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RESUME

Les chercheurs et les ingénieurs utilisent largement la méthode des transitoires électromagnétiques
(EMT) dans les études des systemes électriques. La méthode EMT prend en charge la simulation
des modeles en détail. Cependant, la vitesse de simulation est compromise en raison de la taille des

pas de temps d'intégration.

La these utilise la méthode Dynamic Phasor (DP) pour tenter d'accélérer les simulations transitoires
des systemes électriques. La méthode DP permet d'utiliser de grands pas de temps pour simuler
avec précision la dynamique du systeme électrique dans une bande de fréquence centrée autour de

la fréquence souhaitée.

La thése présente et améliore les méthodes de simulation disponibles pour les transitoires du
systeme électrique, a savoir : Domaine de phaseur (PD), Domaine de phaseur triphasé (3pPD),
EMT et DP. Ensuite, les résultats de simulation et les temps de simulation des méthodes sont
comparés pour les cas de test pratiques présentés. De nouvelles démonstrations et comparaisons

non disponibles auparavant sont effectuées.

Parmi les améliorations apportées aux modeles, la thése propose un nouveau modele de machine
synchrone basé sur la méthode DP, qui utilise des variables de phase dynamique plutét que des
variables temporelles instantanées. Ce modéle tient compte des harmoniques pour présenter une

simulation précise des événements déséquilibrés.

De plus, cette thése explore I'approche DP pour la simulation des Perturbations Géomagnétiques
(GMD). La simulation utilise I'narmonique DC pour présenter l'effet de GMD dans le réseau. Un
modele de saturation du transformateur et de la machine synchrone est présenté, qui utilise la

fréquence fondamentale et I'harmonique CC pour modéliser GMD.
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ABSTRACT

Researchers and engineers extensively utilize the Electromagnetic Transients (EMT) method in
studies of power systems. EMT approach allows for detailed modeling. However, the simulation

speed is compromised due to the size of the integration time steps.

The dissertation uses the Dynamic Phasor (DP) method to try to accelerate transient simulations of
the power systems. The DP method allows using large time steps to accurately simulate power

system dynamics within a frequency band centered around the desired frequency.

The thesis presents and improves available simulation methods for power system transients,
namely: Phasor Domain (PD), Three-phase Phasor Domain (3pPD), EMT, and DP. Then, the
simulation results and simulation timings of the methods are compared for presented practical test

cases. New, not previously available, demonstrations and comparisons are made.

Amongst improvements in models, the thesis proposes a new synchronous machine model based
on the DP method, which uses dynamic phasor variables rather than instantaneous time-domain
variables. This model accounts for harmonics to present an accurate simulation of unbalanced

events.

Furthermore, this thesis explores the DP approach for the simulation of Geomagnetic Disturbances
(GMDs). The simulation uses the DC harmonic to present the effect of GMD in the network. A
saturation model of the transformer and synchronous machine is presented, which uses

fundamental frequency and DC harmonic to model GMD.
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Chapter 1 INTRODUCTION

1.1 Problem Definition

Power systems are increasingly complex. It is now becoming common practice to simulate large-
scale power grids using accurate time-domain (TD) methods. The simulation of transient stability
events with electromagnetic transients using the same computing environment is particularly

challenging.

Different types of simulation methods exist and fulfill various application objectives. Depending
on the simulation speed or precision requirements, a user will choose a specific simulation method.
Transient simulation methods are divided into two main categories: electromagnetic transient
(EMT)-type and Transient Stability (TS)-type. The EMT approach is circuit-based and detailed. It
is a wideband approach suitable for the simulation of both electromagnetic and electromechanical
transients. The TS approach is used for slower electromechanical transients and encounters

significant limitations for faster transients.

The EMT or TD is an accurate, but it is computationally much more intensive than the TS approach.
In recent years, the Dynamic Phasors (DP) have been introduced [1] to deliver an accuracy
navigator approach. This means that larger numerical integration time-steps can be used to
accelerate EMT computations with sufficient accuracy for fast transients while maintaining the
capability to simulate faster transients when using smaller time-steps. The main hypothesis is that

such large time-steps cannot be used in the EMT mode.

Reference [2] develops a DP model for imbalanced distribution systems containing single-phase
photovoltaic (PV), three-phase induction machine load, three-phase power factor correction
capacitor (PFC), and loads. The DP approach is utilised to construct inverter-based microgrids and
investigate the transient response under imbalanced conditions in [3]. Reference [4] proposes a
frequency-based analytical approach for dynamic analysing of unbalanced three-phase systems in
the presence of harmonic distortion in the sequence domain, demonstrating that the classical
symmetrical components proposed by Fortescue are inapplicable under non-sinusoidal periodic
conditions. In [5-7], the modular multilevel converter (MMC) models of the DP method are
introduced. On the long time scale, reference [5] develops a reduced-order DP model of MMC that
is utilised for power system low-frequency oscillation analysis. Reference [6] presents a DP model



of a half-bridge MMC based on variables in the stationary abc frame. A new DP model of an MMC
with extended frequency range is available in [7] for an EMT simulator. Under unbalanced grid
situations, [8] proposes a dynamic-phasor-based small-signal model for the modular multilevel
converter technology. A DP-based model for line-commutated-converters is developed in [9]. To
analyse the sub-synchronous resonance, reference [10] utilises a DP model of the thyristor-
controlled series capacitor. Reference [11] presents a multiscale induction machine model using
the DP method. A generalised state-space averaging model for a three-phase dual active bridge
converter based on the DP concept is proposed in [12]. Reference [13] utilised a variable frequency
for the DP principle to improve the method's usability to multi-source, multi-frequency systems,
as well as systems with time-varying frequencies. Based on the DP concept, [13] presents a new
Type 3 wind farm modelling method. It contains not just 60-Hz frequencies, but also significant
frequencies like 36 Hz that are present in the system due to sub-synchronous control interactions.
To represent the desired fault behaviour, only the most relevant DPs are chosen, resulting in

enhanced computation efficiency.

In order to simulate inrush dynamics, [14] proposes a DP basis model of transformer saturation and
uses iterative solver. A DP base estimate model for phasor measurement units is presented in [15].
Reference [16] uses the DP technique to propose a synchronous machine model for the modelling
of low frequency system dynamics. The DP is employed to study the effects of passive phase
imbalance schemes on a turbine-generator system's torsional modes [17]. For current differential
protection of transmission-line, reference [18] uses the DP concept. The DP method is used in [19]
to simulate unbalanced faults containing a three-phase synchronous generator connected to a
transmission line with an open end. An average-value model of a line commutated converter-based
high voltage DC system utilising DP is shown in Reference [20]. The method offers an efficient

model of DC dynamics, the converter's low frequency, as well as the ac system.

A new modelling technique for inverter-dominated microgrids utilising DP is provided in [21] in
order to preserve simulation compromise for inverter-dominated microgrids. According to the
paper, the suggested DP model is capable of properly predicting the system's stability margins, but
the reduced-order small signal model fails. A three-phase DP model of high-voltage direct current
systems is suggested, with a focus on the converter in [22]. For both symmetrical and asymmetrical
operating situations, the suggested model increases simulation speed of the converter's dynamic



characteristics. Under harmonic circumstances, reference [23] acquires the modelling and analysis
of inverter-based micro grids. For droop-controlled distributed generators, diodes rectifiers as
nonlinear loads, and resistance loads, the DP model of fundamental frequency and harmonics is

developed.

Some studies compared the accuracy and computation time of TD and DP methods [7, 9, 11, 14,
24-26]. Reference [24] compares TD and DP methods and reports that the DP method is ten times
faster than EMT. The [14] simulates the simple IEEE 4-node test feeder by TD and DP methods.
The TD method with PSCAD software using a time-step of 50us and the DP method with
GridLAB-D using a time-step of 500us are simulated and show that DP is about 17 times faster
than the TD method. Reference [7] illustrates that for 400 identical submodules per arm in MMC,
the DP model is approximately eight times faster than the detailed equivalent model with the same
simulation time-step. The DP-based approach is presented in [27] to accelerate EMT-type studies
of modelling the induction machine dynamics. It was discovered that while modelling dynamics
with frequency spectra near to the fundamental frequency, the DP-based model is more than 70
times faster than the EMT-type model. To demonstrate time efficiency of DP based model, the

article did not utilise the same time.

However, the reported efficiency comparisons are not fair. A significant amount of literature is
presenting non-practical material for delivering unsupported conclusions. In some cases, the
methods do not use the same simulation time-step [7, 14]. The test cases are not simulated using
the same platform for all assessed methods [14, 26]. Accuracy is compared only qualitatively [24,
25]. Also, [7] uses a simplified MMC model, which decreases accuracy for faster transient
simulations and increases computational time. A fair and systematic comparison of simulation

methods is not currently available in the literature.

During transients, the unsymmetrical components cause harmonics in the synchronous machine
(SM). The even and odd harmonics on the bus side cause odd and even harmonics in the SM,
respectively [24, 26, 28, 29]. Therefore, the DP model using only fundamental frequency is not
able to deliver accurate results. A model of SM using harmonics is necessary to improve the DP

model.



The DP method has been mostly used for linear circuits. Extending to account for nonlinearities is
feasible but remains challenging for computational performance. It will be demonstrated in this
thesis that contrary to common belief, the DP method encounters several limitations when

compares to the EMT approach.

To search practical applications of DP, in this thesis, the testing of the DP method is extended into
the simulation of geomagnetic disturbances. Such disturbances are studied for large networks and
need to run for a long interval. The simulations should be accurate and efficient. The EMT method
has the desired properties but has computational performance limitations. The DP method must be
adapted for simulating GMD events. A nonlinear saturation model of transformers for DP is
developed to simulate GMD.

The following section presents the fundamental theories related to TD, DP, and PD methods. As
shown below, the PD method is referred to as a phasor-domain method because it solves its network

equations only in the phasor domain.

1.1.1 Time domain method

The TD (or EMT) method uses the actual TD relation of power system elements. For example, the

differential equation of inductor is:

di, (t)
dt

v (t)=L (1.1)

where t, v, i, ,and L are time, voltage, current, and inductance, respectively.

Note that the lower letters represent time domain quantities, upper letters represent Fourier series
coefficient for the dynamic phasor quantities, and upper bold letters represent Fourier series
coefficient for the classic phasor quantities.

The simulators do not directly use ordinary differential equation (ODE) in the calculations. The
numerical integration rules are employed to discretize ODEs. The Trapezoidal, backward Euler,
forward Euler, and Gear’s second-order methods are mostly used in the EMT simulators. The
Trapezoidal rule has low distortion and numerical stability characteristics.



The discretized form of the (1.1) using Trapezoidal rule is:

o At
i =i, +Z( L, +an71) (1.2)

The subscript n means the variable value at the n-th time-point ( x(tn) =X, ). The distance between

the time-points is the numerical integration time-step ( At). (1.2) can be rewritten as below to obtain

Norton equivalent model.

v
I, ZLJr'th_1 (1.3)

where Z isthe TD equivalent resistance and i, isthe TD history term of the numerical solution.

oL

= 14
LT (1.4)

. . At
I =i +ZVLH (1.5)

The equivalent impedance depends on the size of At and is constant. The history term depends on

voltage and current variables of the component in the previous time-step.

A discontinuity in the system like a short-circuit (v, =0) causes numerical oscillations for an

inductor using Trapezoidal rule. In this case, the current at the first moment of short-circuit is equal

. . v . . .
to history term (i, =i, + ”Z‘l ). At the next time step, the current is equal to negative value of the

current at the previous time step (i,,, =—i,). Therefore, the current after a short-circuit oscillates

between a positive and a negative value. In case of having a resistance in the circuit, the numerical

oscillations damps, and the damping time depends on the time constant (L / R) of the circuit.

After a system discontinuity, the EMTP approach for eliminating numerical oscillations is to use
two-halves time steps of the backward Euler technique. For backward Euler, the equivalent
impedance is equal to (1.4) where the time step of backward Euler is half of Trapezoidal rule time

step. The equivalent history term of backward Euler for the inductor is:

i =iy (1.6)



By using the backward Euler, the current of an inductance after a short-circuit is constant.

A TD inductor and the Norton equivalent model using Trapezoidal rule can be shown as:
i,

V|_ VLn |th_1

a) b)

Figure 1.1 a) TD relation of inductance, b) Equivalent circuit

The simulators based on the TD method utilize nodal-type analysis approach. The nodal analysis
determines the unknown nodal voltages based on the injected current at each node. The nodal

analysis is described in the [30, 31]:
Yv=i .7)

where Y, v, and i are the nodal admittance matrix, vector of unknown voltages, and vector of
current injected currents. The injected currents are current sources combined with history currents
for the Trapezoidal method. The nodal analysis is not able to model ungrounded voltage sources,
which is solved by the modified-nodal analysis [32]. The software using nodal analysis model a
close switch by a very small resistance and model an open switch by a very large resistance.
Moreover, a partial resistance is used to model an ideal transformer in the admittance matrix. As a
result, the resistance may cause matrix conditioning problems. The modified-augmented nodal
analysis (MANA) is proposed in reference [30] to extend the network representing equations by
adding switches, transformers, current sources, and voltage sources. MANA avoids many
theoretical complications by providing a systematic method for deriving the Jacobian matrix terms.
The formulation of MANA is:



Y, V. D. S, ||V, I,

Vi Vg Dy S|y _| Vo (1.8)
D, Doy Dy Sps||ip dy
LSt Ssv Ssp Sq LIs Sb
Ap *n by

where A, is the augmented nodal admittance matrix and includes sub-matrices describing different

elements by additional equations. X, and b, are respectively the unknown and known vectors.

1.1.2 Dynamic phasor method

The DP method has been developed recently and falls into the category of EMT-type methods and
phasor-domain methods. It combines phasor coefficients with time dependent variables which
enables DP method to simulate both electromagnetic and electromechanical transients efficiently.
Contrary to the TS approach, the DP method can simulate electromagnetic transients. It is typically
and in the vast majority of publications used for linear circuits, but it is possible to extend it to

include nonlinear components.

The DP method approximates the TD waveform x(z) in the interval z e (t—z,t] by a Fourier

series representation as:
x(t)= > X, (t)e™ (1.9)

where T is period, k is the number of Fourier coefficient, @, =27 /T ,and X, (t) is the k-th time-

varying Fourier coefficient, which is given by:

Xy =X, (1.10)

where x|k means calculate Fourier of function x by k-th harmonic, which is:

t
X|, = I x(r)e " dr (1.11)
I

=~

t



The following properties of dynamic phasors are important in developing the model:

1) The derivative of the k-th coefficient is given by:

ool =t ke (1.12)

2) The product of two TD variables is equal to a discrete time convolution of the two dynamic

phasor sets of variables given by:

Xy|k = ZX|Y|<7| (1.13)
|

3) The negative k-th component is equal to conjugation of k-th component:
X, =X (1.14)

Using the properties of dynamic phasors, the DP relation of voltage and current for an inductance

is:

di,, (t
Vv, (1)=L L(;t()Jrjka)sLlLk(t) (1.15)

where V, and |, are voltage and current phasors for the k-th Fourier coefficient, respectively.

Using the Trapezoidal rule, the (1.15) is discretized as:

2~ jka V. +V,
At s L., VL,
|Lkn:A2t , Lm+—2k’ k ot (1.16)
7+ -
At JKao, (At_'_J a)s)L

The (1.16) can be rewritten as below to obtain Norton equivalent model.

VLk,n
ILk,n = Z— + Ihl—k,n—l (117)

Ly

where Z, is the DP equivalent impedance and I, is the DP history term.

2 .
z, Z(E+ kast (1.18)



*

Vi T4

| =
th,n
ZLk

|
bt (1.19)

The equivalent impedance depends on the size of At and is constant. The history term depends

on voltage and current of the component in the previous time-step.

Figure 1.2 a) Dynamic phasor inductance, b) Equivalent circuit

The DP contains the numerical ability to navigate between EMT-type and TS-type methods by
increasing/reducing numerical integration time-step. In case of decreasing the time-step, the real
part becomes dominant and DP acts like a TD method. Also, in case of increasing the time-step,

the imaginary part becomes dominant and DP acts like a pure phasor-domain method.

1.1.3 Phasor domain method

Electromechanical transient is the interplay between the mechanical spinning machines' stored
energy and the electromagnetic energy stored in the system's inductors and capacitors.
Electromechanical transients are simulated using TS-type algorithms. The basic goal of TS-type
approaches is to model electromechanical transients. To simplify the modeling, several
assumptions are utilized. One assumption is to treat the system in quasi-steady state (QSS),
ignoring inductors and capacitors' electromagnetic transients. Moreover, the TS-type examines just

the fundamental frequency of the system, ignoring all other harmonics.

The classic TS approach used in this thesis is termed as phasor-domain (PD). The classic PD
technique assumes that the three phases are balanced and ignores negative and zero symmetrical

components, relying only on a positive sequence model of the system. The sequential components
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are introduced to the DP technique to mimic unbalanced events and improve it. The modified DP
approach is referred to as three-phase Phasor Domain (3pPD).

The TS-type programs ignore the electromagnetic transient, therefore the derivative equation of

inductors and capacitors is:

% = jo,X (1.20)

To increase accuracy of the simulation, the reference [33] uses variable frequency according to

rotor speed of SMs during a transient.
Using equation (1.20), the TS relation of voltage and current of an inductance is:

V. =Z1, (1.21)
where V| and I _ are voltage and current of TS-type phasors, respectively. The equivalent
impedance, Z,, is:

Z =jolL (1.22)

Unlike EMT-type methods, the PD models inductors independently from simulation time-step and

without history term.

) b)

Figure 1.3 a) Transient stability inductance, b) Equivalent circuit
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1.2 Contributions

The main objective of this thesis is to study and improve the DP approach for objectively verifying
its so-called advantages over the EMT approach. The demonstrations and analysis are conducted

using objective methods and realistic practical networks.
The contributions are as follows:

1. Improvements to the DP synchronous generator model with controllers to account for

harmonics with comparisons to existing models.
2. Presentation of a 3-phase phasor domain method.

3. Comprehensive comparisons of DP approach with TD and phasor-domain methods. A

practical test case is used to compare accuracy and performance.
4. Inclusion of transformer magnetization into DP solution.

5. Application of the DP method to study geomagnetic disturbances by including

transformation magnetization.

1.3 Thesis Structure

Chapter 2 provides a thorough overview of the available approaches, emphasizing the synchronous
generator model. In Chapter 3, the dissertation shows the necessity of modeling harmonics in the
synchronous machine and its controllers. The dissertation proposes a new synchronous machine
model based on the DP method, which employs harmonics to presents an accurate simulation of
unbalanced events. Furthermore in Chapter 4, the dissertation presents a DP model for simulation
of Geomagnetic Disturbance (GMD). The simulation uses DC harmonic to present the effect of
GMD in the network. A saturation model of the transformer is presented which uses the

fundamental frequency and the DC harmonic in order to model GMD.
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Chapter 2 SIMULATION METHODS

To simulate power systems, all elements of the network must be modeled according to the chosen
solution method. This section presents the modeling of synchronous generator or SM which

impacts significantly on simulation of large power grids.

2.1 TD model of synchronous machine

The following assumptions are made in this section to develop SM model:

(a) The stator windings are sinusoidally distributed along the air-gap as far as the mutual

effects with the rotor are concerned.

(b) The stator slots cause no appreciable variation of the rotor inductances with rotor

position.
(c) Magnetic hysteresis is negligible.
(d) Magnetic saturation effects are negligible.

Ignoring magnetic saturation allows for representing the circuits as linear; hence, the two connected

circuits can be superposed.

Figure 2.1 shows the circuits of a synchronous machine. The stator circuits consist of three-phase
armature windings carrying alternating currents. The rotor circuits comprise field and damper
windings. The field winding is connected to a source of direct current. For purposes of analysis,
the currents in the damper windings can be assumed to flow in two sets of closed circuits: one set
whose flux is in line with that of the field along the d-axis and the other set whose flux is at right
angles to the field axis or along the g-axis. The model of synchronous machine has one field and

one damper circuit on d-axis and two damper circuits on g-axis.



Rotation
P

o, elec. rad/s

d-axis

13

g-axis

Rotor

Stator

Figure 2.1 Stator and rotor circuit of synchronous machine [34]

where a, b, c are phases of stator windings. fd is the field circuit and 1d is damping circuits on d-

axis.1q and 2q are damping circuits on g-axis. 0 is the angle d-axis leads the winding of phase a

magnetic axis, and ®, is the rotor angular velocity. The angle 6 continuously increases

proportionaly to the rotor angular velocity o, . The relationship between 6, @, and time t is:

0=awt+0,
where 0, is the initial value of 6.

According to Figure 2.1, three phase voltages of stator are:

Va Ra 0 0 Ia d l//a
Vo == 0 Ry O |lhy |+ —lw
VC 0 0 Ra iC l//C

(2.1)

(2.2)

where i, v, w are instantaneous current, voltage, magnetic flux. R, is armature resistance.
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Also, according to Figure 2.1, the voltage relation of rotor windings is:

€ Vit Reg 0 0 0 i fd
0 0 0 0 |li
_ i Vig N Rig o 2.3)
0 dt| wiq 0 0 Ry 0 |
0 Waq 0 0 0 qu i2q

In equation (2.3), e, is field voltage on d-axis.

Considering mutual inductance between stator and rotor windings, magnetic fluxes on stator

windings are:
~ ~ ~ . ~ ~ ~ ~ ifd
Va Laa Lab Lac Ia Lafd Lald Lalq La2q i d
~ ~ ~ . ~ ~ ~ ~ 1
Wo |=—| Loa Lo Loc || |*|Lota Lowa Loag Lozg i (2.4)
~ ~ ~ . ~ ~ ~ ~ 1
Ve Lca ch Lcc Ic chd LCld clq Lch i ‘
2q

In equation (2.4), L,,, Ly,,and L, are the self-inductance of stator windings. The tilde (~) is used
to demonstrate that the inductances are variable. L, L., and L, are the mutual inductance
between stator windings. Ly, Lyq. g, and L, are the mutual inductance between stator and
rotor windings. The mutual inductances between two windings are equal. For instance, I:ab is equal
to L, .

Since the d- and g- axes are perpendicular to each other, there is no mutual flux between them.
Considering mutual inductance between stator and rotor d-axis windings, magnetic fluxes on rotor

d-axis windings are:

- - - i :
|:'//fd } _ _{ Lisa  Ltaw Lfdc} i: J{Lfdfd Ltosg MI fd } (2.5)
Y1d Liga  Lagw  Lace i bt Laana | g
C

where Ly and L,y are the self-inductance of rotor d-axis windings. Lg,4 is the mutual

inductance between two circuit of rotor d-axis windings. The mutual inductances between two

windings are equal, therefore, L4 isequal to Ly, and Ly, is equal to L.
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Considering mutual inductance between stator and rotor g-axis windings, magnetic fluxes on rotor

- - - i .
|:l//1q } - _ I:iqa I:iqb I:iqc i: +|: I-1q1q I-1q2q }{llq :| (2.6)
Yaq Lga Loy Loge i Loqig  Lagaq || l2g

C

g-axis windings are:

where Ly, and L are the self-inductance of rotor g-axis windings. Ly.,, is the mutual

2029
inductance between two circuit of rotor g-axis windings. The mutual inductances between two

windings are equal, therefore, L,,, isequal to L,,, and I:iqa is equal to I:alq.

The stator self inductances are:

I:aa = Lo + Laa2 COS(ZO) (2.7)
~ 2r
Lip = Laao + Laao COS(ZG + ?j (2.8)
- 2r
Lee = Loao + Luaz cos(ze —?j (2.9)

where L,,, is the constant inductance, and L,,, is the magnitude of variable inductance.

The stator self inductances are:

Ly = Do = —Lapo — Lupo 003[26+%] (2.10)
Lbe = Lo = —Lapo — a2 ©08(20 + 7) (2.11)
I:ca = ~ac = _LabO - Lab2 008(29_%j (212)

the same variation in permeance produces the second harmonic terms in self and mutual

inductances, therefore L, is nearly equal to L, .

Because the second harmonic terms in self and mutual inductances are produced by the same

variation in permeance [34], L,,, is almost equivalentto L,,,.
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The rotor mutual inductances are:

Log = Lugq €0S(0) (2.13)
Lig = Lug €0S(0) (2.14)
Catq = Lagg cos(9+%j (2.15)
Cazq = Lazg cos(9+%j (2.16)

In this SM model, all stator quantities from phase a, b, and c are transformed into a frame reference

rotating with the rotor. The following equation expresses relation dq0 frame and abc frame.

where the transformation matrix T is:

COS(G) cos(@ - 2?”} cos(@ + 2?”)

T(0)= 3 —sin(0) —sin(e—%j —sin(6+2?ﬂj (2.18)

1 1 1
2 2 2

where 6 is defined in equation (2.1). Subscripts a, b, and ¢ are the phases of the three-phase

system. Subscripts d, g, and 0 are the components of dg0 frame.

The inverse transformation of (2.18) is:

cos(0) —sin(0) 1
Tfl((g): 3 Cos(e—%j —Sin(e—%j 1 (2.19)

cos(6+2—”j —sin(6+2—”j 1
- 3 3 -
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Equations (2.7)-(2.16) are substituted in equation (2.4), and then the transformation of (2.18) is
applied, yielding:

3
LaaO + I-abO + E Laa2 0 0
Wy g
Vg |=— 0 LaaO + LabO Laa2 0 iq
Vo 0 0 LaaO -2 LabO o
(2.20)

Equations (2.7)-(2.16) are substituted in (2.5), and then the transformation of (2.18) is applied,

Iy .
L 00 L L i
{l/lfd } _ _{ afd } iq 4 fdfd fd1d |:-fdj| (2.21)
Wig Lyg 0 O Liga  Laasa || ig

Iy

yielding:

Equations (2.7)-(2.16) are substituted in equation (2.6), and then the transformation of equation
(2.18) is applied, yielding:

i .
l/llq __ 0 Lalq 0 iq I Liqlq L1q2q -Ilq (2.22)
V/Zq 0 La2q 0 | I-2q1q L2q2q I2q
0

Rearranging equations (2.20), (2.21), and (2.22) then separating d-, g-, and O- axes gives:

3
LaaO + I-abO + E Laa2 Lafd Lald

Vi | = Lot Liga  Lasa || T (2.23)
Vid Lot Ligg  Ligra i1d
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_ 3 _
W, LaaO + I-abO - E Laa2 Lalq Lan _iq
Yiqg | = Lalq Liqlq Liq 2q ilq (2.24)
V/Zq I-an quZq L2q2q i2q

¥o =—(Laao —2Lano) o (2.25)

The total flux linkages related to iy, i, and i, are represented by the stator self inductances L,

L, and L.
3
Ly = Laao + Lavo +E Laaz (2.26)
3
Lq = Laao + Lano _E Laaz (2.27)
LO = I-aaO - 2|-abO (2.28)

The leakage inductance due to flux that does not link any rotor circuit and the mutual inductance
due to flux that links the rotor circuits are the two portions of the stator self inductances. In the dq0
axes, the stator leakage inductances are approximately equal [34]. The stator self inductances are

represented as:

L =L + L, (2.29)
L, =L+ Ly (2:30)
L, =L, +3L, (2.31)

where L, is the stator leakage inductances, L,4 and L,, are the mutual inductance due to flux links
the rotor circuits on d- and g- axes.

The per unit approach is used in this part to simplify mathematical equations and make the
equivalent circuits of the SM model easier to comprehend. The stator base quantities are chosen

arbitrary, and the rotor base values are determined in relation to the stator base quantities [34].
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=i (2.32)

=i =i =
dbase Obase Obase Shase

= = = = esbi — h (2.33)
[//dbase l//qbase l//obase l//sbase ) .1 '
S s 'base

Ldbase - quase - Lobase - stase - (234)

where subscript base means the base quantity of the variable, iSbase is the stator nominal current,

€ .. is stator line to neutral peak nominal voltage, and S, is single phase nominal power.

The following are the rotor base values in relation to the stator base values:

. Ly .
Ifdbase = L_a::jlsbase (235)
a
. L, .
iy, = Li o (2.36)
a.
L fd
l//fdbase - Lad Sbase (237)
al
— Lald
l/jldbase o l//sbase (238)
Lad
2
Lafd
|—fdfdbase = L, Lpase (2.39)
L 2
LidldlJase = La = Liase (2.40)
ad
. Lo .
Ilqbase - Lﬁ Isbase (241)
alqg
Log .
Iquase = Laq ISbase (242)

a2q



L

_ _alq

qubase - L (//Sbase
aq

L

_ Lazg
l//z%ase - L stase
aq
2
010pase L ase
aq
L 2
_ a2q
I-Zqubase - L J Lbase
aq

20

(2.43)

(2.44)

(2.45)

(2.46)

A superbar is used to identify per unit quantities and demonstrate their relationships to the actual

values. Using the base values defined in equations (2.32)-(2.46), the per unit inductance of

equations (2.23), (2.24), and (2.25) are:

Wy L Ly Lo |[—1g

Y |=|Laa L  Calad || i

Y14 Lag  Colag  Ligag || ko

X
I
—

|

aq
Yiq |= Laq Liqlq Cq Laq hg
Waq Lag  Colag  Lagzq || kg

In equations (2.47), parameters C; and c, are:

. Lag L ta1a

j=———

Lafd Lald

_ Laq L1q2q
¢ L, L

alg —a2q

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)
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Reference [35] demonstrated the importance of parameters ¢; and ¢, . To simplify equations (2.47)

and (2.48), the following assumptions are used [36, 37]:
¢y ~1,and c, ~1 (2.52)

Also, the following parameters are defined:

Lig = Ligrg — Lug (2.53)
Lig = Ligig — Lag (2.54)
Ly = Dgg — Lug (2.55)
Loq = Logaq — g (2.56)

Using defined parameters in equations (2.53)-(2.56),the per unit flux equations (2.47), (2.48), and

(2.49) are represented as:

7 L + Lo ~ I:ad_ Ead —l
Vi |=| Lag Lig + Lag Lag I (2.57)
Y14 Lag Lag Lig +Lag || he
l/7q I:I i‘ I:aq 3 Laq_ an _i_
Vi |= I:aq Liq_+ Lag 3 Laq_ g (2.58)
W 2q Laq Laq L2q + Laq i2q

7o =—(L +3L, ) (259)

Applying the transformer of (2.17) in (2.2), the stator voltage equations in the dgO frame are:

Vd R, 0 0| q Y4
Vg [=-| 0 R, 0 i +T(e)a T7(9)| v, (2.60)
Vo 0 0 Ry Yo
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Therefore,
Vg R, 0 0y P —o 0y,
Vg |=—| 0 Ry O iy |+a, p 0]y, (2.61)
Vo 0 0 R, i 0 0 pllw

where generator states, Vg, V,, Vo, Iy, i and i, are stator voltage and current on dq0 axes. /4,

v, and y, are flux on dqo0 axes.

,
Ra ) rl//q+
A+
Va Pwy
o=
@,
Ra + rl//d i
+
A
Y pl//q

b) g-axis equivalent circuit
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R, L
0 M
A -
’ 3R,
Vo
3L

c) 0-axis equivalent circuit
Figure 2.2 dg0-axes equivalent circuits

Figure 2.2 shows the equivalent circuits of SM in dqO frame, which represents equations (2.57),

(2.58), (2.59), and (2.61).

To find the per unit form of (2.61), the per unit of derivative term is required.

d 1d 1
D — — — 2 _ — 2.62
P dt 1) P ( )

where p is per unit derivative and t is the per unit time. The time base value is the time it takes
for the rotor to rotate at the synchronous speed for one electrical radian [34].

Therefore, the per unit form of (2.61) is:

Vg R, 0 0] p o 0wy
V,|=-| 0 R, 0% +wi o, P o] 7,
_ = || - A _
Vo :? 0 Ra:_l_o: 0 0 pjlw (2.63)
R, 0 o]&] [P -a& O
=—|0 R, O|ij[+|@ P O,
0 0 RJ%] 0 0o 7w

Hereafter, the SM equations are presented in the per-unit form. The superbar, which distinguishes

per unit variables, is removed from the notation.
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The aim is to find stator voltages based on the stator currents and rotor transient and
sub-transient quantities. The rotor currents are obtained by rewriting equations (2.57) and (2.58)

depending on the rotor flux.

1.1 1 1 1]
. Lad L1d Lfd I‘:I.d Lfd
) 1 1 1 1 1 1
Lighg |= 1 1 1 1 N f+L_+L_ T vy | (2.64)
Lfdifd e | | ad fd fd Wfd
L L Lg Lg 1 1 1 1 1
R —_— —_ _+_
L I‘I L1d L| Lad L1d
11 1 1 1
LI Laq Liq qu qu qu l//
L .
; 1 1 1 1 1 1
Lighg |= - — - v | (2.65)
L2 i2 i+i+i+i I-I I-I Laq I-2q L2q v,
vl Ly Ly Ly 1 1 1 1 1 ‘
L I-I Liq I-I Laq L1q

The first cycles of a transient in the system after a disturbance have higher frequency oscillations
than the rest cycles. Due to the existence of resistors (or dampers) in the systems, the frequency of
the oscillations reduces. The transient behaviour of the SM depends on the number of damper
circuits. In a SM having two dampers, the fast oscillations are known as sub-transient, and lower
frequency oscillations are known as transient. To model machine sub-transient, the whole circuit
is considered. Then, during low frequency oscillations, the damper with lower time constant can

be neglected.
The sub-transient emf proportional to d-axis flux, E; , Is defined as the sub-transient flux on d-axis

when the circuit is open, and the flux is propotional to sub-transient emf on the g-axis. Therefore,

E, is the flux on the d-axis when the circuit is open.
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LI
o Y Y'Y\
A+
Lyg
E "
! Lad

(e,

Figure 2.3 Equivalent circuit of sub-transient emf proportional to d-axis flux

According to Figure 2.3, the sub-transient emf proportional to d-axis flux is:

: 1 Yid | Wi
E = + 2.66
I [Lfd L (260)
d

Lad Lfd

As illustrated in Figure 2.3, sub-transient inductance is the equivalent inductance on the d-axis with

the field voltage and damper circuits.

" 1
G=b+T—1 (2.67)
Lad I‘:I.d Lfd

The relation of the current on the d-axis, iy, in equation (2.64) can be written as:

1 1 1 1 . 1 1 1 1 1
A Ly =y Wy (2.68)
( ] [Lad Lig Lfd] Lig L g

And equation (2.68) is rearranged as:

1 v + 1 v
T VYt Vi
Lyg ' L1 _ 1 .
71 1 Vet L + T 1 1 |« (2.69)
Lo L L Lag Lo Li



26

Replacing equations (2.66) and (2.67) in equation (2.69) gives:
E, =wq + Lyl (2.70)
The sub-transient emf proportional to g-axis flux, E‘; , Is defined as the sub-transient flux on g-axis

when the circuit is open, and the flux is propotional to sub-transient emf on the d-axis. Therefore,

E, is the flux on the d-axis when the circuit is open.

I‘I
Y Y Y\

A+

(e

Figure 2.4 Equivalent circuit of sub-transient emf proportional to g-axis flux

According to Figure 2.4, the sub-transient emf proportional to g-axis flux is:

" 1 Vg | Yaq
Ey=- —+— (2.71)
1+1+1£ Lig LZq]

Laq Liq qu

As illustrated in Figure 2.4, sub-transient inductance is the equivalent inductance on the g-axis with

the two circuits.

" 1

=L+ (2.72)
—t+—+

Laq Liq L2

q

The relation of the current on the g-axis, i, , in equation (2.65) can be written as:

1 1 1 1 | 1 1 1 1 1
_LI —_—t—t—+— Iq= —_—t—+— l//q——l//lq——l//gq (2-73)
I-| Laq L1q L2q Laq L1q L2q Liq I-2q
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And equation (2.73) is rearranged as:

1
7'//1q+7l//2q
Liq L2q 1 .
_ 274
1T 1 1 Ver\bhrT 11|k (2.74)
T T
Lag  Lig Lo Lag  Lig Lo

Replacing equations (2.71) and (2.72) in equation (2.74) gives:
Ey =—(vq +Lyig) (2.75)

The transient emf proportional to d-axis flux, E(} , Is defined as the transient flux on d-axis when

the circuit is open, and the flux is propotional to the transient emf on the g-axis. Therefore, E(; is

the flux on the d-axis when the circuit is open.

I‘I
o Y Y'Y\
A+
E .
! I-ad

o

Figure 2.5 Equivalent circuit of transient emf proportional to d-axis flux

According to Figure 2.5, the transient emf proportional to the d-axis flux is:

- L
E,=——yy (2.76)
! Lag + L
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As illustrated in Figure 2.5, transient inductance is the equivalent inductance on the d-axis with the
field voltage.

_ 1
1 1
+
Lad Lfd

Ly=L, + (2.77)

The transient emf proportional to g-axis flux, E('j, is defined as the transient flux on g-axis when

the circuit is open, and the flux is propotional to the transient emf on the d-axis. Therefore, E('j is

the flux on the d-axis when the circuit is open.

I‘I
O Y Y YN
A+
Eq

aq

(e

Figure 2.6 Equivalent circuit of transient emf proportional to g-axis flux

According to Figure 2.6, the transient emf proportional to g-axis flux is:

L

Ey =———v, (2.78)
Lig+Llog

As illustrated in Figure 2.6, transient inductance is the equivalent inductance on the g-axis with the

first damper.

L= +—=—— (2.79)



29

Transient time constant is the total equivalent time constant on each axis considering the first
damper. The transient open-circuit time constant on d-axis is calculated based on circuit shown in

Figure 2.5.

. L,+L
Tyo=——" (2.80)
Rfd
The transient open circuit time constant on g-axis is calculated based on circuit shown in

Figure 2.6.

S
quz—adR & (2.81)
2q

Sub-transient time constant is the total equivalent time constant on each axis considering the two
dampers. The sub-transient open-circuit time constant on d-axis is calculated based on circuit

shown in Figure 2.3.

" 1 1
TdO=R_ L1d +—1
1d 4+

- (2.82)
Lad Lfd

The sub-transient open-circuit time constant on g-axis is calculated based on circuit shown in
Figure 2.4.

R|mTT T (2.83)
aq 2q
where Ly, L, Ly, Ly I_'q , and I_; are synchronous, transient, and sub-transient inductance on the

dand g axes. Tyq, Tyq, T, and Tyq are transient and sub-transient open circuit time constants on

the d- and g- axes.
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Equations (2.64) and (2.65) are rearranged after replacing the stated parameters:

_ L L, 1l
hg 1 . " .
== - - ' E 2.84
e [ PR [ 22
Ly — Ly Ly — L E,
| ) L, - L, -1 1],
19 | . " . -
= R EE IR BT
! L~ Ly L~ Ly E,

The field voltage on d-axis flux, E, is defined as the emf on the d-axis flux caused by the field
current. Therefore, Ey, is the emf flux on the d-axis flux when the iy, i,y ,and v, are dismissed:

Lad

Ew =
R

e (2.86)

In the following equations the per unit inductance are replaced by per unit reactance. The per unit
reactance is:
X _ L ¢ (2.87)

X_ = =
X base Lbase

Using equation (2.61) and defined flux in equation (2.70) and (2.75), the stator voltage on d- and
Q- axes are:

.di, dE, .o :

v, =—X, d—:+d—tq+a)r(xq|q +Ey )~ Ry (2.88)
.di, dE, . :

v =_qu—;‘—d—td—wr(xd|d —Eq )~ Rulq (2.89)

Using equation (2.61) and the flux relation in equations (2.59), the stator voltage on 0-axis is:

dig _

Vo ==(X1+3X,) 2 ~(Ra +3Ry o (2.90)

where R, and X, are respectively resistance and reactance connected to the neutral of machine.
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Replacing equation (2.84) and (2.85) in equation (2.3) gives:

dE, X, . _xC [ Xg =X ) (X =X
_q:i[Efd——xf.’ Y g 4 Zam X Eq—( - d)( - ')id (2.91)
dt T, X4 =X, X4 =X, X4 =X,
B _ 1] XamXip XooX E;+(xq—x?)(xq—x,)i (2.92)
dt Tl X=X Xq— X, Xq—X ‘
dE. 1 . . ) X" X dE,
- | _El+E, (X, =X )iy [+ 2L e 2.93
dt Tdo[ o+ B (X “)d] Xy —X, dt (2.93)
dE, 11 o o (o on\. 7 Xq— X dE,
—S =—|-E +E; +( X, =X )i, |[+— — 2.94
dt qu[ o+ Ea+ (X q)q} Xq—X, dt (2.94)
The SM terminal power is:
pt = Vaia +Vbib +Vcic = V;bciabc (2-95)

Then using the inverse of Park’s transform in equation (2.19), the equation (2.95) is written as:

Pt = (T _1qu0 )T T _1idq0

. (2.96)
:V;irqo (Til) Tilidqo
where the product of two matrices is:
100
.
(T‘l) T'=l0 1 0 (2.97)
0 0 2
Therefore, the SM terminal power in dq0 axes is
Py = Vgig +Vgig +2Vlg (2.98)

Replacing equation (2.61) in equation (2.98) gives:

o . Cdyy o dyg o d
2 ;2 2 |4 4
P, :—Ra<|d +1q +2|0)+(1//d|q —1//q|0,)cor +(|d dtd +ig dtq + 21, dtoj (2.99)
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The out power of SM can be separated by three terms, the armature resistance loss:
R =-R, (ij +iZ2+ 2i§) (2.100)

Electromagnetic power (also known as air-gap power):
A2 (2.101)

and rate of armature magnetic energy change:

d
} d;”td +i, ;/;q +2i, d(;/go

(2.102)

Electromagnetic torque is calculated by dividing the electromagnetic power (equation (2.101)) by

the mechanical rotor angular velocity (@, ). The relationship of per unit mechanical and electrical

rotor angular velocity is:

P
m
B =r=2 _g5 (2.103)
o, Py
? s
where 2r = Pt and p; is pole pair number.
o, 2
Therefore, the electromagnetic torque in per unit is:
T, =Wqlq —¥,lg (2.104)

In equation (2.104), flux on d-axis (y4) and flux on g-axis (y,) are respectively given by

rearranging equations (2.70) and (2.75) as:

Wy =—Xgig +E (2.105)

Wy =—Xqiq — Eq (2.106)
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The balance between mechanical and electromagnetic torque cause acceleration or deacceleration
in rotor angular speed. The relationship known as Swing equation in per unit is [34]:

da,

dt

2H

+Kp (@ = ,) =Ty = (waly —¥4ia ) (2.107)

where ., o,,and o, are synchronous, mechanical and rotor angular speed respectively. T, and

T,, are respectively electromagnetic and mechanical torque. H and K are the moment of inertia

and the viscous friction coefficient (or damping factor).

A balanced three phase terminal voltages are:

v, =V, cos(6,)

a

v, =V, cos[@ —2{) (2.108)

where 0, , the phase of voltage phase “a”, is:
0, =t +6, (2.109)
and 0, is the initial phase of voltage phase “a”.

Then, the dg-axes voltages using Park’s transform of equation (2.17) are:

vy =V, cos(6, —6) (2.110)
vy =V;sin(0,-0) '
or:
Vy =Vtsin(%+6—6a]
(2.111)
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Initially the rotor angular velocity (@, ) is equal to synchronous angular velocity (@, ). Therefore,

the voltage on the dg-axes can be represented as:

Axis of phase a

Figure 2.7 Representation of dg-axes voltage

In Figure 2.7, ¢ is the angle between g-axis and terminal voltage, and it is defined as:
5=%+e—ea (2.112)
Replacing equations (2.1) and (2.109) in (2.112) gives:
T
§=(a>r—a)s)t+5+eo—eaO (2.113)

The terminal voltage oscillates with synchronous angular velocity (@,) and the dg-axes rotate by
the rotor angular velocity (@, ). Therefore, the angular velocity of & is the relative angular velocity

of rotor and synchronous (@, — @, ).

The derivative of equation (2.113) is:

do
E:a)r—a)s

(2.114)

Note that unit of equations (2.112), (2.113), and (2.114) are in radian.
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2.1.1 Discretized equations

Power system simulators solve differential equations of the network by numerical methods.
Integration rules discretize differential equations and convert them to set of algebraic equations.
The tool solves algebraic equations in each time step. This section contains the discretized
equations for the time domain model of a synchronous machine using the Trapezoidal rule.

To make (2.91)—(2.94) shorter, the below parameters are defined [38].

alzi.M (2.115)
TdO Xd_XI
X, =X,
azzi. d “d (2.116)
TdO Xd_xl
Xy =X ) (X5 =X
a3:( ¢ ")( : %) (2.117)
TdO(Xd_XI)
X, —X
a, =4t (2.118)
Xd_xl
X, —X
blzi. - (2.119)
q0 Xq_xl
X, —X.
=L 2T (2.120)
Too Xq— X
X, =X, )X, =X
b3=( “ “)( = X) (2.121)
qu(xq xl)
Xq =X,
b, = (2.122)
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Rewriting (2.91)—(2.94) gives:

dE, (t ‘ .. Eplt
q():—alEq(t)+a2Eq(t)—a3id (t)+ “3.() (2.123)
dt Tao
dE, (t
Lol b, 0+b,E3 ) +biy 0 (2.124)
dE, (t) dE(t) 1 . : N
q _ q i _ _
oA +Td..0[ E, (0)+ Eq (1) —(x; =3 )i (t)} (2.125)
dEs(t) _, dEy(t)
s =b,— qu[ Eq (0)+Ej () +(x —x )q(t)} (2.126)
The transient emf on d-axis, given in (2.123), is discretized as follows :
. a,E, —aj, +E
Eqn — 20, 23dn hdn1 (2127)
—+a
At
where the history term is:
' EfD EfD " .
E, =—+—"24| —— a,E, —aji 2.128
htn_1 Td() Td 0 (At aij On-1 a3 dyg ( )

The subscript n means the value of variable at the n-th time steps (x(tn):xn). The

sub-transient emf on d-axis, given in (2.125), is discretized as follows:

(2t o= (4% ) B,
AL Ty Tao

a0 2 1

At Ty

(2.129)

where the history term is:

. 2a, 1 )_. 2 1) AT
Erg,, =] - |Eq, *| == |Ea o (% =% (2.130)
n-1 At Tdo n—-1 At Tdo n—-1 Tdo n-1
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The transient and the sub-transient emfs on the d-axis as a function of input current and history
term are found by rearranging equations (2.127) and (2.129):

E, = iy
” 2 1 (2 j 2a, 1 i
—t+ +a |- o |y
At Ty LAt At Ty

(2.131)
2 1) :
[At * Td"oj Brg,., +82Em, ,

(2.132)

2a 1 - 2 .
( At4 T thqnl +(At+ alj thn—l
do
+
2 1 ( 2 j 2a, 1
—+ = +a |—| —+—|q
At Ty \ AL At Ty,

The transient emf on g-axis, given in (2.124), is discretized as follows:

b, E;n +byi, + E(',n_1
n = 2
Bl
At bl

E, (2.133)

where the history term is:

By, = (A% - blj Ey , +DEy | +hii, (2.134)
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The sub-transient emf on g-axis, given in (2.126), is discretized as follows:

2b4 1 ' 1 ' " - "
" [At+_|_q,,0} Edn +_I_—..(xGI —xq)lqn + Ehdn_l

q0

By, = 51 (2.135)

7+7"

At Ty

where the history term is:
2 1) [2b, 1 | 1, .
Ehdm1 = [A_t - T—J Edm1 - {T: _T_] Edn,l + TT(Xq —Xq ) I, (2.136)
q0 q0 q0

The transient and the sub-transient emfs on the g-axis as a function of input current and history

term are found by rearranging equations (2.133) and (2.135):

2 1 1, .
{At+_|_q..on3+_l_"(xq—xq)b2

q0

EcIin - iQn
i_ﬁ_iﬂ (2+blj_ 27b4+i" bZ
At T At At Tog

(2.137)
2,1 Epng, , +0,Eq
At qu " "
J’_
£+i.. (2+blj— 2—b“+i b,
At Ty LAt At Ty,
2, 1 b3+%(xq—x;)(2+blj
Colat T T AtY)
Ey = i
dn qn
2 12 j 2, 1
I 2 A S I
At Ty LAt At Ty,
(2.138)
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The voltage on d-axis, given in (2.88), is discretized as follows:

2X, ). 2 . o ..
V, =—| R +—4 |i, + E, +—%( X, i, +E, |+V, 2.139
dn ( s o, At] dn oAl “ ( q'dy dn) hdn4 ( )

S

where the history term is:

~ 2X4 ) 2 . @O o :
Vhdml = _Vdm1 _[Rs - C{)SAt J |dn71 - @ Eanl + Ts(quqnl + Ednfl ) (2140)

To define the voltage on d-axis voltage as a function of input currents, equations (2.132) and

(2.138) are replaced in (2.139). Then, the obtained function is rearranged as follow:

Vdn = _de idn + Z + Ehdn—l (2.141)

dgy, IQn

where Z 4 is:

2a, 1 1 (2
2X, 2 At Ty Ty At

Ato, Ao, (2 1 (2 j 2a, 1
—t || —=+a || —+=|a,
At Ty LA At Ty,
and L, is given by:
2b, 1 1/, 2
Ay b3+..(xq—xq)(+blj
o | . At Ty Teo At
Zgq =—| Xq+ (2.143)

_; q
et
q0 q0

The Zgq is constant and Z, is a function of rotor speed.
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The total history term of d-axis voltage in equation (2.141) is:
2, 1 = +(2+ale;q
2 At T, ) oAt -t
Ehdn—l :Vhdn—l +
oAt 2 1 ( 2 ) 23, 1
—+ || =+ |-| —+— |3,
At Ty, )\ At At Ty,

(2.144)
2b, 1
—_—t—
@, At T

q0

) .
Epa , + (At + bl} Ena

Q.
232 ) e Ly,
At T JLAL At Ty

The voltage on g-axis, given in (2.89), is discretized as follows:

+

V, =— R+2x‘; i 2 E —wr"(x"i +E, )+v (2.145)
Gn B a)sAt On (OSAt dn o, d'd, On hd, 1 !
where the history term is:
2X, 2 . o . .
_ _ q |; _c __ha : _
VhQn—l o an—l {RS + a)sAt]anl + a)sAt Edn—l a)s (Xdldn—l Eqnfl) (2146)

To define the voltage on g-axis voltage as a function of input currents, equations (2.132) and

(2.138) are replaced in (2.145). Then, the obtained function is rearranged as follow:

where Z, is given by:

X, — X,
) {2b4_|_]:}b3+(q"q)[2+blj
L, nuXe, 2 (AT To (At

+ (2.148)
T Ao, Ao (2 g (2 ] 2, 1

—+—= || —+b |-| —+=|b,

At T, LAt At To,
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and Zq is given by:

20, 1), (x-%)r2
@ At )R T A
Z., =—o| X+ do do (2.149)

ST (2 1 (2 j 2a, 1
R | I T o [ Sty -
At T LAt At TS

The Z, isconstantand Z, is a function of rotor speed.

The total history term of g-axis voltage in equation (2.147) is:
2b, L Eng, , + (2 + blj Epg, |
2 (At T At

Eng, . =Vha,, —
At To LAt At T )"

(2.150)
2a, 1 : 2 .
74+7" EhCln—l +(+ aij thn—l
o, At Ty At
+
o, [ 2 1 ( 2 ) 2a, 1
— || =t || A,
At Ty, )\ At At Ty,
The voltage on 0-axis, given in (2.90), is discretized as follows:
Vo, =—Zoolo, +Eno, (2.151)
where Z, is given by:
2( X, +3X
Zy = 2% +3%,) R, +3R, (2.152)
w, At

and the history term of 0-axis voltage in equation (2.151) is:

2(X, +3X _
Eno, , =—Vo,, + (% —(R,+3R, )J iy, (2.153)
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The angular speed, given in (2.107), is discretized as follows:

T, ~(Wa ko, ~Valo,
O =— (4H LA )+a)hmn1 (2.154)
+Kp

W, At

In (2.154), the history term of mechanical angular speed is:

. . 4H
Tmn—l - (V/dn—llqn—l - l//qn—lldn—l ) +( - kD ja)mnl + 2KDa)S
w, At
Onm, , = T (2.155)
—+Kp
w, At
The rotor angle, given in (2.114), is discretized as follows:
o, = pat O + 6 (2.156)
In (2.156), the history term of rotor angle is:
PAt
Sy =Onat—— (@, —20,) (2.157)

2.1.2 Norton equivalent circuit of SM

The voltage relation of SM in the dgO-frame is expressed as follows using equations (2.141),
(2.147), and (2.151):

Vaqo, = ~Zaqo, g0, + Endao, (2.158)

where the Z,,, matrix is the SM equivalent impedance in dq0-frame. It should be noted that the

dq0 impedance is not constant and is a function of rotor speed.

Zgo =| Zeg,  Zgg O (2.159)

0 0 Zy



43

and Eqqq , , Vector of history term, is:

T
Ehdqon,l = [Ehdn,1 thn,1 EhonJ (2.160)

To add the equivalent SM model to the MANA matrix, the dq0 frame model explained in

(2.158) needs to transform to the abc frame.

) 7
abc,
+ 4 lanc + L
Vane Vaan au Ihaan_l

a) b)

Figure 2.8 a) Time domain SM, b) Equivalent circuit

Figure 2.8 shows the TD Norton equivalent circuit by Trapezoidal rule. The equivalent impedance

and history terms in the abc frame shown in Figure 2.8 are computed as follows:

Z =T—1(9n)qu0nT (6,) (2.161)

abc,

inae. . =T (6h) Zaqo. , Enago, , (2.162)

The equivalent impedance of a linear component, such as an inductor or a capacitor, is constant,
and the history term calculated using the Trapezoidal method is dependent on the component's
voltage and current in the last time step. The equivalent impedance of SM, on the other hand, is
not constant, and the history term is affected by present and prior states. To obtain the proper SM
equivalent, the present states are estimated in each time step, and the equivalent model is computed
based on the predicted values. Following that, the network equations are solved and the SM's
existing states are determined. If the new states have the same values as the predicted value, the
prediction is correct. If not, the corresponding model is calculated using the new values. This
iterative procedure is continued until the solution converges to a state that is acceptable to the

machines.
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2.1.3 Simulation steps

The following are the steps in a TD simulation approach:

1. Calculate the three phase Load-flow: to simulate unbalanced network from initial state, a

three-phase load flow is used

2. Initialization

a.

d.

Convert the loads to constant impedances: other load models, such as constant
power or constant current, are also possible. The focus of this thesis is on the

modelling of SM, and the basic load model with constant impedance is employed
Calculate the equivalent circuit of elements by discretized method

Build the admittance submatrix of MANA (equation (1.8)) of the network (exclude
the SMs): During the simulation, the impedance of all components except SM
remains constant. To avoid having repetitive computation, the constant portion of
the admittance submatrix is computed during the initialization phase, and the

variable part is added to the admittance submatrix during the simulation

Calculate the history terms for the first time-step based on the load-flow results

3. Dynamic simulation

a.

Calculate the equivalent impedance and the injection current using equations
(2.161) and (2.162) for all SMs

Add the equivalent impedance of SMs to admittance submatrix of MANA, add the

injection current of SMs to the b, vector, and solve A X, =b,

Update dg0-axes currents (equations (2.141), (2.147), and (2.151)), rotor speed
(equation (2.154)), and rotor angle (equation (2.156)) for all SMs

If the angular speed relative error of all SMs is less than the allowed error for two
consecutive iterations, the solution is converged, and can proceed to step 3.e. If not,

the solution has not converged, and the next iteration should begin at step 3.a.

Calculate the controllers” model for the next time step
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f. Predict the rotor speeds of all SMs and determine rotor angles based on the

calculated rotor speeds

g. Calculate the history terms of all elements except SMs (the history term of an

inductor, for example, as indicated in equation (1.5)), then update the b, vector and

proceed to step 3.a for the next time step

The prediction of variables in step 3.e reduces iteration number. A linear function based on the
previous and current variables is used to predict the variables at the initial iteration of the next time

step. The function is:

X% =2x —x (2.163)

n+l —

where xr(]o) is the predicted value for the next time step, X, and X,_; are the value of converged

+1

solution at the current and previous time step, respectively.
For an iterative solution, the relative error of a variable is:

i-1)

Xn

where & (;, represents the relative error of variable x at the n-th time step for the j-th iteration.

2.2 Dynamic phasor model of synchronous machine

The DP model is based on the same premise as the TD model of an SM in the dq0 frame discussed
in the preceding section. To identify the DP model of SM, the approach for computing variables in
the dq0 frame from the abc frame for each Fourier coefficient need be determined.

Note that the lower letters represent time domain quantities, upper letters represent Fourier series

coefficient for the dynamic phasor quantities.

A three-phase unbalanced current can be presented as:

Xape = A" X, (2.165)
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where variable x can be the voltage or current of the system. Subscripts p, n, and z are positive,

negative, and zero symmetrical components. And the inverse transformation matrix A™ is:

1 1 1
,jzl 2z
Al=le 3 ¢e3 1
JZi _.27r
e 3 e 3 1

(2.166)

The relationship between currents of dg0 frame and symmetrical components is given by

combining equations (2.165) and (2.166):

27 27
cos(0) cos(e—?j cos(6’+?j - 1
.2 Zl
Xq :g —sin(@) —sin 0—2—7[j —sin(0+2—”j e '3 g3
3 3 3 )|

1 1 1
2 2 2

where 9:w5t+5—£.

x| (2.167)

The following result is achieved by multiplying and then simplifying the two matrices in

equation (2.167):

—j[wst-%-é‘—ﬁJ j(wst+5—£j
e 2) e 20

X4 Xp
Xq _ e—](wStJré‘) e j(ost+6) X
Xo 0 0 1] x

The symmetrical components based on the first Fourier coefficient is as follows:

X X

Xp P P_1

_ joost —jot
Xg |=| X |77+ X, €77
X X X

(2.168)

(2.169)
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where Xpl , an , and le are the positive, negative, and zero symmetrical components of the first

Fourier coefficient, respectively. Xo o X, and X, are respectively the positive, negative, and

zero symmetrical components of the negative first Fourier coefficient.

When equations (2.168) and (2.169) are added together, the following result is obtained:

- j(a—fj j(2w5t+5—z]
e 2 e 2 0

e— j[2w5t+5—%) 3 j(é—%) 0 X

X4 _ ' X, ' _ Py
X, |=| e glat+) g X, |+ g i(2at+0) el 0 || X,, (2.170)
X 0 0 elot || X 0 0 elat]x

Equation (2.170) shows that in an abc frame with a fundamental frequency, the dg axes have dc
and second harmonic components, whereas the 0-axis has the fundamental frequency component.
The components of the two matrices in equation (2.170) that contain the positive and negative
second Fourier coefficient are excluded to produce the zero Fourier coefficients of the d- and g-

axes. As a result, the following outcome is obtained:
X -ilo3) ) [ X
Xq
o e

According to equation (2.170), the relation between the second Fourier coefficient on d- and g-

axes and sequence components is:
X4 | -
2l=el|® °|X (2.172)
X M
G2 1

and the negative second Fourier coefficient of the d- and g- axes is:

dez _a-Jole JE
=e X (2.173)
X P

g-2 1

According to equation (2.170), the zero sequence is:

Xy =X, el + X, e I (2.174)



The following procedure establishes relationships
coefficients of the symmetrical components:

1 1
%a, _j2E 2=

X, e 3 e?3

2r 2

Xck _el? e—J?

Equation (2.175) is conjugated as:

< [ 1 1

% _jE2 =
Xp | =1 % e 1

2 2
Xck _el? e—J? 1
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between negative and positive Fourier

rx

Pk
1] X, (2.175)
1|l

-

- (2.176)

Applying the conjugation to the transformation matrix and the applying property of (1.14) on the

variables from the abc frame, gives:

1 1 1] *
Xa_k 2z _jzl ka
Xp [=]e? e 3 11X~ (2.177)
.27 2r *
XC k e J? ej? 1 XZk
The following is the result of rearranging equation (2.177):
! 1 1] x
Xa,k 7J2771‘ le Xnk
Xp, [=]e % e 1X,° (2.178)
2 27 *
Xc—k eJ? e_ ? 1 XZk
When equations (2.175) and (2.178) are compared, the following results are obtained:
Ny prk
b Xn, (2.179)
X5 | X
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According to equation (2.179), the property of equation (1.14) is not valid for Fourier coefficients

of symmetrical components. In other word, XFLk is not equal to ka*.

Using the relation of equation (2.179), the zero Fourier coefficient of the d- and g- axis in

equation (2.171) can be expressed as follows:

Xy, = xplej(azj + x’;lej(&’;J - xplej(gzj + [x plej(ang (2.180)
X,, = Xpe X000 =X e 4 (X e ) (2.181)
or.
X, = 2m{xplej(52j} (2.182)
e
X, =2€R(Xple ] )=2:§ X e (2.183)

where R and 3 are the real and imaginary part of the complex number.
The first Fourier coefficient on the 0-axis, according to equation (2.174), is:
Xy =Xy (2.184)

According to equations (2.182) and (2.183), the transition from zero Fourier coefficient of the d-

and g- axes to the first Fourier coefficient of positive components is:
Ly o ix el
X, = E(xdo + Xy Je (2.185)

According to equation (2.172), the transition from zero Fourier coefficient of the d- and g- axes to
the first Fourier coefficient of negative components is:
1

X, =5 (%, = X, je ) (2186)
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The following conclusions for the representation in dg0 frame under unbalanced circumstances and

fundamental frequency are reached using the preceding discussion.

- Equations (2.182) and (2.183) show that the positive sequence of stator behaves as a zero

Fourier coefficient (k =0) on the d- and g- axes

- Equation (2.172) shows that the negative sequence of stator behaves as a second Fourier

coefficient (k =2) on the d- and g- axes

- Equation (2.184) shows that the zero sequence of stator behaves as a first Fourier coefficient
(k =1) on the 0-axis, and equation (2.170) express that zero sequence of the stator does not

appear on the d- and g- axis

The DP model can be obtained form the TD model in section 2.1, as well as the DP properties in

section 1.1.2.

The DP relation of the d-axis stator voltage is obtained by calculating the zero and second Fourier

coefficients from equation (2.88).

(2.187)

;Sdt o, dt o,

o di dE, .
Vd|k:o,2 :l:_ % di+i_q+ﬂ(xqiq +Ey )_ Raid]

k=0,2

The zero Fourier coefficient of the d-axis stator voltage is the zero Fourier coefficient of each term
in equation (2.187):

X di 1dE,|  a y. o .
V, =———" —— +—( X, +E -R.I 2.188
d|k=0 , dt k=0 s dt KeO a)s( o d)k:o ad|k:0 ( :

The zero Fourier coefficient of derivate terms, according to the property of DP provided in

equation (1.12), are:

CXgdig| X Al (2.189)
w, dt| o, dt

19 _ 1 dE, (2.190)
o, dt| o dt
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The zero Fourier coefficient term of product of two TD variables, according to the DP properties
in equations (1.13) and (1.14), is:

*

%(X;iq+E;) :QrO(X;IqO+E:,0)+g3: (x;lqz+E';,2)+£z)f2(x;|qz*+E;2*) (2.191)
s k=0 s s s

Therefore, the zero Fourier coefficient of the d-axis stator voltage is:

*

*dl dE, Q, /. oy Q. .
V, S R N Bt (quq +Ej )+ L (quq +E, )
0 o, dt o, dt o, 0 7w 2 2 (2.192)
Qup (yry * L s
F 2 (X1, " Ey )= Ryl

Ws

The same methodology used to get the zero Fourier coefficient of the d-axis stator voltage, equation
(2.192), may be used to compute the other SM equations of the DP model. The second Fourier

coefficient of the d-axis stator voltage, according to equation (2.187), is:

X; dIdz

. 1dE, .. Q. .
— j2Xlg, +——+ j2B +—2(Xlg +Ey )
2 o dt a2 ) I 0
s (2.193)

S S

Q ; "
+—2(Xglg, +Eq, )= Ral,
Equations (2.192) and (2.193), which represent the zero and second Fourier coefficients of the
d-axis stator voltage, may be summed by the bellow equation.

X, d

ly, .. 1 dE, . . Q. . .
V, =_?Sd_tk_ KX glg, o o+ IKE, +Z#(xq|ql +Ey )-Ralg,  (2.194)

S

The DP relation of the g-axis stator voltage is obtained by calculating the Fourier coefficients from
equation (2.89).

X, dl ,, 1 dE’ " 0 " "
=0 % ex, ———% kg, - (X1, —E; )-RI 2.195
O o, dt JKR gl o, dt JKE4, IZ o ( dlg, q,) alg, )

where k, the Fourier coefficients for g-axis stator voltage, can be zero or two.
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The DP relation of the 0-axis stator voltage is calculated by applying the DP properties to
equation (2.90) and computing the model's Fourier coefficient.

dl
(X ;3Xn) dct)k — K (X, +3X, ) I, —(R, +3R,)1g, (2.196)

S

Vo

X =

where k, the Fourier coefficients for 0-axis stator voltage, is one.

The DP relation of the g-axis transient emf is obtained by calculating the Fourier coefficients from
equation (2.91).

dE . _ , xlo (X = X)X =X
ot joBy = fdk—x‘.’ X'Eqk+X‘? Xquk—( ‘ d)( ‘ ')Idk (2.197)

where K, the Fourier coefficients for g-axis transient emf, is zero or two.

The DP relation of the d-axis transient emf is obtained by calculating the Fourier coefficients from
equation (2.92).

1E, ] (2.198)

(Xq—Xé)(X;—X,)I Xq_XIE' +Xq—X
Xq— X

- Ty d
Xq— X X=X

dE, .
%t jka,Ey = L
dt Too

where k, the Fourier coefficients for d-axis transient emf, is zero or two.

The DP relation of the g-axis sub-transient emf is obtained by calculating the Fourier coefficients

from equation (2.93).

dEy . L e o X, -X [dEq
K _ _ _ _ d | Ok
" +Jka>sEqk_Td.,o[Eqk Eq, —(Xa x")'dk}x;—x,[ — +Jka)SEqu (2.199)

where k, the Fourier coefficients for g-axis sub-transient emf, is zero or two.

The DP relation of the d-axis sub-transient emf is obtained by calculating the Fourier coefficients
from equation (2.94).

dE,

+ jkoo,E, =L[E ~E +(X'—X")I }+X;_xl dElkorjka)E' (2.200)
sdy qu dk dy q q ] g X::I_X| dt s—d '
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The DP relation of mechanical angular speed is obtained by calculating the Fourier coefficients
from equation (2.107).

2H (dQ,
7[ o Jka)stk)szk —Z(Tdkl ly =¥ 1o )~ Ko (Qn —o0, ) (2:201)
S

where k, the Fourier coefficients for mechanical angular speed, is zero or two. It should be noticed

that for the zero Fourier coefficient, e, equals 1 pu, while for the other Fourier coefficients, o,
equals zero.

The DP relation of the rotor angle is obtained by calculating the Fourier coefficients from equation
(2.114). The rotor angle used in equation (2.168) is a time domain variable, therefore it is calculated

for the zero Fourier coefficient.

ds P
Ezz(g”‘o_

o,) (2.202)
The DP relation of the d- and g- axes flux are obtained by calculating the Fourier coefficients from
equations (2.105) and (2.106), respectively.

Wy, =—Xglg +E, (2.203)

W, =X, ~Ey (2.204)

where k, the Fourier coefficients for the flux, is zero or two.

2.2.1 Discretized equations

The discretized equations of the DP model of synchronous machine employing the Trapezoidal

rule are provided in this section.

Equations (2.197)-(2.200) are rewritten using stated parameters in equations (2.115)-(2.122),
yielding:

. E
+8,B; —agly, +Tﬁ (2.205)



To | ko, = a0 % 4 kot +-L[E, E (X)X
T‘f‘] w.E —a4 at + ) wsa4Eqk+ﬁ|:Eqk _Eqk_( d— d) dk:|

+ jko,Eq =-bE, +bEy +bil,

E'dk

—% 1 jko\E}, :F[Edk —Eq +(Xq =X )lg, |+b—+ jKebEy,

dt .

The transient emf on g-axis, given in (2.205), is discretized as follows:

8,Eq —aly +E

' _ Gk,n ha n
EQk,n - 2 k
—+ Ko, +
AL JKog +&
where the history term is:
. Em E, 2 . "
_ k.n k,n-1 i _ _
Eth,n - Td'o + Tdvo +(E kas aij EQk,n—l+a2 EQk,n—l a3 Idk,n—l
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(2.206)

(2.207)

(2.208)

(2.200)

(2.210)

The number of Fourier coefficients is denoted by the subscript k, while the value of the variable at

the n-th time step (x(t,) = X,) is denoted by the subscript n.

The sub-transient emf on d-axis, given in (2.206), is discretized as follows:

2a, . = L ,
[At+ iy, TJE o (6, B,
qk,n = H 1
— 4+ jka)S + =
A Tao

where the history term is:

(2.211)

(2.212)
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To derive the transient and the sub-transient emf on the d-axis depending on the input current, the
set of equations (2.209) and (2.211) are rearranged, yielding the following result:

1/ o 2 . 1
Tf(xd—xd)aﬁ E+kas+f a,

_ do TdO

E, = |
e 2 1) 2 . 2a, . 1) Y
—+ jkog+— || —+ Jko,+a, |-| —*+ ko, + = |a,
At Tyo J\ At At Tuo

2 . 1 \ .
[At_'- Jka)s +TdoJ th,k,n+ az th,k,n

+
£+jka)s+i (2+jka)s+a1j— 2ﬂvtjkalla)ﬁi a,
At Ty )\ At At Tso

1/, 2 . 2a, . 1
f(xd —xd)(AtJr Jka)s+a1j+(At4+ Jka4a)s+_|_..]a3

do

W (2 1) 2 . 2a, . 1) M
—+ jkog+— || —+ Jko,+a, |-| —*+ ko, + = |a,
At T, )\ At At Tso

2a, . 1 |- 2 . .
(At-’_ jka46()s +_|_d.,0j thk,n +(At + Jka)s + alj thk,n

+
£+jka)s+# (2+jka)s+a1j— 2ﬂ+jka4a)s+i.. a,
At T, )\ At At Tso

The transient emf on g-axis, given in (2.207), is discretized as follows:

(2.214)

— b2 Edk,n * b3 qu,n + Ehdk,n

2 .
—+ jka, +
o ke +by

(2.215)

dk,n
where the history term is:

' 2 . . .
Epg, , = (Zt_ Jkeoy _bledk,nﬁbz S L P (2.216)
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The sub-transient emf on g-axis, given in (2.208), is discretized as follows:

2b ' 1
(AE‘+ jKbya, + = JEdk +_I_—..(xq Xq)lqk,nJrEhdkn
_ qo0 qo0
b = — - (2.217)
—+ Jko, + —
At Too

: 2 . 1) ([on, . 1), 1
Ehdk,n = (A—t— jka)s —TqTOJ Edk,nl_(A_t_ ka40)5 —EJ Edk,nl+ﬂ(xq — Xq ) qu,n—l (2218)

To derive the transient and the sub-transient emf on the g-axis depending on the input current, the
set of equations (2.215) and (2.217) are rearranged, yielding the following result:

1 1
—+ ko, + = |by + (X, — X, |b.
o (A JKay quls qu(q q)z
dk,n - b4 1 Ak ,n
7+Jk  +—— 7+Jka)s+bl — E+]kb4a)s+f bZ
q0 q0
(2.219)
1
(At-l- jka)s +..\] Edk,n +b2 Ehd
+ -
£A+ jko, +J(+ jka, +blj—£2Abt“+ jkbyeo, +%]b2
q0 q0
27b4+1kb4a)5+ : by + : (xq—xq)( +jka)s+bl)
~ q0 a0
den = Ak .n
(+Jk S+J(+jkws+blj{ibt“+1kb4ws+ jbz
q0 q0
(2.220)
2
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The voltage on d-axis, given in (2.194), is discretized as follows:

2X5 o 2 )
Vi, , :—(RS+ Adt+ kadjldk~"+(—a) At+ JkJEqk,n

@,
0 ° ° (2.221)
fo,n " "
+ w, (Xq qu,n+Edk,n)+Vhdk,n
where the history term is:
2Xy o 2 )
Vhdk,n—l = _de,nl_{Rs B C()SAt + kad J Idz’"l_La)sAt - ka qu,n—l (2 222)
Qrkfl,nfl X " I E" Qrkfl,n X " I E" |
+Z ( alg,t d|,n-1)+z ( qlg, ™t dl,n)
| 23 1=k Ds

To define the voltage on g-axis voltage as a function of input currents, equations (2.214) and

(2.220) are replaced in (2.220). Then, the obtained function is rearranged as follow:

de'n = —dek Idk,n + quk,n |qun + Ehdk,n (2.223)

where Z;, is given by:

Xg(2 .
S

2 aka,+ 5 Jage 2 (% _x;)(2+ jka)s+61j (2.224)
1(2 : j At Tao do At
+—| —+ JKo,
@5 \ At £+jka) +i (2+jka) +aj— ﬁ+ja ke, +i a
At T LAt L R WX S R e

do do

and Zy, isgiven by:

Zg = (2.225)

Unlike Z,q , which is constant, Z, is variable and depends on rotor speed.
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The total history term of d-axis voltage in equation (2.223) is:

Ehdk,n—l - Vhdk,n—l +

2a, . (- 2 . "
—+ ja ko, + = |E +| —+ jko, +a, |E
1(2 . (At e TdOJ o (At e 1) "ot
o la e 12 2 1
° —+ jkag +— (+jka)s+al)— 4 jaka + = |a,
At At T

At TdO do

(2.226)

The voltage on g-axis, given in (2.195), is discretized as follows:

2Xq 2 o le
qu,n:_ RS+wAt+Jqu qu,n_ _a)At+Jk Edk,n

S S

(2.227)

_ o, (x; 1y, + Ean)+thk,n_1

S

where the history term is:

V =-V R —ZX; kX1 2 ik |E.
hoy g ™ - qk,n—l_ s . At +) q qk,n—l+ w. At — d.na
S

S

_ZQWT:“l(x; by~ E;Ln_l)—z P (x; lg,,— E;m )

=k s

(2.228)

To define the voltage on g-axis voltage as a function of input currents, (2.214) and (2.220) are

replaced in (2.227). Then, the obtained function is rearranged as follow:

V, =-Z

Gk, qdy Idk,n_zqqk qu,n“‘thk,n (2.229)
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where quk IS given by:

Z.. =R Xaf 2 jk
A% S+ZZ'ZE+J‘%

X —X.
2—b“+ jb4kcos+i b3+<q.,q)(2+ jka)s+b1j (2.230)
At qu qu At

2 . 1 2 . 2b, . 1
ot kaﬁT“}(AtJr Jka)s+blj—[m4+ Jb4ka)s+_|_q..o]b2

g0

2a, . 1 Xg=Xg)( 2
(At4+ jakao, +_|_..] a, +<")(At+ jke, +a1J

; T
« _ fo.n Xd do do (2231)
“t g 2 . 1 2 . 2a, . 1
—+ jkog+ || —+ ko, +a, |-| —+ Jako, + = |a,
At Ty JLAL At T
Unlike Z,, , which is constant, Z,, is variable and depends on rotor speed.
The total history term of g-axis voltage in equation (2.223) is:
Ehqk,n—l = thk,n—1+
2b, . 1 |- 2 . .
(At_'_ Jb4ka)s +Tq,.0] Ehdk,n1+(At+ Jka)s +blj Ehdk,nfl
(2.232)

1(2 .
) (K5+Jh%j 2 1) 2 2b 1
a) - - -

At Tqo q0

2a, . 1 |\ 2 . .
Q, [At—'_ jaka, + Tdoj Enge,ot (At + jkaog + alj S~

o, (2 . 12 . 2a, . 1
—+ jkog +— || —+ JKo, +a, || —+ Ja ko, + = |3,
At Ty J\AL At Tso
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The first Fourier coefficient of positive sequence voltage according to equation (2.185) is:

1 _ i(3-3)
Vpl,n - E(_ deo Ido,n + Zd%,n I%,n —J (quo,n Ido,n + quO IqO,n ))e

)91(5"‘75]

(2.233)

1 .
+E(Ehdo,n-1+ J thO,n—l
The first Fourier coefficient of negative sequence voltage according to equation (2.186) is:

1

| e
an,n - E(_dez Idz,n + quz,n IQZ,n +] (quz,n Idz,n + ZQQZ Iq2,n ))e

+%(Ehd2,n-1_ J Eth,n—l )e_j(én_zj

(2.234)

To have DP model of SM in symmetrical components, equation (2.233) needs to be rewritten as:

Vo, == Zp Vot Voo (2.235)
and equation (2.234) needs to be rewritten as:
Vo == Zoo oot Vi, (2.236)

The equivalent impedance and history term in (2.235) and (2.236) are defined as below. The

equivalent impedance is:

Zigy+Lgg, + ) on
= g Zuis) (2.237)
Lyg,+ZLgq,~ I £ . +Zg,.
Y = g o Z (2.238)
and history term is:
Z s, Zog,— 1 Zogy .~ Zag, . (5,7
e [N St

+(Ehdo,n4+ j Eth,n—l )ej(én_zj
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Zgg,~Zg, * ] (z
thl,n—l =T 2

— o T
0.0~ Lot ) (I Y )e‘l(bn‘zj
dan J G2,n

(2.240)
(5,7

By, i, )

The history term depends on both present and prior states. To obtain the proper SM equivalent, an

iterative solver is required.

The voltage on 0-axis, given in (2.196), is discretized as follows:

Vol,n - _Zool Iol,n + Eholyn_l (2241)
where Zy, is given by:
Z001 = XI +3Xn (Ait"' ja)sj"‘ Ra +3Rn (2242)
S

and the history term of 0-axis voltage in equation (2.241) is:

Er . =~V +(M(§t_jwsj—(Ra+3Rn)]|O (2.243)
,n-1 1,n-1 ) 1,n-1

S

The mechanical angular speed, given in (2.201), is discretized as follows:

ka,n _Z(del,nIQI,n Vo0 tdi, )
ka,n = SH{ 2 +thk,n—l (2.244)
—| —+ Jkaoy [+ Kp
Wy

where the history term is:

2 .
~ ke, |-K
(At J a)sj D

thk,n,1 =" 2 ka,n—l
(AtJr jka)sj-i- Ko

(2.245)
ka,n—l N IZ(\I]dkl,nqul,nl N \Ilqk—l,n—lldl,n—l ) + 2w5k

2H( 2 .
(At—'_ chosj+ Ko

@y

+
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The rotor angle used in equation (2.168) is a time domain variable, therefore it is calculated for the
zero Fourier coefficient. The rotor angle, given in (2.204), is discretized as follows:

PAt

60’” - TQmO,n + 6hO,n—l (2246)
where the history term is:
PAt
Sm,n,l = 8O,n—l + T(Qmo,nfl - 2605 ) (2.247)

2.2.2 Norton equivalent circuit of SM

The DP model of SM by symmetrical components is expressed as follows using equations
(2.235), (2.236), and (2.241):

pnz; =-Z pnz; I pnz; o +E

(2.248)

hpnz; ,_y

where the Z,,,  matrix is the SM equivalent impedance by symmetrical components. It should be
1,n

noted that the dgO impedance is not constant and is a function of rotor speed.

b 0 0
1n
Lo, =| O 4y, O (2.249)
0 0 Z,
and Ey,, ., vector of history term, is:
.
Ehdqol,n—l = [Ehpl,n_l Ehnl,n—l Ehzl,n—1:| (2250)

To add the equivalent SM model to the MANA matrix, the symmetrical components model

explained in (2.248) needs to transform to the abc frame.
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+ Iabcl

abey

a) b)

Figure 2.9 a) Synchronous machine, b) Equivalent SM circuit, DP models

Figure 2.9 shows the DP Norton equivalent circuit by Trapezoidal rule. The equivalent impedance

and history terms in the abc frame shown in Figure 2.9 are computed as follows:

Zate,, = A Zpp, A (2.251)
lrabe,, = A Zon, | Enpray (2.252)

The equivalent impedance of a linear component, such as an inductor or a capacitor, is constant,
and the history term calculated using the Trapezoidal method is dependent on the component's
voltage and current in the last time step. The equivalent impedance of SM, on the other hand, is

not constant, and the history term is affected by present and prior states.

2.2.3 Simulation steps
The following are the steps in a DP simulation approach:

1. Calculate the three phase load-flow: to simulate unbalanced network from initial state, a

three-phase load flow is used
2. Initialization
a. Convert the loads to constant impedances
b. Calculate the equivalent circuit of elements by discretized method
c. Build the MANA matrix (equation (1.8)) of the network (exclude the SMs)

d. Calculate the history terms for the first time-step based on the load flow results
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3. Dynamic simulation

a.

Calculate the equivalent impedance and the injection current using (2.251) and
(2.252) for all SMs

Add the equivalent impedance of SMs to admittance submatrix of MANA, add the
injection current of SMs to the B,  vector, and solve A, X, , =B,

Update the dg0-axes currents (equations (2.235), (2.236), and (2.241)), rotor speed
(equation (2.244)), and rotor angle (equation (2.246)) for all SMs

If the angular speed relative error of all SMs is less than the allowed error for two
consecutive iterations, the solution is converged, and can proceed to step 3.e. If not,
the solution has not converged, and the next iteration should begin at step 3.a.

Calculate the controllers” model of zero Fourier coefficient for the next time step

Predict the SM quantities of rotor speed, rotor angle, d- and g- axes currents of zero

and second Fourier coefficients

Calculate the history terms of all elements except SMs (the history term of an

inductor, for example, as indicated in equation (1.19)), then update the B, , vector

and proceed to step 3.a for the next time step

The prediction of variables in step 3.f reduces the number of iterations. Equation (2.163) represents

the prediction relationship. In step 3.d, the relationship of relative error is given as (2.164).

2.3 Three phase phasor domain of synchronous machine

In 3pPD method of SM, the electromechanical transients are represented by the zero Fourier

coefficient, and non-zero Fourier coefficient transients are ignored. Therefore, the zero Fourier

coefficient of the d-axis stator voltage, according to (2.88), is:

" dl dE, @, . Q.
Xy By 1 P rO(X I 0+Edo)+ rz(XqI
0)

q-q 02 +Ed2 )
: s s (2.253)

Q. .
+—2(Xgly, +Ey, )~ RuIy,

Wy

o, dt o d o




and the second Fourier coefficient of the d-axis stator voltage is:

e QR ..
Vo, == 12Xl + J28q, +— (XqTg, +Eg, )+ — (Xqlg, +Eg, )~ Ray,
S S

The zero Fourier coefficient of the g-axis stator voltage, according to (2.89), is:

X dlo_idEdo Q

qu:_?j & o, dt :O(Xé'do‘E:*o)
o Y ¢ S :
_Kﬁ(xdldz - K, )_ c: (Xdldz_EQz)_Rano

S S

and the second Fourier coefficient of the g-axis stator voltage is:

a2

V, ——j2X]l, — j2E, —2% (X1, ~E, )~ 25 (x]1, —E
qZ__J qqz_J d, ( didy — QO)_ ( did,

; o, ) Rl

G2

The zero Fourier coefficient of the 0-axis stator voltage, according to (2.90), is:
Vo, =—(R, +3R, + j( X, +3X,)) 1

The zero Fourier coefficient of the g-axis transient emf, according to (2.91), is:

Xq =X TXg X X=X

%i[Em_(xd_x“j)(x‘;_x')' _xd_xIE' +xd_x('j .
a T,

and the second Fourier coefficient of the g-axis transient emf is:

X=X R

jza)Squ =—

1 [_(xd_x(‘i)<x;_xl)l Xa= X Xy — X4 -
40

The zero Fourier coefficient of the d-axis transient emf, according to (2.92), is:

0

dt T, Xy =X OXg= X X=X

| I— |

|
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(2.254)

(2.255)

(2.256)

(2.257)

(2.258)

(2.259)

(2.260)



and the second Fourier coefficient of the d-axis transient emf is:

, X, =X, )(X. =X X =X, . X, =X, .
jza)SEdz T ( : Q)( : I)qu _g—IEdz +—1 1 Edz

The zero Fourier coefficient of the g-axis sub-transient emf, according to (2.93), is:

dE, . . L
F%:%[EQO—E%—(Xd—Xd)IdJ+

Xy —X, dt

and the second Fourier coefficient of the g-axis sub-transient emf is:
Xy =X,

20, =%[E'q2 B (X1 20, S

EQz

The zero Fourier coefficient of the d-axis sub-transient emf, according to (2.93), is:

dE, 1 .. . L. X: —X, dE,
—OZf[EdO—EdOWL(xq—xq)Iqo} B .

and the second Fourier coefficient of the d-axis sub-transient emf is:

j20,8), = [~ + (X, X1, ] oo, S0

q0 q XI

2
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(2.261)

(2.262)

(2.263)

(2.264)

(2.265)

The zero Fourier coefficient of the mechanical angular speed is obtained by calculating the zero

Fourier coefficients from equation (2.107).

2H 4o,
dt

[ON :Tm _(Tdol% _T%Ido )_(Td21Qz*_TqZId2*)

(¥4, T, — ¥, Ty, ) - Ko (2

mg _a)s)
and the second Fourier coefficient of the mechanical angular speed is:

j4HQm2 - _(TdZIQO _‘PQZIdo )_(TdoIQZ _TQOIdz )_ KDsz

(2.266)

(2.267)
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The relation of the rotor angle is obtained by calculating the Fourier coefficients from equation
(2.114). The rotor angle used in equation (2.168) is a time domain variable, therefore it is calculated
for the zero Fourier coefficient.

as _ P(g
da 2

— (2.268)

The relation of the d- and g- axes flux are obtained by calculating the Fourier coefficients from
equations (2.105) and (2.106), respectively.

W, =-Xgly +Eg (2.269)

¥, =X, ~Ey (2.270)

where k, the Fourier coefficients for the flux, is zero or two.

2.3.1 Discretized equations

The discretized equations of the 3pPD model of synchronous machine employing the Trapezoidal

rule are provided in this section.

Equations (2.258), (2.260), (2.262), and (2.264), the zero Fourier coefficient of the transient and

the sub-transient emfs are rewritten using stated parameters in equations (2.115)-(2.122), yielding:

dE, E . .
© = —C-aE, +a,E, —al, (2.271)
dE, 1. . L. dE,
_q°=_ _ _ _ Yo
T [qu E, —(Xq Xd)IdO]+a4 = (2.272)
Eq, =-bE, +b,E, +blI (2.273)
dt dy T M2td, T M3lq, .
dE, 1 dE,,

. :TTO[E'(,O—E'(',O+(x;1—x;)1qo}+b4 - (2.274)
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The zero Fourier coefficient of transient emf on g-axis, given in (2.271), is discretized as follows:

' azE;On _a3|d n +th0 1
Ea, = 5 (2.275)
—+a
At
where the history term is:
- Ew,, Ef,,., 2 : .
thO,n—l - Tdo + Tdo +£A_t_alj Eq[),n—l +a2EQ0,n—1 _agld(),n—l (2276)

Equation (2.272), the zero Fourier coefficient of sub-transient emf on d-axis, is discretized as

follows:

2a 1| Lo ¢ ,
(At4 TJE S WL IS
I ¥ (2.277)
Yo,n 2 1 |
_l_

where the history term is:

Epg, . = 2 1 Ep .+ 2 1 E, —i(xg—x;)ld (2.278)
0,n-1 At Tdo 0,n-1 At Tdo 0,n-1 Tdo 0,n-1

To derive the zero Fourier coefficient of the transient and the sub-transient emfs on the d-axis

depending on the input current, (2.275) and (2.278) are rearranged, yielding the following result:
i(x' —x")a 201
E._Td"o""ZAtT"?’I
oo 2 1 (2 j 2a, 1 ). o
— || —+a || —+ |,
At Ty, LAt At Ty,
2 1 |- )
(At + TdOJ EhQO,n—l + aZthO,n—l

+
2 1 (2 j 2a, 1
—+ || —+a || 2+ |
At T, LAt At T,

(2.279)
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(2.280)

E
t
+
2 12 2a, 1
| =t || P+ e,
At T, LAt At TS,

The zero Fourier coefficient of transient emf on d-axis, given in (2.273), is discretized as follows:

bZEdOn +b3|(10,n + Ehdo,n—l

By, =—— (2.281)
ath
where the history term is:
S (i—bl) S T (2.282)

The zero Fourier coefficient of sub-transient emf on d-axis, given in (2.274), is discretized as

follows:

2b 1 . 1 - " "
{At4+'l'"j Edo,n +_I_—..(xq — X ) 'qo,n + Ehdo,nfl
q0 q0
(2.283)

don ~ 2 1
—_—t+—
At Tg

where the history term is:

Eriy, = == [Ery | - g, +i..(x;4—x;)|q (2.284)
0,n-1 At qu 0,n-1 At qu 0,n-1 qu 0,n-1



70

To derive the zero Fourier coefficient of the transient and the sub-transient emfs on the g-axis
depending on the input current, (2.281) and (2.283) are rearranged, yielding the following result:

2 1
[At quJb +T—(x —X )b

Eldo,n_ 2 IQo,n
[At a]( " ( }
(2.285)

2 1 |_ ;
( + "] Eth,n—l + b2Ehd0,n—1

ST 12 ob, 1 o,
—+ +blj =4+ = |b,
At T, AL At T
(2.286)
2b, 1 |_ 2 .
[AtJqu-o S +(At+blj5hdo,nl
+
2 )22 b
At Ty LAt At Ty
The zero Fourier coefficient of d-axis voltage, given in (2.253), is discretized as follows:
2X 2 . Q. ..
Vi, = —(RS - wSAJ oo * ot Boon * (Xa¥ao, *+Eaoy )+ Vino. (2.287)
where the history term is:
ZX(; 2 " QrO,n—l " "
Vth,n—l - _(RS N ) AtJ IdO,n—l N . At qu,n—l + ) (qu%,na + EdO,n—l)
S S S
Q. . .. Qo e e
4 (Xqlay,, +Eao )+ o (Xglq,,. +Eq,. ) (2.288)
S S

*

+Qr¢( x; I _— E;z'n )+ QC:'" (X; | qZ,n* + E;M*)—Vdo‘nfl

a)S S
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To derive the zero Fourier coefficient of voltage on the d-axis depending on the input current, the
set of equations (2.280) and (2.286) are replaced in equation (2.287), yielding the following result:

Vdo,n - _deoldo,n +ZdC|o,n Iqo,n +Ehdo,n71 (2.289)
where Zy, is given by:
2a, 1 1/, 2
Z4 =R +—d4 do 40 (2.290)
0 Ao, Ato, (2 1 ( 2 ) 2a, 1
—t || =+ || —+—|q
At Ty At At Ty
and Zy, isgiven by:
2b, 1 1/ 2
744'# b3+..(Xq—Xq)(+bl]
Zgq, =—| Xq+ (2.291)
' @s 2 1|2 2b, 1
—+ || —+b || —+=—=|b,
At Ty, LAt At Ty
The Zy, isconstantand Z, - isa function of rotor speed.
The total history term in equation (2.289) is:
Ehdo,n—l - Vhdo,n—l
(2.292)
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The zero Fourier coefficient of g-axis voltage, given in (2.255), is discretized as follows:

V. =-|R 2Xq | 2 F 2o, X E |+V, 2.293
don S+COSAt qO,n_a)SAt don o, ( d dO,n+ QO,n)+ hdo -1 ( )

where the history term is:

2X, v Q , .
_ q 0,n-1
Vh%,n-l - _V%,n-l _[RS - W At] IqO,n—l + w. At Edo,n-l - ) (Xd Ido,n-l - EQo,n-l)
S S

S

*

} Qra, COTPE ——QZ)’“ (Xala,,, o) (2.294)
S S
Q" . ) [9) " ) L
- ;sn (Xdldz,n_qu,n)_ a;zn (Xdldz,n -Ey,, )

To derive the zero Fourier coefficient of voltage on the g-axis depending on the input current, the

set of equations (2.280) and (2.286) are replaced in equation (2.293), yielding the following result:

VQO,n - _quo,n Ido,n - quo I o.n + qu,nfl (2295)

where Z s, is given by:

2b4+%]b3+<xétx4%>(2+qj

n e 2 LAt Tao T LAt

Z =R + (2.296)

Ato, Atog( 21 (2 2b, 1

e | [N Y Bl [y | %
At Ty LA At T
and quO,n is given by:
2a, 1 (% —x3)( 2

Q E+Tf a; + T E+a1

z ol X+ do do (2.297)

Won o, 2 1) 2 2a, 1
||t -] A+ S ey
At T LAt At TS

The Z,, isconstantand Z., isa function of rotor speed.
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The total history term of g-axis voltage in equation (2.295) is:

tho,n -1 = thn -1
1 "
[ TJ hdg Lt blj Ehdo,n—l
t qu
2a .
Q"o o [ o j hdo 1 +a thQO,nl
@ 2 2a4 1
—+a |- + - |q
At TdO At Ty

The first Fourier coefficient of positive sequence voltage according to equation (2.185) is obtained
by combining equations (2.289) and (2.295):

(2.298)

Vo, = %(_deoldo,n * Zago Va0 ™ j(zqdf’ld”’” Zaola, ))ej{an_zj (2.299)
1 ) fo3) .

+§<Ehd0,n—1 + thqO,n—l €

In the SM model, the negative sequence component is caused by the second Fourier coefficients.
Since the second Fourier coefficient in a traditional phasor derivative term does not exist, no
numerical approach is required to discretize it. Equations (2.259), (2.261), (2.263), and (2.265) are
rewritten using stated parameters in equations (2.115)-(2.122), yielding:

j2o.E, =—aE, +a,E, —al, (2.300)

j20E, = f[E“Z ~E,, —(X; - X )L, |+ i20aE, (2.301)
0

j2oE, =—bE, +bE, +bil (2.302)

j20,E, = TT[Edz B, +(Xg = X)L, |+ 20b,E,, (2.303)

q0
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To derive the second Fourier coefficient of the transient and the sub-transient emfs on the g-axis
depending on the input current, (2.300) and (2.301) are rearranged, yielding the following result:

1, o : 1
Tf(xd —Xg )a2 —i—(]kws +T..]a3
E =- do do | (2.304)

U2,n 1 1 da
£j2a)s +T..j( j2w, +al)—(j2a4wS +T"ja2

do do

RN, , 1
_I_..(xd—xd)(12a)5+a1)+[12a4a)s+_|_..]a3
E =-_49 LR (2.305)

d2.n l 1 dz,n
(JZCOS +_I_..](12(05 +a1)—(j2a4a)s +_I_..]a2

do do

To derive the second Fourier coefficient of the transient and the sub-transient emfs on the d-axis

depending on the input current, (2.302) and (2.303) are rearranged, yielding the following result:

{jZa)S +T1"Jb3 +_|_1(xq —x;)b2

E,,, = . 10 a0 . Iy, (2.306)
(j2w5+" (j2m,+1))~| j2b,0, +— |b,
Too Too
[jzb4ws+T1..Jb3+T%(x;—x;)(jzwﬁbl)
E, = i i l,, . (2.307)
j20,+ = |(j2m, +b) | j2b,0, + — o,
Too Too

The second Fourier coefficient of d-axis voltage, given in (2.254), is discretized as follows:

S

j2x; oE 4 e (x ;
+ ] Xd)'dz,nJFJ Eg,, T o (quqz,n+Ed2,n)

: (2.308)

Vi, =—(R

+ ot (X;Iqo’n + E;M)

Ws
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To derive the second Fourier coefficient of voltage on the d-axis depending on the input current,

the set of equations (2.305) and (2.307) are replaced in equation (2.308), yielding the following

result;

Vi, = Zad, 1o, T Zag,Nq,, T Eha,

where Zy, is given by:

. 1 1,/ "\
[]8.42(05 +..ja3 + (X =% ) (20, +a,)
TdO TdO

Zyy, =R+ J2X4 +j2

[chos +1j( j2ao, +a1)—(ja42ws +%ja2
TdO TdO
and Zg, s given by:

. 1 1, .
[jb42a)s +T"]b3+'|'"(xq —xq)(choS +h)

qo0 q0

Z, =—2t| X4
da o q - 1 - - 1

jZa)S+T—" (12w5+b1)— Jb420)8+-|-7" b2

q0 q0

Unlike Z,, , which is constant, Z,, is variable and depends on rotor speed.

The total history in equation (2.309) is:

Q. . .
Ehdz,n—l - a)z (qu%,n + Ed(),n)

S

(2.309)

(2.310)

(2.311)

(2.312)

The second Fourier coefficient of g-axis voltage, given in (2.256), is discretized as follows:

Vo, =~ (Re+ 12X )1, — i2E5, - — (Xla,, +Eqy, )

S

Q . .
‘%(Xd'do,n -E,.)

S

(2.313)
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To derive the second Fourier coefficient of voltage on the g-axis depending on the input current,

the set of equations (2.305) and (2.307) are replaced in equation (2.313), yielding the following

result;

VQz,n = _quz,n Idz‘n - ZQQz I G2.n + thZ,n—l

where Z, is given by:

X, — X,
(jb42a)s+1..]b3+( T q)(j2a)s+bl)
i T,

Zy, =R+ 12X, + ]2 . .
(Jza)s +TJ(J2(05 +b1)_(jb42a)s +T"]b2

qo qo0
and quz,n is given by:
Xy — X
o (ja42a)s+1_%]a3+(dd)(j2a)s+al)
ol X+

7 do TdO

qd, =

s (jZa)SJrT%J(j2w3+a1)—(ja42a)s+#]a2

do do

Unlike Z, , which is constant, Z, is variable and depends on rotor speed.

The total history term in equation (2.314) is:

Qrz n " "
thz,n—l - o (Xd Ido,n N EQo,n )

S

(2.314)

(2.315)

(2.316)

(2.317)

The first Fourier coefficient of positive sequence voltage according to equation (2.186) is obtained

by combining equations (2.309) and (2.314):

1 | )
an,n - E(_dez I dpn T Zsz,n I b T J (quz Idz,n + ZUIQz I U2,n ))e

+%(Ehd2,n1 - thqz,n—l )ej[ﬁnzJ

(2.318)



77

To have 3pPD model of SM in symmetrical components, equation (2.299) needs to be rewritten

as:

Vo = Zp Vo + Voo (2.319)

and equation (2.318) needs to be rewritten as:

vV, =—Z, |, +V,

nlyn nl,n n]_,n hnl’n (2320)

The equivalent impedance and history term of (2.319) and (2.320) are defined as below. The

equivalent impedance is:

Zy,, = foe T2 jZ(Zd%'" o) (2:321)
Zy,, = Foe T2 jEquz’” o) (2:322)
and history term is:

Z g, ~Zagy — I Zagy, —Zady, _ i 5,-~

Vhpl,n_l - = = 2( = 2 )(IdOn Jl%n )ej(8 2) (2323)
+(E +JE )ej[an_g
hdo,n-1 ho,n-1

Zsg, = Zgg, t I Zeo,, = Zag,, _ ifs,-Z

hny g - = = 2( = = )(IdZ,n + JIQz,n )e JLE 2] (2324)

) (o5

+(Ehd2,nf1 N thqZ,n—l €
The history term depends on both present and prior states. To obtain the proper SM equivalent, an
iterative solver is required.

Since the first Fourier coefficient in a traditional phasor has no derivative equations, no numerical
approach is required to discretize it. The voltage on 0-axis, given in (2.257), is discretized as

follows:

Vo, =—Zoo,bo,, (2.325)
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where Z, is given by:
Ly, = J(X,+3X,)+R,+3R, (2.326)

The mechanical angular speed, given in (2.266), is discretized as follows:

T, —(Wg, I L
Qmovn _ Mo n ( 4?;' Yo,n Go,n" do,n ) n thovn (2327)
W, At
where the history term is:
4H
Tmo,n-1 _(Wdo,n—llqo,n—l _ll’qo,n—lldo,n—l ) + ((0 At o KD]QmO,n—l + ZKDCOS
— s
tho,n—l - 4H
w At (2.328)
_ (Wdz,n—llqz,n—l _‘I’qz,n—lldz,n—l )+(Wdz,n-1 IQz,n-l _‘qu,n—l Idz,n—l)
A
w,At

The second Fourier coefficient of mechanical angular speed, given in (2.267), is discretized as

follows:

9 __ \I’dz’nlqo,n _lIIqZ,nIdO,n +\|’d0’nlq2'n _‘I’qo’nldz’n (2 329)
s j4H + K, |

The rotor angle used in equation (2.168) is a time domain variable, therefore it is calculated for the

zero Fourier coefficient. The rotor angle, given in (2.268), is discretized as follows:

Bon = Dy +3y (2.330)

n

where the history term is:

PAt (

8, =1t (R, —20,) (2.331)

n-1
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2.3.2 Norton equivalent circuit of SM

The 3pPD model of SM by symmetrical components is expressed as follows using equations
(2.319), (2.320), and (2.325):

=2, I, +E

pnz;, pnz; , ~ pnz,

(2.332)

hpnz, ,

where the Z,,,, matrix is the SM equivalent impedance by symmetrical components. It should be
1,n

noted that the dg0 impedance is not constant and is a function of rotor speed.

Zp, O 0
o, = 0 4y, 0 (2.333)
0 0 Zzl n
and Ey,, , vector of history term, is:
T
Ehdqon& - |:Ehp1,n,1 Ehnl,n,l Ehzlvnfl ] (2334)

To add the equivalent SM model to the MANA matrix, the symmetrical components model

expressed in (2.332) needs to the transform to the abc frame.

+ abey

abc;

a) b)

Figure 2.10 a) Three phase phasor domain SM, b) Equivalent circuit, 3pPD model

Figure 2.10 shows the 3pPD Norton equivalent circuit by Trapezoidal rule. The equivalent

impedance and history terms in the abc frame shown in Figure 2.10 are computed as follows:

Zapy, =A " Zpy, A (2.335)

abg;, pnz;
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Az

habcy pnz Ehpnzl, n-1

| (2.336)

The equivalent impedance of a linear component, such as an inductor or a capacitor, is constant,

and the history term calculated using the Trapezoidal method is dependent on the component's

voltage and current in the last time step. The equivalent impedance of SM, on the other hand, is

not constant, and the history term is affected by present and prior states.

2.3.3 Simulation steps

The following are the steps in a 3pPD simulation approach:

1. Calculate the three phase Load-flow: to simulate unbalanced network from initial state, a

three-phase load flow is used

2. Initialization

a.
b.
C.

d.

Convert the loads to constant impedances
Calculate the equivalent circuit of elements by discretized method
Build the MANA matrix (equation (1.8)) of the network (exclude the SMs)

Calculate the history terms for the first time-step based on the load flow results

3. Dynamic simulation

a.

Calculate the equivalent impedance and the injection current using (2.335) and
(2.336) for all SMs

Add the equivalent impedance of SMs to the admittance submatrix of MANA, add

the injection current of SMs to the B, , vector, and solve A, (X, =B, ,

Update the dg0-axes currents (equations (2.319), (2.320), and (2.325)), rotor speed
(equation (2.327)), and rotor angle (equation (2.330)) for all SMs

I the angular speed relative error of all SMs is less than the allowed error for two
consecutive iterations, the solution is converged, and can proceed to step 3.e. If not,

the solution has not converged, and the next iteration should begin at step 3.a.

Calculate the controllers” model of zero Fourier coefficient for the next time step
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f. Predict the SM quantities of rotor speed, rotor angle, d- and g- axes currents of zero
and second Fourier coefficients, then proceed to step 3.a for the next time step

The prediction of variables in step 3.f reduces the number of iterations. Equation (2.163) represents

the prediction relationship. In step 3.d, the relationship of relative error is given as (2.164).

2.4 Phasor domain model of synchronous machine (traditional)

The traditional PD method only considers the power system's positive sequence, ignoring the
negative and zero symmetric components. As a result, the PD approach models electromechanical
transients under balanced conditions. On the d- and g-axes, the zero Fourier coefficient is used to
describe the electromechanical transient. The second Fourier coefficient does not exist in the SM
model since the negative component is not modelled in the system. Also, the O-frame does not exist
in the SM model because the zero symmetrical component is not modelled in the system.

dw
Moreover, the traditional PD method neglects the transients of rotor on the stator (Td‘] =0 and

—% —0). The equations of the PD method are summarized as bellow.

dt
Q . .
Vo, =" (Xglg, +Eq )~ Raly, (2.337)
S
Q. ,,
Vo == (Xgly, ~Eq )~ Ral,, (2.338)

S

The zero Fourier coefficient of the transient and the sub-transient emf equations are the same as
expressed in (2.258), (2.260), (2.262), and (2.264) at section 2.2.

The zero Fourier coefficient of the mechanical angular speed is obtained by calculating the zero

Fourier coefficients from equation (2.107).

2H dQ,

Wy

it (W lg, ~¥o 1y, )~ Ko (2, - ) (2.339)
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The rotor angle PD relation is the same as the equation given in (2.268). Calculating the zero
Fourier coefficients from equations (2.105) and (2.106), respectively, yields the PD relation of the

d- and g-axes flux.

W, =X, +E (2.340)

¥, =-XI, —Ey (2.342)

2.4.1 Discretized equations

The discretized equations of the PD model of synchronous machine employing the Trapezoidal

rule are provided in this section.

The equations (2.279), (2.280), (2.285), and (2.286) can be used for discretized PD model of zero

Fourier coefficient of the transient and the sub-transient emfs.

Equation (2.337), the zero Fourier coefficient of d-axis voltage, is discretized as follows:

V, =- Rs+2xd 4 +iE;’1 +Vig
0,n a)SAt 0,n a)SAt 0.n 0,n-1

(2.342)
V, _ 2 X, +E; )R,
do_a)( QQO+ do)_ado
S
where the history term is:
2X, 2 _
Vig :—[R ——dde -——E, -V, (2.343)
0,n-1 S a)SAt 0,n-1 a)SAt o,n-1 0,n-1

To derive the zero Fourier coefficient of the voltage on the d-axis depending on the input current,

the equation (2.280) is replaced in equation (2.342), yielding the following result:

Vo, =Zag, Ve, + Zag Nay , +Ena, (2.344)

0,n

where Z, is given by:

Zg, = R (2.345)
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and Zg, isgiven by:

Z, -2y
dip = (2.346)

a
Wy

The total history term in equation (2.344) is:

Qro,n "
Eth,n—l = o E (2.347)

dO,n
S

The zero Fourier coefficient of g-axis voltage, given in (2.338), is discretized as follows:

2X, 2 .
Voo =7 Rt g [l ™ ot oo+ Vi (2349)
where the history term is:
2X, 2
Vidons =7 Re = at | o ¥ gt ns ™ Vi (2:349)

To derive the zero Fourier coefficient of the voltage on the g-axis depending on the input current,
the (2.286) is replaced in (2.348), yielding the following result:

VqO,n - _quo I don quo I don + EhQO,n (2350)
where Z,, is given by:
Zag = Rs (2.351)
and Zq is given by:
Qro n "
Zagy, = Xd (2.352)
" o,
The total history term of g-axis voltage in (2.350) is:
_ Qro,n "
hao,n1 — qu,n (2353)
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The first Fourier coefficient of the positive sequence voltage according to (2.185) is obtained by
combining (2.344) and (2.350):

V=Y A i e 2 g i, ) o

S

(2.354)

Y A

S

The solver needs to have a voltage-current function of positive sequence fundamental frequency
for (2.354):

V, =2, |, +V,

Pin PLn Pin hplyn_l (2355)

The equivalent impedance and history term of (2.355) are defined as below. The equivalent

impedance is:
Zy +Z, + |2y, +Z Q X +X
Zpln _ ddo 0 2( ddp qdo,n) _ RS n ] fon 7Nd q (2356)
’ @, 2
and the history term is:
1 dd ag 1(6”_9
Vip, E(— : > °< do JIQo,n)+Ehdo  + JEng, Je
(2.357)

The history term depends on not only the quantities in the previous time step, but also the quantities

in the current time step. Therefore, an iterative solve is required to solve the model.

The mechanical angular speed, given in (2.339), is discretized as follows:

L' —(\vdo,nlqown ~We, Lo, ) N

L, = 4H

Q. (2.358)
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where the history term is:

4H
Tmo 1 (\I’do,n—quO,n—l N ‘Ilqo,n—lldo,n—l ) + ( N KDJQmo,nl + ZKDwS
’ WAt
Qo = o (2.359)
——+Kp
W, At
The rotor angle, given in (2.268), is discretized as follows:
PAt
o, :Tgmo,n +8y (2.360)
where the history term is:
PAt
8, =8, +T(9mo,n_1 - 20)5) (2.361)

2.4.2 Norton equivalent circuit of SM for phasor-domain solution

The traditional PD method uses the positive sequence representation of the system. To add the

equivalent SM model to the Nodal matrix, the equation (2.355) is used.

o |
+ I m + pl,n
VvV
“ g Qi

a) b)

Figure 2.11 a) Synchronous machine, b) SM Equivalent circuit in phasor-domain

In Figure 2.11 the injected current is:

Vh
Loy, = Z"lv = (2.362)
Pin

The history term of SM model is a function of state of the network at current state of the network.

Thus, an iterative method is needed to solve a system of equations that includes SM models.
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2.4.3 Simulation steps

The following are the steps in a PD simulation approach:

1.

Calculate the positive sequence load-flow: the PD method present the positive sequence of

the system, therefore, the load-flow ignores the negative and the zero sequences

Initialization

a.

b.

Convert the loads to constant impedances

Build the impedance matrix of the system. The equivalent impedance of the
machine is assumed to be constant in traditional PD method; therefore, unlike TD,
DP, and 3pPD, the equivalent impedance of the SMs is added in this step

Dynamic simulation

a.

b.

Calculate the injected current of SMs using equation (2.362)

Add the injected currents to vector i of the nodal analysis, and solve Yv =i
equation (1.7)

Update the dg-axes currents (equations (2.344) and (2.350)), rotor speed (equation
(2.358)), and rotor angle (equation (2.360)) for all SMs

If the angular speed relative error of all SMs be less than the allowed error for two
consecutive iterations, the solution is converged, and can proceed to step 3.e. If not,
the solution has not converged, and the next iteration should begin at step 3.a.

Calculate the controllers” model of zero Fourier coefficient for the next time step

Predict the SM quantities of rotor speed, rotor angle, d- and g- axes currents and go

step 3.a for the next time-point

The prediction of variables in step 3.f reduces the number of iterations. Equation (2.163) represents

the prediction relationship. In step 3.d, the relationship of relative error is given as (2.164)
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2.5 Comparison of methods: TD, DP, 3pPD and PD

The test system used in this section is referred to as 118-GMD. The system voltage level is 345/138
KV at transmission, and 25 kV at distribution level. The total number of power transformers is 173,
the saturation of transformers is excluded in this study. The model further embeds 20 power plants
with a total installed capacity of 3800 MW and 91 electric loads. There are 177 transmission lines
with a total length of 10063 km. The models of synchronous machines (SMs) include mechanical
and electrical dynamics, turbine-governor, control system with automatic voltage regulator (AVR),

power system stabilizer (PSS).

Lo

gy cay |
L5

Figure 2.12 IEEE-118 benchmark
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The same numerical integration procedures are utilised to make comparisons on the same premise.
To discretize derivative equations, the Trapezoidal and backward-Euler numerical integration
methods are used. The primary numerical solution is the Trapezoidal integration technique, with
two halved time-steps of backward-Euler integration employed to reduce numerical oscillations
after a discontinuity. To ensure a consistent computational environment for comparison, all
techniques are coded in MATLAB. The developed TD technique is validated using EMTP. Since
the traditional PD method does not simulate unbalanced events, a three-phase fault is applied to
the study system and the simulation results obtained from different methods are compared. The
fault occurs on Bus TwinBrch 138 012 at 0.1 second and is removed after 100ms. The simulation
is performed for one second. The output waveform of DP, 3pPD, and PD approaches are in phasor-
domain. At the end of the simulation, the phasor results are converted to TD independently.

| TD DP 3pPD ——PD|

150

100

50

P. (MW)

-50

-100 '

400 ,

200 - .

Va (kV)

_200 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)
Figure 2.13 Electrical power and bus voltage waveforms, At =10.s
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The electrical power and bus voltage waveforms of the machine of the simulating techniques using
At =105 are shown in Figure 2.13. The results are comparable in the steady state, while there is

considerable inconstancy during transient dynamics.

| TD DP 3pPD PD|

150

100 - .

P. (MW)

50 L i

-100

400

200 ~ .
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-200

200 202 204 206 208 210 212 214 216 218 220
Time (ms)

Figure 2.14 Electrical power and bus voltage waveforms, At =10.s (zoom)

The simulation results during the transient evolution using At =10.s are shown in

Figure 2.14. This section provides a visual examination; and, section 2.5.1 offers an analytical
study to compare the results. The 3pPD performs better than the PD in presenting electrical power
transients, even though both the 3pPD and the PD do not replicate fast transients. Furthermore, the

DP technique does not produce the same outcomes as the TD method.
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Figure 2.15 Electrical power and bus voltage waveform, At =500.s

The electrical power and bus voltage waveforms of the machine are simulated with a larger time

step of At =500.s, and the results, as well as the reference, are shown in Figure 2.15. The result
of TD with At =10.s is the reference. After damming the fast transient, the results are similar. It

demonstrates that increasing the time step has no significant impact on the electromechanical
transient.
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Figure 2.16 Electrical power and bus voltage waveform, At =500.s (zoom)

The simulation results during the transient evolution using At =500.s are shown in Figure 2.16.

Even using large time steps, the 3pPD outperforms the PD in terms of displaying electrical power
transients; and, the accuracy of both the TD and the DP diminishes, and the DP does not outperform
the TD.
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Figure 2.17 Electrical power and bus voltage waveform, At =2ms

The electrical power and bus voltage waveforms of the machine are simulated with a very large
time step of At =2ms, and the results, as well as the reference, are shown in Figure 2.17. The
result of TD with At =104 is the reference. The result accuracy of the approaches, particularly

the TD, falls when a very large time step is used.
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Figure 2.18 Electrical power and bus voltage waveform, At =2ms (zoom)

The simulation results during the transient evolution using At =2ms are shown in Figure 2.18.

The accuracy of techniques for modelling transient evolution drops considerably when a very large

time step is applied, and the results become extremely similar.



2.5.1 Accuracy evaluation

Although the presented waveforms in Section 2.5 determine the differences between the solution

approaches, in this section the error of methods are measured. The percentage of 2-norm relative

error [39] is employed to compare the results:

where x; is the reference result which is the TD response with At =104s. X; is the result from the

evaluated.

To compare phasor domain results with the reference, the results of DP, 3pPD, and PD are
converted to time domain. In this section, the simulations are performed using different numerical

integration time-steps to evaluate accuracy as a function of time-step.

Table 2.1 Error % of electrical power/voltage

At (ps) TD DP 3pPD PD

10 - 2.78/1.95 | 3.85/3.17 | 4.92/3.45
100 1.10/0.17 | 2.84/2.23 | 4.01/3.22 | 4.97/3.53
200 2.03/0.23 | 2.90/2.36 | 4.13/3.26 | 4.93/3.55
500 3.20/0.77 | 2.86/2.54 | 4.13/3.56 | 4.91/3.87
1000 2.57/1.97 | 2.60/3.54 | 3.78/4.44 | 4.86/4.85
2000 3.05/6.55 | 2.64/6.15 | 3.48/7.58 4.77/8.4
5000 | 6.39/24.53 | 2.71/27.75 | 4.04/28.65 | 4.38/28.08

Table 2.1 illustrates electrical power and bus voltage errors as a function of simulation time-step.
The relative error is computed at a time frame of 200 to 250 ms. The DP approach is more

successful when the time-step is significantly increased, but it is less accurate in the interval where

the transient is concentrated.
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2.5.2 Computing time

This section compares the time efficiency of TD, DP, 3pPD, and PD methods on the given
benchmark. The DP, 3pPD, and PD methods use phasor for calculating the simulation. To compare
computing time, only the time of dynamic simulation is calculated, in other word the time of load
flow, initialization, and the result converting time of phasor domain methods is not considered. The
Table 2.2 and

Table 2.3 show the computation time of event at Section 2.5 using different time steps for the

implemented methods.

The TD approach is 5.58 times quicker than the DP technique in the non-iterative solution and 2.31
times quicker than the 3pPD approach. In addition, the TD approach simulates 0.7 times slower

than the PD approach.

Table 2.2 Computing times for non-iterative solution

At TD DP 3pPD PD
(k) | () | (5 | (5 | ()
10 286.00 | 1611.17 | 674.19 | 199.70
100 28.27 | 162.03 | 66.47 | 20.08
200 1449 | 81.34 | 3356 | 10.19
500 5.85 3245 | 1353 | 4.19
1000 2.89 16.50 6.75 2.07
2000 1.45 8.28 3.39 1.02
5000 0.64 3.28 1.37 0.42

Table 2.3 Computing time for iterative solution

At | TD | DP | 3pPD | PD
(hs) | () | (5 | (5 | (5
10 | 698.90 | 2114.46 | 111598 | 252.64
100 | 71.87 | 222.05 | 11223 | 31.65
200 | 3653 | 11513 | 63.97 | 17.21
500 | 17.64 | 5001 | 2593 | 6.92
1000 | 875 | 2412 | 1340 | 3.89
2000 | 443 | 1357 | 7.28 | 2.05
5000 | 228 | 576 | 3.21 | 0.95
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The TD approach is 2.92 times quicker than the DP method and 1.57 times quicker than the 3pPD
technique when employing the iterative approach. In addition, the TD approach simulates 0.43

times slower than the PD approach.

The number of equations representing the network with SMs is the same for the TD, DP, and 3pPD
methods. Since the 3pPD approach does not have derivative part in representing equations of
inductors and capacitors, it does not have a historic term. As a result, it runs faster than the DP
method. Unlike the TD method which uses real numbers in all calculations, the phasor domain
approaches employ complex numbers, which makes the computation heavy for the DP, 3pPD, and
DP methods.

Considering the mentioned reasons, when using the same time-step, the DP and 3pPD methods run
simulation slower than the TD method.

2.6 Conclusion

The section of the thesis described the EMT-type and phasor domain simulation methods with
emphasis on the SM model. Based on the presented simulations, it is shown that the DP method
due to its dual (TD and phasor-domain) nature is more accurate than the pure phasor domain
methods (3pPD and DP). The accuracies and limitations of 3pPD and DP methods are compared,

and the differences are explained.

Although the DP method can capture faster EMT-type transients, it does not deliver the same
accuracy as the pure TD method. Moreover, it is shown that for larger time steps, the accuracy of
the DP method deteriorates, and its computational performance does not surpass the TD method
for the same numerical integration time-step. It is also demonstrated that the TD method can
maintain sufficient accuracy at very high numerical time steps if it employs a fully iterative process
for the solution of its synchronous machine equations. It appears that despite its theoretical
advantages, the DP method remains on average 2.9 times slower than the full TD method. This
conclusion is based on comparing codes in the same development environment and for different

network conditions and fault cases.
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Chapter 3 DP SYNCHRONOUS MACHINE IMPROVED MODEL

The SM model presented in Section 2.2 models zero and second harmonics, and the SM controllers
include zero harmonic. Section 2.5 indicates that the DP model does not deliver the same transient
result as the TD technique despite using a very small-time step. This chapter proposes an improved
synchronous machine model based on the DP method. The model employs harmonics to presents
an accurate simulation. The first step is obtaining the relation of harmonics on the power system

and synchronous machines.

3.1 Transformation symmetrical components to dq0-frame

A three-phase set of unbalanced current or voltage with harmonics can be presented as:

X, X,, €08 (kayt+06, )
Xabe =% Xo |+ 20| %o, cos(kcost+9bK) (3.1)
k=1
X X, cos(ka)st +0, )

where X, is the vector of three-phase current or voltage, t is time, k is the harmonic number, o,
is synchronous rotating speed, X, , and &, , are k-th Fourier coefficient and angle of phase “a”
variable, respectively.

Equation (3.1) can be rewritten with exponential Fourier series as:

X

Xabe = Z ka et (3.2)
k=—o0

X

Ck

where X, , is k-th exponential Fourier coefficient of phase “a” current or voltage.

X
l .

Xy =7 x, &' | fork>0 (3.3)

X
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and the below equation gives the negative Fourier coefficients, where * is the conjugation of a
phasor.

* x, e 1%
Xak Xa—k ak
Xy, |= X’;_k :% x,o_ke_“g"fk fork<0 (3.4)
X * 16

=
X
>

ay

c_
e k
k

The following equation expresses the relationship between three-phase and symmetrical
component variables:

. jkws'[_
11 1) 2 %ee

Xa 2 JZﬂ,’ 0
_ jkaogt
X |=|e 3 e3 1| > X, e (3.5)
2 2 k=—c0
X i iy
e e 1

L i Jkagt
Z sze |

| k=—0 _

where subscripts p, n, and z are positive, negative, and zero sequence components.

Replacing equation (3.5) into (2.18) gives the relation between dgO-frame and symmetrical
components for a Fourier series:

2 27 | & jkwt_
cos(6 cos| 0—— cos| O+— | |r . X, ens
() ( 3) ( 3) 1 11 k:z_w P
X :3 —Sln(@) —SIn 0—? —SIn 9+? e e 1 Z Xnke s (36)
k=—0
X

1 1 R R _
— — L | jkat
2 2 k—Z: sze

X
=4

Qo

o

1
2

where H:a)st+5—z.



The equation (3.6) is simplified as follows:

- j[(l—k)(ust+5—%J j[(1+k)a)5t+5—%j
Xq . € | e | 0 X,
_ Z e_l((l—k)wst+5) ej((1+k)a)5t+5) 0 Xnk
k=—0 .
Xo 0 0 ejka)st sz

The dg0-axes variables can be expressed separately using equation (3.7):

o - J((l k)a)st+5—fJ [(1+k)w5t+5l)
Xg= > X, e + Z X, e 2
k=—x
z (k) eost+5) " Z X e H(@+k) ogt+6)
k=—c0 k=—o0

o0
_ Jkat
X = Y X, el
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(3.7)

(3.8)

(3.9)

(3.10)

Equations (3.8) and (3.9) illustrates that the variables on both d- and g- axes have relation with the

Fourier coefficients of both positive and negative sequence components. Equation (3.10) shows

the variables on 0-axis has relation with the Fourier coefficients of zero-sequence component.

Rearranging equations (3.8) and (3.9) gives:

x%:x+p{59+xml

The k-th exponential Fourier coefficient on the g-axis, according to equation (3.12), is:

jo
X :ka .

,]5
Ok +1e + Xnkf1e

(3.11)

(3.12)

(3.13)

(3.14)
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The k-th exponential Fourier coefficient on the 0-axis, according to equation (3.10), is:

Ko =%y (3.15)

Equations (3.13), (3.14), and (3.15) can be summed in one set of equations to find relation of the

dg0-frame and symmetrical components for k-th Fourier coefficient.

Xdk je—J5 _jej5 0 ka+1
X, |=| e e 0| X, (3.16)
X, 0 0 1 X

Zy

The transformation from symmetrical components to dg0-frame for k-th Fourier coefficient, the

inverse of transformation in equation (3.16), is:

—je’? el 0|l X,
Slje e oo|lx, (3.17)
0 0 2 X,

Pk +1
Nk—1

Zx

According to equation (3.17), the positive and negative sequences of the k-th Fourier coefficient

can be written as:

X, = %[xd“ej{&;] + xq“eib} (3.18)
X, = %{xdmej(ﬁ@ 4 xqmejé‘} (3.19)
or
X, =5 (X, 4%, el (320)
xnk - %(xdkﬂ - jqu+1 )ej[52] (321)
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In case of having an unbalanced system, the negative sequence of fundamental frequency causes
second harmonic on the d- and g- axes (equation (3.21)), then the second harmonic on d- and g-
axes produce the positive and negative symmetrical components of third harmonic in the network
(equations (3.13)—(3.14)). Subsequently, the negative sequence of third harmonic makes the fourth
harmonic on the d- and g- axes (equation (3.21)). This circle continues for the odd harmonics of

symmetrical components and the even harmonics of d- and g- axes.

3.1.1 Discretized equations

The k-th Fourier coefficient of positive sequence voltage according to equations (3.20), (2.194),
and (2.195) is:

1 _ j(an—gj
Vpk,n - E(_ dek—l Idk—l,n + quk—l,n qu—l,n . (quk—l,n Idk—l,n + ZqQk—l qu—l,n ))e
(3.22)
j 8n -z
+1 i ( 2)

2 (Ehdk,1,n71+ J thk’l'”’l )e

The k-th Fourier coefficient of negative sequence voltage according to equation (3.21), (2.194),
and (2.195) is:

. a
1 i (5]
Vnk,n = E(_dekﬂ Idk+1,n + quk+l,n qu+1,n + J (qukﬂ‘n Idk+1,n + quk+l qu+l,n ))e

+ % ( Ehdk+1,n—l -] Eth+1,n—1 ) ei j[SFEJ

(3.23)

To have k-th harmonic of SM’s DP model by symmetrical components, equation (3.22) needs to

be rewritten as:

Vpk,n = _Zpk,n I Pk ,n +Vhpk,n—1 (324)
and equation (3.23) needs to be rewritten as:
Viw =7 Zns o ™ Vi (3.25)



102

The possible solution of finding parameters of equations (3.24) and (3.25) is to define equivalent
impedance and history term as below. The equivalent impedance is:

~ oo, T Lag j(qu in +quk—l,n)

Z, - 2 (3.26)
Z, +Z. —jlZ +Z
an'n _ ddk+l Ak +1 £ qu+ln qdk+1,n ) (327)
and history term is:
V. _ dek—l_ quk—l N J (quk—l,n B qukflyﬂ ) I —il J(Bn_%)
Pk n1 — di_1n J k-1, € (3 28)
A ] 6n -z
+(Ehdk,1,n,1+ J thkfl,n—l)e [ Zj
_ dek+l - ZQQk+1 + J (Zko+1,n B qukﬂﬁ ) (l + J | ) 71{6”7%]
hng -1 2 dyian Ok+1,n (3.29)

) (o)

+(Edk+l,n—1_ J Eth+1,n-1 €

The history term depends on not only the quantities in the previous time step, but also the quantities

in the current time step. Therefore, an iterative solve is required to solve the model.

Equation (2.196), 0-axis voltage, is discretized as follows:

Vo =200, lo, +Eno,,, (3.30)
where Z,, is given by:
ZOO,< = XI +3Xn [i"' jka)sj"_ Ra +3Rn (331)
S

and the history term of 0-axis voltage in equation (2.241) is:

X +3X. (2 .
EhOk,n-l :_Vok,n—1+£ : @ . (A_t_kaj (R +3R )jlok n-1 (332)

S
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3.1.2 Norton equivalent circuit of SM

The k-th harmonic of SM’s DP model by symmetrical components is expressed as follows using
equations (3.24), (3.25), and (3.30):

pnzy - _anzk,n I pnzy +E

(3.33)

hpnz 4

where the Z,, ~ matrix is the k-th harmonic SM equivalent impedance by symmetrical

components. It should be noted that the dqO impedance is not constant and is a function of rotor

speed.
Pi.n 0
Zongy=| O Zy, O (3.34)
0 O sz n
and E,,, , vector of history term, is:
.
Ehdq0k,n,1 = [Ehpk,n,l Ehnkyn,l Eth'n71:| (335)

To add equivalent k-th harmonic SM model to the MANA matrix, the symmetrical components

model expressed in equation (3.33) needs to transform to abc frame.

Figure 3.1 a) Synchronous machine, b) Equivalent SM circuit, DP models

Figure 3.1 shows the Norton equivalent circuit by for the k-th harmonic.
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The equivalent impedance and history term in Figure 3.1 are:

Zapey , = A Z gy A (3.36)
Ihabckvn = Aflzgﬁzkyn Ehpnzkyn (337)

Unlike equivalent circuit of inductor and capacitor, the equivalent impedance and history term of
SM model are a function of state of the network at current state of the network. Thus, an iterative

method is needed to solve a system includes SM models.

3.1.3 Simulation steps
The following are the steps in a DP simulation approach using harmonics:
1. Three phase Load-flow
2. Initialization
a. Convert the loads to constant impedances

b. Calculate equivalent circuit of elements by discretized method for network

harmonics
c. Build the MANA matrix (equation (1.8)) for network harmonics (exclude the SMs)

d. Calculate the history terms for the first time-step based on the load flow results,
compute the history term for the fundamental frequency, whereas the history term

for the other harmonics is zero.
3. Dynamic simulation
a. Calculate unknowns for all harmonic (start from fundamental frequency (k =1))

i. Calculate equivalent impedance and injection current using equations (3.36)
and (3.37) for all SMs

ii. Add equivalent impedance of SMs to the admittance submatrix of MANA,

add injection current of SMs to the B, , vector, and solve A, X, , =B, ,
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lii. Update dq0-axes currents (equations (2.235), (2.236), and (2.241)), rotor
speed (equation (2.244)), and rotor angle (equation (2.246)) for all SMs

iv. If steps 3.a.i to 3.a.iii are done for all harmonics, then go step 3.b; if not, go

to 3.a.i for the next harmonic

b. If the relative error of rotor speed for all SMs be less than accepted error, then the
solution is converged and go to step 3.f. If the relative error of rotor speed of one or
more SM(s) be more than accepted error then the solution is not converged, so go

to step 3.a for the next iteration
c. Calculate controllers’ model of all harmonics for the next time step

d. Predict SM quantities of rotor speed, rotor angle, d- and g- axes currents of all

Fourier coefficients corresponding to harmonics

e. For all Fourier coefficients corresponding harmonics, calculate the history terms of

all elements except SMs (the history term of an inductor, for example, as indicated

in equation (1.19)) and update the B, , vector. Then proceed to step 3.a for the next

time step

The prediction of variables in step 3.e reduces the number of iterations. Equation (2.163) represents
the prediction relationship. In step 3.d, the relationship between the relative error is given as
equation (2.164).

3.2 Dynamic phasor model of synchronous machine controller

The SM's control devices regulate the machine's terminal voltage and electrical output power in
order to maintain system stability. The SM variables determine the input of the controllers. The
output of the exciter and turbine controller affects the field voltage and mechanical power of the
SM. As a result, the SM's harmonics cause harmonics in the controllers, and the controller's
harmonics induce harmonics in the SM's field voltage and mechanical power. Section 3.1 presents
the model of harmonic for the SM’s variables. In this section the importance of SM controller

model considering harmonic is presented.
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The exciter output is controlled by adjusting the exciter's field current. The exciter's output then
regulates the rotor's magnetic field, resulting in a constant voltage output from the generator. The
magnitude of the generator's terminal voltage and the output of the power system stabiliser are the
exciter's inputs. The terminal voltage, input of exciter controller, is the root sum square of d- and

g- axis voltages.

V= (V2 V2 (3.38)

where v, is the terminal voltage, v, and v, are voltages on d- and g- axes, respectively. In TD
calculations, v, and v, are obtained from equations (2.88) and (2.89), respectively.

Although high-gain, fast-response-time excitation controller substantially helps transient stability,
it can compromise small-signal stability (damping torque). The power system stabiliser (PSS)
makes a beneficial contribution by dampening generator rotor angle swings that occur over a wide
frequency range. Generator rotor angle swings or generator electrical power can both be used as
PSS inputs. The excitation system can receive a control signal from the output of PSS controller.
Several types of controllers are available, and in general the input of exciter and PSS collection is

d- and g- axis voltages and rotational angular speed, and the output is field voltage on the d-axis.

PSS Exciter
Figure 3.2 TD exciter with PSS input

A TD excitation controller with terminal voltage and PSS inputs is shown in Figure 3.2. o, is the
rotor angular speed, E, is the field voltage on the d-axis, v, and v, are exciter inputs, with Vv,
being connected to the PSS output signal and v, being connected to the measured terminal voltage.
o, is obtained from equation (2.107), and E, is used in equation (2.91).

The DP model of SM controller has input/output phasors according to the calculating Fourier

coefficients and is computed for all available harmonics.
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PSS Exciter
Figure 3.3 DP exciter with PSS

Figure 3.3 shows a dynamic-phasor excitation controller with terminal voltage and PSS inputs. The

subscript k indicates the number of Fourier coefficient. In DP calculations of the k-th Fourier

coefficients, Vi Voo and Q, are respectively obtained from equations (2.194), (2.195), and
(2.201). The k-th Fourier coefficient of d-axis field voltage, E, is used in equation (2.197). V,
and V, are k-th Fourier coefficient of exciter inputs, with V, being the PSS output signal and

VCk being the measured terminal voltage.

3.2.1 Controller model without harmonics

Fundamental frequency of positive sequence is the basic component in the power system. The
network main component cause zero Fourier coefficient on d- and g- axes. To reduce calculation
for the DP method, the controller model without harmonics computes the zero Fourier coefficient
and ignores harmonics on controller devices. Therefore, the output of exciter has the term with the
zero Fourier coefficient and all other coefficients have zero amplitude. The mechanical torque in
equation (2.201) and electrical field voltage on d-axis in equation (2.197) are equal zero
for k #0.

3.2.2 Controller model with harmonics

Harmonics occur in the SM when the network contains harmonics or is unbalanced. To improve
accuracy of DP model, the nonzero Fourier coefficients are calculated for the controllers.
For k = 0, the mechanical torque in equation (2.201) and electrical field voltage on the d-axis in

equation (2.197) are known, and the controller is modelled for all simulated harmonics.
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The terminal voltage, equation (3.38), is a nonlinear relation which exists in all exciter models. The
DP method is challenging for modelling nonlinear elements. The next procedures attempt to

determine the terminal voltage's Fourier coefficients.

The voltages on the d- and g- axes are represented by the Fourier series:

Vg= DV, el (3.39)
k=—c0
vy = k_z v, el (3.40)

The square of d-axis voltage, vdz, is:

*

v { 5 vdkeikwstj[ s vdkeikwstj 341)
k k=—o0

Expanding equation (3.41) gives:

vyl = i i V, V, eleter i (3.42)
k=—o0 |=—c0
or:
vl = i i V, Vy el (3.43)
k=—00 |=—00
Resorting equation (3.43) gives:
vyl = i i V, V, et (3.44)
k=—o0 |=—c0

In equation (3.44), the Fourier coefficients are separated as follows:

Ve = Vi +2k§v§k +3) (Vd,,kake”“’S‘) (3.45)

k=—00 |=—0

10
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Then, rearrange equation (3.45) as follows:

2 __y\/2 2 jkaxt jlot
Ve’ =Vg +20 Vi +2Vy > Vel e Y %Y, Ve (3.46)
k=1 k=—o0 k=—o0 |=—00
k=0 k=l 1£0
k=0

The same procedure can be done to find square of g-axis voltage. Therefore, Fourier series of

terminal voltage is:

0

Vtz :deo +VqZO +2é(vdzk +quk )+2 Z (Vdovdk +VQ0VQk )ejkat

o
5w (3.47)
jlo,
+kz IZ (le—kvdk +VQ|—kVQk )ej g
kel 120
k=0
To find root of equation (3.47), the following relation is used.
\/a+b+Cz\/5+L (3.48)
2\a

The equation (3.48) can be utilised when term c is substantially smaller than term b, and term a
is significantly greater than term b . The amplitude of harmonics in the system are smaller than the
fundamental frequency. Therefore, using approximate equation (3.48), the Fourier series of

terminal voltage, equation (3.47), can be written as follows:

V=V, + DV, el (3.49)
0"
where VtO in equation (3.49) is:
V, = \/vdzo +Vg +2> (Ve +V2) (3.50)
k=1

and Vi in equation (3.49) is:

- Vdovdk +VQ0VQk
e T V

to

(3.51)
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3.3 Simulation results

In this section, the two-area system [34] is used to evaluate impact of simulation harmonics in
synchronous machines. The network has four synchronous machines, four transformers, two loads,
and eight lines. A line-to-line fault, phase “a” to “b”, occurs on bus number 6 at 0.05 second and

is removed after 100 ms. The simulations are run on the same platform using 10 xS integration

time step. To distinguish between the proposed DP method that considers harmonics and the
approach that does not, the proposed method is referred to as Harmonic Dynamic Phasor (DPH),
while the method that does not consider harmonics is referred to as DP. To validate the proposed
method, the results are compared to the TD method. Fundamental, third, and fifth harmonics are
used to simulate the power system. For the SM and controllers, the zero frequency and second,

fourth, and sixth harmonics are simulated in accordance with the system harmonics.

Figure 3.4 Two area test case

The following figure shows the model of exciter and PSS used in the two-area test case. The same
model is used for the four SM in the test case.
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Figure 3.5 TD exciter and PSS model of the test case

In Figure 3.5, V, is the terminal voltage reference, Aw, is the deviation of rotor angular speed,

and s is the Laplace variable. K is the gain of controller, and T is the constant coefficient of

transfer function. The parameters of the controller are defined in reference [34].

The control models consist of transfer functions connected to each other. The simulators discretize
the differential relation to calculate output of each transfer function. The following process

demonstrates how to compute a transfer function.

14Ty y

= 3.52
1+5sT, ( )

Equation (3.52) is an example of a transfer function, where u and y are respectively the input and

the output of a first order transfer function.
d
y+T = =u+T,— (3.53)

The converted relation of equation (3.52) from the transfer function to the differential relation is
equation (3.53). The same integration rule used to discretize relation of the network elements and

SM employed to compute controller models.
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(1+ ZAE] u, + (1—2;1) Uy —(1—2;2) Yog
= (3.54)

yn -
1+&
At

Equation (3.54) is the discretized of equation (3.53) using the Trapezoidal integration rule.

The DP relation of equation (3.53) using DP property of equation (1.12) is:
Y, +T, %+ koY, =U, +T1dd%+ Jkao U, (3.55)

where k means the number of Fourier coefficient.

The discretized equation (3.55) using the Trapezoidal integration rule is:

(1+ jkws+2T1]ukn+(1+ jka)s—ZTl]uknl—(u jka)s—ZTZJYk .
Y At ' At ' At '
k

(3.56)

,n
1+ jka, +ZL
At

Initializing calculations are used to start the simulation. The initial value of the variables in a power
system simulation is determined by load flow calculations. The SM controller, like the model of

power system elements, must be initialised to begin simulation from a steady state.

Because the two-area system is a balanced network, there is no negative component at steady state,
and hence no harmonic in the SM and network at the system's starting condition. As a result, the
amplitude of nonzero Fourier coefficient variables is equal to zero in this scenario. Initialization is

required for the zero Fourier coefficient model of controllers.
The value of a variable at the first moment of simulation is:

Xo = X4 (3.57)
where X, is value of variable at the simulation beginning, and X_; means value of variable at one
step before starting the simulation.

The output’s zero Fourier coefficient of the output of equation (3.56) is:

Yoo =Yoo (3.58)
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where U, and Y, are respectively the zero Fourier coefficients of the transfer function’s input

and output at the start of the simulation.

3.3.1 Control modeller without harmonics

This section shows the result of the TD, DP, and DPH methods for the scenario described in
Section 3.3. The DPH method simulates network and SM harmonics. Harmonics are not used to

model the controllers; instead, only the zero Fourier coefficient is used.

The angular speed and field voltage results are shown in Figure 3.4 for SM number 3. The SM

number 3 is connected to bus number 3, which has the most severe transient in the system.

The output of DP and DPH is in phasor domain. To compare TD, DP, and DPH results, phasor-

domain results are converted to TD as follows:

X=X, +2im(xkeik“’st) (3.59)
k=1

where x is TD variable, and X, is phasor-domain variable of k-th Fourier coefficient.

TD DP DPH \
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Figure 3.6 Field voltage on d-axis

Figure 3.6 shows the simulation of field voltage using TD, DP, and DPH methods. For DPH, the
harmonics are not modeled in controllers. During occurring the fault (from 50ms to 150ms), the
filed voltage of TD has a second harmonic component which is not simulated by DP and DPH

methods.
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To show the accuracy of a method, the absolute error is used:
& =|Xe = Xa| (3.60)
where X¢ is the exact value and X, is the approximation value.

The absolute error of DP and DPH are calculated using equation (3.60). The result of TD is used
as exact value.

] DP DPH\
T T T L

1+ H & DP\ /oiW ~
_08r ﬂ ” -7 200 105 110 |

= ﬂ
Eo06t |
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L |
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Time (ms)

Figure 3.7 Error of field voltage on d-axis

Modeling harmonics in synchronous machines without taking controllers into consideration offers
minimal advantage, as shown in Figure 3.7. The absolute errors of the DP and DPH techniques for
field voltage are similar.
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Figure 3.8 Angular speed
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Figure 3.8 depicts the machine's angular speed as simulated by the methods. Both the DP and DPH

approaches exhibit considerable inconsistencies, especially as the system stabilizes.

TD DP DPH
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Figure 3.9 Angular speed (zoom)

Figure 3.9 shows the angular speed of the machine when a fault is applied. There is a second
harmonic on the TD result which DPH simulated satisfactorily, but the DP is not able to model the

second harmonic.
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Figure 3.10 Error of angular speed (zoom)

The DPH approach has more accuracy than the DP method to simulate the angular speed error

when the fault is applied, shown in Figure 3.10. It is because DPH models the second harmonic of

the angular speed.
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Figure 3.11 Bus voltage

The bus voltage waveforms of the machine of the DP and DPH are shown in Figure 3.11. The

inconstancy during transient dynamics is considerable.
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Figure 3.12 Bus voltage (semi-steady-state zoom)

The bus voltage waveforms of the machine during semi-steady-state are shown in Figure 3.12.
Because of the error in the angular speed, a shift of phase appears in voltage terminal of the
machine.
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Figure 3.13 Error of bus voltage

The error of the voltage bus is presented in Figure 3.13. The applying the harmonics to the model
of the machine a little improved the accuracy of the DP method.

TD DP DPH
T

200

-100

Time (ms)

Figure 3.14 Bus voltage (transient zoom)

During the fault, the bus voltages simulated by the DP and DPH are identical (Figure 3.14);

nevertheless, when compared to the TD technique, the DP and DPH exhibit considerable errors.
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Figure 3.15 Error of bus voltage (transient zoom)

During the fault evolution, Figure 3.15 illustrates that the DPH does not provide a more accurate
result than the DP.
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Figure 3.16 Error of bus voltage (semi-steady-state zoom)

Figure 3.16 indicates that the DPH approach improves bus voltage slightly when compared to the
DP method in semi-steady-state.

Although DPH models harmonics generated in the system and the SM, simulation results
demonstrate that the DPH model is inaccurate.
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3.3.2 Control modeller with harmonics

In this section, harmonics are modeled in both SM and controllers for DPH method. The method
explained in Section 3.2.2 is used to model harmonics of the SM controllers (DPH method). To
demonstrate the influence of the suggested approach, the results of DPH method calculating
harmonics in network and SM and controller, DP method utilising just fundamental frequency, and

time domain are shown.
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Figure 3.17 Field voltage on d-axis

Figure 3.17 shows field voltage evolution during fault. Comparing simulated field voltages shows

that modeling harmonics in exciter cause more accurate result for DPH method.
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Figure 3.18 Error of Field voltage on d-axis
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Figure 3.18 shows the absolute error of field voltage obtained from DPH and DP comparing to TD
method. The absolute error of DP and DPH are calculated using equation (3.60). The result of TD

is used as the exact value.
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Figure 3.19 Angular speed

Figure 3.19 shows that the DPH method delivers a more accurate angular speed than the DP

method.
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Figure 3.20 Angular speed (zoom)

When a fault is imposed, Figure 3.20 represents the machine's angular speed. On the TD result,
there is a second harmonic that DPH successfully modelled, but the DP is unable to model the

second harmonic.
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Figure 3.21 Error of angular speed

Figure 3.21 shows that applying harmonic on both machine and controller significantly improves

the accuracy of the DPH method.
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Figure 3.22 Error of angular speed (zoom)

Figure 3.22 depicts the angular speed error of the DP and DPH results during fault evolution. The
accuracy of the DPH approach is greatly enhanced by the suggested method.



122

DP DPH

Time (s)
Figure 3.23 Error of bus voltage

The bus voltage error of the DP and DPH methods are presented in Figure 3.23. The DP technique

has a persistent error in the machine's angular speed, the phase of terminal voltage increases with
time, and as a consequence, the DP method's error increases gradually.

200 |-

-100

Time (ms)

Figure 3.24 Bus voltage (transient zoom)

Figure 3.25 presents the bus voltage of the TD, DP, and DPH methods. Applying harmonics to the

machine's controller produces an accurate field voltage, allowing the DPH approach to
appropriately represent the machine's terminal voltage.
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Figure 3.25 Error of bus voltage (transient zoom)

Figure 3.25 demonstrates that the DPH approach performs much better than the DP method in

modeling bus voltage during fast transient dynamics.
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Figure 3.26 Bus voltage (semi-steady-state zoom)

In Figure 3.26, the DP has a voltage shift of phase after the removing the fault. The proposed DPH,

on the other hand, properly models the voltage.

3.4 Conclusion

This chapter covers the approach for computing harmonics in the SM as well as controllers for the
dynamic phasor method. Initially, the findings show that using the fundamental frequency of SM

in the DP model alone does not produce the same results as using the TD approach. Furthermore,
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while including harmonics into the SM model improves simulation results significantly, which is
insufficient. The results are then greatly improved by introducing harmonics to the controllers using

the proposed idea of computing the nonlinear component of the exciter.
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Chapter 4 DYNAMIC PHASOR-BASED SIMULATION OF
GEOMAGNETIC DISTURBANCES

This chapter proposes a dynamic phasor (DP)-based technique for simulation of geomagnetic
disturbance (GMD) impact on a power system. GMD allows quasi-dc geomagnetically-induced
currents to circulate through transmission lines and grounded high-voltage transformers, causing
transformer saturation, increased reactive power losses, and potential voltage control issues.
Nonlinear effects and the dynamic interplay of fundamental frequency, quasi-dc, and low-order
harmonic components generate these phenomena. The solution of GMD system impacts needs
advanced simulation tools and methodologies due to the complexity of these phenomena. In the
literature, there are three types of approaches for simulating GMD system impacts [40]:
electromagnetic transient-based (EMT) [41, 42], and load-flow-based (LF) [43-46], and transient
stability (TS)-type methods [47, 48]. The EMT method provides an accurate solution. The phasor-
based method is fast; however, it neglects to account for nonlinear effects and the dynamic
interactions, making it is less accurate. The purpose of this section is to suggest a novel application
for the DP technique. In comparison to the phasor-based method, the suggested DP-based
methodology allows modelling of GMD effects, providing a more accurate solution. It also allows
for a large simulation time-step, which reduces simulation time. Conducted simulations
demonstrates that the proposed DP-method provides an accuracy comparable to that of the EMT
method. Therefore, the proposed method offers an efficient solution method for GMD simulation.

4.1 Recall on Geomagnetic Disturbance

Solar mass energetic particles emitted from the sun's outer layer generate a Geoelectric Field (GEF)
on transmission lines, resulting in Geomagnetic Disturbance (GMD). The GEF generates
Geomagnetically Induced Currents (GICs) that flow through transmission lines and grounded
transformers at low frequencies (0.1 Hz or lower). According to the flow of quasi-dc currents in
the transformer winding, the operating point of the magnetisation characteristics shifts to one side,
creating a lengthy uni-directional saturation of the transformer. The main negative effects of uni-
directional saturation on the electric grid are: first, increased transformer magnetization currents
and reactive power losses, which can cause voltage regulation issues or even voltage instability;

second, transformer hotspot formation on windings and/or structural parts due to the extension of
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the magnetic flux beyond the transformer core; and third, transformer hotspot formation on
windings and/or structural parts due to the extension of the magnetic flux beyond the transformer
core [40].

4.2 GMD Model
Modeling transformer saturation is required to simulate GMD.

Vp Rp LP VL R

© MN ’W - " MN ’W 3

o

Figure 4.1 Transformer with saturation model

Figure 4.1 demonstrates a single-phase transformer with saturation model. The saturation is

modeled by a nonlinear inductor in the magnetizing branch. v, vy, and v,, are voltages of primary,
secondary, and magnetization, respectively. R, and R are equivalent resistance of copper loss on
primary and secondary winding, respectively. L, and L are equivalent inductance of flux leakage
on primary and secondary winding, respectively. R, is equivalent resistance of transformer core

loss. L, is equivalent inductance of transformer saturation.

Different sorts of 3-phase transformers can then be constructed utilising various winding
connections. To depict saturation, the first step is to model the nonlinear inductor. The TD
nonlinear inductor model is discussed in this section. The DP model is then produced by utilising
the TD model.
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4.2.1 Nonlinear inductor

The magnetizing branch of transformer can be modeled by a nonlinear inductor. The inductor is

defined by a relation of current and magnetic flux.
9, =f(i,) (4.1)
where ¢L and iL are flux and current of magnetization branch. f is the function of flux by

current variable.

Generally, this relation is given by piecewise segments and is symmetric with respect to the origin.

Figure 4.2 Current and magnetic flux relation of nonlinear inductor

Figure 4.2 shows current and magnetic flux relation of a nonlinear inductor. ¢,... and i, are flux

and current at the knee point. Inductor is linear for flux and current less than the knee point.

The relation of voltage and flux is:

dg_
Yo T Tt

(4.2)
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4.2.1.1 Time domain model

To simulate nonlinear inductance, the TD solution of reference [49] for nonlinear components is

used. Assume that the flux-current are oscillating at a piecewise:

¢(Wb)‘ -

i(A)

Figure 4.3 Linearizing relation of a flux-current at a segment

In Figure 4.3, ¢, is flux of linearized equation at a segment when current is zero. Then relation of

the piecewise can be written as:
¢, = Koli, +4o (4.3)
where K, is the slope of the flux-relation at the segment.

Assume that the flux-current are oscillating at a piecewise, then replacing equation (4.3) in equation

(4.2) gives:

. d(Kqly, +5)

m dt (4.4)

Using Trapezoidal integration rule, equation (4.2) is discretized as:

1 (At At

I, = @(?’Lm,n_l Kol t o, o, j+KVLm,n (4.5)
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The subscript n means the variable value at the n-th time-point ( x(tn) =X, ). The distance between

the time-points is the numerical integration time-step (At).

Therefore, a TD nonlinear inductor and the Norton equivalent model using Trapezoidal rule can
be shown as:

Figure 4.4 Nonlinear inductor and equivalent circuit

where i, the history term, is:

. 1 (At .
IhI-m,n—l - K_(?VLmnl + KQn—lle,n—l +¢Qn—l _¢Qn j (46)
Q

n

and Z, ., the equivalent impedance, is:

Q
=% 4.7
e = At (4.7)

Unlike linear inductance (see equation (1.4)), the equivalent impedance of nonlinear inductance is

not constant. The Newton iterative solution is used to determine the solution of the system

containing nonlinear components. The matrix A, becomes the Jacobian matrix of the Newton

solution after linearizing nonlinear device equations at each solution time-point [30].

The properties of nonlinear components may be represented by piece-wise linear curves in most
EMT simulations. The Newton—Raphson (NR) technique is highly efficient under this assumption,
but it is prone to get stuck in an infinite loop, resulting in nonconvergence. First, the NR technique
Is changed to use the information from both axes of the nonlinear features, resulting in a biaxial
NR approach. With more computing, the biaxial NR technique exhibits a substantial improvement

in convergence performance. Following that, an iterative technique is presented that incorporates
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the conventional NR, the biaxial NR [50, 51]. The suggested technique converges with some

iterations.
The following are the steps in a GMD simulation using TD approach:

1. Three phase Load-flow: to simulate unbalanced network from initial state, a three-phase

load flow is used.
2. Initialization

a. Convert the loads to constant impedances: other load models like constant power or
constant current can be used. In this thesis, the focus is on the modeling of SM and

the simple load model, constant impedance is implemented.
b. Calculate equivalent circuit of elements by discretized method

c. Build the admittance submatrix of MANA (equation (1.8)) of the network (exclude
the SMs and nonlinear inductances): During the simulation, the impedance of all
components except SM and transformers remains constant. To avoid having
repetitive computation, the constant portion of the admittance submatrix is
computed during the initialization phase, and the variable part is added to the

admittance submatrix during the simulation.
d. Calculate the history terms for the first time-step based on the load-flow results
3. Dynamic simulation

a. Calculate equivalent impedance and injection current for all SMs (using equations
(2.161) and (2.162)) and all nonlinear inductances (using equations (4.6)
and (4.7))

b. Add equivalent impedance of SMs and nonlinear inductances to the admittance
submatrix of MANA, add injection current of SMs and nonlinear inductances to the

b, vector, and solve A X, =D,

c. Update working segment of nonlinear inductors and dqg0-axes currents (equations
(2.141), (2.147), and (2.151)), rotor speed (equation (2.154)), and rotor angle
(equation (2.156)) for all SMs
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d. If the root-mean-square error of bus voltage for two consecutive iterations be less
than accepted error, then the solution is converged and go to step 3.e. If not then the

solution is not converged, so go to step 3.a for the next iteration
e. Calculate controllers’ model for the next time step

f. Predict the rotor speeds of all SMs and determine rotor angles based on the
calculated rotor speeds

g. Calculate the history terms of all elements except SMs and nonlinear inductances

(the history term of an inductor, for example, as indicated in equation (1.5)), then

update the b, vector and proceed to step 3.a for the next time step

4.2.1.2 Dynamic phasor model

The TD solution of reference [49] for nonlinear components is used, to find the DP model of a
nonlinear inductor. The current based on the Fourier series having the zero and fundamental

frequency components is:

| e (4.8)

- _ J(Ot
I, =1, g8 g,

Assume that the flux-current are oscillating at a piecewise, then replacing equation (4.8) in equation
(4.3) gives:

4, =Kol , + KQI%’lejﬂ + KQleﬁle—ia’t +dhs (4.9)

The relation of the flux and current for a segment (equation (4.3)) cannot be decoupled for the zero

and fundamental frequency components. The proposes method is to assign ¢, to the fundamental

harmonic and assume the zero harmonic as a linear inductance with the parameter of the knee point.

Therefore:

O =Lyl (4.10)
=Kol +dpe (4.11)

D =Kol + o &7 (4.12)



where L_ ., the inductance of the zero harmonic, is:

m,0

L _ ¢knee
m,0 — -
Iknee

According to the DP property of equation (1.14), the following relation can be written:

&
o, = P, =7Q

Therefore, voltage relation using Fourier series is:

jot —jot
d(Lyole, , + Kol &7 + g +Koly, & " +4q |

VvV, =
b dt

Separating harmonic coefficients gives:

VLmyo = I—m,o

d (KQILM) n d (¢Q1 ) oot
dt dt

VLm,l = ja)KQILm,l +

Using Trapezoidal integration rule, equations (4.16) and (4.17) are discretized as:

At At
I-mOn = VLmOn—1+ILmOn—1+ I-mOn
o 2I-m,O - o 2|-m,O o

2 . 1T+el) i
Vi +( At ij Koy pss +(do,, ~ 4, )L A 18 PV

ILm,l,n 2
jo+— |K
(Ja’ Atj Q
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(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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Therefore, a DP nonlinear inductor and the Norton equivalent model using Trapezoidal rule can
be shown as:

Figure 4.5 Nonlinear inductor and Equivalent circuit

where | and | , the history terms for the zero and fundamental harmonics, are:
hLm,O,n—l hI—m,l,n—l

At
IhLm,o‘n—l = Lm,o,nfl + 2L 0 Lm‘O,n—l (420)
m,
2 . 1+ eja)At ot
VLmvl,nfl +(At_ Ja)j KQn—lle,l,nfl +(¢Qn—1 _¢Qn )( At je J
(4.21)

It i1
m,d,n- . 2
o+— |K
(J Atj Q

and Z, and Z, ., the equivalent impedance for the zero and fundamental harmonics, are:

2L

Z,, = A"E'O (4.22)
.2

Z,, . = ( ja)+Ej Ko, (4.23)

In simulation of GMD by DP method, the GEF impact is modeled by the zero-frequency harmonic.
The solver models the system for the zero and the fundamental frequency. The superposition of the
zero and fundamental frequency harmonics lead to transformation saturation. The following are

the steps in a GMD simulation using DP approach:

1. Three phase Load-flow: to simulate unbalanced network from initial state, a three-phase

load flow is used.
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2. Initialization

a. Convert the loads to constant impedances: other load models like constant power or
constant current can be used. In this thesis, the fucus is on the modeling of SM and

the simple load model, constant impedance is implemented.
b. Calculate equivalent circuit of elements by discretized method

c. Build the admittance submatrix of MANA (equation (1.8)) for zero and fundamental
harmonics. The MANA admittance submatrix for the zero-frequency harmonic is
constant. To calculate the fundamental frequency submatrix admittance of the
network, the SMs and nonlinear inductances are excluded. During the simulation,
the impedance of all components except SM and transformers remains constant. To
avoid having repetitive computation, the constant portion of the admittance
submatrix is computed during the initialization phase, and the variable part is added

to the admittance submatrix during the simulation.
d. Calculate the history terms for the first time-step based on the load-flow results
3. Dynamic simulation

a. Calculate equivalent impedance and injection current for all SMs (using equations
(2.335) and (2.336)) and all nonlinear inductances (using equations (4.20)
to (4.23))

b. Add equivalent impedance of SMs and nonlinear inductances to the admittance
submatrix of MANA, add injection current of SMs and nonlinear inductances to the

B, , vector, and solve both A, X, , =B, , and A, X, , =B,

c. Update working segment of nonlinear inductors and dqg0-axes currents (equations
(2.319), (2.320), and (2.325)), rotor speed (equation (2.327)), and rotor angle
(equation (2.330)) for all SMs

d. If the root-mean-square error of bus voltage for two consecutive iterations be less
than accepted error, then the solution is converged and go to step 3.e. If not then the

solution is not converged, so go to step 3.a for the next iteration
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e. Calculate controllers’ model for the next time step

f. Predict the rotor speeds of all SMs and determine rotor angles based on the

calculated rotor speeds

g. Calculate the history terms of all elements except SMs and nonlinear inductances
(the history term of an inductor, for example, as indicated in equation (1.5)), then

update the b, vector and proceed to step 3.a for the next time step

4.3 Simulation results

This section contributes to a comparison of results obtained from time domain and dynamic phasor
methods. All implemented methods use an iterative solution for saturation of transformers. To

validate the methods, results are compared to TD method using an integration time step 100 xs.

Initially, the proposed DP method of transformer saturation modeling is validated. An overvoltage
is applied to transformer connected bus 4 of IEEE-118 bus, and the magnetization currents of DP
and TD methods are compared. In this test, there is no zero frequency harmonic and the simulation

is done for the fundamental harmonic.

TD DP
5 T I T T T T T I
=
~ 0
I
~
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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Figure 4.6 Magnetization current
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Figure 4.7 Magnetization current (zoom)

Figure 4.6 and Figure 4.7 show that the transformer saturation can be modeled by the DP method.

The proposed DP method of GMD modeling is validated. A GEF is applied to IEEE-118 bus
system, and the magnetization currents of DP and TD methods are illustrated. In this test, the GEF
is modeled at zero frequency harmonic system, and the transformer saturation is modeled at the

fundamental frequency harmonic.

At t=100us, a GMD is applied to system creating an electric field with a constant amplitude of
GEF = 5V/km positioned along an axis, which makes an angle 0, =35° with respect to the

south—north axis. This constant GEF allows obtaining the system step response, illustrating

saturation time delays, and performing future method-to-method comparison.

The test system is referred to as 118-GMD. The system voltage level is 345/138kV at transmission,
20kV at generation, and 25kV at distribution level. The total number of power transformers is 173
including the model of nonlinear iron core. The model further embeds 20 power plants with a total
installed capacity of 3800 MW and 91 electric loads. There are 177 transmission lines with a total
length of 10063 km. The models of synchronous machines (SMs) include mechanical and electrical
dynamics, turbine-governor, control system with automatic voltage regulator (AVR), power system
stabilizer (PSS). 118-GMD models GEFs as a lumped controllable dc voltage source in series with
the transmission line model; the voltage is determined based on the GPS coordinates of line

terminals and GEF amplitude and orientation specified by the user. Substation grounding has also
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been incorporated. Further modeling data of 118-GMD can be found in [41]. Note that, the models
of overexcitation limiter (OEL) for SM, and on-load-tapchanger (OLTC) of load transformers are

excluded from the original benchmark.

The magnetizing branch voltage, current, and flux results are for generator transformer on
NwCarlsl_138 004 for phase “a”. The simulations are performed by integration time steps of
100 s.

To validate the DP result is compared to the TD method. shows magnetizing branch current during
applying the GMD. The transformer saturates in one side according to GEF, and peak of current

increases to about 50 A.
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Figure 4.8 Magnetization current
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Figure 4.9 Magnetization current (zoom, low saturated)
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Figure 4.10 Magnetization current (zoom — high saturated)

Figure 4.8 shows magnetization current of TD and DP method. Figure 4.9 shows the magnetization
current for interval of 1.9 to 2 seconds, when the transformer saturation current is increasing. In

this stage of saturation, the DP method gives the same result as TD method.

Figure 4.10 shows magnetizing branch current when the transformer is deeply saturated. The DP
has some error due to the assumption of considering the zero-frequency harmonic model of

inductor as a linear inductor.

4.4 Conclusion

The proposed DP method gives a transformer saturation model, then the saturation model is used
to simulate GMD impacts. To gain this aim, the system is modeled for the zero and fundamental
frequency harmonic of DP method. The zero-frequency harmonic model of inductor is assumed
linear, and the fundamental frequency uses the nonlinear model. The results show the DP is able

to simulate GMD while its accuracy decreases for deep saturation modeling.

Also, the DP method has more equation than the TD method. Since the system is nonlinear, DP
solves fundamental frequency and dc component dependently in each simulation time step. So that
the number of equations of Newton solution for DP method is about three times to the number of

equation that TD method has.
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Chapter 5 CONCLUSION

5.1 Thesis summary

The dissertation describes the EMT-type and phasor domain simulators for power systems. Based
on the presented simulations, it is shown that the DP method due to its dual (time domain and
phasor domain) nature is more accurate than the pure phasor domain methods (3pPD and DP). The
accuracies and limitations of 3pPD and DP methods are compared, and the differences are

explained.

Although the DP method can capture faster EMT-type transients, it does not deliver the same
accuracy as the pure TD method. Moreover, it is shown that for larger time steps, the accuracy of
the DP method deteriorates, and its computational performance does not surpass the TD method
for the same numerical integration time step. It is also demonstrated that the TD method can
maintain sufficient accuracy at very high numerical time steps if it employs a fully iterative process
for the solution of its synchronous machine equations. It appears that despite its theoretical
advantages, the DP method remains on average 2.9 times slower than the full TD method. This
conclusion is based on comparing codes in the same development environment and for different

network conditions and fault cases.

In chapter 3 is shown that to have the same results of DP and TD methods, it is necessary to model
harmonic in the power system as well as SM and controller. To simulate harmonics, the burden of
computation increases by the number of implemented harmonics. As a result, the required memory

and available hard drive space is several times more than the TD method.

To summarize, the DP method as well as TD can simulate EMT-type transients. And can employ
large time steps to simulate low frequency transients. But to have accurate results, DP needs to

model harmonics rather than fundamental frequency which increases the computation burden.

5.2 Publications

1- R. Hassani, J. Mahseredjian, T. Tshibungu, and U. Karaagac, "Evaluation of Time-Domain and

Phasor-Domain Methods for Power System Transients,” Electric Power Systems Research.
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2- R. Pourramezan, R. Hassani, H. Karimi, M. Paolone, and J. Mahseredjian, "A Real-time
Synchrophasor Data Compression Method Using Singular Value Decomposition,” IEEE

Transactions on Smart Grid, pp. 1-1, 2021.

3- A. Haddadi, R. Hassani, J. Mahseredjian, L. Gérin-Lajoie, and A. Rezaei-Zare, "Evaluation of
Simulation Methods for Analysis of Geomagnetic Disturbance System Impacts,” IEEE
Transactions on Power Delivery, vol. 36, no. 3, pp. 1509-1516, 2021.

4- A. Haddadi, A. Rezaei-Zare, L. Gérin-Lajoie, R. Hassani, and J. Mahseredjian, "A Modified
IEEE 118-Bus Test Case for Geomagnetic Disturbance Studies-Part I: Model Data,” IEEE
Transactions on Electromagnetic Compatibility, vol. 62, no. 3, pp. 955-965, 2020.

5- A. Haddadi, L. Gérin-Lajoie, A. Rezaei-Zare, R. Hassani, and J. Mahseredjian, "A Modified
IEEE 118-Bus Test Case for Geomagnetic Disturbance Studies-Part 11: Simulation Results,” IEEE
Transactions on Electromagnetic Compatibility, vol. 62, no. 3, pp. 966-975, 2020.

5.3 Future works

The main disadvantage of DP method is high computation burden. It makes the run of simulations
slower than the TD method used for the same detail and time step. To increase simulation time,
one possible method is parallel simulation. The computation of each harmonic can be done

dependently at each time step point.
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