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RÉSUMÉ 

L'importance de la santé est indéniable dans notre vie, et nous sommes témoins d'un développement 

rapide dans ce domaine chaque jour. En effet, l'un des aspects les plus critiques de cette évolution 

pourrait être la contribution entre les objets connectés (IoT) et les systèmes de soins de santé. 

Aujourd'hui, les services de santé tirent un avantage considérable de l'IoT. Ceci permet de fournir 

de meilleurs services aux patients et d'aider les installations du personnel médical. L'utilisation de 

cette technologie pour collecter davantage de données sur la santé, les services de santé à distance, 

la prévision des maladies et la fourniture de systèmes de surveillance avancés est de plus en plus 

courante. Néanmoins, outre toutes ces améliorations, de nouveaux défis et problèmes sont apparus, 

tels que la confidentialité, la sécurité, la consommation d'énergie, la capacité de stockage, le 

traitement des données massives, etc. 

Dans ce mémoire, nous nous concentrons sur la santé en considérant la ville intelligente et ses 

caractéristiques. Nous utiliserons les objets connectés médicaux portables « Internet of Medical 

Things » (IoMT) pour fournir un système de surveillance de la santé à distance efficace et sécurisé. 

Dans un premier temps, nous examinerons les cadres d'interopérabilité actuels utilisés pour aider à 

fusionner les données de santé générées par les patients et les dossiers médicaux électroniques, et 

nous proposerons une solution pour préparer un système de surveillance de la santé en temps réel 

et évolutif. Ensuite, nous concevrons un modèle qui prend en charge différents types de données 

IoMT portables et leur interopérabilité. Il convient de mentionner que les données 

d'électrocardiogramme (ECG) sont considérées comme un exemple de données de capteur IoMT 

pour le cas d'utilisation pratique du modèle. 

Nous utiliserons la transformée en ondelettes discrètes « Discrete Wavelet Transform » (DWT) 

pour réduire le bruit dans les données ECG, ainsi que pour augmenter la robustesse, la sécurité et 

la fiabilité de ces données. Les résultats obtenus prouvent que nous augmentons le « Signal-to-

Noise Ratio » (SNR) aux niveaux les plus bas et les plus élevés et que nous fournissons des valeurs 

« Mean Square Error » (MSE) acceptables par rapport aux travaux antérieurs. En outre, nous 

appliquerons une méthode de cryptage et de chiffrement des données ECG avant de les envoyer 

sur le réseau, ce qui permet d'ajouter une couche de sécurité supplémentaire à notre modèle 

proposé. 
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Dans un second temps, nous concevrons un module de transmission rapide des données basé sur 

les capacités de la technologie de cinquième génération (5G) pour améliorer la vitesse, réduire la 

latence et augmenter la sécurité dans ces systèmes. Le modèle proposé est basé sur la technologie 

« Software-Defined Networking » (SDN), une solution de sécurité robuste pour la 5G. Cette 

technologie sera améliorée en tirant parti de la plateforme OpenDaylight (ODL). En outre, 

« Support Vector Machine » (SVM), un algorithme de détection des attaques « Distributed Denial 

of Service » (DDoS) pour SDN, est intégré pour augmenter la sécurité du réseau dans le modèle 

proposé, atteignant une détection des attaques DDoS de haute précision. Les résultats de notre 

solution de détection des attaques DDoS par SVM, évalués par le score F1, prouvent que notre 

modèle a une grande précision puisque notre score F1 est égal à 1 pour le test des données. Pour 

conclure, les résultats de la mise en œuvre du modèle proposé montrent l'amélioration de la sécurité 

du système de surveillance de la santé à distance et valident son efficacité. 
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ABSTRACT 

The importance of healthcare is undeniable in our lives, and we are witnessing rapid development 

in this area everyday. Indeed, one of the most critical aspects of this evolution could be the 

contribution between the Internet of Things (IoT) and the healthcare systems. Today, healthcare 

services are benefiting significantly from IoT. This is providing better services to patients and 

helping medical staff facilities. The use of this technology to collect health data, remote health 

services, disease prediction and providing advanced monitoring systems is becoming more 

common. Besides all these improvements, new challenges and issues have emerged, such as 

privacy, security, energy consumption, storage capacity, big data processing, etc. 

In this dissertation, we focus on health by considering the smart city and its features. We will use 

the wearable Internet of Medical Things (IoMT) to provide an efficient and secure remote health 

monitoring system. At first step, we will examine the current interoperability frameworks used to 

help merge patient-generated health data and electronic medical records, as well as provide a 

solution to prepare a real-time and scalable health monitoring system. Then, we will design a model 

that supports different types of wearable IoMT data and interoperability between them. It is worth 

mentioning that electrocardiogram (ECG) data is considered as an example of IoMT sensor data 

for the practical use case in the model. 

We will propose a Discrete Wavelet Transform (DWT) denoising approach to reduce noise in ECG 

data, as well as to increase the robustness, security and reliability of this data. Our results for 

denoising ECG data prove that we increase the Signal-to-Noise Ratio (SNR) at both the lowest and 

the highest levels and we provide acceptable Mean Square Error (MSE) values in comparison with 

the earlier previous works. Moreover, we will apply an encryption and encoding method for ECG 

data before sending it over the network, which adds an extra security layer to our proposed model. 

At second step, we will propose a fast data transmission module based on the capabilities of the 

fifth generation (5G) technology to improve speed, reduce latency and increase security in these 

systems. The proposed model is based on the Software-Defined Networking (SDN) technology, a 

robust security solution for 5G. This technology will be enhanced by taking leverage of the 

OpenDaylight (ODL) platform. Furthermore, Support Vector Machine (SVM) algorithm, a 

Distributed Denial of Service (DDoS) attacks detection algorithm for SDN, is integrated to increase 
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the security of the proposed model, achieving a high accuracy DDoS attacks detection. The results 

for our SVM DDoS attacks detection solution, evaluated by F1 score, prove that our model has a 

high accuracy as our F1 score is equal to 1 for the test of the data. To conclude, the results of the 

implementation of the proposed model show the enhancement of the security of the remote health 

monitoring system and validate its efficiency. 
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 INTRODUCTION 

A smart city is an urban area using different types of electronic methods and sensors to collect data 

from citizens, devices and buildings, in order to efficiently manage resources and services. Smart 

cities include several systems, such as transit, traffic, health services, safety alerts, etc. The main 

objective in smart cities is to improve the quality of people's lives and services by enhancing the 

city's operations. As an application for health services in smart cities, we can consider the Remote 

Health Monitoring System (RHMS), which is a system that captures, and collects medical and 

health data, then transmits them for assessment and recommendations with a secure approach to 

health care providers. These systems use health sensors with the Internet of Things (IoT) 

technologies. Regarding sensitive information in the healthcare domain, security would be a must 

in health monitoring systems and this domain, like other information systems. In this dissertation, 

we will propose a model for the remote health monitoring system based on the wearable Internet 

of Medical Things devices and the fifth generation (5G) network capabilities to provide security of 

health data in smart cities. In this chapter, we will first present the basic definitions and concepts 

of e-health security in the context of smart city, followed by the problems statement that we will 

seek to address, then the objectives of this dissertation, to end with the plan of the dissertation. 

1.1 Basic definitions and concepts 

In this section, we will review the basic definitions and the main concepts regarding the concept of 

IoT in smart cities, the e-health systems, the 5G technology, the selected health data that we will 

use in our simulations and the proposed security solutions. Then, we will present the problem 

statement, the research objectives, and we will end by the dissertation plan. 

1.1.1 IoT for smart cities 

In recent years, significant advancements in research and technology have been led to the 

development of the Internet of Things (IoT) with the objective of smart city concepts. One key 

factor in this enhancement is the exponential growth of smart devices or objects assisting the 

infrastructure of the Internet of Things. According to recent research, we have a dramatic increase 

in the number of connected devices in the next ten years (around 80 billion devices), and it causes 

the growth of connected devices per person as well [1]. Moreover, the same approach is expected 
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in the number of wearable devices and smart objects, and the estimation would be the trillions of 

things connected to the Internet in the next 50 years [2]. 

The smart city is a framework created essentially by information and communication technology 

(ICT) for developing, expanding, and promoting sustainable development practices to address the 

growing challenges of urbanization [3]. A large part of this framework is essentially an intelligent 

network of connected objects and machines that transmit information using wireless technology to 

help municipalities, companies, and citizens make better decisions to improve their quality of life. 

Therefore, smart transport, smart tourism and recreation, smart health, ambient-assisted living, 

crime prevention and community safety, governance, monitoring and infrastructure, disaster 

management, environment management, refuse collection and sewer management, smart homes 

and smart energy are some of smart city potential applications [3]. People use a variety of ways to 

connect with the ecosystems of a smart city, such as smartphones, portable smart devices, cars and 

smart homes. Indeed, sensors and actuators from an IoT ecosystem are being used in smart cities 

for collecting huge amounts of data that are then used for a variety of services, where smart health 

care is an essential one [4-7]. 

1.1.2 E-health systems 

As we mentioned previously, one of the smart city applications is the smart health or electronic 

health (e-health). Briefly, e-health systems are smart health care systems that use the information 

and the communications technologies, where advanced sensor devices are attached to patients to 

collect medical data and vital signs. E-health improves health services and information for both 

patients and paramedics. The e-health system includes domains like Electronic Health Records 

(EHR), Electronic Medical Records (EMR), Telehealth & Telemedicine, Health IT Systems, 

Consumer Health IT Data, Virtual Healthcare, Mobile Health (mHealth), Big data systems and so 

on. One of the main applications in this domain is a remote health monitoring system. This latter 

is a system that captures and collects medical and health data, then transmits them securely to the 

health care providers for assessment and recommendations. These systems use health sensors with 

IoT technologies. Moreover, they use wearable devices as IoT-based health sensors technologies, 

and Wireless communication and networking technologies like cellular 3G (Third Generation)/4G 

(Fourth Generation)/5G, Wi-Fi (Wireless Fidelity), WiMAX (Worldwide Interoperability for 
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Microwave Access), Bluetooth (BR/EDR & LE), RFID (Radio Frequency Identification), and 

Wireless Sensor Networks (WSN). It could be considered a solution for automated monitoring of 

patients, reducing hospitalization and decreasing common healthcare costs. Furthermore, by 

information provided in these systems, we are able to predict disease and improve the health 

situation [8] [9]. 

In addition, the increasing ubiquity of wearable sensors leads to new scenarios in the continuous 

monitoring of health parameters. In particular, wearables are becoming a critical part of the Internet 

of Medical Things (IoMT) or the IoT in healthcare. Wearable is anything that someone can wear 

without restrictions on daily activities or movement restrictions, including glasses, clothing, 

watches, patches, smartphones [10]. In other words, the implementation of the Internet of Things 

in the health care domain is called the Internet of Medical Things (IoMT)  [11]. It comes with huge 

advances in patients’ lives, physicians' work and the economics of the health system [12]. Remote 

care systems for patients and the elderly, emergency alert systems, fitness programs, chronic 

disease monitoring and remote management of medical equipment are some IoMT applications. In 

fact, the main objective of IoMT systems is monitoring health status endlessly, without interruption 

in people's routine activities and by using low-cost sensors in familiar objects (i.e., watches, 

bracelets, shirts, patches). We can consider the IoMT as a complicated combination between 

medical devices and software applications for integrating healthcare IT systems over a wireless 

connection. IoMT, as an important part of health monitoring systems, is to sense, store, interpret, 

and communicate information about the wearer’s body or environment [13]. IoMT has different 

Types, including On-Body, In-Home, Community, In-Clinic, In-Hospital. It is worth mentioning 

that Wearable IoMT is the most visible and commonly consumer IoT technology and the second-

most-owned IoT device after smart home appliances [11] [14]. Figure 1 presents some examples 

of IoMT applications [14], such as oximeter built into a ring for heart rate, sensor embedded into 

clothing like wristband with electrodermal sensor for stress, a smartwatch with an accelerometer 

for physical activity or sleep patterns, headband with EEG for diagnosing brain conditions or 

sociometric badges for levels of social interaction. 
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Figure 1.1 Wearable IoMT application examples 

1.1.3 Overview of 5G and related concepts 

Above all these technologies, we are going to see another key player in our world soon [15]. 

Considering the Internet infrastructure, the 5G technology and its features will play an important 

role in the growing expansion of the IoT. The 5G technology is an industry-standard that will 

replace the current standard of 4G LTE (Long Term Evolution) [16]. This technology is the fifth 

generation of this standard, and this standard is designed to be much faster than 4G LTE 

technology. 5G standard will provide high-speed wireless Internet everywhere and for everything, 

including connected vehicles, smart homes, and IoT devices. In theory, 4G is ultimately 100 Mbps 

(Megabits per second); 5G will increase that to 10 Gbps (Gigabytes per second). 

Therefore, 5G will be 100 times faster than current 4G technology, and it would be the highest 

speed in theory. Reduction of latency is a remarkable prospect of 5G which leads to high loading 

speed as well as advancement responsiveness of internet activities. In 5G, the maximum delay will 

be four milliseconds, which is much less than 20 milliseconds of 4G technology [15] [17].  

Regarding all the concepts mentioned earlier, we can conclude that remote health monitoring 

systems are one of the key systems in a smart city and it is our main focus in this dissertation. For 

this aim, we are going to prepare our testbed using Mininet testbed environment, a free network 

emulator to support and simulate Software-Defined Networking (SDN) systems, which facilitate the 
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research and the training of SDN through a simulated network environment [18]. It is one of the 

most widely used simulators that provides network equipment and enables software 

implementation for SDN topologies. Moreover, it supports different SDN controllers, such as 

OpenDaylight (ODL), Floodlight and so on [18] [19]. Software-Defined Networking (SDN) is a 

network management approach that efficiently enables programmable network configuration [19]. 

SDN has the capability of improving and monitoring network performance, promises to change the 

limitations of traditional network infrastructures and is far from the conventional network 

management approaches. The static architecture of traditional networks is decentralized and 

complex; SDN with an emerging architecture is ideal for dynamic, high-bandwidth applications 

with more flexibility and easy troubleshooting. The main difference between current network 

management systems and SDN is that SDN's control and data planes are physically separated [20]. 

There are several controllers for SDN, and one of them is OpenDyalight (ODL) [19]. ODL is an 

open-source platform organized by the Linux Foundation for providing centralized, programmable 

SDN control, as well as monitoring network devices. ODL includes the controller platform and the 

service abstraction layers as its two primary layers [21]. In this dissertation, SDN and ODL are two 

leading network technologies that are considered as a part of our proposed model.  

1.1.4 Our selected health data 

The electrocardiogram (ECG) signal is considered as IoT health data in this model. In health 

systems, electrocardiograms or ECG signals are used for monitoring heart health conditions. More 

precisely, electrocardiography provides a graph of voltage versus time, based on ECG signals and 

using electrodes that are placed on the skin and measuring the heart's electrical activities [22].  

For data preprocessing in the proposed model, Discrete Wavelet Transform (DWT) method for 

denoising ECG signals would be our selected approach. DWT is one of the popular ECG denoising-

based strategies for ECG signal analysis which is a powerful signal processing approach for non-

stationary or dynamic signals like ECG signals. It has a high resolution in both the frequency and 

time domains when applied to signals [23].  
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1.1.5 Concepts of proposed security solutions 

We will provide security on our data by applying JSON Web Token (JWT). JWT is an open standard 

that can provide the transmission of information securely between parties by encoding the data and 

sending it as JSON objects. This will give the ability to encrypt and sign our data digitally [24]. 

The primary security concern in this dissertation would be Distributed Denial of Service (DDoS) 

attacks. A simple definition of a DDoS attack is using all servers' resources by sending massive 

data and providing unwanted traffic, which leads to interruption of service to real users. When 

working with SDN, a centralized controller still would be an easy attacking point for these kinds 

of security threats, and we have IoT-based DDoS attacks as one of the primary sources of this 

security threat [25] [26]. Therefore, it is an essential security vulnerability that we are going to 

mitigate in our proposed model. Consequently, we are going to propose a machine learning 

approach for DDoS attacks detection, and we will implement it using a Support Vector Machine 

(SVM) [27]. SVM is a supervised learning algorithm used for classification problems. It is one of 

the most prominent algorithms and powerful methods with plenty of applications, such as pattern 

recognition, intrusion detection, spam filtering, and so on [27] [28]. We will discuss the proposed 

model and more details about these technologies and concepts in chapter 3. The next section will 

explain our problem statement in this domain. 

1.2 Problem Statement 

By reviewing the literature in the health monitoring systems, e-health, IoMT and smart cities, we 

figure out some weaknesses and lacks in existing systems, such as security, scalability, latency, 

etc. We will detail them in the next chapter. However, we can take into account these critical issues:  

• Lack of security at different levels: Obviously, for the IoT environment, the most important 

feature is the security and privacy of the system, as well as given the confidentiality and 

sensitivity of healthcare data, data security and security requirements in health care systems 

are a must [29]. Although, in our digital era, the security and privacy of patient health care 

systems are challenging due to the limited resources of mobile devices [30]. Furthermore, 

the transmitted data and transmission process both are vulnerable to various sources of 
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interference, injection and alteration by malicious attackers, sensor faults, etc. Therefore, 

one of the significant challenge would be security [31].  

• Challenges of dealing with heterogeneous data provided by various devices: Current e-

health trends bring a variety of changes in quantity and quality of information and services. 

Therefore, it requires new ways for addressing the challenge of dealing with huge amounts 

of structured and unstructured data in different sources, such as sensors, Web and social 

networks. As this data includes heterogeneous data, thus, definitely, traditional approaches 

are not enough, and this is another challenge regarding the emerging of e-health and IoMT 

[32] [33]. 

• Lack of data interoperability due to information processing: Semantic and functional 

interoperability between distributed systems is a key function when we work with health 

data. Considering IoT and e-health as a part of smart city, it is even more important in our 

domain [34-36]. 

• Lack of scalability considering hardware, network and communication, and data: Only if e-

health services are provided being scalable, then a variety of healthcare can be provided 

through e-health services. Adequate healthcare services must easily increase the capacity 

and number of resources, as well as scalability is a significant feature for these kinds of 

services [36] [37]. 

• Latency due to data transmission: Healthcare systems, especially health monitoring 

systems, are time-critical and include time-sensitive data that can save people's lives. 

Communication, computation, and network latency are different types of latency in 

healthcare IoT devices [38] that need to be addressed to provide a reliable health monitoring 

system. In such scenarios, providing the requirement of minimum latency leads to more 

values and a suitable healthcare system [39] [40]. 

Taking into account these problems, our main research question is the following: How can we 

enhance the level of security for the remote monitoring health system to keep vital and sensitive 

health information safe from security vulnerability and unauthorized access? From this primary 

question, derive the following two secondary questions: 
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1. How can we achieve a real-time and scalable monitoring health system to ensure the 

availability of this system and make it compatible working with various IoT devices? 

2.  What are the current interoperability frameworks being used to help merge patient-

generated health data and electronic health records? 

1.3 Research objectives 

The main objective of this dissertation is to propose a model for the remote monitoring health 

system, which uses wearable Internet of Medical Things devices and 5G network capabilities to 

provide security in the context of smart cities.  

More specifically, this research aims to: 

1. Design a model that supports various types of wearable IoMT data and interoperability 

between them, in order to deal with heterogeneous data and increase the scalability level of 

this model; 

2. Conceive a fast data transmission module based on 5G capabilities to improve the speed 

and decrease the latencies, in order to have a real-time access to important health data; 

3. Design a scalable cloud-based infrastructure to have Scalability in the model;  

4. Implement and evaluate the performance of the proposed model. 

1.4 Dissertation plan 

The remaining of this dissertation is organized as follows. Chapter 2 elaborates the background 

literature review and the related work of e-health, IoT and health services especially health 

monitoring and information management systems by focusing on their limitations, the security 

requirements and the solutions in IoT and 5G, as well as their importance. Chapter 3 presents our 

proposed model for security in the remote health monitoring system and IoMT devices with details 

about the development and an explanation of the adopted technologies including the technology 

SDN and the platform Open Daylight (ODL) in 5G, the network emulator Mininet, the DDoS 

attacks detection, the Support Vector Machine (SVM) algorithm and other machine learning 

solutions for DDoS attacks detection, the electrocardiography and the Discrete Wavelet Denoising 

(DWD) ECG method. In addition, in this chapter will discuss how we set our testbed and explain 
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procedures of our work with precise information. The Results and evaluation will be presented in 

Chapter 4. Finally, the Chapter 5 summarizes the work, outlines its limitations and offers some 

indications for future direction.  
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 LITERATURE REVIEW 

In this chapter, we will present a literature review about e-health systems, security requirements 

and solutions, DDoS attacks detection and ECG signal processing. Then, we will discuss the 

approaches regarding denoising ECG signals. In reviewing relevant existing techniques and 

methods in the DDoS attacks and ECG signals fields, we can identify their limitations and propose 

comprehensive solutions relevant to our goal in this dissertation. 

2.1 E-health systems 

There are considerable related works in the e-health area, as well as there have been many research 

papers in the field of Internet of Things (IoT) health services. This section will review the related 

works in two subdomains: health monitoring systems and health system integration/information 

management. At the end of this section, we summarize our findings in these two groups of works.  

The importance of health is undeniable in our life, and we are witness to fast development in this 

area every day. Indeed, one of the most critical aspects of this improvement could be the 

contribution between the Internet of Things and health care systems. Nowadays, health services 

make extensive use of IoT to provide better services for patients and assist medical staff. In recent 

years, IoT has been used to collect more health data, provide remote health services, predict 

disease, and provide advanced monitoring systems. Aside from all these improvements, some new 

challenges and issues have arisen. We can take into account new problems, such as privacy, 

security, power usage, storage capacity, processing big data, etc. Otherwise, using these new health 

systems provides unique opportunities for improvement, such as using accurate algorithms for 

prediction, improving speed and quality of algorithms for prediction, providing smart health 

services, etc. 

2.1.1 Health monitoring systems 

As mentioned before, health monitoring is one of the main domains in IoT health services, and 

there are plenty of articles on this subject. In this section, we are going to review some of these 

articles in this domain. 

Integrating wearables into corporate Occupational Health Management (OHM) is a fortunate 

opportunity to create a healthy work culture. Ramani et al. [41] proposed an IoT-based employee 
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health monitoring system based on Web and mobile applications that assists with routine health 

check-ups of employees at work, including temperature, energy levels, heartbeat rate, and blood 

pressure. Their proposed system uses Raspberry Pi programmed in Python and IoT as control units 

and sensors to monitor patient data. This system is not scalable, security issues are not addressed, 

and they use traditional approaches for storing enormous amounts of data. Additionally, there is a 

lack of interoperability with other e-health systems, and their model is incapable of working with 

heterogeneous data.  

Ali et al. [42] developed an automatic health monitoring and voice disorder detection system for 

patients suffering from voice complications in smart cities. They used a Linear Prediction (LP) 

method and Levinson-Durbin recursive algorithm to compute the coefficients-based spectrum and 

remove formant's effects from speech signals by inverse filtering. In addition, K-means algorithm, 

Gaussian Mixture Models (GMM) and Expectation-Maximization (EM) algorithm are used in their 

system to predilect the disease in voice data. The limitations of their work include the effect of 

filter order on estimating the source signal, an insufficient number of coefficients to handle higher 

sampling rates, an uncertain security solution, and a lack of interoperability with other healthcare 

systems. 

Irmansyah et al. [43] designed a low-cost and real-time heart rate portable device. They used IoT 

to monitor patients' heart rates and to send SMS notifications as a warning system. They built a 

PHP and a JavaScript-based website, as well as an employed Transmission Control 

Protocol/Internet Protocol (TCP/IP) for website communications. Additionally, ESP8266 Wi-Fi 

modules are used for the webserver gateway and pulse sensor communication [43]. Patients' 

physical conditions and high physical activity levels, such as sports, are not considered in the 

design of their system. Furthermore, they did not address security concerns, and there is a lack of 

interoperability with e-health systems and supporting heterogeneous data. 

Shaown et al. [44] proposed an IoT-based ECG monitoring system to monitor subjects outside of 

hospitals. This system uses heart rate and temperature sensors to collect the data. The data 

generated by wearable ECG sensor AD8232 is processed on the Raspberry Pi model 2 and Arduino 

uno. A bandpass filter is used to eliminate various noises to produce an ECG graph, and the data is 

collected by an IoT cloud using a wireless protocol. Moreover, they proposed an alarm system that 

is only email-based. Furthermore, their results are based on 10 test cases with an 80% accuracy in 
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diagnosing ECG abnormalities, which is insufficient. Other drawbacks of the driven approach 

include lack of security solutions, poor interoperability with other systems, and the inability to 

manage heterogeneous data. 

Budida et al. [45] proposed an intelligent and resilient health monitoring system that uses IoT to 

measure patient's body parameters in real-time and deliver an emergency message if abnormal data 

is detected. Their idea is made up of two functional building blocks: (1) collecting all sensor data 

and, (2) storing, processing and presenting the resulted information. Sensors (i.e., temperature and 

pulse rate sensors) capture the patient's bodily characteristics and send them to the ATMEL 89s52 

microcontroller, subsequently sending them to the MySQL database server. Moreover, the 

proposed system includes Recommended Standard (RS)-232, an analog-to-digital converter, and a 

voltage regulator Integrated Circuit (IC)-7805. Furthermore, the information is instantly supplied 

to clinicians through an android app on a mobile phone or tablet by using numerous decision-

making algorithms. The primary flaw in this study is that it does not address the authentication 

procedure, patient identification and security concerns. In addition, they did not provide a scalable 

system, interoperability with other e-health systems and the capacity to cope with heterogeneous 

data. 

Saha et al. [46] focused on the communication subdomain, developing a continuous healthcare 

monitoring system based on IoT and Wireless Body Sensor Network (WBSN). This system 

monitors health metrics and transmits data via wireless communication, subsequently sent to the 

network via a Wi-Fi module. They developed a Graphical User Interface (GUI) to store, analyze 

and present the received data in graphical and text formats and sending SMS, notifying the 

caregiver, and presenting the current health condition. In this system, an ATmega 328p 

microcontroller in an Arduino uno board with a Liquid-Crystal Display (LCD) and a Wi-Fi module, 

Hypertext Transfer Protocol (HTTP), Hypertext Markup Language (HTML) and File Transfer 

Protocol (FTP) are used. Constant Internet access is required in this system, and they only cover 

limited sensors. Other limitations include an uncertain strategy for managing security 

vulnerabilities, handling heterogeneous data and facilitating interoperability with other e-health 

systems. Furthermore, the 15-second information update rate causes huge delay in cardiac 

monitoring, and cloud FTP is required for scalability.  



13 

 

 

When it comes to IoT, Wireless Sensor Network (WSN) may play a key role here, and it is another 

subdomain for e-health subject. Sudevan et al. [47] presented a vision of incorporating IoT and 

healthcare monitoring devices by transmitting real-time patient status data to caregivers. Their 

implementation is real-time and based on cloud computing. In this system, wearable devices 

transmit the continuous flow of information and sensor status and then retrieve it by the cloud 

platform. Their applicable protocols are divided into three layers: (1) Extensible Markup Language 

(XML) and Constrained Application Protocol (CoAP) for uninterrupted mapping to HTTP, (2) 

User Datagram Protocol (UDP) in transport layer, and (3) IPv6 over Low-Power Wireless Personal 

Area Networks (6LoWPAN) for Web connectivity and specific standards in network layer. Their 

implementation is limited to Bluetooth and mobile phones supported by Android. Another point is 

that there are some weaknesses in their transport layer, such as reliability. The CoAP protocol they 

use is not secure against Distributed Denial of Service (DDoS) amplification attacks. Therefore, 

we should consider other alternative solutions to solve this weakness, such as applying DDoS 

attacks detection methods in this system. 

Preethi et al. [48] created a wireless and real-time IoT-based healthcare monitoring system with a 

primary emphasis on Intra Venous (IV) fluid flow control, and regulation is the primary purpose 

of this article. This proposed system is a kind of cyber-physical health monitoring system. They 

used following hardware components in their system: (1) Node Micro-Controller Unit (Node 

MCU), (2) solenoid valve and Arduino Integrated Development Environment (IDE) as software 

technologies, (3) firebase real-time database, which is a cloud-hosted NoSQL database, and (4) 

Massachusetts Institute of Technology (MIT) app inventor to generate software applications for 

the Android operating system. The suggested system works under the constraints of voltage, 

temperature, humidity, and pressure voltage, temperature, humidity, and pressure. They did not 

provide any solutions for unexpected conditions like Wi-Fi outages or power outages. Furthermore, 

they did not address the critical concerns, such as low latency, system scalability, interoperability 

with other e-health systems and the authentication procedure, patient diagnosis and security issues. 

Jerald et al. [35] proposed a secured architecture for smart healthcare based on IoT. Their main 

objective is to secure the transaction of health care data from the patients to IoT health seva Kendra. 

Smart gateway, application data server, application programming interface server, security 

management server, data management server, Web services server, and information alert server 
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compose all the parts of the proposed architecture. Moreover, the authors used the Elliptic Curve 

Digital Signature Algorithm (ECDSA) as a cryptographic algorithm and point generation 

algorithm. In terms of accessibility, users must log in with the phone, and there is no web-based 

solution. In addition, the certificate generated based on the device, number, username, and 

password has a limitation, which causes problems when the device is changed. Another 

considerable limitation in this work is that their dataset for performance analysis contains only 

1000 records. 

Srilakshmi et al. [36] proposed an IoT-based smart health care system primarily based on 

temperature data. They designed a smart health care system in the application layer of Software-

Defined Networking (SDN), considering the confidentiality and security of patient data to prevent 

security attacks in SDN. They applied cloud-based SDN technology for collecting real-time health 

reports of patients. Moreover, they provided smart alerts for variation in users' threshold values 

based on their availability of sources like Twitter accounts, mobile messaging or e-mail accounts. 

They used Message Queuing Telemetry Transport (MQTT) and CoAP for communication, and 

Raspberry Pi as a data plane to generate streaming data. Furthermore, they took advantage of 

ThingSpeak cloud, a platform for MATLAB analysis and visualization, to ensure trustable health 

reports to the end-users and Machine Learning techniques, in order to analyze data and make 

predictions. Their limitation is that they proposed an overall structure without precise detail for 

preparing it, and they did not evaluate their model about the rate of security that their model can 

provide. 

Combining Machine Learning with health monitoring can help to enhance  medical services. Gupta 

et al. [49] proposed a model for predicting future diseases based on the integration of Machine 

Learning with existing hospitals and medical services. In their model, remote healthcare uses four 

layers: the sensor layer, the Internet layer, the system layer and the administration layer. An 

Arduino remote healthcare unit with the Raspberry pi is used for data transmission, and an 

electronic application is created using HTML and CSS. They used ML to predict future diseases 

and the SK learn data library for the dataset. Then, analysis phase was carried out using a Machine 

Learning approach (i.e., linear regression). Regarding their work, prediction results are 94% 

accurate, with a 6% margin of error. By combining two or more of hybrid data analytics 

approaches, these results could be enhanced. In addition, the proposed model requires a robust 
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Internet connection, which leads to a serious issue in the term of access to health data. Furthermore, 

the authors did not address in their work the latency and the interoperability with other e-health 

systems. 

2.1.2 Health system integration/information management 

Another critical component of health services is integrating health data created by different sensors 

and IoT devices in health systems. Using IoT devices leads to generating massive data with various 

data types. It is more complex to manage these types of data when it comes to the health area. 

Therefore, we can consider health information management as another critical element in e-health 

systems. 

The main purpose of Venkatesh et al. [50] is to provide a scalable modular approach based on 

Machine Learning to reduce complexity for integrating IoT-based smart health applications in the 

context of a smart city. The authors designed the smart health application as a hierarchical structure 

of common Multiple-Input-Single-Output (MISO) Functional Units (FUs). They used serialisation 

to expose intermediate output for reuse by other applications in the smart city infrastructure. 

Moreover, they predicted user presence, user activity, air quality and other factors. Furthermore, 

they examined their application using occupancy detection as the context engine technique. The 

first limitation for this work is that, integrating health systems through Machine Learning means 

losing accuracy to improve scalability. In addition, the serializing process can increase latency if a 

highly compact algorithm is expanded. Finally, the security aspects of this work are not apparent. 

Park et al. [34] investigated the requirements of a Smart Emergency Medical Service (SEMS) 

system, which offers an event-tracking service as well as bio-signal monitoring to collect up-to-

date emergency information. Additionally, they designed a life-log-connected Emergency Medical 

Service (EMS) for stroke patients with a real-time location service to manage treatment timelines. 

They provided a personal Electronic Medical Records (EMR) profile by using a tagging technology 

(i.e., life tag) that serves as emergency medical identification. For reliable EMS activity reporting, 

they employed electronic Patient Care Reporting (ePCR) and electronic Ambulance Call Recording 

(eACR). Moreover, they used existing standards, such as Health Level 7 (HL7) and Digital Imaging 

and Communications in Medicine (DICOM), to build an Integrated Health Enterprise (IHE) 
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architectural framework. Therefore, there is a possibility of misdiagnosis of stroke, and the 

procedure for dealing with security requirements is unclear. 

Manikanta et al. [51] proposed an IoT ambulance with mobile computing automatic traffic light 

control. Based on their work, the patient's information and emergency condition are collected in 

the ambulance via IoT and delivered to the hospital before the ambulance arrives. Furthermore, the 

ambulance's delay at the traffic signals is omitted by controlling traffic lights from the ambulance 

and automatically making it accessible for its path. There are not enough details of the traffic light 

controller in their work and their system requires constant connectivity to the Internet network. 

Moreover, the authentication process, detection of the patient and security issues are not clarified. 

It is worth mentioning that interoperability is a remarkable factor for connecting the ambulance to 

hospital systems, and they did not address this aspect in their work. 

Cai et al. [52] designed and implemented a regional health information system. Their main 

objective is to develop a regional medical knowledge standard system, a regional medical health 

big data center and a convergence platform, which are based on medical health service management 

data at each level and aggregated to a top-level platform. The authors employed a distributed 

technology architecture for distributing the data collection to form a pyramid-shaped stable 

regional health service system. Moreover, they used the unified Internet of Things communication 

devices to receive, forward and upload data. The first limitation is regarding the wearable devices 

that involve outdoor applications, and they should be capable of automatically storing and 

uploading data. Furthermore, the impact of distributed architecture on latency must be considered, 

which we cannot observe in their work. In addition, there are risks of reading data from a multi-

source heterogeneous medical database. An alternative would be to standardize all data based on 

the HL7 standard. Finally, the security concerns are ignored in this work. 

A telemedicine system based on ontology-oriented architecture was developed by Peral et al. [32] 

to be applied on heterogeneous data. Their approach is focused on combining knowledge related 

to natural language processing and artificial intelligence to access hidden data through a 

classification tree. Therefore, the authors proposed a big data integration approach in a 

heterogeneous context based on a knowledge Base (KB). Their telemedicine system is provided to 

assist the physician in delivering diabetes treatment and decision-making. The suggested paradigm 
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can increase scalability while retaining a high level of interpretability. The biggest flaw in this work 

is a lack of information on their security strategy. 

Sangkla et al. [33] proposed a system for exchanging the heterogeneous data from various health 

information systems and providing an integrated approach based on metadata and Web service 

techniques. Their proposed system is functional in both modes: online and offline. They take 

advantage of an operating adapter interface that may operate as a background process. This adapter 

is an automated program that is used in offline mode to transfer the data when the network is going 

to connect again.  This system attempts to integrate plenty of diagnostic equipment with the 

electronic patient cards and uses the data acquisition from instantly laboratory analyzers. Moreover, 

it has the least flexibility to dynamic data and needs its developers to make modifications to the 

input and output formats, thus we cannot consider it as a scalable system. In addition, the authors 

did not include any security measures in their system. 

2.1.3 Summary 

This section will summarize our findings in the e-health literature review, and we categorize them 

based on their weaknesses and similarities in Table 2.1. According to these findings, the primary 

limitations would be providing security, dealing with heterogeneous data, enabling interoperability, 

high scalability and reducing latency. 

Providing security: It is evident that security has crucial importance in any health system, and the 

health monitoring system would not be an exception. Therefore, the security is one of the essential 

features in health monitoring systems, and we highlighted this point previously (cf. §2.1.1 & 

§2.1.2) [32-34] [41-46] [48-52]. 

Dealing with heterogeneous data: We face heterogeneous types of resources in e-health and 

health care systems, thus remote health monitoring systems are not an exception. However, in most 

of the previous works, they did not consider this point, and most of the existing works are proposed 

for specific resources without this capability to handle heterogeneous data resources (cf. §2.1.1 & 

§2.1.2) [41] [43-46] [52]. 
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Table 2.1  Summary of e-health literature review 

Proposed method Limitations 

IoT-based heart rate monitoring system [41] 

[43] [44] [47]. 

Lack of security or insufficient information 

regarding security, dismissed scalability, 

inefficacious with heterogeneous data, and lack 

of interoperability. 

Communicate system between patient and 

physicians using the health monitoring 

system [45] [46]. 

Lack of security or insufficient information 

regarding security, dismissed scalability, 

inefficacious with heterogeneous data, lack of 

interoperability, and ignoring low latency. 

Secured IoT-based smart healthcare system  

[49] [50] [47]. 

Weakness in security models. 

Voice monitoring and voice disorder 

detection system to monitor residents' health 

of voices [42]. 

Lack of security or insufficient information 

regarding security, dismissed scalability, and 

lack of interoperability. 

Real-time IoT-based healthcare monitoring 

system for IV fluid flow control and 

regulation [48]. 

Lack of security or insufficient information 

regarding security, dismissed scalability, lack of 

interoperability, and ignoring low latency. 

IoT ambulance with mobile computing 

traffic light control [54]. 

Lack of security or insufficient information 

regarding security, and lack of interoperability. 

Prediction system for diseases or health 

requirements (using ML, life-log or 

integrating e-health data) [51-53]. 

Lack of security or insufficient information 

regarding security, dismissed scalability, lack of 

interoperability, and ignoring low latency. 

IoT-based e-health systems for integration of 

heterogeneous data [55-57]. 

Lack of security or insufficient information 

regarding security and ignoring low latency. 

 

Enabling interoperability: We can see the same situation about the interoperability to work with 

standard health care systems in existing works, where authors did not consider that their system 

should be able to connect and work with other health care systems efficiently  (cf. §2.1.1 & §2.1.2) 

[41-46] [48] [51]. Obviously, we should rely on existing standards for this requirement and follow 

the approaches that allow us to work with other standard platforms and systems. 
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High scalability: Another general issue in most existing related works is that they did not prepare 

their system for high scalability [41-43] [45] [46] [48] [51]. As we discussed previously (cf. §2.1.1 

& §2.1.2), these works are mostly customized for specific devices with specific platforms, making 

it challenging to have scalability in these circumstances. 

Reducing latency: For the last point for health systems, it is a significant factor that we access the 

data without latency, especially in the case of real-time systems. Regarding the literature review, 

in most previous works [46] [48-50] [52], the authors did not consider this point in their works or 

did not measure this parameter (cf. §2.1.1 & §2.1.2). 

Regarding the importance of security, the overview about security requirements and the existing 

solution will be detailed in the next section. 

2.2 Security requirements and solutions 

After reviewing related articles in the previous section, security is recognized as a significant 

weakness in e-health systems, particularly in health monitoring systems. Therefore, we consider 

this point as the main objective in our dissertation. We focus on enhancing the security of our 

proposed model that would be based on IoT and 5G networks. In this section, we will review the 

security requirements related to IoT and 5G networks, and then we will continue with discussing 

the security solutions, which will help us to propose our security model for enhancing security. 

2.2.1 Security requirements  

It is mentioned that new phenomena, including 5G networks and IoT or IoMT, are becoming a 

crucial part of e-health systems, such as remote health monitoring systems in the concept of smart 

cities. At the same time, this new era adds new challenges regarding security, and we should find 

new solutions for handling these challenges. Therefore, it is necessary to learn about these recent 

changes and their security requirements. This section will review security requirements with 

respect to 5G networks and IoT or IoMT phenomenon.  

Fang et al. [53] studied the security of 5G wireless networks by discussing the uniqueness of 5G 

and its new requirements, services and use cases in terms of security and compared them with the 

traditional cellular networks. They presented new security features for applied 5G technologies, 
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such as SDN, heterogeneous networks, device-to-device communications and the Internet of 

Things. Moreover, they classified security attacks in 5G mobile wireless networks into two main 

categories, passive and active attacks. For each category, some famous samples are considered as 

bellow: 

• Passive attacks including eavesdropping and traffic analysis; 

• Active attacks including Man-in-the-Middle attack (MITM), replay attack, Denial of 

Service (DoS) attack, and Distributed Denial of Service (DDoS) attacks.  

Hatzivasilis et al. [7] discussed the primary security and privacy controls required in the new-

fashioned IoMT for the user and its involving collaborator protection. They proposed a best-

practice approach for increasing safety in IoMT deployment. According to this work, although 

IoMT technologies have numerous advantages and unique services, traditional security approaches 

are insufficient for new advancements in the mobile wearable IoMT era. Increasing the number of 

individual devices that should be capable of connectivity to these types of networks and their 

valuable and sensitive data, makes them a popular target for different kinds of attacks. Furthermore, 

vendors are unaware of all these threats, and they pay less for its security aspects to make IoMT 

devices more cost-effective. Therefore, security is considered an extraordinary requirement for 

IoMT devices and networks. In addition, they claimed that secure IoT development should include 

three security areas: device security, connectivity security and cloud security. 

Regarding the previous two works ([7] [53]), there are four basic security principles for every sort 

of security services like 5G and IoMT: authentication, confidentiality, availability and integrity. 

Authentication is the most crucial security component of 5G networks, and it is classified into two 

types: entity authentication and message authentication. The former ensures that the 

communicating entity is identical to the one claimed, while the latter is used to authenticate a 

message, indicating that the stated sender sends it. Confidentiality refers to the property of not 

disclosing information to unauthorized people, processes or devices, and it encompasses two 

concepts: data confidentiality and privacy. Availability is a fundamental precondition for data and 

applications access, and it means that connected devices and information must be accessible and 

usable for any legal user anytime, anywhere based on their request. Finally, integrity means 
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unauthorized users cannot alter or corrupt the data throughout the transition process. 

Confidentiality, integrity and availability are known as CIA principles or CIA compromise. 

Alsubaei et al. [54] emphasised the importance of security and privacy as a growing challenge in 

IoMT. They proposed a security and privacy taxonomy for IoMT. They classified security attacks 

with respect to several aspects, including IoMT layers, intruder type, attack impact, attack method, 

CIA compromise, attack origin, attack level and attack difficulty. Their complete taxonomy is 

shown in Figure 2.1.  

 

Figure 2.1 Security and privacy of IoMT taxonomy 

Based on this classification, a DDoS attacks would be a threat in the network layer considering 

IoMT layers, which can compromise the availability of IoMT services and networks. DDoS attacks 

are a kind of active attacks, and it requires high skilled attacker. Moreover, it is considered as a 

difficult attack with respect to attack difficulty. 

Wireless Sensor Network (WSN) is one of the associated networks with IoT, and there are plenty 

of applications working based on WSN and IoT [55]. Sharifnejad et al. [56] proposed a brief 

overview of security barriers and security requirements for wireless sensor networks, categorized 

critical attacks, and listed suggested defences for them. In this survey, primary security 

requirements for IoT and WSN are listed as below: 
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• Data authentication; 

• Data confidentiality; 

• Data integrity; 

• Secure localization; 

• Scalability; 

• Accessibility; 

• Flexibility; 

• Availability; 

• Data freshness; 

• Self organization. 

The authors considered several ways to perform an attack in WSN, and one of them is the Denial 

of Service (DoS) attack. In addition, regarding the earlier articles [7] [53] [54], we can observe 

similar requirements in 5G, IoMT and WSN security requirements (i.e., confidentiality, integrity, 

availability (CIA) principles and authentication).   

Ahmad et al. [57-59] investigated security in 5G networks and discussed the fundamental security 

and privacy challenges in 5G technologies. Moreover, they offered various security methods to 

address such concerns and difficulties. They highlighted that security is an increasing problem in 

5G and in the associated applications and technology. The critical security issues raised by the Next 

Generation Mobile Networks (NGMN) [57-59] are as follows: 

• Flash network traffic: it can occur due to the sudden connectivity of a massive number of 

IoT devices due to known or unknown activities. As a consequence, a flash of signalling 

traffic will occur, directly harming the core network; 

• Security of radio interfaces: it is mostly due to the fact that radio interface encryption keys 

are sent across unsecure channels; 

• User plane integrity: basically, there is not any cryptographic integrity protection for the 

user data plane; 

• Mandated security in the network: it means service-driven constraints on the security 

architecture leading to the optional use of security measures; 
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• Roaming security: it means user-security parameters are not updated with roaming from 

one operator network to another, leading to security compromises with roaming; 

• Denial of Service (DoS) attacks on the infrastructure: it is happened by the visible nature 

of network control elements and unencrypted control channels; 

• Signaling storms: it happens because distributed control systems require coordination and 

overwhelm network device processing capacity; 

• DoS attacks on end-user devices: it happens because there are not any security measures 

for operating systems, applications and configuration data on user devices. 

The authors discussed principles of 5G design, which is expressed by NGMN beyond radio 

efficiency. They considered the creation of a common combinable core and lightened operation 

and management via the use of novel computing technologies and networks. They considered 

technologies, such as mobile cloud, SDN and NFV that conform to the NGMN's design principles. 

Moreover, they focused on the security of the communication links used by or in conjunction with 

these technologies. Prior to 5G networks, mobile networks used specialised communication 

channels based on GPRS Tunneling Protocol (GTP) and Internet Protocol Security (IPsec)tunnels. 

However, with 5G networks, and particularly with SDN, such separate interfaces and 

communication channels will be absent. 

A summary of security challenges for 5G and targeted points or networks elements for each threat 

with respect to principles specified by the NGMN and based on these three articles is presented in 

Table 2.2. In this table, affected technologies for each of these security issues are established [57-

59].  

According to these works [57-59], DoS and DDoS attacks are critical challenging security threats 

for 5G networks. They can attack both infrastructure and devices in a 5G network, which threats 

centralized control elements in networks. 

In the literature review in IoT, 5G and the new technologies related to them, security is considered 

as a significant and growing challenge that traditional security solutions cannot avoid. These 

security threats are required for new solutions, and in the next section, we will review some related 

works for the suggested security approach. 
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Table 2.2  Affected technologies by security threats in 5G 

Security threat Target point/network element Affected technology 

DoS attack Centralized control elements SDN, NFV, Cloud 

Hijacking attacks SDN controller, hypervisor SDN, NFV 

Signalling storms 5G core network elements Channels, Cloud 

Resource (slice) theft Hypervisor, shared cloud resources NFV, Cloud 

Configuration attacks SDN (virtual) switches, routers SDN, NFV 

Saturation attacks SDN controller and switches SDN 

Penetration attacks Virtual resources, clouds NFV, Cloud 

User identity theft User information databases Cloud 

TCP level attacks SDN controller-switch communication SDN, Channels 

Man-in-the-middle attack SDN controller-communication SDN, Channels 

Reset and IP spoofing Control channels Channels 

Scanning attacks Open air interfaces Channels 

Security keys exposure Unencrypted channels Channels 

Semantic information attacks Subscriber location Channels 

Timing attacks Subscriber location Cloud 

IMSI catching attacks Subscriber identity Channels 

 

2.2.2 Security solution  

In this section, we are going to present the existing solutions of security in 5G, IoT and IoMT for 

threats discussed in the previous section (cf. §2.1). 

Several defensive measures techniques are proposed for Wireless Sensor Network (WSN) security 

[56]. Their proposed solutions include key establishment, defending against DoS attacks, secure 

broadcasting and multicasting, defending against attacks on routing protocols, detecting node 

replication attacks, combating traffic analysis attacks, defending against attacks on sensor privacy, 

intrusion detection, secure data aggregation and defending against physical attacks. Some of these 

solutions are common for other kinds of networks, including 5G networks. 

Key establishment [60] is a process or protocol for enabling a shared and secret session key for 

communication parties whereby they used it for the protection of all exchanges of information. It 

is considered as a fundamental security solution and service for enhancing the security of WSN 

communications via the use of cryptography. Conceicao et al. [61] proposed a protocol for the key 

establishment between Machine Type Communication (MTC) devices and User Equipment (UE) 
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for building security in IoT environments in 5G networks. Therefore, key establishment is a security 

solution for 5G and IoT environments as well as WSN [62]. 

Broadcasting [63] and multicasting [64] are two approaches of sending packages to a WSN via its 

nodes, as well as corresponding receiver methods for forwarding these packages. In broadcasting, 

the package should be received by all nodes in the WSN, whereas, in multicasting, the package 

should be received by a subset of nodes. Multicasting and broadcasting strategies have been used 

to reduce the communication and management overhead of sending a single message to multiple 

receivers. 

Furthermore, providing a secure broadcasting and multicasting approach in 5G and IoT 

environment is considered as a security solution [65-67]. Therefore, the secure broadcasting and 

multicasting are recommended security approaches in the networks, and they can be done mainly 

via the use of cryptography [56]. 

Another critical security solution in WSN is providing secure routing protocols, especially when 

most existing protocols have been designed without security objectives [68]. Providing secure 

routing protocols would be a security solution for 5G network communication and IoT-based 

network with the same objectives as WSN [69]. 

Base Station (BS) are becoming a perfect target for attackers as it has unique role in networks. 

Traffic analysis attacks [56] [70] are based on what the attacker hears in the network by using the 

BS data supplied by sensors. There are different methods for avoiding these attacks depending on 

the network types.  

Anonymity mechanisms, policy-based approaches and information flooding are different methods 

for defending against attacks on sensor privacy [56]. Anonymity methods may be employed 

extensively in a 5G network, notably in D2D security protection, for both direct identity privacy 

protection and indirect location privacy [71]. Furthermore, the protection of sensor privacy is an 

important part of security in IoT applications [72].  

An Intrusion Detection System (IDS) [73] is a network monitoring technology that detects 

malicious activity or policy violation. It is considered as a WSN security solution. Intrusion 

detection in the Internet of Things is a new paradigm, and the traditional IDSs are no longer 

adequate. Moreover, this technique should be considered for security in IoT [74]. Regarding the 
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5G networks, providing an IDS system will lead to enhanced network security, and it is a part of 

security solutions in 5G networks [75]. 

An aggregator collects the raw data from a subset of nodes, then processes and aggregates the raw 

data from the nodes into more usable data [76]. Another vital security approach in WSN would be 

applied for security in data aggregation techniques. For this purpose, cryptography may be useful 

[76]. Obviously, data aggregation has a significant impact on any system. It is considered in 

security solutions for both 5G networks [77] and IoT-based systems [78].  

In WSN, defending against physical attacks [56] is a common occurrence. Therefore, sensor nodes 

may be equipped with physical hardware to enhance protection against various attacks. Physical 

attacks are becoming more common and harmful as 5G networks emerge and the IoT environment 

grows. Therefore, defending against physical attacks should be a part of security solutions in IoT 

and 5G systems [56] [79] [80]. 

Cryptography is a valuable method used in security and defensive measures techniques [53]. The 

cryptography is classified into three types: symmetric cryptographic techniques, asymmetric 

cryptographic techniques and hybrid cryptographic techniques. To encrypt the information, 

asymmetric cryptography uses public key while symmetric cryptography employs private keys  

[53] [56] [58] [81].  

Above all of the security solutions mentioned in this section, one of the popular and dangerous 

attacks for these three types of networks would be DDoS attacks [56]. Therefore, DDoS attacks 

detection is considered as a powerful solution to add security to the existing networks or systems 

[56] [82] [83]. 

In Table 2.3, we summarize the suggested solutions for security based on our findings in this 

section and in the related works with respect to the network type.  
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Table 2.3  Summary of existing security solutions 

Solution 5G networks WSN IoT/IoMT environment 

Key establishment Yes Yes Yes 

Secure broadcasting and multicasting Yes Yes Yes 

Secure routing protocols Yes Yes Yes 

Traffic analysis attacks - Yes - 

Sensor privacy Yes Yes Yes 

Intrusion detection system Yes Yes Yes 

Security in data aggregation techniques Yes Yes Yes 

Defending against physical attacks Yes Yes Yes 

Cryptography Yes Yes Yes 

Defending against DoS attacks Yes Yes Yes 

 

2.3 DDoS attacks detection 

Regarding our findings in previous sections (cf. §2.1), we can conclude that one of the most 

common and popular threats in 5G networks and IoT environment would be Distributed Denial of 

Service (DDoS) attacks, which can threaten e-health systems. Therefore, it is essential to mitigate 

against DDoS attacks in any information system like health monitoring systems, and we will work 

on this problem as our main security concern in this dissertation. In this section, we will review 

several existing works regarding DDoS attacks detection solutions for SDN. 

The DDoS attacks detection solutions in SDN can be categorised into four groups based on the 

type of detection metrics and the used methodologies: information theory-based DDoS attacks 

detection solutions, Machine Learning-based DDoS attacks detection solutions, Artificial Neural 

Network-based DDoS attacks detection solutions and other methodologies in SDN for DDoS 

attacks detections. In the below sections, we will review the existing works for each category, then 

we will summarize our findings for DDoS attacks detection. 

2.3.1 Information theory-based DDoS attacks detection solutions 

Divergence and entropy are two common metrics that can be extracted from network data and used 

for DDoS attacks detection. The information theory-based approach is basically using network 

information for calculating the randomness or entropy in the network features or the proportion of 
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similarity, namely divergence metric [84-86]. Using entropy measurements, we can see how 

current network behavior deviates from normal network behavior, leading to the detection of DDoS 

attacks. In this section, we will review related works for DDoS attacks detection based on the 

information theory-based approach. 

Safety and availability of information and services in SDN are threatened by DDoS attacks. Kalkan 

et al. [84] proposed a Joint Entropy-based Security Scheme (JESS) based on source and destination 

IP in RYU controller to enhance the SDN security against DDoS attacks. They claimed their 

statistical solution is the first to use Joint entropy for detection and mitigation against DDoS attacks 

in an SDN. In case of congestion detection, the switch sends just packet information to the 

controller. The controller will then compute the Joint entropy of pair profiles, and any entropy 

values higher than threshold will be identified as a DDoS attack. Furthermore, a mitigation stage 

with five functions is proposed: Suspicious pair profile generation, score calculation, threshold 

determination, rule generation, and differing rules determination to mitigate the attacks. They 

needed different nominal profiles for exact results, but they used a fixed number of packets in their 

simulations. The proposed approach is complex to deploy and incompatible with dramatic changes 

in network status. Furthermore, their model is based on network virtualization that could cause 

extra security vulnerabilities and is not a scalable model [84].  

Sahoo et al. [85] proposed a Generalized Entropy (GE) based metric using Information Distance 

(ID) metric to detect DDoS attacks in the control layer. Regarding this work, a centralized 

controller in SDN would be an excellent target for DDoS attacks. Therefore, the ID metric can 

quantify network traffic diversions with different possible distributions. Moreover, their proposed 

model includes a statistical collection module and anomaly detection module for the POX 

controller [85]. The proposed GE may distinguish attack traffic from normal traffic with a lower 

false-negative than other ID metrics. However, their model cannot deal with the network changes 

and has lots of deployment difficulties. 

Sahoo et al. [86] proposed an attack detection solution for the POX controller based on the flow 

table information of the OpenFlow switches. General Entropy (GE) and Generalized Information 

Distance (GID) are two information theory-based metrics used to distinguish between flash events 

and high-rate DDoS traffic in this work. The authors evaluated their model by Shannon entropy 

and Kullberg-Leibler (KL) divergence and they had fewer false positives in their results [86]. It is 
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worth mentioning that their proposed model is complex to implement and incompatible with high 

rate changes in network status. 

Xuanyuan et al. [87] introduced a lightweight method to enhance SDN security and protection of 

DDoS attacks by using conditional entropy formerly. They considered source IP, destination IP, 

destination port and packet length as their parameters, as well as using wildcard filtering policy to 

mitigate the attack and drop the packets. Their model was applied to the POX controller. Their 

results indicate that the suggested approach has a high detection rate of 99.372% on average. 

However, their mechanism is not performing well to discard attack packets reasonably and it is 

complicated to employ and cannot handle dramatic changes in network status. 

In [88], the authors introduced a φ-entropy DDoS attacks detection method for SDN, specifically 

for Floodlight controller. They demonstrated the substantial properties of φ-entropy as a strategy 

for lightweight DDoS attacks early detection. The controller creates a hash table of the destination 

IP addresses and collects the information, and the entropy value is calculated by using φ. They 

compared this entropy with predefined thresholds and entropy below the threshold detected as 

DDoS attacks after five consecutive windows. The authors simulated and evaluated the proposed 

model by Shannon entropy. Based on their results, in case of high-intensity DDoS attacks, φ-

entropy performs better than Shannon entropy. 

2.3.2 Machine learning-based DDoS attacks detection solutions 

Machine Learning (ML) approaches are a widely used methodology for solving complex problems 

in all disciplines. Therefore, many fellow researchers used Machine Learning algorithms to propose 

solutions for DDoS attacks detection and classify network behavior as normal or under attack using 

ML classifiers (e.g., Support Vector Machine (SVM), Hidden Markov Model (HMM), and K-

Nearest Neighbor (KNN), etc.) [89-94] . This section will discuss some of these Machine learning-

based approaches for DDoS attacks detection in the SDN environment. 

In [89], the authors proposed a coping DDoS attacks approach in the SDN-based cloud 

environment concentrating on the application control layer. They used SVM, eHIPF, and SOM 

classifiers. They leveraged a hybrid SVM Machine Learning model and self-organizing map (SOM) 

algorithms for traffic classification. They gathered data using the raw-data processing module, 
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extracted features, and then sent them to the classifier module. Moreover, they proposed an 

enhanced History-based IP Filtering (eHIPF) scheme to improve the rate and speed of attack 

detection. The suggested schema has a high detection rate (99.27%) and 99.30% of accuracy and 

it could be an efficient approach in the cloud environment.  

Cui et al. [90] proposed a combined ML-based and information theory-based approach for real-

time DDoS attacks detection and defense in SDN using cognitive-inspired computing. This 

mechanism includes three main modules: statistics collection, feature extraction and attack 

detection. The statistics collecting module collects the switch's flow table characteristics and sends 

them to the feature extraction module periodically. This module uses entropy to extract features 

for anomaly detection. The authors evaluated two aspects based on Shannon entropy: source IP 

and destination IP. Finally, using this information, the attack detection module uses SVM and 

classifies the traffic as malicious or normal. They proposed a robust approach, and their results 

indicate that SVM has a high detection rate and a low false rate. 

For two forms of flooding-based DDoS attacks detection in SDN, Advanced Support Vector 

Machine (ASVM) technique [91] is presented. The authors employed an average number of flow 

packets, an average number of flow bytes, a variation of flow, the packets variation of flow bytes, 

an average duration as volumetric, and the asymmetric features in their multiclass classification 

method with three classes: SYN_Flood attack situation, UDP_Flood attack situation and normal 

situation. They proposed this work for the application layer. The traffic generation and extraction 

module collects the traffic data. Then classification module uses ASVM to differentiate between 

normal and attack traffic. Their detection technique has a detection accuracy of over 97% and a 

fast training and testing model. 

SUN et al. [92] proposed a KNN classifier for DDoS attacks and Flash Event (FE) detection in 

SDN, and their selected features included Generalized Entropy of source IP, destination IP, average 

byte and duration, as well as a φ-entropy improved on the basis of Shannon entropy. The collection 

module provided the flow table and switch’s data. Then the flow feature extraction module extracts 

the selected features from the switch’s data. The innovation of this work is reducing the false alarm 

rate and performing an effective classification for multi-type DDoS attacks detection, and Flash 

Event (FE) method. 
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Hu et al. [93] proposed a DDoS flooding attack detection and mitigation system based entropy and 

SVM classifier in SDN. As entropy metrics, the authors employed source IP, destination IP, source 

port, destination port and protocol. Their implementation is adopted for POX controller and sFlow 

agents [93]. Information collection, feature extraction and attack detection are their main modules 

for DDoS attacks detection. Moreover, they proposed an attack mitigation mechanism based on 

white-list and traffic migration. In high-rate attacks, they achieved 100% detection accuracy and a 

negligible false alarm rate, while proposing an effective mitigation mechanism. 

Hurley et al. [94] proposed an adaptive machine-learning Network Intrusion Detection System 

(NIDS) that monitors and learns network activity using a Hidden Markov Model (HMM). They 

improved SDN security by making defensive decisions based on network data and their learning 

system. Moreover, the Baum–Welch algorithm parameters adopted for their proposed HMM 

system are: the length of the packet, the source IP, the destination IP, and the source and destination 

ports. Considering their results, the proposed system is inefficient and requires a large training set. 

2.3.3 Artificial Neural Network-based DDoS attacks detection solutions 

Another technique for DDoS attacks detection would be Neural networks, also known as Artificial 

Neural Networks (ANNs) or Simulated Neural Networks (SNNs) [95]. There are many advantages, 

including self-learning, self-organization, parallelism in Artificial Neural Networks (ANN) 

techniques, that make it a favorite approach for solving many problems including DDoS attacks 

detection [95-98]. In this section, we will review recent articles using this approach for DDoS 

attacks detection in SDN.  

Novaes et al. [95] proposed a deep learning algorithm called Long Short-Term Memory (LSTM) 

and a fuzzy inference system in SDN to predict the normal network traffic behavior, as well as 

todetect and mitigate DDoS and port scan attacks. In fact, LSTM is an architecture of an artificial 

Recurrent Neural Network (RNN) provided for the Floodlight controller. Their proposed system is 

divided into three phases: characterization, anomaly detection and mitigation. They used entropy 

metrics including source and destination IP, and source and destination to quantify the network 

flow features. These calculated flow attributes are then used by LSTM to forecast standard 

signatures for each parameter. The network anomalies will be detected using fuzzy logic. 
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Moreover, an Event Condition-Action (ECA) model is proposed to create dynamic policies and 

mitigate DDoS. Their automatic self-learning method is efficient to detect DDoS attacks in SDN. 

Nam et al. [96] introduced two approaches (i.e., SOM combined with k-NN and SOM distributed-

center)using Self-Organizing Map (SOM) for DDoS attacks detection in SDN. Their system 

consists of three main modules: monitor, algorithm, and mitigation. The monitor module collects 

and processes traffic information from switches, such as the entropy of source IP and port, the 

entropy of destination port, the entropy of packet protocol and the total number of packets. This 

information is then given to the algorithm module. The algorithm module uses this data to 

determine if the network is normal or under attack. In the event of an attack, it sends an alarm to 

the mitigation module, and new policies are established and delivered to switches and servers. The 

suggested model's shortcoming is that it enhanced processing time at the expense of a lower 

detection rate. |In addition, choosing of features are manually in their work and they need to 

enhance their system and to have an automate feature selection process. 

Cui et al. [97] proposed DDoS attacks detection scheme based on the hit rate gradient of the flow 

table or the time feature by using the number of packets per flow, the number of flows per port and 

the duration parameters. They extracted attack patterns from the temporal behavior of an attack 

using a Back Propagation Neural Network (BPNN)[97]. Moreover, they proposed an attack 

detection module for defending and recovery action by updating flow entry in the Open Flow 

switch. They used BPNN, a classical Machine Learning method with a simple structure that causes 

some limitations. Therefore, it causes the inaccessibility of legitimate services, and the time 

required to recover a victim port is difficult to foresee and control. 

Cui et al. [98] proposed a DDoS attacks detection and mitigation mechanism based on BPNN. 

Their proposed mechanism combines four modules: attack detection trigger, attack detection, 

attack traceback and attack mitigation. Exact-storm is used by DDoS attacks detection trigger 

module to enhance early response against DDoS attacks. Attack detection works based on BPNN 

after triggering by the first module. Attack traceback and attack mitigation modules block the 

traffic and clean flow tables in switches. In this work, the parameters are the number of packets per 

flow, the number of bytes per flow, the duration, packet rate per flow and the byte rate per flow. 

The use of BPNN with its limitations and their mechanism require extra calculation time for 
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multiple parameters, however, they detected the attack quickly (less than 1s) and with high 

accuracy.  

2.3.4 Other approaches in SDN for DDoS attacks detection solutions 

When we review the DDoS attacks detection mechanism for SDN, there are other works apart from 

the above-discussed techniques which we cannot categorize in the previous three categories (i.e., 

information theory-based, Machine Learning-based, and Artificial Neural Network-based 

approach). The methods, such as queuing theory, graph theory and others, are some of these 

approaches [99-101]. In this section, we will review some techniques based on these methods for 

DDoS attacks detection in SDN.  

Bhushan et al. [99] proposed a Queuing Theory model for DDoS attacks detection and mitigation 

in SDN. They demonstrated the flow tablespace of switches using the queuing theory-based on a 

theoretical mathematical model. Furthermore, a novel flow-table sharing approach is proposed, 

which leverages the idle flow-table of OpenFlow switches for protecting networks in the SDN-

based cloud. In case of attack, their approach analyzes the flow tables of the other switches to 

identify a suitable switch. This mathematical model focuses on the data plane, requires minimum 

interaction with SDN controllers, and has a low communication overhead. The authors did not 

perform a simulation to validate their proposed model, only they used the theoretical mathematical 

for evaluation, which is not accurate and does not reflect the real situation. 

AlEroud et al. [100] proposed a method using graph theory to identify the attack in the SDN 

network. Their graph prediction model Pearson correlation uses existing attacks resemblance in 

traditional networks. Their method predicts DDoS attacks by providing attack signatures and using 

a packet aggregation technique. They used source and destination IP, port number, number of 

packets and protocol type in their proposed approach to detect DDoS attacks in SDN. There are 

several limitations here, including the need for data on zero-day attacks and overhead on the 

controller to implement their security approach. 

Conti et al. [101] proposed a cumulative sum method for DDoS attacks detection in SDN. This 

proposed method is a change point detection technique and depends on sequential analysis. The 

authors adopted a threshold to find the change pattern in network traffic. They employed a POX 
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controller, and the cumulative sum value is computed periodically. When this value goes beyond 

the predefined threshold, then the attack is identified. Their results indicate an average false alarm 

rate of 11.64% and 4.15 seconds for the detection process. 

Xiao et al. [102] proposed a real-time DDoS attacks detection system in SDN for dealing with link 

flooding attacks. Their system consists of two modules detection framework: Bloom filter and 

Jpcap API. This system is proposed for the Floodlight controller and works based on packet count, 

byte count and duration parameters. The limitation of this work is the length of time required to 

implement their bloom filter map. 

2.3.5 Summary of DDoS attacks detection solutions for SDN 

In the Section 2.3, we reviewed several DDoS attacks detection and mitigation models that are 

proposed for enhancing SDN security. According to these literature reviews, the DDoS attacks in 

SDN can be classified depending on the target plane in SDN. Furthermore, we grouped existing 

solutions according to their primary method into four categories: information theory-based 

solutions, Machine Learning-based solutions, Artificial Neural Network-based solutions, and other 

DDoS attacks detection solutions. Table 2.4 highlights these methods for DDoS attacks detection 

in SDN depending on the adopted algorithm and detection metrics. 

In conclusion, there are plenty of non-Machine Learning-based solutions for effectively preventing 

DDoS attacks, specifically for SDN environments. Nevertheless, the complexity of deployment 

and implementation for these solutions and the incompatibility of them with dramatic changes in 

network status, regarding the 5G and SDN-based networks leads us to consider new approaches, 

such as ML and ANN, for these security requirements [84-88] [99-102].  

Although ANN is a powerful tool for identifying DDoS attacks, however, regarding related works, 

it is evident that they need to use multiple parameters for calculation of current state in the network 

and detecting anomaly like DDoS attacks. This extra calculation for multiple parameters could add 

overhead load to the network and compromise network performance [95-98]. 

Thus, among all available options, we have chosen to work Machine Learning-based approaches 

that are intelligent and adaptive for DDoS attacks detection in SDN and 5G network. Furthermore, 

among all the existing ML algorithms, we will choose SVM, since it is a popular and powerful 
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approach for classification requirements, and it provides high accuracy results in related works [89-

94]. 

Table 2.4  Summary of existing DDoS attacks detection solutions in SDN 

Approach class Main using method 

Information theory-based [84-88] Shannon entropy, joint entropy, generalized entropy, 

generalized information distance, KL-divergence, 

conditional entropy, and φ-entropy. 

Machine Learning-based [89-94] Stacked autoencoder, HMM, SVM, decision tree 

(J48), naive bayes, Shannon entropy, bayes net, 

logistic regression, random tree, binary bat 

algorithm, random forest, KNN, φ-entropy, HIPF, 

SOM, and ASVM. 

Artificial Neural Network-based [95-98] SOM, exact-storm, BPNN, CNN, RNN, LSTM, 

fuzzy logic, and Shannon entropy. 

Other [99-102] SYN cookie algorithm, TRW-CB, rate limiting, 

graph theory, queuing theory, bloom filters, and 

cumulative sums. 

 

2.4 ECG signal processing  

ECG data is considered as our health dataset, and in this section, we want to review relevant 

existing methods about ECG anomaly detection. Signal Quality Assessment (SQA) in 

Electrocardiogram (ECG) is a crucial aspect to enhance the accuracy and reliability of ECG 

analysis systems [103]. Considering this approach in our preprocessing and applying this reliability 

enhancement to ECG data will decrease false alarms in monitoring systems like a health monitoring 

system. In addition, it leads to overall increasing the accuracy and integrity of our system. 

One of the main requirements for Signal Quality Assessment (SQA) in an Electrocardiogram 

(ECG) would be detection and removing noise in ECG signals. ECG noise causes important issues, 

including false alarms, inaccurate interpretation, and unreliable measurement. This misinformation 

could cause real health threats or even death, and it is necessary to prevent them. There are two 

main strategies tackling ECG noise, ECG denoising based strategy and Signal Quality Index (SQI) 

based strategy [103] [104]. The former approach is simply removing or reducing the noise to 
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increase ECG data quality, and the latter one is to mark and classify the ECG data as acceptable or 

inaccurate data.  

In this dissertation, we choose an ECG denoising based strategy to improve the quality of our data 

and enhance the accuracy and integrity of our proposed health monitoring system. There are plenty 

of methods used for ECG denoising in existing works, i.e., frequency-selective filters, wiener 

filters, adaptive filters, Singular Value Decomposition (SVD), polynomial filters, Discrete Cosine 

Transform (DCT), Empirical Mode Decomposition (EMD), Discrete Wavelet Transform (DWT), 

nonlinear Bayesian filter, Independent Component Analysis (ICA), mathematical morphological 

operators, nonlocal means method, Empirical Mode Decomposition (EMD)-wavelet method and 

variational mode decomposition [103]. 

Among all of these methods, Discrete Wavelet Transform (DWT) is our adopted approach for 

denoising ECG signals. DWT is a kind of Wavelet Transform (WT), and a powerful application for 

time-frequency analysis in image processing and digital signal processing [105-107]. Therefore, 

an important application of DWT is removing the noise efficiently, and it has become a popular 

method for ECG denoising [105-107]. 

One of the effective parts for providing effective signal denoising by DWT methods is mother 

wavelet selection. Amri et al. [105] proposed a human heart monitoring/Electrocardiograph (ECG) 

using Android smartphones to provide a wireless monitoring system. They used DWT, and 

implemented various WT methods, such as Meyer (i.e., dmey), Conflic, and Symlet wavelet for the 

offline ECG denoising process. The best results for filtered ECG are provided by Symlet wavelet 

in their work. 

Singh et al. [108] proposed a two-level DWT ECG denoising method. They implement various 

wavelet basis functions. Their result shows that the best performance for removing ECG noise is 

achieved by Symlet7.  

Eminaga et al. [109] proposed a hybrid Infinite Impulse Response (IIR) and Finite Impulse 

Response (FIR) wavelet filter banks for ECG signal denoising. Based on this work, most popular 

wavelet families would be the Daubechies (i.e., db4), Symlet (i.e., sym4) and Coiflets (i.e., coif4). 

Their results show that DWT provided better denoising performance by applying Symlet.  
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Gon et al. [110] proposed a real-time ECG denoising method using the DWT algorithm. their 

approach is based on mother wavelets (i.e., Daubechies, Coiflet, and Symlet wavelets), which 

provide a robust and efficient ECG denoising signal.  They used the S-median threshold technique 

for set their threshold and their proposed model reached acceptable ISNR and MSE values. 

Regarding this related work, we are going to work with Symlet as our selected mother wavelet for 

proposed DWT ECG denoising.  We will see more details about DWT and Symlet in the next 

chapter. 
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 PROPOSED MODEL FOR IOMT 5G SECURE REMOTE 

HEALTH MONITORING SYSTEM 

In this chapter, we present the architecture of our proposed security model for enhancing security 

in the remote health monitoring system and IoMT devices. Then, we detail each considered layer 

in the model (i.e., IoMT Health Data Layer (IHDL), 5G Network Layer (5GNL) and Application 

Layer (AL), their duty, and how they help us reach our security objectives. Furthermore, we 

examine how current advancements and technologies contribute to each layer of our proposed 

model. 

3.1 Architecture of the proposed model 

This section presents the proposed security architecture based on 5G technologies and with the 

primary focus on DDoS attacks detection for Electrocardiogram (ECG) data. This architecture is 

divided into three primary layers, as shown in Figure 3.1: IoMT Health Data Layer (IHDL), 5G 

Network Layer (5GNL) and Application Layer (AL). 

 

Figure 3.1 Block diagram of the proposed model 

 

The IoMT Health Data Layer (IHDL) is the initial layer, and it consists of three primary modules: 

The ECG module, the Denoising module and the Tokenization module. The IHDL is responsible 
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for collecting our health data using the IoT/IoMT sensors and devices, then preparing this health 

data for the next layers. Therefore, we consider ECG sensors and we work with ECG data in our 

ECG module. The second module is the Denoising module, which offers preprocessing operations 

for our data to make it robust, secure and reliable in our model. Furthermore, we propose a 

Tokenization module that converts pure data to Jason format to add data interoperability due to 

information processing. Dealing with massive volumes of structured and unstructured data would 

be possible and appropriate with these data formats, allowing us to deal with heterogeneous data. 

Then this data will be sent to the next layer, which would be the 5G Network Layer (5GNL). This 

5GNL is responsible to provide our 5G network with a secure approach and helps us to have ease 

of network management and real-time monitoring. The 5GNL leverages the 5G networks and the 

advanced technologies related to 5G. It includes two main modules: The Transmission module and 

the Controller module. In the Transmission module, we chose to work with Software-Defined 

Network (SDN) [18] to enhance the security level and decrease the latency in the data transmission 

process. As we work with SDN, the concept of controller plays a crucial role in our proposed 

architecture. Therefore, we consider a Controller module in our model, and for this module, we 

will work with the OpenDaylight (ODL) controller [19]. In the Controller module, we use the 

OpenDaylight Rest API to collect our network data and prepare our needed data for the next layer, 

in order to have real-time monitoring. The Application Layer (AL) is responsible for DDoS attacks 

detection in our model. It consists of two primary modules: The DDoS module and the Monitoring 

module. The DDoS module is responsible for two key functions: The DDoS attacks simulation and 

the DDoS attacks detection. When the ECG health data is transmitted over our network, by the 

DDoS module, we simulate the DDoS attacks on SDN. The data obtained from the ODL Rest API 

is then used to build a Machine Learning (ML) model for DDoS attacks detection. The Monitoring 

module is responsible to provide both offline and real-time DDoS attacks detection. 

In the remaining of this chapter, we will go over each layer and its modules in further depth, 

beginning with the IoMT Health Data Layer (IHDL) in the next section. 

3.2 IoMT Health Data Layer (IHDL) 

This section explains the first layer of our proposed architecture. This IoMT Health Data Layer 

(IHDL) consists of three primary modules: ECG module, Denoising module and Tokenization 



40 

 

 

module. The primary functionalities of IHDL would be collecting IoMT health data (ECG signals), 

then denoising ECG signals and lastly transforming them into a standard and interpretable format. 

Moreover, IHDL prepares our required data for other layers and adds security enhancements to 

them. Figure 3.2 shows our block diagram for the proposed IoMT Health Data Layer (IHDL).  

 

Figure 3.2 IoMT Health Data Layer (IHDL) block diagram 

3.2.1 ECG Module 

The first module in IHDL is the ECG module, which aims to prepare the data in our model. In the 

second chapter, we noticed that monitoring heart health conditions is one of the fundamental and 

required parts of any health monitoring system. Therefore, we chose ECG signals collected by the 

electrocardiogram as our health data for our proposed remote health monitoring model. These ECG 

signals are used by Electrocardiography for monitoring heart health conditions [44]. They are 

presented by several local waves (i.e., P-wave, Q-wave, R-wave, S-wave, T-wave and U-wave) as 

illustrated in Figure 3.3. The Distance between these waves is called an interval or segment, and 

each of these waves and intervals represents a specific metric of a heart condition [103] [111] [112]. 

Therefore, precise and trustworthy measurements of the intervals and local waves are extremely 

required for the accurate determination of the health situation. More details about ECG signals, 

local waves, intervals and segments are provided in Appendix A.  

For proposing a reliable health monitoring system, we need to identify the issues or anomalies that 

may jeopardize the accuracy and reliability of ECG signals. Noise in ECG signals is a kind of 
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anomaly that causes inaccurate health interpretation. In the health domain, the detection of anomaly 

detection enhances the data's reliability and helps to decrease false alarms in monitoring systems 

like health monitoring systems [113]. Furthermore, it aims to increase the accuracy and the integrity 

of the ECG data [54] [114]. In addition, several anomaly sources in ECG data could add noise 

(Appendix A). Therefore, in the Denoising module, we want to remove these noises from our data. 

 

Figure 3.3 ECG signal local waves 

To sum up, in the proposed ECG module, ECG signals with discussed characteristics are provided 

in the MIT format standard [115].  The next module in the IHDL, is responsible for proposing a 

way to eliminate ECG noises from this data. In the next section, our proposed Denoising module 

will increase the quality of the ECG health data for our model. 

3.2.2 Denoising Module 

As mentioned previously (cf. Chap. 2, §2.4), the noise in ECG signals causes important issues, 

including false alarms, inaccurate interpretation and unreliable measurement. Therefore, we 

consider the Denoising module that will apply the Discrete Wavelet Transform (DWT) [23] method 

in the data provided by the ECG module. In this section, we will discuss DWT and how it can help 

our model for denoising ECG signals and make it robust, secure and reliable. 

We provide our ECG denoising signal by using DWT, which is one of the popular ECG denoising-

based strategies for ECG signal analysis [23]. It is a powerful signal processing approach for non-
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stationary or dynamic signals like ECG signals. Therefore, we choose this method, because it has 

high resolution in both the frequency and time domains when applied to signals [105-107]. 

The Wavelet Transform is designed to solve the shortcomings of the Fourier transform [116] and 

it is classified into two types: discrete and continuous. The Discrete Wavelet Transform (DWT) 

uses discrete values for the scale and translation factors, and it is designated by [116]: 

X (a, b)= ∫ x(t)𝜓𝑎,𝑏(𝑡) ⅆt
∞

-∞
 ,                   (3.1) 

where t represents the time, a represents the scale, b represents the location and X (a, b) represents 

the wavelet coefficient at scale a and location b, x(t) represents the noisy signal and 

𝜓𝑎,𝑏(𝑡) represents the mother wavelet. 

Considering the DWT, we calculate the DWT of signal x by passing it through a series of filters 

[108]. First, a low pass filter is applied on a noisy ECG signal, then we use a high pass filter. By 

combining these results, we are able to eliminate noise from signals [108]. This process is shown 

in Figure 3.4. 

 

Figure 3.4 DWT approach 

 

The DWT is typically implemented as a filter-bank. To apply our proposed DWT to a signal, the 

first step is evaluating its high-frequency behavior, since small scales correlate to high frequencies. 

Therefore, this evaluation process starts with small scales. Each step increases the scale by a factor 

of two (i.e., the frequency lowers by a factor of two), and this cycle is continued until the maximum 

level of decomposition is attained. Finally, high-frequency noise will be filtered out of the signal 

by excluding it [117]. Figure 3.5 illustrates these cascading phases. 



43 

 

 

 

Figure 3.5  Cascading filter banks in DWT  

 

As illustrated in this section, we use a Discrete Wavelet Transform technique for our Denoising 

module that removes noises of ECG signals provided by the first module (i.e., ECG module) of the 

IoMT Health Data Layer (IHDL). 

3.2.3 Tokenization Module 

In this section, we will present the Tokenization module on the IoMT Health Data Layer. The 

Tokenization module receives data from the Denoising module and converts it to standard formats 

for health monitoring systems. We select the Jason format as it is compatible with the HL7 standard 

and it is easy to do the conversion to the FHIR standard [118]. Jason can help us deal with 

heterogeneous data and it provides data interoperability enhancement due to the information 

processing. Therefore, the proposed Tokenization module receives ECG signals in MIT format, 

which we remove their noises with our Denoising module and then convert them to Jason files. 

Another mission for the proposed Tokenization module is to enhance the security of the data to 

make it reliable and more secure. For this aim, the proposed Tokenization module uses JSON Web 

Token (JWT) [24]. In general, JWT is an open standard that allows the safe transfer of data between 

parties by encrypting the data and transmitting it as JSON objects. This will allow us to digitally 

encrypt and sign our data before sending it to our network. 
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The JSON Web Token (JWT) is a Web security standard (RFC 7519) that offers a self-contained 

and compression way for securely transmitting data between various destinations using a JSON 

object [24]. JWT can be signed by a private key using the Hash-Based Message Authentication 

Code (HMAC) algorithm [24] or a pair of private and public keys using the Rivest–Shamir–

Adleman (RSA) algorithm [24]. Therefore, the results of JWT are verifiable and trustworthy due to 

its digital signature. 

In addition, by applying JWT in our model, we can reduce the size of our ECG Jason objects that 

facilitates the ECG signal’s transmission in the network, where the payload of the created token 

comprises all of the information required for validation [24]. 

To sum up, the proposed Tokenization module encodes our data using the Base64 algorithm and 

encrypts it with HMAC for header, Secure Hash Algorithm (SHA256) and private key for payload. 

Then, it provides digitally signed data and since users do not access the private key, they are unable 

to modify tokens on their own [24] [119]. Consequently, this module, which is the last module of 

our IHDL, will boost ECG data security before it is sent to the next layer and convert it to a secure 

Jason token. 

3.3 5G Network Layer (5GNL) 

In this section, we will discuss the second layer 5G Network Layer (5GNL) of the proposed model. 

The 5GNL is responsible for network management and data transmission. It is composed of two 

modules: The Transmission module and the Controller module. As indicated previously (cf. Chap. 

1, §1.1.3), the advent of 5G technology enables much faster network access and reduces 

communication and data transmission latency. Therefore, it may contribute to the development of 

a robust high-speed model for our remote health monitoring system. Considering this enhancement, 

in 5G Network Layer (5GNL), we consider 5G technologies and applications for proposing its two 

modules. Figure 3.6 shows our block diagram for the proposed 5G Network Layer (5GNL). The 

next section discusses the structure of each module and its objectives.  



45 

 

 

 

Figure 3.6 5G Network Layer (5GNL) block diagram 

3.3.1 Transmission Module 

The first module for the proposed 5GNL is the Transmission module. The Transmission module is 

responsible for managing our network and provides an infrastructure to transfer information 

between nodes securely. Regarding the 5G networks advancements and their applications, we 

propose our Transmission module based on an SDN network management system. 

Therefore, Software-Defined Network (SDN) is a kind of network management technology that can 

help our module to overcome the constraints of conventional networking [91]. By using the SDN 

in our Transmission module, network control and forwarding devices are physically separated, and 

network control is dynamic, controllable and flexible. Therefore, the Transmission module can 

address several security concerns associated with traditional networks [91].  

SDN enables rapid threat detection via a cycle of collecting information from network resources, 

states and flows owing to its logically centralized control layer with global network visibility and 

programmability. Therefore, using the SDN in our Transmission module provides extremely 

reactive and proactive security monitoring, traffic analysis and response systems, which enable 

network forensics, policy modification and service insertion [57] [101]. 
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As depicted in Figure 3.7, an SDN architecture consists of three layers: The SDN infrastructure 

layer (data plane), the SDN control layer (control plane) and the SDN application layer 

(management plane) [99]. 

 

Figure 3.7 SDN architecture 

 

The SDN application layer in our Transmission module incorporates standard network applications 

and functionalities, such as intrusion detection, load balancing and firewalls. The SDN control layer 

is referred to as an SDN's brain. This layer's intelligence is given by a centralized software for the 

SDN controller. This latter is installed on a server and handles network regulations and traffic flow 

in our Transmission module. The infrastructure layer of our Transmission module includes the 

physical switches. In our module, the SDN Application Layer interacts with the SDN control layer 

through Northbound APIs, whereas the control layer interacts with the SDN infrastructure layer 

via the Southbound APIs [57] [91] [99] [101]. 

As mentioned above, the Transmission module needs to work with a controller, thus, the next 

module in the 5GNL provides the controller for SDN. Then, the proposed Transmission module 

will assist with the next module Controller module and provides our network infrastructure with 

security enhancements that come from these 5G applications. 
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3.3.2 Controller Module 

Our Controller module is the second module in the 5G Network Layer (5GNL). The primary 

function of the Controller module is to assist the Transmission module in achieving its objectives 

and to act as the controller for SDN in our Transmission module in the 5GNL. Furthermore, the 

Controller module is in charge of supplying our network status data for the Application Layer. 

Moreover, it is responsible to add the capability of live network monitoring into our proposed 

model. This section outlines the controller we chose for SDN and its functionality in our proposed 

model.  

The SDN controller, which must interface with all network nodes, is responsible for centralized 

control and rapid data transmission. The controller and the switch interact using the OpenFlow 

protocol [21]. The OpenFlow protocol is a freely available open standard created by the Open 

Networking Foundation (ONF). This protocol provides the fundamental primitives for 

programming the Control layer on network devices. The controller server decides how to manage 

data streams flowing via network devices by forwarding them to a certain port, flooding them, or 

discarding data packets [21]. 

Indeed, the Control layer determines the network's behavior based on its unique requirements and 

helps the application level through APIs. Additionally, as mentioned previously, communication 

between the Control layer and the other levels occurs through the Northbound and Southbound 

APIs [91]. 

OpenDaylight (ODL) is a modular and open-source SDN platform that enables centralized, 

programmable control and monitoring of network devices. This controller is a collaborative effort 

led by the Linux Foundation with the goal of accelerating the global adoption of SDN [8]. As 

depicted in Figure 3.8, the OpenDaylight controller [120] is composed of two layers: The 

Controller Platform layer and the Service Abstraction Layer (SAL). We use the Lithium 

OpenDaylight structure [120] (Appendix C). 
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Figure 3.8 Lithium OpenDaylight structure 

 

Therefore, by choosing OpenDaylight in our Controller module, we will provide a scalable and 

multiprotocol controller for our Transmission module, that supports many other Southbound 

communications protocols, as shown in Figure 3.8. Moreover, the proposed Controller module can 

accommodate more devices in our network and improves interoperability. Additionally, ODL 

provides us the capability to support Open vSwitch, physical and virtual switches, and any switch. 

As a result, the Controller module can support the OpenFlow protocol in the infrastructure layer. 

We employ these technologies in Lithium OpenDaylight and in OpenDaylight APIs, in order to 

connect the controller to our SDN in the Transmission module, to get access to a Web user interface 

for monitoring our network and to gather network data online. We use this gathered data for our 

DDoS attacks detection solutions in the Application Layer (AL).  

3.3.3 Choice of the Simulators 

As mentioned in the previous section, we will use SDN in the Transmission module in our 5G 

Network Layer. Therefore, we need to provide an environment for working with SDN. Several 
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simulators and emulators exist that aim to simulate the SDN. This section will briefly compare 

them and explain our selected options in more detail. 

• Mininet: It is an open-source project under the Berkeley Source Distribution (BSD) license 

provided by lightweight virtualization-based Linux [20]. Mininet is an emulator widely 

used for SDN. It creates a realistic virtual network and runs a real kernel, switch and 

application code on a single machine. Mininet can support around 4,096 hosts and switches, 

and it is an inexpensive network test platform with a quick and straightforward 

configuration. Furthermore, it supports the OpenFlow protocol and works with a kind of 

software OpenFlow switch called Open vSwitch for virtual switches in Mininet [121-123]. 

• Ns3: Ns simulator family is a general network simulation platform, and it was not created 

for SDN networks specifically. For SDN, it has two essential weaknesses [124]: 1) These 

simulations make it challenging to connect the SDN network to the controller and 2) Ns3 

does not support all versions of OpenFlow. 

• EstiNet: Is a commercial and powerful simulator and it is not open source. Therefore, it is 

not flexible to modify and extend the source code level [121-124]. 

• OfNet: Is another emulator environment for SDN. However, it is a new tool and it is not as 

famous as Mininet [125]. 

• MaxiNet: Mininet is not a suitable simulator for large-scale networks. Therefore, MaxiNet 

extended the famous Mininet emulator environment to span the emulation across several 

physical machines. Indeed, MaxiNet enables emulating large-scale Software-Defined 

Network [126]. 

• Mininet-Wifi: Is a newly developed platform based on a clean extension of the Mininet 

emulator. In this new emulator for SDN, some new classes and abstractions are added to 

support wireless devices, nodes and links by adding virtualized Wi-Fi stations and access 

points. Moreover, other classes were added to support the addition of these wireless devices 

in a Mininet network scenario and to emulate a mobile station's attributes, such as position 

and movement relative to the access points. 
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Regarding all the simulators mentioned above, we decided to use Mininet-Wifi to simulate our 

network nodes in the Transmission module. We chose this simulator/emulator because it is open 

source based on Mininet, which is one of the most popular platforms for the virtualization of SDN 

networks. In addition, Mininet-Wifi allows us to work with virtualized Wi-Fi stations and access 

points. 

3.4 Application Layer (AL) 

The last layer of our proposed architecture is the Application Layer (AL). Increasing security in 

two previous layers in the proposed model is the main duty of this layer. We divide the Application 

Layer into two modules: the DDoS module and the Monitoring module. The objective of AL is to 

propose a DDoS attacks detection solution based on ECG data and a 5G network. Considering this 

objective, the proposed DDoS module has two main responsibilities: Simulate DDoS attacks in the 

5G Network Layer (5GNL) and detection of DDoS attacks by using SVM classification. The 

Monitoring module aims to present the results of the DDoS module and our DDoS attacks detection 

solution, as well as to provide the capability of live monitoring in the 5GNL.   Figure 3.9 shows our 

block diagram for the proposed Application Layer (AL). The rest of this chapter will discuss these 

two modules with more detail. 

 

Figure 3.9 Application Layer (AL) block diagram 
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3.4.1 DDoS Module 

Despite all the benefits of SDN in network administration and the enhancement of the security over 

conventional networks, SDN still contains some security problems. A Distributed Denial of Service 

(DDoS) attack is the most severe vulnerability related to SDN [91]. DDoS attacks on SDN have 

become a crucial problem, and many solutions have been developed to detect and mitigate them 

[91]. 

Therefore, we propose a DDoS module in our Application Layer to provide a solution for DDoS 

attacks detection in SDN, and to boost the security of our Transmission and Controller modules in 

the second layer of our architecture. The DDoS module serves two main purposes: DDoS attacks 

simulation and DDoS attacks detection. In the next chapter, we will discuss how we will simulate 

DDoS attacks in this module, and in this section, we will describe the second capability of the 

proposed DDoS module which is DDoS attacks detection.   

As discussed in the second chapter (cf. Chap. 2, §2.3), the Support Vector Machine (SVM) 

algorithm is one of the supervised Machine learning (ML) algorithms that is used to solve 

classification problems and is one of the most popular options for detecting DDoS attacks. 

Therefore, we use the SVM algorithm in the DDoS module for DDoS attacks detection. 

For providing our DDoS attacks detection solution by SVM, we need to determine the optimal 

classifier between two groups of the normal situation and the situation of the DDoS attacks 

situation, as shown in Figure 3.10. Therefore, we use two support vectors in the vicinity of the 

closest data point to these two groups and then pick the optimal hyperplane with the maximum 

distance between them [28] [91]. 

Equation (7) depicts the SVM formulation, where w is the weight vector or maximum margin, n is 

the number of samples and b denotes the bias. Therefore, SVM attempts to optimize this equation 

for each classification problem [28] [91] [127]. 

[
1

𝑛
∑ 𝑚𝑎𝑥(0,1 − 𝑦𝑖(𝑤𝑇𝑥𝑖 − 𝑏))

𝑛

𝑖=1

] + 𝜆||𝑤||2                  (3.2) 
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Figure 3.10 Support Vector Machine illustration 

 

SVM has numerous advantages and is not only a well-known solution for DDoS attacks detection 

problems; it also performs well with small datasets like our work. It has accuracy and a low false 

positive rate, which is critical for remote health monitoring systems. In addition, we can use it in 

both linear and non-linear situations. It is robust to noise and effective with high-dimensional data 

(Appendix B). Therefore, it would be an excellent candidate for DDoS attacks detection 

functionality in our DDoS Module. 

DDoS attacks detection, which is the second functionality of our proposed DDoS module, is going 

to use SVM and provide the detection of a DDoS attack based on Machine Learning. Our approach 

for DDoS attacks detection is divided into four main phases: data collection, feature extraction, 

training phase and detection of the DDoS attacks. 

Data collection phase: For collecting the network data, we tack advantage of the OpenDaylight 

Rest API provided by the Controller module in the second layer. In this phase, the number of 

packets, the number of bytes, the durations and the destination IPs are collected from ODL using 

the Rest API, and then the provided data will use in the next phase. 

Feature extraction phase: An entropy approach is proposed for the feature extraction phase to 

make the collected data in the data collection phase more effective for the training phase. 

Considering the literature review (cf. Chap. 2, §2.3), we know that entropy is one of the common 
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metrics that can be extracted from network data and used for DDoS attacks detection. For defining 

an entropy, first, we need to define a window, and then calculate our data based on the window 

size. Therefore, we use time-based entropy for measuring our collected information. The output of 

our feature selection phase would be a dataset with several entropy features, which will be used by 

the next phase. 

Training phase: In this phase, we use the provided feature selection data provided by the previous 

phase, and then train our SVM model based on this data. When dealing with the Machine Learning 

algorithm, one of the most typical issues is imbalanced data, which leads to incorrect training model 

outcomes. Thus, before the training phase, we attempted to address this problem. Handling 

imbalanced data has two approaches: upsampling and downsampling. The first technique consists 

of creating data points (matching minority classes) and injecting them into the dataset. There are 

two primary solutions [128] [129]: SMOTE and the DataDuplication function. 

The second technique is downsampling, which decreases the number of training samples that fall 

into the majority categories. It assists in balancing the number of target categories via Tomek (T-

Links) or Centroid-based functions [130-132]. After this phase, we have sufficient data to run the 

SVM algorithm and train our model.  

Detecting the DDoS attacks phase: In this phase, the trained model can be applied to any 

additional datasets supplied by the proposed model to identify the attacks in that dataset. We can 

consider this phase as an offline DDoS attacks detection solution that works for our proposed 

model. These four phases serve as the DDoS attacks detection section in our DDoS module in our 

Application Layer (LA). 

3.4.2 Monitoring Module 

In addition to the offline DDoS attacks detection solution proposed by the DDoS module, we 

consider the Monitoring module for offering al-time DDoS attacks detection in our proposed 

model. As we mentioned, the Northbound and Southbound APIs in ODL are powerful assets for 

working with data, extracting and updating them. Therefore, the Controller module in the second 

layer can provide us with real monitoring capability, which helps us to propose a real-time DDoS 

attacks detection solution [133-135]. 
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The proposed Monitoring module is intended to be a multiplatform approach, which is independent 

of the device type or the operating system. Therefore, it assists network administrators in 

monitoring network status in real-time mode. Moreover, the network administrators will be warned 

if DDoS attacks occur in our proposed model. We will ensure health data security against these 

DDoS attacks with our approach. 

3.5 Summary 

This chapter presented our proposed model for a remote monitoring health system that provides 

security via the Wearable Internet of Medical Things (IoMT) devices and 5G network capabilities. 

The IoMT Health Data Layer (IHDL), the 5G Network Layer (5GNL) and the Application Layer 

(AL) are the three fundamental layers in our proposed model.  

The interoperability of the information processing is due to the conversion of the data to Jason in 

the first IoMT Health Data Layer, which is an acceptable format by HL7 and most standard health 

systems. Furthermore, by using this standard data format, we can deal with structured and 

unstructured data more effectively and boost our capacity to work with heterogeneous data. 

We aimed to boost speed and minimize latencies by using these 5G technologies in the 5GNL at 

the level of the Transmission module. In addition, it can enhance security compared to traditional 

networking approaches and offers flexibility and dynamic structure to our network model. The 

Controller module in 5GNL provides a real-time network monitoring functionality and access to 

flow tables and network status information for training our model in the Application Layer. 

In the Application Layer, we addressed one of the SDN's fundamental weakness (i.e., vulnerability 

to DDoS attacks) and proposed a Machine Learning-based DDoS attacks detection solution. We 

employed the SVM, a powerful and well-known supervised ML algorithm, to identify DDoS attacks 

and provided our solution in both offline and real-time modes. It is worth mentioning that our 

model is scalable since we're gathering data via the ODL controller. 
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 IMPLIMENTATION AND RESULTS 

In Chapter 3, we presented the architecture of the proposed security model for enhancing security 

in the remote health monitoring system and IoMT devices with its three primary layers. In this 

chapter, we present the implementation of the proposed model to evaluate its performance. We 

describe our testbed and how we set up our testing environment. In addition, we present our 

findings and results for each layer of the proposed architecture. 

4.1 Testbed 

We provide our testbed on two separate machines by using VMware Workstation Pro version 

15.5.5 [136] and installing desktop ubuntu version 20.04.2.0 [137], as follows: 

• Main machine: This machine is served to our Transmission module in the 5GNL and to our 

SDN network. We set up Mininet-Wifi network simulator on Linux virtual machine to 

simulate the SDN. The characteristics of this Linux machine are set for 2GB memory and 

2 processors with around 100 GB ofhard disk space, as shown in Figure 4.1(a).  

• Controller machine: This machine is prepared for installing and simulating our 

OpenDaylight controller and it is providing our Controller module for the 5GNL. The 

characteristics of this Linux machine are set for 2GB memory and 2 processors with around 

100 GB of hard disk space, as shown in Figure 4.1(b). 

 

Figure 4.1 VMware Workstation characteristics (a) Main machine (b) Controller machine 
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By using Python codes on the main machine, we simulated our network and provided a tree-

topology network with a depth of d = 4 and a fanout of f = 3. The number of hosts in the tree-

topology network is calculated by equation (1), where the number of levels of switches is indicated 

by depth. In addition, fanout specifies the number of output ports that switches or hosts use for 

connection in topology [138]. Considering the formulation of the number of nodes in tree-topology 

in Mininet and our values for depth and fanouts, we will have a network with 81 host nodes. The 

“createTopology” function (Appendix A) details our method for providing our tree-topology SDN 

in Mininet. A preview of our network provided by OpenDaylight Web UI is presented in Figure 

4.2. 

𝑁𝑜. ℎ𝑜𝑠𝑡𝑠 = 𝑓𝑑            𝑤ℎ𝑒𝑟𝑒 𝑓 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 Fanouts,               (4.1)  

     d = Depth of tree 

 

Figure 4.2 View of tree-topology network (depth= 4 and fanout= 3) 

 

In the controller machine, we set up our OpenDaylight controller, and for this purpose, we install 

and configure the Lithium version [139]. In addition, the SDN in the main machine and the ODL 

controller in the controller machine are used to manage the flow controls in our simulated network. 
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4.2 Implementation of IoMT Health Data Layer (IHDL) 

In this section, we describe our developments for each of the three modules of IHDL: ECG module, 

Denoising module and Tokenization module (cf. Chap. 3, §3.2). In addition, we present our results 

for the Denoising module evaluation. We use Python to implement these three modules. 

4.2.1 ECG module Implementation 

In Chapter 3 (cf. Chap. 3, §3.2.1), we explained that the first module in IHDL is the ECG module, 

which is used to prepare the data in our model. This section presents our selected ECG dataset for 

the ECG module in the Denoising module. This data will be denoised using our suggested DWT 

denoising algorithm. There are plenty of popular public datasets for ECG data that are used for 

ECG denoising regarding the literature review in chapter 2 (cf. Chap. 2, §2.4). Among all of them, 

we will work on a combination of two public datasets from the PhysioBank database [115], which 

is a large and growing archive of physiological data. Both selected datasets are WaveForm 

Databases (WFDB) based on MIT format standards. Other information for these two ECG datasets 

is: 

• PhysioNet/Computing in Cardiology Challenge dataset [115]: It has 1000 records, and its 

data is based on standard 12-lead ECG recordings for 10 seconds with full diagnostic 

bandwidth; 

• PTB Diagnostic ECG Database [140]: It has 549 records, and its data is based on standard 

12-lead ECG recordings with full diagnostic bandwidth. 

The MIT Format is one of the WaveForm Database format standard categories, and it includes three 

types of files [115]: 

• Signal: They are binary files containing samples of digitized signals. They store the 

WaveForm, but they cannot be adequately interpreted without their corresponding header 

files. The extension for these files is in the form of .dat; 

• Header: They are short text files that describe the contents of associated signal files. The 

extension for these files is .hea; 
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• Annotation: They are binary files containing labels or annotations for referring to samples 

in associated signal files. These annotation files should be read with their associated header 

files, and they are named with the .atr extension. 

We use the MIT format and after reading a signal based on these three files, we convert it to a Jason 

file. This step is accomplished by reading ECG MIT data using the “wfdb library”, and then 

converting them to Jason using the “ecgInfo library” in Python. In addition, we prepare a code to 

plot the ECG signals using the same libraries in our code (Appendix D).  

4.2.2 Denoising Module Implementation 

The second module of our first layer is the Denoising module (cf. Chap. 3, §3.2.2), where we used 

the Discrete Wavelet Transform (DWT). In Python, we can use the “PyWavelets library” to 

implement the Wavelet Transform (WT) and the “pywt.dwt()” or “pywt.wavedec()” commands in 

this library to apply the DWT. This command returns two sets of coefficients: approximation 

coefficients and detail coefficients. In the DWT, the approximation coefficients represent the output 

of the low-pass filter, and the detail coefficients represent the output of the high-pass filter. 

Regarding the “PyWavelets library”, we have seven types of wavelet families in DWT: Haar, 

Daubechies, Symlets, Coiflets, Biorthogonal, Reverse biorthogonal and Discrete Meyer (FIR 

Approximation). These mother wavelets or wavelet families vary in the degree of compression and 

smoothness of the wavelet, and we can choose the one that best matches the standard shape of our 

signal. We plot mother wavelets for DWT (Appendix E), and they are presented in Figure 4.3. 

In this step, we need to select the mother wavelet that would be most similar to the standard ECG 

signal shape. In the studied articles (cf. Chap. 2, §2.4), among the existing wavelet families, 

Dabuchies and Symlets family wavelets have been introduced as appropriate wavelets for ECG 

signals [105] [110]. Given that the criterion for selecting a wavelet is its degree of similarity to the 

signal under study, and by examining the plotted shape of these mother wavelets, it can be 

intuitively seen that these two wavelet families are similar in shape to the pulses in the ECG signals. 

In this dissertation, we select the Symlets family, and Figure 4.4 displays its resemblance to a 

standard ECG signal. 
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After decomposing the noise signal into approximation coefficients (low-pass filter) and detail 

coefficients (high-pass filter) using DWT, a portion of the frequency spectrum can be filtered by 

removing some detail coefficients. If the signal contains a significant amount of high frequency 

noise, this approach may assist in denoising that signal. The undesired portion of the detail 

coefficients may be deleted using the pywt.threshold() function. Indeed, this command eliminates 

values of specific coefficients that exceed a specified threshold. After this step, we can reconstruct 

the signal using the remaining coefficients and combine them step by step, and finally get the signal 

without noise [116] [117]. 

 

 

Figure 4.3  Mother wavelets for Discrete Wavelet Transform. 
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 (1) Haar, (2) Daubechies, (3) Symlets, (4) Coiflets, (5) Biorthogonal, (6) Reverse 

biorthogonal, (7) Discrete Meyer (FIR Approximation) 

 

Figure 4.4  Similarity of Symlets mother wavelets and standard ECG signal 

 

In Wavelet, there are four basic approaches to thresholding, which will be discussed as follows 

[106] [141] [142]: 

• Minimax: This strategy, which is used in statistics to develop estimators, employs a fixed 

threshold determined for its calculation. It is designated by equation (2). 

• Rigorous Sure: It can be applied to the soft threshold estimator based on the quadratic loss 

function. Equation (3) depicts this thresholding approach. 

• Universal: It is another strategy that can be employed instead of the minimax threshold. It 

is bigger in magnitude than the minimax threshold, and its value is derived using equation 

(4). 
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• Heuristic Sure: It is a heuristic variant of the rigorous sure approach. We can consider it as 

a mixture of the two previous methods by equation (5). 

 

 

𝝀𝑴 = 𝜎𝜆𝑛
∗                                                                             (4.2) 

 

𝝀𝑺 = 𝑎𝑟𝑔𝑚𝑖𝑛0<𝜆<𝜆𝑢
 𝑆𝑢𝑟𝑒 (𝜆,  

𝑠(𝑎, 𝑏)

𝜎
)                     (4.3) 

 

𝝀𝑼𝑵𝑰𝑽 = 𝜎√2 𝑙𝑜𝑔(𝑁)                                                     (4.4) 

 

 𝝀𝑯 = 𝜆𝑆 + 𝜆𝑈𝑁𝐼𝑉                                                            (4.5) 

The noisy signal is represented by 𝜆, while the coefficients are represented by 𝜎 in these equations. 

The 𝜎 can be a fixed value in the first formula, or it can be calculated by using the median value of 

the signal and probable error for normal distribution in other equations. In our proposed method, 

we calculate the DWT threshold based on the universal approach [106] [142].  

To summarise what has been done in this section, we proposed a Discrete Wavelet Transform 

technique for denoising ECG signals, implemented in Python. In our proposed strategy, the Symlets 

wavelet family has been considered as the mother wavelet, while the coefficient threshold was 

calculated using the universal thresholding approach. To get the best results, we used eight 

decomposition cycles in our approach to signal analysis (Appendix F). We plotted a sample of our 

results. Figure 4.5 displays an example of a noisy signal and the result for our suggested technique. 

For evaluating our Denoising module results, we have four metrics as follows:  

• Signal-to-Noise Ratio (SNR); 

• Percent Root Distortion (PRD); 

• Mean Square Error (MSE); 
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• Root MSE (RMSE). 

 

Figure 4.5  A sample of raw ECG signal and denoising signal 

To evaluate our DWT results, we took two random samples from each dataset, then calculated SNR 

and MSE for each record. Higher values for SNR indicate better performance of a denoising ECG 

approach and it means the result signals are more accurate. MSE should be kept to a minimum 

since it highlights mean square error in the results. Table 4.1 displays our findings and Table 4.2 

shows the results of three earlier previous works [6] [7] [14] for denoising ECG signal. By 

comparing our results to earlier works, we improved SNR values at both the minimum and 

maximum values. Figure 4.6 compares our SNR values with these three earlier previous works. In 

addition, the proposed denoising solution provides acceptable MSE values compared to these three 

earlier previous works. 
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Table 4.1  MSE and SNR results of our denoising approaches 

Dataset Signal 

Name 

MSE SNR Min 

MSE 

Max 

MSE 

Min 

SNR 

Max 

SNR 

PhysioNet/Computing 

in Cardiology 

Challenge (CICC) 

2981187 0.003 16.92 0.003 0.006 10.61 16.92 

1003574 0.006 10.61 

PTB Diagnostic ECG 

Database (PTB) 

s0205_re 0.031 15.527 

 

0.031 0.031 12.36 15.527 

 

s0341lre 0.031 12.36 

 

Table 4.2  MSE and SNR results of earlier previous works for denoising ECG signal 

Dataset Min 

MSE 

Max 

MSE 

Min 

SNR 

Max 

SNR 

Significance of non-local means estimation in DWT 

based ECG signal denoising [108] 

0 0.001 8.44 9.68 

An improved multivariate wavelet denoising method 

using subspace projection [143] 

- - 11.5 12 

Hybrid IIR/FIR Wavelet Filter Banks for ECG Signal 

Denoising[109] 

0.02 0.06 11.19 13.33 

 

Figure 4.6  Comparing our denoising approaches and the three earlier previous works on 

SNR 
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4.2.3 Tokenization Module Implementation  

The third module in IHDL layer is the Tokenization module (cf. Chap. 3, §3.2.3) and we are 

implementing this module using Python. Before that, we will explain the structure and procedure 

of tokenization with JWT. An example of a JWT token for a sample Jason data and using “LARIM” 

for the private key is presented in Table 4.3 [119]. 

Table 4.3  Sample of JWT and how it works 

Header (Algorithm & Token type) { 

  "alg": "HS256", 

  "typ": "JWT" 

} 

Payload (data) { 

  "subject": "dissertation", 

  "name": "faye" 

} 

Verify signature HMACSHA256(base64UrlEncode(header) + "." + 

base64UrlEncode(payload), LARIM) secret base64 

encoded 

Result eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWJqZ

WN0IjoiZGlzc2VydGF0aW9uIiwibmFtZSI6ImZheWUi

fQ.1-bJv7c-Qqu7dK_hWcDj4Hz-

tSLfWNuJWpSGFKMcDKU 

 

Typically, the header part has two sections that define the kind of token and the algorithm that was 

used to create it. JWT tokens are used here, and the methods are often HMAC SHA256 [24] [119] 

or RSA [24] [119]. The payload part of the token contains our data and some metadata. Both parts 

are encoded with the base 64 algorithm, as we can see in the result with red and green color. Then 

the signature is created based on the header and payload. 

As we saw, all data is encoded using the base 64 algorithm, which is simply decoded in any system, 

and anybody may produce such a token and transmit it to us, but not with the third part (i.e., 
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signature). In the signature part, the header part is appended to the second part (i.e., payload) and 

then encrypted with the private key (private key only accessible on the server) and the result is used 

as the third party (i.e., our token signature). If the payload data is tampered with, the server's 

signature is invalid. Additionally, since users do not have a private key, they are unable to produce 

tokens on their own [24] [119]. 

We implemented this approach to encode and encrypt ECG data and to increase the security of our 

data before it is sent to our network. At first, we will read ECG data stored in the MIT format and 

convert it to Jason file, which is compatible with HL7 format. Then, we will encrypt this data using 

JWT and a private key. Therefore, we will transform each ECG file into a Jason file that is 

encrypted and encoded using JWT. The code source for this part will be developed using the “jwt 

library” (Appendix D). 

4.2.4 Summary of IHDL 

We first constructed our dataset by integrating two publicly available ECG datasets. Then, we 

implemented the Discrete Wavelet Transform (DWT) technique to apply our ECG denoising 

strategy for the Denoising module. At this stage, we used the Symlets family as our mother wavelet 

and the universal thresholding technique to establish the coefficient threshold and filter the detail 

coefficients (high-pass filter) in eight cycles to get the level eight coefficient. Finally, in the 

Tokenization module, we converted our ECG data to a Jason file and then used the JWT approach 

to encode and encrypt it to be more secure and trustworthy. Furthermore, since we converted the 

format to an HL7-approved format, the suggested model would be interoperable with other e-health 

systems. Now that we have this data, we can use it in our simulation environment in Mininet and 

using SDN. 

4.3 Implementation of Application Layer (AL) 

In chapter 3 (cf. Chap. 3, §3.4), we saw that in the Application Layer (LA), we have two main 

modules: The DDoS module and the Monitoring module. The proposed DDoS module has two 

main functionalities (cf. Chap. 3, §3.4.1): DDoS attacks simulation and DDoS attacks detection. In 

this section, we will explain our implementation and then we will present our results for each 

functionality of the DDoS module and the Monitoring module, respectively. 
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4.3.1 DDoS Module implementation for DDoS attacks simulation 

The first duty of our proposed DDoS module is DDoS attacks simulation (cf. Chap. 3, §3.4.1), and 

this section will outline how our DDoS module simulates our network's DDoS attack scenario. It 

is indicated that the network layer in our model prepared our network in a simulated SDN using a 

tree-topology (cf. §4.1). In addition, the proposed ECG module of the first layer extracted data 

from two available public ECG datasets. Then, the Denoising module in IHDL applied our DWT 

denoising technique to this data, and then the Tokenization module applied JWT and encrypted and 

encoded the denoised ECG data into separate files (cf. §4.2). Now, we are going to establish two 

distinct circumstances in our network using our DDoS module: normal and attack. 

In a normal situation, we send our data to the network as files in two distinct threads. Senders and 

receivers are chosen randomly. Our source code has two classes that handle our normal simulated 

situations (Appendix G): "sendNormalData" and "normalflow". 

In the DDoS attack scenario, we use hping3 to simulate DDoS attacks and connect with random 

senders and receivers using the "ddosFlow" and "sendDDoSData" classes in our code (Appendix 

H). We run our code for an attack situation for 85 minutes and for a normal situation for 160 

minutes to prepare our dataset and train our model. In both situations, we execute our code on the 

Mininet-Wifi machine. Figure 4.7 is a schematic block diagram of a DDoS attack scenario provided 

by the DDoS module on our 5G Network Layer (5GNL). The data plane in this Figure refers to our 

Mininet-Wifi machine for our Transmission module, while the control plane refers to our controller 

machine for our Controller module. 
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Figure 4.7 Schematic block diagram of a DDoS attacks scenario 

4.3.2 Proposed DDoS attacks detection solution 

The second duty of our proposed DDoS module is proposing a DDoS attacks detection solution (cf. 

Chap. 3, §3.4.1). The implementation of our SVM and Machine Learning-based solution is 

presented in this section. The proposed solution is divided into four main phases: data collection, 

feature extraction, training phase and detection of the DDoS attacks. 

Data collection phase: For implementing this phase, we developed our solution with the 

OpenDaylight Rest API [120] and prepared our code in Python for using this API. As we 

mentioned, the northbound and southbound APIs in ODL are powerful assets for working with 

data, extracting them and updating them. This solution provides us with real monitoring capability, 

which helps us to propose our next module (i.e., Monitoring module). We have several APIs [133-

135] in OpenDaylight and we are working with the statistical API available on: 

http://[ControllerURL]:8080/controller/nb/v2/statistics/default/flow 

We monitor the ODL controller and retrieve the traffic data every ten seconds using this API in 

both normal and attack situations. We chose the following information for our work from the plenty 

of data offered by the API in the result dataset: number of packets, number of bytes, durations and 

destination IPs. Figure 4.8 illustrates the plot of each data.  

http://[ControllerURL]:8080/controller/nb/v2/statistics/default/flow
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Figure 4.8 The data collected by ODL Rest API 

 

Feature extraction phase: After completing the data collecting step for feature extraction, we 

used the entropy approach. In this phase, we used time-based entropy approach and for this aim, 

we defined the 10 seconds for the size of our window as we already collected the data every 10 

seconds.  

Therefore, the total number of each feature per 10 second period represents our chosen features 

based on our dataset and time-based entropy. In addition, we added two calculated features using 

our raw data, including the total number of packets per total duration times and the total bytes per 

total duration times. This phase is implemented in Python code, and the file “datacollection.py” 

contains both the data collection and feature extraction code. The output of our feature selection 

process would be a dataset with six distinct features, as shown in Figure 4.9. The results of this 
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phase are two Excel files that we named “normalFeaturesECG.csv” and “ddosFeaturesECG.csv” 

(Appendix I). 

 

Figure 4.9 Entropy of the selected features 

 

Training phase: In the training phase, we employed the upsampling approach and, more precisely, 

the SMOTE function to handle imbalanced data in our model. It is done by SMOTE function in 

“imblearn.over_sampling” Python library (Appendix J). Figure 4.10 shows the results of this 

function for one of our selected features.  

 

Figure 4.10 Sample result of our upsampling SMOTH method 



70 

 

 

Detection of the DDoS attacks phase: We now have sufficient data to run the SVM algorithm and 

train our model. The provided dataset in the previous phase is divided into a training set, a 

validation set, and a test set with 60%, 20%, and 20%, respectively. “GridSearchCV” was used to 

conduct cross-validation on our model. This implies that “GridSearchCV” uses distinct data 

portions to test and train a model across several iterations, in order to get the optimum results 

(Appendix J). Finally, we determine the optimal values for the following SVM algorithm 

parameters: 

• C: 1.0; 

• coef0: 0.0; 

• Degree: 1; 

• Gamma: scale; 

• Kernel: linear. 

For evaluating our results by SVM, we provide our performance results for the train, validation and 

test sets by applying F1 score. Table 4.4 presents our results for the SVM algorithm and the DDoS 

attacks detection solutions. 

Table 4.4  F1 score for the proposed DDoS attacks detection solution 

Dataset F1 Score 

Train Data 0.997 

Validation Data 0.995 

Test Data 1 

 

 In ML evaluations Precision and Recall provide an F1 score. The Precision is the ratio of True 

Positives to False Positives, and it shows the accuracy. As a result, the poor precision indicates a 

high rate of False Positives. The Recall is the ratio of True Positives to False Negatives and a metric 

of completeness. Therefore, a high rate of False Negatives provides a low recall value. The F1 

score is calculated as the harmonic mean of Precision and Recall, which provides a considerably 

more accurate representation of the model. Thus, a low rate of false positives and negatives are 

equal when a good F1 score [144].  
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This model can be applied to any other datasets that fulfill our requirements and detects the DDoS 

attacks in offline mode using the given datasets. Moreover, the resulting model of this phase is 

recorded in the file “SVCModel.sav”, and we will use this model in the next module and propose 

our real-time DDoS attacks detection approach. 

4.3.3 Monitoring Module implementation 

The last module in our Application layer is the Monitoring module (cf. Chap. 3, §3.4.2), which 

provides a real-time monitoring capability inside the ODL User Interface (UI). In our source code, 

we included the “detectDDoS.py” and “mlResults.py” classes for real-time DDoS attacks detection 

(Appendix K). The first class, established in the previous section (cf. §4.3.2), gets real-time 

network data from our OpenDaylight controller via the ODL rest API. The raw data is manipulated 

to give the features specified in the feature extraction phase. Then, it runs the second class, 

“mlResults.py”, to classify this data as a normal or an attack situation. The findings are instantly 

shown in the console. 

In addition, we provided a chrome extension for ODL's web-based User Interface. The data for this 

chrome extension is also provided via the “mlResults.py” class. Therefore, we do not need to run 

any additional program or application to identify DDoS attacks on our network, and we can monitor 

the network state in real-time and only by using the OpenDaylight Web User Interface. In other 

words, we may use any device or operating system to discover our results as long as chrome is 

available on them. The chrome extension's source code is provided by HTML, CSS and JavaScript 

(Appendix L). Figure 4.11 depicts the ODL Web UI and our proposed chrome extension. The blue 

color indicates a normal situation, whereas the red color denotes an attack situation. The extension's 

data will be refreshed every 3 seconds.  
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Figure 4.11 ODL chrome extension 

4.4 Summary 

This chapter presented the implementation of our proposed model. First, we established our testbed 

in two distinct virtual machines by using Mininet-Wifi for SDN and OpenDayLight. Then, we 

discussed the implementation for the three modules in the IoMT Health Data Layer (IHDL): The 

ECG module, the Denoising module and the Tokenization module. For ECG module, we prepared 

a code for reading MIT format data, plotted and converted them to Jason. The implementation of 

JWT for denoising ECG signals is proposed for the Denoising module. Then, we implemented our 

JWT method for encoding and encrypting our data. 

In the Application Layer, we presented our approach for simulating DDoS attacks by the DDoS 

module. After, we provided our development for DDoS attacks detection in the same module.  

Finally, we discussed our implementation to provide real-time monitoring in the Monitoring 

module, which is done by CSS, HTML, JavaScript, ODL rest API and Python. 

Table 4.5 provides an overview of the proposed model, the technologies and the enhancements 

depending on each layer in our model based on both chapters 3 and 4.  
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Table 4.5  Summary of our proposed model 

Layers Module Technologies/ 

dataset 

Duty Achievements 

IoMT Health 

Data Layer 

(IHDL) (cf. 

Chap. 3, 

§3.2) 

ECG module Public datasets, 

Python, wfdb 

library 

Read, plot, ECG MIT 

format. 

Enhance 

interoperability in 

data transmission, 

ability to work with 

heterogeneous data.  

Denoising 

module 

Python, 

PyWavelets 

library 

Denoise the ECG 

signals. 

Enhance reliability of 

data.  

Tokenization 

module 

Python, JWT 

library 

Convert ECG MIT 

format to Jason, 

Encode and encrypt 

the ECG data. 

Enhance security of 

data, increase 

scalability. 

5G Network 

Layer 

(5GNL) (cf. 

Chap. 3, 

§3.3) 

Transmission 

module 

SDN, Mininet-

Wifi 

Managing network 

and transmission 

process  

Add security by 

SDN, increase 

flexibility and 

network scalability 

Controller 

module 

ODL, ODL 

Rest API, 

Python 

Extract network data, 

present the live DDoS 

attacks detection 

results. 

Provide easy access 

to data in both real-

time and offline 

mode, increase 

network scalability 

Application 

Layer (AL) 

(cf. Chap. 3, 

§3.4) 

DDoS 

module 

ML, SVM, 

Python, ODL 

Rest API 

Simulate normal and 

DDoS attacks 

situation, provide 

time-based entropy 

features, train SVM 

model for detecting 

DDoS, propose 

offline DDoS attacks 

detection 

 

 

Increase network 

security, detect 

DDoS attacks on 5G 

networks using SDN  

Monitoring 

module 

Python, HTML, 

JavaScript, 

CSS, ODL Rest 

API 

Propose real-time 

DDoS attacks 

detection, provide 

multiplatform 

monitoring tool 

Increase network 

security, detect 

DDoS attacks on 5G 

networks using SDN 
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 CONCLUSION 

This dissertation presented our three-layer model for securing the IoMT health monitoring system 

through 5G. In addition, we addressed the suggested model's outcomes and the implementation 

phases of this model. This chapter concludes the dissertation. The first section provides a summary 

of the work. The second section details the limitations of our work. Finally, the third section 

discusses the future works. 

5.1 Summary of works 

Healthcare's significance in our lives is evident, and we are experiencing significant advancement 

in this sector every day. Therefore, healthcare is a system that is addressed in smart cities. 

Healthcare services gain tremendously from IoT in a smart city. These systems collect health data 

using health sensors and Internet of Things (IoT) technology. Moreover, 5G technology and its 

features will be critical in accelerating the growth of the IoT and smart cities. The Remote Health 

Monitoring System is an application for health services in smart cities. Due to sensitive data in the 

healthcare domain and security vulnerabilities on the Internet of Things, security can be considered 

a critical component in a Remote Health Monitoring System. 

By conducting the literature review on the health monitoring systems, e-health, IoMT and smart 

cities, we identify several weaknesses and shortcomings in existing systems, including lack of 

security at various levels, difficulties in dealing with heterogeneous data, lack of data 

interoperability, lack of scalability and data transmission latency. Therefore, several questions 

come to mind. How can we enhance the level of security for the remote monitoring health system 

to protect vital and sensitive health information from security vulnerabilities and unauthorized 

access? How can we achieve a real-time and scalable monitoring health system that ensures the 

system's availability and compatibility with a variety of IoT devices? Which interoperability 

frameworks are now being used to merge patient-generated health data with electronic health 

records? 

Regarding all weaknesses mentioned above, this dissertation proposes a model for the remote 

monitoring health system using wearable IoMT devices and 5G network capabilities to ensure 

security in smart cities. In addition, the proposed model should support heterogeneous data and 
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interoperability between them to boost model scalability. In this model, we aim to develop a 5G-

capable fast data Transmission module to boost speed and reduce latencies. 

To accomplish our objectives, we developed a three-layer model consisting of the IoMT Health 

Data Layer (IHDL), the 5G Network Layer (5GNL) and the Application Layer (AL). In this model, 

we considered 5G applications and technologies, and we provided two security enhancements at 

the data level and network level. The outcomes of the proposed security approaches are acceptable, 

and in the following paragraphs, we will discuss each layer, its results, and how it contributes to 

achieving our objectives. 

The IoMT Health Data Layer (IHDL) is initially composed of three fundamental components: an 

ECG module, a Denoising module and a Tokenization module. IHDL is responsible for obtaining 

our health data from IoT/IoMT sensors and devices, and securely preparing it for the other layers 

of our model. The ECG module is the first of these three modules, and it provides data on ECG 

signals by integrating two public datasets (i.e., PhysioNet/Computing in Cardiology Challenge 

(CICC)  and PTB Diagnostic ECG Database (PTB)) [115] [140]with MIT format and data from 12 

leads. This data is used to monitor the heart's health state, and it is a necessary component of any 

remote health monitoring system. In addition, precise and trustworthy ECG data are extremely 

required for the accurate determination of the patient's health status. 

The second layer of the IoMT Health Data Layer (IHDL) is the Denoising module, which uses the 

Discrete Wavelet Transform (DWT) to reduce noise in ECG data, and thus increase their robustness, 

security and reliability. The proposed DWT calculates the DWT of the ECG signal x by passing it 

through the low pass filter and the high pass filter, and decomposing it into approximation and 

detail coefficients, respectively. Then, we filtered these approximation and detail coefficients using 

Symlets mother wavelet [105] and a universal thresholding technique. We performed this 

procedure eight times and then combined the results to get our denoised ECG signal. 

We evaluated our results using Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for 

two random samples from each dataset. Then, we compared them with the three earlier previous 

works [108] [109] [143] for denoising ECG signal. Therefore, our SNR value ranges from 10.61 to 

16.92 for the PhysioNet/Computing in Cardiology Challenge (CICC) dataset, and between 12.36 
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and 15.527 for the PTB Diagnostic ECG Database (PTB) dataset. By comparing our results to 

earlier works, we improved SNR values at both the minimum and maximum values. 

Tokenization is the last module in the first layer (IHDL). It converts the denoised signal given by 

the Denoising module to Jason, a standard format for health monitoring systems. Jason enables us 

to manage heterogeneous data and enhances data interoperability via information processing. Jason 

is compliant with the HL7 standard and supports the FHIR standard. In addition, the Tokenization 

module, used JWT to enhance the security of the data to make it reliable and more secure. By 

encrypting and encoding data and delivering it as JSON objects, JWT enables the secure movement 

of data between parties. Therefore, the Tokenization module encodes our denoised ECG data using 

the Base64 technique and encrypts it using the HMAC algorithm for the header, the Secure Hash 

Algorithm (SHA256), and the private key for the contents in the JWT token. The data is then 

digitally signed, and since users do not have access to the private key, they cannot edit tokens and 

it is secure now. 

Up to this point, we have added data security and interoperability due to the information processing 

by converting the data to Jason in the IoMT Health Data Layer, which is a valid format for HL7 

and the majority of standard health systems. Moreover, by using this standardized data format, we 

can manage structured and unstructured data efficiently and increase our capacity for working with 

heterogeneous data. The second layer in the proposed model is the 5G Network Layer (5GNL), 

which is responsible for network administration and data transmission. This layer has two modules: 

The Transmission module and the Controller module. The Transmission module is responsible for 

network management and provides the required infrastructure to safely transfer data between nodes 

through SDN. By establishing physically distinct layers for infrastructure, control and application, 

SDN makes our network more secure than conventional networks. Therefore, network control is 

dynamic, programmable and adaptable. Mininet-wifi is used to simulate our Transmission module. 

In 5GNL, the Controller module is responsible to assist the Transmission module in accomplishing 

its goals and acting as the controller for SDN in our Transmission module. Moreover, it provides 

data about our network's state for the Application Layer. In addition, we used Lithium 

OpenDaylight to create a scalable and multiprotocol controller for our Transmission module, which 

allows us to connect more devices and enhances interoperability. 
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 The Application Layer (AL) is the last layer in our model. The primary function of this layer is to 

increase the security of the two preceding layers (i.e., IHDL and 5GNL) in the proposed model. 

Despite the advantages of SDN in network management and the enhancement of the security 

compared to traditional networks, SDN still contains some security problems. One of the most 

serious vulnerabilities associated with SDN is a Distributed Denial of Service (DDoS) attack. 

Therefore, in this layer, we proposed our solution for DDoS attacks detection based on SDN and 

ODL. 

The Application Layer is divided into two modules: the DDoS module and the Monitoring module. 

The DDoS module is responsible for two primary functions: simulating DDoS attacks at the 5G 

Network Layer (5GNL) and detecting DDoS attacks through SVM classification. We used hping3  

[100] to simulate DDoS attacks using random senders and recipients in our network. The dataset 

includes an attack scenario lasting 85 minutes and a normal scenario lasting 160 minutes. 

Then, in the DDoS module, we applied the SVM algorithm to identify DDoS attacks. Our approach 

to detecting DDoS attacks consists of four main phases: data collection, feature extraction, training 

phase and detection of the DDoS attacks. During the data collection phase, we used the ODL Rest 

API to gather information about our network, such as the number of packets, the number of bytes, 

the durations, and the destination IP addresses. Then, for the feature extraction step, we used a 

time-based entropy with 10 seconds for the size of our window to determine the entropy of our 

network data. Moreover, two computed characteristics are added: total packets per total duration 

time and total bytes per total duration time. Following that, in the training phase, we used the 

SMOTE function in conjunction with an upsampling approach to deal with unbalanced data in our 

model. 

Finally, in the detection of the DDoS attacks phase, the provided dataset is divided into a training 

set, a validation set and a test set with 60%, 20% and 20%, respectively. Then, using these datasets 

and the cross-validation in our implementation, we trained our SVM model with the optimal 

parameters being C: 1.0, coef0: 0.0, Degree: 1, Gamma: scale, and Kernel: linear. Therefore, in 

this phase, we provided our offline DDoS attacks detection solution by preserving the model and 

applying it to other datasets. For evaluating our results by SVM, we provide our performance results 
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for the train, validation and test sets by applying F1 score. The results are 0.99 for the train and 

validation sets and 1 for the test set, indicating that our performance for detecting DDoS attacks in 

SDN, while we are sending ECG data, is almost 100% accurate. 

Our last module in Application Layer (LA) is the Monitoring module, which aims to present the 

results of the DDoS module and our DDoS attacks detection solution, as well as provide live 

monitoring functionality in the 5GNL. Regarding our training model, we gathered data in real-time 

through the ODL Rest API and enabled real-time DDoS attacks detection. The results are presented 

inside the OpenDaylight UI by providing an ODL extension and a real-time monitoring tool. It is 

worth mentioning that our model is scalable since data is collected through the ODL controller. 

5.2 Limitations 

Our proposed model has several limitations regarding our objectives at each layer of the proposed 

architecture. In the first layer, IoMT Health Data Layer (IHDL), we just considered ECG data. 

Therefore, there is a limitation in covering additional IoMT devices and working with other health 

data, such as temperature, blood pressure and so on. In addition, we did not include heterogeneous 

data in our testing and evaluation of our model and its capability to operate with heterogeneous 

data. Another weakness in our model is that we had a limitation of access to standard health systems 

for verifying interoperability in our model that we presented by converting data to Jason format. 

In the 5G network layer, the primary weakness is that we used a simulator to construct our testbed, 

and the result might be different in a real situation in a 5G network. Moreover, we noticed that 

there are multiple SDN controllers, and we just examined one of them, ODL. Therefore, our model 

is incompatible with other SDN controllers, particularly with commercial controllers that are used 

in the real world. 

Moreover, we were constrained by the lack of a real-world test environment for our application 

layer and had to rely on simulated data to validate our SVM model. Another weakness of our DDoS 

attacks detection model is that we only consider hping3 when simulating DDoS attacks in our 

network, ignoring other tools and solutions for providing DDoS attacks in the network.  
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5.3 Future Work 

The first improvement in our proposed model would be expanding the number of IoMT variations 

and providing real data from wearable IoMT devices. With this enhancement, we can collect real-

world data from wearable IoMT devices, particularly commercial devices, to improve the quality 

of our health data. Another possibility for improving our Denoising module is to implement more 

denoising algorithms, evaluate the results, and then choose the optimal strategy for this purpose. 

Instead of employing simulators for the Transmission module, we can offer a real testbed for 5G 

networks and SDN, in our 5G Network Layer. Additionally, we may include additional SDN 

controllers into our design or use several OpenDaylight controllers to provide a more complex 

network topology in our model.  For future work, there are plenty of other DDoS attacks detection 

approaches and we can propose other approaches, then compare the results and select the most 

efficient approach for our work. Regarding the security issues, we only addressed the DDoS attacks 

in our model; however, more security attacks might become the focus of our security solution in 

the future.  

Another possibility is to design a cloud-based health monitoring system that includes all works for 

security in our model, and to implement a real application for patients and healthcare professionals 

to monitor their health conditions. In our work, we considered this point and converted our health 

data to Jason format to provide optimum interoperability with current health care systems. 

However, the obtained data in Jason format could be integrated with current open source and cloud-

based infrastructures. One of these options is the novel tool Fast Healthcare Interoperability 

Resources (FHIR) FHIR [118] [145], which runs on Amazon Web Services (AWS). Another tool 

for this objective could be Google's Cloud Healthcare API [146], which enables rapid development 

of healthcare solutions that are managed, enterprise-scale, and compliant with the HL7 and FHIR 

standards.  
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APPENDIX A   ECG SIGNALS 

Electrocardiography uses ECG signals for monitoring heart health conditions [44]. ECG provides 

a graph of voltage versus time based on ECG signals and it uses electrodes placed on the skin to 

measure the heart's electrical activities. For ECG systems, precise and trustworthy measurements 

of the morphological attributes of intervals and local waves are extremely required for the accurate 

determination of the characteristic points, also called fiducial points, of the ECG signal [103]. In 

ECG signal, amplitude, duration, polarity and shape are called morphological features [103] [111] 

[112]. Local waves of the ECG signal are listed below, and their schematic presentation is 

illustrated in Figure 3.3: 

• P-wave: It reflects atrial depolarization or activation with a duration of 80 milliseconds (ms) 

on average [103] [111]. 

• Q-wave: It is the first negative wave in the ECG signal that are connected to myocardial 

contractile function [112]. 

• R-wave: Myocardial Infarction (MI) could be identified by ECG signals. One of the 

prognostic parameters in acute MI is R-wave. It is considered the first positive wave in a 

standard ECG signal [112]. 

• S-wave: This means the first negative wave occurring after R-wave [147]. 

• T-wave: It is another typical ECG wave for repolarization of the heart's ventricles [112]. 

• U-wave: It is not an ordinary wave, and it occasionally happens after T-wave. It could be 

used for identifying some certain cardiac disorders [148].  

Considering ECG waves, there are several intervals and segments, such as the PR interval (the 

distance between the start of the P-wave and the start of the R-wave), the QT interval (starts from 

the Q-wave to the end of the T-wave), the PR segment ( from the end of the p-wave to the start of 

the QRS complex) and the ST-segment [111]. These intervals and segments are shown in Figure 

3.11. 

As mentioned above that each of these waves and intervals represents a specific metric of a heart 

condition, and they usually have a standard range of duration considering the gender and the age 
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of the patient. Therefore, in e-health systems, these waves and intervals help health professionals 

to identify patient health conditions. 

IoMT devices provide ECG signals and anomalies could affect the quality of this vital data. 

Anomaly is the events and the observations that deviate from a dataset's normal behavior. The 

anomaly detection identifies rare items, occurrences or observations that raise suspicions by 

differing significantly from the majority of the data [149].  
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Figure 5.1 ECG signal intervals and segments. 

 (a) PR interval, (b) QT interval, (c) PR segment, (d) QRS complex and (e) ST-segment 

These anomaly sources in ECG data could add noise to the actual data and cause inaccurate health 

interpretation. A summary of ECG noise sources and their temporal and spectral characteristics is 

baseline wander, Power Line Interference (PLI), Electromyogram (EMG) and instrumentation. 

Baseline wander is a low-frequency artifact in the ECG that arises from breathing, electrically 

charged electrodes or subject movement. It affects the ST-segment detection. Power Line 

Interference (PLI) is a significant noise source in the ECG signal, severely affecting its 

interpretation. In other words, PLI is a high-frequency additive noise that occurs because of the 

coupling of power line frequency with the signal carrying cables. The electrical activity of muscles 

causes Electromyogram or muscle artifacts during periods of contraction or due to a sudden body 

movement. Finally, instrumentation noise comes from the accuracy of the device and its 

configuration [103].  
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APPENDIX B SUPPORT VECTOR MACHINE (SVM) 

SVM is a linear classifier, and there is a trade-off between maximum margin and accuracy when 

selecting the hyperplane. In this case, SVM chooses the hyperplane that correctly classifies the 

classes before maximizing the margin. This approach is illustrated in Figure 3.12. The support 

vectors indicated by the dot and the black hyperplane in the center are based on the maximum 

margin, but they are not accurate. Moreover, the optimal hyperplane indicated by the green color 

is the selected hyperplane by SVM that accurately classifies the sample data. It is worth mentioning 

that a common concern in linear classification problems is the presence of outliers in the data, and 

SVM classification is robust to outliers. Another significant strength of SVM is its capacity to tackle 

non-linear problems [28] [91] [127]. 

 

Figure 5.2 SVM hyperplane selection approach 

In non-linear classifiers, the SVM approach makes use of a technique known as the kernel trick 

[111]. The SVM kernel is a function that converts an input space with a high dimension to a space 

with a lower dimension. Then, SVM consider this converted input as a linear problem, but on a 

wider scale, and solve it simply by re-optimizing SVM equations [27] [28] [111]. This approach 

and kernel function are illustrated in Figure 3.13. 

SVM has numerous advantages and is not only a well-known solution for DDoS attacks detection 

problems; it also performs well with small datasets like our work. It has accuracy and a low false 

positive rate, which is critical for remote health monitoring systems. In addition, we can use it in 

both linear and non-linear situations. It is robust to noise and effective with high-dimensional data. 
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Therefore, it would be an excellent candidate for DDoS attacks detection functionality in our DDoS 

Module. 

 

Figure 5.3 Non-linear classification with SVM 
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APPENDIX C PREPARING SDN NETWORK 

[Class] createTopology.py: 

from mininet.net import Mininet 

from mininet.topolib import TreeTopo 

from mininet.node import Controller, RemoteController,OVSSwitch 

import random 

import threading 

 

# Create and start Mininet. 

def createTopology(odlIP, treeDepth, treeFanout): 

    odlControllerIP=odlIP 

    # Using tree topology with selected depth and fanout. 

    myTopo = TreeTopo(depth=treeDepth, fanout=treeFanout) 

    net = Mininet(topo=myTopo, controller=None ,switch=OVSSwitch) 

    odl = net.addController( 'c0', controller=RemoteController, ip=odlIP, 

port=6633) 

    net.start() 

    return net 

 

################################################ 

 

[Class] generateIP.py: 

from random import randrange 

# This function randomly generates the IP addresses of the hosts based on the 

entered start and end values. Host IPs start with 10.0.0., the last value 

entered by the user. 

def gendest(start, end): 

 

 first = 10 

 second = 0  

 third = 0 

 # It generates a number between start and end to provide a random IP.  

 ip = ".".join([str(first),str(second), 

 str(third),str(randrange(start,end))]) 

 return ip 
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################################################ 

 

[Class] getRandNum.py: 

import random 

 

# This function creates random numbers in our specified range. 

def getRandNum(start , end , exeptList): 

     number = random.choice([i for i in range(end) if i not in exeptList])      

     return number  

 

################################################ 

 

[Class] stopNet.py: 

# Using this function to clear the network after finishing our simulation. 

def stopNet(): 

    os.system('sudo mn -c') 
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APPENDIX D CONVERT ECG TO JASON/ APPLY JWT 

[Class] ecgInfo.py: 

# ECG Class for ECG Data with our required fields. 

class ecgInfo: 

    Signals=[] 

    RecordName='' 

    SignalsName=[] 

    NumofSignals=0 

    fs=0 

 

    ######################################## 

 

    # Constructor of our class to provide our new customized ECG structure.  

    def __init__(self ,Signals , RecordName, SignalsName , NumofSignals,  fs): 

        self.Signals = Signals 

        self.RecordName = RecordName 

        self.SignalsName = SignalsName 

        self.NumofSignals = NumofSignals 

        self.fs=fs 

 

################################################ 

 

[Class] readEcgData.py: 

from numpy.core.fromnumeric import shape 

import wfdb as wfdb 

import matplotlib.pyplot as plt 

import numpy as np 

import glob 

import jwt 

import ecgInfo 

import json 

import pandas as pd 

import ecgDenoising as ed 

 

# This function draws ECG signals.  

def draw_ecg(x ,y ): 
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    # Read the ECG signal information.  

    arr= np.array(x) 

    signame = np.array(y) 

    print("y" , y) 

    print("signame " , signame ) 

    z=arr.shape[0] 

    # Plot 12 leads of the signal.  

    for i in range(arr.shape[1]): 

        j=i*5 

        plt.plot(arr[0:z,i]+j , label=signame[i]) 

     

    # Configure the chart style. 

    ax = plt.gca() 

    ax.spines['bottom'].set_color('red') 

    ax.spines['top'].set_color('red')  

    ax.spines['right'].set_color('red') 

    ax.spines['left'].set_color('red') 

     

    # Configure the axis label and style. 

    ax.set_yticklabels([]) 

    ax.set_xticklabels([]) 

    xMajorTicks = np.arange(0, 1600, 400) 

    xMinorTicks = np.arange(0, 1600, 80) 

    yMajorTicks = np.arange(0, 60, 12) 

    yMinorTicks = np.arange(0, 60,3 ) 

    ax.set_xticks(xMajorTicks) 

    ax.set_xticks(xMinorTicks, minor=True) 

    ax.set_yticks(yMajorTicks) 

    ax.set_yticks(yMinorTicks, minor=True) 

    ax.grid(which='both',color='red') 

    handles, labels = ax.get_legend_handles_labels() 

 

    # Configure the legend style. 

    plt.legend(handles[::-1], labels[::-1], title='Signals', loc='center left', 

bbox_to_anchor=(1, 0.5) ) 

    plt.show() 

 

######################################## 

 

# This function uses JWT and our private key to encode and encrypt the ECG 

signals that have already been converted to Jason format. 

def jwtEcoder(item , privateKey):   

    encoded = jwt.encode({'data': item}, privateKey, algorithm="HS256") 

    return encoded 
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######################################## 

 

# This function uses JWT and our private key to decode and decrypt the ECG 

signals.  

def jwtDecoder(item , privateKey):     

    encoded = jwt.decode(item, privateKey, algorithms="HS256") 

    return encoded 

 

######################################## 

 

# This function reads an ECG signal considering the provided name for the 

signal, MIT format and provides Jason format. 

def readEcgData(name):     

    record = wfdb.rdrecord(name, sampfrom=0, sampto = 1500) 

    info = ecgInfo.ecgInfo(record.p_signal.tolist() , record.record_name , 

record.sig_name , record.n_sig , record.fs)   

     

    return  json.dumps(info.__dict__)  

 

######################################## 

 

# This function saves a text file based on encoded and encrypted data for each 

ECG signal. 

def encodeECG(item , privateKey , fileName): 

    encodeitem = jwtEcoder(item , privateKey ) 

    file = open(fileName +'.txt', "w") 

    n = file.write(encodeitem) 

    file.close() 

    print("your data is encoded and successfully saved in file 

",fileName+'.txt' ) 

    return encodeitem 

 

######################################## 

 

# This function reads the encoded and encrypted files for each ECG and provides 

Jason's format with decoded and encrypted information. 

def decodeECG(  privateKey , fileName ): 

    file = open(fileName +'.txt',"r+") 

    encodeitem = file.read() 

    file.close() 

    decodeitem = jwtDecoder(encodeitem , privateKey ) 

    print("your data is decoded and the result is:", decodeitem) 

    return decodeitem 
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######################################## 

 

# This function reads all the ECG signals in our dataset and provides encoded 

files. 

def readAllEcgData(): 

    

    encodeRecords = [] 

    # Defining our private key for encryption 

    privateKey= "LARIM" 

    i=1 

    # Read all the files with the.hea extension in our dataset path. 

    datas = glob.glob("ecgData/*.hea") 

    for data in datas: 

        size= len(data) - 4 

        item= readEcgData(data[0:size] ) 

        # Encode and encrypt the data of each file. 

        encodeitem = encodeECG(item , privateKey , 'ecgEncodeData/'+ str(i)) 

         

        encodeRecords.append(encodeitem) 

        i=i+1 

    # Save encoded and encrypted data to an excel file.     

    df = pd.DataFrame(encodeRecords) 

    df.to_csv('ecg2022.csv')  

 

######################################## 

 

# This function reads an ECG signal and draws it.  

def readOneEcgData(item): 

    record = wfdb.rdrecord(item , sampfrom=0, sampto = 1500) 

    print(record) 

    draw_ecg(record.p_signal, record.sig_name) 

    print("Your record is ploted!") 

    return record 

 

# The primary function of our ECG signal procedure.  

if __name__ == "__main__": 

     

    # Defining our private key for encryption. 

    privateKey= "LARIM " 

    # Set our dataset path. 

    datas = glob.glob("ecgData/*.hea") 

    # Take a random number from the user to select a random ECG file in our 

dataset path. 
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    recordNo = input ("Please choose one of recordes, enter a number between 1 

to 1500:\n") 

    index = int(recordNo) 

    data = datas[index] 

    size = len(data) - 4 

    mainRecord="" 

    decodeitem="" 

    # Take a requested operation from the user. 

    while(True): 

        userNumber = input ("Choose one of the following options:\n"  

        + " 1 for read one data and plot it \n" 

        + " 2 for encoding and encrypting the one data \n"  

        + " 3 for decoding and decrypting the data \n" 

        + " 4 for plot the decoded data \n" 

        + " 5 for Denoising data \n" 

        + " 6 for read all data, encode and save them in file \n" 

        + " 9 for Exit \n" 

        + " Please Enter your number: ") 

        userChoice = int(userNumber) 

        # When the user selects to read and plot an ECG signal.  

        if(userChoice==1):  

            mainRecord = readOneEcgData(data[0:size]) 

        # When the user selects encoding and encryption, an ECG signal. 

        elif(userChoice==2):  

            if(mainRecord is None):  

                print("There is no data to Encode!")                   

            else: 

                item= readEcgData(data[0:size] ) 

                encodeECG(item , privateKey , "myFileECG") 

                 

       # When the user selects decoding and decrypting an ECG signal. 

        elif(userChoice==3):  

            decodeitem= decodeECG( privateKey , "myFileECG")  

       # When the user selects to plot the results of the previous step.  

        elif(userChoice==4):  

            if(len(decodeitem)>0):  

                draw_ecg(eval(decodeitem["data"])["Signals"] , 

eval(decodeitem["data"])["SignalsName"])   

            else: 

                print("There is no decode data to plot!") 

       # When the user selects denoising an ECG signal 

        elif(userChoice==5): 

            b = wfdb.rdsamp(data[0:size]) 

            input_sig = b[0][:,0] 
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            wavelet_denoised_ecg = ed.wavelet_denoising(input_sig, 

list(range(650000)), True) 

 

        # When the user selects encoding and encryption, all ECG signals are 

saved in text files. 

        elif(userChoice==6):  

            readAllEcgData() 

        elif(userChoice==9):  

            break 
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APPENDIX E   PLOT MOTHER WAVELETS FOR DWT 

[Class] plotWDT.py: 

import pywt 

import matplotlib.pyplot as plt 

   

# Print the name of each wavelet and its abbreviations. 

print(pywt.families(short=False)) 

print(pywt.families(short=True)) 

 

# Plot 'Haar' mother wavelet  

wavelet = pywt.Wavelet('haar') 

family_name = wavelet.family_name 

biorthogonal = wavelet.biorthogonal 

orthogonal = wavelet.orthogonal 

symmetry = wavelet.symmetry 

a= wavelet.wavefun() 

wavelet_function =a[0] 

x_values = a[-1] 

plt.plot(x_values, wavelet_function) 

plt.ylabel("Discrete Wavelets", fontsize=16) 

plt.title("(1) " + family_name, fontsize=16) 

plt.show() 

  

# Plot 'Daubechies' mother wavelet  

wavelet = pywt.Wavelet('db4') 

family_name = wavelet.family_name 

biorthogonal = wavelet.biorthogonal 

orthogonal = wavelet.orthogonal 

symmetry = wavelet.symmetry 

a= wavelet.wavefun() 

wavelet_function =a[0] 

x_values = a[-1] 

plt.plot(x_values, wavelet_function) 

plt.ylabel("Discrete Wavelets", fontsize=16) 

plt.title("(2) " +family_name, fontsize=16) 

plt.show()   

 

# Plot 'Symlets' mother wavelet  

wavelet = pywt.Wavelet('sym4') 

family_name = wavelet.family_name 

biorthogonal = wavelet.biorthogonal 

orthogonal = wavelet.orthogonal 
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symmetry = wavelet.symmetry 

a= wavelet.wavefun() 

wavelet_function =a[0] 

x_values = a[-1] 

plt.plot(x_values, wavelet_function) 

plt.ylabel("Discrete Wavelets", fontsize=16) 

plt.title("(3) " +family_name, fontsize=16) 

plt.show() 

 

# Plot 'Coiflets' mother wavelet  

wavelet = pywt.Wavelet('coif4') 

family_name = wavelet.family_name 

biorthogonal = wavelet.biorthogonal 

orthogonal = wavelet.orthogonal 

symmetry = wavelet.symmetry 

a= wavelet.wavefun() 

wavelet_function =a[0] 

x_values = a[-1] 

plt.plot(x_values, wavelet_function) 

plt.ylabel("Discrete Wavelets", fontsize=16) 

plt.title("(4) " +family_name, fontsize=16) 

plt.show() 

 

# Plot 'Biorthogonal' mother wavelet  

wavelet = pywt.Wavelet('bior3.9') 

family_name = wavelet.family_name 

biorthogonal = wavelet.biorthogonal 

orthogonal = wavelet.orthogonal 

symmetry = wavelet.symmetry 

a= wavelet.wavefun() 

wavelet_function =a[0] 

x_values = a[-1] 

plt.plot(x_values, wavelet_function) 

plt.ylabel("Discrete Wavelets", fontsize=16) 

plt.title("(5) " +family_name, fontsize=16) 

plt.show() 

 

# Plot 'Reverse biorthogonal' mother wavelet  

wavelet = pywt.Wavelet('rbio3.7') 

family_name = wavelet.family_name 

biorthogonal = wavelet.biorthogonal 

orthogonal = wavelet.orthogonal 

symmetry = wavelet.symmetry 

a= wavelet.wavefun() 
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wavelet_function =a[0] 

x_values = a[-1] 

plt.plot(x_values, wavelet_function) 

plt.ylabel("Discrete Wavelets", fontsize=16) 

plt.title("(6) " +family_name, fontsize=16) 

plt.show() 

 

# Plot 'Discrete Meyer (FIR Approximation)' mother wavelet  

wavelet = pywt.Wavelet('dmey') 

family_name = wavelet.family_name 

biorthogonal = wavelet.biorthogonal 

orthogonal = wavelet.orthogonal 

symmetry = wavelet.symmetry 

a= wavelet.wavefun() 

wavelet_function =a[0] 

x_values = a[-1] 

plt.plot(x_values, wavelet_function) 

plt.ylabel("Discrete Wavelets", fontsize=16) 

plt.title("(7) " +family_name, fontsize=16) 

plt.show()  
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APPENDIX F   DWT DENOISING ECG  

   

[Class] ecgDenoisingEvaluation.py: 

import wfdb 

import matplotlib.pyplot as plt 

import pywt 

import pywt.data 

import numpy as np  

import math 

 

# This function receives an ECG signal and denoises it. 

def wavelet_denoising(ecg, index, doPlot): 

   # Create a wavelet object and define the parameters. 

   wavelete = pywt.Wavelet('sym4')  

   maxlev =pywt.dwt_max_level(len(ecg), 8)  

    

   # Decompose into wavelet components. 

   coeffs = pywt.wavedec(ecg, wavelete, level=maxlev)  

   for i in range(1, len(coeffs)): 

       # Calculate our universal threshold. 

       threshold= 0.97 * np.sqrt(2*np.log(len(ecg))/len(ecg)) 

       # Apply this threshold to the detailed coefficients. 

       coeffs[i] = pywt.threshold(coeffs[i], threshold*max(coeffs[i])) 

   

   # Multilevel reconstruction using waverec  

   datarec = pywt.waverec(coeffs, wavelete) 

    

   # If the user requests the plot, we plot the denoised result. 

   if doPlot: 

       mintime = 1000  

       maxtime = mintime +2000 

       plt.figure() 

       plt.subplot(2, 1, 1) 

       plt.plot(index[mintime:maxtime], ecg[mintime:maxtime]) 

       plt.plot(index[mintime:maxtime], ecg[mintime:maxtime] , "-b", label="Raw 

signal" ) 

       plt.plot(index[mintime:maxtime], datarec[mintime:maxtime] , "-r", 

label="Denoised signal") 

       plt.xlabel('time (s)') 

       plt.ylabel('amplitude (V)') 

       plt.title("Denoised ECG signal1") 

       plt.legend(loc="upper left") 
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       plt.tight_layout() 

       plt.show() 

   return datarec 

 

# Create initial parameters. 

time = list(range(650000)) 

data=[] 

# Choose two ECG signals from each dataset to evaluate our denoising approach. 

list_of_files =  ['ecgData/2981187' , 'ecgData/s0205_re' , 'ecgData/s0341lre' , 

'ecgData/1003574' , 'ecgData/2863747' , 'ecgData/s0224_re', 'ecgData/2584163' , 

'ecgData/1168042' ] 

# For each selected ECG signal, calculate SNR and MSE. 

for file_path in list_of_files: 

    record_nm = file_path#[:-4]  

    #path = 'ecgData/' + str(record_nm) 

    try: 

        record = wfdb.rdsamp(record_nm) 

        print("Record file " + str(record_nm) + " exists" ) 

 

        # Select lead 1 as input signal. 

        input_sig = record[0][:,0]  

 

        # Add gaussian noise to the raw signal. 

        cleanSignal = input_sig 

        mu, sigma = 0, 0.14  

        noise = np.random.normal(mu, sigma, input_sig.shape)  

        noisySignal = input_sig + noise 

 

        # ECG Denoising using Wavelet Transform. 

        wavelet_denoised_ecg = wavelet_denoising(noisySignal, time, False) 

        # Calculate SNR  

        SNR = 10* math.log(np.sum((noisySignal-input_sig) **2) / 

np.sum((wavelet_denoised_ecg-input_sig) **2)) 

        # Calculate MSE 

        MSE = (1/len(input_sig))*np.sum((wavelet_denoised_ecg-input_sig) **2) 

        data.append([record_nm , SNR ,MSE] ) 

        print("#####################################") 

        print("filename: " , record_nm) 

        print("SNR - wavelet_denoised_ecg" , SNR , MSE) 

        print("MSE1: ", (1/5000)*np.sum((wavelet_denoised_ecg-input_sig) **2)) 

        print("#####################################") 

 

    except IOError: 

       print("Record file " + str(record_nm) + " does not exist!") 
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APPENDIX G   SIMULATE NORMAL SITUATION 

[Class] sendNormalData.py: 

from mininet.net import Mininet 

from datetime import datetime 

import pandas as pd 

 

# Define our custom structure for normal situations in the network. 

class sendNormalData: 

 

    def __init__(self ,net , src , dest,  period_time, size,filename): 

        self.net = net 

        self.src = src     # Source IP.  

        self.dest = dest   # Destination IP. 

        self.size=size     

        self.filename=filename # Encoded and encrypted ECG file name. 

        self.shell = None 

        self.period_time = period_time 

         

 

    ######################################## 

   # Send an encoded and encrypted ECG file from host to destination.  

    def sendNormalData(self): 

       

      host = self.net.hosts[self.src] 

      host.cmd('timeout ' + str(self.period_time) + 's hping3 ' +  '10.0.0.' + 

str(self.dest) + ' --icmp -d '+ str(self.size)+' -c 1 --file ' + self.filename) 

       

      host.cmd('killall hping3') 

 

################################################ 

 

[Class] normalFlow.py: 

from getRandNum import getRandNum 

from sendNormalData import sendNormalData 

from stopNet import stopNet 

from createTopology import createTopology 

import time 
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import threading 

import time 

import csv 

from datetime import datetime 

# Send an encoded and encrypted ECG file to provide a normal situation on the 

network. 

def normalflow( normalSeconds, nodes , len_size , net , period_time, filename): 

     

    i=0 

    j = filename 

    # Set time 

    normalStartTime = time.time() 

    while True: 

        current_time = time.time() 

        elapsed_time = current_time - normalStartTime 

 

        if elapsed_time > normalSeconds: 

            print("Finished iterating in: " + str(int(elapsed_time))  + " 

seconds") 

            break 

        # Select two random numbers for sourceIPs and destination IPs.  

        srcId= getRandNum(0 , nodes ,[]) 

        desctId= getRandNum(0 , nodes ,[srcId]) 

        size = 2500  

        srcId1= getRandNum(0 , nodes ,[]) 

        desctId1= getRandNum(0 , nodes ,[srcId1]) 

        size1 =2500 

        # Select two encoded and encrypted ECG files. 

        filename1 = 'ecgEncodeData/'+str(j) +'.txt' 

        filename2 = 'ecgEncodeData/'+str(j+1) +'.txt' 

         

       # Send the first file from the first sourceIP to the first DestinationIP 

in the normal situation.  

        x= sendNormalData(net,srcId, desctId , period_time,size, filename1) 

        t1 = threading.Thread(target=x.sendNormalData, args=())  

        print("First thread and round " + str(i) + " - source id is " + 

str(srcId) + " destination id is "+ str(desctId)) + " File name is " + 

filename1 

        # Send the first file from the first sourceIP to the first 

DestinationIP in the normal situation. 

        y= sendNormalData(net,srcId1, desctId1 , period_time,size1, filename2) 

        t2 = threading.Thread(target=y.sendNormalData, args=())  
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        print("Second thread and round " + str(i) + " - source id is " + 

str(srcId1) + " destination id is "+ str(desctId1)) + " File name is " + 

filename2 

        t1.start() 

        t2.start() 

        t1.join() 

        t2.join() 

        j=j+2 

        if(j>=1500): 

            j=1 

    i=i+1 

    return j 

 

################################################ 

 

[Class] mainNormal.py: 

from getRandNum import getRandNum 

from sendNormalData import sendNormalData 

from sendDDoSData import sendDDoSData 

from stopNet import stopNet 

from createTopology import createTopology 

from normalFlow import normalflow 

from ddosFlow import ddosFlow 

import time 

import threading 

from scapy.all import * 

import pandas as pd 

 

# The main function for simulating normal situations in our network. 

# Set the Controller IP.  

odlIp='192.168.164.143' 

 

# Create an SDN with the tree topology.   

treeDepth=4 

treeFanout=3 

period_time = 5 

len_size = 1600 

nodes = treeFanout ** treeDepth 

print("Number of Nodes" , nodes) 
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net = createTopology(odlIp,treeDepth,treeFanout) 

 

# Set the initial data. 

print("Start") 

start_time = time.time() 

seconds = 10800 

innerSeconds = 40 

i=1 

while True: 

    current_time = time.time() 

    elapsed_time = current_time - start_time 

    # Check the time of the simulation. 

    if elapsed_time > seconds: 

        print("Finished iterating in: " + str(int(elapsed_time))  + " seconds") 

        break 

    # Send normal flow in the network.  

    i= normalflow(innerSeconds, nodes , len_size , net , period_time, i) 

    

       

    if(i>1500): 

        i=1 

 

# Stop network 

stopNet() 

print("End") 
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APPENDIX H   SIMULATE DDOS SITUATION 

[Class] sendDDoSData.py: 

from mininet.net import Mininet 

from datetime import datetime 

import pandas as pd 

 

# Defining our custom structure for DDoS situations in our network. 

class sendDDoSData: 

 

    def __init__(self ,net , src , dest,  period_time, size): 

        self.net = net 

        self.src = src 

        self.dest = dest 

        self.size=size 

        self.shell = None 

        self.period_time = period_time 

         

######################################## 

# Send an encoded and encrypted ECG file from host to destination. 

    def sendDDoSData(self): 

       

      host = self.net.hosts[self.src] 

      host.cmd('timeout ' + str(self.period_time) + 's hping3 --flood ' 

+  '10.0.0.' + str(self.dest)) + ' -d ' + str(self.size) 

      host.cmd('killall hping3') 

 

################################################ 

 

[Class] ddosFlow.py: 

from getRandNum import getRandNum 

from sendNormalData import sendNormalData 

from sendDDoSData import sendDDoSData 

from stopNet import stopNet 

from createTopology import createTopology 
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import time 

import threading 

# This function sends DDoS attacks into the network. 

def ddosFlow(seconds, nodes , len_size , net , period_time): 

     

 

   # Set time  

    ddosStartTime = time.time() 

    i=0 

 

    while True: 

        current_time = time.time() 

        elapsed_time = current_time - ddosStartTime 

        # Select two random numbers for sourceIPs.  

        AttackerId1= getRandNum(0 , nodes ,[]) 

        AttackerId2= getRandNum(0 , nodes ,[AttackerId1]) 

 

        if elapsed_time > seconds: 

            print("Finished iterating in: " + str(int(elapsed_time))  + " 

seconds") 

            break 

         

       # Select two random numbers for DestinationIPs. 

        VictId1 = getRandNum(0 , nodes ,[AttackerId1,AttackerId2]) 

        size2 = getRandNum(0 , len_size ,[]) 

        VictId2 = getRandNum(0 , nodes ,[AttackerId1,AttackerId2]) 

        size3 = getRandNum(0 , len_size ,[]) 

        # Simulate the first attack.  

        y= sendDDoSData(net,AttackerId1, VictId1 , period_time,size2) 

        t1 = threading.Thread(target=y.sendDDoSData, args=())  

        print("Second thread and round " + str(i) + " - Attacker Id1 is " + 

str(AttackerId1) + " Vict Id1 is "+ str(VictId1)) 

        # Simulate the second attack. 

        z= sendDDoSData(net,AttackerId2, VictId2 , period_time,size3) 

        t2 = threading.Thread(target=z.sendDDoSData, args=())  

        print("Third thread and round " + str(i) + " - Attacker Id2 is " + 

str(AttackerId2) + " Vict Id2 is "+ str(VictId2)) 

        t1.start() 

        t2.start() 

        t1.join() 

        t2.join() 

        i=i+1 

     



115 

 

 

################################################ 

 

[Class] mainDDoS.py: 

from getRandNum import getRandNum 

from sendNormalData import sendNormalData 

from sendDDoSData import sendDDoSData 

from stopNet import stopNet 

from createTopology import createTopology 

from normalFlow import normalflow 

from ddosFlow import ddosFlow 

import time 

import threading 

from scapy.all import * 

import pandas as pd 

 

# The primary function for simulating normal situations in our network 

# Set the Controller IP 

odlIp='192.168.164.143' 

 

# Create SDN with the tree topology. 

treeDepth=4 

treeFanout=3 

period_time = 5 

len_size = 1600 

nodes = treeFanout ** treeDepth 

print("Number of Nodes" , nodes) 

net = createTopology(odlIp,treeDepth,treeFanout) 

print("Start") 

# Set the initial data. 

start_time = time.time() 

seconds = 10800 

innerSeconds = 40 

i=1 

while True: 

    current_time = time.time() 

    elapsed_time = current_time - start_time 

    # Check the time of simulation 

    if elapsed_time > seconds: 

        print("Finished iterating in: " + str(int(elapsed_time))  + " seconds") 

        break 

    # Send DDoS flow in the network. 
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    ddosFlow(innerSeconds, nodes , len_size , net , period_time) 

     

    if(i>1000): 

        i=1 

   

# Stop network     

stopNet() 

print("End") 

  



117 

 

 

APPENDIX I   FEATURE SELECTION PHASE 

[Class] dataCollection.py: 

import httplib2 

import json 

import pandas as pd 

import time 

from datetime import datetime 

 

# For reading the data from the controller when we have normal flow or DDoS 

attacks in SDN. 

try:     

    h = httplib2.Http(".cache") 

    h.add_credentials('admin', 'admin') 

    start_time = time.time() 

    print("start_time",start_time) 

    featureData=[] 

    while(True): 

        # Call the ODL Rest API of our ODL controller.     

        resp, content = 

h.request('http://192.168.164.143:8080/controller/nb/v2/statistics/default/flow

', "GET") 

        allFlowStats = json.loads(content) 

        # Select statistical flow information.     

        flowStats = allFlowStats['flowStatistics'] 

        finalData= [] 

        print("start") 

        for fs in flowStats: 

            print ("\nSwitch ID : " + fs['node']['id']) 

            print ('{0:8} {1:8} {2:5} {3:15}'.format('packetCount', 'Action', 

'Port', 'DestIP')) 

            # Read our selected information and save it in variables.     

            for aFlow in fs['flowStatistic']: 

                 

                packetCount = aFlow['packetCount'] 

                byteCount = aFlow['byteCount'] 

                durationSeconds = aFlow['durationSeconds'] 

                actions = aFlow['flow']['actions']  

                actionType = '' 

                actionPort = '' 

                 

                if(type(actions) == type(list())): 
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                    if(len(actions)>1): 

                         

                        actionType = actions[1]['type'] 

                        actionPort = actions[1]['port']['id'] 

                    else: 

                        actionType = actions[0]['type'] 

                        actionPort = actions[0]['port']['id'] 

                 

                dstination = aFlow['flow']['match']['matchField'][0]['value'] 

                now = datetime.now() 

                timeVal = now.strftime("%H:%M:%S") 

                # Provide a list of our selected data from the network. 

                finalData.append([packetCount, byteCount, durationSeconds, 

actionPort, dstination ,timeVal]) 

                 

 

                print ('{0:8} {1:8} {2:5} {3:15} {4:25}'.format(packetCount, 

actionType, actionPort, dstination , timeVal)) 

        # Save the results for DDoS or the normal situation. 

        dfresult = pd.DataFrame(finalData ,columns=['packetCount', 'byteCount', 

'durationSeconds', 'actionPort' , 'dstination' , 'time'])  

        print("Start writing if files") 

        dfresult.to_csv('./output-ddos-result2022.csv', mode='a', header=False) 

        #dfresult.to_csv('./output-normal-result2022.csv', mode='a', 

header=False) 

        print("End writing if files") 

 

        # Calculate the entropy of our features. 

        totalPacketCount = dfresult['packetCount'].sum() 

        totalByteCount = dfresult['byteCount'].sum() 

        totalDurationSeconds = dfresult['durationSeconds'].sum() 

        destinationLists = dfresult['dstination'].unique() 

        destinationQty = len(destinationLists) 

        featureData.append([totalPacketCount,totalByteCount,totalDurationSecond

s,destinationQty,timeVal]) 

        # Set the window size.     

        time.sleep(10) 

        current_time = time.time() 

        elapsed_time = current_time - start_time 

 

        if elapsed_time > 11000: 

            print("Finished iterating in: " + str(int(elapsed_time))  + " 

seconds") 

            break 
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    print("End") 

   # Save the entropy features for DDoS or normal situations. 

    dfFeatureData = pd.DataFrame(featureData ,columns=['packetCount', 

'byteCount', 'durationSeconds', 'dstination' , 'time'])  

    dfresult.to_csv('./output-DDoSFeatureData2022.csv') 

    #dfresult.to_csv('./output-NormalFeatureData2022.csv') 

except Exception: 

    pass   
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APPENDIX J   TRAINING THE MODEL 

[Class] MLLearning.py: 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn import svm 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import classification_report, confusion_matrix 

from imblearn.over_sampling import SMOTE 

from collections import Counter 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import f1_score 

from sklearn.model_selection import PredefinedSplit 

from sklearn.preprocessing import StandardScaler  

from sklearn.pipeline import Pipeline 

import operator 

import pandas as pd 

from sklearn.svm import LinearSVC 

from sklearn import svm 

import pickle 

import joblib 

 

# This function uses cross-validation to train our model and find the best 

parameter. 

def trainModel( Param , Method , xTrain  , yTrain , xValid  , yValid ): 

    xComp = np.concatenate((xTrain, xValid), axis=0) 

    yComp= np.concatenate((yTrain, yValid) , axis=0) 

    fold = [ -1 for i in range(xTrain.shape[0])] + [0 for i in 

range(xValid.shape[0])] 

    P = PredefinedSplit( test_fold= fold) 

    # Using Grid Search to provide Cross-validation. 

    csvPipeline = Pipeline([("scaler", StandardScaler()), ("svm", Method)])  

    tempClf= GridSearchCV (csvPipeline , Param  , cv=P , refit = True ) 

    tempClf.fit(xComp,yComp) 

    print("tempClf",tempClf.best_params_) 

    return tempClf 

 

######################################## 

 

# This function uses the F1 score to calculate the performance of our results. 

def calcPerformance ( clfTune , x ,y   ): 



121 

 

 

     

    trainYPred=clfTune.predict(x) 

    trainF1 = f1_score(trainYPred, y, average='macro') 

    print("f1ScorePerformance:",trainF1) 

 

# Read the entropy features of the normal situation and provide our x and y 

matrix. 

DataNormal = pd.read_csv("ECGdataresults/normalFeaturesECG.csv" , header=None) 

DataNormal[6]=round(DataNormal[1]/DataNormal[3],2) 

DataNormal[7]=round(DataNormal[2]/DataNormal[3],2) 

xDataNormal = DataNormal.to_numpy() 

yDataNormal =  np.zeros(xDataNormal.shape[0]) 

 

# Read the entropy features of the DDoS situation and provide our x and y 

matrix.    

DataDDoS = pd.read_csv("ECGdataresults/ddosFeaturesECG.csv" , header=None) 

DataDDoS[6]=round(DataDDoS[1]/DataDDoS[3],2) 

DataDDoS[7]=round(DataDDoS[2]/DataDDoS[3],2) 

xDataDDoS = DataDDoS.to_numpy() 

yDataDDoS =  np.ones(xDataDDoS.shape[0]) 

xData = np.concatenate((xDataNormal[:,1:8], xDataDDoS[:,1:8]), axis=0) 

yData = np.concatenate((yDataNormal, yDataDDoS), axis=0)   

print("xData" , xData.shape) 

print("yData" , yData.shape) 

 

# Split our data and select 20% for the test. 

x, xTest, y, yTest = train_test_split(xData, yData, test_size = 0.20 , 

random_state=42) 

# Split our data and select 20% for validation and 60% for the train set. 

xTrain, xValid, yTrain, yValid = train_test_split(x, y, test_size = 0.20 , 

random_state=42) 

 

# Handel imbalanced data with upsampling approach and smote on our train data. 

oversample = SMOTE() 

xTrainNew, yTrainNew = oversample.fit_resample(xTrain, yTrain) 

counternew = Counter(yTrainNew) 

print(counternew) 

 

# Select SVM parameters and the initial range for them.   

params = [{'svm__kernel':['linear', 'poly', 'rbf', 'sigmoid'], 

'svm__gamma':['scale', 'auto']  

 , 'svm__C' : np.arange(1.0, 5, 100) ,'svm__coef0': np.arange(0.0, 10, 100), 

'svm__degree': [1,2,3,4,5,6] 

  }] 
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# Train our model using train set, validation set, and initial parameters by 

cross-validation approach. 

Method = svm.SVC() 

clfLinearSVC = trainModel( params , Method , xTrainNew , yTrainNew ,  xValid , 

yValid ) 

print("xTrainNew" , xTrainNew.shape) 

print("yTrainNew" , yTrainNew.shape) 

 

# Calculate the performance of our model for test, training, and validation 

data by the F1 score. 

print("Performance for Train Data") 

calcPerformance(clfLinearSVC , xTrainNew , yTrainNew   ) 

print("Performance for Valid Data") 

calcPerformance(clfLinearSVC , xValid , yValid   ) 

print("Performance for test Data") 

calcPerformance(clfLinearSVC , xTest , yTest   ) 

 

# Save our model for future use in real-time monitoring. 

svclassifier = clfLinearSVC.fit(xData, yData) 

filename = 'newModel.sav' 

joblib.dump(svclassifier, filename) 
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APPENDIX K   REAL-TIME DDOS ATTACKS DETECTION 

[Class] detecteDDos.py: 

import httplib2 

import json 

import pandas as pd 

import time 

from datetime import datetime 

import sys 

from mlResults import mlResults 

 

# Real-time monitoring and DDoS detection. 

try: 

    h = httplib2.Http(".cache") 

    h.add_credentials('admin', 'admin') 

    start_time = time.time() 

    featureData=[] 

    timeCounter=0 

    while(True): 

        # Call the ODL Rest API of our ODL controller. 

        resp, content = 

h.request('http://192.168.164.143:8080/controller/nb/v2/statistics/default/flow

', "GET") 

        allFlowStats = json.loads(content) 

        # Select statistical flow information. 

        flowStats = allFlowStats['flowStatistics'] 

        finalData= [] 

        now = datetime.now() 

        timeVal = now.strftime("%H:%M:%S") 

        for fs in flowStats: 

            # Read our selected information and save it in variables. 

            for aFlow in fs['flowStatistic']: 

                packetCount = aFlow['packetCount'] 

                byteCount = aFlow['byteCount'] 

                durationSeconds = aFlow['durationSeconds'] 

                actions = aFlow['flow']['actions'] 

                actionType = '' 

                actionPort = '' 

                if(type(actions) == type(list())): 

                    if(len(actions)>1): 

                        actionType = actions[1]['type'] 

                        actionPort = actions[1]['port']['id'] 
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                    else: 

                        actionType = actions[0]['type'] 

                        actionPort = actions[0]['port']['id'] 

                dstination = aFlow['flow']['match']['matchField'][0]['value'] 

                dstination_0 = aFlow['flow']['match']['matchField'][1]['value'] 

                # Provide a list of our selected data from the network. 

                finalData.append([packetCount, byteCount, durationSeconds, 

actionPort, dstination ,timeVal , timeCounter,dstination_0]) 

                 

       # Save the results for DDoS attacks or the normal situation.         

        dfResult = pd.DataFrame(finalData ,columns=['packetCount', 'byteCount', 

'durationSeconds', 'actionPort' , 'dstination'  , 'timeCounter', 

'time','dstination_0']) 

       # Calculate the entropy of our features. 

        dfResultTemp = dfResult[dfResult.packetCount != 0] 

        totalPacketCount = dfResultTemp['packetCount'].sum() 

        totalByteCount = dfResultTemp['byteCount'].sum() 

        totalDurationSeconds = dfResultTemp['durationSeconds'].sum() 

        destinationLists = dfResultTemp['dstination'].unique() 

        destinationQty = len(destinationLists) 

        if(totalPacketCount>0): 

            featureData.append([totalPacketCount,totalByteCount,totalDurationSe

conds,destinationQty , timeCounter]) 

            dfFeatureData = pd.DataFrame(featureData ) 

            dfFeatureData.drop_duplicates(inplace=True) 

            # Call our real-time DDoS attacks detection function with the 

calculated entropy feature. 

            mlResults(dfFeatureData) 

        # Set the window size. 

        time.sleep(10) 

        current_time = time.time() 

        elapsed_time = current_time - start_time 

        timeCounter += 10 

         

        if (elapsed_time >15500): 

            print("Finished iterating in: " + str(int(elapsed_time))  + " 

seconds") 

            break 

        print("End") 

     

except Exception: 

    print("Unexpected error:", sys.exc_info()[0]) 

    pass   
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################################################ 

 

[Class] mlResults.py: 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn import svm 

from collections import Counter 

from numpy import where 

import pickle 

import joblib 

 

# This function detects DDoS attacks using our trained model in real-time mode.  

def mlResults(data ): 

     

    # Set our trained model.  

    filename = 'newModel.sav' 

    # Provide the data as array 

    data[6]=round(data[1]/data[3],2) 

    data[7]=round(data[2]/data[3],2) 

     

    xData = data.to_numpy() 

     

    xData=xData[:,:] 

     

   # Plot information based on entropy featured and save them in png format for 

use by ODL Extension.     

    plt.figure(figsize=(6,4)) 

    plt.ion() 

    plt.scatter(xData[:,4],xData[:,6],label="Number of packet", 

linewidth=3,linestyle="--" , marker="o" , s= 15 ) 

    plt.legend() 

    plt.title("Number of packet per Time") 

    plt.xlabel("Time") 

    plt.ylabel("Number of Packet") 

    plt.grid() 

     

    plt.ioff() 

    plt.savefig("c:/odl-packet.png") 
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    plt.figure(figsize=(6,4)) 

    plt.ion() 

    plt.scatter(xData[:,4],xData[:,5],label="Number of byte", 

linewidth=3,linestyle="--" , marker="o" , s= 15 ) 

    plt.legend() 

    plt.title("Number of byte per Time") 

    plt.xlabel("Time") 

    plt.ylabel("Number of byte") 

    plt.grid() 

     

    plt.ioff() 

    plt.savefig("c:/odl-byte.png") 

 

    # Load our model. 

    svclassifier =loaded_model = joblib.load(filename) 

 

   # Predict the network situation considering the trained model and entropy 

features. 

    yPred = svclassifier.predict(xData) 

    print(yPred) 

    result = np.where(yPred > 0) 

    # Print the results if we detect the DDoS attacks in our network. 

    if(len(result)==0):  

        print("DDoS attack is detected.") 

    print("###################################################") 

    plt.figure(figsize=(6,4)) 

    plt.ion() 

    counter = Counter(yPred) 

   # Print out the results of our prediction. 

    for label, _ in counter.items(): 

        fllowLabel="Normal" 

        if(label==0): 

            fllowLabel="Normal" 

        else : 

            fllowLabel="DDoS" 

        row_ix = where(yPred == label)[0] 

 

        # Plot the results of our prediction for use by ODL Extension. 

        plt.scatter(xData[row_ix,4],yPred[row_ix],label=fllowLabel, 

linewidth=3,linestyle="--" , marker="o" , s= 15 ) 

        plt.legend() 

        plt.title("Detect DDoS Attack") 

        plt.xlabel("Time") 
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        plt.ylabel("Normal=0 / DDos = 1") 

        plt.grid() 

        plt.ioff() 

        plt.savefig("c:/odl-fllow.png") 

    plt.close('all') 
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APPENDIX L   ODL CHROME EXTENTION 

[File] popup.html: 

<!DOCTYPE html> 

<html lang="en"> 

 

<head> 

    <meta http-equiv="refresh" content="3"> 

    <title>OpenDayLight | LARIM/FLEX</title> 

    <link 

href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/css/bootstrap.min.css" 

rel="stylesheet" 

        integrity="sha384-

EVSTQN3/azprG1Anm3QDgpJLIm9Nao0Yz1ztcQTwFspd3yD65VohhpuuCOmLASjC" 

crossorigin="anonymous"> 

 

    <style> 

        body { 

            width: 720px; 

            margin: 10px; 

            padding: 10px; 

        } 

    </style> 

</head> 

 

<body class="border border-1"> 

    <header> 

        <h2 class="fw-bolder"></h2> 

    </header> 

    # Show the png files provided by mlResults.py for providing a real-time 

monitoring tool and provid the real-time results of our prediction. 

    <main class="container-fluid mb-4"> 

        <div class="row"></div> 

        <div class="row"> 

            <div class="col-8"> 

                <img src="file:/C:/odl-fllow.png" alt="Detect DDoS Attack" 

width="100%" height="auto"> 

                <div class="mt-3"> 

                    <a class="btn btn-sm btn-secondary mb-2" target="_blank" 

                    href="http://192.168.164.131:8080/controller/nb/v2/statisti

cs/default/flow">Show RAW Data</a> 

                </div> 
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            </div> 

            <div class="col-4"> 

                <img src="file://C:/odl-packet.png" alt="Number of packet per 

Time" width="100%" height="auto"> 

                <img src="file://C:/odl-byte.png" alt="Number of byte per Time" 

width="100%" height="auto"> 

            </div> 

        </div> 

        </div> 

    </main> 

    <footer class="fixed-bottom m-3 ps-1"> 

        <small> 

            <small><a href="http://www.larim.polymtl.ca/">LARIM/FLEX</a> - <a 

                    href="https://www.polymtl.ca/">Polytechnique Montréal</a> 

2021</small> 

        </small> 

    </footer> 

    # Call popup.js to set the needed information. 

    <script src="./src/popup.js"></script> 

</body> 

 

</html> 

 

################################################ 

 

[File] odl.js: 

const isHelum = () => 

    document.title === 'OpenDaylight' 

 

const fayeButtonOnClick = () => { 

     

    var URL = 

"http://192.168.164.136:8080/controller/nb/v2/statistics/default/flow" 

    window.open(URL, '_blank') 

    console.log("ODL Extention: Successfully extract!") 

} 

 

const fayeButtonAdd = () => { 

    // Check/Find toolbar 

    const elmToolbar = document.getElementById("toolbar") 
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    if (!elmToolbar) { 

        console.log("ODL Extention: Can't find the toolbar") 

        return; 

    } 

 

    // Create Button 

    var elmButton = document.createElement("a") 

    elmButton.appendChild(document.createTextNode(" Faye Extract ")) 

    elmButton.setAttribute('class', 'btn btn-faye'); 

    elmButton.setAttribute('href', 

'http://192.168.164.136:8080/controller/nb/v2/statistics/default/flow'); 

    elmButton.setAttribute('download', 'file.xml'); 

    elmButton.onclick = () => fayeButtonOnClick() 

    elmToolbar.prepend(elmButton) 

    console.log("ODL Extention: The extention is enable") 

} 

 

(function () { 

    if (isHelum()) { 

        console.log("ODL Extention: Start working") 

        fayeButtonAdd() 

    } 

})(); 

 

################################################ 

 

[File] odl.css: 

.btn-faye{ 

    margin-right: 0.5rem; 

} 
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