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RÉSUMÉ

Dans les projets logiciels, une pratique courante consiste à utiliser des système de suivi des bugs
(BTSs) afin de gérer et suivre les enregistrements de bogues. Une tâche cruciale pour les BTS
consiste à identifier si un nouveau rapport décrit un bogue qui a déjà été signalé, c’est-à-dire s’il
s’agit d’un rapport double. La déduplication est également particulièrement pertinente pour
les projets dans lesquels les applications sont équipées de systèmes automatisés de signalement
des plantages. Ces systèmes sont capables de collecter automatiquement les informations sur
un platage et ils regroupent ces informations dans un document, appelé rapport de plantage,
qui est soumis dans des les référentiels des plantages. Une partie importante des rapports
soumis est en double et, par conséquent, leur détection est importante pour un processus
de maintenance logicielle efficace. En raison du volume considérable de soumissions, en
particulier dans les applications avec une large base d’utilisateurs, la déduplication manuelle
des nouveaux rapports dans les BTS et dans les les référentiels de plantages peut être longue
et laborieuse. Par conséquent, en pratique, une telle tâche nécessite le soutien de méthodes
automatiques.

Dans cette thèse, nous avons étudié et proposé des nouvelles méthodes afin de traiter la
déduplication des bogues dans les BTS et la déduplication des rapports de plantage dans les
référentiels.

Notre première contribution porte sur les limites des méthodes d’apprentissage profond
précédament porposées pour la déduplication des bogues. Ces méthodes sont basées sur
des architectures avec une interaction limitée entre les données textuelles de deux rapports
de bogues. Ainsi, nous proposons un nouveau modèle d’apprentissage profond basé sur
l’alignement d’attention souple (soft alignment attention) qui peut extraire dynamiquement
les caractéristiques d’un rapport qui est lié à l’autre rapport. Dans une évaluation empirique,
nous démontrons que l’architecture proposée est plus efficace que les précédentes et notre
méthode surpasse significativement les techniques bien connues et de pointe.

Dans la deuxième contribution de cette thèse, nous proposons une méthode de déduplication
de rapport de plantage qui combine TF-IDF, l’alignement global optimal et l’apprentissage
automatique d’une manière originale. Suivant la majorité de la littérature, la déduplication
est effectuée en calculant la similarité entre des paires de trace d’appels. Contrairement aux
techniques précédentes, notre méthode calcule le score d’alignement entre deux trace d’appels
en se basant sur les positions et les fréquences globales de toutes les fonctions dans ces traces.
Dans les expériences rapportées, nous comparons notre méthode avec des techniques bien
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connues et de pointe au moyen d’une nouvelle méthodologie d’évaluation. Notre méthode est
la seule à obtenir de bonnes performances de manière constante dans tous les ensembles de
données distincts. De plus, elle surpasse de manière significative les méthodes concurrentes
dans la majorité des configurations expérimentales. Enfin, une étude approfondie de l’ablation
est réalisée pour démontrer l’importance des éléments de la méthode.

Finalement, la dernière contribution de cette thèse aborde la question du calcul efficace
des alignements de séquences optimaux. Particulièrement dans les applications populaires,
l’efficacité joue un rôle crucial sur le déploiement des systèmes de déduplication en raison de la
grande quantité de rapports de plantage soumis chaque jour. Puisque les performances de tels
systèmes peuvent simplement être améliorée en accélérant la comparaison des traces d’appel,
nous proposons une nouvelle méthode d’alignement de séquence pour la déduplication des
rapports de platage qui, contrairement au temps de complexité quadratique des techniques de
pointe, fonctionne en temps linéaire par rapport à la longueur des traces d’appel. Inspirée par
des éléments particuliers de la déduplication des rapports de plantage, notre méthode mesure
efficacement la similarité des traces d’appel en se basant sur : (i) l’alignement indépendant
des même functions; et (ii) une heuristique qui fait correspondre les fonctions identiques en se
basant uniquement sur leurs positions absolues. Malgré sa simplicité, nous montrons que la
méthode proposée atteint des performances de pointe dans tous les scénarios d’évaluation et
qu’elle est nettement plus efficace que les autres méthodes basées sur l’alignement optimal
des séquences.
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ABSTRACT

In software projects, a popular practice is to employ Bug Tracking Systems (BTSs) to
manage and track records of bugs. A crucial task for BTSs consists in identifying whether
a new report describes a bug that was previously reported or not, i.e., if it is a duplicate
report. Deduplication is also particularly relevant for projects where applications are equipped
with automated crash reporting systems. These systems are able to automatically collect
information about a crash, then grouping it in a so-called crash report. Given the current
industrial practice, repositories of crash reports contain a significant amount of duplicate
crash reports and, thus, their detection is important for an effective software maintenance
process. Due to the considerable submission volume, specially in applications with a wide
user base, the manual deduplication of new reports in both BTSs and crash repositories
can be time-consuming and laborious. Hence, in practice, such task requires the support of
automatic methods.

In this thesis, we studied and proposed novel methods to address bug deduplication in BTSs
and crash report deduplication in crash repositories.

Our first contribution addresses the limitation of previous deep learning methods for bug
deduplication. Such methods are based on architectures with a limited feature interaction
between textual data from two bug reports. Thus, we propose a novel deep learning model
based on soft-attention alignment that can dynamically extract features from a report that is
related to a specific part of the other report. Through a series of experiments, we demonstrate
that the proposed architecture is more powerful than previous ones and our method significantly
outperforms strong baselines and state-of-the-art (SOTA) techniques.

In the second contribution of this thesis, we propose a method for crash report deduplication
which combines TF-IDF, optimum global alignment, and machine learning (ML) in a novel
way. Following the majority of the literature, the deduplication is performed by computing
the similarity between pairs of stack traces. In contrast to previous techniques, our method
computes the alignment score between two stack traces based on the positions and global
frequencies of all frames in the stack traces. We extensively compare our method with strong
baselines and SOTA techniques by means of a new evaluation methodology for this task. Our
method is the only one that consistently performs well in all distinct datasets. Additionally,
it significantly surpasses competitive methods in the majority of experimental setups. Finally,
an extensive ablation study is performed to demonstrate the importance of method elements.

Finally, the last contribution of this thesis addresses the issue of efficiently computing optimal
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sequence alignments for crash report deduplication. Due to the massive amount of crash
reports submitted every day, deduplication systems must be efficient, thus requiring fast
stack trace comparison. We propose a novel sequence alignment method for crash report
deduplication that, in contrast to the quadratic complexity time of SOTA techniques, runs
in linear time with respect to the length of the stack traces. Inspired by particular aspects
found in crash report deduplication, our method efficiently measures the stack trace similarity
based on: (i) the independent alignment of frames with the same subroutine; and (ii) an
heuristic that matches identical frames based only on their absolute positions. Despite its
simplicity, we show that the proposed method achieves SOTA performances in all evaluation
scenarios and it is substantially more efficient than other methods based on optimal sequence
alignment.
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CHAPTER 1 INTRODUCTION

Despite developer efforts, bugs are likely to arise during a program lifetime, as a consequence,
bug fixing is a prevalent activity in software development [1]. In order to support such
activity, companies often employ Bug Tracking Systems (BTSs), to manage and track records
of bugs. In an BTS, each bug is represented by a bug report – an example of such document is
depicted in Figure 1.1. As shown in this example, a report might contain distinct categorical
information related to a bug, e.g., the names of product and component affected by a error,
severity, priority, and so on. Moreover, the person who submits a report must provide a
summary and a full description of the bug. In our example, these two fields are represented
by the bold line at the top of the figure and the text block at the bottom, respectively.
Additionally, reporters can attach diverse types of files (e.g., screenshots, log files, and source
codes) to a report.

A common strategy adopted by software projects, especially open-source ones, is to allow
end-users, besides testers, to report new bugs in BTSs [2, 3, 4]. Such strategy improves
software quality and provides system feedback to developers. However, it has a drawback:
bug reports may be of poor quality or even describe non-existent bugs. Projects are aware of
this disadvantage and, thus, implement a process for reviewing such reports, called bug triage
process [5]. Overall, in the bug triage process, a person, called the triager, assesses the quality
of a new bug report, verifies whether an equivalent error has not already been previously
submitted, and certifies that the reported bug is reproducible. After that, the triager assigns
a report to a developer or a team that will investigate the bug and fixed it. In Figure 1.1,
the person in charge of resolving a bug is indicated in the field assignee. In cases where the
bug cannot be reproduced, the triager can request further information for the reporter. This
information exchange is recorded in the form of comments in the bug report.

Additionally, BTSs allow to control and visualize the current status of bugs in the maintenance
process. The possible status values might vary among different BTSs, e.g., in Figure 1.1,
status ASSIGNED means that an expert is fixing the bug. In the same BTS, for instance,
WORKSFORME is attributed to non-reproducible bugs, whereas RESOLVED is associated
with fixed bugs waiting for quality assurance. For further details regarding bug status and its
cycle, we reference the reader to Koponen [6].

In additional to BTSs, many projects equip their products with automated crash reporting
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Figure 1.1 An example of a bug report.

systems (e.g., Apport1 and Mozilla Socorro2). Such systems reduce the dependence of end-
users that may not wish to notify failures or, due to the lack of technical knowledge, might
not provide appropriate information for bug fixing. In a nutshell, these systems automatically
detect software crashes, collect data related to user environment, system state and execution
information, and group this data into a so-called crash report [7]. Each crash report is sent to
a repository for reviewing and, after assessment, they can originate new bug reports within
BTSs.

Besides the additional data related to the system and execution environment, crash reports
are composed of stack traces which provide valuable information for bug investigation and
fixing [8]. In Figure 1.2, we depict an example of stack trace in Java. The first line contains
the exception type and the error message. The subsequent lines represents the state of an
application call stack right before a failure. A call stack consists of special data structures,
called frames, that are stored following the LIFO (last in, first out) principle. The first
frame (topmost) represents the subroutine that was running at the moment of the crash. The
remaining ones are associated to subroutines paused until the execution of the adjacent frames
closer to the top. Specifically, the last frame is the application entry point, i.e., the bottom
of the call stack. The displayed information in each frame depends on the environment and
programming language. As shown in Figure 1.2, Java’s stack traces contains the subroutine
names and sources (filename and line number) of each frame.

Due to the asynchronous nature of bug submission in both crash report repositories and
1https://wiki.ubuntu.com/Apport
2https://crash-stats.mozilla.com/
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Exception Class Subroutine name SourceException Message

java.lang.IllegalArgumentException: Argument not valid
  at org.eclipse.swt.SWT.error(SWT.java:4422)
  at org.eclipse.swt.custom.StyledText.setStyleRanges(StyledText.java:9820)
  at org.eclipse.ui.commit.CommitEditorPage.createMessageArea(CommitEditorPage.java:378)
  at org.eclipse.ui.commit.CommitEditorPage.createFormContent(CommitEditorPage.java:487)
  at org.eclipse.swt.custom.BusyIndicator.showWhile(BusyIndicator.java:70)
  at org.eclipse.ui.forms.editor.FormPage.createPartControl(FormPage.java:150)
  at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:648)
  at org.eclipse.equinox.launcher.Main.basicRun(Main.java:603)
  at org.eclipse.equinox.launcher.Main.run(Main.java:1465)
  at org.eclipse.equinox.launcher.Main.main(Main.java:1438)

Figure 1.2 Stack trace example in Java.

BTSs, a significant portion of the reports are duplicate, i.e., they are associated with the
same error [9, 10]. Hence, in such environments, an important task is report deduplication,
that consists in grouping duplicate reports into a single cluster, called bucket. This task
avoids developers work on the same bug [9], provides complementary information about
errors [11, 12], and helps to prioritize bug investigation [13].

Especially in systems with large user bases, it is impractical to manually deduplicate bug
reports in BTSs and crash reports within repositories due to the high submission volume
that is beyond the triage team capability [2, 10, 14, 15]. For instance, considering Mozilla’s
environment3, over 350 new reports needed to be triaged every day in its BTS [15], while
its crash repository could receive more than 300.000 crash reports in a day [10]. Therefore,
automatic methods are needed to efficiently address such issue. In this work, we refer to the
duplicate bug reports detection in BTSs as bug report deduplication or simply bug deduplication.
Regarding crash reports, the analogous task is called crash report deduplication.

1.1 Research Objectives

Bug deduplication and crash report deduplication have been extensively studied in the
last two decades. Nonetheless, such tasks are still considered practical open problems, i.e.,
method performances in term of effectiveness are far insufficient for deployment of automatic
deduplication systems without human interference. Regarding efficiency, especially in crash
report repositories, the deployment of state-of-the-art (SOTA) techniques in real environments
is still a relevant research issue due to the high volume of report comparisons associated to
the deduplication of a new report [10].

Furthermore, despite the vast literature, there is no consensus regarding the evaluation
3https://mozilla.org/

https://mozilla.org/
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methodology and previous proposed methods were not extensively compared among themselves
due to the lack of source code and data availability. Given the above, within the scope of
this thesis, the objective is to investigate bug deduplication and crash report deduplication
by: (i) proposing new methods; (ii) discussing evaluation methodologies; and (iii) extensively
comparing and analysing our proposed methods with previous ones. More specifically, this is
conceived around three main contributions:

1. A novel deep learning for bug deduplication. The majority of the studies have
addressed bug deduplication by mainly comparing textual data between a pair of bug
reports. Many of them proposed deep learning models to perform such comparison
based on siamese neural networks [16], that is, architectures that separately generates
fixed-length representations of textual data from each report. In siamese neural networks,
text representations are invariable, i.e., the model cannot extract different features
from textual data that are more relevant to specific comparison [17, 18]. In order to
mitigate such shortcoming, an attentive model was proposed in [19] which generates
fixed-length text representations by means of an attention mechanism [20]. In a nutshell,
this mechanism compares word representations from a report with a unique set of textual
features from the other report. Nonetheless, the textual comparison is still limited since
the compression of textual data into fixed set of features can lose relevant information
for a specific deduplication.

Motivated by this limited information interaction of reports during the feature extraction,
we propose a method that, better leveraging the attention mechanism, can dynamically
focus on distinct segments of a report regarding the textual content of the other one. We
demonstrated that the proposed method outperforms the competitive methods on all
datasets and that the more dynamic feature interaction is crucial for bug deduplication.
Moreover, as other contribution, we performed an extensive comparison of deep learning
models and strong baselines employing a more realistic evaluation methodology.

2. A method for crash report deduplication which combines TF-IDF, optimum
global alignment, and machine learning. Crash report deduplication is frequently
addressed by mainly comparing the stack traces contained in crash reports. Since
sequence order is relevant for the task, methods based on optimal global alignment [21, 22]
have been proposed for measuring stack trace similarity. In a nutshell, optimal global
alignment applied to crash report deduplication consists in finding the best end-to-end
alignment between two stack traces. To compare distinct viable solutions, a scoring
scheme is required to calculate the score of a sequence alignment. Brodie et al. [21]
proposed a scheme in which an alignment of two identical subroutines (called match)
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affects the final score based on two subroutine features: their absolute position in
the stack traces and their global frequency within the repository. Such features are
relevant for crash report deduplication because (i) subroutines near to the topmost
positions are more likely to contain the bug that caused a crash [8], and (ii) frequent
subroutines represent ordinary functionality that are usually not related to the crash.
Exclusively employing positional information, Dang et al. [22] introduced parameters
into the scoring scheme that control the impact of such information feature on the
sequence alignment. Such parameters are learned by a machine learning (ML) algorithm
and provide more flexibility to the method. However, both studies ignore the position
and global frequency information regarding unmatched subroutines, the ones that are
not shared between two stack traces. We argue that such features are also important in
these cases since rare subroutines near to the top of the stack traces should have higher
impact on the score than the frequent ones close to the bottom.

Inspired by the previous works, we propose TraceSim, a novel optimal global alignment
method for crash report depuplication. TraceSim assigns a weight for each subroutine
that depends on its rarity in a repository (similar to TF-IDF) and its position in a
stack trace. Each weight captures the subroutine importance for the deduplication.
Our method finds the optimal global alignment based on the weights of matched
and unmatched subroutines in the sequence alignment. To provide a certain method
flexibility on different datasets, ML algorithms are employed to learn parameters that
control the impact of subroutine features on the final alignment. As an additional
contribution, we propose an evaluation methodology that can measure the method
capacity on: (i) separating duplicate and non-duplicate reports, (ii) correctly assigning
a report to its correct bucket; and (iii) ranking similar stack traces. We extensively
compare TraceSim to SOTAs techniques and strong baselines on five different datasets.
Our experimental results demonstrated that TraceSim consistently achieve the best
performance in the majority of the evaluation scenarios.

3. A linear time stack trace alignment heuristic for crash report deduplication
Especially in industrial environments, deduplication systems usually receive a high
volume of submissions, e.g., approximately two million reports are weekly submitted
into Mozilla’s repository [10]. Given such scenario, these systems must be carefully
developed to achieve adequate throughput (processed reports per second). A possible
approach to accelerate a deduplication system is to directly reduce the computational
cost for calculating stack trace similarity. However, in the literature, the fastest methods
that run in linear time are significantly less effective than SOTA techniques whose time
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complexity is quadratic. Hence, we study how to efficiently compare stack traces based
on sequence alignment without effectiveness degradation.

Since the primary goal of crash report deduplication is to capture the stack trace
similarity and not find the best sequence alignment, we argue that some constraints of
the optimal global alignment can be relaxed to improve efficiency without affecting the
method effectiveness. Based on that, we propose an alignment heuristic that compares
two stack traces in linear time. Such method, called FaST, groups subroutines based
on the their names and, for each group, it iteratively matches subroutines by lining
up the two available ones closer to the top. Due to the frequency differences, it may
not be possible to match all subroutines within the stack traces. In such cases, we
consider that subroutines are aligned to special structures, called gaps. The similarity
score is then computed based on a similar scoring scheme proposed by TraceSim. In
our experiments, we show that our alignment heuristic consistently achieves SOTA
performances on all datasets and it is substantially faster than TraceSim and other
methods based on optimal sequence alignment.

1.2 Thesis outline

The remaining of this document is organized as follows. Chapter 2 presents some background
information and provides a critical literature review of studies in bug deduplication and
crash report deduplication. Chapter 3 describes an overview of this thesis contributions. In
the subsequent chapters, three research articles are presented. Chapter 4 proposes a soft
alignment deep learning model for bug deduplication. Chapter 5 introduces TraceSim and
a new methodology for crash report deduplication. Chapter 6 investigates the performance
issue associated to sequence alignment methods in crash report deduplication and proposes
FaST, a linear time method for stack trace comparison. A general discussion is presented in
Chapter 7. Finally, Chapter 8 summarizes this thesis contributions and discusses limitations
and promising research avenues.

1.3 Publications

The chapters 4, 5, and 6 of this thesis include, respectively, the following published articles:

1. Irving Muller Rodrigues, Daniel Aloise, Eraldo Rezende Fernandes, and Michel Dagenais,
“A soft alignment model for bug deduplication,” in the 17th International Conference on
Mining Software Repositories (MSR). New York, NY, USA: Association for Computing
Machinery, 2020, p. 43–53.
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2. Irving Muller Rodrigues, Aleksandr Khvorov, Daniel Aloise, Roman Vasiliev, Dmitrij
Koznov, Eraldo Rezende Fernandes, George Chernishev, Dmitry Luciv, and Nikita Po-
varov, “Tracesim: An alignment method for computing stack trace similarity,” Empirical
Software Engineering, vol. 27, no. 2, p. 53, Mar 2022.

3. Irving Muller Rodrigues, Daniel Aloise, and Eraldo Rezende Fernandes, “FaST: A linear
time stack trace alignment heuristic for crash report deduplication,” in Mining Software
Repositories (MSR2022), in press

Furthermore, during this Ph.D research, one of our collaborations also originated the following
article:

• Aleksandr Khvorov,Roman Vasiliev, George Chernishev, Irving Muller Rodrigues,
Dmitrij Koznov, and Nikita Povarov, “S3M: Siamese stack (trace) similarity measure,”
in 2021 IEEE/ACM 18th International Conference on Mining Software Repositories
(MSR), 2021, pp. 266–270.
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CHAPTER 2 LITERATURE REVIEW

Sequential data comparison plays a crucial role in bug deduplication and crash report
deduplication since texts and stack traces are one of the most valuable information sources
for these two tasks, respectively. Hence, in this chapter, we present techniques for comparing
similarity of two sequences. Most of the examples are related to natural language, but they can
be generalized to any sequential data. Additionally, we describe the methodology evaluations
and methods proposed for such tasks. Even though a comprehensive literature review is
provided here, it is worthy to mention that this manuscript is composed of self-contained
chapters which include their particular and independent literature reviews.

2.1 Information retrieval techniques

A classic problem in Information Retrieval (IR) consisting in retrieving documents that are
relevant for a given query [23]. To compare the textual data between each document and a
query, two classic techniques can be employed: Term Frequency – Inverse Document Frequency
(TF-IDF) and BM25.

2.1.1 TF-IDF

A common approach to compare textual data is to represent texts as fixed-length vectors
whose each dimensions is associated with a specific term. Such vector representation is
called Vector Space Model (VSM) [23, 24] and, for simplicity, we consider that each term
is a word in a pre-defined set V , called vocabulary. In Table 2.1, we depict an example of
VSM representations of two sentences: Brass is a heavy game while Wingspan is a light one and
Brass is not that heavy game. These sentences are respectively named as Sentence 1 and 2.
Each column of Table 2.1 represents one of 13 vocabulary words, whereas the rows contains
the dimension weights in each sentence. In our example, the weights are simply the word
frequencies. For instance, the cell in row 1 and column 2 has the value 2 because the word is

Brass is not that heavy game a while Wingspan light one
Sentence 1 1 2 0 0 1 1 2 1 1 1 1
Sentence 2 1 1 1 1 1 1 0 0 0 0 0

Table 2.1 Example of vector representation of two sentences: Brass is a heavy game while
Wingspan is a light one and Brass is not that heavy game.
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occurs twice in Sentence 1. As one can notice, vector each sentence is represented by vector
with length equal to the vocabulary size.

In exampled presented in Table 2.1, vector weights are the raw frequency of words. However,
such approach can be problematic since word frequency distribution is usually skewed – only a
few words have high frequencies in a document [24]. Consequently, the weight of some words
will be much higher than the remaining ones, i.e., similarity comparison will be highly affected
by a small subset of terms. Moreover, a set of words (including those with high frequency)
appears in most of the documents and, therefore, they do not help to discriminate documents
[23]. For instance, considering a board game web forum, the word game is expected to appear
in a significant part of the posts. Thus, having the word game does not make documents more
or less similar. However, the word storytelling is rarer and documents that share such word
are more likely to be more similar among them. A technique to overcome such shortcomings
is TF-IDF.

TF-IDF weights vectors by means of inverse document frequency (IDF) and word frequency,
called term frequency (TF). TF is the local information about how important is a word to a
specific document [23]. IDF measures the discrimination level of the words in a dataset [24].
Common words in a domain are not helpful to discriminate documents since most of them
contain these terms. So, to reduce their relevance in the documents, these words should have
low weights in the vectors. The following equation calculates IDF:

IDF(t) = log
(
|S|

df(t)

)
, (2.1)

where |S| is the number of documents in the dataset S, df(·) is the number of documents
that contain a word t. The new weight wtd of a word t in a document d using TF-IDF is
computed as:

wtd = TF(t, d)× IDF(t), (2.2)

where TF(t, d) returns the term frequency of word t in the document d.

2.1.2 BM25

Despite its simplicity, TF-IDF ignores an import factor that affects term importance: document
length. Long documents tend to repeat the same terms through their content which can
increase their impact on the similarity measurement [25]. Moreover, as long documents have
a more extensive variety of words, they have a higher probability of being more similar to
queries than the shorter ones.
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Okapi weighting or BM25 weighting scheme is a well-known technique in information retrieval
that normalizes the term impact by the document length. BM25 is based on probability theory
and measures the document relevance to a query [23]. The following equation calculates the
BM25 score of a document d given the query q:

BM25(d, q) =
∑
t∈d∩q

IDF(t)× (k1 + 1) TF(t, d)
k1((1− b) + b× (Ld

Lv
)) + TF(t, d)

, (2.3)

where d ∩ q is the disjunction of the terms in the document d and query q, k1 is a positive
parameter that regulates the influence of the term frequency, Ld is the document length, Lv is
the average length of the documents in the dataset, and b is a parameter with values between
0 and 1 which controls the effect of the document length.

BM25 was designed to score documents with a single content. However, in many domains,
documents can have multiple fields. For example, a website about video games have reviews
that are structured into title, content, and summary - which is a compilation of the reviewer’s
opinion. Merging these fields into a single text is a possible option to compare the reviews
using Okapi weighting. However, this strategy gives the same weight to the three fields. The
title and summary might be more relevant to the document comparison and, therefore, equally
weighting all fields in the final score can be misleading. A more flexible option is to use the
BM25F [26, 27] which is an extension of BM25 and applies different weights to each field.
Before computing the final score, the local relevance of a term t in document d is calculated
using TFD(d, t):

TFD(d, t) =
∑
f∈d

wf
TF(t, f)

1− bf + bf∗Lf
Lvf

, (2.4)

where f is a field in the document d, TF(t, f) is the frequency of term t in a field f , wf and bf
are scalar parameters related to f , Lf is the length of a field f , and Lvf is the average length
of a field f . Given a positive variable k1, the following equation is employed to compute
BM25F score:

BM25F (d, q) =
∑
t∈d∩q

IDF(t)× TFD(d, t)
k1 + TFD(d, t) . (2.5)

In BM25F, the parameters wf and bf of each field and k1 have to be tuned. Robertson and
Zaragoza [28] describes many strategies to find the optimum values for those variables.

2.2 Optimal Global Alignment

A shortcoming of the previous IR techniques is that they disregard sequence order, which
might be a crucial information for some problems, e.g., the order of letters in words are crucial
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for finding misspells in a text. In Figure 2.1, we depict an example of how to compare a
misspelled word acknoledgemint with its correct form acknowledgment. Such example illustrates
a global alignment between these words that consists in lining up each sequence element to
either: an element from the other sequence or a gap, a representation of an insertion/deletion
operation depicted by a hyphen symbol in Figure 2.1. An alignment between two identical
elements (e.g., the two letters a) is called a match, whereas the opposite scenario (e.g., letters
i and e) represents a mismatch. A constraint in global alignment is that the initial sequences
can be restored by removing gaps from the found alignment, i.e., element order must be
preserved.

a c k n o - l e d g e m i n t

a c k n o w l e d g - m e n t

Figure 2.1 Global alignment between acknoledgemint and acknowledgment.

Since there is usually a large number of valid global alignments between two sequences, an
important problem consists in finding the best one which is referred to as optimal global
alignment problem. In order to compare different solutions, a scoring scheme is defined to
compute the values of each match, mismatch, and gap alignment. In this manuscript, such
values are computed by means of the functions match(·), mismatch(·), and gap(·), respectively.
Thus, the score of a global alignment is the sum of match values penalized by the sum of
mismatch and gap values. Given two sequences s and s′ with lengths n and m, the highest
alignment score between such sequences is found in O(nm) time complexity by means of the
Needleman-Wunsch (NW) algorithm.

NW is a dynamic programming algorithm that fills a Matrix M ∈ Rn×m from the smallest
row and column indexes until the highest ones. Considering that si and s′j represents the i-th
and j-th elements of the sequences s and s′, respectively, Mi,j is computed as follows:

Mi,j = max


Mi−1,j + gap(si)

Mi,j−1 + gap(s′j)

Mi−1,j−1 + F (si, s′j)

, (2.6)

where F (si, s′j) is defined as follows:

F (si, s′j) =

mismatch(si, s′j), if si 6= s′j

match(si, s′j), otherwise
. (2.7)
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After running the algorithm, the alignment score is stored in Mn,m.

2.3 Deep learning

In the recent past, deep learning has achieved the state-of-art in many different fields such as
NLP, vision and speech recognition [29]. Neural networks, that lost their popularity after the
’80s, have emerged as one of the most important techniques in machine learning due to many
factors: data availability, the increase of computational power, regularization techniques,
understanding of how to make training more stable and so on. Deep learning techniques are
based on a hierarchical structure of representations in which the highest-levels depends on
the lowest ones [30]. Each representation level abstracts information from the previous one
which can generate representations that are more invariants and focus on the most relevant
information of a problem [31]. This section describes the neural networks - how they work
and methods to train them - and also provides high-level explanations of recurrent neural
networks (RNN ) and the attention mechanism.

2.3.1 Neural networks

Inspired by our brain function, researchers developed a mathematical model of the neuron,
depicted in Figure 2.2, with three main components: input links, linear function and activation
function. A neuron receives inputs through the input links. Each link has a weight associated
with it. After that, the linear function sums the multiplication product between the weight
and input values for every input link. The activation function is a non-linear function that
receives such weighted sum as input and applies an often non-linear transformation on it.

Linear
Function

Activation
Function

Input Links

Figure 2.2 Mathematical neuron model.

A set of neurons can connect each other creating a structure called neural network. This
section is focused on feed-forward networks, a type of neural network that groups neurons in
a stack of layers [32]. In this manuscript, following Goodfellow et al. [33], we also referred
a feed-forward network as multilayer perceptron (MLP). In such network, each layer only
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receives the outputs of the previous adjacent layer in the stack. This arrangement creates a
directed graph in which information run through a point to another one without any cycle.
Consequently, the output of the feed-forward neural network depends only on its link weights
and initial input.

Layer 1 Layer 2 Layer 3 Layer 4

Figure 2.3 Example of feed-forward neural network.

Figure 2.3 depicts an example of a feed-forward neural network with four layers where the
circles represent the neurons, the directed lines symbolize the input links (weights), and the
squares depict the inputs. The first layer, named input layer, receives the input and does not
have any weight. The last layer, called output layer, generates the final output of the neural
network. The hidden layers are all the other ones that are between the input and output
layers. Neural networks have a depth architecture when it has more than one hidden layer,
otherwise its architecture is named as shallow [34].

The L layers in a feed-forward neural networks are indexed by a unique positive number. The
matrix W l ∈ R|l|×|l−1| denotes all link weights between layer l and l − 1, where |l| and |l − 1|
are the number of neurons in |l| and |l − 1|,respectively. The linear function of a layer l is
represented by:

zl = W lhl−1 + bl, (2.8)

where hl−1 ∈ R|l−1| is the output of the neurons in the previous layer l − 1, zl ∈ R|l|, and
b ∈ R|l| is called bias and translates the function from the origin. Except in the input layer, the
neuron outputs are usually produced by the activation function - often a non-linear function
represented by φ. Table 2.2 shows some activation functions used in literature. Given an
activation function φ, the neuron outputs in a layer l is denoted by:

hl = φ(zl), (2.9)
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Function Name Equation
Sigmoid 1

1+e−x
Tanh 2

1+e−2x − 1
Relu max(0, x)

Table 2.2 Activation functions φ.

The vector hl ∈ R|l| represents the output of all neurons in the layer l and θ symbolizes all
parameters - weights and bias - of the neural network.

Many machine learning problems require that the neural network outputs a probability
distribution [35]. In binary classification problems, a viable option is to use a neural network
with a single neuron in the last layer that has a sigmoid function as the activation function.
Since this function returns values between 0 and 1, the output of this neuron can be interpreted
as P (y+|x; θ) - the probability of the positive class y+ given the input x and the parameters θ.

In multiclass classification, neural network has an architecture in which each neuron of the
last layer is linked to a specific class. For instance, in a neural network with three neurons in
the last layer, the first, second and third neurons can represent the score of an image being,
respectively, a cat, dog or person. The neuron outputs usually does not have the properties
required to be a probability distribution since their outputs range in an interval (−∞,+∞)
and their output sum is not guaranteed to be 1. An alternative to assure such properties is to
normalize the outputs using a function, called softmax function. After applying the softmax
function, a neuron output that represents the label y can be interpreted as the conditional
probability of y given an input x and the parameters θ of the neural network. The following
equation calculates the conditional probability P (y|x; θ):

P (y|x; θ) = hLy = ez
L
y∑Y

y′ e
zL
y′
, (2.10)

where Y is the set of all labels and zLy is the linear output of the neuron that represents y.
The layers with the softmax function as their activation functions are called softmax layers
in this manuscript. Two techniques, called backpropagation algorithm and gradient descent
algorithm, are used to find θ values that best estimate P (y|x; θ).

Generally, in the machine learning problems, there is an objective function and set of a
training examples. In this project, despite the small differences [33], the objective function is
also referenced as cost function or loss function. The goal is to find the model parameters
that minimize or maximize the loss function in the training examples. Given a fixed set
of training instances, the derivative of a parameter estimates how much small changes in a
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parameter value increase or decrease the loss function. Thus, based on the derivative values,
small parameter value updates can be made to the direction that minimizes or maximizes
the loss function. This process is called descend gradient algorithm. In the neural network,
the backpropagation algorithm is the technique used to efficiently calculates the parameter
derivatives. This algorithm is based on calculus chain rules and propagates the error back
from the output layer until the input layer [33].

2.3.2 Recurrent neural network

Figure 2.4 RNN with one self-connected hidden layer H.

Different from feed-forward neural networks, Recurrent Neural Networks (RNNs) is a type
of network whose neurons have connections to themselves [32]. Such connections generate
cycles which allows RNNs to have a state and, consequently, a memory capability. Figure 2.4
depicts a simple RNN with one self-connected hidden layer, represented by H. The input and
output of H are illustrated by the square and dashed circle, respectively. This section focus
on RNN due to its simplicity.

Figure 2.5 illustrates an example which the RNN predicts an output for each word in the
sentence this store is the worst. In RNNs, a step or timestep denotes each time that the network
receives an input. Steps are indexed by positive numbers. As shown in Figure 2.5, for each
step, the same hidden layer calculates a new output, also called state, using the hidden output

this store is the worst

Figure 2.5 Unfolded RNN.
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of the previous step and a input. Thus, in a step t, the linear output zt of the hidden layer H
with |H| neurons is:

zt = bH + Uxt +Wht−1, (2.11)

where bH ∈ R|H| is the bias, xt ∈ RI is the input, ht−1 ∈ R|H| is the hidden output in a step
t− 1, U ∈ R|H|×I are the weights applied in the input, and W ∈ R|H|×|H| are the weights of
the previous hidden state. The final hidden layer output in t is:

ht = φ(zt). (2.12)

After passing all sequence elements to the RNN, this generates a directed acyclic graph, called
unrolled neural network, that represents the same RNN for a specific input [33]. This process
of removing the RNN cycle is known as unrolling or unfolding. Figure 2.5 depicts the unfolded
RNN after passed it through the sentence this store is the worst.

In RNNs, an output of hidden layer in a step t can impact on all the other outputs after t.
Thus, calculating the weight derivative requires measuring the output influence in the loss
function values of the subsequent outputs [36]. Hence, the RNN are first unrolled and, then,
the algorithm, called backpropagation through time (BPTT), is applied to backpropagate the
error and compute the weight derivatives [36]. BPTT is very similar to the backpropagation
and sequentially flows the error back from the last step T down to the first one.

In the traditional RNNs, information always flows from the past to the present. However,
in many problems, also receiving information from the future can be determinant to label a
sequence correctly in a step t [36]. For instance, the previous and next characters can help to
disambiguate the correct letter in a specific part of a handwriting word. For those problems,
it is more suitable to use a bidirectional recurrent neural networks (BRNN) [37]. BRNNs have
two hidden layers. The first layer is unrolled from step 1 until the last step T while the latter
is reversely unfolded from step T until the first step [36]. Figure 2.6 depicts the moment that
a BRNN generates an output in a step t. As illustrated in Figure 2.6, BRNN has two hidden
layers H and H ′ that receive their generated outputs in the steps t− 1 and t+ 1, respectively.
The final output of BRNN in t is the concatenation of the two hidden layer outputs. For
training, BPTT is also used to calculate the BRNN weights derivatives.

The learning process of RNN is known to be unstable. During training, RNN can suffer
from exploding and/or vanishing gradient problems [36]. The first problem occurs when the
gradient blows up to higher values when the error is backpropagated, while the second one
arises in the opposite scenario: gradients decay to insignificant values. Exploding gradient
problem can be easily managed by clipping gradients [38]. However, the vanishing problem
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concat

Figure 2.6 Bidirectional RNN.

can be more challenging to deal with.

Although RNNs can theoretically learn long term dependencies, in practice, due to the vanish-
ing problem, RNNs are not able to handle these dependencies [39]. Aiming to overcome this
problem and, therefore, making the RNN training more stable, Hochreiter and Schmidhuber
[40] have proposed a new internal architecture to RNN, called Long Short-Term Memory
(LSTM). In this section, we focus on the LSTM architecture introduced by Gers et al. [41]
because it is the default LSTM implementation in two popular machine learning libraries:
Tensorflow [42] and Pytorch [43].

squashing

Input gate

Forget gate

Output gate

+

tanh

Figure 2.7 LSTM memory block.

The fundamental element of the LSTM is the memory block [36]. The memory block is
composed of self-connected memory cells and three multiplicative gates (input gate, forget
gate and output gate). Figure 2.7 depicts a memory block with one memory cell. The content
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of the memory cell is controlled by the gates that select which portion of the memory is
updated and released as an output of the block. This gating mechanism can create paths in
which the gradient of long-dependencies can flow without vanishing [33].

As shown in Figure 2.7, a squashing function combines information from the input xt at the
current step t and the memory block output ht−1 of the last step t− 1 into a single vector c̃.
In the LSTM, c̃ is called squashed input and is computed as follows:

c̃ = tanh(U c̃xt +W c̃ht−1 + bc̃), (2.13)

where U c̃ and W c̃ are weight matrices and bc̃ is the vector of bias weights.

After generating the squashed input, the input gate is responsible for selecting which part
of this input will be written in the memory cell. For that, the memory block performs the
element-wise multiplication (represented as �) of the squashed input c̃ and the vector it
produced by the input gate. The input gate can fully or partially block the input by selecting
values between 0 and 1 in it. For instance, the input gate can block all the information from
the input by setting all the values of it to zero or it can move forward the full information of
a specific dimension of c̃ by inserting the value 1 in the same dimension of it. The input gate
generates the vector it as follows:

it = sigmoid(U ixt +W iht−1 + bi), (2.14)

where U i and W i are weight matrices and bi is a vector of bias weights.

The forget gate chooses the part of the memory cell that will be erased using a similar
mechanism employed in the input gate. The forget gate generates a vector f t:

ft = sigmoid(U fxt +W fht−1 + bf ), (2.15)

where U f and W f are weight matrices and bf is the vector of bias weights. Using the element-
wise operation, the forget gate can keep the partial or complete information of the previous
state of the memory cell by selecting values between 0 and 1 in ft. The new memory cell state
ct in the step t is the combination of the piece of information that the input gate chooses to
block in the squashed input and that the forget gate preserves in the previous memory cell:

ct = it � c̃+ ft � ct−1. (2.16)

Following the same mechanism of the two gates, the output gate generates a vector, denoted
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ot, that selects a portion of the current memory cell state ct to be the memory block output
ht at the step t. The following equations computes ot and ht:

ot = sigmoid(U oxt +W oht−1 + bo), (2.17)

ht = tanh(ct)� ot, (2.18)

where U o and W o are weight matrices and bo is the vector of bias weights. All gates employ
the sigmoid function to make all values to be between 0 and 1, and their decisions are only
based on the input of the step t and the last output of the memory block.

LSTMs can represent texts as fixed-length representations using three approaches. The first
one uses the RNN output from the last step to represent a text [18]. The second generates the
fixed-length vector by applying a max pooling or mean pooling to all the RNN outputs [44].
The last one, called intra-attention, uses the attention mechanism to learn how to represent
texts as vectors automatically [44].

2.3.3 Attention

The sequence-to-sequence network (seq2seq network) is a neural network that yields a sequence,
named target sequence, by receiving another sequence, named source sequence, as input.
Sutskever et al. [45] have originally proposed this network to the machine translation field,
although other studies (e.g., [46], [47], [48] ) have applied the sequence-to-sequence in many
different problems.

DecoderEncoder

você acertou na mosca <EOS> you hit the bulls eye

you hit the bulls eye <EOS>

Figure 2.8 Seq2seq network.

Figure 2.8 depicts an example of seq2seq network that translates the sentence você acertou na
mosca in Portuguese to English. As shown in this figure, the seq2seq network is composed of
two distinct RNNs: the encoder and the decoder. The encoder receives the source sequence
inputs and generates a fixed-length vector in the end. Using this vector, the decoder outputs
the target sequence which, in the example of Figure 2.8, is the English translation you hit the
bull’s eye of the sentence você acertou na mosca. In the first step, the decoder always receives
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the symbol <EOS> to inform it that a new sequence have to be produced. In the next steps,
the decoder inputs are the previous elements of the target sequence.

In the seq2seq network, encoders have to extract information from the source sequence that
is helpful to the decoder and compress this information into a fixed-length vector. This
compression can be the network bottleneck, especially for long sequences. Bahdanau et al. [20]
have proposed a new method, called attention mechanism, to help seq2seq networks to tackle
long sequences. In the literature, the attention models can be categorized in soft attention
and hard attention [49]. This subsection focus on the former one.

The attention mechanism allows a neural network to focus on specific parts of the input in
a particular moment. For instance, Figure 2.9 shows the moment when a decoder predicts
the word hit after predicting the word you. Besides the word representation of you and the
last decoder hidden output hd1, the decoder selects the word hit using a vector c2, called
context vector, that is yielded from the attention mechanism based on encoder hidden outputs.
Basically, such vector contains the most relevant information from the encoder to the current
decoding step.

Decoder

Attention

Encoder

você acertou na mosca

you<EOS>

you hit

Figure 2.9 Seq2seq with attention.

In order to generate a context vector ct within a step t, first, the attention mechanism computes
a score between the last decoder hidden output ht−1

d and each encoder hidden output by
means of a function F (·). Being Wα a matrix of parameters, u a vector of parameters and [; ]
a concatenation operation, Table 2.3 shows possible options of F (·) [49]. Then, such scores
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Function Name Equation
dot (ht−1

d )>hie
general (ht−1

d )>Wαh
i
e

concat u>tanh(Wα[ht−1
d ;hie])

Table 2.3 Attention function scores.

are normalized using a softmax function. Thus, a normalized score αi, called attention score,
of the i-th encoder hidden output is:

αi = F (hei , hdt−1)∑T
j=1 F (hej , hdt−1)

, (2.19)

where T is source sequence length and hie is the encoder hidden ouput in a step i. Finally, a
context vector ct is computed as the weighted average of the encoder hidden outputs:

ct =
T∑
j=1

αjh
j
e. (2.20)

In summary, the higher is the attention score of a encoder hidden output, the largest is its
impact on the context vector ct.

2.4 Representation learning

Traditionally, feature engineering has been a crucial task in machine learning. This task
investigates how to create a data representation that positively impacts the performance of
machine learning methods [31]. In feature engineering, humans use their knowledge about a
domain to select manually discriminative and relevant features from the data. However, the
use of human capabilities has a price, feature engineering is known to be a time-consuming
and a labor costly task [31]. Due to these high costs, a new field, called representation learning
or feature learning, has focused on proposing methods that can automatically learn features
without human intervention.

Recently, deep learning techniques have emerged as featuring learning technique. Neural
networks can learn automatically data representations that make them achieve state-of-art
performance without the use of hand-craft features. In NLP, a significant breakthrough was
the use of a neural network to learn efficiently word representations, called word embeddings.



22

2.4.1 Word embedding

Articles, books, tweets, texts are ways to communicate among ourselves. These simple
collections of words are powerful enough to express our feelings or explain complexity theories.
When humans read a word, they can understand its meaning and what it represents. Unfor-
tunately, standard machines are not able to understand or extract information from these
words. For them, words are just arbitrary arrays of bytes. Modeling words in meaningful
representations is essential to create machines that can understand texts.

In the past, NLP systems represented words as sparse binary vectors using the one-hot
representation [50]. In this representation, each vector dimension is linked to a word in the
vocabulary (the vector dimensionality depends on the vocabulary size). If the i-th dimension is
related to a word w, so the vector of w have only the i-th dimension with value 1 and the other
ones with 0. Given a vocabulary with five words (home, canada, brazil, computer, machine),
Table 2.4 shows an example of how to represent those words with a one-hot representation.

Word Vector
home [1,0,0,0,0]
canada [0,1,0,0,0]
brazil [0,0,1,0,0]
computer [0,0,0,1,0]
machine [0,0,0,0,1]

Table 2.4 Example of one-hot representation.

In real scenarios, vocabulary can easily have more than 30,000 words yielding the vectors with
thousands of dimensions. This high dimensional representation can be affected by the curse
of dimensionality. In this case, the curse of dimensionality is related to the large number of
examples required to train a model [51]. A good discriminator needs examples that cover a
relevant part of the feature space to be able to well discriminate the problem. The increase of
the input size (feature space) grows exponentially the number of relevant areas to be covered
and, consequently, more examples are required to train a good discriminator.

Besides the curse of dimensionality, in the one-hot representation, the weights linked to a
dimension are only trained when a specific word appears in the training dataset. Therefore,
rare words have their parameters poorly tuned [52]. Moreover, the parameters of words
that do not exist in the training dataset are never estimated which can degrade the model
performance when those words appear in one test example. Finally, it is not possible to
compare the similarity between words using the one-hot representation because the vector
distances are always the same [50].
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Recently, a new type of representation, called word embeddings or distributed word representa-
tion, has been shown very useful for NLP [53]. In word embeddings, words are represented
as real, low dimensional and dense vectors. Those vectors describe word positions in a new
feature space that retain syntactic and semantic information [53, 54]. In contrast to one-hot
representation, word embeddings suffer less with the curse of dimensionality and improve
the model capability to handle unknown and rare words in the training [55]. Furthermore,
using distributed word representations, it is possible to perform arithmetical operations and
calculate the distance between words. Mikolov et al. [56] have found compelling results when
linear transformations are applied to word embeddings, for instance, the vector of Berlin is
close to the sum of vectors of Germany and capital.

Besides words, dense and real vectors can be used to represent characters, sentences, documents,
images or any object [57]. The distributed representations (also called embeddings) of those
objects capture relevant features that characterize them [55]. In this manuscript, encoders are
defined as any model that generates a distributed representation of objects. In the literature,
a specific neural network, called siamese neural network, uses a shared encoder to compare
similarity between objects.

2.4.2 Siamese neural networks

Siamese neural networks were proposed by Bromley et al. [58] to address signature verification.
Due to its simplicity, many other studies have applied them to a great variety of tasks: person
re-identification [59], bug deduplication, sentence similarity, question answering and so on.
Figure 2.10 depicts an example of a siamese neural network applied to the question answering
problem, a task that consists of finding the answer to a question. In this figure, there is one
question what is a country?, two possible candidate answers and an encoder which can be
any neural network. The encoder generates the distributed representation of Q1, A1, and A2
(depicted by red) for, respectively, the Question1, Answer1 and Answer2.

Siamese neural networks have a shared component that encodes objects to vectors. It is
expected that such shared component learns discriminative features since its output is used
by the neural network to compare both objects. During feature extraction, a siamese network
has only access to the information of a specific object, i.e., the encoding of an object is
independent of the other objects [17]. Consequently, siamese neural networks always return
the same distributed representation for equal inputs.

In Figure 2.10, the siamese neural network calculates the similarity between the distributed
representations of a question and an answer using a cosine similarity function. This function
is traditionally used to compute the similarity between vectors in NLP, although, other
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What is a country?

An area of land that
has or used to have
its own government

and laws

A human being 
regarded as an

individual
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Figure 2.10 Siamese neural network for question answering.

dissimilarity metrics, similarity functions or even neural networks (a complex function) can
be employed to compare the distributed representations.

Figure 2.10 displays a siamese network that yields the highest similarity to the question and
its correct answer (Answer1) and much smaller score to the pair formed by the wrong answer
(Answer2) and the question. This figure illustrates a desirable scenario where siamese network
is able to draw the question and its correct answer into a feature space where they have almost
the same direction. In general, we want to train siamese networks to produce higher scores to
similar objects than to the different ones. One option to achieve this is to use labeled pairs
of objects and the contrastive loss to train the model [60]. The pairs labeled with 1, called
positive pairs, are composed of two similar objects, while negative pairs - identified with 0 -
are formed with different objects. The siamese neural network can be trained to minimize the
contrastive loss:

Lc = y(1− S(q, o)) + (1− y)(S(q, o)−M), (2.21)

where q and o are the query and object of a pair, y is the pair label, S is the output of siamese
neural network and M is the margin.

Instead of pairs, the siamese network can be trained using triplets [18]. Each triplet is a tuple
composed of the following sequence of objects: a query (anchor), a similar instance to the
query (positive) and a different object to the anchor (negative). For instance, the example
of Figure 2.10, the tuple (Question1, Answer1, Answer2) is a valid triplet while (Question1,
Answer2, Answer1) is an invalid because the positions of the positive and negative are inverted.



25

When the triplets are employed, the training objective can be defined as a hinge loss (called
triplet loss or max margin loss):

Lt = max{0,M − S(q, o+) + S(q, o−)}, (2.22)

where q, o+ and o− are the query, positive object and negative object of a triplet.

Another approach for training a siamese neural network is to consider the problem as a binary
classification [61]. For instance, in the question answering problem, the siamese network
output can be interpreted as the probability of an answer being correct given a question. For
this end, it is necessary to change a little bit the siamese network architecture. A classifier
(e.g., a neural network) is added after the shared encoder and it returns the probability of an
example being positive. Given the positive and negative pairs in the training, the siamese
network is trained to minimize the binary cross-entropy loss which is described in the following
expression:

Lb = y log(P (y+|p)) + (1− y) log(1− P (y+|p)) (2.23)

where y is the pair label and P (y+|p) is the probability of being y+ given the pair p. P (y+|p)
is estimated by the siamese neural network.

2.5 Studies on Bug deduplication

In the literature, several works have proposed methods to address bug deduplication. In
Appendix A, we summarize the main aspects (e.g, evaluation methodology, textual data
feature extraction, novelty) of such works. According to Lin et al. [62], studies on bug
deduplication can be grouped into three main categories based on the evaluation methodology:

1. Decision-making approach. Methods are evaluated regarding their capability to
correctly predict pairs of bug reports as positive or negative. A pair is labeled as positive
when it is composed of duplicate reports; otherwise, it is considered as a negative
example. Classic binary metrics (e.g., accuracy, precision, recall, F1, and AUC) are
used to measure the performance of a model in labeling pairs. Works grouped in this
approach have achieved excellent results, e.g., Lazar et al. [63] reported achieving 99%
in all metrics with their method. However, such performances are highly overestimated
since they employed a number of negative pairs for evaluation that is much smaller
than what observed in real environments. For instance, Lazar et al. [63] employed a
ratio of four non-duplicate pairs for each duplicate one. Based on such ratio, we can
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only generate 15,848 negative pairs1 regarding the validation set in the Eclipse dataset
employed in Chapter 4. This number is less than 0.01% of the 286 million possible
negative pairs that can be generated by simply combining each duplicate report in a
validation set with a report in the training set.

2. Binary classification approach. Instead of using pair of reports, binary classification
approach consists of a group of methods that predict whether bug reports are duplicate
or not. For each new report, methods extract features from it and use such features to
calculate its similarity to previously submitted reports. After report comparisons, they
summarize the results using aggregation functions (e.g., mean and max) or any other
summarization process. A classifier uses the information from summarization and the
features extracted from the new report to predict whether such report is duplicate or
not. This an ideal scenario since a model can automatically detect and label duplicate
reports without any human assistance. However, this compelling scenario is hard, and
the current techniques do not perform well. For instance, Banerjee et al. [15] method
incorrectly classifies 36% of all the duplicate reports in the Eclipse, which means that
around 14,000 duplicate reports could still be assigned to the developers. Furthermore,
this same method wrongly classifies 26% of the non-duplicate bug reports in the same
dataset.

3. Ranking approach. The ranking approach acknowledges that the recent techniques
are not mature enough to automatically detect the duplicate reports without harming
the maintenance software process. Given that, methods of this approach generate a list
of the k most likely duplicate reports of a specific given report. The triager receives
this list and, then, identifies if a report is duplicate using only reports from the ranking
list. Thus, instead of searching and examining hundreds of reports in a BTS, the triager
only focus on the K recommended reports. Therefore, in such approach, works focus
on evaluating the quality of ranking lists produced by their methods. It is worthy to
mention that the majority of the methods in the literature are encompassed by the
ranking approach.

In order to address bug deduplication, methods extract features that are related to a single
report, or derived by comparing data from two or more reports. After such extraction, a
similarity comparison or classification is performed by passing these features as input to
simple functions (e.g, weighted average, linear combination and cosine similarity) or even
complex models as Support Vectors Machines (SVMs), decision trees, and MLPs.

1We generate all possible combinations of positive pairs from reports in the same buckets. For such pair
generation, we only consider buckets whose at least one report is within the validation set.
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In bug deduplication, different information sources were employed to extract valuable features
for this task. Sun et al. [14] demonstrated that features derived from categorical data (e.g.,
product and component) can improve method effectiveness. Following Sun et al. [14], several
works [1, 63, 64, 65, 66] extracted a Boolean feature from each categorical field in which its
value is one when two reports contain the same categorical values. On the other hand, some
studies based on deep learning methods represented categorical values as embeddings and
directly compared such representations using MLP or cosine similarity [67, 68, 69].

Besides categorical data, Wang et al. [9] proposed to employ the sequence of subroutines
executed during an execution for addressing bug deduplication. Considering that each
subroutine signature is a term, such sequences are encoded as vectors using TF-IDF and their
similarities are measured by means of cosine similarity. In their experiments, they showed
that the sequence of subroutine calls provides complementary and useful information for this
task.

Feng et al. [70] demonstrated that user profile information and textual data from comments
are valuable for duplicate bug report detection. In this work, a SVM is used to compute a
weight for each comment in a report. Each weight measures the comment usefulness for fixing
a bug and it is used to adjust the similarity score between a comment and textual data from
a new report. Moreover, they generated features based on submission history that captures
reporter knowledge and experience.

Hindle et al. [1] and Aggarwal et al. [66] proposed to improve the deduplication performance
by generating contextual features through pre-defined word lists. While the former extracts
such list from software-engineering textbooks and open-source project documentations, the
latter employ non-functional requirement terms provided in [71] and a set of architecture
words manually created by the authors. Contextual features are extracted by calculating
BM25F score between each word list and textual data in the reports.

Cooper et al. [72] proposed a deep learning model to deduplicate bug reports using, in addition
to textual data, the videos attached to them. Such model extracts features from videos by
means of SimCLR [73], a Convolutional Neural Network (CNN) that converts video frames
into a embedding. After such encoding, the similarity of two videos is the average of two scores:
(i) the cosine similarity of video representations generated by a bag of visual words model
based on k-means clustering algorithm and TF-IDF; and (ii) longest common subsequence
(LCS) between the videos.

In the remaining of this section, we describe the proposed feature extraction techniques for
textual data within summary and description fields.
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Methods based on VSM Several works [9, 70, 72, 74, 75, 76, 77, 78] represented summary
and description content in VSM using different term weighting schemes. The log of the term
frequencies was used to compute vector weights in [76, 74], whereas TF-IDF was employed in
[9, 72, 77, 79]. On the other hand, Yang et al. [80] and Lin et al. [62] calculated the vector
values by means of BM25 term weighting: a scheme similar to Equation 2.3 that receives a term
instead of a query. Moreover, Lin and Yang [78] proposed to employ Class-Feature-Centroid
(CFC) weighting scheme for bug deduplication. Such scheme computes the weight of a term t

in a field f as follows:

wctf = TF(t, f)× IDF(t)× b
dfB(t)
|B| log( |B|

bf(t)), (2.24)

where B is the bucket that contains the report of a field f , b is a parameter, dfB(·) is the
number of reports in B that contains a term t, and bf(·) is the number of buckets in which
t appears. Instead of generating a representation for each report, Prifti et al. [75] encoded
a bucket B as a vector whose dimensions correspond to the number of reports within B

that contains a specific term in the summary and description. Such dimension values are
normalized by the numbers of reports in B. In these works, vector representations were
compared using either cosine function [62, 74, 76, 78, 79] or Lucene’s scoring function [72].

Methods based on BM25 Sun et al. [81] compared the similarity of two textual data by
means of a special case of BM25 where k1 = 0, i.e., only IDF affects the similarity score in
Equation 2.3. Moreover, since bug reports contain multiple textual fields, few works [82, 1, 66]
employed BM25F for measuring textual similarity. One drawback of BM25F is that it was
developed for traditional search engines where queries are usually short. Since reports can
contain texts with more than one hundred words, Sun et al. [14] proposed to extend BM25F
by adding a component based on the frequency of query terms. Such extension, called
BM25FEXT , is computed as follows:

BM25FEXT (d, q) =
∑
t∈d∩q

IDF(t)× TFD(d, t)
k1 + TFD(d, t) ×

(k3 + 1) TFQ(d, t)
k3 + TFQ(d, t) , (2.25)

where k3 is a scalar value and TFQ is defined as:

TFQ(q, t) =
∑
f∈q

wf × TF(t, f). (2.26)

Methods based on Natural Language Preprocessing. Sureka and Jalote [83] proposed
to employ a n-gram model at character-level for bug deduplication. For each text in a report,
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they extracted n-grams of lengths between 4 and 10 from all characters in the text (including
symbols and spaces). The rationale behind this method is that, in comparison to the word-
level, the character-level is more robust to noisy data, is more language independent, and can
better handle abbreviation and morphological word variations. The authors measured the
similarity of two reports based on the numbers of n-gram characters shared between textual
data from two reports. Lazar et al. [63] proposed to extract features from textual data by
means of a system, called TakeLab [84]. Such system captures the semantic similarity of short
texts.

Methods based on Longest Common Subsequence. Multiple works [4, 85, 15] compare
two texts by finding the Longest Common Subsequence between them. In Banerjee et al. [4],
they proposed to normalize the value of the longest subsequence by the length of the matched
textual data.

Methods based on topic modeling. Topic Modeling consists in unsupervised techniques
that capture latent topics within a set of documents. Few studies [86, 87, 67] learned topics
in bug reports by means of Latent Dirichlet Allocation (LDA). Rocha and Carvalho [67]
compared topic distributions by means of MLP while cosine similarity was employed in Zou
et al. [86] and Budhiraja et al. [87]. Based on LDA, Nguyen et al. [82] proposed a method,
called T-Model, which considers that there are two different type of topics: one is shared
among duplicate reports in the same bucket while the other is shared among reports in
the BTS. T-Model learns these topics akin LDA and Jensen-Shannon divergence is used to
compute the similarity of topic distribution between two reports.

Methods based on deep learning. Some works [62, 79, 88] used popular unsupervised
techniques to learn word embeddings. These studies represented reports as the average vectors
of their word embeddings and such representations were compared through cosine similarity.

Several siamese neural networks [67, 68, 69, 89, 90, 91] were proposed for bug deduplication.
In [89, 90, 91], embeddings of textual data from summary and description were generated
by the same encoder. While Budhiraja et al. [89] employed a simple encoder that computes
the average of the word embeddings, Xie et al. [90] encoded texts as vector by means of a
standard CNN. Instead of generating a single representation, Kukkar et al. [91] employed a
CNN to encode each sentence within a text into an embedding. After the sentence embedding
generation, a similarity matrix is derived by computing the cosine similarity of each possible
pair of sentence representations within two bug reports. In contrast to previous works,
Deshmukh et al. [68] proposed to separately encode summary and description to vectors by



30

means of a LSTM and CNN, respectively. Instead of using LSTM and CNN, Rocha and
Carvalho [67] independently generated the vector representation of summary and description
using two distinct Bidirectional Encoder Representations from Transformers (BERTs), a
well-known model based mainly on attention mechanisms.

In order to allow textual information interaction during feature extraction, Poddar et al.
[19] proposed a siamese neural network based on attention that simultaneously learns latent
topics and classifies whether a pair of report is duplicate or not. To generate a fixed-length
representation for a report of interest r, an attention mechanism computes the attention score
of each word embedding xri in r by comparing xri to the average vector of the word embeddings
in the other report. Thus, regarding Equation 2.19, hei is the i-th the word embedding xri
in r, and hdt−1 is the average vector of the word embeddings in the other report. Following
Equation 2.20, the representation of r is the weighted average of the embeddings in r whose
weights are the attention scores. Latter, He et al. [92] proposed to jointly extract textual
features from two reports by using a CNN with dual-channel. Each channel contains a matrix
derived from the concatenation of word embeddings of a report.

2.6 Studies on Crash report deduplication

In the literature, the majority of techniques addressed crash report deduplication by mainly
comparing stack traces. In [10, 93, 94], stack traces were vectorized by means of VSM and
TF-IDF. As preprocessing step, Lerch and Mezini [93] and Campbell et al. [10] tokenized
stack traces by punctuations and spaces, respectively. After that, the similarity of two stack
traces was measured by Lucene’s similarity function. In contrast to both works, Sabor et al.
[94] extracted only the package names of subroutines from Java’s stack traces to avoid the
curse of dimensionality problem. Based on package information, they compared two stack
traces by means of cosine similarity.

In order to preserve sequence order information, several methods [13, 21, 22, 95, 96] based on
sequence matching algorithms were proposed to measure stack trace similarity. In Modani
et al. [95], the similarity of two stack traces was equal to the length of the shared prefix
between them divided by the longest stack trace length. Dhaliwal et al. [13] and Bartz et al.
[96] applied edit distance algorithm to compare stack traces. While the first work employed
the standard algorithm, the second one differentiate distinct subtypes of insertion, deletion
and substitution operations that contained their own constant penalty values. For insertion
or deletion, the penalty depends whether the new or deleted frame comes from the same
C++ module of the previous frame. Three substitution penalties were defined based on the
differences between modules, subroutine names, and offsets in two frames.
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Related to edit distance, Brodie et al. [21] and Dang et al. [22] proposed variants of NW
Algorithm. In the context of crash report deduplication, si and s′j are, respectively, the i-th
and j-th frames within the stack traces s and s′. Thus, match(·) is defined as follows in
Brodie et al. [21]:

match(si, s′j) = 1− dfs(si)
|S|

× 1− i

|s|
× e−

|i−j|
2 , (2.27)

where dfs(si) is the number of stack traces that contains si, |S| is the number of stack traces in
the repository, and |s| is the length of the stack trace s. As one can observe, the match value
is variable and depends on the frame global frequencies and positions. On the other hand,
mismatch and gap values are fixed in Brodie et al. [21]: gap(sk) = c and mismatch(si, s′j) = 0,
where c is a constant. Similarly, Dang et al. [22] employed constants values for gap and
mismatch values: gap(·) = mismatch(·) = 0. However, in contrast to Brodie et al. [21], besides
only considering the position information of frames, they included parameters to match(·)
which improves the method adaptability in different environments. In Dang et al. [22], the
match value is computed as follows:

match(si, s′j) = e−u×min(i,j)e−v|i−j|, (2.28)

where u and v are scalar parameters that control, respectively, the effect of the absolute
position and position difference of the frames on the match value. It is worthy to note that, in
the sequence matching algorithm, two frames are considered equivalent when their identifiers
are the same. Usually, a frame identifier is defined as the subroutine name.

Khvorov et al. [97] proposed a siamese neural network, called S3M, to measure the stack
trace similarity. A Bi-LSTM encodes the sequence of frames into a embedding. In order to
compare stack traces embeddings, three vectors are generated by computing the absolute
difference, arithmetic mean, and multiplication component-wise between their distributed
representations. Finally, based on such three vectors, a MLP calculates the similarity of the
stack traces.

In contrast to the majority of the literature, three works [10, 94, 96] addressed bug deduplica-
tion by also employing information out of the stack traces. Sabor et al. [94] compared two
reports by means of a linear combination of the stack trace similarity and two Boolean features
based on differences of report severity and component fields. Campbell et al. [10] included the
information related to the execution environment in the same vector space of the stack traces.
In Bartz et al. [96], a logistic regression outputs the probability of two reports being duplicate
based on the edit distance score between two stack traces and three Boolean features that
compare the exception code, process name, and event type of the reports, respectively.
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In [98, 99, 100], crash report deduplication is performed by comparing a new report to buckets.
Kim et al. [98] proposed a method, called CrashGraph, in which buckets are represented as
graphs. Considering all stack traces within a bucket, each subroutine is a node and each
edge symbolizes two adjacent subroutines in a stack trace. The equivalent representation is
performed for a new stack trace in a report. Thus, the percentage of edges shared between
report and bucket graphs is used to measure the similarity between them. Koopaei and
Hamou-Lhadj [99] proposed a method, called CrashAutomata. In CrashAutomata, n-grams
are created for each stack trace and only n-grams whose frequencies are below a threshold are
kept. Based on the generated n-grams, they build an automata for each bucket by means of
the algorithm proposed by Jiang et al. [101]. New stack traces are included to buckets based
on their automata. Ebrahimi et al. [100] proposed to train a Hidden Markov Model (HMM)
for each bucket. The HMM computes the probability of a stack trace to belong to a bucket.

In order to reduce computational cost of comparing new reports to submitted ones, Dhaliwal
et al. [13] proposed to filter reports based on the topmost frames before applying the edit
distance algorithm. Latter, Moroo et al. [102] proposed a re-ranking scheme that first computes
similarity scores between a new report and submitted ones based on Campbell et al. [10].
Then, a ranking list is created by selecting the top-k most similar submitted reports to
a new one. After that, considering only reports in the ranking list, they compute a new
similarity score by means of the method proposed by Dang et al. [22]. Finally, they updated
the similarity score of k reports in the list by computing the weighted harmonic mean of the
two previous computed scores.

In literature, three distinct evaluation methodologies were introduced to crash report dedupli-
cation: ranking, binary classification and clustering. The two first approaches are equivalent
to the ones proposed for bug deduplication. The last one focus on measuring the quality of
clusters generated by a method using clustering metrics (e.g., Purity and BCubed). In such
approach, due to high computation cost associated to clustering techniques, a new report is
usually assigned to a existing bucket when the most similar submitted report to a query is
greater than a threshold, otherwise it is considered as a singleton.

In Appendix B, we compile the primary aspects of the studies proposed for crash report
deduplication.

2.7 Discussion

In the literature, a vast number of works addressed bug deduplication based on classical
techniques, e.g., TF-IDF, BM25, and LDA. Nonetheless, the proposed methods still exhibited
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performances that are still far from a satisfactory deployment of automated deduplication
systems in real environments [68]. Thus, considering the current rise of deep learning, many
works proposed methods that leverage the power of such model to achieve better performance.
The majority of those methods are siamese neural networks that encode textual data of a
report into a dense vector.

A shortcoming of siamese neural networks is that there is no interaction between textual
data of two reports before generating a report embedding, i.e., the encoder always extracts
the same set of features from a report independently of the comparison. However, such
features might not be relevant for a particular scenario, even though they are discriminative in
general. Poddar et al. [19] leveraged attention mechanism to attenuate such information loss
by encoding the report of interest into a embedding based on the average vector of the word
embeddings in the other report. However, such fixed-length representation of the other report
might be a bottleneck since its generation process may lose information that are valuable
for a particular deduplication case. We argue that a model could learn a more useful report
representation for bug deduplication by allowing it to focus on distinct portions of the reports
during feature extraction. This could mitigate information loss and, thus, improve the method
performance.

As demonstrated by empirical evidences [8], bugs are usually contained in the topmost
frames of the stack traces. Thus, it is intuitive to consider that such positions are more
important than the ones at the bottom for crash report deduplication. Nevertheless, only
three studies [21, 22, 97] have proposed methods which similarity score are affected by the
frame positions. In Khvorov et al. [97], LSTM is able to learn position information of frames.
However, deep learning models require a considerable amount of labeled data which is not
always available. Brodie et al. [21] and Dang et al. [22] included the absolute frame positions
and their differences on their method scoring scheme. However, both works only consider such
information for matches. Thus, the alignment score is equally penalized by mismatch and gap
alignments that occur at the top and bottom of the stack traces. This is counter-intuitive
since we expect that dissimilarity on the topmost frames to be more important than the ones
in the bottom. Moreover, neither of these two works used both frame rarity information and
parameters in their scoring scheme. We believe that a method could be more effective by:
(i) considering frame position and global frequency information for all alignments; and (ii)
including parameters that control the effect of these pieces of information.

For crash report deduplication, a shortcoming of methods based on NW algorithm is its
quadratic time complexity to compare two stack traces. In industry scenarios, such systems
can receive million of reports per day. Thus, to achieve a more adequate throughput, real
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deduplication systems may employ less expensive methods to compare stack traces as prefix
match [95] and those based on TF-IDF. Despite their linear time complexity for computing
stack trace similarities, prefix match is high sensitive to minor differences in the top positions
while techniques based on TF-IDF loses position information. Due to such shortcomings, they
are less effective than the ones based on the NW algorithm. Therefore, a research avenue for
crash report deduplication is to investigate techniques that compare stack traces in linear
time without performance degradation.

In the literature of both bug deduplication and crash report deduplication, methods have not
been extensively compared among themselves and no standard datasets were proposed for
evaluation. Moreover, source code and data are not usually publicly available which negatively
impact reproducibility. Finally, as presented before, distinct methodology approaches were
proposed in both tasks. However, to the best of our knowledge, no study has investigated
such methodologies and compare their advantages and limitations. Thus, there is a lack of
consensus regarding the evaluation methodology.
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CHAPTER 3 OVERVIEW

This thesis is composed of three articles that are presented in submission chronological order
in chapters 4, 5 and 6. These chapters address each one of the research objectives defined in
Chapter 1 and they are briefly described on the following.

In Chapter 4, we propose a Soft Alignment Model for Bug Deduplication (SABD) that generates
a joint representation of textual data in bug reports. Leveraging attention mechanisms, SABD
can dynamically focus on distinct segments of reports during feature extraction. This helps
to mitigate information loss when fixed-length representations are generated. We evaluate
SABD and competitive techniques following a methodology proposed by Sun et al. [14]. In our
experiments, SABD outperforms siamese neural networks and strong baselines in all datasets.
Moreover, an ablation study demonstrates that the proposed mechanism to jointly generate
representations is crucial for bug deduplication.

In Chapter 5, we propose TraceSim, a novel optimal global alignment method for crash report
deduplication. TraceSim computes a weight for each frame that depends on two pieces of
information: frame position and global frequency. In contrast to previous works [21, 22], the
values of mismatches, matches and gaps are variable and computed based on frame weights.
Moreover, TraceSim contains parameters that control the impact of frame position and
global frequency in the alignment score. To evaluate method effectiveness, we propose a new
evaluation methodology for crash report deduplication that combines binary classification and
ranking approaches from the literature of bug deduplication. In a nutshell, our methodology
can evaluate a method capability to: (i) distinguish duplicate and non-duplicate reports;
(ii) assign a report to its correct bucket; and (iii) rank similar reports. In our experiments,
TraceSim consistently achieves competitive performances in all evaluation scenarios and, in
the majority of them, TraceSim significantly surpasses the competitive methods. Moreover,
an ablation study demonstrates: (i) the effectiveness of each TraceSim’s component; and (ii)
the importance to use frame position and global frequency for computing mismatch and gap
values.

In Chapter 6, motivated by the high computational cost of optimal sequence alignment for
comparing stack traces, we propose a Fast Stack Trace alignment method for crash report
deduplication (FaST). In summary, FaST computes the similarity of two stack traces by
independently aligning frames with the same identifier. The rationale behind this is that
similar stack traces are expected to share important subroutines in near absolute positions.
For aligning frames of a specific subroutine, FaST employs a simple alignment heuristic based
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on the fact that positions closer to the top of the stack traces tends to be more relevant than
the ones at the bottom. In contrast to optimal sequence alignment methods, FaST compares
two stack traces in linear time of their lengths. In our experiments, we demonstrate that
FaST is not only substantially faster than TraceSim and other methods based on the NW
algorithm, but it also achieves SOTA performance in all datasets according to varied metrics.
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CHAPTER 4 ARTICLE 1: A SOFT ALIGNMENT MODEL FOR BUG
DEDUPLICATION

Authors. Irving Muller Rodrigues, Daniel Aloise, Eraldo Rezende Fernandes, and Michel
Dagenais. Published at the 17th International Conference on Mining Software Repositories
(MSR 2020)1

Abstract. Bug tracking systems (BTS) are widely used in software projects. An important
task in such systems consists of identifying duplicate bug reports, i.e., distinct reports related
to the same software issue. For several reasons, reporting bugs that have already been
reported is quite frequent, making their manual triage impractical in large BTSs. In this
paper, we present a novel deep learning network based on soft-attention alignment to improve
duplicate bug report detection. For a given pair of possibly duplicate reports, the attention
mechanism computes interdependent representations for each report, which is more powerful
than previous approaches. We evaluate our model on four well-known datasets derived from
BTSs of four popular open-source projects. Our evaluation is based on a ranking-based metric,
which is more realistic than decision-making metrics used in many previous works. Achieved
results demonstrate that our model outperforms state-of-the-art systems and strong baselines
in different scenarios. Finally, an ablation study is performed to confirm that the proposed
architecture improves the duplicate bug reports detection.

Keywords. Bug Tracking Systems, Duplicate Bug Report Detection, Deep Learning, At-
tention Mechanism

4.1 Introduction

Bug fixing accounts for a substantial part of any software development project. Thus, many
projects make use of a bug tracking system (BTS) to manage and track bug reports. One
important task in such systems is to identify duplicate bug reports, i.e., distinct reports
describing issues caused by the same bug in the software. It is crucial to perform this task as
fast as possible in order to prevent developers from spending time looking for bugs already
fixed. Usually, a triage team manually labels new reports as duplicate or not [14]. However,
especially in open source projects, bug reports can be submitted by developers, testers and
even end users. This heterogeneous environment leads to many duplicate bug reports. For

1Available at [103]
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example, 12% of all reports are duplicate in one Eclipse instance [15]. Therefore, devising
automatic methods to detect duplicate bug reports is crucial for efficient software maintenance.
In the literature, such a task is called duplicate bug report detection, bug report deduplication
or, simply, bug deduplication.

Typically, a bug report comprises a summary, a description, and some categorical fields
(e.g., system, component and version). Regarding textual data, for simplicity, the terms
word and token are considered interchangeable in this work. One core component of most
methods in bug deduplication is a similarity function that compares a pair of reports. How
this function is composed and used vary greatly from one method to another. A handful of
studies [19, 68, 89, 90] employ deep neural networks in order to model similarity functions.
Deshmukh et al. [68], Budhiraja et al. [89] and Xie et al. [90] works are based on Siamese
neural networks [16] that generate the representation of one bug report without considering
the other report content. This independent representation is limited specially for textual
data, since it may focus on generic features that are not relevant for a specific comparison
[18]. Poddar et al. [19] try to mitigate that shortcoming by employing an architecture that
exchanges information between the reports during feature extraction. This approach generates
a joint representation based on attention [20], in which the representation of a word in a
report attends to a pooled representation of all words in the other report.

In this work, we propose a novel deep learning network that produces joint representations
of reports based on a soft-attention alignment mechanism [104]. The key component of this
model is a layer that compares each word in a report with a fixed-length representation of
all words in the other one. While Poddar et al. [19] also use an attention mechanism, our
proposed architecture is able to summarize relevant information within one report conditioned
to a specific segment of the other report. This provides a more powerful representation of
textual data.

Many previous works on bug deduplication have employed an evaluation methodology called
decision-making approach [62]. This evaluation is based on pairs of reports labeled as positive
when they refer to the same bug or negative otherwise. Positive pairs comprise all possible
pairs within a set of duplicate reports. While negative pairs are generated using some sampling
technique. Model performance is then measured by means of ordinary classification metrics
(like accuracy, precision and recall) over the generated set of positive and negative pairs.
The decision-making approach is quite unrealistic, since the real scenario presents a much
larger set of negative candidates. When a new report is submitted to a BTS, all previously
submitted reports are duplicate candidates. Thus, this evaluation methodology highly
overestimate performance. Another popular evaluation methodology is the ranking approach.
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It acknowledges that the current techniques are not accurate enough to automatically detect
duplicate reports with no human intervention. Therefore, in this approach, for a given new
report, the proposed methods generate a list of the K most likely duplicate reports. The
triager then identify whether a report is duplicate considering only the reports from the
recommendation list. Instead of searching and examining hundreds of reports in the BTS,
the triager can focus on the K recommended reports.

We experimentally evaluate our model by means of a ranking methodology based on Sun
et al. [81]. We report on experiments using four well-known datasets derived from BTSs of
open-source projects, namely Eclipse, Mozilla, NetBeans and OpenOffice. Bug deduplication
in open-source projects is particularly challenging because any user can submit a bug report
in their BTS and the knowledge of these users about the system may vary significantly.
State-of-the-art systems and some strong baselines are compared to the proposed model in
several scenarios. Additionally, we perform an ablation study to assess different aspects of
our model.

The main contributions of this paper are summarized as follows:

1. We propose a soft-alignment model that is based on a more powerful architecture than
previous methods.

2. Our method and the baselines are evaluated using a more realistic methodology. This
work is the first to compare different deep learning methods using the ranking approach.

3. Our method achieves state-of-the-art performance on all considered datasets.

4.2 Related Work

Several non-deep learning methods in the literature address the bug deduplication as a ranking
problem. Runeson et al. [76] are the first to use NLP techniques to approach duplicate bug
report detection. They measure report similarity by computing the cosine similarity between
bag-of-words vectors. Wang et al. [9] detected duplicate reports by combining function calls
during the system execution with textual data. Sun et al. [81] trained an SVM to estimate
the probability of reports being duplicate by receiving 54 textual similarity features generated
from different combinations of text origins, n-gram lengths and dictionaries. Sureka and
Jalote [83] proposed a similarity function whose output is proportional to the quantity of
n-gram of characters in common between two reports. Sun et al. [14] proposed BM25Fext

and REP for bug deduplication. BM25Fext is an extension of BM25F specially designed to
address scenarios in which queries are long sentences with few or no duplicate words. REP is
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a similarity function that linearly combines BM25Fext scores using unigram and bigram with
features generated from categorical data comparisons. Prifti et al. [75] developed a method to
rank reports using a time window and a unique representation for each master group. Nguyen
et al. [82] proposed a method, called DBTM, that linearly combines the BM25F score and the
topic similarity computed by a model based on Latent Dirichlet Allocation (LDA). Banerjee
et al. [4] addressed the bug report deduplication by using the longest common subsequence
between the bug reports. Zhou and Zhang [77] proposed a linear model, called BugSim, which
is trained to minimize the fidelity loss of triplets using features inspired by Nallapati [105].
In Yang et al. [80], BM25 is used to weight the bag-of-words vectors which are compared
by the cosine similarity. Banerjee et al. [85] generated a top-20 list for different similarity
measures and aggregated them into a unique list using two fusion approaches: one retrieves
the maximum score of a report in the lists while the other sums the similarity scores of the
reports. Lerch and Mezini [93] proposed to use the stack trace in the bug report to better
detect duplicate bug reports. Sabor et al. [94] improved Lerch and Mezini [93] by employing
only packages names instead of full method names. Lin and Yang [78] combined TF-IDF
with a weighting scheme based on the term relations within the clusters of reports. Lin et al.
[62] trained an SVM to estimate the duplication probability using cluster-based correlation
features, the BM25F score and the cosine similarity of word vectors. Yang et al. [79] designed
similarity function whose output depends on product and component differences, the cosine
similarity of TF-IDF vectors and the average of word embeddings. Budhiraja et al. [87]
proposed LWE which combines LDA with the word embeddings.

Regarding deep learning methods, Xie et al. [90] proposed a convolutional neural network
(CNN), called DBR-CNN, to classify pairs of duplicate bug reports. In their architecture, a
shared CNN independently encodes the textual data of the pair of reports into two vectors.
A logistic regression then classifies each pair of reports by receiving the cosine similarity of
those vectors and a set of features related to categorical data. In NLP, statistical methods
parse textual data from documents to discover latent themes, called topics, which are common
between multiple documents [106] (e.g., bug reports that contain the words combo or font can
be related to the topic UI). Poddar et al. [19] proposed a neural network that simultaneously
learns to cluster reports based on topics while detecting duplicate pairs. A recurrent neural
network (RNN) represents each word of a report as a vector. The k-first dimensions of these
vectors are trained to yield high similarities to words that are in the same topic. For the
classification, Poddar et al. [19] generate the joint-representation of a report as a weighted
average of its word vectors. An attention mechanism calculates these weights by using the
self-attention coefficients of the topic information and the element-wise multiplication of the
word representations in the report with the mean pooling of all words in the other report.
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The authors used only summary data from the reports in their experiments.

Budhiraja et al. [89] proposed a neural network, called DWEN, in which the fixed-length
representation of a report is the mean of their word vectors and the classifier is a multi-layer
perceptron (MLP) that receives only the representation of a pair of reports. Deshmukh
et al. [68] proposed two siamese neural networks for bug deduplication. The authors used a
feed-forward neural network, a CNN, and a bidirectional LSTM to encode, respectively, the
categorical data, the description, and the summary into vectors. The concatenation of these
encoder outputs generates the fixed-length representation of the reports. Deshmukh et al.
[68] proposed two approaches to calculate the similarity of the report representations. The
first one, called Siamese Triplet, is trained to minimize a hinge loss given a set of triplets and
employs the cosine function to compute the similarity between two reports. The second one,
called Siamese Pair, uses the binary cross-entropy loss of pair in the training and scores the
similarity between reports using a MLP.

This paper presents a method that improves the representation generation found in the
previous deep learning approaches. Different from Budhiraja et al. [89], Deshmukh et al. [68],
and Xie et al. [90], our model exchanges information between the reports before encoding
textual data into a fixed-length vector. Moreover, in the feature extraction, our method
can dynamically focus on different segments of a report instead of providing a unique set of
features from it, as done by Poddar et al. [19]. This more powerful architecture can reduce
information loss in the representation generation thereby improving the duplicate bug report
detection.

4.3 Soft Alignment Model for Bug Deduplication

In this section, we describe our proposed Soft Alignment Model for Bug Deduplication (SABD).
This model receives a pair of bug reports: a new query report q and a candidate report c
previously submitted to the repository. The model outputs the probability P (y|q, c) of q
being a duplicate of c, where y indicates whether the given reports are duplicate (y = 1) or
not (y = 0). We consider a bug report to be composed of the categorical fields, a summary
and a description. Given a query report q, the values of its categorical fields are represented
as the tuple qcat while the sequence of words of its summary and description are denoted as
qs and qd, respectively. The same notation is employed for the candidate c.

Figure 4.1 depicts the SABD architecture. As we can see, SABD is composed of the categorical
and textual modules (two sub-networks) that independently compare the categorical and
textual data from both reports, respectively. The classifier receives these module outputs and



42

����

Embedding

Comparison

Embedding

Classifier

Shared weights

Intermediary data

Layer

����

Embedding

Soft Alignment Comparison

Embedding

Encoder Encoder

ℎ
���

ℎ
���

��

, , …�1 �2 , , …�1 �2

Query report data

Candidate report data

� (�|�, �)

�� ��

, , …��

1
��

2
, , …��

1
��

2

Categorical
Module

Textual
Module

descsum sumdesc

categorical input features textual input features

Comparison

, , …��

1
��

2

Encoder Encoder

��

, , …��

1
��

2

��

��

Figure 4.1 SABD architecture overview.

produces the final prediction P (y|q, c). While the categorical module is a straightforward
dense neural network, a more sophisticated architecture is employed by the textual module
to handle text. The core of this module is the soft alignment comparison layer that allows
the model to dynamically access distinct information from the text. This mechanism is
expected to improve the model capacity to focus on relevant features in the textual data for
the deduplication. In the remainder, we describe the details of SABD and its modules.

4.3.1 Categorical Module

The categorical module is composed of three layers: embedding, encoder, and comparison. In
the embedding layer, each categorical field is related to a parameterized lookup table that
links the field value to a real-valued vector. This representation is more powerful than using
binary variables (e.g., feature is 1 if and only if field values are equal) since it allows the
model to group similar field values. Given the query q, the embedding layer concatenates
the real-valued vectors of each categorical value in q and outputs eq ∈ Rcl·dcat , where cl is
the number of categorical fields in the report and dcat is a hyperparameter indicating the
categorical vector dimensions. The encoder layer receives the embedding layer output eq and
generates a fixed-representation aq of the categorical data from q such that:

aq = ReLU(W aeq + ba), (4.1)
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where W a ∈ Rda×(cl·dcat) is the weight matrix parameter, ba ∈ Rda is the bias parameter, and
da is a hyperparameter that controls the layer size. Analogously, the fixed representation ac

is produced for the categorical data of candidate c.

After encoding the categorical features into vectors aq and ac, the categorical comparison
layer computes a comparative representation of these two vectors by a simple operation given
by:

cmp(aq, ac) = [(aq − ac)2; aq � ac], (4.2)

where [ · ; . . . ; · ] is the concatenation operator and � represents element-wise multiplication.
Finally, given the comparative representation, a fully connected (FC) layer computes the
comparison layer output as:

hcat = ReLU(W h[aq; ac; cmp(aq, ac)] + bh), (4.3)

where W h ∈ Rdh×4da is the FC weight matrix, bh ∈ Rdh is the FC bias vector, and dh is a
hyperparameter.

4.3.2 Textual Module

Although categorical features are relevant to solving bug deduplication, the most informative
features are the summary and description texts. Thus, the core of our model is the textual
module that compares the textual features of the query and candidate reports (i.e., qs, qd,
cs and cd). It comprises four layers: textual embedding, soft alignment comparison, textual
encoder, and textual comparison.

Textual Embedding Layer

This layer independently transforms the words from the query and candidate texts into
real-vectors (word embeddings). A pre-trained look-up table in this layer links each word
in the summary and description of a report to an embedding. This word representation
loses information about the word origin since the same look-up table is used for both textual
fields. Previous works [14, 68] present evidences that they are both important for bug
deduplication. Moreover, it is important to distinguish summary and description words
since each field presents unique characteristics. Consequently, two distinct real-vectors are
employed to distinguish whether a word comes from the summary or description. Such
representation is denominated as field embedding. Given a query q, the summary qs and
description qd are concatenated into a single sequence qt whose i-th word is represented as:
vqi = [wqi ; f

q
i ] ∈ Rdw+df , where wqi is the word embedding, f qi is the field embedding, and dw
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and df are hyperparameters indicating their respective vector dimensions.

Although the field embeddings are learned in the learning phase, word embedding vectors are
not fine-tuned during the training because it increases computation cost, limits vocabulary size
and can lead to overfitting [107]. Instead of updating word embedding parameters, we provide
each word representation vqi to a fully connected layer (FC) along with residual connections:

xqi = vqi + ReLU(W xvqi + bx), (4.4)

where W x ∈ Rdx×dx is the FC weight matrix, bx ∈ Rdx is the FC bias vector, and dx = df +dw.
This solution not only reduces computation cost, memory usage, and model complexity but
also allows the model to project words into a more meaningful feature space. In the end,
textual embedding layer receives qs and qd and outputs a sequence of embedding vectors
xq = (xq1, xq2, . . . , xq|qt|), where |qt| is the length of qt.

Similarly, for the candidate report c, a sequence of embedding vectors xc = (xc1, xc2, . . . , xc|ct|)
are provided by an identical embedding layer, where ct is the concatenation of summary and
description words in the candidate report and |ct| is the length of ct. Again, as indicated in
Figure 4.1, query and candidate textual embedding layers share their parameters.

Soft Alignment Comparison Layer

Previous deep learning methods for bug deduplication [19, 68, 89, 90] encode query and
candidate reports without or with limited data exchange. SABD overcomes this limitation
with an architecture that provides a more powerful feature interaction. The core of this layer
is the soft-attention alignment [104]. This attention mechanism computes a similarity score
sij between query token qti and candidate token ctj as such:

sij =
(xqi )

T · xcj√
dx

. (4.5)

The previous equation is known as the scaled dot-product [108].

In order to accentuate important features of the words contained in a report, the soft alignment
comparison layer must have access to textual information from the other report. However,
texts are variable-length data and can contain a large set of potential relevant features.
Thus, this layer uses the similarity score to select features from the report words that are
related to a specific word in the other report. These features are encoded into a fixed-length
representation. More precisely, each word vector xqi in the query attends to all candidate
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vectors xc1, xc2, . . . , xc|ct|, in order to produce a fixed-length representation:

xqi =
|ct|∑
j=1

αqij x
c
j, (4.6)

where αqij = exp(sij)/
∑|ct|
k=1 exp(sik) is called attention score and represents the normalized

similarity score. xqi is denominated as query contextual vector and is a weighted average of all
word vectors from the candidate. The most similar words in the candidate to a word qti have
the largest impact in the query contextual vector. Analogously, each candidate token vector
xtj attends to all query token vectors in order to produce a candidate context vector:

xcj =
|qt|∑
i=1

α
cj
i x

q
i , (4.7)

where αcji = exp(sij)/
∑|qt|
k=1 exp(skj).

Finally, inspired by Wang and Jiang [109], each token vector of the query and candidate
reports is compared with its corresponding context vector by means of the comparison function
defined in Equation 4.2. Then, a fully-connected layer with a residual connection receives the
resulting comparison vector and modifies the word vectors as follows:

mq
i = xqi + ReLU(Wmcmp(xqi , x

q
i ) + bm), (4.8)

mc
j = xcj + ReLU(Wmcmp(xcj, xcj) + bm), (4.9)

where cmp(·, ·) is defined in Equation 4.2, Wm ∈ Rdx×2dx is the layer weight matrix, and
bm ∈ Rdx is the layer bias.

Textual Encoder Layer

This layer takes the variable-size representation of a report text (query or candidate) and
produces a fixed-size representation. This operation is independently performed for the query
and candidate reports.

Considering a query q, a bi-directional long short-term memory (bi-LSTM) processes the soft
alignment comparison output mq :

−→o qi = −−−−→LSTM(mq
i ,
−→o qi−1) (4.10)

←−o qi =←−−−−LSTM(mq
i ,
←−o qi+1) (4.11)
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for i = 1, 2, . . . , |qt|. The vectors −→o qi ∈ Rdo and ←−o qi ∈ Rdo are concatenated into oqi ∈ R2do ,
where do is a hyperparameter indicating the hidden size of the forward −−−−→LSTM and backward
←−−−−
LSTM . The intuition is that the bi-LSTM enriches the previous representation with contextual
information and allows to capture long dependencies between the words. For the sake of
brevity, we omit the technical details of bi-LSTM since it is a standard neural building block.
For a detailed explanation of the model, we refer the reader to Goodfellow et al. [33].

Finally, the fixed-representation of the query text is generated as follows:

pq = Pooling(oq1, oq2, . . . , oq|qt|), (4.12)

where pq ∈ R4do , and Pooling is a function that concatenates the results of the mean and
max pooling operators. The first operator calculates the average vector of the sequence oq

while the second performs the max operation through each dimension of the bi-LSTM output.
Similarly, the textual encoder layer generates the fixed representation of the candidate text,
denoted as pc. As depicted in Figure 4.1, query and candidate textual encoder layers share
their parameters.

Textual Comparison Layer

This layer compares the textual representations of both reports. As the categorical comparison
layer, the cmp(·, ·) function (Equation 4.2) is used to generate a comparative representation.
In the sequel, a fully connected layer generates the actual textual comparison:

htxt = ReLU(W u[pq; pc; cmp(pq, pc)] + bu), (4.13)

where W u ∈ Rdu×16do is the FC weight matrix, bu ∈ Rdu is the FC bias vector, and du is a
hyperparameter.

4.3.3 Classifier

The SABD output layer comprises two sub-layers: a fully-connected layer and a classification
layer. The input of the FC layer is the concatenation of two vectors: the categorical comparison
output hcat and the query representation htxt. The classification layer is a standard logistic
regression. Thus, the output layer is given by:

P (y|c, q) = sigmoid(W sReLU(W rx+ br) + bs), (4.14)
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where x = [hcat;htxt] ∈ R(dh+du) is the input described above; W r ∈ Rdr×(dh+du), br ∈ Rdr ,
W s ∈ R1×dr , bs ∈ R are parameters; and dr is a hyperparameter.

4.4 Experimental Setup

In this section, we describe the main steps of our experimental setup: the evaluation method-
ology, training procedure, used datasets, and competing methods. The data used in this work
and the developed code are freely available 2.

4.4.1 Evaluation Methodology

Towards a more realistic evaluation setup than those used by previous deep learning methods,
we evaluate our models using a ranking-based methodology similar to Sun et al. [14]. First,
we sort the bug reports in a BTS by their creation date. Then, the reports are chronologically
read and inserted in the training set until a specific date t. All the subsequent reports are
used to create the test set. Finally, we group the reports in the training set that describe the
same bug into buckets. In each bucket, the first submitted report is considered the master
report and the remaining ones are the duplicate reports.

In Table 4.1, we exemplify a BTS with five bug reports. Considering that t is 21/12/2018,
we generate a training set composed of R1, R2, and R3 and a test set consisting of R4 and
R5. The training set thus comprises two buckets: B1 = {R1,R3} and B2 = {R2}. During
evaluation, we chronologically pick each report r in the test set. When r is a duplicate bug
report, we generate a ranked list of the buckets in the system. In this work, the score of a
bucket Bi is the highest score yielded by a method when it compares r with each report in Bi.
After checking whether r is duplicate, we consider it as submitted and insert r into its correct
bucket. Following this procedure, for example, we first pick the report R4 in the scenario
of Table 4.1. A ranked list is not produced because R4 is not duplicate and a new bucket
B3 = {R4} is created. After that, the next report R5 is selected. Since it is duplicate, we
generate a ranked list composed of B1, B2, and B3. Then, R5 is inserted in B1.

Regarding the evaluation methodology used by other ranking approach methods, Budhiraja
et al. [89] do not describe how the test dataset was generated nor the procedure to create the
ranked list. Both are crucial elements of the evaluation methodology and can considerably
impact the achieved performances. Deshmukh et al. [68] extract pairs of bug reports from a
BTS and randomly split them into training and test datasets. In their evaluation, for each
duplicate bug report, their method outputs a recommendation list composed of only reports

2https://github.com/irving-muller/soft_alignment_model_bug_deduplication

https://github.com/irving-muller/soft_alignment_model_bug_deduplication
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Table 4.1 Fictional BTS to exemplify the evaluation methodology.

Bug report ID Creation Date Master Report
R1 01/12/2018 -
R2 12/12/2018 -
R3 20/12/2018 R1
R4 30/12/2018 -
R5 31/12/2018 R1

within the test set. This artificially reduces the number of reports that must be searched for
each queried report, which makes the problem much easier [15]. Furthermore, in the BTSs,
we only have access to data that was reported before a current time x. Thus, the model can
only be trained using data from this period. After training a model, it only examines bug
reports that were created after x. Randomly shuffling the data allows the model to be trained
with reports created from the future (after x) and to retrieve candidates that were submitted
after the queried report. Additionally, this randomization makes the problem easier because
it spreads more uniformly the features through the dataset and can mitigate the concept
drift issue. Therefore, we believe our experimental setting is more realistic. We compare our
methods with those proposed in Budhiraja et al. [89] and Deshmukh et al. [68]. However, due
to the methodological differences aforementioned, and since source code was not provided by
authors, we implemented those methods to the best of our knowledge, as described in Section
4.4.5.

Like Sun et al. [14], we evaluate a method using two metrics: mean average precision (MAP)
and recall rate@k (RR@k). Both metrics are based on the ranking of reports according to
the scores computed by a method. MAP is a general ranking metric. In our setting, rankings
only need to contain one relevant item per query to be considered a hit. Thus, MAP can be
simplified as:

MAP = 1
Q

Q∑
i=1

1
pi
, (4.15)

where Q is the number of duplicate bug reports in the evaluation set and pi is the position of
the correct bucket in the ranked list. RR@k is equal to the ratio of duplicate reports whose
correct buckets are within the top-k buckets in the given ranking to the number of duplicate
bug reports. RR@k is defined as:

RR@k = nk
Q
, (4.16)

where nk is the number of query reports in the test set for which the corresponding bucket
appears in the top-k positions of the ranking computed by a method.
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4.4.2 Datasets

We use parts of the datasets published by Lazar et al. [110] in our experiments3. They
retrieved and curated reports submitted until 2014 from four BTSs: OpenOffice, Eclipse,
NetBeans and Mozilla. OpenOffice contains a set of open-source tools that aim to help
the office activities. NetBeans and Eclipse are popular open-source integrated development
environments (IDEs) that support many different languages. The Mozilla BTS manages bugs
of several open source projects, such as Thunderbird (email client) and Firefox (Web browser).

Sun et al. [14] assess their methods using small portions of the aforementioned datasets.
More specifically, they use reports within a three-year period for the OpenOffice dataset and
within a one-year period for the other three datasets. This choice ignores reports submitted
before this period, which overestimates their method [111]. For each BTS, we use the reports
employed by Sun et al. [14] as our test datasets4. The reports submitted before these periods
are split into training and validation datasets. Validation sets comprise the latest 5% reports
and the remaining earlier reports comprise training sets. Statistics of these datasets are
presented in Table 4.2.

Table 4.2 Statistics of datasets. Period column indicates the period comprising each dataset
as a whole (Train+Val+Test). Start Date column indicates the first day included in test
datasets.

Dataset Period Training Validation Test TotalDuplicate All Duplicate All Start Date Duplicate All
Eclipse 10/10/01 - 31/12/08 27,481 198,183 1,446 14,703 01/01/08 4,380 45,794 258,680
Mozilla 07/04/98 - 31/12/10 122,199 438,806 6,431 44,014 01/01/10 9,701 65,940 548,760
OpenOffice 16/10/00 - 31/12/10 13,570 80,786 714 4,109 01/01/08 4,664 31,333 116,228
Netbeans 21/08/98 - 31/12/08 16,639 116,351 875 5,548 01/01/08 5,009 31,667 153,566

4.4.3 Time Window

As the number of reports submitted increases over time, it becomes computationally expensive
to detect duplicate bug reports in BTSs since each new report has to be compared with all
the reports submitted before it. This growth indeed degrades the performance of the method,
which can negatively affect the triage process [15]. A simple solution for this problem, called
time window or time frame, consists of searching for reports that were submitted within a
specific range of days before the new report. In this study, a bucket is considered to be a
candidate when at least one of its reports is within the defined time window.

3http://alazar.people.ysu.edu/msr14data/
4We decided to use the same period of Eclipse for Netbeans since [14] did not evaluate their method on

this BTS.

http://alazar.people.ysu.edu/msr14data/
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Table 4.3 Percentage of duplicate bug reports in the test set that reaches the correct bucket
in the time window of one year and three years.

Dataset 1 year 3 years
Eclipse 88.53% 97.48%
OpenOffice 75.27% 90.97%
Netbeans 93.51% 98.88%
Mozilla 88.45% 96.73%

Table 4.3 shows the fraction of duplicate bug reports in the test sets for which one of the
reports in their associated buckets can be reached within time windows of one and three years.
We consider that three years is a reasonable time frame to be used in real environments,
especially for popular software BTSs that daily receive many bug reports, e.g., Eclipse BTS
receives on average around 99 reports per day [112]. Except for OpenOffice, the use of the
time window significantly reduces the computation demand at the cost of a small negative
impact on the performance upper bound – less than 3.4% of duplicate reports will not have
their bucket in the ranked list. We also test the methods with a time window of one year to
measure how its size affects performance.

4.4.4 Training

We preprocess the textual data by replacing all the non-alphanumeric characters with spaces
[14]. After that, the text is converted to lower-case and tokenized on white space characters.
This preprocessing separates tokens concatenated by punctuation, e.g., module paths, file
paths, and function calls. Our intuition is that package, file, and class names are relevant for
this task. Analyzing a small sample of long reports, we observed that many of them append
lengthy stack traces and log files to their description. Thus, we limit the text length to 350
tokens in order to clean less important elements without missing much relevant information.
Although we acknowledge that this value can be suboptimal, it appears to be sufficient to
achieve reasonable results. Categorical features comprise the following fields: component,
product, severity and priority.

Following Deshmukh et al. [68], we initialize the word embedding using an instance of pre-
trained vectors5. Words that appear in the training dataset but not in that instance are
pre-trained using GloVe [113] and textual data from the reports in the training dataset. To
avoid overfitting, the word embeddings are not fine-tuned.

SABD is a binary classifier that takes two reports (query q and candidate c) and outputs the
5http://nlp.stanford.edu/data/glove.42B.300d.zip

http://nlp.stanford.edu/data/glove.42B.300d.zip
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probability P (y|q, c) of report q being a duplicate of report c. Thus, it is trained over a set of
pairs of reports along with their labels in order to minimize the cross entropy loss function:

J(θ) = − 1
|S|

∑
(q,c,y)∈S

y logP (y|q, c) + (1− y) log(1− P (y|q, c)), (4.17)

where S = {(q, c, y)} is the training set composed of pairs of reports (q, c) along with their
labels y (y = 1 when q and c are duplicates, otherwise y = 0). We optimize SABD for 12
epochs using ADAM optimizer [114] with a learning rate of 0.001 and a batch size of 256.

Building S is challenging since it is used to train a binary classifier to perform a ranking
task such that, at test time, there are more negative examples than positive ones. In order
to describe how S is built, let us split it into two sets S = S+⋃S− such that S+ is the set
of positive examples, i.e, those whose y = 1; and S− is the set of negative examples. S+

comprises all pairs of duplicate reports in the set of training reports. On the other hand, S−

is generated before the start of each training epoch by sampling non-duplicate pairs until
|S+|
|S−| = rt, where rt is the rate between the pairs of duplicate reports by the non-duplicate ones.
Moreover, a negative pair is only included in S− if − log(P (y = 0)) is larger than a given
threshold λ, i.e., if the example is not too easy for the current classifier. This sampling is
inspired by [115, 18, 116, 117] and speeds up training by providing more informative examples.
SABD has achieved optimum results for rt = 1 and λ = 10−3. The hyperparemeter values
were tuned using the validation set and their values are presented as follows: dcat = 20,
da = 40, dh = 40, dw = 300, df = 5, do = 150, du = 600, and dr = 300.

4.4.5 Competing Methods

We compare SABD with five other methods from the literature. The BM25Fext and REP are
ranking-approach methods that were proposed by Sun et al. [14]. These are popular methods
and their implementations are available.6 Besides, we compare SABD with the following
deep learning methods: DWEN [89], Siamese Pair [68] and Siamese Triplet [68]. Although
these works have used ranking-based evaluation methodologies, as described in Section 4.4.1,
such methodologies present relevant issues. Moreover, since their implementations are not
available, we implemented them to the best of our knowledge. We found that the following
minor modifications in the method architecture or training have improved their performance
in the validation dataset: 1) the feed-forward neural network of DWEN receives categorical
features generated in a similar way to Siamese Pair [14]; 2) bi-LSTMs followed by average and
max poolings are used to encode the summary and description in Siamese Pair and Siamese

6https://chengniansun.bitbucket.io/projects/bug-report/fast-dbrd.tgz

https://chengniansun.bitbucket.io/projects/bug-report/fast-dbrd.tgz
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Triplet; 3) the last sub-network of Siamese Pair receives, in addition to the original inputs,
the squared difference and element-wise multiplication of the final report representations; and
4) we train these methods using the procedure described in Section 4.4.4 to generate negative
examples.

Models evaluated by means of decision-making methodology cannot be fairly compared to
those that employ ranking-based approaches, since the underlying problem differs. However,
SABD is indirectly compared with Xie et al. [90], as this model is very similar to the Siamese
Pair baseline. Both models independently generate the fixed-representation of report pairs
using standard neural network blocks (e.g., CNN and LSTM) and exploit categorical data.
Poddar et al. [19] propose a technique to simultaneously learn latent topics from reports and
train a classifier for bug deduplication. This technique could be adapted to SABD with some
minor changes due to its generality.

4.5 Experimental Results

Since the competing methods and SABD are stochatics, we perform five distinct runs for each
experimental configuration7. We report in this section average performance in terms of MAP
and RR@k, as well as standard deviations illustrated as error bands in figures and inside
brackets in tables. Following Sun et al. [14], the RR@k is calculated for each k = 1, 2, . . . , 20.
It is important to notice that, when evaluating a model, we include duplicate reports whose
buckets are not within the considered time window. These duplicate reports are considered
misses for RR@k computation, and their terms 1

pi
in the MAP expression are 0.

4.5.1 Main Analysis

In the right column of Figure 4.2, we depict RR@k of all methods in the four datasets using
a time window of three years. In all datasets, SABD constantly achieves the best RR@k
among the compared methods. It outperforms the second best method by 3.06%–5.01% in
Eclipse, 3.34%–6.35% in OpenOffice, 2.66%–6.64% in Netbeans, and 4.17%–5.19% in Mozilla.
Table 4.4 reports the method results on the MAP metric in each test set using time window
of one and three years. Considering the time window of three years, SABD also achieves
higher MAP values than all methods in all datasets. The improvement of SABD over the
second best method on the MAP metric is 3.5%, 4.3%, 3.9%, and 4.5% in Eclipse, OpenOffice,
Netbeans, and Mozilla, respectively.

7BM25Fext and REP are run 10 times in NetBeans since they generated large standard deviation.
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(b) Eclipse - 3 years
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(c) OpenOffice - 1 year
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(d) OpenOffice - 3 years
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(e) Netbeans - 1 year
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(f) Netbeans - 3 years
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(g) Mozilla - 1 year
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(h) Mozilla - 3 years

Figure 4.2 Recall Rate@k in test sets of Eclipse, OpenOffice, Netbeans and Mozilla.
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Table 4.4 MAP in test sets.

Method Eclipse OpenOffice Netbeans Mozilla
1 year 3 years 1 year 3 years 1 year 3 years 1 year 3 years

DWEN 0.353[0.004] 0.325[0.007] 0.276[0.003] 0.252[0.004] 0.365[0.006] 0.333[0.004] 0.305[0.004] 0.282[0.012]
BM25Fext 0.402[0.016] 0.398[0.010] 0.315[0.037] 0.313[0.054] 0.417[0.027] 0.378[0.066] 0.338[0.005] 0.320[0.002]
Siamese Triplet 0.401[0.005] 0.387[0.002] 0.356[0.005] 0.358[0.004] 0.466[0.001] 0.446[0.002] 0.376[0.002] 0.367[0.003]
Siamese Pair 0.425[0.006] 0.410[0.005] 0.346[0.003] 0.343[0.007] 0.482[0.004] 0.454[0.004] 0.401[0.003] 0.390[0.004]
REP 0.452[0.001] 0.447[0.003] 0.361[0.003] 0.355[0.003] 0.472[0.045] 0.483[0.024] 0.365[0.004] 0.343[0.007]
SABD 0.484[0.004] 0.482[0.006] 0.400[0.008] 0.401[0.011] 0.538[0.006] 0.522[0.006] 0.443[0.005] 0.435[0.005]

Deshmukh et al. [68] compared the Siamese Triplet with Siamese Pair using only accuracy and,
according to them, the former significantly outperforms the latter. However, as mentioned
before, the accuracy is less adherent than RR@k and MAP for real environments. We found
that, in fact, Siamese Pair achieves significantly better RR@k and MAP values than Siamese
Triplet in three of four test sets. Moreover, our results show that DWEN achieves poor MAP
and RR@k values on the four datasets and it is significantly outperformed by all methods in
Eclipse, Netbeans, and Mozilla repositories.

Considering only the deep learning models and the time window of three years, the improve-
ment of SABD over the second best neural network on the RR@k metric is 6.78%–8.21%,
5.29%–6.91%, 5.97%–8.49% and 4.17%–5.19% in Eclipse, OpenOffice, Netbeans and Mozilla,
respectively. In terms of MAP, SABD surpasses the second best neural network by 7.2%
in Eclipse, 4.3% in OpenOffice, 6.8% in Netbeans and 4.5% in Mozilla. To the best our
knowledge, we are the first to compare different neural networks in the bug deduplication
using the ranking methodology. Amongst all studies in the literature, Poddar et al. [19] was
the first to compare different deep learning methods for this task, although they evaluate
them using the decision-making methodology.

Regarding the methods proposed by Sun et al. [14], the first relevant point is that BM25Fext

achieves a similar curve regarding RR@k and a slightly better MAP value than the Siamese
Triplet in Eclipse. Moreover, REP outperforms the two siamese neural networks in Eclipse and
Netbeans, and it has comparable results to Siamese Triplet and Siamese Pair in OpenOffice.
Even though BM25Fext and REP are simpler methods than the siamese neural networks that
contain thousands of parameters, they are able to perform similarly or better than these
deep learning models. Finally, it is important to point that REP and BM25Fext have a large
standard deviation in OpenOffice and, exclusively BM25Fext, in Netbeans.
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Time Window Analysis

In the left column of Figure 4.2, we present RR@k for all the considered methods, for
k = 1, 2, . . . , 20, on the four test sets using a time window of one year. The MAP results of
these methods in the same experimental setups are reported in Table 4.4. Despite some minor
differences, the findings using a window of one year are similar to the ones with a longer
frame of three years – including the fact that SABD constantly outperforms the methods in
terms of MAP and RR@k in all datasets.

Extending the window span from one to three years decreases the number of duplicate bug
reports whose ranked list never contains the correct master reports. However, we found that
this does not necessarily correspond to performance improvements in terms of RR@k. For
instance, in Figure 4.3, we compare the curve of RR@k achieved by SABD in each dataset and
time window. Increasing the time frame positively impacts, in general, the SABD performance
in OpenOffice and Eclipse, while it marginally reduces its performance in Netbeans and,
partially, in Mozilla. We believe that this occurs due to the trade-off between two factors
related to the time window length. Expanding the time window raises the upper bound of
the RR@k. However, at the same time, it increases the quantity of reports that are searched,
making the bug deduplication more difficult [15]. Finally, as shown in Table 4.4, increasing
the time window from one to three years reduces the performance of the methods in terms
of MAP. This indicates that MAP is more sensitive to the quantity of reports that must be
searched than RR@k.
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Figure 4.3 Comparison of SABD performance in terms of RR@k.
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4.5.2 Ablation Study

In this section, we perform an ablation study to evaluate the effectiveness of different
components of SABD. Ablation study consist in removing a single component from the
original architecture, and measuring how much this isolated modification impacts the model
performance. The more a component affects the performance, the more effective it is
considered.

We test two distinct configurations related to the soft alignment comparison layer. Setup
(1) measures the impact of the data exchange by removing the soft alignment comparison
layer, thus independently generating the report representations as Sun et al. [14], Xie et al.
[90], and Budhiraja et al. [89]. Although this setup may show the layer importance, it is not
clear which part of the layer is the most significant. Thus, one also needs to evaluate the
importance of SABD capacity to dynamically focus on different parts of a report.

If the model is able to compress the report into a fixed-length vector without losing any
relevant information, then SABD will achieve similar results because the FC layer in the
soft alignment comparison layer produces similar outputs. However, if SABD is negatively
impacted, the summarization of a report into a fixed-length representation is the bottleneck
that needs to be replaced by a more powerful mechanism such as the soft-attention alignment.

Setup (2) studies the need for the soft-attention alignment by replacing it with a mechanism
similar to that of Poddar et al. [19], which is more powerful than a simple mean-pooling since
the fixed-length representation of a report depends on the other report. In (2), the context
vector of the query xqi is the attention mechanism result given by Equation 4.6 in which the
k-th attention coefficient is proportional to the scaled dot-product:

αqik ∝
xck ·Mean[xq1, . . . , xq|qt|]√

dx
, (4.18)

where xck is the k-th word vector of the candidate and Mean[. . . ] is the result of the mean-
pooling operator over the word vectors in the query. The candidate context vectors xcj are
produced likewise.

Furthermore, we test four additional setups. In (3), the categorical module is removed from
SABD, i.e, only textual data is used for detecting duplicate reports. In (4), we remove the
fully-connected layer (Equation 4.4) that modifies the concatenation of the word and field
embedding vectors (vqi and vcj). In (5), we remove the bi-LSTM in the textual encoder layer,
i.e., the mean and max-pooling generate the fixed-length representation of the reports. In (6),
field embedding is not concatenated with word embeddings and, thus, the words from the
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summary and description are identically represented.

Figure 4.4 and Table 4.5 report the RR@k and MAP achieved by the seven configurations in
the validation dataset of Eclipse. As shown in Figure 4.4 and Table 4.5, the soft-alignment
comparison is the most crucial component of our model since removing this layer from SABD
significantly degrades its performance. Besides, the setup (1) is marginally outperformed
by setup (2). Both results corroborate the hypothesis that data exchange improves the
representations. We also observe that the model performance substantially decreases when
the soft-attention alignment is replaced by a less powerful mechanism. This confirms our
assumption that summarizing report information into fixed-length representation is the
bottleneck of the Poddar et al. [19] model. An architecture that dynamically focuses on
distinct information from a report is less prone to lose information and, therefore, performs a
better report comparison. We also observe that removing the FC sublayer from the textual
embedding layer decreases SABD performance. This result confirms our hypothesis about the
importance of projecting the words into a dimension space that better captures word relevance
for the bug deduplication. As expected, SABD performs significantly worse when categorical
data is not used. This data provides additional information about the report which can help
the bug deduplication (e.g., the probability of two reports being duplicate from two different
software components is usually low). Further, removing the bi-LSTM considerably decreases
the model performance which demonstrates our hypothesis that contextual information about
the words is useful for deduplication.

Finally, we find that removing the field embedding does not significantly affect the SABD
performance. This is an unexpected result since words from different fields were supposed to
have distinct relevance.

Table 4.5 Ablation study in terms of MAP.

Method MAP Diff.
SABD 0.500[0.005] -0.000
(6) Remove Field Embedding 0.505[0.002] +0.005
(5) Remove bi-LSTM 0.468[0.005] -0.032
(4) Remove FC in Textual Embedding 0.465[0.008] -0.035
(3) Remove Categorical Encoder 0.467[0.008] -0.033
(2) xqi and xcj produced by [19] 0.440[0.009] -0.060
(1) Remove Soft-alignment Comparison 0.424[0.006] -0.076
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Figure 4.4 Ablation study in terms of RR@k.

4.6 Concluding Remarks

We proposed SABD, a novel soft alignment method for bug deduplication. In contrast
of Siamese neural networks, SABD exchanges data between the reports before generating
their fixed-length representations. The mechanism responsible for this data interchange is
more powerful than the one proposed in Poddar et al. [19] because it can dynamically focus
on distinct information of a report during the feature extraction of the other report. We
experimentally evaluate SABD and competing methods (including two non-deep learning
ones) using a methodology based on Sun et al. [14]. This methodology is more adherent to real
environments than the ones often used in the literature [19, 68, 89, 90]. SABD significantly
outperforms the other methods in all experimental setups.

It is important to notice that, even though competing deep learning methods were implemented
to the best of our knowledge, it is not possible to guarantee that those are identical to the
ones used in the studies. As shown in the ablation study, the soft-aliment positively impacts
the model performance. However, this mechanism has a cost in terms of runtime. As the
fixed-length representations of the reports are jointly generated, it is not possible to save
computation time by storing them. Therefore, our model is slower than the methods based
on siamese neural networks.
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CHAPTER 5 ARTICLE 2: TRACESIM: AN ALIGNMENT METHOD FOR
COMPUTING STACK TRACE SIMILARITY

Authors. Irving Muller Rodrigues, Aleksandr Khvorov, Daniel Aloise, Roman Vasiliev,
Dmitrij Koznov, Eraldo Rezende Fernandes, George Chernishev, Dmitry Luciv, and Nikita
Povarov. Published at the Empirical Software Engineering journal, 20221.

Abstract. Software systems can automatically submit crash reports to a repository for
investigation when program failures occur. A significant portion of these crash reports are
duplicate, i.e., they are caused by the same software issue. Therefore, if the volume of
submitted reports is very large, automatic grouping of duplicate crash reports can significantly
ease and speed up analysis of software failures. This task is known as crash report deduplication.
Given a huge volume of incoming reports, increasing quality of deduplication is an important
task. The majority of studies address it via information retrieval or sequence matching
methods based on the similarity of stack traces from two crash reports. While information
retrieval methods disregard the position of a frame in a stack trace, the existing works based
on sequence matching algorithms do not fully consider subroutine global frequency and
unmatched frames. Besides, due to data distribution differences among software projects,
parameters that are learned using machine learning algorithms are necessary to provide more
flexibility to the methods.

In this paper, we propose TraceSim – an approach for crash report deduplication which
combines TF-IDF, optimum global alignment, and machine learning (ML) in a novel way.
Moreover, we propose a new evaluation methodology for this task that is more comprehensive
and robust than previously used evaluation approaches. TraceSim significantly outperforms
seven baselines and state-of-the-art methods in the majority of the scenarios. It is the only
approach that achieves competitive results on all datasets regarding all considered metrics.
Moreover, we conduct an extensive ablation study that demonstrates the importance of each
TraceSim’s element to its final performance and robustness. Finally, we provide the source
code for all considered methods and evaluation methodology as well as the created datasets.

Keywords. Duplicate Crash Report, Crash Report Deduplication, Duplicate Crash Report
Detection, Automatic Crash Reporting, Stack Trace

1Available at [118]
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5.1 Introduction

Many software products are nowadays equipped with automated crash reporting systems such
as Apport2, Mozilla Socorro3, and CrashPad4. These systems detect software crashes, collect
data related to user environment, system state and execution information [7], and group
such data into a so-called crash report. While automated crash reporting systems reduce the
dependence on users to collect relevant information about failures, they drastically increase
the number of crash reports. For instance, according to Campbell et al. [10], Mozilla Firefox
received around 2.2 million crash reports in the first week of 2016. A significant portion of
these crash reports were duplicates, i.e., multiple reports related to the same software bug.
For example, we found that 72% of the reports of the IntelliJ Platform (a JetBrains product
family) were duplicates.

In software projects, duplicate crash reports are grouped into clusters called buckets. This
grouping helps to prioritize the bug fixing, provides supplemental information about a failure,
and reduces the effort required to fix a bug [12, 13]. However, due to the massive volume of
crash reports submitted daily, it is unfeasible to manually allocate new reports to buckets. For
instance, considering that 13,000 crash reports were submitted per hour for Mozilla Firefox
[10] and, that a “superhuman” could review one report per second, a triager would take
around 3.6 hours to identify the buckets of these new reports. Hence, it is vital for large
software projects to automatically assign crash reports to buckets. This task is known as
duplicate crash report detection, crash report bucketing or crash report deduplication [10, 22].

During the program lifetime, a stack (named call stack) keeps track of active subroutines. We
consider a subroutine active if it is under execution or waiting for the completion of other
subroutines. Call stacks are composed of frames: data structures that store information on a
single active subroutine (such as its return address and arguments). These frames are stored
following the LIFO (last in, first out) principle, i.e., the frames related to the last executed
subroutines are on the top of the stack. The stack trace is hence a snapshot of the call stack
in memory which is captured and presented to the user when a system crashes.

In Figure 5.1, we illustrate a crash report. This example presents the details about the system
and environment in lines 1–7. This information is variable and depends on the application.
Moreover, reports may include user descriptions of bugs and how they could be reproduced.
In Figure 5.1, lines 9–43 represent a stack trace. It encompasses valuable information for
developers to understand and fix an error [8].

2https://wiki.ubuntu.com/Apport
3https://crash-stats.mozilla.com/
4https://goto.google.com/crash/root

https://wiki.ubuntu.com/Apport
https://crash-stats.mozilla.com/
https://goto.google.com/crash/root
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1 Date: 2016-01-20T22:11:48.834Z
2 Product: XXXXXXXXXXXX
3 Version: 144.3143
4 Action: null
5 OS: Mac OS X
6 Java: Oracle Corporation 1.8.0_40-release
7 Message: new child is an ancestor
8
9 java.lang.IllegalArgumentException: new child is an ancestor

10   at javax.swing.tree.DefaultMutableTreeNode.insert(DefaultMutableTreeNode.java:179)
11   at javax.swing.tree.DefaultMutableTreeNode.add(DefaultMutableTreeNode.java:411)
12   at com.openapi.application.impl.ApplicationImpl$8.run(ApplicationImpl.java:374)

.....
41   at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
42   at java.lang.Thread.run(Thread.java:745)
43   at org.ide.PooledThreadExecutor$2$1.run ....

Figure 5.1 Crash report example

The majority of previous studies addresses crash report deduplication mainly by measuring
similarity between the stack traces of two crash reports. Lerch and Mezini [93], Campbell
et al. [10], and Sabor et al. [94] use traditional information retrieval techniques to compute
this similarity. These works propose to encode stack traces as vectors whose dimensions are
related to subroutine names (fully-qualified names of functions) and values are calculated
using Term Frequency – Inverse Document Frequency (TF-IDF) [23]. One key drawback of
information retrieval methods is that they ignore the order of the subroutines in a stack trace.
Other studies [21, 22, 95, 96] explicitly consider the sequence of function calls within stack
traces and employ variants of sequence matching algorithms (such as edit distance, longest
common subsequence and optimal global alignment) to measure the similarity between two
stack traces.

Brodie et al. [21] were the first to use a sequence matching algorithm to compute the similarity
between two stack traces. Moreover, in the matching algorithm, they considered two pieces of
information to weight the importance of a subroutine in a given stack trace: its position in
the stack trace and its frequency in a large database. The rationale behind this is twofold: (i)
bugs are more likely to be related to subroutines in the top positions of the stack trace [8]; and
(ii) rare subroutines are more relevant than frequent ones, similarly to TF-IDF. Later, Dang
et al. [22] proposed PDM, a method that also considers subroutine position when comparing
two stack traces by means of a sequence matching algorithm. Different from Brodie et al.
[21], PDM includes a machine learning (ML) algorithm to learn the parameters that control
the impact of frame position in the matching algorithm. In that way, PDM can adapt to
different data distributions from varied software projects or even to temporal shifts in the
same project. One neglected aspect in the current literature is the proper consideration of
subroutines that exist in only one of the two stack traces under comparison. We call these
subroutines unmatched as opposed to matched subroutines that are present in both stack
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traces. In Brodie et al. [21], for instance, position and frequency are considered only for
matched subroutines. For unmatched ones, the similarity score is given by a negative constant
value. In Dang et al. [22], unmatched subroutines are ignored when computing the similarity
score. However, these missing subroutines may be important to estimate the similarity (or, in
this case, the dissimilarity) between stack traces, especially the ones that are rare and lie in
the top positions.

In this work, we propose TraceSim, the first technique that structurally combines TF-IDF,
optimum global alignment, and machine learning for crash report deduplication. To compute
the similarity between two stack traces, TraceSim finds the optimum global alignment between
them by means of the Needleman-Wunsch (NW) algorithm. Differently from previous
approaches, we leverage the flexibility of this global alignment algorithm to consider all
subroutines, either matched or unmatched, to compute the similarity score between two stack
traces. Moreover, for all subroutines, TraceSim considers both their frequency in a large
database (TF-IDF) and their position in the stack traces. Additionally, TraceSim employs a
ML algorithm to learn parameters that regulate the influence of all these elements within the
NW algorithm. Hence, TraceSim can be viewed as a generalization of the methods proposed
by both Brodie et al. [21] and Dang et al. [22].

Inspired by works on bug deduplication, we also propose a new evaluation methodology for
crash report deduplication. Our comprehensive methodology considers different aspects of
the problem, such as the system capacity to separate non-duplicates from duplicates, the
accuracy of report assignment to buckets, and the system performance for ranking. By means
of this methodology, we compare TraceSim to state-of-the-art and baseline systems using
four datasets from open-source projects (Ubuntu, Eclipse, Netbeans and Gnome) and one
industrial dataset (JetBrains). Additionally, a detailed ablation study is performed to assess
distinct elements of TraceSim, namely TF-IDF, global aligment and ML.

The main contributions of this paper are summarized as follows:

1. We propose TraceSim, a novel method for crash report deduplication that combines
TF-IDF, global alignment, and machine learning. We experimentally demonstrate
that each one of these methodological choices significantly contributes to TraceSim’s
performance and robustness.

2. We report on the most comprehensive experimental evaluation which includes many
previous methods in the literature and assesses different aspects of these methods. The
experiments are performed on five distinct projects involving distinct programming
languages and characteristics. TraceSim significantly outperforms the competitive
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methods in the majority of the scenarios, and it is the only method that consistently
performs well in all scenarios.

3. We provide our full evaluation framework5 which comprises: datasets generated from
open source projects, implementations of all considered methods, and implementation
of the proposed evaluation methodology. The provided framework is crucial for re-
producibility, so that future works can easily compare new methods with Tracesim
and other relevant methods from the literature within a comprehensive and unified
framework.

The remainder of this paper is organized as follows. Section 5.2 describes the proposed
method. Section 5.3 presents the existing techniques that address crash report deduplication.
Section 5.4 presents the proposed evaluation methodology and the experimental setup. In
Section 5.5, we experimentally compare TraceSim to competitive techniques and report on
several ablation studies. Section 5.6 discusses the possible threats to the validity of our work.
Finally, concluding remarks are given in Section 5.7.

5.2 TraceSim

A common assumption in the literature is that failures caused by the same bug are represented
by similar system executions. Since a stack trace can capture the state of a system execution
right before a crash, crash deduplication usually proceeds by mainly comparing the similarity
between stack traces. In order to compute this similarity, many studies employ sequence
matching algorithms so that they can measure the overlapping between two stack traces
keeping track of the order of the compared frames.

A classic sequence matching method is the Needleman–Wunsch (NW) algorithm [119], which
finds the optimal global alignment between two sequences. A global alignment consists in
aligning the elements of two sequences end-to-end. In Figure 5.2, we illustrate a global
alignment of two stack traces (stack1 and stack2). Filled rectangles represent frames and
empty ones symbolize gaps: special structures that allow to shift the position of an element in
the alignment. As can be observed, frames can be lined up to gaps, where each gap represents
that a specific subroutine is missing in that position of the stack trace. We call a match
the alignment of identical frames (e.g., the frames Maps.difference in stack1 and stack2).
In contrast, we name the alignment of two different frames a mismatch (e.g., the frames
ValidatorPage.performOk and BuilderPage.schedCleaner). In this work, a mismatch is
considered as equivalent to two gap alignments since it is unlikely that two different subroutines

5https://github.com/irving-muller/TraceSim_EMSE

https://github.com/irving-muller/TraceSim_EMSE
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OptCfgBlock.processChanges
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Figure 5.2 Best global alignment example: 12 matches, 1 mismatches, and 2 gaps. Matches,
mismatches and gaps are represented by blue, red, and yellow, respectively.

possess interchangeable functionality [21]. For instance, ValidatorPage.performOk and
BuilderPage.schedCleaner are clearly different and, therefore, it is appropriate to align
these frames to gaps.

Two stack traces can be aligned in multiple ways. The optimal global alignment problem
is formulated as a maximization problem such that each possible frame alignment (match,
mismatch, and gap) has an assigned value. Thus, the optimum solution for the problem
corresponds to the global alignment for which the sum of the match values minus the sum
of the mismatch and gap values is maximum. A common scheme is to define the values
for matches, mismatches and gap alignments as constants, such that a specific alignment is
always associated to the same value.In order to leverage the peculiar characteristics of stack
traces, we employ a scheme that computes the alignment values in a more effective way for the
crash deduplication task. In this scheme, weights are assigned to each frame. These weights
estimate the frame importance to discriminate two stack traces and are used to compute
match, mismatch and gap values. Our hypothesis is that some frames are more relevant than
others for comparison and, hence, their correct or wrong alignment should have higher impact
on the computed similarity score.

The NW algorithm is more suitable for our proposed scheme than other classic sequence
matching algorithms, e.g. longest common subsequence (LCS) and Levenshtein distance
(also known as edit distance). In the LCS, the similarity is only affected by the matches
since mismatches are not allowed and gap values are zero. Hence, the incorrect alignment of
important frames is not considered for measuring the similarity. Conversely, the matches of
relevant and irrelevant frames are not distinguishable in the edit distance because the match
values are always zero. The NW algorithm is the method that allows us to fully consider the
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weights of all frames to measure the similarity of stack traces.

In the remainder of this section, we describe TraceSim, our proposed method for crash report
deduplication. This method computes the similarity of two stack traces sq and sc from a new
query report q and a candidate report c, respectively. Each stack trace is represented as a
sequence of frames, i.e., sq = (sq1, sq2, . . . , sq|sq |)1 and sc = (sc1, sc2, . . . , sc|sc|), where s

q
1 and sc1 are

the frames at the top of the stack traces, and |sq| and |sc| are the number of frames in sq and
sc, respectively. Following the majority of the studies, we only consider two frames as equal
when their subroutine names are exactly the same. In order to compare sq and sc, TraceSim
first assigns a weight to each frame of these two stack traces. Then, by means of the NW
algorithm, our method finds the optimal maximum global alignment between sq and sc by
considering the match, mismatch, and gap values proportional to the frame weights. The NW
algorithm runs in O(|sq| · |sc|) time. Finally, the score of the optimal alignment is normalized
by a technique based on the Jaccard index [120]. The normalization is fundamental for an
effective comparison of alignment scores since it adjusts the scores by the frame weights of
the stack traces.

5.2.1 Frame Weight Computation

Bugs are more frequently located in the top frames of stack traces [8]. Hence, it is natural
to consider that frames near the top are more relevant for crash deduplication than the
bottom ones. Nonetheless, frames, including those in the top positions, could be associated to
subroutines that are common through the database, e.g, subroutines that are related to logging,
thread pooling, error-handling and entry points. These subroutines poorly accommodate the
discrimination of similar stack traces since they appear in multiple crashes caused by different
errors. Therefore, we consider that a frame’s importance for crash report deduplication (frame
weight) depends on two factors: its position in the stack trace (local weight) and its frequency
in the database (global weight).

The local weight of the i-th frame in a stack trace s is computed as follows:

lw(si) = 1
iα
, (5.1)

where α ∈ R>0 is a parameter that controls the function smoothness. Equation (5.1) assigns
larger local weight values to frames located at the top of a stack trace.

The global weight is defined based on a well-known information retrieval technique: Term
Frequency – Inverse Document Frequency. In our context, the term frequency (TF) is always
equal to 1 since the global weight is computed for a frame in a specific position within the
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stack trace. This is due to the fact that the alignment algorithm is intrinsically dependent
on the order of the frames and not only on their frequencies, like in the original TF-IDF.
Therefore, given a crash report database S, the inverse document frequency (IDF) of a frame
si is simply defined as:

IDF(si) = |S|
df(si)

, (5.2)

where |S| is the total number of stack traces in the database S and df(si) is the document
frequency of the subroutine si, i.e., the number of stack traces that contain a subroutine si
among the set S of stack traces. Hence, the global weight of the i-th frame in a stack trace s
is computed as follows:

gw(si) = e
− β

IDF(si) , (5.3)

where β ∈ R>0 is a parameter that controls the function smoothness. The rarer a subroutine
is, the larger are the values computed by Equation (5.3).

Finally, the weight of a frame si is defined as:

w(si) = lw(si)× gw(si). (5.4)

5.2.2 Optimal Global Alignment

Being based on the NW algorithm, TraceSim applies dynamic programming to find the
optimal global alignment between stack traces sq and sc as follows. Let us define a matrix
M in which Mi,j is the optimal alignment score between the subsequences sq1, sq2, . . . , sqi and
sc1, s

c
2, . . . , s

c
j. The matrix M is iteratively computed using a bottom-up strategy:

Mi,j = max


Mi−1,j + gap(sqi )

Mi,j−1 + gap(scj)

Mi−1,j−1 + F (sqi , scj)

, (5.5)

where F (sqi , scj) is given by:

F (sqi , scj) =

mismatch(sqi , scj), if sqi 6= scj

match(sqi , scj), otherwise
. (5.6)

The match, mismatch and gap values are calculated by the functions match(·), mismatch(·),
and gap(·), respectively. These values are proportional to the frames’ weights and represent
their discriminative power.
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The first and second lines in Equation (5.5) are associated with frames aligned to gaps. Since
this is an incorrect alignment of only one frame, the gap value for a frame s′ is computed as:

gap(s′) = −w(s′). (5.7)

The first line in Equation (5.6) denotes a mismatch between sqi and scj (the two frames are
different). Since gap alignments are preferable to mismatches for crash deduplication, the
mismatch value is equivalent to lining up the two frames to gaps. This is expressed as:

mismatch(sqi , scj) = −w(sqi )− w(scj). (5.8)

The second line in Equation (5.6) denotes a match between sqi and scj . Inspired by Dang et al.
[22], the function match(·) in TraceSim is defined as:

match(sqi , scj) = max(w(sqi ),w(scj))× diff(sqi , scj). (5.9)

We assume that stack traces emerging from the same error contain subroutines in the same
region of the stack trace. Therefore, in Equation (5.9), the maximum weight between the two
matched frames is normalized by the diff(·) function that measures the alignment offset of
two frames as follows:

diff(sqi , scj) = e−γ|i−j|, (5.10)

where γ ∈ R>0 is a parameter that controls the exponential function smoothness. Thus, we
penalize matches in which the positions of the matched frames are discrepant.

Finally, the score of the best global alignment between sq and sc is defined as:

align(sq, sc) = M|sq |,|sc|. (5.11)

5.2.3 Normalization

Figure 5.3 illustrates three stack traces (stack3, stack4 and stack5) and their respective frame
weights. By applying the algorithm described in Section 5.2.2, we obtain align(stack3, stack4) =
−0.66 and align(stack3, stack5) = −0.67.

According to these alignment scores, stack3 is slightly more similar to stack4 than to stack5.
However, this is counter-intuitive since all frames in stack3 and stack4 are different while
stack3 and stack5 share four subroutines in the same positions. This problem occurs because
all frames in stack4 have a low weight and, consequently, the resulting gaps and mismatches
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Figure 5.3 Normalization report example

do not present a significant impact to the maximum score. As such, it is ineffective to compare
alignment scores because they depend on the frame weights of the compared stack traces.

Moreover, in order to help users to interpret similarity scores, it is desired to limit scores
within a range. Note that according to (5.11), the alignment score is unbounded, i.e., its
value might vary between −∞ to +∞. Besides, there exists an asymmetry in the algorithm
since match(·) depends on the maximum of the frame weights whereas mismatch(·) is defined
by the sum of the weights. Due to these two characteristics, it is challenging to normalize
the alignment scores using canonical normalization, e.g. via min-max scaling. Based on the
assumption that the proportion of shared subroutines between two stack traces is a good
indicator for the deduplication, we propose a normalization inspired by the weighted Jaccard
index [121], which computes the similarity between two documents Z and Y as:

jaccard(Z, Y ) =
∑|T |
k=1 min(zk, yk)∑|T |
k=1 max(zk, yk)

, (5.12)

where T is the set of unique terms in the dataset (called vocabulary); and z, y ∈ R|T | are vector
representations of Z and Y , respectively. Each dimension of z and y corresponds to a specific
term in the vocabulary T . This representation is called vector space model (VSM) [23].

In crash deduplication, stack traces can be cast as documents and subroutines in the frames
as vocabulary terms. Let us consider V as a vocabulary of subroutines. Thus, a stack trace
s = (s1, . . . , s|s|) can be represented as a vector x ∈ R|V | whose k-th dimension is given by:

xk =
|s|∑
i=1

w(si)× 1[si = tk], (5.13)

where tk is the k-th term in V and 1[si = tk] returns 1 when the subroutine in a frame si
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is equal to tk, and 0 otherwise. In summary, we assign zero to the dimensions of x whose
associated subroutines in V do not appear in a stack trace. In the opposite case, the dimension
value is the sum of all frame weights w(si) of a specific subroutine tk.

Given the corresponding vectors xq and xc for the stack traces sq and sc, respectively, we
normalize the score of the maximum global alignment by:

sim(sq, sc) = align(sq, sc)∑|V |
i max(xqi , xci)

. (5.14)

Thus, sim(sq, sc) belongs to the interval [−1, 1].

5.2.4 Machine learning

The three parameters of TraceSim (α, β, and γ) are tuned via a machine learning technique:
Tree-structured Parzen Estimator (TPE) – a Bayesian hyperparameter optimizer [122]. TPE
finds parameter values that maximize the sum of two metrics on a given tuning set. Then,
such parameters are used on a subsequent validation set for final evaluation. In Section 5.4.4,
we describe the training and evaluation processes, including the optimized metrics. In Sections
5.4.2 and 5.4.3, we introduce four additional parameters, also tuned using TPE, that control
some preprocessing procedures.

5.3 Related Work

The optimal global alignment as well as the longest common subsequence, the edit distance,
and the longest prefix match are well-known sequence matching problems. These problems
have been extensively studied over the decades and have been applied to many different
domains. In the literature, many studies have addressed crash report deduplication as one of
these sequence matching problems.

Brodie et al. [21] proposed a variant of the NW algorithm to compare two stack traces.
Similarly to TraceSim, its match value depends on three factors: the position and document
frequency of the matched frame in the new report and the alignment offset of the two
matched frames. However, unlike TraceSim, the method of Brodie et al. [21] does not contain
parameters that control the influence of the frame position and document frequency on the
match value. Thus, it cannot adapt to the software project particularities, e.g., the relevance
of frame positions for crash deduplication may vary among applications. Moreover, its gap and
mismatching values are constant, i.e., they do not depend on frame positions and subroutine
document frequencies. Therefore, the optimal alignment score is equally affected by incorrectly
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matching 1) rare subroutines located at the top, and 2) frequent ones located at the bottom.
Finally, the alignment scores are not regularized by the stack trace length and the document
frequencies.

Two studies – Bartz et al. [96] and Dhaliwal et al. [13] – proposed techniques based on edit
distance for crash report deduplication. Edit distance measures the dissimilarity between two
sequences as the minimum number of edit operations (insertions, removals and substitutions)
required to convert one of the sequences into another (see e.g. [123]). It was shown by Sellers
[124] that edit distance and optimal global alignment are equivalent problems. Bartz et al.
[96] designed a logistic regression to calculate the probability of crash reports being duplicate.
As features, this method uses the edit distance between two stack traces and categorical data
comparisons (event type, process name and exception code). For computing edit distance,
the substitution cost depends on the modules, offsets and subroutines of the frames. Besides
that, insertion and deletion penalties have different values when a new group (a subsequence
of frames with the same module) is created or removed. This method assumes that module
and offset information are always present in C/C++ stack traces, which is not necessarily
true. Dhaliwal et al. [13] proposed to organize crash reports with a two-level grouping scheme.
First, they created a first-level group (coarse granularity) that contains reports with the
same frame in the top position. After that, they reorganized the reports in the first level
into subgroups (fine granularity). These subgroups are generated based on the edit distance
between the reports. The drawback of these two studies is that they ignore two important
pieces of frame information: position and document frequency.

Modani et al. [95] reported that prefix match achieves better precision and recall values than
the edit distance and the technique proposed by Brodie et al. [21]. Prefix match considers the
similarity of two stack traces as the length of the longest common prefix between the stack
traces normalized by the size of the longest stack trace. One drawback of Prefix match is that
small differences in the top and middle positions can highly affect the computed similarity.

Dang et al. [22] applied an agglomerative hierarchical clustering technique to cluster crash
reports. To compute stack trace similarities, they proposed a method called position dependent
model (PDM) that finds the optimal common subsequence of two stack traces. PDM employs
an algorithm similar to the NW algorithm but for which the gap and mismatch values are zero,
i.e., they do not affect the final solution score. Like TraceSim, the match value is computed
using the position of the nearest frame to the top and the alignment offset of the matched
frames. However, PDM does not consider the document frequency of the frames to compute
the similarity score. Therefore, frequent subroutines in the top positions of the stack can
highly affect the similarity, even though these subroutines may occur in the top positions
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of many unrelated stack traces. Moreover, the similarity score is not affected by neither
mismatches nor gaps.

Another group of studies proposed techniques based on information retrieval. Lerch and
Mezini [93] proposed to use the TF-IDF technique (implemented by Lucene6) to calculate the
similarity of stack traces. Campbell et al. [10] compared the TF-IDF method (implemented
by ElasticSearch7) with signature-based methods. According to them, these methods are
appropriate for industrial projects since such environments require a search complexity of
O(n log n) where n is the number of reports. In their work, two crash reports were considered
duplicate when their similarity score was greater than a defined threshold. The authors found
TF-IDF to be superior to other techniques. Besides, the authors proposed a new tokenization
that tokenizes camel-cased texts, achieving better cluster metric values by using all data from
crash reports.

Sabor et al. [94] proposed DURFEX – a new technique for crash report deduplication. In
order to reduce sparsity, DURFEX employs package names instead of fully-qualified method
signatures. Besides that, the n-grams of the package names are generated to keep the temporal
order of the frames. After preprocessing, DURFEX converts the stack traces to vectors using
TF-IDF. The similarity between two reports is then given by the linear combination of the
features generated from categorical data comparisons with the cosine similarity of stack trace
vectors.

Moroo et al. [102] proposed a re-ranking scheme to combine sequence matching methods with
information retrieval. First, they use the TF-IDF method to generate a ranked list of the
most similar reports to a query. Then, PDM is employed to calculate a new similarity score
for the top-k reports. Finally, the top-k reports are reordered based on the weighted harmonic
mean of TF-IDF and PDM. This combination of techniques is limited since a subroutine’s
document frequency and positions are considered independently for the comparison. TraceSim
can compare the frame orders of stack traces using this supplementary information.

Three studies propose methods for crash report deduplication focusing on report and bucket
comparison. Kim et al. [98] developed a method called CrashGraph that represents both
stack traces and buckets as graphs. The nodes of a graph represent the subroutines, and
the edges link nodes whose subroutines are adjacent within the stack traces. The similarity
between a stack trace and a bucket is computed as the percentage of edges shared between
their graph representations. Koopaei and Hamou-Lhadj [99] proposed CrashAutomata: a
method that generates n-grams for each stack trace, and then prunes the n-grams whose

6https://lucene.apache.org/
7https://www.elastic.co/elasticsearch/

https://lucene.apache.org/
https://www.elastic.co/elasticsearch/
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frequencies exceed a given threshold. An automata is generated for each bucket based on the
extracted n-grams of the stack traces. CrashGraph and CrashAutomata can be negatively
affected by bucket heterogeneity and they ignore the document frequencies of the subroutines.
Ebrahimi et al. [100] trained a Hidden Markov Model (HMM) for each bucket of crash reports.
These HMM models are used to detect whether a crash report belongs to a bucket. This
method is not scalable since an HMM model has to be trained for each bucket. Moreover, it
cannot be applied in software projects whose buckets can contain only one report.

Unlike the existing matching algorithms, TraceSim combines the position and document
frequency of frames to compute weights, providing an estimation of the frame’s importance to
crash deduplication. As supported by the results in Section 5.5, we believe that this scheme
improves the method’s capability to distinguish relevant frames from irrelevant ones and,
consequently, it helps the method to better adjust the similarity score based on the correct
(or wrong) matching of frames. Moreover, unlike information retrieval techniques, TraceSim
leverages the document frequency of the subroutines without losing track of the frame order.

5.4 Experimental Setup

In this section, we present the main components of our experimental setup: the datasets used
in the experiments, preprocessing steps, strategies to compare reports with multiple stack
traces, our evaluation methodology, and competing baseline methods. The datasets from
open-source applications and the developed code are available online8.

5.4.1 Datasets

Open data sources that contain crash reports are scarce and the few available are unfit for
investigating crash report deduplication. For instance, Mozilla maintains a repository9 of
crash reports related to their products, but bucket assignment is performed automatically
by their own system which hinders an accurate evaluation. Therefore, in the literature, one
popular alternative for this problem is to mine bug tracking systems (BTS) of open-source
applications in order to extract crash reports that include stack traces. Some of these BTSs
include manually assigned buckets.

We use four datasets generated from BTS data of open-source projects. Campbell et al. [10]
created a crash report dataset from bug reports in the Ubuntu bug repository10 comprising
issues from 617 different software systems for Ubuntu that are compatible with the C debugger.

8https://github.com/irving-muller/TraceSim_EMSE
9https://crash-stats.mozilla.org/

10https://bugs.launchpad.net/

https://github.com/irving-muller/TraceSim_EMSE
https://crash-stats.mozilla.org/
https://bugs.launchpad.net/
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We have generated three other datasets from bug reports of three popular BTSs: Eclipse11,
Netbeans12 and Gnome13. We only considered reports submitted before January 1st 2020.
NetBeans and Eclipse are well-known integrated development environments (IDEs) developed
in Java, while Gnome’s BTS keeps track of bugs from 648 software projects (applications,
libraries, bindings, among others) developed for the GNOME desktop environment. We
extracted stack traces from the description field and attached files of bug reports. To better
imitate real crash reports, we remove the attachments uploaded at most ten minutes after the
report creation. This timespan has shown to be suitable for removing files that were uploaded
after the bug report inspection by the triaging team. The parser developed by Lerch and
Mezini [93] was employed to extract stack traces from Eclipse and NetBeans BTSs, while the
Parse::StackTrace14 module was used to extract stack traces from Gnome BTS.

At some point after a new report is submitted, a user of a bug tracking system analyzes and
assigns it to either an existing (duplicate report) or a new bucket (new bug). Thus, there
is a time gap between the report submission and the triage assessment. In the meantime, a
recently submitted report can be incorrectly labeled. We believe that the span of one year
substantially reduces label instability. Therefore, in the Eclipse dataset, we only keep reports
created before 2019. NetBeans started to gradually migrate their reports to another BTS in
the middle of 2017. Thus, we only consider reports submitted until 2016 for Netbeans. Finally,
for Gnome’s BTS, we have found a significant reduction in the number of submitted reports
with stack traces after 2011 (only ∼ 2.2% of all reports in Gnome were created between 2012
and 2018). The cause of this decrease is unknown, thus we have decided to remove reports
submitted during this period to avoid undesirable bias.

Besides open-source projects, we evaluate our method using data from the JetBrains crash
report processing system Exception Analyzer. This system handles reports from various
products of the IntelliJ Platform product family, which includes IntelliJ Idea, PyCharm,
Kotlin Plugin and others. Its products have a large user base, and their maintainers receive
several hundreds of crash reports per day. If a product from the IntelliJ Platform crashes,
then Exception Analyzer receives the generated report. Newly arrived crash reports are fed
to the classification algorithm, which either assigns the report to an existing issue (which
means that the report corresponds to an existing bug) or leaves it without treatment. In the
latter case, the report status is unclassified and it is considered that a new bug is encountered.
Next, unclassified crash reports are grouped together using a clustering algorithm. These

11https://bugs.eclipse.org/bugs/
12https://bz.apache.org/netbeans/
13https://bugzilla.gnome.org/
14https://metacpan.org/pod/Parse::StackTrace

https://bugs.eclipse.org/bugs/
https://bz.apache.org/netbeans/
https://bugzilla.gnome.org/
https://metacpan.org/pod/Parse::StackTrace
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groups are then manually inspected by an on-duty QA engineer who is selected among the
developers of IntelliJ Platform every day. The QA engineer can accept the generated issue
candidate and thus, create a new issue, or decline it. The clustering algorithm can create
meaningless issues by combining crash reports belonging to different bugs. In this case, the
QA engineer can manually move reports belonging to the faulty issue to other issues or leave
them untouched. Moreover QA engineer can analyze and move reports from one issue to
another, a more suitable one, doing that not only for new issues or new reports, but also for
existing ones. QA engineer provides continued activity of supporting stack trace database
in a consistent state. The latter approach may be reasonable since new, but similar crash
reports can arrive later and then automatic clustering can create a new issue correctly. Finally,
new issues are passed to the developers of IntelliJ Platform for fixing. Both classifying and
clustering algorithms rely on stack trace comparison.

The statistics of Ubuntu, Netbeans, Eclipse, Gnome, and JetBrains datasets are presented
in Table 5.1. For Jetbrains, we show the total number of crash reports (including the
automatically classified ones) and the number of manually labeled reports inside parenthesis.
For the other datasets, we use manually labeled data only. It is important to highlight that
Jetbrains, Nebtbeans, and Eclipse are composed of Java stack traces whereas Ubuntu and
Gnome consist of C/C++ stack traces.

Table 5.1 Statistics of datasets. The number of manually labeled reports are shown inside
parenthesis for JetBrains. In the datasets of open-source projects, only manually labeled data
are used.

Dataset Period # Duplicates # Reports # Buckets
Ubuntu 2007/05/25 - 2015/10/18 11,468 15,293 3,825
Eclipse 2001/10/11 - 2018/12/31 8,332 55,968 47,636
Netbeans 1998/09/25 - 2016/12/31 13,703 65,417 51,714
Gnome 1998/01/02 - 2011/12/31 117,216 218,160 100,944
Jetbrains 2018/08/09 - 2020/05/20 880,476 (6,516) 925,233 (51,273) 44,757

5.4.2 Preprocessing

The structure of stack traces depends on the programming language. An example of a stack
trace in both C/C++ and Java is depicted in Figure 5.4.

As shown in this figure, Java stack traces are typically composed of exception class name
and message, subroutine names (fully-qualified name of the method) and location in source
code. A subroutine source consists of the file and the line where a subroutine was paused.
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eclipse.commands.ExecutionException: an exception occurred
at eclipse.commands.DefaultOperationHistory.execute(DefaultOperationHistory.java:521)
at eclipse.CopyFilesOperation.performCopy(CopyFilesOperation.java:1294)
at eclipse.CopyFilesOperation.copyResources(CopyFilesOperation.java:1815)
at eclipse.jface.ModalContext$ModalContextThread.run(ModalContext.java:122)

#0 0xa2753f in gnash::remove_listener (listener=) at bits/stl_set.h:387

#1 0xa27581 in ~button_character_instance () at button_character_instance.cpp:280

#2 0x408fee in __check_rhosts_file () from /lib/libc.so.6 

#3 0x402fa1 in waitpid () from /lib/libpthread.so.0 

#4 0xb34478 in ?? () from /usr/lib/libglib-2.0.so.0

Position Subroutine name Arguments SourceAddress

Exception Class Subroutine name SourceException Message

C/C++

Java

Figure 5.4 Stack trace example

Stack traces in C/C++ may present a wide variety of information about each frame but their
content depends on the debugger and system libraries. For instance, in Figure 5.4, the C/C++
stack trace contains frame positions, frame pointer addresses, subroutine names, arguments,
and sources. For both programming languages, we only extract the subroutine names and the
position of the frames. All remaining information is ignored for crash report deduplication.

We found some subroutine names inconsistencies in C/C++ stack traces. In order to correct
them, subroutine names were preprocessed using the following steps. First, since in some cases
the parser could not accurately separate arguments from subroutine names, we had to search
for these inconsistencies and remove them from subroutine names manually. After that, we
stripped the pattern __GI__ and underscore symbols (_) from the beginnings of names since
these prefixes are likely inserted by the debugger or compiler. Therefore, following these steps,
for instance, __GI___libc_free (mem=0x3) and __libc_free are transformed to libc_free.

When a debug package of a software system is not installed on a machine, the stack trace
may contain frames for which information about the subroutine call is missing. In these
frames, subroutines are represented as ?? in C/C++ and HIDDEN.HIDDEN in Java. We
refer to these subroutines as unknown subroutines. In our experiments, we test two different
strategies to handle such subroutines: the first approach considers them as equivalent for
stack trace comparison, while the second treats them as different. Although the first strategy
prevents the wrong comparison of different subroutines, the second one can detect patterns of
subsequences with unknown subroutines.

Removing recursion is an important preprocessing step [21, 95]. We test two different recursion
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removal algorithms. The first algorithm, proposed by Brodie et al. [21], removes subsequent
frames with the same subroutine names. The second one, developed by Modani et al. [95],
strips all frames that occurred between two similar frames of the same subroutine. Finally, to
remove uninformative functions, we employed the unsupervised algorithm created by Modani
et al. [95]. In this method, a frame is considered uninformative when the document frequency
percentage of its subroutine name is higher than a threshold. Consecutive uninformative
frames in the top and bottom positions are removed from the stack traces.

5.4.3 Multiple Stack Traces

Crash reports may include multiple stack traces, mainly due to multi-processing and multi-
threading systems. When such systems crash, each process or thread usually generates a
specific stack trace. Since the information of which thread/process that caused the crash may
be unknown, all stack traces are considered for deduplication. Another cause is related to the
data characteristics. In Netbeans and Eclipse BTSs, bug reports can include multiple stack
traces within their description and attached files. According to Schroter et al. [8], these extra
stack traces provide additional information about an issue. Thus, we keep all stack traces
found in a report. Finally, stack traces from a nested exception were considered as different
stack traces since some of them are related to process/thread executions and the extraction
method proposed by Lerch and Mezini [93] incorrectly considers a significant amount of nested
exceptions to be single stack traces. In Table 5.2, we present the number of reports with
multiple stack traces.

In order to compute the similarity between two crash reports q and c that contain multiple
stack traces, we compute the similarity of all possible pairs of stack traces, in which one
member of the pair belongs to the query crash report q and the other comes from the candidate
crash report c. Thus, a similarity matrix S ∈ Rm×n is created where Si,j is the similarity
between the i-th and j-th stack traces in q and c, respectively. We then assess six different
strategies to reduce this matrix to a real number. The first strategy performs the reduction

Table 5.2 Number of reports with multiple stack traces (ST), total number of reports, and
the ratio of these two quantities for each dataset.

BTS # Reports w/ Multiple ST # Reports Ratio
Ubuntu 5 15,293 0.03%
Eclipse 13,641 55,968 24.37%
Netbeans 40,147 65,417 61.37%
Gnome 174,841 218,160 80.14%
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as follows:
max_stg(S) = max

1≤i≤m,1≤j≤n
Si,j. (5.15)

Basically, this strategy returns the highest value in the similarity matrix.

The next five strategies perform matrix reduction by applying a maximum operation followed
by a mean operation. The first one is defined as follows:

query_stg(S) = 1
m

m∑
i

max
1≤j≤n

Si,j. (5.16)

query_stg(·) computes the average of the maximum similarity of each stack trace in the query.
A similar strategy can be applied to the stack traces in the candidate:

cand_stg(S) = query_stg(Sᵀ). (5.17)

Instead of considering the stack trace sources, the third strategy calculates the mean of
maximum values of the shortest report (report that contains the smallest number of stack
traces):

short_stg(S) =

query_stg(S), if m ≤ n

cand_stg(S), otherwise.
(5.18)

The opposite strategy is defined as follows:

long_stg(S) =

query_stg(S), if m ≥ n

cand_stg(S), otherwise.
(5.19)

Finally, the last approach is:

avg_stg(S) = query_stg(S) + cand_stg(S)
2 . (5.20)

5.4.4 Proposed Evaluation Methodology

In previous literature, there is no widely adopted methodology for evaluation of crash report
deduplication systems. Nevertheless, two common approaches are ranking [93, 94] and
binary classification [95, 96]. Both approaches have their own strengths, as well as some key
limitations. In ranking approaches, a query crash report q is given and its similarity to each
previously submitted report is computed. Then, a ranked list of candidate reports, sorted
by decreasing similarity to q, is evaluated by means of classic ranking metrics. The higher
the system ranks duplicates of q in that list, the better its performance is. However, ranking
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metrics are usually not defined for singleton (non-duplicate) queries. This is a key drawback
of ranking methodologies because they disregard the ability of a system to filter out singleton
crash reports. This is highly undesirable given the large volume of crash reports submitted to
a typical crash report system. In contrast, binary classification approaches focus exactly on
this filtering task. Such approaches tackle the classification problem of predicting if a query
crash report is either duplicate or non-duplicate. However, they ignore one, if not the most,
important aspect of crash report deduplication: identification of reports concerning the same
software bug. In summary, the blind spot of binary classification approaches is covered by
ranking approaches, and vice-versa.

Other popular approaches [10, 22, 102] treat crash report deduplication as a clustering problem
by considering buckets of reports as clusters. The clustering metrics consider the global solution
to measure the grouping quality, i.e., all reports are used to compute the evaluation metrics.
However, in practice, software projects frequently contain an initial repository in which
submitted reports are already pre-assigned to buckets. Since these previously submitted
reports are considered in our evaluation methodology, we have opted to not using clustering
metrics here. Instead, we have adopted metrics that are not affected by the presence of earlier
reports.

Bug report deduplication is a problem related to crash report deduplication. Its input is a
textual description of a software issue. The body of literature regarding this problem is larger
than that for crash report deduplication. Inspired by Banerjee et al. [15], which proposed an
evaluation methodology for bug report deduplication, our evaluation methodology combines
both ranking and binary classification metrics. For ranking, we use two classic metrics: Mean
Average Precision (MAP) and Recall Rate@k (RR@k) [14]. For binary classification, we use
the classic Area Under the ROC Curve (AUC). Thus, our methodology can measure the
system capacity to filter duplicate and non-duplicate reports, compute the percentage of
duplicate reports correctly assigned to buckets, and evaluate ranking quality. Additionally,
Rakha et al. [111], also in the context of bug report deduplication, suggest to evaluate a
system on different portions of a dataset in order to better study how varies performance due
to data changes. Moreover, this idea inspired us to develop our own methodology to crash
report deduplication.

Query and Candidate Sets

In our methodology, a dataset of crash reports is always organized in chronological order, as
this better reflects the real scenario of software engineering projects. In order to compute
each metric, we first select a query set Q of consecutive crash reports within a given dataset.
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In Figure 5.5, we illustrate a chronologically-ordered dataset, a query set Q within it, and
other key aspects of our methodology. When evaluating a system, each query report q ∈ Q is
considered as a newly submitted crash report; and reports submitted before q are considered
candidate reports, i.e. possible duplicates of q. More specifically, for each query report q ∈ Q,
we define a corresponding candidate set C(q) with reports in the dataset that were submitted
before q.

Previous reports Q: query set

qC(q)
(2 years)

Unreachable
for q

Later reports

Time

Figure 5.5 Illustration of a chronologically-ordered dataset in which we select a query set Q
(blue span). Given a query report q ∈ Q, its corresponding candidate set C(q) is shown.

Same as bug report datasets, crash report datasets can be very large. Banerjee et al. [15]
suggest to limit the candidate set C(q) to a certain time window in the context of bug report
deduplication. This way, we reduce both the computational cost of duplicate report detection
and the performance degradation due to the repository growth over time. As depicted in
Figure 5.5, we limit C(q) to a time window of two years. That is, for any q ∈ Q, C(q)
comprises all reports in the dataset submitted at most two years before q. Reports submitted
more than two years before q are not reachable by the systems being evaluated.

In Table 5.3, we illustrate a dataset comprising 11 reports identified as C1, C2, . . . , C11. The
query set Q = {C7, C8, C9} is highlighted in blue. The first step of evaluating a system for a
given query set consists of computing sim(q, c) for all q ∈ Q and c ∈ C(q). For our example,
we present these values in the columns labeled as sim(q, ·) for q ∈ Q. In these columns, a
value of UR in a row c indicates that c /∈ C(q), i.e., report c is unreachable for query q. For
example, when q = C9, reports C1, C2, and C3 are unreachable because they were submitted
more than two years before C9. Additionally, all reports submitted after q are unreachable
for q.

Limiting C(q) by a time window is usually not a big issue since, in most cases, crash reports
related to a bug are frequently submitted until the bug is fixed. That is, for most bugs, there
is not a large gap between duplicate reports. In order to show that this is true for our datasets,
we present in Table 5.4 the percentage of query reports that have at least one duplicate bug
within a time window of two years. In the worst case (Eclipse), for less than 2.7% of all
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Table 5.3 Example of a dataset: query set Q = {C7, C8, C9} (blue rows) and similarities
computed by a fictitious system between each query q ∈ Q and candidate C(q). An UR label
indicates that a candidate report c is UnReachable for a query q.

Id Creation Date Bucket sim(C7, ·) sim(C8, ·) sim(C9, ·)
C1 2014/12/02 BC1 0.0 0.2 UR
C2 2014/12/24 BC1 0.0 0.5 UR
C3 2015/01/01 BC3 0.2 0.1 UR
C4 2015/06/12 BC3 0.7 0.0 0.8
C5 2016/02/22 BC3 0.3 0.3 0.1
C6 2016/05/25 BC6 0.6 0.4 0.3
C7 2016/05/26 BC6 UR 0.0 0.2
C8 2016/12/01 BC8 UR UR 0.1
C9 2017/05/25 BC3 UR UR UR
C10 2017/05/26 BC10 UR UR UR
C11 2017/11/02 BC8 UR UR UR

possible query reports, no previous duplicate report is reached using a window of two years.

For JetBrains, we keep the original two-month time window employed in their system. We
have found that 96.60% of query reports in the Jetbrains data can reach at least one duplicate
report in this time window.

Table 5.4 Percentage of query reports that reaches at least one duplicate report in a time
window of two years.

Dataset 2 years
Ubuntu 99.47%
Eclipse 97.36%
Netbeans 98.68%
Gnome 99.50%

Bucket-Level Metrics

In our exemplary dataset in Table 5.3, we include a column that indicates the bucket of
each report. A bucket is identified as Bm where m corresponds to its master report, i.e.,
the first submitted (oldest) report in the bucket. For instance, bucket {C6, C7} is denoted
BC6. When evaluating a system, we consider that the correct buckets in C(q) are known.
Thus, a system does not need to predict duplicate reports, but duplicate buckets, instead. In
that way, our metrics are defined in terms of candidate buckets instead of candidate reports.
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We denote CB(q) the set of candidate buckets for a query q. This set is derived from C(q),
that is, CB(q) comprises buckets whose reports are in C(q). For example, we have that
CB(C7) = {BC1, BC3, BC6}. We then define the similarity sim(q, B) between a query report
q ∈ Q and a bucket B ∈ CB(q) as the maximum similarity between q and a candidate report
c ∈ B, that is:

sim(q, B) = max
c∈B

sim(q, c). (5.21)

In our example, we have sim(C7, BC3)=0.7. As shown by Equation (5.21), all reports from
B, even those outside the two-year time window, are considered to compute sim(q, B). This
is natural since we want to capture the full similarity between B and q.

In Table 5.5, we present the similarity for all pairs q ∈ Q and B ∈ CB(q) for this dataset.
We can observe that some buckets in the dataset are unreachable for some queries (the UR
value in the table). That is the case when, for a given query, all reports of some bucket are
unreachable. For instance, when q = C9, bucket BC1 is unreachable because all its reports (C1
and C2) in the dataset are unreachable for C9. Regarding the same query, BC3 is reachable
since at least one of its reports is reachable for C9, e.g., C4 ∈ C(C9). Thus, all the reports
in BC3 are considered to calculate sim(C9, BC3) including C3 that is not within the time
window.

Table 5.5 Similarity matrix sim(q, B) between each query report q ∈ Q and each bucket
B ∈ CB(q) for the dataset in Table 5.3. A UR value indicates that all reports in a bucket
B are unreachable for a query q. In the last column, we present the correct bucket for each
query report.

Query q
Buckets Correct Bucket

BC1 BC3 BC6 BC8

C7 0.0 0.7 0.6 UR BC6
C8 0.5 0.3 0.4 UR BC8
C9 UR 0.8 0.3 0.1 BC3

Based on the similarities between queries and their candidate buckets, our methodology
evaluates a method for crash report deduplication by using ranking and binary classification
metrics.

Ranking Metrics

As mentioned before, ranking metrics disregard a query that corresponds to a singleton report.
For the query set Q = {C7, C8, C9} in Table 5.3, when q = C8, our methodology considers C8
as a singleton report since it is the first report of its bucket (master report). Although C11 is a
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duplicate of C8 in the dataset, C11 is not considered in this case since it is submitted after C8.
Therefore, we only consider two duplicate reports in Q (C7 and C9) to compute the ranking
metrics. The set of duplicate reports within Q is denoted Qd ⊂ Q. Given the similarities
between a duplicate query q ∈ Qd and each of its candidate buckets CB(q), we sort this set
in descending order of similarity. We define this sorted list as L(q) = (Bs

1, B
s
2, . . . , B

s
|CB(q)|),

where Bs
i ∈ CB(q). In our example, Qd = {C7, C9} and we have: L(C7) = (BC3, BC6, BC1)

and L(C9) = (BC3, BC6, BC8).

The first ranking metric is MAP which is the mean of the Average Precision (AP) for all
queries in Qd:

MAP =
∑
q∈Qd AP(q)
|Qd|

. (5.22)

In our scenario, AP is very simple because, for a query q ∈ Qd, there is only one relevant
bucket in CB(q) that is the correct bucket for q. For a query q ∈ Qd, AP is given by:

AP(q) = 1
p
, (5.23)

where p is the position of the correct bucket for q in the sorted list of candidate buckets L(q).
In our example, AP(C7) = 1/2 and AP(C9) = 1. An AP equal to one means that the system
ranked the correct bucket in first place.

MAP is a relevant ranking metric, especially when comparing different ranking systems.
However, when we consider a realistic scenario in which a manual triage of possible duplicate
reports is necessary, the Recall Rate@k metric is more informative. This metric is defined as:

RR@k =
∑
q∈Qd 1k(q)
|Qd|

, (5.24)

where k ≥ 1 is an integer parameter of the metric and 1k(q) is an indicator function whose
value is one when the correct bucket for q is ranked within the first k positions in L(q). This
way, RR@k is the percentage of ranked lists in which the correct bucket is within the top-k
positions. RR@1 is the percentage of duplicate queries for which the correct bucket is ranked
first, corresponding to the accuracy of a completely autonomous system.

Due to the two-year time window, the correct bucket of a query q might not appear in CB(q)
and, therefore, its position is undefined in L(q). This case occurs in real scenarios and it
negatively affects the performance of crash report deduplication systems. To reproduce this
impact on real environments, we consider AP(q) = 0 and 1k(q) = 0 for each query q whose
correct bucket is not in L(q).
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Binary Classification Metric

As discussed before, ranking metrics have a relevant limitation: they ignore non-duplicate
reports in the query set. When considering a realistic scenario in which manual triage is
necessary, the ability of a system to filter out non-duplicate reports is highly valuable. In the
following, we explain how to cast a similarity-based system as a binary classifier that predicts
if a query report is duplicate or not.

Given a query q ∈ Q (including singletons) and the corresponding sorted list of candidate
buckets L(q) = (Bs

1, B
s
2, . . .), we use the highest similarity among all candidate buckets, that

is, sim(q, Bs
1), as a classification score. For the example in Table 5.5, we have the classification

scores: sim(C7, Bs
1)=0.7, sim(C8, Bs

1)=0.5 and sim(C9, Bs
1)=0.8. Since sim(q, ·) ∈ [−1, 1], we

can derive a binary classifier by defining a threshold t such that q is considered duplicate if
sim(q, Bs

1) ≥ t. In our evaluation, we do not need to choose t, because we use the classic Area
Under the ROC Curve metric. The ROC curve is a plot of the true positive rate versus the
false positive rate for every possible classification threshold. AUC summarizes the ROC curve
in one meaningful number between zero and one. For example, the AUC for the query set in
Table 5.5 is equal to one.

Parameter Tuning and Model Validation

TraceSim and other methods include some parameters that need to be tuned. In order to
avoid reporting overestimated performance, we tune parameters on a query set denoted tuning
set T and then, using the best parameters, we report final performance on a consecutive and
non-overlapping query set denoted validation set V . Since some concept drift along time in
most crash report datasets is expected, the tuning set comprises the reports immediately
preceded by the reports in the validation set. In Figure 5.6, we depict these two sets within
a chronologically-ordered dataset. In the figure, we highlight two query reports: qt ∈ T

and qv ∈ V . We can notice that the candidate sets C(qt) and C(qv) can overlap, but the
corresponding query sets T and V do not. The time period of a validation set V is one year.
The corresponding tuning set T is delimited such that |T d| = 250, that is, T contains 250
duplicate reports along with all singleton reports submitted in the same period. We have
found that |T d| = 250 leads to good results, and that larger tuning sets did not improve
overall performance.

As mentioned in Section 5.2.4, we tune parameters by means of TPE, a machine learning
technique. We run TPE for 100 iterations15 and choose the best parameters based on the sum

15We conducted a preliminary investigation to find the best number of iterations.
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Figure 5.6 Depiction of tuning and validation sets within a dataset.

of MAP and AUC values on the tuning set. The selected parameters are then used to compute
the three considered metrics (MAP, AUC and RR@k) on the corresponding validation set.
The tuned parameters are:

• the ones that control the frame weights used by the optimal global alignment algorithm:
α, β and γ (Sections 5.2.1 and 5.2.2);

• the approaches to handling unknown subroutines (Section 5.4.2);

• the threshold to consider a subroutine as uninformative (Section 5.4.2);

• recursion removal algorithms (Section 5.4.2);

• the strategies to reduce the similarity matrix (Section 5.4.3).

Because of the natural concept drift in our datasets, the performance of a single method
usually varies a lot from one query set to another, even within the same dataset. Thus, Rakha
et al. [111] suggested to perform experimental evaluation on different portions of the dataset.
Based on that suggestion, we perform our experiments as follows. Along each dataset, we
randomly sample 50 validation sets. For each validation set, a corresponding tuning set is
selected comprising reports submitted immediately before the validation reports. In Figure
5.7, we illustrate an example of five randomly selected validation sets within a dataset, along
with the corresponding tuning sets. As one can observe, the selected query sets may overlap.

Unlike the datasets derived from open source projects, Jetbrains contains much more reports
that were labeled by an automated system. To replicate a similar experimental setup to the
production environment of Jetbrains, we consider such reports for the experiments. However,
to mitigate the impact of mislabelling on the evaluation, automatically classified reports in the
tuning and validation sets are disregarded for computing the ranking and binary classification
metrics. That is, we do not consider these reports as queries, even though they can be in
the candidate sets and they are used to compute the document frequency of the subroutines.
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Figure 5.7 Five randomly selected validation sets along with the corresponding tuning sets
within the same dataset.

Moreover, since the Jetbrains dataset contains much more reports than the other datasets,
the time period of their validation is set to only one month and the number of iterations for
TPE is decreased to 50. The number of sampled validation sets and the size of the tuning set
are not modified.

5.4.5 Competing Methods

In order to evaluate TraceSim we have selected a number of baselines. For this, competing
methods from the information retrieval, string matching, and machine learning areas were
selected. They have been selected due to TraceSim being a structural composition of the
methods belonging to these groups.

In information retrieval category we have selected two techniques: TF-IDF and DURFEX.
TF-IDF was implemented in Apache Lucene. Campbell et al. [10] showed that it achieves
poor performance when using only stack trace information. In fact, following Lerch and
Mezini [93], we treat subroutine names as single terms. DURFEX is only tested in Eclipse
and Netbeans datasets since it was specifically developed for Java stack traces. Besides that,
in this method, we only consider the cosine similarity of the stack trace vectors for crash
report deduplication. We also compare TraceSim to five other methods: PDM, Prefix Match,
the original NW algorithm, the matching algorithm proposed by Brodie et al. [21], and the
reranking method designed by Moroo et al. [102]. These methods are described in Section 5.3.
Hereafter, Prefix Match is abbreviated to PrefixM, and we denote the techniques proposed by
Brodie et al. [21] and Moroo et al. [102] as Brodie and Moroo, respectively. Finally, for the
sake of fairness, all methods have access only to the positions and subroutine names of the
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frames in the stack traces.

We disregard some previous methods in our experiments due to different reasons. Top
signature-based methods have been shown to achieve worse performances than TF-IDF [10].
The technique proposed by Bartz et al. [96] depends on features (frame offsets and module
names) that are not available in a significant portion of the stack traces in the datasets.
CrashGraph [98] leverages all crash reports of a bucket to generate a bucket representation.
As the majority of the works in the literature, our paper focuses on the similarity of stack
traces and, therefore, CrashGraph is beyond the scope of this study. Ebrahimi et al. [100]
propose a method that requires predefined buckets because an HMM is trained for each
bucket. Koopaei and Hamou-Lhadj [99] also assume a fixed number of buckets to evaluate
CrashAutomata and it is uncertain how to employ this technique correctly in a scenario that
does not hold such an assumption. Since our evaluation methodology considers that singletons
and new buckets may be generated during evaluation, which is typical in real projects, we do
not consider these two previous methods.

Regarding the competing methods with learned parameters, their original studies either do
not describe the training process or use grid search to tune the hyperparameters. Since
Tree-structured Parzen Estimator achieves similar or better performance than grid search
[122, 125, 126], this Bayesian optimization technique is used to tune the parameters of the
competing methods for each chunk. Table 5.6 presents all tuned parameters for each method.
For all methods, except Durfex and TF-IDF16, we also tune the following preprocessing
choices: the strategies to reduce the similarity matrix; the approaches to handling unknown
subroutines; the threshold of considering a subroutine as uninformative; and the recursion
removal algorithms.

5.5 Experimental Results

In this section, we compare TraceSim to the competing methods regarding AUC, MAP, and
RR@1 on Ubuntu, Eclipse, Netbeans, Gnome, and JetBrains datasets. The statistics of these
datasets are presented in Table 5.1 (Section 5.4.1). We also present an ablation study to
assess the main components of TraceSim and investigate the effectiveness of our method
of computing mismatch and gap values. As previously described, we consider 50 random
validation sets for each dataset. We use the same validation sets, and the corresponding tuning
sets, to evaluate all methods using the three aforementioned metrics. We then report, for
each method, the distribution of each metric in the 50 validation sets using violin plots [127].

16These strategies were designed for techniques that consider the frame order. Since these information
retrieval techniques are based on the bag-of-words model, such strategies are not effective for them.
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Table 5.6 Tuned parameters for each method. For competing methods, we keep the original
names.

Method Parameter
TF-IDF No learnable parameters
PrefixM No learnable parameters
DURFEX N-gram
NW algorithm Match, mismatch and gap values
Brodie Gap value
PDM c and o
Moroo c, o, α, and M
TraceSim α, β and γ

These plots are produced by the standard kernel density estimation (KDE) as implemented in
the seaborn library [128]. For each violin plot, we present: the estimated distribution curve;
three dashed lines indicating the 25th, the 50th, and the 75th percentiles; and a white dot
indicating the mean metric value.

Additionally, when comparing TraceSim to a competing method (including different versions
of itself in the ablation study), we compute the difference between the performance obtained
by TraceSim and the competing method in each validation set. These differences in terms
of AUC, MAP, and RR@1 are denoted, respectively, ∆AUC, ∆MAP, and ∆RR@1. These
values are positive whenever TraceSim outperforms a competing method on a validation
set. For each competing method, we plot the distribution of the 50 differences by means of
ordinary box plots. In these plots, we include a white point to indicate the mean difference
between TraceSim and the competing method. Finally, following [111], we apply the Wilcoxon
signed-rank test [129] to evaluate whether the obtained performance differences are statistically
significant. The statistical hypotheses are:

H0: The two methods have the same performance.

H1: The two methods have different performance.

The null hypothesis (H0) is rejected in favor of the alternative hypothesis (H1) whenever
p < 0.01. We indicate statistical significance by appending the symbol F to the name of the
competing method within the corresponding box plot.
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5.5.1 Results

In Figure 5.8 (left), we present the distributions of the AUC values achieved by TraceSim and
each competing method on the five considered datasets. In turn, in Figure 5.8 (right), we
depict the performance differences between TraceSim and other methods in terms of AUC,
i.e., ∆AUC.

TraceSim consistently achieves competitive AUC values in all datasets. It significantly
outperforms the second best technique by, on average, 6.44% in Ubuntu, 2.01% in Eclipse, and
1.39% in Netbeans. In Gnome, TraceSim substantially surpasses all methods except the NW
algorithm which presents similar performance (the mean of ∆AUC is approximately zero).
Finally, in the JetBrains dataset, our method yields AUC values comparable to Moroo, PDM,
and PrefixM. The average of ∆AUC between TraceSim and these techniques are +0.40%,
-0.06%, and -0.22%, respectively. However, these differences are not statistically significant.

In Figure 5.9 , we present the results of the same experiments but now with respect to the
MAP values obtained by TraceSim and each competing method on the five datasets. In
general, TraceSim significantly outperforms the majority of the methods regarding MAP in
all datasets. The exceptions are TF-IDF in Gnome and PDM in Eclipse, Netbeans, and
JetBrains. Although TraceSim surpasses TF-IDF by 2.35% on average in Gnome, ∆MAP is
not statistically significant in this case (the variance varies from -10.46% to 18.87% and the
median is relatively close to 0). Regarding PDM, the average of ∆MAP between TraceSim and
this method are +0.76% in Eclipse, -0.04% in Netbeans, and +0.25% in JetBrains. However,
we consider the performance of these methods comparable since the differences in their results
are not significant.

Regarding the RR@1 evaluation metric (Figure 5.10), TraceSim significantly outperforms
most of the methods in all datasets. Similar to the MAP analysis, we do not find statistically
significant differences in three exceptional cases: TF-IDF in Gnome, and PDM in both Eclipse
and JetBrains. However, we observe distinctive findings in NetBeans: TraceSim significantly
underperforms PDM (-1.11% on average), achieving results comparable to PrefixM and Moroo.
Even though TraceSim is not dominant in Netbeans regarding RR@1, it consistently achieves
competitive RR@1 values across all datasets. For example, on average, TraceSim greatly
surpasses PDM by 7.47% in Ubuntu and 12.93% in Gnome.

In general, TraceSim consistently achieves competitive performance for each different com-
bination of dataset and metric. Actually, in the majority of the experimented scenarios, it
significantly outperforms all competing methods. Our method is surpassed by PDM in a
unique scenario (RR@1 on Netbeans). However, in this same dataset, TraceSim substantially
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Figure 5.8 Results regarding AUC. Left: distribution of AUC achieved by TraceSim and each
competing method in all validation sets of each dataset. Right: ∆AUC between TraceSim
and each competing method.
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Figure 5.9 Results regarding MAP. Left: distribution of MAP achieved by TraceSim and each
competing method in all validation sets of each dataset. Right: ∆MAP between TraceSim
and each competing method.
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Figure 5.10 Results regarding RR@1. Left: distribution of RR@1 achieved by TraceSim
and each competing method in all validation sets of each dataset. Right: ∆RR@1 between
TraceSim and each competing method.
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outperforms PDM in terms of AUC by 6.94% on average. In fact, none of the competing
methods were able to outperform TraceSim across all metrics in a specific dataset. Finally,
TraceSim is the only method that consistently performs well on different programming lan-
guages. For instance, in terms of MAP, there is no significant difference between PDM and
TraceSim on Java datasets (Eclipse, Netbeans, and JetBrains). However, the improvement of
TraceSim over PDM regarding MAP is, on average, 6.41% in Ubuntu and 11.99% in Gnome.

5.5.2 Ablation Study

An ablation study aims to assess specific model components by measuring performance
degradation when each component is independently removed. In this section, we first conduct
an ablation study to assess four important TraceSim components, namely global weight, local
weight, the diff(·) function, and normalization. We then evaluate whether the approach to
compute mismatch and gap values based on frame weights is more effective than previous
strategies proposed in the literature. These two studies are performed only on Ubuntu,
Eclipse, and Netbeans datasets due to the high computational cost of conducting such
extensive experiments on Gnome and JetBrains.

TraceSim Components

We evaluate four important TraceSim components:

• Global Weight. In order to investigate the importance of TF-IDF for TraceSim, we
ignore the global weight when computing the weight of a frame. This is achieved by
setting gw(·) = 1 in Equation (5.4).

• Local Weight. Although frame positions are known to be valuable features for crash
report deduplication, we measure the importance of this information for TraceSim.
Thus, the local weight term is ignored by setting lw(·) = 1 in Equation (5.4).

• The diff(·) function. The difference between the positions of two matched frames is
incorporated in PDM and Moroo. However, the corresponding papers do not include
a study regarding the importance of this aspect. We ignore the diff(·) function in the
match score function by setting diff(·) = 1 in Equation (5.9).

• Normalization. Many methods [22, 93, 94, 95] normalize similarity scores, although
none of them have investigated the importance of this procedure.
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(a) Global Weight removed.
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(b) Local Weight removed.
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(c) The diff(·) function removed.
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(d) Normalization removed.
F p < 0.01

Figure 5.11 Ablation study results: distributions of ∆AUC (left), ∆MAP (middle) and
∆RR@1 (right) between full TraceSim and TraceSim with different components removed.
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In Figure 5.11, we depict performance differences (∆AUC, ∆MAP, and ∆RR@1) between the
full TraceSim and its modified versions for which we remove each component listed above.

As shown in Figure 5.11a, ignoring global weights significantly reduces performance in six out
of the nine considered settings. The only three exceptions are RR@1 on Eclipse as well as
RR@1 and MAP on NetBeans. Moreover, the only setting for which Global Weight deteriorates
TraceSim’s performance is RR@1 on NetBeans. These results corroborate the hypothesis that
the global frequency of subroutines provide valuable information to discriminate important
frames. In Figure 5.11b, we observe that TraceSim performs significantly worse on NetBeans
and Eclipse when Local Weight is removed. On the Ubuntu dataset, this component appears to
have no significant impact. As shown in Figure 5.11c, the position difference of matched frames
significantly improves model performance in all datasets. This corroborates the hypothesis
that duplicate stack traces contain important frames in close positions. Finally, in general,
performance degrades significantly when normalization is not applied. As illustrated in Figure
5.11d, this component is not significantly relevant only in three settings: RR@1 on Netbeans,
RR@1 on Eclipse, and AUC on Eclipse.

In Appendix C, we additionally report the performance differences between full TraceSim
and each of the meaningful combinations that has at least two of four components removed.
Overall, the findings are similar to the ones reported in this section.

Mismatch and Gap Values

In previous works, mismatch and gap values are defined as zero or some other constant.
TraceSim, in constrast, defines mismatch and gap values based on frame weights, just as
match values. The intuition is that the importance of unmatched frames should also be
considered by the alignment algorithm. In order to compare the effectiveness of our strategy,
we test all meaningful combinations in which mismatch and gap values are set by one of the
following strategies:

• Zero. Values are set to zero, so that they have no cost in the optimal alignment.

• Constant. Values are constant real numbers tuned by the ML algorithm from the
set {0.0, 0.1, . . . , 6.0}. These predefined set of values achieved the best and consistent
results.

• Variable. Gap and mismatch values are given by Equations (5.7) and (5.8), respectively.
This corresponds to the proposed strategy used in TraceSim for both values: mismatch
and gap.
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There are nine possible combinations when considering the three aforementioned strategies to
set mismatch and gap values individually. However, when Gap=Zero (i.e. gap values are set
using the Zero strategy), we have that the mismatch operation is useless regardless of its value,
since we can always replace a mismatch by two subsequent gaps with no cost in these cases.
Thus, we have that 〈Mismatch=Constant; Gap=Zero〉 and 〈Mismatch=Variable; Gap=Zero〉
are both equivalent to 〈Mismatch=Zero; Gap=Zero〉. This leaves us with seven meaningful
strategies. Thus, in the following, we analyse performance differences (∆AUC, ∆MAP, and
∆RR@1) between the full TraceSim method 〈Mismatch=Variable; Gap=Variable〉 and the
remaining six strategies.

In Table 5.7, we show whether ∆AUC, ∆MAP, and ∆RR@1 are statistically significant for
each one of the six competing strategies in Ubuntu, Eclipse, and Netbeans (the datasets
names are abbreviated to U, E, and N, respectively). A F symbol in a cell indicates that
TraceSim significantly outperforms the strategy on the dataset and metric corresponding to
that cell. It is important to highlight that no competing strategy achieves better average
performance than TraceSim in these experiments.

Table 5.7 Performance differences between TraceSim and the six meaningful strategies to set
mismatch and gap values which are statistically significant. Cells marked with a F indicate
that the performance difference on the corresponding dataset and metric is statistically
significant. Due to space constraints, we abbreviate Ubuntu, Eclipse, and NetBeans as U, E,
and N, respectively, in the column labels.

Strategy Equiv ∆AUC ∆MAP ∆RR@1
Mismatch Gap U E N U E N U E N

Zero Zero PDM F F F F F
Zero Constant Brodie F F F F F F
Zero Variable – F F F F F F F

Constant Constant – F F F F F F
Constant Variable –
Variable Constant – F F F F F F F

First, we focus on the results of the three strategies in which mismatch values are defined
as zero 〈Mismatch=Zero; Gap=*〉. These results correspond to the first three rows in Table
5.7. The 〈Mismatch=Zero; Gap=Zero〉 and 〈Mismatch=Zero; Gap=Constant 〉 strategies
are equivalent to the strategies used in PDM and Brodie methods, respectively. Overall, the
strategy in which mismatch is set to zero negatively affects the method performance. For
instance, the 〈Mismatch=Zero; Gap=Zero〉 strategy, the best approach among the three ones,
significantly degrades the performance in Ubuntu regarding all metrics and in Eclipse and
Netbeans in terms of AUC. According to the results, we can conclude that the TraceSim
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strategy is more effective than the ones employed in Brodie and PDM techniques.

We now consider the results of the three remaining strategies in which mismatch values
are set according to either Constant or Variable strategies. Both 〈Mismatch=Constant;
Gap=Constant〉 (fourth row) and 〈Mismatch=Variable; Gap=Constant〉 (last row) strategies
perform significantly worse in, respectively, six and seven out of the nine evaluation settings.
On the other hand, the 〈Mismatch=Constant; Gap=Variable〉 strategy presents negligible
effect on model performance, resulting in no significant difference in any evaluation setting.
After analysing these results more carefully, we found that the constant mismatch value
was set to high values in most of the cases by the TPE technique. More specifically, this
value was equal to or greater than 2.0 in 126 out of 150 chunks, i.e. 84% of the cases. Since
the upper bound of a gap value is 1.0 (see Equation (5.7)), a mismatch value equal to or
greater than 2.0 means that the alignment algorithm will basically avoid mismatches. Recall
that in TraceSim two subsequent gaps can always replace a mismatch with no effect in the
optimal alignment cost. Thus, the 〈Mismatch=Constant; Gap=Variable〉 strategy, when
using such high mismatch values, is equivalent to TraceSim. Overall, the results corroborate
the hypothesis that gaps should be prioritized over mismatches, since gaps are more flexible.
Moreover, we conclude that the proposed strategy to set mismatch and gap values based on
frame importance is relevant to TraceSim’s performance.

In addition to Table 5.7, for more details, we provide box-and-whiskers plots of the performance
differences between TraceSim and the six strategies in Figure 5.12 and Figure 5.13.

5.5.3 Time Efficiency

The comparison of a query to candidates within a dataset is the most critical efficiency issue in
crash report deduplication. Due to the use of an inverted index, information retrieval methods
are more efficient than matching algorithms to generate the ranked list of a query q. In one
hand, the complexity of information retrieval methods with inverted index is O(|qb| log |V |d),
where |qb| is the set of subroutines in the query, |V | is the vocabulary size, d is equal to the
number of candidates in C(q). In the other hand, the complexity of matching algorithms
is O(|q||c|max|C(q)|), where |q| is the query length, and |c|max is the longest candidate in
C(q). In real applications, d tends to be much smaller than |C(q)| since information retrieval
techniques only compute the similarity of candidates that contain subroutines shared with
the query. This explains the considerable superiority of information retrieval techniques over
matching algorithms in terms of efficiency.

In practice, two simple approaches can be employed to speed up matching algorithms. The
first one consists of using time windows to reduce the number of candidates to be considered
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(a) Mismatch=Zero/Gap=Zero.
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(b) Mismatch=Zero/Gap=Constant.
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(c) Mismatch=Zero/Gap=Variable.
F p < 0.01

Figure 5.12 Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right) between
complete TraceSim and three strategies in which mismatch values are defined as zero.
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(a) Mismatch=Constant/Gap=Constant.
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(b) Mismatch=Constant/Gap=Variable
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(c) Mismatch=Variable/Gap=Constant.
F p < 0.01

Figure 5.13 Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right) between
complete TraceSim and three strategies in which mismatch values are set according to either
Constant or Variable strategies.
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for deduplication. The second approach, called re-ranking, first creates a temporary ranked
list based on information retrieval techniques. Then it recalculates the similarity score of the
top-k candidates in the list using a more complex algorithm.

We examine the throughput of TraceSim (with and without time window), TF-IDF, and
Moroo (a re-ranking technique) on the two largest datasets: Gnome and JetBrains. These
techniques are executed on one of the original validation sets in a controlled and homogeneous
environment17. Excluding the reports submitted after the validation sets, the experiment
setups in Gnome and JetBrains contain 216,646 and 901,015 reports, respectively. As we can
observe, the number of reports is very close to the total number of reports in the datasets
(see Table 5.1).

In Table 5.8, we show the throughput (queries/second) of TraceSim with and without time
window, TF-IDF, and Moroo in Gnome and JetBrains data sets. The time window approach
improves the algorithm throughput by around 5.0 and 2.5 times in Gnome and JetBrains,
respectively. However, even using a time frame, TF-IDF is substantially more efficient than
TraceSim – the speedup is approximately 4.37 and 7.58 in Gnome and JetBrains. As expected,
Moroo is slower than TF-IDF but the gap is much smaller in comparison to TraceSim –
TF-IDF is 1.32 and 2.41 times faster than Moroo in Gnome and JetBrains.

Table 5.8 Throughput (queries / second) of TraceSim with and without time window, TF-IDF,
and Moroo in Gnome and JetBrains.

Method Gnome JetBrains
TraceSim without Time window 0.5319 0.1080
TraceSim with Time window 2.6897 0.2569
TF-IDF 11.7687 1.9476
Mooro 8.8822 0.8051

In brief, it is difficult to determine whether the throughput of TraceSim presented in Table 5.8
is viable or not for a particular software project since a throughput of 2.62 or 0.25 may be
satisfactory depending on the application. In cases that TraceSim is not viable due to its
run time, besides calibrating the time window, re-ranking could be employed to accelerate it.
However, more investigation is needed to figure out whether re-ranking would degrade the
quality of deduplication.

17The experiments in Section 5.5.1 and 5.5.2 were run in a shared and heterogeneous environment. Therefore,
it is difficult to compare the run times based on these experiments.



100

5.6 Threats to Validity

In this section, we discuss some threats to the validity of our study.

Quality of labeled data. Duplicate crash reports are identified by human triagers. Since this
is not a trivial task, reports might be incorrectly classified as non-duplicate or inserted into
an incorrect bucket. To mitigate this threat, we avoided using the most recent reports from
the repositories. The assumption is that most incorrect labels tend to be corrected over time.
Moreover, we employed data from well-known applications that have been used in literature
for crash deduplication and duplicate bug report detection.

Subject selection bias. The performance of the considered methods is significantly dependent
on data. Thus, the superiority of a method over other techniques might differ concerning
other software projects. To mitigate this problem, we have conducted our experiments
on five distinct software projects, which contain stack traces from different programming
languages (C/C++ and Java). Moreover, four of our datasets come from different open-source
applications while the other is an industrial dataset from IntelliJ Platform products.

Stack trace extraction. In the four open source datasets, we extracted the stack traces from
the textual data of bug reports using different parsers for each programming language. Since
textual data is unstructured, parsers might: extract only partial stack trace information, or
miss stack traces (false negatives), or wrongly detect a fraction of texts as correct stack traces
(false positives). We mitigate these possible issues by using parsers that are well-known in
the literature by the community.

Competing method implementations. Except for the work of Campbell et al. [10], existing
studies did not make available their implementations and/or the data used for experimentation.
Hence, we had to implement all the baselines and state-of-the-art methods. Even though
we have carefully followed the technique descriptions in the papers, our implementations
might not fully match the originals since crucial components and preprocessing steps of the
techniques might not have been described with complete accuracy, or even been reported in
the study at all.

5.7 Conclusions

In this paper, we proposed TraceSim, a novel technique for crash report deduplication.
TraceSim computes the similarity between a pair of stack traces by finding the optimal global
alignment of their frame sequences. To compute the alignment score, we assign weights
to frames that indicate their discriminativeness for stack trace comparison. These weights
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depend on two factors: 1) the position of the frames, and 2) the frequency of the subroutines
in the dataset. The influence of these factors on the similarity is regulated by parameters
that are learned using ML algorithms. Unlike previous techniques, the alignment scores are
influenced by the weights of all frames, matched and unmatched, in the stack traces.

TraceSim and seven competing methods were experimentally evaluated on five datasets (four
generated from open-source projects and one derived from industrial data) using a new
methodology that combines ranking and binary classification metrics. Except for industrial
project data, the full evaluation framework – including datasets and the source code of
methods and evaluation methodology – is freely available online. We have found that
TraceSim outperforms the majority of the existing methods in the literature. Moreover, our
method performs consistently well in all distinct scenarios including datasets with distinct
programming languages. In summary, compared to the previously proposed methods:

1. TraceSim distinguishes duplicate reports from non-duplicate ones more accurately.

2. TraceSim assigns reports to their correct buckets more often.

3. TraceSim generates better recommendation lists when the system needs human assis-
tance.

Furthermore, we conducted an ablation study to investigate the effectiveness of TraceSim
components and its scheme to compute mismatch and gap values. The results corroborated
that the frame position (local weight) and document frequency (global weight) are valuable
for crash report deduplication, as well as normalization and the use of the position difference
of the matched frames. Finally, the experimental results confirmed the hypothesis that the
rarity and the position of the frames should be considered for computing mismatch and gap
values.

In terms of run time, TraceSim is similar to previously proposed sequence matching algorithms.
However, due to the use of inverted index, information retrieval methods are more efficient
in comparing a query to all n reports within a repository. Besides employing re-ranking, we
plan to investigate additional approaches to reduce the computational cost without negatively
affecting TraceSim’s performance.
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CHAPTER 6 ARTICLE 3: FaST : A LINEAR TIME STACK TRACE
ALIGNMENT HEURISTIC FOR CRASH REPORT DEDUPLICATION

Authors. Irving Muller Rodrigues, Daniel Aloise, and Eraldo Rezende Fernandes. Accepted
at Mining Software Repositories (MSR 2022)1

Abstract. In software projects, applications are often monitored by systems that automati-
cally identify crashes, collect their information into reports, and submit them to developers.
Especially in popular applications, such systems tend to generate a large number of crash
reports in which a significant portion of them are duplicate. Due to this high submission
volume, in practice, the crash report deduplication is supported by devising automatic systems
whose efficiency is a critical constraint. In this paper, we focus on improving deduplication
system throughput by speeding up the stack trace comparison. In contrast to the state-of-
the-art techniques, we propose FaST , a novel sequence alignment method that computes
the similarity score between two stack traces in linear time. Our method independently
aligns identical frames in two stack traces by means of a simple alignment heuristic. We
evaluate FaST and five competing methods on four datasets from open-source projects using
ranking and binary metrics. Despite its simplicity, FaST consistently achieves state-of-the-art
performance regarding all metrics considered. Moreover, our experiments confirm that FaST
is substantially more efficient than methods based on optimal sequence alignment.

Keywords. Duplicate Crash Report, Crash Report Deduplication, Duplicate Crash Report
Detection, Automatic Crash Reporting, Stack Trace

6.1 Introduction

To reduce user dependence in bug reporting and collect more data about errors, many software
projects use automated crash reporting systems to monitor application executions. When
target systems crash, such tools are invoked to gather relevant information about the failures
and send it to backend systems [22].

The submitted information about a software error is grouped in a document called the crash
report. A shortcoming of automated crash reporting systems is that they tend to rapidly
increase the number of duplicate crash reports, that is, reports associated with the same failure.

1Available at [130]
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Therefore, it becomes vital to automate deduplication when such tools are employed [131].
In the literature, such a task is denoted crash report deduplication, being also referred to as
duplicate crash report detection or crash report bucketing [10].

In Figure 6.1, we depict an example of a crash report. Such documents may include the failure
descriptions provided by users (lines 1 and 13) and environment information (lines 5–12).
Additionally, crash reports contain stack traces (lines 15–22), one of the most valuable
information source for bug fixing [8]. A stack trace is a sequence of frames in which the first
frame corresponds to the topmost element in the application’s call stack at the moment a crash
occurs. The subsequent frames represent subroutines waiting for the execution of the previous
frames near to the top. As shown in Figure 6.1, stack traces can contain multiple information
about the frames (e.g., the source file name). Inspired by previous works [21, 22, 94, 118], this
paper focuses on the positions and subroutine names of the frames. Moreover, to compare
whether two frames are identical or not, we consider subroutine names as frame identifiers
(shortly, frame ids).

 
 1  Crashed when I opened a website and clicked on 'flash version'.
 2
 3  Architecture: amd64
 4  Date: Tue Jun 19 20:16:04 2007
 5  DistroRelease: Ubuntu 7.10
 6  ExecutablePath: /usr/bin/gnash
 7  NonfreeKernelModules: vmnet vmmon cdrom
 8  Package: gnash 0.8.0~cvs20070611.1016-1ubuntu2
 9  PackageArchitecture: amd64
10  ProcCwd: /home/martin
11  SourcePackage: gnash
12  UserGroups: adm admin audio cdrom dialout dip floppy video
13  Title: gnash crashed with SIGSEGV in std::_Rb_tree::erase()
14  
15  #0  0x027540aea in std::_Rb_tree::erase() at /usr/include/c++/4.1/bits/stl_tree.h:692
16  #1  0x027540b78 in std::_Rb_tree::erase() at /usr/include/c++/4.1/bits/stl_tree.h:1215
17  #2  0x02753f0c5 in movie_root::remove_key_listener() at /usr/include/c++/4.1/bits/stl_set.h:387
18  #3  0x02758100d in ~button_character_instance() at button_character_instance.cpp:280
19  #4  0x02753f0d3 in movie_root::remove_key_listener() at /usr/include/boost/intrusive_ptr.hpp:83
20  #5  0x02758100d in ~button_character_instance() at button_character_instance.cpp:280
21  #6  0x02753f0d3 in movie_root::remove_key_listener() at /usr/include/boost/intrusive_ptr.hpp:83
22  #7  0x02758100d in ~button_character_instance() at button_character_instance.cpp:280

Figure 6.1 Crash report example.

In the literature, a prevalent assumption is that crash reports are more likely to be duplicate
when their stack traces are similar. Thus, the majority of techniques address crash report
deduplication by comparing stack traces. For instance, TraceSim [118], one of the current state-
of-the-art (SOTA) methods in crash report deduplication, measures the similarity of two stack
traces by computing a weighted version of the optimal global alignment score [119] between
them. In real environments, hundreds or even thousands of crash reports are submitted
every day [10]. Each one of them must be analyzed by deduplication systems to identify
whether they are duplicate in very large repositories of submitted reports. Hence, due to
this high volume of data, deduplication systems must be implemented observing feasible
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throughput. A simple strategy to improve deduplication system performances is to speed up
the similarity measurement of stack traces. In the literature of crash report deduplication,
some methods can efficiently compare two stack traces in O(m+ n), where m and n are their
lengths. However, such methods are significantly less effective than TraceSim, that computes
the stack trace similarity score in O(nm).

The inefficiency of methods based on optimal sequence alignment, including TraceSim, are
mainly caused by their search for optimal alignments. In order to guarantee optimality,
these methods iteratively compute a dynamic programming matrix using recursive functions.
Furthermore, the found alignment must preserve the sequence order which makes challenging
to independently compare subsets of subroutines in stack traces. Leveraging the removal
of the optimality requirement and the order constraint, one can develop efficient heuristic
algorithms that find near-optimal alignments. It is worthy to mention here that the final task
objective does not consist in finding the optimal sequence alignment, but rather computing
similarity scores that are effective to group duplicate reports.

Inspired by this idea, we propose FaST, a Fast Stack Trace alignment method for crash
report deduplication. In FaST, the sequence alignment is produced by individually aligning
the frames of each unique identifier in the stack traces. Since stack traces of duplicate
reports are expected to contain subroutines in similar absolute positions [118], we argue that
similarity scores can be fairly captured by directly comparing overlaps or missing frames
of each individual subroutine. Instead of optimally aligning frames, we employ a simple
alignment heuristic: given the frames of each distinct indentifier, FaST iteratively matches
the two closest ones to the top positions. Such heuristic is based on the rationale that frames
near the topmost position should be prioritized for alignment over those in the bottom, since
they are usually more relevant for the deduplication [8, 22, 118]. In cases where frames of an
identifier are only available in one of the stack traces, FaST aligns such remaining frames to
special structures, called gaps. After finding the alignment, the similarity score is computed
considering two important pieces of information regarding a subroutine: its position and its
global frequency [118]. Due to its simplified alignment algorithm, FaST can compare stack
traces in O(n+m), i.e., linear time on the length of the two sequences.

We experimentally evaluate the efficiency and effectiveness of FaST by means of the method-
ology proposed by Rodrigues et al. [118]. We compare FaST with SOTA systems and strong
baselines on four different datasets from the following open-source projects: Ubuntu, Eclipse,
Netbeans, and Gnome. In our experiments, FaST consistently achieves similar or significantly
superior performance in terms of effectiveness when compared with its competing methods.
Moreover, as expected, we observe that FaST is considerable faster than optimal sequence
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alignment methods. It is important to highlight that we provide the source code of the evalu-
ation framework and methods online2. The main contributions of this paper are summarized
as follows:

1. We propose a novel stack trace alignment method with a linear time complexity for
crash stack deduplication.

2. We show that a simple alignment heuristic can be as effective for deduplication as
techniques that find optimal global alignments.

3. Our proposed method achieves state-of-the-art performances on all the considered
datasets despite its simplicity.

6.2 Fast stack trace alignment method for crash report deduplication

As mentioned in the introduction, studies in the literature have addressed crash report
deduplication by measuring stack trace similarity based on optimal global alignment. In the
context of such problem, the term global means that frames are lined along the entire lengths
of the compared stack traces.

In Figure 6.2, we depict an example of global alignment between two toy stack traces adca
and daccb. As shown in the figure, there are three types of possible alignments: match,
mismatch, and gap. A match occurs when two identical frames are aligned (e.g., the alignment
between two frames a). Conversely, a mismatch arises when two distinct frames are aligned
(e.g., frames a and b highlighted in red). The third type of alignment corresponds to lining
up a frame to a gap (e.g., frames d and the cubes with dashed border). A gap represents an
insertion/deletion operation performed in a sequence. A global alignment is only valid if the
original sequence can be restored by removing the gaps, i.e., the sequence order cannot be
altered.

c a

a

a d

c bcd

Figure 6.2 Example of a global alignment between the stack traces adca and daccb. Matches,
mismatches and gaps are represented by white, red, and gray, respectively.

There are many distinct ways to align two stack traces end-to-end. In order to find the best
global alignment, a scoring scheme is defined to assign a value to each element alignment.

2https://github.com/irving-muller/FaST

https://github.com/irving-muller/FaST
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Following such scheme, the score of the entire sequence alignment is equal to the sum of
matches values subtracted by the values of mismatch and gap alignments. The optimal
global alignment consists in finding an alignment between two sequences for which the score
alignment is maximum. Given two sequences with lengths n and m, the optimal alignment
can be found in O(nm) time with the Needleman–Wunsch (NW) algorithm [119].

In this section, we present FaST, a novel sequence alignment method that effectively aligns two
stack traces in O(n+m) time. To achieve such complexity, FaST relaxes the optimal global
alignment problem, allowing the computation of sub-optimal and non-ordered alignments.

6.2.1 Similarity Algorithm

Similar to the optimal global alignment problem, FaST compares two stack traces based on
the overlaps (represented by matches) and differences (captured by mismatches and gaps)
between them. First, matches are performed by successively lining up the topmost unaligned
frames with the same id. Each match increases the similarity score based on two factors:
frame importance and the position discrepancy between the matched frames. The former
depends on position and subroutine global frequency (two key frame features) and the latter
alleviates the impact of poor matches performed by the heuristic alignment. After performing
match alignments, all unmatched frames are aligned to gaps due to empirical evidences
that gaps are more adequate than mismatches for crash report deduplication [118]. Each
gap alignment penalizes the similarity score also based on the frame importance. Following
previous works [22, 95, 118], the similarity score is normalized to be in range [-1.0, 1.0].

In Algorithm 1, we present the pseudo-code of FaST algorithm to compute the similarity
score for two stack traces. The functions match(·) and gap(·) compute the values of a match
and gap alignments, respectively, while w(·) returns a real number, called frame weight, that
indicates the frame importance for the deduplication. Further details about such functions
are provided in Section 6.2.2. In Figure 6.3, we depict an example of this algorithm execution
on two toy stack traces.

As input, the similarity algorithm receives two lists sorted by frame id and position in
ascending order. After sorting, each frame in Q and C are represented as fp where f is its id
and p is its position in the original stack trace. Basically, the sorting operation is analogous to
split the frames in the stack trace and group them by their identifiers. It is worthy mentioning
that such sort is executed only once right after stack trace creation. Thus, we consider that
its time complexity is amortized given: (i) the relative short lengths of stack traces3; and

3In our datasets, 98% of the stack traces are shorter than 126 subroutines.
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Algorithm 1: FaST pseudo-code
Input: Q and C: lists of frames of two stack traces that are sorted by frame ids and

positions.
Output: Normalized similarity between Q and C.

1 sim← 0.0
2 i← 1
3 j ← 1
4 while i < length(Q) and j < length(C) do

// q and u are the id and position of Q[i]
5 qu ← Q[i]

// c and v are the id and position of C[j]
6 cv ← C[j]
7 if q == c then

// Match alignment.
8 sim += match(qu, cv)
9 i += 1

10 j += 1
11 else if q < c then

// Q[i] is aligned to a gap.
12 sim −= gap(qu)
13 i += 1
14 else

// C[j] is aligned to a gap.
15 sim −= gap(cv)
16 j += 1

// Align remaining frames in Q or C to gaps
17 while i < length(Q) do
18 sim −= gap(Q[i])
19 i += 1
20 while j < length(C) do
21 sim −= gap(C[j])
22 j += 1

// Normalize the similarity score
23 return sim∑

qu∈Q
w(qu)+

∑
cv∈C

w(cv)

(ii) the amount of comparisons performed to a given stack trace in real applications of crash
report deduplication is much larger than O(n log n).

During initialization, the algorithm creates two pointers that refer to the beginning of each
list. Each pointer represents the next available frame in a list for the alignment. In the
example presented in Figure 6.3b, the pointers are illustrated by i and j and they point to
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a d c a

d a c c b

1 2 3 4

1 2 3 4 5

(a) Original stack
traces.

a1 a4 c3 d2

a2 b5 c3 c4 d1

(b) Input and initial-
ization.

a1 a4 c3 d2

a2 b5 c3 c4 d1

(c) End of step 1.

a1 a4 c3 d2

a2 b5 c3 c4 d1

(d) End of step 2.

a1 a4 c3 d2

a2 b5 c3 c4 d1

(e) Final alignment.

Figure 6.3 An example of FaST’s alignment algorithm.

the first frames of the sorted list Q and C, respectively. As first step, FaST compares the
frame ids pointed by i and j, i.e., the first elements within Q and C. Since the identifiers
are the same, a1 and a2 are matched. Then, i and j are moved to the next elements in the
lists – a4 and b5, respectively. The result of this procedure is depicted in Figure 6.3c. In the
next step, i and j refers to different subroutines. Since frames are sorted by the subroutine
identifiers and a is smaller than b, this means there is no other available frame with id = a in
the list C. Therefore, as illustrated in Figure 6.3d, a4 is aligned to a gap and i is jumped
to the subsequent available frame in Q. The algorithm proceeds by sequentially comparing
the frames pointed by i and j. Match alignment is performed when frames share the same
ids, otherwise the frame with the smallest identifier is aligned to a gap. The pointers are
moved to the next available element in the sorted lists when the pointed frames are aligned.
If the algorithm reaches the end of a list, then the remaining frames within the other one
are aligned to gaps. Regarding our example, we depict the final alignment between Q and C
found by such algorithm in Figure 6.3e.

A limitation of FaST’s algorithm is that it does not directly penalize order inversions. As
depicted in Figure 6.3e, even though the two first frames in Q and C are in inverse order,
FaST still performs two matches between these frames. On the other hand, as shown in Figure
6.2, the NW algorithm penalizes this inversion by only matching the frames a and performing
a mismatch and a gap alignment regarding the frames d. Nevertheless, in FaST, the higher is
the position difference between two matched frames, the lower is their match value (further
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details in Section 6.2.2). Thus, if two frames have their relative order inverted, at least one of
them will be in different positions in the two sequences, and this will be penalized by our
method. Furthermore, order inversions are not usual in stack traces, since they imply indirect
recursions.

As mentioned earlier, the score of the final alignment is computed based on the chosen scoring
scheme – functions match(·), gap(·), and w(·) – and it is normalized to be in a fixed interval –
line 23 in Algorithm 1. These algorithm aspects are described in details in the remainder of
this section.

6.2.2 Scoring Scheme

In FaST, values of each match and gap alignments are computed using a scoring scheme
similar to the one proposed by Rodrigues et al. [118]. In this scoring scheme, weights are
assigned to each frame in the stack traces. A weight captures the importance of a frame fp
for the deduplication and it is computed as follows:

w(fp) = 1
pα
× e−β

df(f)
|S| , (6.1)

where |S| is the total number of stack traces in a repository S, and df(·) is the number of
stack traces in S that contain at least a subroutine identifier equal to f . The first component
of (6.1) assigns higher values to positions closer to the top since such positions tend to be
more related to the failure. The second one depends on the rarity of an id among the stack
traces in the dataset. Frequent subroutines are usually ordinary operations in a system (e.g,
logging and error-handling) and, thus, they are likely unrelated to the crash cause. Therefore,
the more frequent the id of a frame is, the lower its weight should be. In Equation 6.1, similar
to a logical AND, these two components are multiplied to consider a frame irrelevant for the
deduplication when either its position is close to the bottom or its subroutine is frequent.
Finally, α ∈ R>0 and β ∈ R>0 are parameters that control the impact of the frame position
and subroutine rarity on the weight value, respectively.

Following the original scheme, the gap alignment value is equal to the weight of a frame fp
aligned to a gap:

gap(fp) = w(fp). (6.2)

However, unlike Rodrigues et al. [118] that employ the maximum weight between two matched
frames qu and cv, we calculate the match value by means of the sum of these weights:

match(qu, cv) = (w(qu) + w(cv))× diff(u, v), (6.3)
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where the function diff(·) is defined as:

diff(u, v) = e−γ|u−v|. (6.4)

The parameter γ ∈ R>0 regulates the impact of the position difference on the function output.
Since a common assumption is that same subroutines appear in closer positions in stack traces
of duplicate crash reports, diff(·) reduces the match value based on the position discrepancy
of the matched frames.

6.2.3 Normalization

After aligning the stack traces, the alignment score is computed as the sum of the match
values minus the sum of each gap alignment value. However, such score is not directly used
for the deduplication since it can degrade the method effectiveness [118]. For instance, three
stack traces ST1, ST2, and ST3 are depicted in Figure 6.4. Frame weights are represented
by the real numbers below each subroutine identifier. In this example, the alignment scores
are -1.7 and -2.2 when ST1 is compared with ST2 and ST3, respectively. However, this is
unreasonable because ST1 is completely different of ST2 while the two topmost frames of
ST1 and ST3 are overlapped. Such contradictory scores occurs because the alignment score
is highly dependent on the frame weight values. Therefore, in order to mitigate such issue,
the similarity scores are normalized based on the frame weights [118, 22].

Considering the definitions of gap and match (Equations 6.2 and 6.3), we can normalize the
similarity score to be within the interval [−1.0, 1.0] by simply dividing the alignment score by
the sum of frame weights in the two stack traces (line 23 in Algorithm 1). For instance, the
sum of weights are 1.3, 0.4, and 3.7 in ST1, ST2, and ST3, respectively. Thus, the similarity
score by comparing S1 with S2 and S3 is −1.7

1.3+0.4 = −1.0 and −2.2
1.3+3.7 = −0.44, respectively.
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Figure 6.4 Normalization example.
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6.3 Related works

In this section, we focus on studies that address crash report deduplication by means of stack
trace similarity.

Modani et al. [95] proposed a prefix match algorithm in which the similarity is proportional
to the length of the longest common prefix between two stack traces.

Methods based on the popular TF-IDF approach (Term Frequency – Inverse Document
Frequency) [10, 93, 94] have also been applied to crash report deduplication. Lerch and Mezini
[93] and Campbell et al. [10] employed the TF-IDF-based score function from Lucene library4

to measure the stack trace similarity. Sabor et al. [94] proposed the DURFEX technique,
which uses only the package name of the subroutines, to compare two stack traces using the
cosine similarity of their vector representations. One important drawback of these techniques
is that they ignore a valuable piece of information: the position of the frames within the stack
trace.

Some studies [21, 22, 118] proposed variantions of the NW algorithm to measure the similarity
between two stack traces. In the technique designed by Brodie et al. [21], while mismatch
and gap alignment values are constant, the match values are computed based on the rarity
and position of the matched subroutines. On the other hand, Dang et al. [22] proposed a
method, called PDM, in which match values depend only on the frame positions and the
alignment score is not penalized by mismatches and gap alignments. Moreover, PDM contains
parameters that regulate the impact of position information on the optimal solution. More
recently, Rodrigues et al. [118] proposed TraceSim, a method for crash report deduplication
that have outperformed previous methods from the literature. TraceSim computes match,
mismatch, and gap values based on both the position and the global frequency (considering a
large database) of a subroutine. To improve method flexibility over different data distributions,
parameters control the weight of these two factors on the final similarity.

In order to improve efficiency without degrading the effectiveness of methods based on NW
algorithm, Moroo et al. [102] proposed a reraking model, called PartyCrasher, that combines
information retrieval techniques and PDM. First, PartyCrasher selects the top-k most similar
candidates to a query by means of the score function designed by Lucene. Then, PDM is
employed to compute the similarity between the selected candidates and the query. Finally,
the final similarity score is a weighted harmonic mean of the similarities measured by Lucene’s
score function and PDM.

Edit distance is equivalent to optimal global alignment [124] and have been employed by two
4https://lucene.apache.org/

https://lucene.apache.org/
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studies for crash report deduplication. Bartz et al. [96] proposed a logistic regression model
based on the edit distance between two stack traces and some categorical features within the
crash reports. To compute the edit distance, Bartz et al. [96] use the following information
regarding a frame in the stack trace: the subroutine, its offset, and its module. Dhaliwal et al.
[13] proposed to group the crash reports by the subroutine in the topmost position. Each
group is then reorganized in subgroups based on the edit distance between its stack traces.
These two techniques have the same efficiency issues that are present in techniques based on
global alignment.

Khvorov et al. [131] proposed a siamese deep learning model, called S3M, for comparing two
stack traces. A Long Short-Term Memory (LSTM) independently encodes the stack traces as
fixed-length vectors. Then, a multilayer perceptron (MLP) computes the similarity between
two stack traces based on their vector representations.

In Table 6.1, we present the time complexities of techniques to compute the similarity of
two stack traces. Prefix match and methods based on TF-IDF run in linear time. However,
they are less effective than more computationally expensive methods. Prefix match is highly
affected by negligible differences in subroutine positions, while TF-IDF techniques ignore
positional information altogether. Regarding S3M, considering that representations of stack
traces are computed once and stored in a database, the amortized time complexity of such
model is O(dh), where d and h are the sizes of the input and hidden layer, respectively. In
practice, d and h are comparable or even larger than the stack trace lengths, e.g., i = 600
and d = 300 in S3M while we found that, in our experimental setup, 98% of the stack trace
contains less than 130 frames. Besides its quadratic complexity, other limitation of S3M is
that it requires a considerable volume of labeled data for training. However, such type of
data is not always available in industry projects. Unlike S3M, the parameters of FaST can be
manually set by a specialist.

In order to effectively address crash report deduplication, FaST leverages the empirical
findings observed in TraceSim’s study [118], e.g., frame position, subroutine global frequency,
normalization and function diff(·) are crucial for this task. On the other hand, FaST finds
sub-optimal alignments in linear time complexity that are as effective as the optimal ones
found by TraceSim in quadratic time (more details in Section 6.5). Moreover, our method
uses a different function match(·) that is based on the sum of the frame weights instead of the
maximum value between them. Such function allows to simplify the normalization: whereas
TraceSim’s ones is inspired by the weighted Jaccard index, FaST ’s normalization divides the

5This corresponds to the multilayer perceptron complexity time. Such component contains one hidden
layer of size h and receives an input of size d.
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Table 6.1 Time complexity of crash report deduplication methods. The lengths of two stack
traces is denoted n and m.

Method Time complexity
Prefix Match [95] O(max(n,m))

Lerch and Mezini [93] O(n+m)
Campbell et al. [10] O(n+m)

DURFEX [94] O(n+m)
Brodie et al. [21] O(nm)

PDM [22] O(nm)
TraceSim [118] O(nm)
Bartz et al. [96] O(nm)

S3M [131]5 O(dh)

alignment score by the sum of all frame weights in the stack traces.

Regarding the literature of sequence alignment works, the majority of them come from
bioinformatics field. Thus, several heuristics for this problem make use of specific aspects of this
domain to speed up algorithms [132]. Although, few optimal sequence alignment techniques
were proposed besides the NW algorithm, they still run in O(nm), being their superiority
restricted to bioinformatics instances [133]. Overall, due to the particular characteristics of
bioinformatics field, the proposed methods and their findings are not applied to the crash
report deduplication task.

6.4 Experimental setup

In this section, we present the main components of our experimental setup: datasets, evaluation
methodology, evaluation metrics, and competing methods. The developed code – including
the evaluation framework and implementation of FaST and competing methods – are available
online6.

6.4.1 Datasets

The datasets published by Rodrigues et al. [118] are employed in our experiments7. Due to
scarcity of publicly labeled data, a common practice in the literature is to generate crash
reports by extracting stack traces from bug reports. Thus, such datasets were created
by parsing bug reports from bug tracking systems (BTS) of four open source projects:

6https://github.com/irving-muller/FaST
7The dataset is available on https://zenodo.org/record/5746044#.YeDFCNtyZH5

https://github.com/irving-muller/FaST
https://zenodo.org/record/5746044#.YeDFCNtyZH5
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Ubuntu [134], Eclipse [135], Netbeans [136], and Gnome [137]. Ubuntu’s and Gnome’s
repositories are composed of issues from different applications for Ubuntu Linux distribution
and Gnome desktop environment, respectively. Most of these applications are developed in
C/C++. Eclipse and Netbeans are two popular Integrated Development Environments (IDEs)
implemented in Java. Statistics of these datasets are presented in Table 6.2.

Table 6.2 Statistics of datasets.

Dataset Period # Duplicates # Reports # Buckets
Ubuntu 25/05/07 - 18/10/15 11,468 15,293 3,825
Eclipse 11/10/01 - 31/12/18 8,332 55,968 47,636
Netbeans 25/09/98 - 31/12/16 13,703 65,417 51,714
Gnome 02/01/98 - 31/12/11 117,216 218,160 100,944

We perform two extra preprocessing steps in addition to the ones applied in [118]. In the
provided datasets, a crash report can contain multiple stack traces. Rodrigues et al. [118]
decided to include all identified stack traces found in the description and attached files of the
original bug reports due to different reasons, e.g., the difficulty to determine which subroutine
caused the failure, parsing limitations, among others. However, we observed that a significant
portion of the stack traces in crash reports are, in fact, the top-k frames of other stack traces
in the same reports. In order to improve the readability, testers and developers may only
provide the first frames of a stack trace in the description of the bug report. The full content
is attached to the report as a file. Thus, to remove this duplicate data, we identify the
longest stack trace ST l in a crash report r and, then, the remaining stack traces in r are
filtered when they are a prefix of ST l. Moreover, specifically for Gnome, we applied the same
procedure used in the BTS to identify the "interesting stack traces" of multi-thread systems8.
In a nutshell, such procedure consists in keeping or removing stack traces based on a list
of relevant subroutine names (e.g., signal and segv). In Table 6.3, we present the number
of crash reports with more than one stack trace found in the datasets before and after our
preprocessing.

6.4.2 Evaluation Methodology

In this work, in order to assess different methods, we employ the comprehensive evaluation
methodology proposed in [118]. This methodology uses a dataset D composed of crash reports

8The original code can be found in the function interesting_threads in the following
file: https://bazaar.launchpad.net/~bgo-maintainers/bugzilla-traceparser/3.4/view/head:/lib/
TraceParser/Trace.pm

https://bazaar.launchpad.net/~bgo-maintainers/bugzilla-traceparser/3.4/view/head:/lib/TraceParser/Trace.pm
https://bazaar.launchpad.net/~bgo-maintainers/bugzilla-traceparser/3.4/view/head:/lib/TraceParser/Trace.pm
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Table 6.3 Percentage of reports with multiple stack traces in each dataset before and after
the preprocessing.

BTS Before After
Ubuntu 0.03% 0.03%
Eclipse 24.37% 23.75%
Netbeans 61.37% 28.93%
Gnome 80.14% 9.52%

sorted by their creation date. Then, a query set Q is generated by randomly selecting a
sequence of consecutive reports in D. In order to assess a similarity-based deduplication
method, each query report q ∈ Q is considered as a newly submitted report, and the method
is used to compute the similarity between q and older reports in D (reports submitted before
q).

As mentioned before, crash reports in the dataset are grouped into buckets. A bucket is the
set of all reports associated to the same software bug and is denoted as Br, where r is the first
submitted (oldest) report in Br. In the used evaluation methodology, when a query report q
is considered, buckets for reports submitted before q are known. In that way, the evaluation
is based on similarities between the query report q and the buckets, instead of individual
reports. The similarity between q and a bucket B is defined as:

sim′(q, B) = max
c∈B

sim(q, c),

where sim(q, c) is the similarity between the query report q and a candidate report c of B
calculated by the system being evaluated.

Since crash report datasets can be very large, in order to improve system’s efficiency, the
deduplication of a query report q is restricted to a subset of candidate buckets denoted as
CB(q). This set comprises only buckets that include at least one report submitted within
a time window of two years before q. All reports in such selected buckets are considered
as candidates, including those submitted outside of the time window. Therefore, when
deduplicating q, buckets are unreachable if all theirs reports are submitted more than two
years before q. Reports created after q are always ignored, as mentioned above.

For a more detailed and comprehensive explanation of the methodology, we refer the reader
to Rodrigues et al. [118].
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6.4.3 Evaluation Metrics

Considering a query set Q, the methodology evaluates a method by means of three metrics:
Mean of Average Precision (MAP), Recall Rate@k (RR@k), and Area Under the ROC Curve
(AUC). MAP and RR@k are ranking metrics, i.e., they assess the quality of ranked lists
generated for each query based on the similarity technique. In this methodology, a ranked
list, denoted as L(q), consists of the candidate buckets for a query report q sorted by their
similarity to q in ascending order. Moreover, the ranking metrics are not measured for queries
related to crashes that have never been reported before. Such non-duplicate reports, called
singletons, are ignored in this ranking evaluation since their respective ranked lists do not
contain their correct bucket (the relevant candidate). We denote Qd ⊂ Q the subset of
non-singleton queries.

Considering pL(q) as the position of the correct bucket of a query q within a ranked list L(q),
RR@kk is computed as follows:

RR@k =
∑
q∈Qd 1[pL(q) ≤ k]

|Qd|
, (6.5)

where k ∈ N+ and 1[pL ≤ k] returns 1 if the position of the correct bucket is in the top-k
positions of a ranked list, and 0 otherwise. In summary, RR@kk is the fraction of queries
in Qd whose correct buckets appear in the first k positions of the ranked lists. Particularly,
in realistic scenarios where reports are automatically assigned to the most similar buckets,
RR@k1 represents the system accuracy for assigning duplicate reports to buckets.

Unlike RR@kk, MAP can summarize the ranked list quality by means of a single real value.
In this methodology setting, since there is one relevant item within a ranked list, MAP can
be simplified as:

MAP = 1
|Qd|

∑
q∈Qd

1
pL(q)

. (6.6)

MAP values range in the interval [0, 1] where MAP = 1 when the correct bucket is among the
first elements in all ranked lists.

In real systems, it is important to distinguish a duplicate report from a singleton since a
significant portion of the queries are non-duplicate reports. Thus, in order to consider such
aspect of the deduplication task, this methodology also cast this task as a binary classification.
In this case, a query is classified as duplicate when the highest similarity score between
the query and its candidate buckets is greater than a given threshold t. For an evaluation
that is independent of the threshold value, the classification performance is measured by the
well-known area under the ROC curve (AUC) metric [138]. The ROC (receiving operating
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characteristic) curve is the plot of true positive rate versus the false positive rate for all
possible values of t. The AUC metric derives a single real number from the ROC curve.

6.4.4 Parameter Tuning and Model Validation

Following [118], evaluation is performed using two subsequent, but disjoint, query sets: a
tuning set T and a validation set V . The query set V is composed of reports submitted
during a (randomly selected) period of one year, and the query set T comprises the last 250
reports submitted immediately before V . Additionally, P is denoted as the set of reports
submitted earlier than T . In the experiments, the parameters are first tuned on T by means
of a Tree-structured Parzen Estimator (TPE) [122]. Given a maximum number of iterations9,
such optimizer tries to search for parameter values that maximize the sum of MAP and AUC
scores on the tuning set. Finally, using the best parameters found, we evaluate the method
effectiveness on the corresponding validation set V .

Since data distribution tends to significantly change during the repository lifetime, the
performance of the same method can highly vary depending on the data period used in
the evaluation [111]. In order to better capture the method effectiveness along the whole
repository, 50 validation sets (periods of one year) are randomly selected in each dataset.
Thus, the tuning sets are generated based on each sampled validation set. In Figure 6.5, we
illustrate an example where three random validation sets are sampled.

Run 1

Run 2

Run 3

2018 2019 2020 2021

Figure 6.5 Three validation sets (along with the corresponding tuning sets) sampled from
a dataset. The validation set, tuning set, and P in run k is represented as V k, T k, and P k,
respectively.

6.4.5 Competing Methods

In order to empirically demonstrate the effectiveness and efficiency of the proposed alignment
heuristic, we compare FaST to two optimal sequence alignment methods: TraceSim and PDM.

9TPE is run in 100 iterations.
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TraceSim significantly outperformed sequence matching and information retrieval methods
for the majority of metrics (AUC, MAP, and RR@k) and datasets. On the other hand, PDM
was the only method to surpass TraceSim’s performance in one specific scenario and it can be
better optimized than others NW algorithm variants [21, 118]. Finally, our method is also
compared to a modified version of TraceSim, called TSM, whose match(·) and normalization
are equivalent to FaST’s ones. Our objective is to investigate whether the proposed match(·)
and normalization significantly impact the method effectiveness.

Additionally, FaST is compared to Prefix Match, TF-IDF, and DURFEX due to their relatively
low time complexity. For simplicity, the first method is abbreviated to PrefixM. To guarantee
a fair comparison in the experiments, we implement TF-IDF in our evaluation framework
following Lucene’s implementation and we only consider the subroutine names and positions
within stack traces for the crash report deduplication. The subroutine names are the fully
qualified method names in Java’s stack traces while function names in C++’s ones. Finally,
we only evaluate DURFEX on Eclipse and Netbeans datasets, since it was designed for the
Java language.

6.5 Experimental Results

In this section, we study the effectiveness and efficiency of FaST in comparison with four
competing methods on Ubuntu, Eclipse, Netbeans, and Gnome datasets. For each method,
we report throughput values (queries/second) and their distributions over the 50 validation
sets by means of box plots combined with scatter plots. Moreover, we measure the speedup
between FaST and a competing technique in terms of throughput on each validation set.
Then, we depict the distribution of the obtained speedup values over the validation sets using
box plots. It is worthy to mention here that speedup between two methods in dataset depends
only how fast each method compares two stack traces. Thus, other variables related to the
dataset (e.g., the number of reports) do not affect such measurement.

Furthermore, violin plots [127] are used to present the distribution values of AUC, MAP, and
RR@1 achieved by each method over the validation sets. Such plots are generated by means
of seaborn library and they contains three dashed lines to represent the 25th, the 50th, and
the 75th percentiles. Additionally, we calculate the performance differences between FaST
and each competitor regarding AUC, MAP, and RR@1 in each validation set. The differences
of such metrics are denoted ∆AUC, ∆MAP, and ∆RR@1, respectively. These differences are
positive whenever FaST outperforms its competitor. We report the distributions of ∆AUC,
∆MAP, and ∆RR@1 in the 50 validation sets using box plots. Throughout this section, the
mean values are depicted as white circles in the plots.
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In order to assess whether a method superiority is statistically significant, we apply the
Wilcoxon signed-rank test to ∆AUC, ∆MAP, and ∆RR@1 as follows:

H0: The two methods yield the same performance.

H1: The two methods yield different performances.

We accept the alternative hypothesis (H1), consequently rejecting the null hypothesis (H0),
when p < 0.01. In the plots, the symbol F next to the name of a method indicates that the
performance difference to FaST is statistically significant.

In Figure 6.6 (left), we depict the throughput of FaST and competitive methods on Ubuntu,
Eclipse, Netbeans, and Gnome. At the right of this figure, we report the distribution of
speedups between FaST and its competing methods on the tested datasets. Additionally,
in Figure 6.7, we depict the differences ∆AUC, ∆MAP, and ∆RR@1 between FaST and
competitors on Ubuntu, Eclipse, Netbeans, and Gnome. Complementary, for each dataset,
the distributions of the absolute metric values are depicted in Figure 6.8.

Overall, FaST is not only more efficient than the optimal sequence alignment methods, but it
is also at least as effective as them. As shown in Figure 6.6, considering the speedup average,
FaST is two to four times faster than PDM while its speedup ranges between 4x - 8x regarding
TraceSim. In addition to this superior efficiency, our method significantly surpasses PDM
and TraceSim in nine and six of the twelve possible evaluation scenarios, respectively. In the
remaining ones, the performance of FaST and such techniques are considered as comparable
since the differences in their results are not statistical significant.

As expected, the efficiency superiority of FaST over TSM is similar to the one observed
in the previous TraceSim’s analysis. However, in terms of effectiveness, we do not find
statistical significance in their performances in the evaluation scenarios, except on Ubuntu
regarding ∆MAP which FaST is superior. Despite this finding, we cannot conclude whether
the normalization and function match(·) used in FaST are more effective than the ones
proposed in TraceSim. In additional significance tests, we found that TSM’s and TraceSim’s
performances are comparable in all scenario with the exception to Netbeans regarding RR@1.

In our experiments, PrefixM is the most efficient technique. In comparison to our method,
on average, it is 2.19, 4.30, 6.35, and 2.53 times faster than FaST in Ubuntu, Eclipse,
Netbeans, and Gnome, respectively. Such high efficiency is due to the fact that the similarity
is computed only considering the topmost shared frames between two stack traces, i.e., it can
easily filter frames that do not affect the comparison. However, this negatively affects the
method effectiveness. As reported in Figure 6.7, PrefixM is significantly outperformed by
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Figure 6.6 At the left, throughput (queries per second) of methods in all validation sets of
Ubuntu, Eclipse, Netbeans, and Gnome. At the right, the speedup between FaST and the
competing methods regarding throughput.
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F p < 0.01

Figure 6.7 The distribution of ∆AUC, ∆MAP, and ∆RR@1 between FaST and each competing
method in all validation sets of each dataset.
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Figure 6.8 The distributions of AUC, MAP, and RR@1 achieved by FaST and competitors in
all validation sets of each dataset.
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FaST regarding AUC, MAP, and RR@1 on all datasets. For instance, the lowest average of
∆AUC, ∆MAP, and ∆RR@1 between these two methods are +1.57%, +2.31%, and +1.61%
in Netbeans. However, we observe higher performance differences in datasets with C++ stack
traces, e.g., FaST largely outperforms PrefixM by 4.20%, 8.76%, and 7.67% regarding ∆AUC,
∆MAP, and ∆RR@1 in Ubuntu.

As shown in Figure 6.6, the second most efficient technique is TF-IDF. Regarding FaST, such
method speeds the experiments, on average, by 1.22x, 1.19x, 1.49x, and 2.09x in Ubuntu,
Eclipse, Netbeans, and Gnome, respectively. Such speedups are considerable lower than the
ones found in PrefixM. But, similar to PrefixM, FaST significantly outperforms TF-IDF in all
evaluation scenarios. For example, the lowest average value of ∆AUC, ∆MAP, and ∆RR@1
between FaST and TF-IDF are +4.23%, +2.23%, and +2.54%, respectively. However, such
performances occurs in datasets that contain stack traces from C++ applications. Considering
only Netbeans and Eclipse, those values increase to 9.27%, 5.66%, and 6.23%, respectively.
Finally, although we were not able to observe a conclusive efficiency difference between FaST
and DURFEX, the results show that our method is statistically more effective than the latter
regarding ∆AUC, ∆MAP, and ∆RR@1 in all datasets.

6.6 Threats to Validity

In this section, the threats to validity of our study are presented as follows.

Data quality In this study, the experimental evaluation is based on manual labeled data
provided in BTSs. However, due to the complexity associated to the deduplication task,
reports might be assigned to incorrect buckets or considered as singletons by triagers. Moreover,
stack traces are mostly extracted from textual data, i.e., from files and report descriptions.
However, due to this unstructured data nature, data extraction is not trivial and, therefore,
portion of text might be incorrectly identified as a stack trace, and vice-versa. To mitigate
these problems, we employ datasets that have been used in previous studies. Additionally,
regarding mislabeled data, we used data from popular open source projects that contain
mature triage processes. Finally, Rodrigues et al. [118] mitigate the problem related to stack
trace extraction by using parsers already employed in real environments or well-known studies.

Subject selection bias. In this paper, we perform an empirical study to compare the effectiveness
and efficiency of distinct methods. Thus, due to different domain characteristics, our findings
might not be observed in other software projects. To mitigate such threat, our experimental
setup includes data from different projects and two distinct programming languages. Moreover,
the experimental methodology and framework are developed to replicate real environments as
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much as possible.

6.7 Conclusions

In this study, we proposed FaST, a novel alignment method heuristic for crash report
deduplication. In contrast to previous methods based on optimal sequence alignment, FaST
heuristically computes the similarity of stack traces in linear time. We experimentally
evaluated FaST and its competing methods by means of the methodology proposed in [118].
Our results revealed that FaST is consistently faster than previous SOTA methods while
being at least as effective – it was more effective in many of the considered scenarios. In fact,
our experimental results indicate that sub-optimal alignments can be as effective as optimal
ones for crash report deduplication.

The proposed modifications on TraceSim’s scoring scheme allows our method to compute the
similarity score by exclusively considering the shared frames between stack traces. For that,
the assumption is that the sums of frame weights of the stack traces are known before the
algorithm execution. This method capability combined to frame independence makes our
method more appropriate for effectively speeding up the deduplication by means of inverted
index data structure [139] or MapReduce [140]. Thus, as a possible avenue for future works,
we intend to evaluate the method speedup achieved when inverted index data structure is
used and the method is implemented based on MapReduce. Moreover, analogous to prefix
match, we intend to investigate different strategies to compare stack traces only considering a
small portion of the frames.
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CHAPTER 7 GENERAL DISCUSSION

The scope of this thesis was to investigate two relevant tasks for software maintenance: bug
deduplication and crash report deduplication. In Chapter 4, we addressed the limited feature
interaction between bug reports in previous deep learning methods. Leveraging attention
mechanisms, we introduced SABD, a deep learning model that can dynamically focus on
different portions of a report that are similar to a particular segment of another report. The
proposed architecture provides a superior model capability to capture more relevant features
for a particular deduplication case and, consequently, it potentially mitigates the information
loss associated to the representation generation. In our experiments, in comparison with
previous techniques, SABD generates superior ranked lists, i.e., a significant number of correct
candidates in such lists are closer to the top positions. Thus, in practice, SABD’s deployment
could significantly reduce the time spent by triagers to identify duplicate reports. Regarding
its efficiency, in scenarios for which SABD is a bottleneck, such issue could be mitigated by
adjusting time window length and employing re-ranking techniques.

In chapters 5 and 6, we introduced sequence alignment methods for crash report deduplication
(TraceSim and FaST) based on a novel scoring scheme in which the value of each alignment
depends on the frame positions and global frequencies. Moreover, the impact of these features
is controlled by parameters that are adjusted through machine learning techniques. The
proposed scoring scheme provides superior robustness and effectiveness to our methods in
comparison with previous techniques. Additionally, leveraging particular task characteristics,
we developed an alignment heuristic that computes the similarity of two stack traces in linear
time without performance degradation. In summary, besides this efficiency improvement,
our contributions allow deduplication systems to: (i) separate duplicate crash reports from
non-duplicate ones more effectively; (ii) add reports to their correct buckets more accurately;
and (iii) generates better ranked lists in scenarios where human assistance is needed.

During this Ph.D. research, TraceSim has been employed in our partner project for dedu-
plicating Python’s stack traces. Due to the lack of labeled data, we were not able to tune
the parameters as presented in Chapter 5. Thus, we separately plotted lw(·), gw(·), diff(·) –
equations 5.1, 5.3, 5.10, respectively – for different parameter values. Based on the provided
experimental data, we chose values in which the function smoothness seemed more adequate
to the domain. Then, we ran TraceSim on the available stack traces to investigate whether
the computed similarity scores were satisfactory. A specialist provided feedback regarding
the method behaviour which helped us to find better parameter values. TraceSim was shown
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to be effective in such preliminary data and, currently, its deployment on the production
environment is in progress. In the near future, we also plan to test and deploy FaST in such
project.

In both deduplication tasks, most of works have evaluated their method using their own
datasets. Many of them implemented crawlers to retrieve reports from open source projects,
but, frequently, such retrieved data was not publicly available. Recently, in bug deduplication,
few works, including ours, employed the data published by Lazar et al. [63]. Nevertheless, the
train-test split was done using distinct strategies in such studies. As shown by our results
and in Rakha et al. [111], the performances achieved on different portions of the data can
substantially vary. Thus, even though the experiments are performed using the same set of
reports, it may be misleading to directly compare methods based on the performance values
reported on distinct test and training sets.

In addition to datasets, the majority of the studies did not make available their developed
code. Thus, especially in bug deduplication where techniques are more complex and literature
is more vast, it may be difficult to correctly implement previous methods since results often
cannot be reproduced due to the lack of data availability and crucial components of the
methods may not have been accurately reported. For instance, in our first article, we spent
months working on the implementation of the neural network proposed by Deshmukh et al.
[68] until we were able to achieve adequate performance.

Finally, in the literature of bug deduplication and crash report deduplication, there is no
widely adopted evaluation methodology. Moreover, even for specific approaches, the performed
evaluations in the works can contain some differences that may significantly impact the achieved
results. Therefore, it is unfeasible to compare several proposed methods in the literature.

This lack of consensus in the field regarding datasets and methodologies added to non-
availability of data and source code made more challenging the study and investigation of
both tasks. In this thesis, we mitigated such issue by choosing and combining available
methodologies to make them more adherent to real environments. Furthermore, we tried to
extensively compare our methods with previous techniques related to the article objectives.
For the majority of the previous techniques, it was required to carefully implement them from
scratch by following their descriptions in the studies.

Finally, we would like to highlight that the data used in our articles and the developed code
are all available on popular repositories.
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CHAPTER 8 CONCLUSION

In this thesis, we studied and proposed techniques for addressing bug deduplication and crash
report deduplication. Our main contributions are summarized in Section 8.1. Finally, in
Section 8.2, we discuss limitations of the proposed methods and suggest potential research
avenues for future investigation.

8.1 Thesis Contributions

In Chapter 4, we introduced SABD, a novel deep learning model for bug deduplication whose
core component is a soft alignment comparison layer. In contrast to previous deep learning
works, such layer can dynamically extract features on distinct parts of a report that are
related to a given word in the other report. Based on such word representation comparisons,
our model generates joint representations of the textual data in reports. As demonstrated
in a ablation study, the proposed architecture is more effective than previous deep learning
methods. Moreover, our model achieved SOTA performances in all evaluated scenarios.

In Chapter 5, we presented a novel optimal sequence alignment method for crash report
deduplication, called TraceSim. Such method finds the optimal global alignment score between
stack traces by means of a scoring scheme whose alignment values are computed based on
the frame position and global frequency. The impact of such pieces of information in the
alignment values are controlled by parameters learned through ML algorithms. We extensively
compared TraceSim with the previous techniques by means of a new methodology for crash
report deduplication. Our experiments revealed that, in contrast to other methods, TraceSim
consistently performs well regarding distinct metrics and datasets. Moreover, in most of the
evaluation scenarios, TraceSim was significantly superior to competitive techniques. Finally,
an ablation study demonstrated the effectiveness of TraceSim’s elements and the proposed
scheme for computing mismatches and gap alignments.

Finally, in Chapter 6, we investigated how to improve the efficiency of sequence alignment
methods. To reduce time complexity, we proposed to remove the following constraints of
optimal global alignment problem: the algorithm must find an solution that is optimal and
preserves sequence order. Based on that, we introduced a novel method, called FaST, that
measures stack trace similarity in linear time. FaST matches frames of an specific identifier
from the top-most positions until the bottom ones. After exhausting all possible matches, the
remaining frames are aligned to gaps. Even though FaST finds sub-optimal solutions that may
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not maintain the original sequence order, we demonstrated, through a series of experiments,
that our method is not only significantly faster than TraceSim, but it also achieves SOTA
performances.

8.2 Limitations and Future Research

The majority of methods in bug deduplication literature, including SABD, are heavily based
on textual data similarity. However, other information sources might be as much, or even
more, important in some deduplication cases, e.g, images and videos of errors are usually
appropriate to effectively describe user interface bugs. Thus, a potential research avenue is to
investigate systems that can dynamically select and combine multiple different information
types (e.g., image, texts, source code, traces, logs . . . ) for bug deduplication.

Moreover, in crash report deduplication, sequence matching algorithms consider two frames
with different identifiers as dissimilar even when subroutines in such frames present comparable
behaviours. Thus, minor differences in identifiers might considerable affect the similarity
measurement. To mitigate such problem, future researchers could investigate how to improve
frame comparison in such techniques. Similar to deep learning models [97], unsupervised
techniques could be applied to learn distributed representation of frames. Thus, two frames
could be compared based on their representation similarity. However, in such approach, it
would be challenging to adequately represent out-of-vocabulary identifiers which are frequent
once new functions are added during system lifetime. Hence, we argue that a more robust
approach could be based on textual similarity regarding token or even character level. The
rationale behind this is that two subroutines with similar qualified names are expected to
present comparable behaviours.

In Chapter 6, we accelerated deduplication by improving the efficiency of the similarity
measurement computation. However, another complementary and effective approach consists
in reducing the number of candidates for a query. In both deduplication tasks, the use of
time windows is a popular strategy to filter candidates. However, such strategy is limited
since the number of candidates may still be large and dissimilar reports to the query might
be considered for the comparison. Thus, a promising research avenue is to study techniques
to speed up deduplication by selecting a subset of submitted reports without a substantial
effectiveness degradation.

Even though few evaluation methodologies were proposed for deduplication of bug and crash
reports, to the best of our knowledge, none of the studies in the literature have compared
such methodologies and presented their limitations and strengths. Moreover, based on
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such comparison, a future work could establish an evaluation methodology that would be
adequate for different techniques and adherent to real environments. Hence, in addition to
the establishment of standard datasets, this would help to compare new methods and keep a
track of the literature evolution in both tasks.
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APPENDIX A SUMMARY OF STUDIES ON BUG DEDUPLICATION

In this appendix, we summarize the proposed studies in the literature of bug deduplication in
Tables A.1–A.7. On the following, we describe the columns in these tables:

• Study.

• Methodology. This column contains the methodology approaches employed for method
evaluation.

• Categorical. It presents how categorical data was used.

• Textual. This column describes how studies represented and compared textual data.

• Additional. Besides textual and categorical data, it describes which additional data
was used for the deduplication.

• Deduplication. It provides the final technique to deduplicate reports.

• Novelty. This column presents main study novelty.



147

Study Methodology Categorical Textual Additional Deduplication Novelty
Runeson et al.
[76]

Ranking Product infor-
mation included
as textual data

VSM and log of
term frequency

None Cosine similar-
ity

First work to
propose NLP

Jalbert and
Weimer [74]

Binary classifi-
cation

None VSM and log of
term frequency

None Cosine Similar-
ity

First work
to propose a
method for
binary classifi-
cation

Wang et al. [9] Ranking None TF-IDF and co-
sine similarity

TF-IDF and co-
sine similarity
to compare exe-
cution traces

Linear Combi-
nation

Use of execution
traces

Sureka and
Jalote [83]

Ranking None Character-level
of n-grams

None Number of
shared n-grams
between the
reports

Character-level
of n-grams

Sun et al. [81] Ranking None Similarity score
is the sum of
IDFs of shared
terms

None SVM SVM combined
with 24 features
derived by com-
paring different
textual sources.

Prifti et al. [75] Ranking None Centroid vector
representing of
Buckets

None Cosine Similar-
ity

Bucket repre-
sentation

Sun et al. [14] Ranking Boolean fea-
tures of product
and component

BM25FEXT None Linear Combin-
tation

BM25FEXT

Table A.1 Summary of bug deduplication literature (Part I).
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Study Methodology Categorical Textual Additional Deduplication Novelty
Nguyen et al.
[82]

Ranking None T-model
and Jensen-
Shannon
divergence;
BM25F

None Linear combina-
tion

T-Model

Zhou and Zhang
[77]

Ranking None Cosine Similar-
ity of TF-IDF;
Sum of the IDF
and term fre-
quency of each
shared term

None Linear combina-
tion

Pairwise rank-
ing loss function
for training lin-
ear combination
weights

Banerjee et al.
[4]

Ranking Boolean fea-
tures of com-
ponent and
product

LCS None Linear combina-
tion

LCS

Tian et al. [64] Binary Classifi-
cation

Boolean fea-
tures of product
and component
comparisons

BM25FEXT None SVM They outper-
forms Jalbert
and Weimer
[74]

Feng et al. [65] Binary Clas-
sification and
Ranking

Boolean fea-
tures of product
and component

TF-IDF; LDA Comment and
reporter profile
features are
used for the
deduplication

Off-the-shelf
models

The use of com-
ments and re-
porter informa-
tion. They out-
performed Tian
et al. [64].

Table A.2 Summary of bug deduplication literature (Part II).
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Study Methodology Categorical Textual Additional Deduplication Novelty
Banerjee et al.
[85]

Ranking Boolean fea-
tures of com-
ponent and
product

Centroid vector
representing of
Buckets; LCS

None Multi-label
classifier that
predicts if a
similarity score
computed by a
method is ade-
quate or not for
a deduplication

Multi-label
classifier; Strat-
egy to merge
distinct ranking
lists

Lin and Yang
[78]

Ranking None CFC weighting
scheme

None SVM CFC weighting
scheme

Lazar et al. [63] Decision-
Making

Boolean fea-
tures of com-
ponent and
product

TakeLab None Off-the-shelf
models

Features from
TakeLab

Aggarwal et al.
[66]

Decision-
making

Boolean fea-
tures of com-
ponent and
product

BM25F BM25F com-
pares report
with word lists
produced from
textbooks and
documenta-
tions

Off-the-shelf
models

Contextual fea-
tures generated
from additional
content outside
of bug reports.

Zou et al. [86] Binary classifi-
cation

One hot encod-
ing of product
and component

LDA; Cosine
Similarity

None Similarity score
is computed by
a linear combi-
nation

LDA and clas-
sification based
on threshold

Table A.3 Summary of bug deduplication literature (Part III).
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Yang et al. [79] Ranking Boolean fea-

tures of product
and component

TF-IDF; Aver-
age vector of
word embed-
dings

None The cosine
similarities of
TF-IDF rep-
resentantion
and average
vector of word
embeddings are
normalized by
categorical data
similarity.

Word embed-
dings

Lin et al. [62] Ranking None CFC weight-
ing scheme;
BM25 weight-
ing scheme;
Average vec-
tor of word
embeddings

None SVM Features de-
rived from two
different weight-
ing schemes
and average
vector of word
embeddings

Hindle et al. [1] Decision-
making; Rank-
ing

Boolean fea-
tures of com-
ponent and
product

BM25F BM25F com-
pares report
with word lists
produced from
non-functional
requirement
terms and set
of architecture
words

Off-the-shelf
models and Co-
sine Similarity

Contextual fea-
tures generated
from additional
content outside
of bug reports.

Table A.4 Summary of bug deduplication literature (Part IV).
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Banerjee et al.
[15]

Binary classi-
fication and
Ranking

One-hot encod-
ing

LCS Reporter profile Random forest
classifier

Automated
framework
for bug dedu-
plication in
industrial-scale

Budhiraja et al.
[87]

Ranking None LDA; Average
vector of word
embeddings.

None Cosine similar-
ity

Re-ranking
using topic
distribution
similarity and
the cosine
similarity of
embedding
average vectors

Budhiraja et al.
[88]

Ranking None Average vector
of word embed-
dings

None Cosine Similar-
ity

Investigation
of impact of
different tech-
niques to learn
embeddings
on the model
performance

Budhiraja et al.
[89]

Ranking None Average vector
of word embed-
dings

None MLP Average vector
of word embed-
dings combined
with MLP

Table A.5 Summary of bug deduplication literature (Part V).
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Deshmukh et al.
[68]

Decision-
making and
Ranking

Distribution
representation
of the cate-
gorical values
followed by
MLP

LSTM and
CNN extract
features from
summary and
description,
respectively

None Cosine similar-
ity and MLP

First work to
propose siamese
neural networks
for bug dedupli-
cation

Xie et al. [90] Decision-
making

One-hot encod-
ing of Compo-
nent

CNN None Logistic regres-
sion classifier
that receives
the cosine
similarity of
CNN outputs
and component
similarity

Novel architec-
ture

Poddar et al.
[19]

Decision-
making

None Attentive Pool-
ing with LSTM

None MLP Simultaneously
train a model
for topic based
clustering and
bug deduplica-
tion

Kukkar et al.
[91]

Decision-
making and
Ranking

None CNN with holis-
tic and prede-
fined filters.

None A MLP receives
a matrix pro-
duced by the
cosine similarity
of the sentence
embeddings.

CNN with
holistic and
predefined
filters and
similarity be-
tween sentence
embeddings

Table A.6 Summary of bug deduplication literature (Part VI).
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Xiao et al. [69] Decision-

making
Distribution
representation
of the cate-
gorical values
followed by
MLP

LSTM None Manhattan dis-
tance between
representations
generated by
a MLP that
receives the
embedding of
their categorical
and textual
data

Deep learning
model for bug
deduplication in
the after just-in-
time retrieval

He et al. [92] Decision-
making

Product and
component as
considered as
textual data

Dual-Channel
CNN in which
each channel is
the textual data
of a report

None MLP Dual-Channel
CNN that
jointly extracts
features from
reports

Cooper et al.
[72]

Ranking None TF-IDF and
Lucene’s scor-
ing function

Feature extrac-
tion from videos
employing Sim-
CLR and LCS
algorithms

Linear combina-
tion

The first to
propose a
deep learning
method to
address bug
deduplication
through videos.

Rocha and Car-
valho [67]

Decision-
making and
Ranking

Distribution
representation
of the cate-
gorical values
followed by
MLP

BERTs indepen-
dently encode
summary and
description

None MLP for clas-
sification and
cosine similarity
for similarity
measurement

Quintet loss

Table A.7 Summary of bug deduplication literature (Part VII).



154

APPENDIX B SUMMARY OF STUDIES ON CRASH REPORT
DEDUPLICATION

In this appendix, we summarize the proposed studies in the literature of crash report
deduplication in Tables B.1 and B.2. On the following, we describe the columns in these
tables:

• Study.

• Methodology. This column presents the evalution methodology approaches employed
in the studies.

• Stack trace similarity. This column introduces how studies represented and compared
stack traces.

• Deduplication. It describes how the deduplication was performed.
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Study Methodology Stack Trace Similarity Deduplication
Brodie et al. [21] Method is not evaluated Variant of NW algorithm in

which match(·) depends on
frame position and global fre-
quency information

Stack trace similarity

Modani et al. [95] Binary Classification Prefix match Stack trace similarity
Bartz et al. [96] Binary Classification Edit distance in which op-

erations depends on module
name, sobroutine name, and
offset

Logistic regression that re-
ceives edit distance score and
the features related to catego-
rial data

Dhaliwal et al. [13] Method is not evaluated Edit distance The reports are filtered by the
similarity of topmost frame
and, then, stack trace similar-
ity is employed for the dedu-
plication

Kim et al. [98] Binary Classification Stack traces and buckets are
represented as graphs; and
the similarity of two graphs is
based on the number of shared
edges.

Graph similarity

Dang et al. [22] Clustering Variant of NW algorithm in
which match(·) depends on
position information and con-
tains parameters

Stack trace similarity

Lerch and Mezini [93] Ranking TF-IDF and Lucene’s score
function

Stack trace similarity

Koopaei and Hamou-Lhadj
[99]

Binary Classification Stack traces are compared to
automatas that are generated
for each bucket

Automata

Table B.1 Summary of crash report deduplication literature (Part I).
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Study Methodology Stack Trace Similarity Deduplication
Campbell et al. [10] Clustering TF-IDF and Lucene’s score

function
Textual similarity based on
stack trace content and envi-
ronment information; the tex-
tual data related to execution
environment is tokenized by
splitting words that are writ-
ten in CamelCase

Sabor et al. [94] Ranking TF-IDF and Cosine Similar-
ity; only package names are
employed

Stack trace similarity.

Moroo et al. [102] Clustering Methods proposed by [10] and
[22]

Re-ranking using the har-
monic mean of two similarity
scores

Ebrahimi et al. [100] Ranking HMM is trained for each
bucket

A probability of stack trace
being in a bucket is computed
by means of HMM

Khvorov et al. [97] Ranking Siamese neural network Stack trace similarity

Table B.2 Summary of crash report deduplication literature (Part II).
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APPENDIX C ADDITIONAL ABLATION STUDY RESULTS
REGARDING ARTICLE 2

In this appendix, we expand the ablation study presented in Chapter 5 in which Global
Weight, Local Weight, the diff(·) function, and normalization are removed. We depict ∆AUC,
∆MAP, and ∆RR@1 between the original TraceSim and each possible configuration that has
not more than two components enabled in Figures C.1–C.8.

The following configurations are not reported:

1. TraceSim without Global Weight and Local Weight. In this case, frame weights are
always equal to 1. Since the normalization was designed based on variable frame weights,
the normalization loses its effectiveness.

2. TraceSim without Global Weight, Local Weight, and the diff(·) Function. Similarly to
the previous configuration, the normalization is not effective because the frame weights
are constants.

3. TraceSim without Global Weight, Local Weight, normalization and the diff(·) Function.
This configuration is equivalent to NW algorithm in which the match, mismatch and
gap values are set to 1.0, 2.0, and 1.0, respectively.

Ubuntu Eclipse Netbeans 

0.10

0.05

0.00

0.05

0.10

0.15

0.20

 A
UC

Ubuntu Eclipse Netbeans 

0.10

0.05

0.00

0.05

0.10

0.15

0.20

 M
AP

Ubuntu Eclipse Netbeans 

0.10

0.05

0.00

0.05

0.10

0.15

0.20

 R
R@

1

Figure C.1 Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right) between full
TraceSim and TraceSim without the diff(·) Function and Normalization.
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Figure C.2 Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right) between full
TraceSim and TraceSim without Global Weight and the diff(·) Function.
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Figure C.3 Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right) between full
TraceSim and TraceSim without Global Weight and Normalization.
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Figure C.4 Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right) between full
TraceSim and TraceSim without Global Weight, Local Weight and Normalization.
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Figure C.5 Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right) between full
TraceSim and TraceSim without Global Weight, the diff(·) Function, and Normalization.
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Figure C.6 Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right) between full
TraceSim and TraceSim without Local Weight and Normalization.
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Figure C.7 Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right) between full
TraceSim and TraceSim without Local Weight and the diff(·) Function.
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Figure C.8 Distributions of ∆AUC (left), ∆MAP (middle) and ∆RR@1 (right) between full
TraceSim and TraceSim without Local Weight, the diff(·) Function and Normalization.
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