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RÉSUMÉ

Les réseaux d’apprentissage automatique peuvent être vulnérables lorsqu’il s’agit de classer
les entrées qui sont hors de la distribution observée pendant l’entraînement. Pour identifier
ces cas, qui pourraient être interprétés différemment et éventuellement mal classés à cause
de cette différence, nous proposons une approche non paramétrique basée sur les classes,
inspirée de Surprise Adequacy Deep Learning Likelihood (SADL).

Nous ciblons la partie entièrement connectée des réseaux de neurones convolutifs (CNN) et
estimons la probabilité conditionnelle des niveaux d’activation des neurones internes d’un
réseau pendant la reconnaissance. Les distributions observées lors de l’entraînement et des
tests sont prises comme point de référence et sont comparées à celles observées lors du traite-
ment des profils de calcul d’autres cas non familiers tels que les attaques adversariales et
les transformations affines. Deux catégories de ces entrées non familières sont considérées:
celles qui sont dans la distribution des entrées d’entraînement (In-Distribution - InD) et celles
qui sont hors distribution des entrées d’entraînement (Out-Of-Distribution - OOD). Un seuil
linéaire basé sur sigma est utilisé pour séparer les cas InD des cas OOD.

Toutes les expériences sont effectuées sur des CNN entraînés à l’aide d’un sous-ensemble de
la base de données MNIST-fashion, qui est un ensemble d’images de vêtements accessible au
public. Pour éliminer les biais associés à l’utilisation d’un seul réseau, des expériences finales
sont effectuées sur dix réseaux avec des structures différentes et cinq variantes d’un réseau
entraîné sur les mêmes entrées.

Les résultats expérimentaux présentés montrent que les probabilités de calcul des cas adver-
sarials et des transformations affines couvrent une plage beaucoup plus large et étendue par
rapport aux cas de l’ensemble d’apprentissage. Une minorité de ces cas se situent dans la
plage de distribution de l’entraînement, tandis que les entrées mal classées correspondent très
souvent à des profils de calcul OOD différents de ceux obtenus lors de l’entraînement. Les
expériences montrent que l’identification OOD permet de réduire jusqu’à 70% à 90% les er-
reurs de classification, en les filtrant, souvent sans réduire de manière significative la quantité
d’entrées correctement prédites. De plus, les résultats expérimentaux indiquent que toutes
les classes de sortie ne sont pas également sensibles et vulnérables aux entrées contradictoires
et aux transformations affines.

Cette identification des entrées OOD peut être bénéfique dans des domaines sensibles et
critiques tels que l’aérospatiale, la médecine, la cybersécurité et bien d’autres, où il peut être
difficile de prévoir des échantillons appropriés et représentatifs de cas inconnus ou inattendus.
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ABSTRACT

Machine learning networks can be vulnerable when it comes to classification of inputs that
are out of the distribution that is observed during training. To identify these cases, which
could be interpreted differently and possibly misclassified due to this difference, we propose a
non-parametric class-based approach based on Surprise Adequacy Deep Learning Likelihood
(SADL).

We target the fully connected part of Convolutional Neural Networks (CNNs) and estimate
the conditional probability of a network’s internal neuron activation levels during recogni-
tion. The distributions observed during training and tests are taken as a point of reference
and compared with those observed when processing computational profiles of other unfa-
miliar cases such as adversarial attacks and affine transformations. Two categories of these
unfamiliar inputs are considered: those that are In-Distribution (InD) of the training inputs,
and those that are Out-Of-Distribution (OOD) of the training inputs. A linear sigma-based
threshold is used to separate the InD cases from the OOD cases.

All experiments are performed on CNNs trained using a subset of the MNIST-fashion database,
which is a publicly available set of clothing images. To eliminate bias associated with using
one single network, final experiments are performed on ten networks with different structures
and five variants of one network trained on the same inputs.

Presented experimental results show that the computational likelihoods of the adversarial
cases and affine transformations span a much wider and extended range with respect to the
training set cases. A minority of those cases lie in the training distribution range, while
misclassified inputs very often correspond to OOD computational profiles that are different
than those obtained during training. Experiments show that the OOD identification allows
up to 70% to 90% reduction of misclassifications, by filtering them out, often without signifi-
cantly reducing the amount of correctly predicted inputs. Furthermore, experimental results
indicate that not all output classes are equally sensitive and vulnerable to adversarial inputs
and affine transformations.

The identification of OOD computations may be beneficial in sensitive and critical domains
such as aerospace, medicine, cyber-security, and many others, where it may be hard to
forecast proper and representative samples of unknown or unexpected cases.
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CHAPTER 1 INTRODUCTION

1.1 Motivation

These days, convolutional neural networks, more commonly referred to as CNNs, are increas-
ingly becoming more integrated in large and industrial software systems in many fields. The
ideal favorable outcome would be that after deployment, with new and unfamiliar inputs,
the system continues to behave similarly as it does with the data that it was previously
trained and tested on. However, this is generally not the case, and systems tend to perform
significantly worse on operational data than they do on the training and testing data.

Furthermore, this leaves the network vulnerable and gives opportunity to the malicious inputs
of adversarial attacks or affine transformations of inputs that lead the CNN to make erroneous
predictions. This can have a very negative impact in sensitive and critical domains, such as
aerospace, medicine, finance, or cyber-security, which require a higher confidence in CNN
decisions and more robustness against unfamiliar inputs.

Thus arises the need to find approaches that increase a network’s reliability after being
deployed, and testing for cases that may decrease or eliminate its reliability. There are many
challenges to testing a CNN system. One difficult challenge is the oracle problem, in which it
is impossible or very expensive to expect to know all the correct answers to all possible inputs
being passed into the CNN, which limits the ability of verifying the CNN’s performance and
improving it when it comes to unknown inputs. Another challenge faced during validation
and verification of the network is when a faulty CNN is passed some input but is able to
correctly make a prediction solely due to mere coincidence. This makes it very difficult
to discover the defect of the program, particularly with unfamiliar inputs, as no failure is
detected.

There has been much recent research revolving around improving a network’s prediction
accuracy and confidence, particularly for the detection of out-of-distribution data to recognize
when the presented data is different from the data that the network is used to seeing. When
the distribution of operational data is different from the distribution of the data used for
training and testing the system, the network may have reduced performance and unexpected
results in the model’s outputs, unless there is a way for it to differentiate between the familiar
cases and those cases that seem to come from different distributions.
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1.2 Our Approach

In this thesis, we investigate the response of CNNs to compare original training images to
test cases that were not drawn from the same distribution of the training sets. To be more
specific, we investigate the use of synthetic test cases obtained from affine transformations
of legitimate inputs and from adversarial attacks.

We propose a novel statistical white-box approach to quantify the "unusual reasoning" of
the decisions that the network is making, which we refer to as CPL: a non-parametric class-
based variant of Surprise Adequacy Deep Learning Likelihood (SADL) [1] that doesn’t require
retraining. This measure essentially indicates the likelihood of a network’s prediction, when
compared to a standard input distribution, where a larger CPL indicates a less probable
prediction.

This likelihood measurement is based on the inference of a stochastic model of vectors of
activation (excitation) levels produced by the neurons in a network’s layers. We call these
vectors computational profiles, and we refer to the likelihood measure as Computational
Profile Likelihood (CPL). During classification, we compare the CPL values of an incoming
input, that has been best classified into an output class by the network, against the distri-
bution of computational profiles observed during training for the same output class. The
comparison aims at the identification of those inputs whose likelihoods are separable or are
Out-of-Distribution (OOD) with respect to the network’s training set computational profiles.

Our motivation for this "reasoning" measurement of likelihood comes from the intuition that
a network’s precision and performance observed during training and tests cannot be assumed
to be the same when dealing with unfamiliar operational cases that traverse very different
computational paths in the network during prediction. Indeed, we don’t know the a-priori
precision and performance of a network in these "different" or OOD cases. Sometimes the
prediction is correct, but very often it’s incorrect, especially for the corner cases that are
tests specifically designed to test rare and unusual events and that may cause a network to
fail.

The proposed approach is described in detail in Section 4. CNN training has been performed
on images from the MNIST-fashion database [2] and non-parametric statistical models have
been estimated during training, without using a secondary classifier on adversarial or affine
examples. Many of our experiments have been performed on different architectures, each
with training and testing accuracy of over 90%, to reduce the bias coming from initial values
of parameters in the learning process.

Presented results show that for investigated affine and adversarial cases, the likelihood of
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computational profiles observed during prediction is often significantly lower than that ob-
served for computational profiles corresponding to training and test sets, and are quite sepa-
rable from the original data distribution. Furthermore, by applying a simple linear threshold
separation on computational profile likelihoods, we are successful in identifying many OOD
computational profiles corresponding to cases that were not drawn from a distribution similar
to that of the training set.

With some additional research, this presented approach may be useful as a defence against
unusual cases, however we focus on using it as an OOD detection tool to filter and classify the
computational likelihood of incoming inputs. Potentially, these difficult and uncertain cases
can be flagged as unreliable predictions or bugs in the system to be reviewed by developers.

1.3 Research Objectives

Objectives of this thesis are to take a closer look at a network’s activation levels, in the form
of Computational Profile Likelihoods, as an attempt to assess the robustness of a network
and recognize unlikely decisions made by this network. This can be done either by comparing
an input distribution to a more familiar training distribution and separating between the two
sets, or by simply setting a threshold that separates any incoming input from the familiar
distribution.

Ideally, this works towards the goal of certification in Machine Learning, as a threshold can
be customized to suit different fields and even different classes depending on the needs of the
domain and on the trustworthiness of the class.

1.4 Thesis Contribution

Major contributions of this thesis can be summarized as follows:

• the definition of non-parametric statistical models based on computational profiles

• the definition of computational profile likelihood (CPL)

• experimental results of computational profiles likelihood computed on inputs belonging
to legitimate train and test cases

• experimental results of computational profiles likelihood computed on inputs belonging
to affine and adversarial cases generated from legitimate cases
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• experimental results of per-set separation of computational profile likelihoods between
train cases and other non-train inputs

• experimental results of per-input OOD analysis of computational profile likelihoods of
non-train inputs

Throughout this thesis, the following two publications were made:

• Paper in iMLSE 2020 (2nd International Workshop on Machine Learning Systems En-
gineering) [3]

• Poster in ICSE CAIN 2022 (1st International Conference on AI Engineering - Software
Engineering for AI) [4]

1.5 Thesis Outline

The rest of this document is organized as follows:

• Chapter 2 reviews concepts related to deep learning, unfamiliar CNN inputs, and de-
tection of Out-Of-Distribution inputs. These fundamental topics are necessary to un-
derstand the work done in our experiments.

• Chapter 3 includes a review of relatively recent works that are related to our research
work and that helped guide many of our experimental decisions.

• Chapter 4 outlines our methodology for the different experiments as well as details
pertaining to the setup of our experiments and the datasets used.

• Chapter 5 presents and discusses the results obtained from our different approaches.

• Chapter 6 resumes the goals, methods, and results presented in this thesis. It also
concludes the thesis and discusses limitations on the work and future potential research
to build upon what was done.
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CHAPTER 2 BACKGROUND

2.1 Deep Learning and DNNs

Deep Learning, a subset of Machine Learning and Artificial Intelligence, builds on traditional
linear algorithms by stacking multiple levels of representations and creating a hierarchy of
layers that progressively increase the level of complexity and extract abstracted features from
inputs passed through the layers. This statistical model is particularly beneficial for high-
dimensional data as the goal is to learn different features as well as to find patterns, creating
elaborate mapping functions between raw inputs and final decision-based predictions.

Deep learning accomplishes this mainly with the use of Deep Neural Networks (DNNs),
biologically-inspired deeply-connected networks multiple layers with multiple layers of neu-
rons. Through the different layers, these DNNs take raw data as input and, after a series
of transformations and abstractions, output a decision or prediction relevant to the domain
and problem at hand.

This complex computational approach is relatively new, as processors are becoming more and
more powerful. In the past, it was difficult to implement DNNs. The more layers they had,
the more neurons and, by extension, parameters there were to keep track of. It was heavy
both in terms of computation and in terms of memory needed to store data, parameters, and
hyperparameters.

However, in recent days, processors are getting more powerful and have become capable of
implementing DNNs with many more layers. Furthermore, data is becoming increasingly
more available as more and more information is collected, organized, and shared. These
two facts have encouraged the use of DNNs in research projects all over the world. In fact,
they have become a very popular tool to extract patterns from data and use it in real-world
applications.

This work focuses primarily on Feed Forward Neural Networks (FNN), one of the most widely
used in the Deep Learning domain, although with some extra research the methods presented
could be applied on other types of models as well. FNNs are especially useful for classification,
as they take input of a constant size with the goal of mapping it to some sort of output of a
constant size, such as a probability assigned to each possible class. An example of an FNN
is shown in 2.1. The data strictly flows from the left of the network to the right without
any chance of information flowing back to previous layers. This is why they are called Feed
Forward Networks.



6

Figure 2.1 Demonstration of the Inner Components of an FNN

Between the input and output layers, FNNs have any arbitrary number of hidden layers.
These intermediate levels of computation are referred to as hidden due to the fact that they
contain only intermediary forms of data, as opposed to the user-facing data seen as input or
output. Each neuron in the intermediate layers takes a weighted sum of the outputs of the
layer before, and passes it through a function that adds non-linearity in the mapping. This
is called the activation function, and it helps with avoiding sensitivity to variations of the
input that should not affect the output. The more neurons or layers the FNN has, the more
complex relationships it is able to approximate. This is why deep learning has benefitted
from using it, as researchers are able to model more complex behaviours by adding more and
more layers and/or neurons.

A specific type of FNN used in this work is a Convolutional Neural Network (CNN), which
adds specialized layers of convolution and pooling to better transform and process data that
is in the form of multiple arrays. This is a widely used type of network in recent works, and
has achieved much success when it comes to processing images or videos.

2.2 Metamorphic Transformations

The use of metamorphic relations when analyzing or testing software was first mentioned in
1998 [5]. Since then, it has grown to be used by many in all sorts of software domains, one
of which is deep learning and DNNs. For our purposes, a metamorphic relation is a property
that should hold true regardless of how many times it is executed and regardless of which
input it is used on. A simple example would be the function f = sin(x) and the fact that
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sin(x) = sin(x + 4π) should always hold true, thus this property would be considered a
metamorphic relation. Similarly, going from x to x+ 4π to be used as input to the function
f would be considered a metamorphic transformation.

In the case of using metamorphic transformations with a DNN, the point is to take an image
for which the true class is known and the image is correctly predicted by the network. The
transformation is then applied to the image which should preserve the relations within the
image and ideally result in it being predicted correctly as belonging to the same original
class.

Original

Translation

Rotation
(Corner)

Rotation
(Center)

Figure 2.2 Example Transformations

Particular examples of metamorphic transformation used in this work are translation or
rotation on the images. Examples of the transformations are shown in Figure 2.2. Translation
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is a transformation that shifts the pixels of an image by a particular unit of pixels along the
x and/or y axis. As for the rotation of the images, it is performed in two different ways. The
image is either rotated by the top left corner, in which it slowly shifts off the screen, or the
image is rotated strictly by its centre. We discuss these transformations and their role in our
particular experiments in greater detail in Section 4.7.

2.3 Adversarial Attacks

Deep Neural Networks are vulnerable to crafted adversarial attacks. In these attacks, an
adversary takes an input that is initially correctly classified by the network and applies a
sort of perturbation to the input or attempts to transform it in such a way that the network
now incorrectly classifies it with very high confidence. There are many types of adversarial
attacks with varying strengths and many different ways to apply them, but their purpose
remains the same. Unfortunately, although there exist many recent works implementing
defenses against adversarial attacks, many of the techniques can be defeated, and DNNs are
still susceptible to being fooled by these malicious inputs.

There are many good examples in the literature, though one particular one that comes to
mind [6] shows a very clear example of an adversarial attack. In this example, we see an
input image x which is correctly classified by the network as panda with a confidence of only
57.7%. By simply adding a slight layer of perturbation with an ε of 0.007 to x, the adversary
succeeds as the network now classifies the image as gibbon with a very high confidence of
99.3%.

Some examples of adversarial images used in this work are Fast Gradient Sign [6], Jacobian
Saliency Map [7], DeepFool [8] and Carlini & Wagner [9]. More details about these attacks
and how they were used in the experiments can be found in Section 4.7.

2.4 DNN Out-Of-Distribution Detection

Many DNNs, particularly those with the softmax activation function, tend to have very high
confidences even when incorrectly classifying inputs. With these DNNs it is very difficult
to recognize cases where the network may be mistaken. It is therefore beneficial to develop
a method that statistically analyzes a DNN’s computations to ideally separate between the
predictions that are likely to be correct and those that have low probability of being correct.

Using such a method, it is then possible to flag the cases that are unlikely to be correct as
Out-Of-Distribution (OOD), as they are deemed to have a different distribution than the
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legitimate inputs that the network is able to properly label. Conversely, the cases considered
as In-Distribution (InD) with the same approach would be the cases that are likely to be
correctly predicted by the network as they have a similar distribution to the legitimate inputs.

This is especially vital in critical scenarios where a deep learning model’s prediction can
have dangerous consequences when incorrect. It wouldn’t be too worrisome to take the
risk of some incorrect predictions when asking for product recommendations, but can be
fatal if an autonomous car were to make an incorrect decision with high confidence. In the
latter example, a method of identifying and flagging the decisions that are very different
(OOD) from the distributions of proper decisions could help avoid the suspicious erroneous
behaviours.

There can be many different ways of defining an input set’s distribution, and thus the ap-
proach of deciding whether the inputs are In- or Out-Of-Distribution differs as well. In this
work, the distribution is found using the Computation Profiles computed by the network
when passing inputs through. Deciding whether an input is In- or Out-Of-Distribution can
then be performed by setting a linear threshold to one-dimensionally separate the inputs.
More details about our method can be found in Section 4.
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CHAPTER 3 LITERATURE REVIEW

Deep neural networks (DNNs) are more and more integrated in large and industrial software
systems across many fields. Unfortunately, these systems are vulnerable to unknown inputs
including affine transformations of images and adversarial attacks on benign images. Many
sensitive and critical domains, such as aerospace, medicine, finance, or cyber-security require
higher confidence in the network’s prediction along with robustness against unfamiliar inputs
and certification of these systems according to field-appropriate standards. Recently, much
research is being applied towards making progress in these directions, particularly with deeper
"white-box" investigation of networks.

This chapter reviews relatively recent related works that make progress towards the goal
of Dependable, Certifiable and Explainable AI systems for critical scenarios. Section 3.1
presents several prominent works that analyze the internal computations performed by a
neural network to assess and evaluate robustness or to leverage the information to better
understand the network, namely using the values of the DNN’s activation levels or the neu-
ron coverage of the network. Section 3.2 covers the investigation of one particular layer as
opposed to the investigation of all layers of a network as a whole. Section 3.3 discusses
recent approaches to DNN robustness against unknown inputs, particularly metamorphic
transformations and adversarial attacks.

3.1 White-Box Testing

3.1.1 Extraction and Use of DNN Activation Levels

Many recent works investigate how using the activation levels, which are the inner computa-
tions of a neural network, can contribute to getting more information and better understand-
ing the network. This type of information would potentially contribute to the complex goals
of explainability of the network or robustness of a network against different inputs other than
the training data.

Papernot [10] [11] presents distillation of neuron activation levels from training and adver-
sarial inputs and trained a secondary DNN as a defensive measure for robustness. Another
paper [12] investigated neuron activation levels and a secondary classifier based on the nearest
neighbors method computed using locality-sensitive hashing.

Xiao et al. [13] present an approach that also takes a deeper look into the internal DNN layers
and activations. Their approach is only applied after the model has been trained and does
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not affect training. It uses kernel density estimation (KDE) to extrapolate the probability
density distributions of each layer’s output by evaluating the DNN on the training data, per
class. It then infers the density probabilities of each layer for any given test instance for each
class. The higher the values of the class, the more similar the features of the instance in
this layer are to the specific class. Search-based optimization is then used to find the most
optimal layer combinations to be able to give an alarm if the layer features are inconsistent
with the final prediction, and give advice in the form of an alternative prediction.

Guerriero et al. [14] introduce DeepEST, which samples from operational data (highly repre-
sentative data) many failing tests to learn from while building a set of tests that are suited for
the DNN accuracy estimate. They do this with the goal of providing accuracy estimates that
are much more precise and efficient as well as the practical advantage of enabling retraining
for further improvement. In other words, they look for the mispredictions that are the "most
informative" to then be able to use them for future training or improvement of the DNN.
This is done with an approach based on Surprise Adequacy, however they suggest that the
distance metric by itself is not enough. They suggest that both confidence and distance are
metrics that should be used, and they introduce an equation that uses a combination of the
two.

Ravi Mangal et al. [15] presented an approach for robustness of neural networks based on non-
adversarial real-world input probability distributions. We share the perspective of stochastic
modeling, but we concentrate on computational profiles of networks with no assumptions
about input distributions. Another notable example is DeepCon [16], in which the authors
introduce an approach to measure the testing adequacy of a DNN that uses neuron values
and their weights. In contrast to their work, we rely on the distribution not being Gaussian,
and our analysis is class-dependent.

In the work [17], the authors also present a somewhat similar approach to use a network’s
activation levels to better understand it, however this approach uses Kernel-Density Estima-
tion and they look at several different layers of the network, with their main focus on how
to best aggregate these layers. They do not elaborate on the use of their approaches with
respect to any unknown or adversarial input.

3.1.2 Neuron Coverage

In a recent short article [18], the authors look at several kinds of coverage, including neuron
coverage as a percentage of activated neurons based on inputs. They find that there is a
low correlation between the number of misclassified inputs in a test set and its coverage,
and thus that coverage (including neuron coverage) is actually misleading. They also look
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at adversarial inputs and consider how coverage can be used to measure the robustness
of a DNN. They find that the adversarial examples are pervasive and thus the number of
adversarial misclassified images found when trying to achieve high coverage depends on the
search method used. However, they specify that their conducted experiments were only
preliminary and that more will need to be conducted for more conclusive results.

In another later work, Kim [19] shows that neuron coverage is not significantly statistically
related to adversarial case detection, and that seeking higher neuron overage doesn’t neces-
sarily provide better detection of adversarial cases.

RAID [20] considers the activation levels of a subset of relevant neurons with the highest
difference values with respect to adversarial inputs to retrain a secondary classifier and assess
the confidence of the predictions. DeepXplore [21] is another neuron coverage approach that
flags incorrect behaviour in deep learning systems without the need of manually labeled data,
reducing the need for a ’ground truth’ oracle. It analyzes the neurons in the network in order
to compute the rate of those that are activated, and it relies on training a new model or
retraining the original. The problem is framed as a joint optimization problem and uses
gradient ascent to solve it efficiently.

Ma et al. [22] also use neuron coverage when presenting DeepGauge, a set of multi-granularity
testing criteria to better analyze and measure the quality and effectiveness of the data being
used to test the deep learning system. They leverage the use of neuron coverage criteria at
different layer levels, to identify corner-case behaviours, and discuss the possibility of using
these criteria for automating white-box tests for deep learning systems.

3.2 Analyzing Different Layers

In [23], the authors investigate a way to solve a DNN from "overthinking", in which a final
(correct) prediction may be reached within the DNN before reaching the final layer. They
propose Shallow-Deep Networks, by training multiple classifiers on the different layers, and
an algorithm of confidence-based decisions of exiting the computation early, with the goal
of reducing computation cost and preserving or increasing accuracy. They argue that a
DNN’s last layer by itself is not enough to characterize a DNN, and that sometimes the last
layer is what turns a correct prediction into an incorrect one. However, their arguments and
experiments are preliminary and are not verified against adversarial inputs, and thus perhaps
there is not sufficient research to conclude that this discovery is always applicable.

On the other hand, other works align well with using only a particular layer to allow faster
computation, since less neurons are considered and they have higher statistical independence
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from previous layers, in contrast with analyzing the whole network [1, 12,20].

3.3 DNN robustness against Affine Transformations and Adversarial Attacks

Engstrom et al. [24] discuss applying affine transformations, namely translation and rota-
tion to test robustness of deep learning vision-based models. They show that these simple
black-box transformations are able to easily fool CNNs without complicated or advanced
optimization techniques as used in other works.

Many works [25] [26] show how vulnerable DNN systems are when faced with adversarial
examples. Some demonstrate how effective it could be to add these aggressive cases to the
training data after identifying them, and show that it could lead to increased resilience of
the model, as well as use the incorrectly predicted cases by the network to identify violations
of safety properties in the system.

In a recent work, Dissector [27] is presented as a fault tolerance approach, in which the
authors introduce the concept of within-inputs (inputs that are within the model’s handling
capability) and beyond-inputs (inputs that are beyond the model’s handling capability).
They relate the concept of the model’s confidence to whether the inputs are within or beyond.
They attempt to distinguish the "beyond" inputs from the "within" inputs, with the hope of
identifying the inputs that are more likely to be incorrectly predicted. They do this without
the need of model retraining or redeploying applications. They have the goal of defending
against adversarial inputs and they also analyze the inner DNN workings to compare between
known data and new different data. However their approach first creates sub-models to
represent different levels of knowledge in the model. They then pass the inputs through
the submodels and make "snapshots" of each for the different layers (which they refer to as
prediction profiles). These prediction profiles are then compared to calculate a confidence
score to check whether the sample is within input.

Other approaches use activation levels to detect adversarial techniques. Some examples
are [28–30]. They all demonstrate satisfactory results and, very similarly to RAID [20], they
all rely on training a secondary classifier to be effective, while our approach does not.

Other approaches to detect adversarial images vary from using techniques like Principal
Component Analysis [31–33] to Kernel-Density Estimation and Bayesian Neural-Network
Uncertainty [17, 34]. However each and every one of these techniques can be defeated by
choosing a specific loss function depending on the defense [35].

The analysis of a network’s internal computation values to differentiate between adversarial
samples and benign inputs has been explored and presented in the literature [36, 37]. This
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presented thesis extends the investigation to include metamorphic tests.

3.4 DNN Out-Of-Distribution Detection

It is known that neural networks generalize well when it comes to sampling from the same
distribution for training and testing data. This is demonstrated in several research works
[38] [39] [40] [41] where the authors successfully train and test networks with great accuracy
on large and challenging datasets. However, it is often very difficult to obtain such high
accuracies when it comes to operational data.

Nguyen et al. [42] show how a neural network can have very high confidence for its predictions
when it comes to inputs that are not even recognizable. Similarly, other works [43] [44] [45]
show very high confidence for inputs that are completely irrelevant.

The idea of detecting out-of-distribution inputs is not new. It has previously been studied for
many applications, as described in the review by [46], and referred to as "Novelty Detection".
Low-dimensional out-of-distribution inputs are shown to be detected using conventional ap-
proaches such as nearest neighbour, clustering analysis, and density estimation [47] [48] [49].
Nevertheless, research works suggest that these methods are still not reliable for data that
has many dimensions across multiple fields [50] [51]. In another work, Schlegl et al. [52]
demonstrate training a generative adversarial network (GAN) with the goal of detecting
out-of-distribution inputs in a clinical environment. Hendrycks and Gimpel [44] present an
effective heuristic that serves as a simple baseline to detect Out-Of-Distribution cases based
on a threshold, using the probabilities obtained from their softmax distributions. They notice
that the maximum softmax values tend to be larger when the prediction is correct, compared
to the lower maximum values seen for faulty predictions flagged as out-of-distribution cases.

3.5 Certification of Safety-Critical Systems

In a recent White Paper of the DEEL project [53], the authors summarize machine learning
techniques and present a taxonomy of them, within the context of using machine learning in
sensitive domains that are safety-critical (namely aerospace and automotive domains). Seven
challenges of machine learning in critical systems associated with certification are presented,
including but not limited to resilience, explainability, and robustness.

Another recent work [54] also addresses the need of certification when it comes to safety-
critical systems. This systematic literature review considers research papers published within
the last five years that relate to machine learning systems certification. In the 217 reviewed



15

papers, they reach several notable conclusions.

First, though the community has expressed much interest in certification of ML systems, there
is still a significant lack of diversity when it comes to use cases used in these investigations as
well as the types of ML models tested. They also encourage developing deeper connections
between academic and industrial domains for research on this subject. The majority of papers
found were purely academic, and enriching the experiments with more practical industrial
data could prove to be very useful when assessing safety-critical scenarios.

The authors also emphasize six topics that are considered to be the most relevant concepts
when it comes to certification: robustness, uncertainty, explainability, verification, safe rein-
forcement learning, and direct certification. In the reviewed papers, the authors notice that
these concepts seem to be studied independently from each other, and suggest that instead
connections should be built between them to further investigate them on a deeper level.

3.6 Inspiration and Proposed Differences

The approach introduced in this thesis is inspired by the Surprise Adequacy for Deep Learning
Systems (SADL) approach [1]. SADL uses neuron activation values to calculate the level of
"surprise" between training images and adversarial images, which is a test criterion to measure
how different a neural network’s input is from its training data. They then use these "surprise"
values to retrain a classifier to avoid the misclassification of those adversarial images.

Our approach differs in several ways. Firstly, ours is non-parametric, and uses histograms,
whereas SADL relies on having a Gaussian distribution. Furthermore, a novel aspect of our
approach is the fact that it is class-based, allowing a finer analysis of each class independently.
It is also worth mentioning that our approach does not require retraining the same model or
any new model, and can be used dynamically on existing systems.
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CHAPTER 4 METHODOLOGY AND EXPERIMENTS

4.1 Computational Profile Extraction

As mentioned in Section 2.1, a neural network is typically composed of several layers of
neurons that carry and propagate activation levels across layers using weights and trans-
fer functions. Our work proposes a novel statistical approach to measure the “reasoning”
likelihood of a network during its predictions.

This likelihood measurement, further explained below in Section 4.2, is computed using
vectors of activation levels of the neurons in the layers of the network. These vectors are
what we call computational profiles. We compute the Computational Profile Likelihood
(CPL) of incoming inputs, that have been best classified into output classes by the network,
and compare them against the distribution of computational profiles observed during training
for the same output classes.

Motivation for reasoning using the measurement of likelihood comes from the intuition that
a network’s precision and performance observed during training and tests cannot be assumed
to be the same when dealing with unfamiliar cases that traverse very different computational
paths in the network during prediction. These could, for example, be affine transformations of
images or adversarial inputs and indeed, we don’t know the a-priori precision and performance
of a network in these cases that have different distributions than the cases that the network
is used to processing. Sometimes the prediction may even be correct, but with differently
traversed computational paths. However, it is very often incorrect, especially for the “corner
cases” that are tests specifically designed to test rare and unusual events and that may cause
a network to fail.

In a recent work, Kim [19] showed that neuron coverage is not significantly statistically
related to adversarial case detection. Indeed, we share the opinion and we don’t seek higher
neuron coverage, but we consider the actual neuron activation levels as a sort of statistical
signature used to identify unusual computational profiles during prediction. Investigating
the CPL’s of a network enables investigation of the potential reasoning behind the network’s
predictions, and allows comparison between the distributions of these corner cases and the
familiar training cases.

For each experiment, we consider a single architecture a from the set A of all architectures.
Each architecture a is trained on the training set Xa, a subset of all possible training inputs
X, for the set of all classes K. We take the subset X ′

a as all the correctly classified images
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by a from Xa.

To extract the computational profiles, we consider the activation level actLev(i, j, x, k, a) of
the i-th neuron in the j-th layer of architecture a, where x is an input from X

′
k, a, belonging

to a class k from K. We compute in Equations 4.1 and 4.2 respectively the average and
standard deviation of actLev(i, j, x, k, a) across the different inputs x.

refNodeAvgLev(i, j, k, a) = 1
| X ′

k, a |
·

∑
x∈X

′
k, a

actLev(i, j, x, k, a) (4.1)

refNodeStdDev(i, j, k, a) =

=

√√√√√√√
∑

x∈X
′
k, a

(actLev(i, j, x, k, a)− refNodeAvgLev(i, j, k, a))2

| X ′
k, a |

(4.2)

4.2 Computational Profile Likelihood

Bin frequencies bFreq(b, i, j, k, a) are computed during training by counting how many times
inputs from training set X ′

a and belonging to class k have produced an activation level that
falls into bin b for neuron (i, j).

Since we discovered that the distributions of the computational profiles are not normal, we
use non-parametric statistics [55] to estimate the density of the underlying distribution of
the neuron activation levels using histograms. The resolution of distribution estimation is
determined by the width of histogram slots. To have a uniform resolution across the neuron
distributions, bins of variable size width(i, j, k, a) = c ∗ refNodeStdDev(i, j, k, a) are used
for a neuron (i, j).

In the presented experiments, c = 1 has been used, but c = 0.5 could be used for a
finer estimation of distributions. The average refNodeAvgLev(i, j, k, a) and the standard
deviation refNodeStdDev(i, j, k, a) of each neuron activation level has been computed during
training.

Bin probabilities have been computed from bin frequencies as follows:
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p(b, i, j, k, a) = 1
| X ′

k, a |
· bFreq(b, i, j, k, a) (4.3)

To smooth probabilities over the bins, a very low probability is nevertheless assigned to all
bins with null frequencies.

The Bayesian likelihood L(y, j, k, a) of the any input y from an arbitrary class Y , given class
k for layer j of architecture a is computed as the joint probability of all neurons composing
a layer. We convert it to logarithmic likelihood for practical reasons and refer to it as Com-
putational Profile Likelihood (CPL), as follows:

L(y, j, k, a) =
∏

i

p(b, i, j, k, a)

CPL(y, j, k, a) = −
∑

i

log(p(b, i, j, k, a))
(4.4)

In the presented experiments, we concentrated on only the second to last layer and results
have been obtained using CPL(y,N −1, k,X), where N is the number of layers in a network
and (N − 1) is the layer before the output layer. A discussion about this choice is presented
in section 4.7.2.

We thus define the computation used in our experiments that we refer to as Architectural
CPL in Equation 4.5, which is the CPL computed for any input y predicted to be from class
k by architecture a, considering only the second to last layer.

archCPL(y, k, a) = CPL(y,N − 1, k, a) (4.5)

4.3 Per-Set Best Separation

Once we compute the architectural CPL of each image of a set as per Equation 4.5, we end
up with a distribution of Computational Profiles for that particular set. Given one set of
legitimate basic images and one set of input images, we would like to compute the point at
which separating the two sets results in the best precision of both sets, without compromising
the precision of the other. In our case, the primary legitimate set would be the set of training
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images, and the input set would be whichever group of images we are currently experimenting
with, such as a type of transformation or adversarial attack.

If we were dealing with normal distributions, the easiest way to separate between the two
distributions would have been to simply find the intersection of the distributions. However
since the data we are dealing with is not of a normal distribution, we must employ a different
method of finding the best separation point between the distributions.

This optimization is done in a straightforward manner, where we place a threshold at the
right extremity of the rightmost distribution. Then, we simply loop through each point and
compute the precision of separation for each distribution at that threshold point. Since we
keep track of the previous iteration’s separation point, we are able to identify the point at
which the difference between the two sets’ precisions flips sign, that is, goes from negative to
positive or from positive to negative. Another way to describe this separation point would
be the critical point at which the absolute value of the difference of the precisions decreases
to 0 and then starts increasing again.

This separation cutpoint at which the sign is flipped is computed along with the precisions
of separation for the first legitimate set of images (training images) and the second input set
of images. This method is performed for each set of input images, each true class, and each
best predicted class. The results are presented and discussed in Section 5.2.1.

4.4 Sigma-Order Threshold

For each architecture a and each class k, we compute the architectural CPL mentioned in
eq. 4.5 using each image x from the architecture’s correctly predicted set of class k training
images X ′

k, a. The average (eq. 4.6) and standard deviation (eq. 4.7) of these architectural
CPL values are computed for each class k of the architecture, and used to obtain a sigma
normalized version of the architectural CPL in equation 4.8 for any y input from arbitrary
set of inputs Y .

refArchAvg(k, a) = 1
| X ′

k, a |
·

∑
x∈X

′
k, a

archCPL(x, k, a) (4.6)

refArchStdDev(k, a) =

√√√√√√√
∑

x∈X
′
k, a

(archCPL(x, k, a)− refArchAvg(k, a))2

| X ′
k, a |

(4.7)
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normArchCPL(y, k, a) = archCPL(y, k, a)
refArchStdDev(k, a) (4.8)

4.5 Per-Input Out-Of-Distribution Computation

Each input y’s normArchCPL can then be directly compared to any sigma-based threshold
sepTh(k, a) to obtain a boolean value of whether the input is identified as OOD or not.
If the normArchCPL is larger than the threshold, then the input is considered as out-of-
distribution, as per equation 4.9a. Conversely, if it is smaller or equal to the threshold the
input is considered as in-distribution, as per equation 4.9b.

OOD(y, k, a) = normArchCPL(y, k, a) > sepTh(k, a) (4.9a)

InD(y, k, a) = ¬OOD(y, k, a) = normArchCPL(y, k, a) <= sepTh(k, a) (4.9b)

We then introduce the following definitions, for the arbitrary set of inputs Y :

• numCorrectOOD(Y, k, a) : the number of identified out-of-distribution cases that the
model correctly labels

• numIncorrectOOD(Y, k, a) : the number of identified out-of-distribution cases that
the model incorrectly labels

• numCorrectInD(Y, k, a) : the number of identified in-distribution cases that the model
correctly labels

• numIncorrectInD(Y, k, a) : the number of identified in-distribution cases that the
model incorrectly labels

With these values, it is possible to get the total number of images that would pose no threat
to the model when filtering against OOD, as it is the sum of incorrectly predicted Out-Of-
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Distribution images and all correctly predicted images:

numNoHarm(Y, k, a) =
numIncorrectOOD(Y, k, a) + numCorrectOOD(Y, k, a) + numCorrectInD(Y, k, a)

(4.10)

Once it is clear which images are considered OOD and which are InD, it is possible to compute
a No-Harm% ratio that describes the ratio of aggressive test cases identified as OOD and non-
harmful correctly predicted images, with regards to the total number of images considered.
This ratio is presented in Equation 4.11, and is the measure that we use to present our results
in section 5. Similarly, we could also compute the ratio of OOD images as in Equation 4.12
and the ratio of InD images as in Equation 4.13.

No-Harm% = numNoHarm(Y, k, a)
| Y | (4.11)

OOD% = numCorrectOOD(Y, k, a) + numIncorrectOOD(Y, k, a)
| Y | (4.12)

InD% = numCorrectInD(Y, k, a) + numIncorrectInD(Y, k, a)
| Y |

= 1−OOD% (4.13)

We also consider a measure that simply represents the ratio of incorrectly predicted images
found below the threshold and considered as in-distribution, with regards to the total number
of images. This measure is defined in Equation 4.14.

Misclassified% = numIncorrectInD(Y, k, a)
| Y | (4.14)

Similarly, we obtain a measure that is the ratio of correctly predicted in-distribution images,
with regards to the total number of images, defined in Equation 4.15. This measure would
be equivalent to the subtraction of the OOD% value from the No-Harm% value.

CorrClassified% = numCorrectInD(Y, k, a)
| Y |

= No-Harm%−OOD% (4.15)
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4.6 Research Questions

The following research questions were used to guide our experiments and to frame the con-
clusions that were drawn from the results. We address the answers to these questions when
presenting and discussing the results.

• RQ1: What are the computational profile distributions of affine and adversarial cases
compared to those of the training set?

• RQ2: What is the degree of separation between affine and adversarial cases with respect
to the training set?

• RQ3: What effect does changing the threshold have when separating between adver-
sarial/affine inputs and training data?

• RQ4: How can we identify aggressive test cases with regards to their distributions in
comparison with training data?

4.7 Experiment Setup

Our experiments were designed to allow comparison between a CNN’s training images and
other cases that were not taken from the same distribution of the training set, by generat-
ing synthetic images from the training images using affine transformations and adversarial
attacks.

More specifically, we use random pixels as error control-data for initial experiments, as well
as different intervals of affine transformations (translation, corner rotation, center rotation)
and adversarial images generated using Fast Gradient [6], Carlini & Wagner [9], Jacobian
Saliency Maps [7], and DeepFool [8].

Successful adversarial attacks and affine transformations can be considered as aggressive test
cases against CNN models and it can be very useful to identify those cases that are further
away in distribution from the training set.

4.7.1 Architectures

We perform our experiments on a range of convolutional neural networks, to eliminate the bias
that we would have if we had only one single architecture, and to look for any trends between
different architecture structures and/or between different instances of the same architecture
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structure. Ten different structures were used throughout our experiments, with identifiers
v0-v9 and their details can be found in Appendix B.

We began with introductory experiments using one instance of v0, which was based on a
Tensorflow variant of LeNet [56]. In this thesis, experiments for Section 4.3 were performed
using this instance. As for the following Sections 4.4 and 4.5, the experiments were carried
out using all ten structures v0-v9. Furthermore, we also perform these experiments on five
different instances of the v0 structure, because of its highest cumulative recognition precision
on training and test sets among the different structures and due to the fact that it is based
on LeNet [56].

Each instance was obtained by training the same structure on a different set of training
images. To obtain each training set, we start with the original set of MNIST-Fashion images,
and randomly sample 60000 images with a different random seed. The remaining 10000
images become the test set. This allows for five different training sets that may intersect
with one another differently, later used to train the five instances of v0. Each instance was
trained starting with a different seed for the initial randomized weights, but the rest of the
hyperparameters such as learning rate, epochs, and mini-batch size remain the same, so that
the only difference between the architectures is the data that they have been trained on.

4.7.2 Layers

In our experiments, though it is possible obtain activations for all layers, we considered
the neurons only in the penultimate layer. Some works such as [23] may discourage this
decision, as their experiments demonstrate that the last layer may often be the one to turn
a correct prediction to an incorrect one. However, their arguments and experiments are not
verified against any sort of affine transformations or adversarial inputs, and thus do not give
sufficient evidence to conclude that this discovery is applicable in our case. In principle,
other works more relevant to our topic align well with our use of this second-to-last layer to
improve computational efficiency, since we consider less neurons and have higher statistical
independence from previous layers, in contrast with analyzing the whole network [1, 12, 20].
Furthermore, recent research [1] suggests that layer sensitivity varies and is more effective on
the final layers of a network than on the initial layers for the MNIST dataset.

4.7.3 Image Datasets

Our experiments take five image sets into account: train, test, random, affine transformations
and adversarial attacks. The affine transformations and adversarial attacks are synthetic



24

cases created for each architecture from its training images. More details on the creation of
these images can be found below.

Train and Test Images

For these sets, we decided to use the MNIST Fashion library of 70000 images [2], and split
them into 60000 training images and 10000 testing images. As mentioned, we repeat the
split for each of the five architecture instances so that we end up with five sets of train and
test images. In contrast, the ten architecture structures were trained using the same sets of
train and test images.

Random Images

As some sort of control data, 60000 images of the same MNIST-Fashion size (28x28) were
generated by creating completely random grayscale values for each pixel, using a uniform
distribution. Each row’s pixels were randomly generated in sequence, for each image, without
re-initializing the random generator between rows or between images. Although these images
are best classified by the network into some classes, we assumed that all these predictions be
errors. We use these random images in introductory experiments of Section 4.3.

Affine Transformed Images

For each architecture, we applied three different types of affine transformations on the train
images. The transformations did not need any prior knowledge of the model, but only knowl-
edge of the training and testing images used. For each transformation, we started with the
original train image and incrementally increased the parameter values of the transformation.
Each increment represents a different interval of transformation.

We describe below the different types of transformations used.

• Translation: This transformation type consists of a translation along the x and y axes.
Each interval parameter amount represents the pixel translation along both axes.

• Corner Rotation: This transformation type consists of a rotation of the image around
the pixel in the upper left corner of the image. Each interval parameter amount rep-
resents the degree of rotation. Note that since we are rotating along the corner, we
eventually reach a point where the image is completely out of the visible frame.

• Center Rotation: This transformation type consists of a rotation of the image around
its center. Each interval parameter amount represents the degree of rotation.
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Adversarial Images

Starting from the correctly predicted images of each training set, we use IBM’s Adversarial
Robustness Toolbox [57] to create adversarial images with Fast Gradient Sign [6], Jacobian
Saliency Map [7], and DeepFool [8]. We also use CleverHans [58] to create adversarial images
with Carlini & Wagner [9]. The parameters used for each attack are kept constant throughout
our experiments, and were chosen based on other examples used in other works, such as
the epsilon of 0.6 that we used for the Fast Gradient Sign images. For all the attacks
we performed, the attack crafted the images to attack a particular architecture, and thus
knowledge of the model is needed. In most of our attacks, the adversarial images were
crafted without a target. In other words, they were created simply with the goal of making
the network fail, without any emphasis on classes. However, in the case of the Jacobian
Saliency Maps attack, we input a target class t, for the goal of modifying the original image
specifically to incorrectly be classified as an image from class t.
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CHAPTER 5 RESULTS AND DISCUSSION

5.1 Computing and Visualizing CPL

In this section, we discuss the application of our measure of surprise CPL as presented in
Equation 4.4. We apply it to our experimental datasets described in Section 4.7. We present
our results in the form of example visualizations demonstrating our method, along with a
discussion.

5.1.1 Per-Class Overview

As described in section 4, we use the Bayesian likelihood computation to obtain a measure
that we refer to as CPL. This measure represents how probable it is that, during classification
of an image, the neuron activation levels belong to the distribution of the original training
set. In other words, this measure represents the probability of a network layer’s activation
levels with respect to the distributions observed and estimated during training for the given
layer and the predicted class.

Several recent works [10] [11] [12] attempt the use of neuron activation levels from training
and adversarial inputs and train a secondary DNN as a defensive measure for robustness
or based on the nearest neighbors method computed using locality-sensitive hashing. We
share the extraction of activation levels with the approaches, but we model them with non-
parametric statistical Bayesian likelihood of an input given a class, without the need of
secondary training. Some other approaches [13] [17] don’t use a secondary classifier but use
different methods such as Kernel Density Estimation.

For each experimental dataset mentioned in 4.7, we compute the measure of CPL of the
images, per class. To be more specific: for each class, we take the images that originally
belong to the class in question but are incorrectly predicted by the network, and compute
their CPL from the training set for that class.

To better visualize the results we obtain and to identify any patterns or trends, we create a
cartesian plot with the CPL values for each class. We do this for random adversarial attacks
(including random images) and affine transformations. Examples of these plots can be seen
in Figures 5.1 and 5.2.

In Figure 5.1, we see four different example plots, each representing a different class. Along
the x axis, we see the different image sets in question. In these plots, each point represents
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a single image.

For each class, we have columns containing the train and test images of the class in question,
along with five proceeding columns containing, in order, the randomly generated images
(rnd), the Fast Gradient images (fgrad), the Carlini & Wagner images (cw), the Deepfool
images (df), and the Jacobian Saliency Maps Images (jsma_targeted). For clear and visible
identification, the training set is in dark blue, the test set is in cyan, and the adversarial
attacks are in red, including the randomly generated images. The y axis, labeled as dist,
refers to the measure of surprise CPL that a particular image has from that class’s training
set. The larger the CPL value for a particular image, the further that image is from the
training distribution. The position of each image within the columns along the x axis is of
no significance; it was chosen randomly when generating the plots, to avoid all the points
being placed on top of one another.

Each plot represents a class, where the train and test columns contain the correctly predicted
images from the training and testing sets for that class, respectively. The adversarial columns
however, contain the incorrectly predicted images that have that class as the true label. The
only exception is the set of randomly generated images, where an image does not have a true
class. For these images, we place these images on the plot of the class corresponding to the
class that the network predicted them to belong to.

For all the attacks we performed, except for the randomly generated images, the attack
crafted the images to attack a particular architecture, and thus knowledge of the model is
needed. In most of our attacks, the adversarial images were crafted without a target. In
other words, they were created simply with the goal of making the network fail, without any
emphasis on classes. However, in the case of the Jacobian Saliency Maps attack, we input
a target class t, with the goal of modifying the original image specifically to incorrectly be
classified as an image from class t. For this attack, we repeat the experiments 10 times, each
time with the target class as a different class.

In Figure 5.1, the plots are shown for classes 1, 3, 5, and 9. These were chosen purely for
demonstrative purposes, to cover various different behaviours observed. The first thing to
notice is that the jsma_targeted columns contain many more images than the other columns.
This is to be expected, as for each class c, the jsma_targeted column contains all the im-
ages from class c that are incorrectly predicted, and includes the 10 different target class
possibilities.

When comparing between the different classes, we can clearly see that some classes seem
to produce many more images with higher CPLs than others. For example, in Class 1, we
see many images with CPLs above 3000 as well as above 4000. This could signify a high
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Class 1 Class 3

Class 5 Class 9

Figure 5.1 CPL Plots - Incorrectly Predicted Adversarial Images
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robustness for Class 1, as it seems to recognize how different the adversarial images are from
the training set. Class 9 and Class 3 seem to have a lower recognition of these differences,
as the overall CPLs tend to be lower than those of Class 1. Finally, we can see that Class
five seems to have the lowest recognition of these images, as all the images have much lower
CPLs than those of the other classes, with all values below 2500. In fact, we chose Class 5 as
one of the example plots precisely because it seems to be the worst at assigning larger CPLs
to the adversarial images.

It is also interesting to notice that the randomly generated images seem to collect in certain
classes, such as Class 1. In contrast, not a single randomly generated image was predicted to
be in Class 5. Some seem to end up in Class 9, though it is a very small amount compared
to the total amount of randomly generated images. With some further investigation, these
types of trends could be useful in characterizing the different classes and learning more about
their behavior.

In all cases, it is important to note that the testing images seem to, for the most part, be
within distribution of the training set. This is to be expected, as the training and testing
images were all sampled from the same original set of images.

Similarly to the adversarial attacks, we also create the same type of plot for transformed
images. We see examples of these plots in Figure 5.2, where the incorrectly predicted images
of Class 0, 4, 6, and 9 are shown for translated images. For each example, we visualize the
images after they have been translated at different interval units, namely 1, 3, 5, 7, 9, and
11. Once again, the y axis labeled as dist corresponds to the measure of CPL and the x
axis corresponds to the different image sets. The first two columns contain the train and
test images in dark blue and cyan, respectively. The next six columns show, in red, the
transformed images for each interval.

The first thing to notice is the clear pattern in CPLs as we increase the interval of affine
transformation. After only one interval of transformation, the CPLs seem indistinguishable
from those of the training set. But after looking at the next interval, we see right away that
in general the CPLs start to move upwards on the plot. The more we translate the image, the
further the CPLs move away from the training class for the class in question. We eventually
reach a point where almost all the CPLs are out of the distribution of the training set.

Similarly to the adversarial attack plots in Figure 5.1, we can see that the various classes
demonstrate different behaviors. In this case, Class 0 presents CPLs that are closer together
for each interval, whereas Class 9 shows CPLs that are more spread out across the y axis for
the different columns. At interval 11, we also see that Class 0 still has several images that
overlap with the training set, while Class 4 and Class 9 contain a very minimal amount of
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Class 0 Class 4

Class 6 Class 9

Figure 5.2 CPL Plots - Incorrectly Predicted Translated Images
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overlap.

It is also interesting to see that after only one interval of translation, relatively very few
images get classified as Class 9, whereas many are classified as Class 4 or Class 6. This could
be related to the observations we made about Class 9 for the adversarial attacks, and once
again further investigation is warranted to analyze this behaviour.

5.1.2 Statistical Comparison Tests

In this section, we present several two by two 2-sample statistical tests, to compare the
different sets of images and numerically get a sense for how similar they may be, based on the
distribution measures described and visualized in Section 5.1.1. The tests we performed are
Anderson-Darling, Cliff’s Delta, Epps-Singleton, Kolmogorov-Smirnov, and Wilcoxon Rank-
Sum test for continuous and discrete variables. Most of the tests were computed using the
python SciPy library for scientific computing [59], with the exception of Cliff’s Delta which
was taken from Ernst’s Python Implementation [60] derived from Torchiano’s in R [61].

In our tests, we statistically compared each class separately, allowing the independent assess-
ment of different classes.

Table 5.1 Statistical 2-Sample Tests: training / test

Anderson- Cliff’s Epps-Singleton Kolmogorov- Wilcoxon
Darling Smirnov Rank-Sum

class stat sig-level delta size stat p-value stat p-value stat p-value

0 3.82 0.009 0.0158 negligible 30.89 0.000 0.04 0.134 0.76 0.447
1 5.47 0.002 -0.0388 negligible 14.13 0.007 0.05 0.057 -1.95 0.051
2 1.48 0.080 -0.0269 negligible 11.44 0.022 0.04 0.169 -1.29 0.199
3 17.98 0.001 -0.0809 negligible 40.94 0.000 0.08 0.000 -3.96 0.000
4 4.27 0.006 -0.0474 negligible 16.09 0.003 0.05 0.088 -2.27 0.023
5 36.26 0.001 -0.1392 negligible 59.45 0.000 0.12 0.000 -7.02 0.000
6 4.53 0.005 0.0031 negligible 25.27 0.000 0.05 0.047 0.14 0.890
7 3.91 0.009 -0.0428 negligible 9.21 0.056 0.05 0.034 -2.16 0.031
8 13.86 0.001 -0.0820 negligible 24.96 0.000 0.08 0.000 -4.14 0.000
9 12.06 0.001 -0.0698 negligible 28.11 0.000 0.07 0.001 -3.45 0.001
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Table 5.2 Statistical 2-Sample Tests: training / random

Anderson- Cliff’s Epps-Singleton Kolmogorov- Wilcoxon
Darling Smirnov Rank-Sum

class stat sig-level delta size stat p-value stat p-value stat p-value

0 5,627.63 0.001 -1.0000 large 77,212,398.89 0.000 1.00 0.000 -91.11 0.000
1 1,673.03 0.001 -1.0000 large 3,828.08 0.000 1.00 0.000 -40.48 0.000
2 1,019.37 0.001 -1.0000 large 639.36 0.000 1.00 0.000 -28.60 0.000
3 69.34 0.001 -1.0000 large 229.90 0.000 1.00 0.000 -5.19 0.000
4 5,243.65 0.001 -1.0000 large 118,389,283.14 0.000 1.00 0.000 -87.72 0.000
6 14,796.74 0.001 -0.9943 large 318,458.42 0.000 0.97 0.000 -124.12 0.000
8 7,561.29 0.001 -0.9931 large 141,370.12 0.000 0.96 0.000 -104.61 0.000
9 88.52 0.001 -1.0000 large 16.67 0.002 1.00 0.000 -5.99 0.000

Table 5.3 Statistical 2-Sample Tests: training / rotation

Anderson- Cliff’s Epps-Singleton Kolmogorov- Wilcoxon
Darling Smirnov Rank-Sum

class stat sig-level delta size stat p-value stat p-value stat p-value

0 3,056.99 0.001 -0.8748 large 11,339.27 0.000 0.73 0.000 -65.74 0.000
1 1,626.62 0.001 -0.9944 large 968.99 0.000 0.95 0.000 -40.19 0.000
2 238.08 0.001 -0.4090 medium 274.16 0.000 0.29 0.000 -18.23 0.000
3 1,454.17 0.001 -0.7465 large 2,987.04 0.000 0.63 0.000 -42.39 0.000
4 268.95 0.001 -0.4549 medium 184.10 0.000 0.42 0.000 -14.03 0.000
5 68.87 0.001 -0.2562 small 112.08 0.000 0.17 0.000 -9.38 0.000
6 1,099.99 0.001 -0.6745 large 1,998.38 0.000 0.55 0.000 -37.44 0.000
7 2,209.32 0.001 -0.9542 large 7,651.01 0.000 0.86 0.000 -51.63 0.000
8 816.47 0.001 -0.6740 large 1,624.30 0.000 0.53 0.000 -32.81 0.000
9 1,029.63 0.001 -0.9337 large 620.31 0.000 0.86 0.000 -30.28 0.000
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Table 5.4 Statistical 2-Sample Tests: training / fgrad

Anderson- Cliff’s Epps-Singleton Kolmogorov- Wilcoxon
Darling Smirnov Rank-Sum

class stat sig-level delta size stat p-value stat p-value stat p-value

0 1,246.81 0.001 -0.9988 large 2,815.36 0.000 0.98 0.000 -33.02 0.000
1 355.59 0.001 -1.0000 large 112.30 0.000 1.00 0.000 -14.10 0.000
2 507.50 0.001 -0.9994 large 138.51 0.000 0.99 0.000 -17.91 0.000
3 605.78 0.001 -0.9997 large 128.13 0.000 0.99 0.000 -20.04 0.000
4 1,185.94 0.001 -0.9986 large 527.40 0.000 0.98 0.000 -31.94 0.000
5 267.43 0.001 -0.9924 large 1,629.95 0.000 0.96 0.000 -12.46 0.000
6 6,594.35 0.001 -0.9965 large 133,565.21 0.000 0.97 0.000 -98.52 0.000
7 34.34 0.001 -1.0000 large 68,942.21 0.000 1.00 0.001 -3.46 0.001
8 2,828.45 0.001 -0.9949 large 75.74 0.000 0.96 0.000 -59.27 0.000
9 183.02 0.001 -1.0000 large 0.00 0.000 1.00 0.000 -9.30 0.000

We first compared the training and test image sets (Table 5.1). As expected, the tests
produce results that show that the images are not necessarily from different distributions.
The sig- and p- values are relatively larger in all tests for many classes, and the Cliff’s delta
is negligible for all the classes.

We then compared the training set with the set of random images (Table 5.2). In contrast
to the train/test comparison, this comparison shows that the distributions of the images are
quite different, as expected since the random images have a much larger CPL from the training
set than the test images do. The sig- and p- values are usually 0.000, with the exception of
the Anderson-Darling test, which caps the sig-values at 0.001 once they go below that value.
So in reality, they are probably have values even smaller than 0.001, with the statistics being
very large values in comparison to the train/test statistical tests. Furthermore, we can also
see that the Cliff’s delta is always large.

Next, we took a set of images where each image is taken from the training set and is rotated
just until the point where the network’s prediction for it turns incorrect. We compared these
rotated images with the original training set (Table 5.3). Though not as extreme as the
random images, the results still indicate that the distribution of these rotated images is quite
different from that of the original training images. Similar to the random images, the sig- and
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p- values are always 0.000 except for Anderson-Darling where they are capped at 0.001, while
the statistics are very large values in comparison to the train/test statistical tests. In this
case, the Cliff’s delta is often large, except for rotated classes 2 and 4 that show a medium
delta and class 5 for which the delta is small, showing that the transformations likelihood lie
in an extended range with respect to training, tests, and noise.

Lastly, to statistically compare some adversarial images with the training set, we perform the
same statistical tests for the training set and a set of training images that were adversarially
attacked using the Fast Gradient method (Table 5.4). Once again, all sig- and p- values are
smaller or equal to 0.001, and the statistic values are relatively quite large. Cliff’s delta also
shows a large size for all classes, emphasizing that the distributions of these two images are
in fact quite different from one another.

It is worth mentioning that Cliff’s delta is a non parametric test [62]. For Cliff’s delta d,
the magnitude is assessed using thresholds on d and is classified as follows: "negligible",
if d < 0.147; "small", if d < 0.33; "medium", if d < 0.474; and "large” otherwise [63].
Furthermore, the alpha level can be considered as the possibility of making a type one error,
which refers to incorrectly declaring a difference, effect or relationship to be true due to
chance. We can in principle set the alpha level for one test at 0.05. With this alpha level, the
probability of the test showing "something" when there is actually nothing should not occur
in more than one in twenty statistical tests. Since we carried out more than one statistical
test, the probability of finding at least one statistically significant test due to chance and
incorrectly declaring a difference or relationship to be true, increases.

We hypothesize that there is a substantial difference between the training images and the
random, rotated, and fast gradient images for the different classes. Since we formulated one
hypotheses per class (10 in total), we should correct our statistical tests accordingly, using
the Bonferroni correction, and assume an alpha value of 0.005, instead of 0.05.

With this in mind, we point out that comparing the training set with random, rotated, and
fast gradient images produces sig- and p- values that are much smaller to the Bonferroni
correction threshold of 0.005.

5.2 Separation Using CPL

In this section, we use the measure of CPL to go further in detail. We visualize not only
each true class of images, but we break them further down into their predicted classes of
images, to look for any patterns or trends. Using these groups of images, we show the
results for two different ways of comparing the images with the training set: a per-set best
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comparison between the input images and the training set of their predicted class, and a
per-input sigma-order threshold comparison between a single input and the training set of
its true class.

5.2.1 Per-Set Best Comparison

The first method of separation we attempted is what we refer to as the best separation be-
tween the two distributions. We assume full knowledge of the whole set of images being
considered to compute this separation, and attempt to place a linear threshold-based sepa-
rator using that knowledge. For example, if we are computing the best separation between
a set of fast gradient images and their training corresponding training images, we take all of
the fast gradient and training images into consideration for the computation.

As described in Section 4.3, we compute the best separation by finding the appropriate CPL
cutpoint value and placing a linear threshold at that value. This way, we can attempt to
separate between the training set and the set of images in question.

We do this for each image set, for each true class, and for each best (predicted) class. Once
again, we include some example visualizations to better understand the process. Figure 5.3
shows plots for classes 1, 3, 5, and 9. These plots are similar to those previously shown
in Figure 5.1, but a key difference is that each visualization is based on a particular set of
images. In this case, Figure 5.3 shows the visualizations specifically for Jacobian Salience
Maps Attack (JSMA). Here we see the same train and test columns per-class, but the next 10
columns represent the predictions the neural network has made for images that were originally
in the class. For example, any point in the best3 column of the Class 1 plot signifies an image
that is truly a class 1 image, but predicted to be class 3 by the network after the adversarial
attack. With the same logic, images that are in the Class 1 plot and best1 column are images
that were correctly predicted even after adversarially attacking them.

We apply the best separation method for each column, to separate the images from the
training set of the class they are predicted to be in. To better visualize the results, we color-
code the points based on the three categories they belong to: green points are images that
are below the separation line but correctly predicted by the network, red points are images
that are below the separation but incorrectly predicted by the network, and the grey points
are images that fall above the separation line regardless of whether they were correctly or
incorrectly predicted.

This way of visualizing allowed us to not only compare between images’ true classes, but also
between the predicted classes. The differences in color also allow us to clearly see where the
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Class 1 Class 3

Class 5 Class 9

Figure 5.3 Best-Separation CPL Plots for JSMA: Classes 1, 3, 5, 9
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linear threshold for separation was placed in each column. In Figure 5.3, we can clearly see
in all cases that the separation for the correctly predicted class (green) is always lower than
the separations for all the other incorrectly predicted classes (red). This usually means we
are separating with less precision in the training set, and implies that the distributions of the
correctly predicted images are much closer to the training set than those of the incorrectly
predicted images, as they are harder to separate with good precision.

As expected, we see that the columns with generally higher CPLs (such as Class 5 - best0)
will have higher separation thresholds than those with lower CPLs (such as Class 5 - best8).
In general, the higher the separation threshold, the better the separation precision for the
training set. However this is not always the case for the precision of the adversarial images.

Using the same plot formats, we can visualize the affine transformations as well. Figure 5.4
presents the CPL plots for Class 0 images that were translated at various intervals. Similarly
to the adversarial images, the plots show images as points indicating their CPLs from the
training set, and are organized in columns of their predicted classes. One difference is that
we create a plot for each true class as well as for each interval of transformation. For lack
of redundancy and to save space, we include examples of Intervals 3, 7, 11, and 15. These
examples were chosen purely for demonstrative reasons, as we can see a few key trends that
we would like to highlight. Nevertheless, the same type of plot can be created for all classes
as well as all intervals of transformation.

In Figure 5.4, the first thing to notice is that as we increase the parameters of transformation,
the CPLs of the images tend to grow larger. In other words, they start to move upwards in
the plots, and start to move out away from the training distributions. When the interval is
3, we see most of the points have CPLs under 1000, whereas when the interval is 15, there
are rarely any images with a CPL below 1000. As we increase the interval of transformation,
the computed separation threshold also tends to increase. For example, the best6 column
seen in Figure 5.4 places the separation threshold at a CPL of 673 when the interval is 3,
912 when the interval is 7, 1138 when the interval is 11, and 1160 when the interval is 15.
In these cases, the separation precision of the adversarial images, in other words the ratio of
adversarial images that are found above the separation threshold, also increases. To be more
precise, the separation precision of the best6 column is 84.6% when the interval is 3, 97.4%
when the interval is 7, 99.5% when the interval is 11, and 99.6% when the interval is 15.

We also see certain classes that most images tend to pool in, regardless of whether the images
are correctly or incorrectly predicted. In our example in Figure 5.4, most images tend to be
predicted as class 0, class 3, class 6, or class 9. In contrast, we rarely see any images get
sorted into class 1, class 2, class 5, class 7, and class 9. This interesting pattern of pooling
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Interval = 3 Interval = 7

Interval = 11 Interval = 15

Figure 5.4 Best-Separation CPL Plots for Translation: Architecture v0.0, Class 0
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in certain classes happened across most of the adversarial attacks and affine transformations
that we studied, across various classes.

To take a more quantitative approach, Tables 5.5, 5.6, 5.7, and 5.8 are presented to show the
exact numerical values of best separation for JSMA for each combination of true class and
best class. In these tables, the Separation Point column gives the value of CPL at which the
separation threshold was placed to separate between the different adversarial attacks and the
training set. The next column, Train Separation, gives the ratio of training images of the
particular class that are found under the separation threshold, relative to the total number
of training images considered for that class. Similarly, the JSMA Separation column gives
the ratio of JSMA images that lie above the separation threshold.

The format of these tables allows to compare the separation precisions of each true class and
each best class. We can link them back to Figure 5.3 to verify the patterns we previously
noticed from the plots. Indeed, we see that in all cases the separation for the correctly
predicted class is lower than the separations for all the other incorrectly predicted classes.
For example, when True Class is 0 and Best Class is 0, we see that the separation point is
below 400, and the Train and JMSA separation precisions are quite low at 50% each. These
correctly predicted images were considered to be very similar to the training set, and were
more difficult to separate. Meanwhile, when True Class is 0 but Best Class is any class other
than 0, we see much higher CPLs and separation precisions. For example, when Best Class is
1, the separation point is over 700 and the separation precisions are over 90% for both sets.
The same pattern holds for all combinations of True Class and Best Class. Thus, we can
reasonably say that when an image is correctly predicted, it usually presents a computational
profile that is likely to be similar to the training distribution.

The choice of these tables is purely demonstrative, and the same tables can be computed for
all experiments. The rest of the tables for all adversarial attacks can be found in Section A.
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Table 5.5 Linear Best Separability - Jacobian Saliency Map - Classes 0, 1, 2

True Best Separation Train JSMA
Class Class Point Separation Separation

0

0 397.5314 0.5007 0.5007
1 703.2719 0.9032 0.9033
2 463.6105 0.6715 0.6716
3 537.9626 0.6059 0.606
4 525.7214 0.7604 0.7604
5 579.1344 0.5123 0.5123
6 465.6688 0.5089 0.509
7 633.958 0.8789 0.879
8 564.5886 0.514 0.5141
9 615.9107 0.9 0.9001

1

0 831.7829 0.9355 0.9355
1 495.5164 0.5029 0.5031
2 860.8222 0.9682 0.9682
3 742.3261 0.9178 0.918
4 813.7388 0.9647 0.9648
5 784.5104 0.912 0.9121
6 803.4066 0.9411 0.9411
7 931.6438 0.9828 0.983
8 778.2969 0.9358 0.9359
9 919.686 0.9949 0.995

2

0 528.217 0.7211 0.7212
1 774.9406 0.937 0.937
2 390.5676 0.5005 0.5006
3 592.9788 0.7402 0.7403
4 459.1883 0.623 0.6231
5 599.5464 0.5716 0.5716
6 462.9844 0.5029 0.503
7 689.631 0.9144 0.9145
8 578.8158 0.5685 0.5687
9 616.8163 0.9002 0.9003
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Table 5.6 Linear Best Separability - Jacobian Saliency Map - Classes 3, 4, 5

True Best Separation Train JSMA
Class Class Point Separation Separation

3

0 542.0361 0.7385 0.7385
1 706.7524 0.9048 0.905
2 576.6976 0.8375 0.8375
3 503.5266 0.5007 0.5008
4 563.2345 0.8152 0.8152
5 616.7371 0.6156 0.6157
6 565.6911 0.6998 0.6999
7 659.3092 0.8959 0.896
8 609.7839 0.6728 0.673
9 703.4379 0.9572 0.9572

4

0 559.6922 0.757 0.757
1 756.7171 0.9292 0.9292
2 461.4536 0.6669 0.6671
3 562.5864 0.6699 0.6701
4 418.4148 0.4999 0.5003
5 602.9499 0.5796 0.5798
6 457.222 0.4892 0.4892
7 668.1598 0.9011 0.9012
8 559.6019 0.4943 0.4945
9 600.4999 0.8838 0.884

5

0 1011.8756 0.9764 0.9765
1 1276.6832 0.9977 0.9978
2 1032.5779 0.9883 0.9885
3 912.4925 0.983 0.9831
4 973.5321 0.9883 0.9885
5 575.2078 0.5013 0.5016
6 931.3186 0.9779 0.978
7 735.8141 0.9379 0.9381
8 747.5837 0.9145 0.9146
9 755.3217 0.9739 0.974
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Table 5.7 Linear Best Separability - Jacobian Saliency Map - Classes 6, 7

True Best Separation Train JSMA
Class Class Point Separation Separation

6

0 523.5387 0.7164 0.7165
1 744.9751 0.924 0.9241
2 474.1108 0.6922 0.6923
3 584.34 0.7238 0.724
4 487.0512 0.6824 0.6825
5 609.8284 0.5966 0.5966
6 461.7968 0.5002 0.5003
7 675.398 0.9066 0.9067
8 581.7034 0.5795 0.5796
9 615.4827 0.8995 0.8996

7

0 826.7217 0.934 0.9341
1 1123.2175 0.9923 0.9925
2 844.6525 0.9646 0.9647
3 805.3618 0.9506 0.9507
4 784.0894 0.956 0.9561
5 562.3694 0.5418 0.5419
6 797.0386 0.9388 0.939
7 452.6432 0.5023 0.5026
8 633.4204 0.7368 0.7369
9 587.8089 0.8686 0.8688
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Table 5.8 Linear Best Separability - Jacobian Saliency Map - Classes 8, 9

True Best Separation Train JSMA
Class Class Point Separation Separation

8

0 821.2453 0.9323 0.9323
1 1087.2327 0.9895 0.9896
2 726.8218 0.9318 0.9319
3 771.1901 0.9325 0.9327
4 735.4302 0.9378 0.9379
5 693.8133 0.7844 0.7845
6 726.5925 0.8955 0.8956
7 783.8004 0.9563 0.9564
8 561.2151 0.5005 0.5007
9 688.0899 0.9505 0.9505

9

0 871.8646 0.9492 0.9493
1 1117.0811 0.9917 0.9918
2 799.3414 0.9529 0.953
3 806.9166 0.9519 0.9519
4 791.4185 0.9574 0.9574
5 623.7709 0.6316 0.6317
6 799.9306 0.9399 0.9399
7 633.1024 0.8781 0.8782
8 597.2288 0.6318 0.632
9 447.5632 0.503 0.503
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5.2.2 Per-Input OOD Threshold Comparison

In this section, we show a different method of using the CPLs obtained to compare them to
the training set.

We consider two different categories of CPLs: those that are In-Distribution (InD) cases and
those that are Out-Of-Distribution (OOD) cases. As mentioned in Section 4, we identify
these two different categories by using a linear threshold based likelihood measure, where
those images with CPLs that fall above the threshold are considered as OOD and those that
are below the threshold are considered InD. Categorizing the images as InD or OOD could
be used both to filter the InD aggressive test cases and to ward off the OOD test cases.

As mentioned in Section 4.7.1, experiments in this section were performed on ten different
network structures, as well as five additional instances of one of these structures (v0). The
recognition precisions of the ten trained structures are shown in Table 5.9 and recognition
precisions of the five trained instances are shown in Table 5.10.

Table 5.9 Precision Measures Across the Ten Network Structures

network train test
v0 99.1 91.5
v1 98.5 91.6
v2 98.2 92.1
v3 95.7 92.9
v4 94.4 92.4
v5 98.2 91.3
v6 98.4 91.1
v7 98.2 91.7
v8 95.1 92.7
v9 94.3 92.2

We start by computing the training set’s average and standard deviation of all the training
images for a specific class, using Equations 4.6 and 4.7, respectively. Once we’ve obtained
the average and standard deviation, we can use Equation 4.8 to normalize the CPLs of each
input image with respect to the class it comes from. This would allow them to directly be
compared to any arbitrary sigma-order threshold.

In our case, we consider the linear thresholds of 1.5, 2.0, and 3.0 orders of sigma. For
the purposes of comparison, we also consider an infinite sigma threshold, which would be
equivalent to having no upper threshold, named "none". These thresholds are based on the
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Table 5.10 Precision Measures Across the Five Instances from v0

network train test
v0.0 98.3 91.0
v0.1 98.2 91.9
v0.2 97.7 91.5
v0.3 97.9 91.5
v0.4 98.0 91.8

number of standard deviations above the mean of each class’ training set. As per Equations
4.9a and 4.9b, each image is directly compared to the chosen threshold, to determine whether
the image should be considered as Out-Of-Distribution or In-Distribution.

In our experiments, we compute the respective separation of all the images when applying
the threshold at various places corresponding to different sigma values with respect to the
training set. Logically, as the threshold value decreases, more and more cases are considered
as OOD, which allows a certain level of control in how strictly to separate them.

As previously mentioned in Section 4.7.1, we use ten different architecture structures and
five different architecture instances in our experiments to reduce the bias of having a single
architecture. For better readability of our results and to use the space more efficiently, we
simply show the average, minimum, and maximum values of the results across the different
structures and across the different instances.

Table 5.11 InD Distribution of Training and Test Sets Across All Network Structures

Set SepTh
InD%

Avg Min Max

train
None 100 100 100
3.0 98.6 98.5 98.7
2.0 95.4 95.3 95.6
1.5 91.8 91.6 92.2

test
None 100 100 100
3.0 95.7 94.6 97.4
2.0 91.6 90.3 94.3
1.5 87.9 85.6 91

We present in Table 5.11 the InD% values for the training and testing images of the ten
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Table 5.12 InD Distribution of Training and Test Sets Across All Instances from v0

Set SepTh
InD%

Avg Min Max

train
None 100 100 100
3.0 98.6 98.5 98.7
2.0 95.4 95.3 95.4
1.5 91.7 91.6 92

test
None 100 100 100
3.0 95.8 95.6 96
2.0 91.2 90.8 91.6
1.5 87 86.3 87.9

structures. Defined in Equation 4.13, this measure represents the percentage of cases that are
found as in-distribution for each threshold value. In this table, we see a very large number of
training images (above 98%) within the distribution at 3.0 orders of sigma, and the number
slightly decreases as the order of sigma decreases, but remains above 90% even at 1.5 orders
of sigma. Similarly, the testing images for all structures start with a separation average
above 95% for 3.0 orders of sigma and continue to decrease while remaining above 85% for
1.5 orders of sigma. Of course, with no separation threshold, InD% remains at 100% as
there is no separation being performed. The high values for InD% after separation are to be
expected, as we are comparing the training and testing images of a particular class to that
class’s training images themselves. Thus, the training set should in fact mostly be within
distribution, and since the train and test sets were sampled from the same original set of
images, it is expected that the testing set also have very high values of InD%.

Table 5.12 shows the InD% values for the training and testing images of the ten instances.
In this table we notice very similar trends as those seen for Table 5.11. InD% values for the
training set remain above 91% at SepTh = 1.5 for all instances, and those for the testing set
remain above 86%.

Next, we report the results obtained from our experiments for the adversarial attacks and
the affine transformations.

We see in Table 5.13 the results for the adversarial attacks for each order of sigma for the
ten structures. In this table, the average (Avg), minimum (Min), and maximum (Max) No-
Harm% values over all ten architectures can once again be found, as well as those for the
OOD% measure, as defined in Equations 4.11 and 4.12 respectively. We also include the
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Table 5.13 Separation Measures Across All Ten Structures: Adversarial Attacks

Attack SepTh
OOD% No-Harm% Misclassified% CorrClassified%

Avg Min Max Avg Min Max Avg Min Max Avg Min Max

cw

none <0.05 <0.05 <0.05 15.8 0.4 32.2 84.2 67.8 99.6 15.8 0.4 32.2

3.0 33.9 19.4 62.4 49.5 35.5 62.9 50.5 37.1 64.5 15.6 0.4 31.6

2.0 44.6 27.5 73.3 59.7 47.7 73.8 40.3 26.2 52.3 15.2 0.3 30.5

1.5 51.2 33.4 79.7 65.8 54.6 80.1 34.2 19.9 45.4 14.6 0.3 29.3

df

none <0.05 <0.05 <0.05 16 5.5 26.6 84 73.4 94.5 16 5.5 26.6

3.0 46.7 24.8 62.2 60.4 35.7 72.8 39.6 27.2 64.4 13.7 5.2 25.7

2.0 55.7 39.4 67.8 68.4 48.5 76.9 31.6 23.1 51.5 12.7 4.6 24.7

1.5 61 48.1 72.9 72.9 55.9 79.6 27.1 20.4 44.1 11.9 3.8 23.6

fgrad

none <0.05 <0.05 <0.05 7.9 3.8 11.7 92.1 88.3 96.2 7.9 3.8 11.7

3.0 74.1 34 100 76.8 40.2 100 23.2 <0.05 59.8 2.7 <0.05 6.3

2.0 84.7 52.4 100 86.5 57.3 100 13.5 <0.05 42.7 1.8 <0.05 4.9

1.5 89.2 62.5 100 90.5 66.4 100 9.5 <0.05 33.6 1.3 <0.05 3.9

jsma

none <0.05 <0.05 <0.05 11.3 8.7 14.4 88.7 85.6 91.3 11.3 8.7 14.4

3.0 69.6 52.2 86.6 77.5 58.8 91.4 22.5 8.6 41.2 7.9 4.7 10.1

2.0 77.8 63.8 89.4 85.2 69.8 94.8 14.8 5.2 30.2 7.4 4.5 9.7

1.5 81.8 70.3 90.9 88.9 76 96.1 11.1 3.9 24 7.1 4.4 9.1
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Table 5.14 Separation Measures Across All Five Instances: Adversarial Attacks

Attack SepTh
OOD% No-Harm% Misclassified% CorrClassified%

Avg Min Max Avg Min Max Avg Min Max Avg Min Max

cw

none <0.05 <0.05 <0.05 28.7 26.9 31.2 71.3 68.8 73.1 28.7 26.9 31.2

3.0 17.6 15.3 19.3 46 44.5 46.6 54 53.4 55.5 28.5 26.7 31

2.0 26.2 23.9 27.8 54 52.6 54.4 46 45.6 47.4 27.8 26 30.3

1.5 32.4 30.4 33.8 59.3 58 59.8 40.7 40.2 42 26.9 25 29.4

df

none <0.05 <0.05 <0.05 21.6 20.3 22.8 78.4 77.2 79.8 21.6 20.3 22.8

3.0 49.2 45.7 51.3 69.9 66.9 73.2 30.1 26.8 33.1 20.7 19.3 21.8

2.0 56.2 54.5 56.7 76.3 75.3 77.8 23.8 22.2 24.7 20.1 18.8 21.2

1.5 59.9 58.7 60.8 79.2 78 80.5 20.8 19.5 22 19.4 18.1 20.4

fgrad

none <0.05 <0.05 <0.05 8.2 8 8.6 91.8 91.4 92 8.2 8 8.6

3.0 95.5 91.8 99.7 95.7 92.1 99.7 4.3 0.3 7.9 0.2 <0.05 0.4

2.0 99.1 98.1 100 99.1 98.2 100 0.9 <0.05 1.8 <0.05 <0.05 0.08

1.5 99.7 99.3 100 99.7 99.3 100 0.3 <0.05 0.7 <0.05 <0.05 <0.05

jsma

none <0.05 <0.05 <0.05 10 10 10 90 90 90 10 10 10

3.0 47 45.7 48.5 56.8 55.6 58.3 43.2 41.7 44.4 9.9 9.8 9.9

2.0 59 57.5 60.3 68.5 67 69.8 31.5 30.2 33 9.5 9.5 9.6

1.5 65.6 64 66.8 74.8 73.3 76 25.2 24.1 26.8 9.2 9.1 9.3
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results for the Misclassified% and CorrClassified% measures, defined in Equations 4.14
and 4.15, respectively. On average, for all attacks, we start with very low No-Harm% values
below 20% when no threshold is placed (equivalent to SepTh =∞ ). The Misclassified% rate
is high, in some cases reaching values above 90%, and the CorrClassified% rate is equivalent
to the low No-Harm% values since no separation is performed at this point. When applying
a SepTh of 3, we see a large increase in No-Harm% cases, with averages above 50% and
reaching high seventies for Fast Gradient and Jacobian Saliency Maps. Impressively, these
large increases occur with a relatively low decrease of CorrClassified% values. For example,
for Deepfool, applying a SepTh of 3 increases the non-harmful cases by 44% while only
decreasing the false negatives by less than 3%. Of course, reducing the threshold value also
increases the OOD% measures, and by filtering out these OOD images also reduces the error
observed with the Misclassified% value. As we continue to decrease SepTh, we continue to
see these trends. OOD% and No-Harm% values keep increasing while Misclassified% and
CorrClassified% continue to decrease.

As for the results of the adversarial attacks on the five architecture instances, though they are
slightly different, the same trends can still be seen and are presented in Table 5.14. Without a
threshold, No-Harm% values are all on average below 30%, whileMisclassified% values are
above 70%. As we decrease the threshold by reducing the order of sigma to 3, the No-Harm%
jumps to 96% for Fast Gradient, 70% for DeepFool, 57% for Jacobian Saliency Maps, and
46% for Carlini & Wagner. Meanwhile, in most cases, the CorrClassified% values decrease
by less than 1%. As we continue to reduce the order of sigma to 1.5, the No-Harm% measure
continues to increase, reaching almost 100% for Fast Gradient, 79% for DeepFool, 75% for
Jacobian Saliency Maps, and 59% for the Carlini & Wagner. Once again, in most cases, the
CorrClassified% values decrease by less than 3%. Of course, our approach’s success varies
across different attacks. Though Fast Gradient sees an enormous increase of more than 80%
for No-Harm%, the CorrClassified% value jumps down to 0.2% when SepTh = 3, and goes
down below 0.05% as we further decrease SepTh. However, it is also important to note that
CorrClassified% was very low to begin with, where the decrease is only by about 8%, and
that this behaviour for Fast Gradient seems to be unique among all the other attacks, where
the average decreases are all less than 3%.

The clear correlation between the different thresholds and obtained measures shows that it
is possible to filter out many incorrectly predicted images, at the cost of a very small amount
of originally correctly predicted images being filtered out as well. This allows for flexibility
in deciding how many false positives one would like to tolerate to successfully protect against
a much larger number of false negatives.
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Table 5.15 Separation Measures Across All Ten Structures: Transformations - Center Rota-
tions

Interval SepTh
OOD% No-Harm% Misclassified% CorrClassified%

Avg Min Max Avg Min Max Avg Min Max Avg Min Max

6

none <0.05 <0.05 <0.05 92.8 90.1 96.2 7.2 3.8 9.9 92.8 90.1 96.2
3.0 4.6 1.1 8.1 93.8 90.7 97.3 6.2 2.7 9.3 89.2 86.2 92.3
2.0 8.5 2.9 12.9 94.4 91.2 97.7 5.6 2.3 8.9 85.8 82.3 89.2
1.5 12 5.2 16.6 94.8 91.5 98 5.2 2 8.5 82.8 78.9 86.3

12

none <0.05 <0.05 <0.05 80 69 89.9 20 10.1 31 80 69 89.9
3.0 12 2.2 21.4 83.3 71.6 93.8 16.7 6.3 28.4 71.4 62.1 79.7
2.0 19.9 8 32.2 85.3 74.3 95 14.7 5 25.7 65.4 55 73.2
1.5 25.9 12.2 39.8 86.8 76.9 95.8 13.2 4.2 23.1 60.9 49.7 68.4

18

none <0.05 <0.05 <0.05 59.7 50.1 72.8 40.3 27.2 49.9 59.7 50.1 72.8
3.0 24.7 4.2 45.1 70.3 55.6 89.7 29.7 10.3 44.4 45.6 36.8 56.1
2.0 36.1 10.9 55.9 75.4 59.3 92.7 24.6 7.3 40.7 39.3 28.5 48.6
1.5 43.6 15.7 64 78.7 61.9 94.2 21.3 5.8 38.1 35.1 23.4 46.1

24

none <0.05 <0.05 <0.05 44 37.7 53.1 56 46.9 62.3 44 37.7 53.1
3.0 36 4.6 60.5 64.6 44.4 84.9 35.4 15.1 55.6 28.6 18 39.8
2.0 48.8 12.3 74.3 72 48.6 89.9 28 10.1 51.4 23.2 12.9 36.3
1.5 56.7 20.1 81.2 76.7 53.1 93 23.3 7 46.9 20 10.3 33

30

none <0.05 <0.05 <0.05 32.3 26.9 39.9 67.7 60.1 73.1 32.3 26.9 39.9
3.0 42.1 6.8 69.2 61.2 37.5 83.7 38.8 16.3 62.5 19.1 10.2 30.7
2.0 55.3 15.7 81.6 70.7 42.5 89.9 29.3 10.1 57.5 15.4 7.5 26.9
1.5 63.2 22.9 87.7 76.4 47.4 93.6 23.6 6.4 52.6 13.3 5.9 24.5
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Table 5.16 Separation Measures Across All Five Instances: Transformations - Center Rota-
tions

Interval SepTh
OOD% No-Harm% Misclassified% CorrClassified%

Avg Min Max Avg Min Max Avg Min Max Avg Min Max

6

none <0.05 <0.05 <0.05 91.4 90.6 92.3 8.6 7.8 9.5 91.4 90.6 92.3
3.0 3.3 2.9 3.9 92 91.1 92.8 8 7.2 8.9 88.7 87.8 89.6
2.0 6.9 6.4 7.9 92.4 91.6 93.3 7.6 6.7 8.4 85.5 84.4 86.3
1.5 10.4 9.6 11.7 92.8 92 93.6 7.2 6.4 8 82.4 81 83.2

12

none <0.05 <0.05 <0.05 76.4 75 79.9 23.6 20.1 25 76.4 75 79.9
3.0 7.1 6.1 8.1 78.3 77 81.3 21.8 18.7 23 71.1 68.9 74.6
2.0 14.1 11.9 15.6 79.7 78.5 82.4 20.3 17.6 21.5 65.6 63.3 68.1
1.5 19.5 16.5 21.1 80.9 79.4 83.3 19.1 16.7 20.6 61.4 58.9 63.2

18

none <0.05 <0.05 <0.05 53.4 52.3 54.6 46.6 45.4 47.7 53.4 52.3 54.6
3.0 13.6 10.2 17 60 58.3 63.3 40 36.7 41.7 46.5 43.8 48.3
2.0 23.5 18.4 27 64.4 62.4 67.7 35.6 32.3 37.6 41 37.7 44
1.5 31 24.6 34.5 67.8 65.1 70.7 32.2 29.4 34.9 36.7 33.7 40.5

24

none <0.05 <0.05 <0.05 38.3 37.8 39.3 61.7 60.7 62.3 38.3 37.8 39.3
3.0 18.6 13.8 22.5 48.9 46.3 52.3 51.1 47.7 53.7 30.3 25.7 34
2.0 30.9 25.3 34.7 55.9 53.4 59.8 44.1 40.2 46.6 25 20.7 28.9
1.5 39.5 33.8 43.3 61.1 59.1 64.7 38.9 35.3 41 21.5 17.6 25.2

30

none <0.05 <0.05 <0.05 29.1 28 30.5 70.9 69.6 72 29.1 28 30.5
3.0 19.9 16 23.9 40.9 39.3 43.6 59.1 56.4 60.7 21 17.8 23.6
2.0 31.8 27.5 35.5 49.1 47.3 50.6 50.9 49.4 52.7 17.3 14.4 19.8
1.5 40.8 35.9 44.3 55.9 53.5 57.5 44.1 42.5 46.5 15.1 12.3 17.6
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Table 5.17 Separation Measures Across All Ten Structures: Transformations - Corner Rota-
tions

Interval SepTh
OOD% No-Harm% Misclassified% CorrClassified%

Avg Min Max Avg Min Max Avg Min Max Avg Min Max

4

none <0.05 <0.05 <0.05 87.8 82.7 92 12.2 8 17.3 87.8 82.7 92
3.0 8.3 2.2 13.6 90.2 85.1 94.8 9.8 5.2 14.9 81.8 79.1 87.1
2.0 14.6 5.1 21.8 91.4 86.1 95.6 8.6 4.4 13.9 76.8 72.8 82.7
1.5 19.8 8.1 27.9 92.3 86.8 96.2 7.7 3.8 13.2 72.5 67.2 78.8

8

none <0.05 <0.05 <0.05 69.7 60.7 77.9 30.3 22.1 39.4 69.7 60.7 77.9
3.0 31.7 13.3 44.3 82.8 72 94.5 17.2 5.6 28 51.1 43.3 58.7
2.0 45.2 22.1 58.5 87.6 76.2 96.4 12.4 3.6 23.8 42.4 33.9 54.1
1.5 53.4 29.7 66.7 90.4 79.4 97.3 9.6 2.7 20.6 37 28.2 49.7

12

none <0.05 <0.05 <0.05 47.2 40.7 58.7 52.8 41.3 59.3 47.2 40.7 58.7
3.0 58 34.5 73.4 80.9 66.1 96.7 19.1 3.3 33.9 22.9 15.9 31.6
2.0 71.8 47.9 85.4 88.7 74.3 98.5 11.3 1.5 25.8 16.9 11.2 26.4
1.5 78.7 56 89.9 92.5 78.7 99.1 7.5 0.9 21.3 13.8 8.3 22.7

16

none <0.05 <0.05 <0.05 33.3 25.5 43.6 66.7 56.4 74.5 33.3 25.5 43.6
3.0 69.1 48.5 88 81.2 61.3 94 18.8 6 38.7 12 6 16.2
2.0 81.2 61.2 94.7 89.5 74.4 97.9 10.5 2.1 25.6 8.3 3.2 13.3
1.5 86.6 67.9 96.8 93.1 79.4 98.9 6.9 1.1 20.6 6.5 2.2 11.6

20

none <0.05 <0.05 <0.05 22.6 14.9 29.1 77.4 70.9 85.1 22.6 14.9 29.1
3.0 76.1 55.6 89.7 83.8 64.8 93.9 16.2 6.1 35.2 7.7 3.3 10.6
2.0 87 72.2 96.2 91.8 77.7 97.8 8.2 2.2 22.3 4.8 1.6 8.4
1.5 91.4 81 98 94.9 85.9 99 5.1 1 14.1 3.5 1 7

24

none <0.05 <0.05 <0.05 16.6 9.6 22 83.4 78 90.4 16.6 9.6 22
3.0 80.2 67.1 91.6 85.5 72.6 94.7 14.5 5.3 27.5 5.3 2.8 7.1
2.0 90 81.6 97.2 93 84.4 98.4 7 1.6 15.6 3.1 1.2 5.1
1.5 93.8 88.2 98.8 96 89.6 99.3 4 0.7 10.4 2.2 0.6 4.3
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Table 5.18 Separation Measures Across All Five Instances: Transformations - Corner Rota-
tions

Interval SepTh
OOD% No-Harm% Misclassified% CorrClassified%

Avg Min Max Avg Min Max Avg Min Max Avg Min Max

4

none <0.05 <0.05 <0.05 86.2 85.4 86.9 13.8 13.1 14.7 86.2 85.4 86.9
3.0 5.2 4.5 5.7 87.6 86.7 88.4 12.4 11.6 13.4 82.4 82 82.9
2.0 10.8 9.4 11.9 88.7 87.6 89.6 11.3 10.4 12.4 77.9 77.1 78.7
1.5 15.8 13.8 17.1 89.7 88.4 90.5 10.3 9.5 11.6 73.9 72.7 74.9

8

none <0.05 <0.05 <0.05 66.2 64.5 68.7 33.8 31.3 35.5 66.2 64.5 68.7
3.0 19.2 13.7 21.4 74.2 71.9 75.3 25.8 24.8 28.1 55 50.8 60.2
2.0 34.3 28.6 38.4 80.7 79.2 82.5 19.3 17.5 20.8 46.4 41.9 50.7
1.5 45.3 39.5 50.2 85.4 83.2 87.4 14.6 12.6 16.9 40.1 35.6 44.9

12

none <0.05 <0.05 <0.05 42.4 40.6 46.2 57.6 53.8 59.5 42.4 40.6 46.2
3.0 44.6 39.5 52.7 71.2 65.8 75.2 28.8 24.8 34.2 26.6 22.5 30.9
2.0 63.2 58.5 68.5 82.8 78.7 86.5 17.2 13.5 21.3 19.6 15.8 24.2
1.5 73.3 68.8 77.5 89.1 87.3 91.6 10.9 8.5 12.7 15.8 12.5 19.8

16

none <0.05 <0.05 <0.05 30 28 31.3 70 68.8 72 30 28 31.3
3.0 60.2 56.5 65.4 74.7 72.1 79 25.3 21 27.9 14.5 12.6 16.7
2.0 76.7 74 79.7 86.9 83.3 89.6 13.1 10.5 16.7 10.2 8.4 11.6
1.5 85 83.5 86.4 92.9 90.6 94.3 7.1 5.7 9.4 7.8 6.2 8.8

20

none <0.05 <0.05 <0.05 20.2 17.1 21.9 79.8 78.1 82.9 20.2 17.1 21.9
3.0 73.4 66.8 79 82.1 74.8 87 17.9 13.1 25.2 8.6 8 10.3
2.0 87.4 81.8 91.1 92.5 86.6 95.8 7.5 4.2 13.4 5.1 4.1 6
1.5 93 89.7 95 96.4 92.9 98.2 3.6 1.8 7.1 3.5 2.5 4.4

24

none <0.05 <0.05 <0.05 15 12.5 16.8 85 83.2 87.5 15 12.5 16.8
3.0 82.6 76.1 87.5 88 81.8 92.2 12 7.8 18.2 5.4 4.6 7.4
2.0 93 87.3 95.4 95.7 90.6 98 4.3 2 9.5 2.7 2 3.3
1.5 96.5 93.2 97.7 98.1 95.2 99.4 1.9 0.6 4.8 1.6 1 2
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Table 5.19 Separation Measures Across All Ten Structures: Transformations - Translations

Interval SepTh
OOD% No-Harm% Misclassified% CorrClassified%

Avg Min Max Avg Min Max Avg Min Max Avg Min Max

1

none <0.05 <0.05 <0.05 90.4 86.6 94.7 9.6 5.3 13.4 90.4 86.6 94.7
3.0 9.3 5.4 11.7 92.4 87.8 96.4 7.6 3.6 12.2 83.1 80 86.5
2.0 16.3 11.1 19.4 93.5 88.9 97 6.5 3 11.1 77.1 72.4 81.8
1.5 22.1 16.3 26 94.2 89.8 97.4 5.8 2.6 10.2 72.2 66.1 77.9

3

none <0.05 <0.05 <0.05 44.1 34 55.9 55.9 44.1 66 44.1 34 55.9
3.0 57.1 41.7 71.3 78.6 65.4 87.8 21.4 12.2 34.6 21.5 15.4 27.4
2.0 71 56.1 82.5 87 76.3 93.5 13 6.5 23.7 16 10.9 21
1.5 78.1 64.7 87.5 91.1 81.9 96 8.9 4 18.1 13 8.5 17.4

5

none <0.05 <0.05 <0.05 14.1 9.9 17.7 85.9 82.3 90.2 14.1 9.9 17.7
3.0 63.3 38.3 78.6 70.6 48.2 85 29.4 15.1 51.8 7.3 4.6 10
2.0 77.7 52.7 90.5 83.1 61.2 94.7 16.9 5.3 38.8 5.5 3.4 8.5
1.5 84.2 61.6 94.3 88.6 69 97.4 11.4 2.6 31 4.4 2.7 7.4

7

none <0.05 <0.05 <0.05 8.9 6 13 91.1 87 94 8.9 6 13
3.0 65 34.7 90.5 68.7 39.4 92.6 31.3 7.4 60.6 3.7 1.8 6.8
2.0 79.2 53.1 97.4 81.6 56.8 98.3 18.4 1.7 43.2 2.4 0.9 5.2
1.5 85.8 65.6 99 87.6 68.7 99.5 12.4 0.5 31.3 1.7 0.5 4.2

9

none <0.05 <0.05 <0.05 6.4 4.1 9.6 93.6 90.4 96 6.4 4.1 9.6
3.0 68.2 37 96.7 70.5 40.8 97.2 29.5 2.8 59.2 2.2 0.3 4.2
2.0 81.6 60 99.6 82.9 62.4 99.7 17.1 0.3 37.6 1.3 0.08 2.6
1.5 87.9 73.2 99.9 88.8 73.9 99.9 11.2 0.07 26.1 0.9 <0.05 1.8

11

none <0.05 <0.05 <0.05 8.1 5 13.6 91.9 86.4 95 8.1 5 13.6
3.0 70.7 29.1 98.9 73.2 35.6 99 26.8 1 64.4 2.5 0.06 7.2
2.0 83.3 51.9 99.8 84.6 56 99.9 15.4 0.2 44 1.3 <0.05 4.1
1.5 89 66.4 99.9 89.8 69.2 99.9 10.2 0.06 30.8 0.9 <0.05 2.8

13

none <0.05 <0.05 <0.05 10.4 6.7 14.1 89.6 85.9 93.3 10.4 6.7 14.1
3.0 69.7 24.8 99.7 73.2 33.7 99.7 26.8 0.3 66.3 3.5 <0.05 8.9
2.0 83.2 50.2 99.9 85.2 55.6 100 14.8 0.05 44.5 2 <0.05 5.3
1.5 89.2 64.2 100 90.5 67.7 100 9.5 <0.05 32.3 1.4 <0.05 4

15

none <0.05 <0.05 <0.05 12.4 8.3 16.1 87.6 83.9 91.7 12.4 8.3 16.1
3.0 65.2 17.1 99.7 69.9 25.9 99.7 30.1 0.3 74.1 4.7 <0.05 8.9
2.0 79.6 44.6 99.9 82.2 49.5 99.9 17.8 0.08 50.5 2.6 <0.05 7.2
1.5 86.4 60.5 100 88.2 63.2 100 11.8 <0.05 36.8 1.8 <0.05 6.2
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Table 5.20 Separation Measures Across All Five Instances: Transformations - Translations

Interval SepTh
OOD% No-Harm% Misclassified% CorrClassified%

Avg Min Max Avg Min Max Avg Min Max Avg Min Max

1

none <0.05 <0.05 <0.05 88 86.7 88.9 12 11.1 13.3 88 86.7 88.9
3.0 7.6 6.9 8.5 89.5 88.5 90.2 10.5 9.8 11.5 81.9 81.1 82.7
2.0 15.1 14.5 15.8 90.7 89.9 91.2 9.3 8.8 10.1 75.6 75.1 76.3
1.5 21.6 21.3 22.4 91.7 91 92.1 8.3 7.9 9 70 69.7 70.7

3

none <0.05 <0.05 <0.05 41.5 37.2 44.4 58.5 55.6 62.8 41.5 37.2 44.4
3.0 48.7 45.1 52 73.4 70.4 76.1 26.6 23.9 29.6 24.6 23 26.4
2.0 69.8 66.1 72.9 86.8 84.4 88.5 13.2 11.5 15.6 16.9 15.5 18.3
1.5 79.8 76.9 82 92.6 90.8 93.7 7.4 6.3 9.2 12.8 11.7 14

5

none <0.05 <0.05 <0.05 12.9 11.1 14.4 87.1 85.7 88.9 12.9 11.1 14.4
3.0 69 58.8 77.3 75.3 64.6 82.7 24.7 17.4 35.4 6.3 5.3 7.5
2.0 83.6 74.7 89.5 88 79.1 93.2 12 6.8 21 4.4 3.7 5.4
1.5 90.3 84.8 94.1 93.8 88.4 97 6.2 3.1 11.6 3.4 2.9 4.3

7

none <0.05 <0.05 <0.05 8.5 6.3 10.4 91.5 89.6 93.7 8.5 6.3 10.4
3.0 82.1 73.8 91.9 84.6 76.3 93.1 15.4 6.9 23.7 2.5 1.2 3.3
2.0 94.4 92 98.1 95.7 93.5 98.6 4.3 1.5 6.5 1.3 0.4 1.9
1.5 97.7 96.5 99.4 98.5 97.8 99.6 1.5 0.4 2.2 0.8 0.2 1.3

9

none <0.05 <0.05 <0.05 7.5 5.8 8.3 92.5 91.7 94.3 7.5 5.8 8.3
3.0 90.7 83.4 98 91.4 85 98.2 8.6 1.8 15 0.7 0.2 1.6
2.0 98 95.7 99.8 98.2 96.2 99.8 1.8 0.2 3.8 0.2 <0.05 0.5
1.5 99.4 98.4 100 99.4 98.6 100 0.6 <0.05 1.4 0.08 <0.05 0.2

11

none <0.05 <0.05 <0.05 8.7 7.1 9.2 91.3 90.8 92.9 8.7 7.1 9.2
3.0 97.3 94.7 99.1 97.5 95 99.3 2.5 0.7 5 0.2 0.05 0.3
2.0 99.6 99.1 99.9 99.6 99.2 99.9 0.4 0.06 0.8 <0.05 <0.05 0.07
1.5 99.9 99.7 100 99.9 99.8 100 0.09 <0.05 0.2 <0.05 <0.05 <0.05

13

none <0.05 <0.05 <0.05 9.5 7.6 11 90.5 89 92.4 9.5 7.6 11
3.0 98.8 97.3 99.9 98.9 97.5 99.9 1.1 0.1 2.5 0.1 <0.05 0.2
2.0 99.8 99.6 100 99.9 99.7 100 0.1 <0.05 0.3 <0.05 <0.05 <0.05
1.5 100 99.9 100 100 99.9 100 <0.05 <0.05 0.06 <0.05 <0.05 <0.05

15

none <0.05 <0.05 <0.05 10.6 8.8 13.6 89.4 86.4 91.2 10.6 8.8 13.6
3.0 98.2 96.8 99.8 98.3 97 99.8 1.7 0.2 3 0.1 <0.05 0.2
2.0 99.8 99.7 100 99.8 99.7 100 0.2 <0.05 0.3 <0.05 <0.05 <0.05
1.5 99.9 99.9 100 100 99.9 100 0.05 <0.05 0.09 <0.05 <0.05 <0.05
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In Tables 5.15 and 5.16, results for the same four measures are presented for images that
were transformed with Center Rotation (as per Section 4.7.3) for the ten structures and
the five instances, respectively. The first column, titled Interval, represents the interval of
transformation being applied. We also present the results of Center Rotations on the Struc-
tures, Center Rotations on the Instances, Translations on the Structures, and Translations
on the Instances, in Tables 5.17, 5.18, 5.19 and 5.20, respectively. Similarly to the adversarial
attacks, we consistently see that for all transformations both the No-Harm% and OOD%
measures decrease andMisclassified% and CorrClassified% measures increase as we raise
the sepTh value. In most cases, we also see the OOD% measure consistently increase as we
increase the parameter of transformation.

To visualize the results for each test case, after computing the images’ CPLs we place them as
points on a cartesian map, for each class. Similarly to previous sections, each plot shows the
CPLs calculated for the train and test sets of that class, along with ten columns representing
the ten different network classes and indicating the network’s prediction of the image in
question, whether it is correct or incorrect. For example, a point in the best3 column of a
class 0 plot signifies that the image was originally from class 0 but has been predicted to be
from class 3.

For each class, we visualize a separation threshold once again at the same orders of sigma
seen in the tables presented: 1.5, 2.0, 3.0, and none (no threshold). Each threshold can be
seen on the plot as the black line in the train column.

Examples of the Jacobian Saliency Maps visualizations for architecture v0.0 can be found in
Figure 5.5 for class 1, which shows a plot for each of the four sigma thresholds. Similarly,
for the purposes of comparison, we also present the results for class 3 in Figure 5.6. These
plots were chosen as useful examples purely for demonstrative purposes, as there would be
too many plots to display them all. There are indeed visualizations that identify many more
OOD cases (such as in Fast Gradient Sign method) and some that identify less (such as for
Carlini & Wagner). All other results can also be illustrated in the same way, and we invite
the reader to consult Tables 5.13 and 5.14 for more information and to compare between the
different attacks and sigma thresholds.

Those images that fall below the black threshold t can be thought of as InD, as described in
Section 4.5, while those that fall above the threshold are considered OOD. To help with visu-
alizing, each column is split into two colours: green, which represents either the incorrectly
predicted images that are OOD (can be easily warded off) or any correctly predicted image
(not dangerous), and red, which represents the incorrectly predicted image that are InD.

In our visualizations, we can clearly see how increasing the sigma threshold classifies more
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sepTh = 1.5 sepTh = 2.0

sepTh = 3.0 sepTh = none

Figure 5.5 CPL Plots for Jacobian-based Saliency Maps Attack Per Order of Sigma: Archi-
tecture v0.0, Class 1
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sepTh = 1.5 sepTh = 2.0

sepTh = 3.0 sepTh = none

Figure 5.6 CPL Plots for Jacobian-based Saliency Maps Attack Per Order of Sigma: Archi-
tecture v0.0, Class 3
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images as In-Distribution. For example, in Figure 5.5, for Architecture v0.0’s class 1 of Ja-
cobian Saliency Maps attacks, we manage to identify more than 95% of incorrectly predicted
OOD cases when considering a threshold of 1.5 orders of sigma. As we increase the threshold
value to 2.0 and then 3.0 orders of sigma, the numbers fall to approximately 90% and then
80% respectively, for some best predictions. For the latter, in some cases the values fall below
70%, such as for best3 which is at 67% and best5 which is at 59%. Of course, when looking
at an infinite value threshold (i.e. no effective threshold), we see 0% of cases as OOD.

A similar trend can be seen in Figure 5.6, for Architecture v0.0’s class 3 of Jacobian Saliency
Maps attacks. For this class, when separating at 1.5 orders of sigma, the first thing we notice
is that there is a lot of red on the graph. The values across different prediction classes varies
greatly. For example, we manage to identify only 36% and 29% of incorrectly predicted
OOD cases for best0 and best5 respectively. On the other hand, for best1 and best9, the
values shoot up to 85% and 98% respectively. As we saw for class 1, we notice for class 3
that as we increase the threshold, the number of identified incorrectly predicted OOD cases
decreases, however we still see a wide range of results for this class. When the threshold is at
2.0 orders of sigma, best0 and best5 have 25% and 21% of identified cases respectfully, while
best1 and best9 are at 73% and 96%. When the threshold is at 3.0 orders of sigma, best0
and best5 have 12% and 10% of identified cases respectfully, while best1 and best9 are at
50% and 87%. This is an example of one of the worst classes and shows how different classes
behave differently to the same approach. The trends of increasing the sigma value are also
further demonstrated by the separation tables (Tables 5.11, 5.12, 5.13, 5.14) as we compare
the numbers for different sigma units and notice that in all cases, for all attacks and across
all architectures, both the No-Harm% and OOD% measures decrease as we raise the sepTh
value.

In all cases, we notice that the column for the correctly predicted classes (with green images)
tends to have very low CPLs, and rarely has images that are classified as out of distribution.
We also observe particular classes that tend to regularly have more incorrectly predicted
images labeled as In-Distributions, for all computed orders of sigma. Some attacks seem
to be more prone to creating images that fall within the train distributions, as opposed to
others that have many more images that are OOD. For example, when comparing the plots
in Figure 5.5 for class 1 we see some best prediction columns with image points that are
much further away than the training distribution than with other columns. This trend also
appears in Figure 5.6 for class 3.

Figures 5.7 and 5.8 show similar plots for Classes 0 and 6 respectively for translations when
the threshold is set to 1.5 orders of sigma. Similarly to the translation plots presented in
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Interval = 3 Interval = 7

Interval = 11 Interval = 15

Figure 5.7 CPL Plots for Transformation - Translation - sepTh = 1.5, Architecture v0.0,
Class 0
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Interval = 3 Interval = 7

Interval = 11 Interval = 15

Figure 5.8 CPL Plots for Transformation - Translation - sepTh = 1.5, Architecture v0.0,
Class 6
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Section 5.2.1, we create a plot for each true class as well as for each interval of transformation.
For lack of redundancy and to save space, we include examples of Intervals 3, 7, 11, and 15.

For Class 0, we notice that when the interval is 3 units, there are several columns such
as best3 and best6 that have many incorrectly predicted images still considered as within
distribution (shown in red). Upon increasing the interval to 7 units, most of these images get
identified as out of distribution. With higher intervals of 11 and 15, we reach a point where it
is rare that any of these images are considered as within the distribution. This demonstrates
how transforming an image generally brings it further away from the training distribution,
and thus the more the image is transformed, the more likely it is to be considered as out of
distribution, as the computational profile becomes more and more different.

The same can be noticed in Class 6, as we start off with several columns with many images
classified to be within distribution when the interval value is at 3 units. Then, as we increase
the interval of transformation, more and more images gradually become considered as out
of distribution of the training set, until it becomes very rare to find any images within
distribution.

For all adversarial attacks and affine transformations, further research can be performed to
further investigate the cases that are wrongly classified by the network, but nevertheless
categorized as In-Distribution. Depending on the application and field, cases like these could
be classified as bugs within the CNN and be sent back to the developers for inspection. If it
is decided by a human oracle, they may even be added to the training data as extra examples
for certain classification classes.

Our experiments also make way to further investigate computational profiles in the future
as a measure of robustness in a model, to indicate levels of vulnerability of a model when
it faced with aggressive testing or adversarial attacks. The ratio of aggressive tests that can
be fended off, presented in our experiments as OOD% may serve to indicate how well our
model can be protected against these cases.

This idea can be investigated even further when performing assessment by class, since the
behaviour of classes when faced with aggressive testing is different across the different classes.
Whether the computational profiles could be used to assess the robustness of a network on
a per-class basis would still need to be determined. But if so, the robustness could then be
assessed independently for each class and with respect to particular domain-based risk levels.
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CHAPTER 6 CONCLUSION

In this chapter, we review the work that has been done in this thesis and conclude with the
limitations of our experiments as well as future directions that additional research may take.

6.1 Summary of Work

In this thesis, we investigate the activation levels of CNNs and compare the computational
profiles of original training images to those of test cases that were not drawn from the same
distribution of the training sets. Namely, we investigate the use of synthetic test cases
obtained from affine transformations of legitimate inputs and from adversarial attacks.

We present a novel statistical white-box approach to investigate the "reasoning" of the deci-
sions that the network is making, based on the inference of a non-parametric model of vectors
of activation levels produced by the neurons in a network’s layers. These vectors are what we
introduce as computational profiles, and we present their likelihood as Computational Profile
Likelihood (CPL), which indicates the likelihood of a network’s prediction, when compared
to a standard input distribution. In the context of our experiments, a larger CPL represents
a less probable prediction.

We consider this a non-parametric variant of SADL [1]. Our approach also allows for more
refined analysis of each class, since it is class-based. Our proposed stochastic models have
been estimated during training, and in contrast to SADL which retrains the system, ours is
used without further retraining of the system and without the need of a secondary classifier
on any image features.

We compare the legitimate training and testing cases to inputs generated by applying affine
transformations or by attacking with adversarial attacks. We place them on plots to better
visualize their differences. When looking at the experimental CPL values, we also notice that
CPL distributions for training and test sets are very similar to eachother, and are often much
higher than those for the affine transformations and adversarial attacks.

We first attempt to differentiate the CPL’s of legitimate inputs from the unfamiliar inputs per-
set, by finding the best linear separation between the familiar training set and the unfamiliar
set. This shows several interesting trends, such that the CPLs for the correctly predicted
classes tend to be lower than those for the incorrectly predicted classes. We also find that for
most classes the best separation precisions between the training set and the set in question
are quite high and depend not only on the true class that they belong to but also on the best
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class they are predicted to be in. This demonstrates how different classes behave differently
and that the different classes can and should be assessed independently.

We then attempt to separate between legitimate inputs and unfamiliar inputs drawn from a
different distribution on a per-image basis, using a linear threshold set by particular orders of
sigma, where any case found above the threshold is considered as Out-Of-Distribution. In our
experiments, we succeed in separating between In-Distribution and Out-Of-Distribution cases
with respect to the training distribution, as the CPL’s for the affine and adversarial cases are
often significantly lower than those observed for the training sets. In our experiments, we
see that our OOD analysis of CPLs allows the successful identification and filtering of many
affine and adversarial cases, where our OOD identification ratio of incorrectly predicted and
harmful images is often quite high relative to a small decrease of correctly predicted images.

6.2 Limitations

Several of our experiments have been repeated on different networks that present fully con-
nected output layers with the RELU transfer function. Although these architectures are
quite common and frequent, obtained results are not generalizable to different structures and
additional experiments have to be performed and repeated.

Furthermore, our experiments were done using one large database of clothing images [2]. It
would thus be useful to perform more experiments on other datasets and other domains.

As for our generated images, we used a limited number of affine transformations (translation,
corner rotation, center rotation) and adversarial attacks(Fast Gradient, Jacobian Saliency
Map, DeepFool, Carlini & Wagner). Additional experiments should be repeated with more
types of transformations and attacks.

We also used a limited set of intervals for the transformations and a fixed set of hyper-
parameters for each attack. Once again, for generalizability, further experiments should be
run with more combinations of transformation intervals and attack hyper-parameters.

As mentioned in Section 4.7.2, in our experiments we considered neurons only the second
to last layer for computational efficiency and due to recent research suggesting that layer
sensitivity is more effective on the final layers of a network than on the initial layers for our
particular experiments using the MNIST database. Conversely, the deeper (initial) layers
are more effective for the CIFAR dataset, and so our presented results may not necessarily
generalize on all other datasets. Therefore more layers should be investigated to compute
the CPLs.
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6.3 Future Research

We focus on using our presented approach as an OOD detection tool to filter and classify
the computation likelihood of incoming inputs. However, future research could be done to
actually apply our approach as a defence against unusual cases in operational settings.

Potentially, the difficult and low-likelihood cases that our approach finds could be flagged as
unreliable predictions or bugs in the system to be reviewed by developers.

As mentioned in Section 6.2, future directions could include broadening the scope of experi-
ments by performing them on different datasets and models, with additional transformations,
attacks, intervals, and hyper-parameters. This would greater improve chances of generaliz-
ability and discovering additional patterns or trends.

Further research could also be performed on each class to understand their different charac-
teristics and why they behave so differently.

It would also be interesting to build on our work by using a combination of techniques, such
as our approach combined with the application of ensemble models (such as boosting or
bagging), to potentially further increase separability.
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APPENDIX A LINEAR BEST SEPARABILITY TABLES

This section includes all the detailed separation tables for the Per-Set Best Separation results
mentioned in section 5.2.1.
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Table A.1 Linear Best Separability - Carlini Wagner - Classes 0, 1, 2

True Best Separation Train CW
Class Class Point Separation Separation

0

0 486.413 0.6673 0.675
1 881.088 0.9643 1
2 501.9865 0.7389 0.7399
3 543.0706 0.6203 0.6207
4 588.5641 0.8446 0.8485
5 751.5596 0.8749 0.875
6 472.5352 0.5228 0.5228
7 1589.3591 0.9998 1
8 639.5854 0.7498 0.75
9 1203.2364 0.9998 1

1

0 754.4971 0.9095 0.9096
1 484.3397 0.5378 0.5381
2 757.9953 0.9428 0.9429
3 669.1065 0.8479 0.848
4 663.8182 0.9028 0.9068
5 823.4882 0.943 1
6 743.5708 0.9073 0.9268
7 - - -
8 767.7848 0.9285 0.9286
9 - - -

2

0 574.6692 0.7744 0.7746
1 1270.8184 0.9975 1
2 513.8088 0.7565 1
3 609.765 0.7691 0.7692
4 434.125 0.553 0.5534
5 637.4314 0.6665 0.6667
6 462.7645 0.5024 0.5026
7 1562.9799 0.9998 1
8 661.3385 0.795 0.8214
9 - - -
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Table A.2 Linear Best Separability - Carlini Wagner - Classes 3, 4, 5

True Best Separation Train CW
Class Class Point Separation Separation

3

0 586.5664 0.7873 0.7875
1 813.5144 0.9488 0.949
2 632.3241 0.8816 0.8828
3 548.2284 0.6358 0.6366
4 588.8298 0.8449 0.8453
5 815.773 0.9375 0.9375
6 628.055 0.7963 0.7967
7 1271.0368 0.9978 1
8 696.9212 0.8602 0.8602
9 - - -

4

0 709.192 0.8832 0.8833
1 898.3938 0.9687 0.9765
2 452.556 0.6476 0.6478
3 532.569 0.5929 0.593
4 530.3369 0.767 1
5 772.1786 0.8993 1
6 482.1886 0.5425 0.5427
7 1589.3591 0.9998 1
8 608.0472 0.6665 0.6667
9 - - -

5

0 1078.5612 0.9831 0.9867
1 1697.4489 0.9998 1
2 1081.5074 0.9914 1
3 1059.6019 0.995 1
4 1175.0918 0.9964 1
5 583.4189 0.5244 0.5248
6 1006.5368 0.9871 0.9884
7 675.2723 0.9064 0.9065
8 785.9562 0.9412 0.9412
9 667.1461 0.941 0.9412
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Table A.3 Linear Best Separability - Carlini Wagner - Classes 6, 7

True Best Separation Train CW
Class Class Point Separation Separation

6

0 480.3539 0.655 0.6551
1 1028.939 0.9858 1
2 473.3951 0.6912 0.6916
3 572.9218 0.6969 0.6984
4 438.5021 0.5662 0.5662
5 857.7804 0.9613 1
6 630.2202 0.7999 0.8
7 1297.5639 0.9985 1
8 661.0956 0.794 0.7941
9 - - -

7

0 840.9614 0.9383 0.9455
1 1930.2526 0.9998 1
2 913.3432 0.9761 0.9875
3 813.2522 0.9561 0.9561
4 1045.5479 0.9919 1
5 584.9735 0.5283 0.5284
6 805.7899 0.9419 0.9458
7 487.1605 0.6108 0.6113
8 692.9856 0.8545 0.8546
9 527.8497 0.7598 0.7599
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Table A.4 Linear Best Separability - Carlini Wagner - Classes 8, 9

True Best Separation Train CW
Class Class Point Separation Separation

8

0 895.0191 0.9544 0.9554
1 1374.7135 0.9992 1
2 684.1054 0.9133 0.9143
3 732.9613 0.9102 0.9103
4 696.3801 0.9193 0.9226
5 687.5396 0.7737 0.7738
6 759.2384 0.9169 0.9181
7 721.4962 0.9319 0.9321
8 561.8863 0.5033 0.5034
9 682.378 0.9483 0.9583

9

0 1006.2344 0.9757 0.9817
1 1161.5854 0.9938 1
2 805.6243 0.9534 1
3 781.3352 0.9391 0.9565
4 875.2234 0.977 1
5 664.4764 0.729 0.7292
6 867.5256 0.965 0.9659
7 612.7433 0.8601 0.8601
8 683.6053 0.8412 0.875
9 455.8203 0.5346 0.5348
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Table A.5 Linear Best Separability - Fast Gradient - Classes 0, 1, 2

True Best Separation Train FGRAD
Class Class Point Separation Separation

0

0 1138.3257 0.9888 1
1 1930.2526 0.9998 1
2 1071.8412 0.9912 1
3 1398.0666 0.9997 1
4 1151.1303 0.9959 1
5 1254.7209 0.9998 1
6 936.3612 0.9782 0.9783
7 - - -
8 880.9739 0.9782 0.9783
9 - - -

1

0 1141.6702 0.9891 0.9892
1 1740.7595 0.9998 1
2 1125.596 0.9932 1
3 1052.7765 0.995 0.9954
4 927.48 0.9827 0.9828
5 1254.7209 0.9998 1
6 953.5616 0.9805 0.9805
7 - - -
8 904.371 0.9835 0.9844
9 - - -

2

0 1318.4542 0.9956 1
1 1930.2526 0.9998 1
2 1582.5551 0.9998 1
3 1256.8887 0.9995 1
4 1039.3327 0.9919 0.9927
5 1231.0216 0.9998 1
6 977.355 0.9832 0.9833
7 - - -
8 902.4543 0.9832 0.9833
9 - - -
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Table A.6 Linear Best Separability - Fast Gradient - Classes 3, 4, 5

True Best Separation Train FGRAD
Class Class Point Separation Separation

3

0 1173.698 0.9904 0.991
1 1930.2526 0.9998 1
2 1058.8121 0.9905 1
3 1185.2537 0.9985 1
4 950.5759 0.9849 0.985
5 - - -
6 900.9432 0.9726 0.9727
7 - - -
8 899.0744 0.9828 0.9832
9 - - -

4

0 1205.4373 0.9926 0.9944
1 1930.2526 0.9998 1
2 1059.0793 0.9905 0.9917
3 1258.1349 0.9995 1
4 1046.3609 0.9921 1
5 - - -
6 980.9563 0.9837 0.9839
7 - - -
8 886.2017 0.9807 0.9839
9 - - -

5

0 1317.7125 0.9956 0.997
1 1930.2526 0.9998 1
2 1347.031 0.9992 1
3 1484.1148 0.9998 1
4 1387.5193 0.9995 1
5 899.1557 0.975 0.975
6 1111.1435 0.9943 0.9945
7 1589.3591 0.9998 1
8 893.8664 0.9818 0.982
9 1203.2364 0.9998 1
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Table A.7 Linear Best Separability - Fast Gradient - Classes 6, 7

True Best Separation Train FGRAD
Class Class Point Separation Separation

6

0 1162.7623 0.9898 0.9898
1 1930.2526 0.9998 1
2 1174.0449 0.9958 0.9959
3 1146.5674 0.9977 1
4 1064.8951 0.9927 0.9928
5 1052.4563 0.9972 1
6 1006.0901 0.9871 0.9873
7 - - -
8 890.3251 0.9812 0.9812
9 - - -

7

0 1270.2336 0.9945 1
1 1930.2526 0.9998 1
2 1373.2906 0.9992 1
3 1304.1733 0.9995 1
4 1533.4598 0.9998 1
5 891.2279 0.9737 0.9737
6 1052.0699 0.9906 0.9907
7 - - -
8 891.5769 0.9813 0.9815
9 1203.2364 0.9998 1
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Table A.8 Linear Best Separability - Fast Gradient - Classes 8, 9

True Best Separation Train FGRAD
Class Class Point Separation Separation

8

0 1279.8113 0.9946 0.9958
1 1930.2526 0.9998 1
2 1299.6044 0.9988 1
3 1484.1148 0.9998 1
4 1115.8472 0.9953 0.9953
5 905.0185 0.9772 0.9773
6 1002.946 0.9866 0.9867
7 1589.3591 0.9998 1
8 892.3893 0.9813 0.9814
9 1203.2364 0.9998 1

9

0 1474.9484 0.9988 1
1 1930.2526 0.9998 1
2 1579.0507 0.9998 1
3 1484.1148 0.9998 1
4 1330.8115 0.999 1
5 934.1037 0.9843 0.9915
6 1050.1007 0.9904 0.9905
7 1589.3591 0.9998 1
8 864.986 0.9742 0.9743
9 1203.2364 0.9998 1
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Table A.9 Linear Best Separability - DeepFool - Classes 0, 1, 2

True Best Separation Train DF
Class Class Point Separation Separation

0

0 397.3051 0.4998 0.5
1 830.0255 0.952 1
2 476.9613 0.6986 0.6987
3 517.8053 0.5457 0.5464
4 551.8951 0.8003 0.8235
5 1240.4871 0.9998 1
6 586.2332 0.7336 0.7336
7 - - -
8 818.7998 0.9587 0.9588
9 - - -

1

0 603.0585 0.8034 0.8051
1 480.6315 0.5561 0.5563
2 764.0869 0.9443 0.9444
3 630.5862 0.7988 0.7989
4 583.0866 0.8392 0.8393
5 - - -
6 818.3586 0.9483 0.9483
7 - - -
8 848.2412 0.9695 0.9695
9 - - -

2

0 599.8891 0.8012 0.8057
1 1366.2107 0.999 1
2 378.6778 0.4695 0.4696
3 559.5572 0.6632 0.6719
4 425.5947 0.5243 0.5243
5 - - -
6 609.1533 0.768 0.7682
7 - - -
8 848.6935 0.9698 0.97
9 - - -
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Table A.10 Linear Best Separability - DeepFool - Classes 3, 4, 5

True Best Separation Train DF
Class Class Point Separation Separation

3

0 513.6662 0.7038 0.7039
1 727.7063 0.916 0.916
2 531.8012 0.7824 0.7863
3 544.1488 0.6236 0.6237
4 507.9933 0.7267 0.7292
5 1254.7209 0.9998 1
6 677.6648 0.8499 0.8499
7 - - -
8 829.7965 0.9622 0.9622
9 - - -

4

0 712.719 0.8859 0.8955
1 744.9231 0.924 1
2 409.7061 0.5484 0.5485
3 497.6689 0.4807 0.4821
4 425.8125 0.5251 0.5253
5 - - -
6 625.1961 0.7915 0.7915
7 - - -
8 837.4417 0.9655 0.9672
9 - - -

5

0 933.3215 0.962 0.9655
1 1930.2526 0.9998 1
2 1273.4437 0.9983 1
3 879.8979 0.977 1
4 1428.5297 0.9998 1
5 590.2318 0.5439 0.5441
6 1008.298 0.9875 0.9877
7 601.2628 0.846 0.8462
8 774.2352 0.933 0.9331
9 625.0678 0.908 0.908
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Table A.11 Linear Best Separability - DeepFool - Classes 6, 7

True Best Separation Train DF
Class Class Point Separation Separation

6

0 482.4215 0.6607 0.6608
1 1009.1897 0.9837 1
2 457.4047 0.659 0.659
3 555.4727 0.6544 0.6583
4 473.9152 0.6521 0.6523
5 1254.7209 0.9998 1
6 589.802 0.7383 0.7384
7 - - -
8 833.7191 0.9642 0.9642
9 - - -

7

0 1006.9874 0.976 0.9789
1 1930.2526 0.9998 1
2 858.8008 0.9677 0.9765
3 776.0027 0.9345 0.9347
4 1159.5345 0.9963 1
5 574.1013 0.4981 0.4982
6 928.5942 0.9776 0.9778
7 527.142 0.7226 0.7226
8 744.7976 0.9128 0.913
9 556.9501 0.8207 0.8208
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Table A.12 Linear Best Separability - DeepFool - Classes 8, 9

True Best Separation Train DF
Class Class Point Separation Separation

8

0 801.1912 0.9264 0.9265
1 1621.4893 0.9998 1
2 599.4261 0.8566 0.8667
3 703.9217 0.8843 0.8919
4 652.8615 0.896 0.8992
5 655.9069 0.7082 0.7083
6 779.5464 0.9303 0.9304
7 761.1703 0.9481 0.9483
8 568.2715 0.5287 0.5291
9 654.0213 0.9304 0.9306

9

0 876.9131 0.9506 0.9556
1 1131.5011 0.9932 1
2 643.3476 0.8888 0.8889
3 925.0744 0.9846 1
4 713.9375 0.9285 0.9286
5 599.3681 0.5713 0.5714
6 812.4309 0.9448 0.9449
7 559.4547 0.788 0.7886
8 732.0642 0.902 0.9022
9 471.336 0.5931 0.5931
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Table A.13 Linear Best Separability - Jacobian Saliency Map - Classes 0, 1, 2

True Best Separation Train JSMA
Class Class Point Separation Separation

0

0 397.5314 0.5007 0.5007
1 703.2719 0.9032 0.9033
2 463.6105 0.6715 0.6716
3 537.9626 0.6059 0.606
4 525.7214 0.7604 0.7604
5 579.1344 0.5123 0.5123
6 465.6688 0.5089 0.509
7 633.958 0.8789 0.879
8 564.5886 0.514 0.5141
9 615.9107 0.9 0.9001

1

0 831.7829 0.9355 0.9355
1 495.5164 0.5029 0.5031
2 860.8222 0.9682 0.9682
3 742.3261 0.9178 0.918
4 813.7388 0.9647 0.9648
5 784.5104 0.912 0.9121
6 803.4066 0.9411 0.9411
7 931.6438 0.9828 0.983
8 778.2969 0.9358 0.9359
9 919.686 0.9949 0.995

2

0 528.217 0.7211 0.7212
1 774.9406 0.937 0.937
2 390.5676 0.5005 0.5006
3 592.9788 0.7402 0.7403
4 459.1883 0.623 0.6231
5 599.5464 0.5716 0.5716
6 462.9844 0.5029 0.503
7 689.631 0.9144 0.9145
8 578.8158 0.5685 0.5687
9 616.8163 0.9002 0.9003
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Table A.14 Linear Best Separability - Jacobian Saliency Map - Classes 3, 4, 5

True Best Separation Train JSMA
Class Class Point Separation Separation

3

0 542.0361 0.7385 0.7385
1 706.7524 0.9048 0.905
2 576.6976 0.8375 0.8375
3 503.5266 0.5007 0.5008
4 563.2345 0.8152 0.8152
5 616.7371 0.6156 0.6157
6 565.6911 0.6998 0.6999
7 659.3092 0.8959 0.896
8 609.7839 0.6728 0.673
9 703.4379 0.9572 0.9572

4

0 559.6922 0.757 0.757
1 756.7171 0.9292 0.9292
2 461.4536 0.6669 0.6671
3 562.5864 0.6699 0.6701
4 418.4148 0.4999 0.5003
5 602.9499 0.5796 0.5798
6 457.222 0.4892 0.4892
7 668.1598 0.9011 0.9012
8 559.6019 0.4943 0.4945
9 600.4999 0.8838 0.884

5

0 1011.8756 0.9764 0.9765
1 1276.6832 0.9977 0.9978
2 1032.5779 0.9883 0.9885
3 912.4925 0.983 0.9831
4 973.5321 0.9883 0.9885
5 575.2078 0.5013 0.5016
6 931.3186 0.9779 0.978
7 735.8141 0.9379 0.9381
8 747.5837 0.9145 0.9146
9 755.3217 0.9739 0.974
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Table A.15 Linear Best Separability - Jacobian Saliency Map - Classes 6, 7

True Best Separation Train JSMA
Class Class Point Separation Separation

6

0 523.5387 0.7164 0.7165
1 744.9751 0.924 0.9241
2 474.1108 0.6922 0.6923
3 584.34 0.7238 0.724
4 487.0512 0.6824 0.6825
5 609.8284 0.5966 0.5966
6 461.7968 0.5002 0.5003
7 675.398 0.9066 0.9067
8 581.7034 0.5795 0.5796
9 615.4827 0.8995 0.8996

7

0 826.7217 0.934 0.9341
1 1123.2175 0.9923 0.9925
2 844.6525 0.9646 0.9647
3 805.3618 0.9506 0.9507
4 784.0894 0.956 0.9561
5 562.3694 0.5418 0.5419
6 797.0386 0.9388 0.939
7 452.6432 0.5023 0.5026
8 633.4204 0.7368 0.7369
9 587.8089 0.8686 0.8688
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Table A.16 Linear Best Separability - Jacobian Saliency Map - Classes 8, 9

True Best Separation Train JSMA
Class Class Point Separation Separation

8

0 821.2453 0.9323 0.9323
1 1087.2327 0.9895 0.9896
2 726.8218 0.9318 0.9319
3 771.1901 0.9325 0.9327
4 735.4302 0.9378 0.9379
5 693.8133 0.7844 0.7845
6 726.5925 0.8955 0.8956
7 783.8004 0.9563 0.9564
8 561.2151 0.5005 0.5007
9 688.0899 0.9505 0.9505

9

0 871.8646 0.9492 0.9493
1 1117.0811 0.9917 0.9918
2 799.3414 0.9529 0.953
3 806.9166 0.9519 0.9519
4 791.4185 0.9574 0.9574
5 623.7709 0.6316 0.6317
6 799.9306 0.9399 0.9399
7 633.1024 0.8781 0.8782
8 597.2288 0.6318 0.632
9 447.5632 0.503 0.503
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APPENDIX B ARCHITECTURE STRUCTURES

Table B.1 Different architecture structures used

v0 conv 2d (32 filters, 5x5), max pooling (2x2), conv 2d (64 filters, 5x5), max pooling
(2x2), flatten, dense (1024, relu), dense (10, softmax)

v1 conv 2d (16 filters, 5x5), max pooling (2x2), conv 2d (32 filters, 5x5), max pooling
(2x2), flatten, dense (512, relu), dense (10, softmax)

v2 conv 2d (32 filters, 3x3), max pooling (2x2), flatten, dense (128, relu), dense (10,
softmax)

v3 conv 2d (32 filters, 3x3), conv 2d (64 filters, 3x3), max pooling (2x2), dropout (0.5),
conv 2d (128 filters, 3x3), max pooling (2x2), dropout (0.5), flatten, dense (256,
relu), dense (10, softmax)

v4 conv 2d (16 filters, 3x3), conv 2d (32 filters, 3x3), max pooling (2x2), dropout (0.5),
conv 2d (64 filters, 3x3), max pooling (2x2), dropout (0.5), flatten, dense (128,
relu), dense (10, softmax)

v5 conv 2d (32 filters, 5x5), max pooling (2x2), conv 2d (64 filters, 5x5), max pooling
(2x2), flatten, dense (1024, relu), dense (1024, relu), dense (10, softmax)

v6 conv 2d (16 filters, 5x5), max pooling (2x2), conv 2d (32 filters, 5x5), max pooling
(2x2), flatten, dense (512, relu), dense (512, relu), dense (10, softmax)

v7 conv 2d (32 filters, 3x3), max pooling (2x2), flatten, dense (128, relu), dense (128,
relu), dense (10, softmax)

v8 conv 2d (32 filters, 3x3), conv 2d (64 filters, 3x3), max pooling (2x2), dropout (0.5),
conv 2d (128 filters, 3x3), max pooling (2x2), dropout (0.5), flatten, dense (256,
relu), dense (256, relu), dense (10, softmax)

v9 conv 2d (16 filters, 3x3), conv 2d (32 filters, 3x3), max pooling (2x2), dropout (0.5),
conv 2d (64 filters, 3x3), max pooling (2x2), dropout (0.5), flatten, dense (128,
relu), dense (128, relu), dense (10, softmax)


	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Motivation
	1.2 Our Approach
	1.3 Research Objectives
	1.4 Thesis Contribution
	1.5 Thesis Outline

	2 BACKGROUND
	2.1 Deep Learning and DNNs
	2.2 Metamorphic Transformations
	2.3 Adversarial Attacks
	2.4 DNN Out-Of-Distribution Detection

	3 LITERATURE REVIEW
	3.1 White-Box Testing
	3.1.1 Extraction and Use of DNN Activation Levels
	3.1.2 Neuron Coverage

	3.2 Analyzing Different Layers
	3.3 DNN robustness against Affine Transformations and Adversarial Attacks
	3.4 DNN Out-Of-Distribution Detection
	3.5 Certification of Safety-Critical Systems
	3.6 Inspiration and Proposed Differences

	4 METHODOLOGY AND EXPERIMENTS
	4.1 Computational Profile Extraction
	4.2 Computational Profile Likelihood
	4.3 Per-Set Best Separation
	4.4 Sigma-Order Threshold
	4.5 Per-Input Out-Of-Distribution Computation
	4.6 Research Questions
	4.7 Experiment Setup
	4.7.1 Architectures
	4.7.2 Layers
	4.7.3 Image Datasets


	5 RESULTS AND DISCUSSION
	5.1 Computing and Visualizing CPL
	5.1.1 Per-Class Overview
	5.1.2 Statistical Comparison Tests

	5.2 Separation Using CPL
	5.2.1 Per-Set Best Comparison
	5.2.2 Per-Input OOD Threshold Comparison


	6 CONCLUSION
	6.1 Summary of Work
	6.2 Limitations
	6.3 Future Research

	REFERENCES
	APPENDICES

