by the metasurface. The second transformation is
the absorption of the wave incident at the angle −θ0 [Fig. 7.9 (b)]. The related fields are

E2,i = cos θ0e
−jkxxx̂+ sin θ0e

−jkxxẑ, H2,i = (e−jkxx/η)ŷ, (7.30a)

E2,r = 0, H2,r = 0. (7.30b)

Successively substituting both (7.29) and (7.30) into (3.3) and inserting the resulting expres-
sions into (7.24) leads a system of 2 × 2 = 4 scalar equations with 9 unknowns. This is an
underdetermined system with an infinite number of possible sets of susceptibilities. Since the
operation of the metasurface has been completely determined at θ0, these sets correspond to
different responses at other (unspecified) angles of incidence, and represent therefore degrees
of freedom, which may be generally leveraged in the design of the metaparticle. Among these
degrees of freedom, the parameters χxyem and χyxme correspond to structural asymmetry along
the z-direction [131], which would imply considerable complexity in the metaparticle design.
Therefore, we heuristically set these parameters to zero (χxyem = χyxme = 0). This reduces the
number of unknowns to 7, which we shall maintain as degrees of freedom at this point. The
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resulting system of equations leads to the 2 explicit susceptibility solutions

χxxee = −2j(1 + ejφ) sec θ0

k
, (7.31a)

χxzee = 2jejφ csc θ0

k
, (7.31b)

and to the 2 constraint relations

χyymm = −2j cos θ0 + kχzzee sin2 θ0 + ejφk sin θ0(χzxee cos θ0 + χzzee sin θ0)
(1 + ejφ)k , (7.31c)

χzyem = −kχ
yz
me + kχzxee cos θ0 + ejφ(kχyzme + 2j cot θ0)

(1 + ejφ)k , (7.31d)

between the remaining 5 susceptibilities.

Transistor-loaded Metaparticle

The metaparticle structure satisfying the condition (7.28) (nonreciprocity along the x-direction
for p-polarization) and the relations (7.31) (reflection and absorption at ±θ0) may be devised
as follows. Let us start by enforcing the first nonreciprocity condition in (7.28), namely
χxzee 6= χzxee . This condition implies the existence of nonreciprocally related electric dipole re-
sponses along x and z, which immediately suggests an L-shape conducting structure loaded
by a transistor in the xz-plane; this configuration is incidentally consistent with (7.31a)
and (7.31b). Such a structure implies in particular a χzzee response, which generally implies in
turn a χyymm response according to (7.31c). The latter corresponds to a y-directed magnetic
dipole moment, which prompts us to close the L-shape into a loop in the xz-plane. We shall
leave the loop open, as is customarily done for compactness in ring resonators, and we shall
terminate the opened ends of the resulting U-shaped loop by T-shaped strips to reduce the
size of the metaparticle.
All these considerations lead to the metaparticle structure represented in Fig. 7.10, which
is composed of conducting strips in the three directions of space, with the spacing between
the two xy-plane metallization planes being much smaller than the wavelength (v � l < λ,
figure not to scale). We shall next analyze this metaparticle in details to verify that it indeed
satisfies all the required conditions and to fully characterize it. Figure 7.10 decomposes the
excitations (incident fields) and responses (dipole moments) in order to determine how the
metaparticle realizes the sought after nonreciprocal susceptibility components, although all of
the excitations and responses naturally occur simultaneously. Using this approach, we shall
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next examine the polarizability responses of the isolated metaparticle, which are directly
related to the susceptibilities of the metasurface formed by its periodic repetition [128].
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(b)
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pzxee → χzx
ee

pxzee → χxz
ee

pzyem → χzy
em

pyzme → χyz
me
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Figure 7.10 Operation principle of the transistor-loaded metaparticle, with orientation cor-
responding to Fig. 7.9 (a) Excitation Ex (left) and Ez (right), showing that χzxee 6= χxzee
(b) Excitation from Hy (left) and Ez (right), showing that χzyem 6= −χyzme
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Figure 7.10 (a)1 depicts the operation principle of the metaparticle realizing a response of the
type χxzee 6= χzxee . On the left, the x-directed incident electric field induces in-phase (v � λ)
currents in the two x-directed strips. When they reach the z-directed strip, these currents
cancel out, which implies that the electric response along z to the electric excitation along
x is zero (pzxee = 0 → χzxee = 0). On the right, the z-directed incident electric field induces a
current in the z-directed strip. This induces a current only in one of the x-directed strips,
given the orientation of the transistor, which implies that the electric response along x to the
electric field along z is nonzero (pxzee 6= 0 → χxzee 6= 0). Thus, the metaparticle corresponds
to a specific set of solutions of (7.31c) and (7.31d) that is characterized by χzxee = 0, which
simplifies these constraint equations to

χyymm = −2j cos θ0 + (1 + ejφ)kχzzee sin2 θ0

(1 + ejφ)k , (7.32a)

and
χzyem = −χyzme −

2jejφ cot θ0

(1 + ejφ)k . (7.32b)

Equation (7.32b) reveals that the metaparticle must also satisfy the second nonreciprocity
condition in (7.28). Let us see whether this is indeed the case with the help of Fig. 7.10 (b).
On the left, the y-directed incident magnetic field induces a current in the metaparticle loop.
The current flowing in the z-directed strip implies an electric response along z due to the
magnetic excitation along y (pzyem → χzyem). On the right, the z-directed incident electric
field induces a current in z-directed strip. This can induce a current only in one of the two
x-directed strips given the to the orientation of the transistor, which produces only a weak
magnetic loop along y (pyzme → χyzme). This implies that χzyem 6= −χyzme, which is consistent with
the requirement of (7.32b).
We have thus found that the metasurface constituted of the heuristic metaparticle shown
in Fig. 7.10 breaks reciprocity in two distinct fashions, through χzxee 6= χxzee and χyzme 6= χzyem.
These two types of nonreciprocity represent, both in isolation and in combination, novel meta-
surface nonreciprocal responses. Moreover, these responses, involving normal susceptibility
components, were deemed particularly difficult to realize in practice [131]. The asymme-
try of the electric susceptibility tensor, χee 6= χ

T
ee, also appears in magnetized plasmas, but

conjunctly with gyrotropy, while the non-antisymmetry between the magneto-electric sus-
ceptibility tensors, χem 6= −χ

T
me, also appears in the transmissive nonreciprocal metasurface

in [151], but in terms of tangential nonreciprocal components.
Figure 7.11 shows the metasurface unit cell of our experimental prototype. This unit cell

1The drawing is not to scale: in reality, v � l. The notation pzy
em represents the z component of the

electric dipole response due to the y component of the magnetic field excitation, and so on.
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corresponds to the metaparticle in Fig. 7.10, except for the additional supporting substrate,
backing ground plane and conducting front frame, where the ground plane ensures impene-
trability of the structure for all angles of incidence (extra specification) and the front frame
isolates the unit cells from each other (hence ensuring direct correspondence between the
polarizabilities and the susceptibilities). The parameters of the unit cell were optimized to
satisfy (7.31a) and (7.31b) and one of the possible solutions of (7.32).
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Figure 7.11 Unit cell corresponding to the metaparticle in Fig. 7.10, within a substrate of
relative permittivity εr = 4.5, backed by a ground plane and with a front conducting frame
(a) Perspective view (without the front frame, for visibility) (b) Top view

Simulation and Experiment

The transistor-loaded unit cell in Fig. 7.11 was simulated with periodic boundary condi-
tions using a full-wave electromagnetic simulator (CST Microwave Studio) and the unilateral
transistor circuit was modelled as an ideal isolator with a phase shifter. An FR4 slab with
εr = 4.5 was used as the substrate and the geometrical parameters of the metasurface were
optimized to realize the specular isolation operation. The metasurface was designed to pro-
vide specular isolation between the angles ±18◦ at the frequency of f sim0 = 6.56 GHz for
p-polarization. Figure 7.12 presents the simulation results. Figure 7.12(a) shows the isola-
tion response versus frequency, with the isolation R(−18◦)/R(+18◦) (see Fig. 7.9) reaching
41.75 dB at f sim0 . Figure 7.12(b) shows the angular response of the reflection coefficient at
the operating frequency of f sim0 , whose strong asymmetry with respect to broadside (θi = 0)
is the expected signature of the device.
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Figure 7.12 Full-wave simulation of the specular isolator with the unit cell in Fig. 7.11 and
parameters p = 22.5 mm, w = 14 mm, l = 20 mm, v = 1.6 mm, d = 3.2 mm, q =
32.5 mm, h = 1 mm and t = 2 mm (a) Isolation versus frequency for incidence at θi =
±18◦ (design angle of isolation) (b) Specular reflection coefficient versus incidence angle (θi)
at the operating frequency f sim0 = 6.58 GHz

Figure 7.13 presents the experimental results2. Figure 7.13(a) shows the prototype, composed
of 2×3 unit cells. It includes two FR4 substrates of thickness 1.6 mm glued together. The de-
vice was measured by a bistatic measurement system with two horn antennas symmetrically
aiming (under the same angle with respect to the normal of the metasurface) at the metasur-
face. The reflection coefficient was measured for angles sweeping the sector extending −22◦

to 22◦. Figure 7.13(b) shows the measured isolation (|S12|/|S21|) versus frequency for the
incidence angle of θi = ±20◦. An isolation of more than 38 dB is observed at the frequency
of f exp0 = 6.797 GHz, whose discrepancy (0.217 GHz, i.e., 3.3%) may be explained by the
small gap between the two substrates that was not taken into account in the simulation and
by the difference between the actual transistor circuit response and the ideal isolator model
used in simulation. Figure 7.13(c) shows the measured angular reflection coefficient at the
operating frequency of f exp0 . Here, the discrepancy translates into an angular difference (2◦).

2The fabrication of the prototype and the measurements were performed by Toshiro Kodera in Meisei
University, Japan.
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Figure 7.13 Experiment (a) Fabricated prototype (left) and experimental setup (right) (b) Iso-
lation versus frequency for incidence at θi = ±20◦ (maximal isolation angle) (c) Specular
reflection coefficient versus incidence angle (θi) the operating frequency of f exp0 = 6.797 GHz
with the dashed lines corresponding to the simulation results of Fig. 7.12
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CHAPTER 8 GENERAL DISCUSSION

This section will present a short general discussion, which will relate the contributions pre-
sented in the thesis with other works in the literature and discuss the main limitations. We
shall separate the discussion in two parts. First, we will discuss the passive and reciprocal
bianisotropic metasurfaces related to chapter 4 and chapter 5. Second, we will discuss the
nonreciprocal bianisotropic metasurfaces related to chapter 6 and chapter 7.

Passive and Reciprocal Metasurfaces

The experimental demonstration of the bianisotropic refracting metasurfaces without spuri-
ous diffraction in chapter 4 was the conclusion of a decade of works by several researchers.
The generalized law of refraction and reflection conceptualized in [49] sparked a large interest
in metasurfaces for manipulating electromagnetic waves with phase gradients. However, it
was soon realized that such simple symmetric structures had limited efficiency due to reflec-
tions and the excitations of undesired diffraction orders [10]. An initial attempt to get rid of
the undesired diffraction orders was to include resistors in the metasurface design to realize
a lossy structure at the cost of limited refraction efficiency [163]. It was then theoretically
demonstrated that bianisotropic metasurfaces, which are asymmetric structures [12], could
provide lossless, passive and reciprocal refraction with optimal efficiency [11, 147]. Hence,
the main contributions of the work in chapter 4 was being the first experimental demon-
stration confirming the pertinency of bianisotropic metasurfaces for large-angle refraction
and presenting a complete bianisotropic metasurface design method based on susceptibility
tensors. While, chapter 4 only presented the case of the p-polarization, the solution for the
s-polarization was given, by duality, in [127].
An alternative method to realize large-angle refraction is through the use of metagrat-
ings [164–168]. Those structures are typically composed of a single large scatterer that
is properly designed to radiate only in the desired diffraction order. Hence, compared to
bianisotropic metasurfaces that require multiple subwavelength unit cells to be realized, the
metagratings have the benefit of simplicity and easier fabrication due to their fewer compo-
nents. Metagratings are especially interesting for optical frequencies, where purely dielectric
scatterers, which are generally bigger than their metallic counterparts, are preferred to avoid
high plasmonic losses and for easier fabrication.



97

Nevertheless, bianisotropic metasurfaces of the type presented in chapters 4 and 5 have the
advantage to be able to realize more sophisticated wave operations that go beyond wave
deflection. As previously mentioned, any wave transformation that respects local power
conservation can straightforwardly be realized by a single, passive, lossless and reciprocal
bianisotropic metasurface [13]. Furthermore, the local power conservation condition can be
lifted by either specifying additional auxiliary evanescent waves [115] or by using a pair of
bianisotropic metasurfaces allowing multiple reflections between them [152,153].
The generalization of the Brewster effect presented in chapter 5 is an example of a wave
transformation that would not be properly implemented with metagratings since it requires
a uniform structure with no diffraction orders composed of subwavelength scattering particles.
Note that the susceptibilities presented in chapter 5 to realize the generalized Brewster effect
is a particular solution of the generalized refraction susceptibilities of chapter 4 where the
angle of refraction in the single medium is specified to follows Snell’s law (kax = kbx).
One of the main limitations of the passive and reciprocal bianisotropic metasurface is their
bandwidth. Metasurfaces rely on resonant particles, which generally prevent the imple-
mentation of broadband devices. Furthermore, resonant metallic particles composing the
metasurface, even when folded to reduce their sizes like in the metasurfaces of chapters 4
and 5, are still on the order of the wavelength of the operating frequency. For instance, the
unit cells in chapters 4 and 5 are around λ0/5, which represents what seems to be a good
compromise between strong interaction and small size. This restriction in turn implies that
wave transformations requiring susceptibilities rapid spatial variations might not be imple-
mentable due to the restriction of the minimum size of the resonators composing the different
discretized unit cells.

Nonreciprocal Metasurfaces

Throughout chapter 6 and 7, we presented a few nonreciprocal metasurface operations that
leveraged different nonreciprocal susceptibility responses and proposed transistor-loaded im-
plementations for some of them. For linear time-invariant metasurfaces, nonreciprocity im-
plies breaking at least one of the three tensorial relations from Eqs. (3.6) and we presented
examples of distinct metasurfaces breaking all three of those tensorial conditions, which
yielded different and complementary nonreciprocal responses.
First, in chapter 6 with the gyrotropic reflective isolator and in Sec. 7.1 with the transmis-
sive Faraday rotator, we investigated tangential gyrotropic nonreciprocal responses related to
asymmetric χee and χmm tensors, which specifically meant χxyee 6= χyxee and χxymm 6= χyxmm. We
discussed an example of a transistor-loaded metaparticle realizing simultaneous electric and
magnetic nonreciprocal responses in chapter 6 and also presented a mirror-backed metasur-
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face with only an electric response χxyee 6= χyxee to realize the gyrotropic reflective isolator. This
type of gyrotropic nonreciprocity with transistor-loaded resonators was first demonstrated
in [197] with unilateral ring resonators and in [198] with cross-polarized dipoles for trans-
missive nonreciprocal gyrotropy. Note that this type of nonreciprocal response will always
provide a rotation of the polarization due to its gyrotropic nature, which can be undesired for
certain applications. In chapter 6 and in Sec. 7.1, we also theoretically investigated realizing
the same metasurface operations but using alternative gyrotropic bianisotropic nonreciprocal
responses of the type χxxem 6= −χxxme and χyyem 6= −χyyme (Tellegen-type). This type of nonrecip-
rocal has yet to be experimentally demonstrated using transistor-loaded metasurfaces, but
a potential metaparticle was proposed in [201]. The investigation of Tellegen-type nonrecip-
rocal metasurfaces using transistor-loaded metaparticles remains a potential route for future
research.
Next, in Sec. 7.2 with the nonreciprocal phase gradient metasurface, we investigated the
tangential bianisotropic nonreciprocal responses of the type χxyem 6= −χyxme and χyxem 6= −χxyme

(moving-type). This type of response is of particular interest since it represents the only
tangential nongyrotropic nonreciprocal response, which can be desirable for metasurface ap-
plications where polarization rotation of the incident field is not needed. It can be used
for nonreciprocal transmissive isolation with a transistor-loaded implementation as shown
in [151, 205] and for nonreciprocal phase shifting as shown in Sec. 7.2, which can realize
spatial circulation and nonreciprocal radiation patterns.
Finally, we also investigated normal nonreciprocal susceptibility responses in Sec. 7.3 with
the realization of the nongyrotropic specular isolator. As far as we know, this work, which
leveraged the responses χxzee 6= χzxee and χzyem 6= −χyzme, represented the first demonstration
of a metasurface with normal nonreciprocal responses. The demonstration of this novel
type of nonreciprocal response which is able to provide an asymmetric angular reflection
response [131] has the potential to unable different metasurface applications. A potentially
particularly interesting area of application is in analog computing with metasurfaces, where
realizing certain signal processing operations in reflection, such as differentiation and integra-
tion, have been shown to require this type of nonreciprocal response [104]. The investigation
and design of appropriate transistor-loaded metaparticle to realize other normal nonrecip-
rocal responses, including the ones required to realize the specular isolation operation for
the s-polarization (specifically χxzmm 6= χzxmm and χyzem 6= −χzyme), still represents an avenue for
future research.
The main limitation of the transistor-loaded technology for metasurface applications is be-
ing restricted to microwave and mmWave frequencies for the foreseeable future. At this
point, leveraging nonlinearity or space-time modulation appears to be the better suited non-
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reciprocal technologies for nonreciprocal metasurfaces at optical frequencies. At microwave
frequencies, a common critique of transistor-loaded structures for nonreciprociy is that they
come with relatively high noise figures [182]. However, in many applications, such as for
communications, the important factor is the signal to noise ratio (SNR). A transistor-loaded
structure has the intrinsic ability of providing gain which could maintain a good SNR or
even improve it. The investigation of metasurfaces with transistor-loaded resonators pro-
viding gain still represents an area for future research, where the issue of ensuring stability
might prove practically challenging.
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CHAPTER 9 CONCLUSION AND RECOMMENDATIONS

Summary of Works

This thesis presented several works related to the development of bianisotropic metasurfaces
realizing both reciprocal and nonreciprocal responses.
Chapter 3 introduced the susceptibility-based generalized sheet transition conditions that
were subsequently used to model and synthesize the metasurfaces in the rest of the thesis.
Chapter 4 presented bianisotropic metasurfaces realizing large-angle refraction with optimal
efficiency. The corresponding susceptibility tensors were derived for the p-polarization prob-
lem and two related metasurfaces were designed. This work experimentally demonstrated
that properly designed bianisotropic metasurfaces resolve the limited efficiency issue of pre-
vious phase gradient metasurfaces for generalized refraction.
Chapter 5 presented a generalization of the Brewster effect using bianisotropic metasurfaces
placed at the interface between two media. The corresponding susceptibility tensors were
derived to allow arbitrary control of the angle of incidence and polarization of the Brewster
effect. The bianisotropic metasurfaces were demonstrated by full-wave simulations in the
microwave regime. The proposed bianisotropic metasurfaces provided deeply subwavelength
matching solutions for initially mismatched media.
Chapter 6 presented a metasurface realizing reflection isolation between the two orthogo-
nal polarizations. A birefringent metasurface with its corresponding susceptibility tensors
was designed to reflect vertically polarized incident waves into horizontally polarized waves,
and absorb horizontally polarized incident waves. A mirror-backed transistor-loaded meta-
particle implementation was proposed and the metasurface was demonstrated by full-wave
simulations.
Chapter 7 presented complementary results related to nonreciprocal metasurfaces. First, the
problem of a transmissive Faraday rotation metasurface was analyzed and two sets of suscep-
tibility tensors realizing this operation were derived. Second, the concept of a nonreciprocal
phase gradient metasurface composed of bianisotropic nonreciprocal phase shifting unit cells
was presented with an implementation using an antenna-circuit-antenna architecture and
its related full-wave simulation. Third, a nongyrotropic specular isolator metasurface was
presented and its corresponding susceptibility tensors, which were required to include nor-
mal nonreciprocal components, were derived. A related transistor-loaded metaparticle was
presented and validated by both full-wave simulations and experimental demonstration.
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Future Research

Metasurfaces are part of a thriving area of research that will surely lead to a plethora of new
applications and concepts in the future. Here, we provide a non-exhaustive list of possible
future research directions:

• Investigate the problem of the limited bandwidth of metasurfaces with the aim to realize
broadband metasurface operations. This would allow the realization of many practical
applications requiring broadband responses.

• Develop a better understanding and techniques to relate the susceptibilities to the
geometry of the scattering particles for both reciprocal and nonreciprocal metasurfaces.

• Investigate more deeply metasurfaces that include normal susceptibility responses. Due
to the added complexity of synthesizing metasurfaces with normal components, few
works have reported this type of response, particularly in the case of nonuniform meta-
surfaces. More complicated designs of this kind have the potential to realize multi-
purpose operations that would depend on the direction of propagation of the incident
wave.

• Investigate still unreported nonreciprocal susceptibility responses with transistor-loaded
metasurfaces. This includes Tellegen-type nonreciprocity and many nonreciprocal nor-
mal susceptibility responses beyond those presented in Sec. 7.3.

• Design transistor-loaded metasurfaces with the specific aim of providing gain. Active
metasurfaces would provide potentially many useful responses, but could be practically
challenging due to the issue of stability.
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APPENDIX A GENERALIZED SHEET TRANSITION CONDITIONS
DERIVATION FOR FLAT METASURFACES

Assuming the time-harmonic conventional e+jωt, the sourceless Maxwell equations take the
form

∇× E = −jωB, (A.1a)

∇×H = jωD, (A.1b)

where the fields are related to the induced electric polarization density P and the induced
magnetic polarization density M by the constitutive relations

D = ε0E + P or E = (D−P)/ε0, (A.2a)

B = µ0(H + M) or H = B/µ0 −M. (A.2b)

The GSTCs aim to model the response of the metasurface in term of effective polarizations.
To do so, we shall express the fields D and E in terms of P and the fields B and H in terms
of M using (A.2). Inserting (A.2) into (A.1) yields

∇× [(D−P)/ε0] = −jωµ0(H + M), (A.3a)

∇× (B/µ0 −M) = jω(ε0E + P). (A.3b)

Assuming the first-order metasurface discontinuity [124], we can split the polarization den-
sities into volume and surface components as

P = Pv + Psδ(z), (A.4a)

M = Mv + Msδ(z), (A.4b)

where the δ(z) is the Dirac delta distribution. Inserting (A.4) into (A.3), and rearranging
the parts related to the surface polarization densities on the right-hand side leads to

∇× [(D−Pv)/ε0] = −jωµ0H− jωµ0Mv − jωµ0Msδ(z) +∇× (Psδ(z)/ε0), (A.5a)

∇× (B/µ0 −Mv) = jωε0E + jωPv + jωPsδ(z) +∇× [Msδ(z)]. (A.5b)
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Figure A.1 Flat metasurface placed in the xy-plane with the related integration pillbox

We can now use the conventional pillbox integration technique over a rectangular surface
around the metasurface as shown in Fig. A.1 and apply Stokes theorem, which yields
∮

[(D−Pv)/ε0]·dl = −jωµ0

∫∫
(H+Mv)·dS−jωµ0

∫∫
δ(z)Ms·dS+

∮
(δ(z)Ps/ε0)·dl, (A.6a)

∮
(B/µ0 −Mv) · dl = jωε0

∫∫
(E + Pv/ε0) · dS + jω

∫∫
δ(z)Ps · dS +

∮
Msδ(z) · dl, (A.6b)

where dS and dl are the surfaces and contours of the pillbox integration domain of Fig. A.1.
The integrands in the left-hand sides of (A.6) can be simplified through the constitutive
relations (A.3) as

(D± −P±v )/ε0 = E±, B±/µ0 −M±
v = H±, (A.7)

where the + and − signs respectively represent the +z and −z regions in Fig. A.1. Next,
we substitute (A.7) into (A.6) and integrate these relations over one of the xz-plane of the
pillbox which yields

(E+
x − E−x )∆x+ (Eleft

z + Eright
z )∆z =

− jωµ0(Hy +Mv,y)∆x∆z − jωµ0Ms,yδ(z)∆x∆z − (P right
s,z − P left

s,z )δ(z)∆z/ε0,
(A.8a)

(H+
x −H−x )∆x+ (H left

z +Hright
z )∆z =

jωε0(Ey + Pv,y/ε0)∆x∆z + jωPs,yδ(z)∆x∆z − (M right
s,z −M left

s,z )δ(z)∆z.
(A.8b)
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We then take the limit ∆z → 0, replace δ(z)∆z → 1 and divide by ∆x which reduces (A.8)
to

E+
x − E−x = −jωµ0Ms,y − (Ps,z,right − Ps,z,left)/(ε0∆x), (A.9a)

H+
x −H−x = −jωPs,y − (Ms,z,right −Ms,z,left)/∆x, (A.9b)

which, by taking the limit ∆x→ 0 reduces to

∆Ex = −jωµ0Ms,y −
∂(Ps,z/ε0)

∂x
, (A.10a)

∆Hx = −jωPs,y −
∂Ms,z

∂x
, (A.10b)

where ∆Ex = E+
x − E−x and ∆Hx = H+

x − H−x . Similarly, by integrating (A.6) over one of
the yz-plane of the pillbox, we obtain

∆Ey = jωµ0Ms,x −
∂(Ps,z/ε0)

∂y
, (A.11a)

∆Hy = −jωPs,x −
∂Ms,z

∂y
, (A.11b)

where ∆Ey = E+
y − E−y and ∆Hy = H+

y −H−y .
Finally, by combining (A.10) and (A.11), we obtain the GSTCs for a flat metasurface as

ẑ ×∆E = −jωµM‖ −
1
ε
ẑ ×∇Pz, (A.12a)

ẑ ×∆H = jωP‖ − ẑ ×∇Mz, (A.12b)

where ‖ refer to the tangential components x and y.
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