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RÉSUMÉ

À ce jour, la tâche d’ordonnancement de la qualité des arguments demeure un défi. Celle-
ci vise à évaluer une mesure de qualité des arguments sous la forme de textes libres. La
grande majorité des initiatives faisant partie de l’état de l’art approchent la tâche en util-
isant des méthodes d’ordonnancement de type «pointwise», cherchant à prédire un score de
qualité absolu. Nous proposons plutôt de chercher à apprendre à ordonner les arguments
selon leur mesure relative de qualité. En effet, nous expérimentons avec plusieurs méthodes
d’apprentissage d’ordonnancement, tels que des méthodes de type «pointwise», «pairwise»
et «list-wise». Nous comparons la performance de chacune de ces méthodes sur la tâche
d’ordonnancement de la qualité des arguments.

Pour ce faire, nous utilisons la puissante capacité de l’architecture BERT à construire la
représentation d’un argument, combinée avec des méthodes d’apprentissage d’ordonnancement,
pour ordonner de manière effective les arguments d’une liste selon leur mesure de qualité.
De plus, nous démontrons qu’un ensemble de modèles entraînés avec des fonctions de pertes
différentes augmente la performance pour l’identification des arguments les plus convaincants
d’une liste. Nous comparons l’architecture BERT, combinée à des méthodes d’apprentissage
d’ordonnancement, avec les méthodes de l’état de l’art. Nous effectuons cette comparaison
sur tous les ensembles de données majeurs de qualité d’argument et démontrons comment une
approche d’apprentissage d’ordonnancement présente une meilleure performance à identifier
les arguments les plus convaincants d’une liste.

Finalement, nous explorons la faisabilité d’unifier les ensembles de données de qualité
d’argument avec une mesure standardisée de qualité. Plusieurs ensembles de données de
qualité d’arguments diffèrent dans la manière dont les scores de qualité sont extraits des
annotations collectées, d’où la nécessité d’une mesure commune. Uniformiser ces ensembles
de données de qualité d’argument permet de comparer notre approche aux approches de
l’état de l’art de manière plus homogène. Nous proposons la métrique WinRate comme
mesure standardisée de qualité d’argument et démontrons comment cette métrique permet
d’uniformiser les ensembles de données, montrant une performance plus constante sur les
ensembles de données.
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ABSTRACT

The task of argument quality ranking, which identifies the quality of free text arguments,
remains, to this day, a challenge. While most state-of-the-art initiatives use point-wise rank-
ing methods and predict an absolute quality score for each argument, we instead focus on
learning how to order them by their relative convincingness. Therefore, we experiment with
several learning-to-rank methods for the argument quality ranking task, including pointwise,
pairwise and list-wise learning-to-rank approaches. We compare how each of these methods
perform on different argument quality datasets.

We leverage BERT’s powerful ability in building a representation of an argument, paired
with learning-to-rank approaches to rank arguments according to their measure of convinc-
ingness. We also demonstrate how an ensemble of models trained with different ranking losses
often improves the performance for the identification of the most convincing arguments of a
list. We compare BERT coupled with learning-to-rank methods to state-of-the-art approaches
on all major argument quality datasets available for the ranking task, demonstrating how a
learning-to-rank approach performs better at outlining the topmost convincing arguments.

Finally, we explore the feasibility of unifying argument quality datasets with a standardized
convincingness metric, as they differ greatly in the way the quality scores are inferred from
collected argument annotations. Standardizing argument quality datasets with a common
metric allows for a more consistent evaluation of our solution across datasets and therefore,
allows for a better comparison to state-of-the-art solutions. We propose the WinRate as
a standardized measure of argument quality, and we demonstrate how it unifies datasets,
demonstrating more consistent performance of our solution across datasets.
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CHAPTER 1 INTRODUCTION

Argumentation is a tool to convince an audience of a stance on a given topic using argu-
ments, which consist of one or many phrases or sentences [4]. Stance is defined as the overall
position toward an idea, object or proposition [5]. For example, given the topic "Zoos should
be abolished" and the stance "Pro", one could argue that a zoo’s whole business model is to
take animals from their natural habitats and exploit them for money (Dataset IBM ArgQ
30k [6]). This yields the question: how can one identify a convincing argument? The au-
tomatic assessment of argument quality, a subfield of Natural Language Processing, aims at
answering that very question. In fact, convincingness is a primary dimension of argument
quality [7] and has been the main focus of argument quality research.

1.1 Motivation

The motivation behind being able to evaluate the quality of an argument using machine
learning can be explained with the numerous applications where such capability would prove
to be useful. Modeling convincingness is useful to many fields. For example, in Educational
Data Mining, [8] explains how evaluating the convincingness of a student rationale is impor-
tant for Technology-Mediated Peer Instruction (TMPI) systems. TMPI systems, which are
a form of Learnersourcing, ask students to submit explanations to justify their choice in the
context of multiple choice questions. Students are then presented with other explanations,
submitted by their peers. After considering peer rationales, a student can reconsider his own
answer. Therefore, the convincingness aspect of a student’s rationale impacts the learning
process of his peers.

Many other applications can be listed [9, 10]. For instance, ranking arguments according
to their quality is an important step of the process of building an argument search engine
for the Web, as presented by [9]. As another example, [10] shows how modeling argument
quality is used to annotate arguments, their components and relations in persuasive essays.

Defining the attributes of a strong argument is very subjective [7]. In fact, [11] states that
the logical structure of an argument, as well as other factors such as the speaker, the emotions
and the context have an impact on the argument’s quality. Moreover, [12] demonstrates
through experiments that the same argument can be regarded differently depending on the
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audience. As [6] outlines, rather than strictly defining argument quality, which is subjective,
we can list characteristics typically describing strong arguments, as well as characteristics
describing weak arguments. For example, bad grammar and low clarity are clear indicators
of a weak argument, whereas a strong argument can generally be described as relevant,
with high impact. That being said, [2] demonstrates how a neural approach to modeling
argument quality using word embeddings outperforms approaches based on task specific
features. Moreover, approaches based on task specific features require a significant greater
amount of pre-processing steps. Recent work show the benefits of leveraging deep pre-trained
language models for argument quality assessment [6,7]. Therefore, in this work, we focus on
deep neural language models to model argument quality (see section 4.1).

1.2 Research Objectives

Automatic argument quality assessment consists in predicting a measure of convincingness
for an argument given a topic on which the argument is taking position on. UKP Lab ( [1])
proposed 2 tasks in the field of computational argumentation: First, the task of predicting
the most convincing argument of a pair of arguments and second, the task of ranking a list
of arguments, according to their convincingness. While the performance of state-of-the-art
models on the first task is impressive, the task of ranking arguments in order of convincingness
proves to be more challenging [7]. Another challenge of the argument quality ranking task is
how argument quality datasets are different in the way their quality score is inferred. This
prevents the comparison of models in a uniform way, across datasets.

In this work, we focus on the second task: ranking a list of arguments for a given topic, in
order of convincingness. This is, as one would expect, more complex than simply choosing the
most convincing argument out of a pair of arguments ( [1]’s first task). Most solutions so far
approached the task as predicting an absolute quality score for each argument individually,
defined as point-wise ranking [1, 6, 7]. While these methods produce the desired outcome as
the list of the predicted scores can be sorted to order the arguments, we hypothesize that
there are ranking capabilities potentially lost during the learning process by not comparing
the arguments together. We propose to define the problem as a true ranking task, where we
do not evaluate each argument’s individual measure of quality, but instead focus on evaluat-
ing its relative convincingness compared to other arguments. In this work, we try to answer
the following research question :

How can learning-to-rank techniques contribute to automatic argument quality



3

evaluation ?

To answer this research question, we propose to leverage a neural approach to learning-to-
rank, built on top of BERT [13], a modern neural language model that has shown impressive
results on several Natural Language Processing (NLP) tasks. This method combines BERT’s
strong ability to build an argument’s representation, and different ranking loss functions
(pointwise, pairwise, list-wise). This solution allows us to evaluate the quality of a group of
arguments by ordering them from most convincing to least convincing. We also propose a
standardized metric for argument quality to unify major argument quality datasets, as each
dataset differs greatly in the way the quality scores are inferred from collected argument
annotations (This will be discussed in chapter 3). As our proposed solution for argument
quality is evaluated on multiple datasets, we want the quality score from each dataset to be
comparable to one another, ensuring a uniform evaluation across datasets. To achieve this,
it is necessary to answer more specific research questions:

Q1 : How can learning to rank techniques coupled with pretrained language models
contribute to automatic argument quality evaluation?

Q2 : How can argument quality datasets be standardized with a common score, to
facilitate the comparison of models’ performance on the ranking task?

1.3 Contributions

BERT & Learning-to-rank In this work, we present a different method to argument
quality ranking and approach it as a true ranking task. We compare pointwise, pairwise and
list-wise learning-to-rank methods for the argument quality ranking task, introducing list-
wise learning-to-rank methods to the field of argument quality. Furthermore, we combine
learning-to-rank methods with pretrained language models (BERT). We demonstrate how
our approach outperforms state-of-the-art solutions on NDCG@K metrics.

Standardized Score Moreover, we explore how argument quality datasets can be stan-
dardized with a common score. This allows to unify datasets and represents our solution to
the heterogeneity among various methodologies and datasets. We thoroughly compare the
presented standardized score to each dataset’s original quality score and analyze the benefits
gained from using a standardized score.
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Ranking task on IBM EviConv To the best of our knowledge, we are the only ones
who evaluate the argument quality ranking task on dataset IBM EviConv, presented by [2].
The authors evaluate their approach on the argument pair classification task only. While
they publish individual scores for each argument as part of the dataset, they don’t address
the ranking task.

1.4 Thesis Outline

The findings of our work will be presented as follows. We first present previous state-of-
the-art approaches for the argument quality evaluation task in chapter 2. This literature
review allows us to establish the baseline that we use as comparison for any solution we
propose. Chapter 3 describes the datasets used to evaluate our solution, describing how
they compare in the way they were collected. The 4 datasets presented will be used as an
evaluation source, common to both our approach and state-of-the-art methods. In chapter 4,
we explain our methodology and the architecture of our proposed solution. We also describe
the performance metrics used to evaluate our model. The results obtained are compared to
state-of-the-art models. Chapter 5 explores the feasibility of using a normalized score for all
argument quality datasets, thus unifying them.
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW

In this chapter, we first look over the concepts relevant to our work, defining the building
blocks used in our approach to tackle argument quality ranking. We define the pre-trained
language model BERT, which we later use to build argument representation. We define the
concepts behind learning-to-rank methods, as it is fundamental to our approach in solving
the argument quality ranking task. Then, we define the argument quality assessment task,
and we review the main methods presented in the last 5 years for the automatic argument
quality assessment task. This allows us to identify state-of-the-art solutions, and therefore,
establish the baseline to which we will later compare our approach.

2.1 BERT

In this section, we discuss Bidirectional Encoder Representations from Transformers (BERT)
[13], which we later use to build a representation of an argument in regard to its respective
topic. BERT consists of a transformer, an attention-based model, applied to language mod-
elling. Through an attention mechanism, BERT learns contextual relations between words
in text. Instead of reading the input from left to right, like multiple models do, BERT reads
the total sequence of words at once: this is why it is considered bidirectional. This allows
BERT to learn the context of a word by looking at the words surrounding it. BERT’s strong
ability at building a feature representation of text resides in the fact that it was pre-trained
on large corpora: the whole English Wikipedia corpus and the Brown Corpus, producing a
model that has a strong initial understanding of the English language and can be fined-tuned
on a more specific task. BERT is pre-trained on 2 tasks: masked language modeling and
next sentence prediction.

Masked Language Modeling BERT is pretrained on the masked language modeling task,
which consists in predicting masked words in sentences. In each sequence of words passed
to BERT, 15% of words are masked, and BERT is trained at predicting the masked words
using the context of the words that are not masked. Figure 2.1 shows the configuration for
training on the masked language modeling task. A classification layer is added on top of the
encoder output. The output is multiplied by the embedding matrix to be transformed into
words from the vocabulary. Finally, a softmax function is applied to calculate the probability
of each word in the vocabulary as candidate for the position of the masked word. During the
training phase, the loss function takes only the predictions on masked words into account.
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Next Sentence Prediction The second aspect of BERT’s pretraining is next sentence
prediction. The model is trained on the following task: given a pair of sentences, the model
must predict if the second sentence is the sentence after the first sentence in the original
corpus. During training, BERT is fed pairs of sentences, of which 50% are subsequent sen-
tences and 50% aren’t. To establish the delimitation between the 2 sequences, special tokens
are added to the sentences’ tokens: [CLS] at the beginning of tokens, [SEP] between the 2
sequences and at the very end. In addition to the tokens embeddings, sentence embeddings
and positional embedding are fed as input to the transformer. Sentence embeddings indicate
if a token belongs to the first or second sentence. The entire sequence is given as input to
BERT, and a classification layer using Softmax is applied to the output of the [CLS] token,
predicting the probability that the second sentence is subsequent of the first. Both masked
language modeling and next sentence prediction tasks are trained altogether. The training
goal is to minimize the combined loss of the 2 tasks.

Being trained on both masked language modeling and next sentence prediction, BERT is
a pre-trained model with a strong initial understanding of the English language. It can be
fined-tuned on a more specific task. As we will describe in section 4.1, we use BERT as a
building block responsible for learning a representation of arguments with respect to their
topic, for the argument quality ranking task.
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Figure 2.1 BERT architecture for masked language modeling.

2.2 Learning-to-rank

Learning-to-rank methods consist of machine learning applied to the task of ranking a list
of items based on the features of those items. These methods focus on the relative order
of the items instead of the score predicted for each item. Learning-to-rank methods can be
divided into 2 groups ( [14] ): Learning for Ranking Creation, which is focused on building
a ranking model using machine learning techniques and Learning for Ranking Aggregation,
which is focused on generating a ranked list of items from multiple ranked lists of items [14].
For the purpose of this work, we focus on Learning for Ranking Creation as it applies to our
task at hand: ranking a list of arguments according to their relative convincingness.
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2.2.1 Learning for Ranking Creation

Data Labeling

For a learning-to-rank task, items to rank are labeled with relevance labels, given topical-
ity. Two types of relevance label can be used to describe items to rank: binary relevance
and graded relevance labels. Assuming the relevance of items is initially represented as a
continuous variable, the variable is divided into categories [15]. The choice of the number
of categories depends on the application, as it influences how the ranking is modeled. Bi-
nary relevance, where the variable is divided into 2 categories: relevant or not relevant, is
commonly used in Information Retrieval (IR) as it appropriately models the concept of a
document being relevant or not relevant to a query. However, it implies that all relevant
documents are equally relevant to the query. Graded relevance is used when ranking items
according to a degree of relevance. In this work, we work with graded relevance labels. For ar-
gument quality ranking, we want to rank a list of arguments by their relative convincingness.
Therefore, graded relevance labeling is the appropriate labeling technique.

As any supervised task, learning-to-rank methods require labeled data: a gold standard
consisting of the ranked list of items for a specific context. Applying this idea to our ranking
task, we formulate the problem as follows. We have a set of topics T and a set of arguments
A. For each topic Ti, the gold standard assigns a label Yi from Y = {1, 2, ..., r} to each
argument ai from the set of arguments Ai related to the topic Ti. The label Yi represents a
grade. The list of grades consists of a total order between grades: r ≺ r− 1 ≺ ... ≺ 1, where
≺ shows the order relation [14].

Feature extraction The ranking models aim to learn a function f(x) which takes a fea-
ture vector x as input. This vector x is a feature vector based on both the topic and the
argument. This is important to assure the model is able to generalize to new data and more
importantly to new topics. The feature vector x should be a representation of the topic and
the argument, appropriately building how they interact with each other, and therefore iden-
tifying how the argument is relevant to the topic. We present in section 2.1 how we intend
to build a representation of the topic & argument pairs.

Ranking function Through supervised learning, we learn a ranking function f(x) over
training examples. This neural function is learned through gradient descent. We show in
section 4.2 the different ranking losses we use during training, and then we show in section
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Figure 2.2 Learning-to-rank steps.

4.4 how each ranking loss yields a ranking model performing differently. The ranking model
takes an entire list of arguments as input, and learns an ordering that optimizes the relative
ordering of the entire list of arguments. The ranking function f(x) outputs a score for each
argument, as shown in figure 2.2. Those scores are sorted in descending order, generating a
ranked list of arguments, ordered from the highest quality argument, to the lowest quality
argument. The major difference between the learning-to-rank approaches lies in the choice
of loss function. The loss function can be calculated over individual items of the ranked list,
over pairs of items in the ranked list or over the whole ordered list, as we explain in the next
sections.

Pointwise Ranking

A pointwise approach to learning to rank considers the ranking problem as a classification,
regression or ordinal classification task. Therefore, existing methods for classification, re-
gression or ordinal classification can be applied to learning the ranking function. Pointwise
ranking ignores any group structure of the items to rank, and each item is considered indi-
vidually. In other words, the loss function used to learn the ranking function f(x) is defined
on the feature vector of items to rank, considering each feature vector individually [14].

Pairwise Ranking

A pairwise approach to learning-to-rank defines the ranking problem as a binary classifica-
tion task, where the model learns from preference pairs of features. From the ranked list, a
preference pair between itemi and itemj can be defined as positive if itemi is ranked higher
than itemj in the list and negative otherwise. Learning from preference pairs classification
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provides a model capable of ranking a list of items. Therefore, the ranking model’s perfor-
mance is defined by its performance on the pairwise classification task. The loss function
used for pairwise ranking is defined on pairs of features vectors from the ranked list. Simi-
larly to pointwise ranking, during training, pairwise ranking ignores the group structure of
the ranked list of items as a whole and focuses on preference pairs. [14].

List-wise Ranking

A list-wise approach to learning-to-rank, compared to pointwise and pairwise approaches,
considers the group structure of the ranked list of items as a whole during the learning
process. The model learns a ranking function f(x) from the entire list of feature vectors,
each labeled with a score, allowing for the ranking function to grasp the group structure
of the ranked list of items. As [14] outline, this is a new problem for machine learning
and traditional machine learning methods cannot be applied directly. Diverse solutions are
proposed to tackle this problem, like the Luce-Plackett model for example, which calculates
the permutation probability of items in the list [16]. We further describe Luce-Plackett model
in section 4.2.

2.2.2 Ranking Aggregation for pairwise preferences

In this section, we describe the specific case of ranking aggregation for pairwise preferences.
The majority of the datasets we present in chapter 3 are collected through crowdsourcing,
where the feedback from multiple crowd workers is merged into rankings. Ranking n items
can also be considered as the collection of

(
n
2

)
preference pairs [17]. Thus, we first present

established solutions to aggregating pairwise preferences into ranking.

Bradley-Terry (BT)

The Bradley-Terry model is a rank aggregation model for pairwise preferences. The proba-
bility of ai being chosen over aj relies on sai and saj , which correspond to strength parameters,
as shown in equation 2.1 [17].

P (ai > aj) = 1
1 + e−(sai−saj ) (2.1)

The value of the strength parameter sai is evaluated across pairwise preferences using the
following maximum a posteriori estimator, shown in equation 2.2:
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ŝ = argmaxs{Pr(s)
∏
g∈G

∏
ai�ρ(g)aj

1
1 + e−(sai−saj )} (2.2)

Where, G is a set of graders G = {g1, ..., gk} and ρ is a set of pairwise preference from
grader g.

WinRate

The WinRate metric, applied to pair annotations, consists of the number of times an argu-
ment is chosen as the most convincing of the pair over the number of times the argument is
shown overall:

WinRate(arg) =
∑n
i=0 yi
n

(2.3)

Where yi is the binary label of the argument for the occurrence i out of n occurrences in
total. In other words, this means that for a topic, n argument pairs include this argument.
For each argument pair, the label yi indicates whether the argument is the most convincing
argument of the two arguments (1) or is the less convincing argument of the two arguments
(0). Therefore, the WinRate is simply the number of times an argument is labeled as more
convincing than another argument over the number of times it is compared to another argu-
ment [18].

Elo

The Elo rating system can be applied to ranking aggregation of pairwise preferences, as
shown by [8]. While it was initially presented to rank chess players [19], [20] demonstrated its
application in other fields. The probability of an item ai being ranked higher than another
item aj is given by equation 2.4:

P (a1 > a2) = 1
1 + 10(βa2−βa1 )/δ (2.4)

where βa1 and βa2 correspond to the strength of ai and aj respectively. δ is a scaling constant.
βai parameters are updated after each pairwise preference seen as shown in equation 2.5:

β′a1 = βa1 +K(P (a1 > a2)− βa1) (2.5)
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Where K is a constant indicating the maximum adjustment per pairwise preference, called
the K-factor, and is fixed to a value [20].

We presented solutions to aggregating pairwise preferences into rankings. While the
Bradley-Terry and Elo models are well-established, the WinRate is relatively new, intro-
duced as a pairwise preferences’ aggregation method in the context of argument quality
ranking by [18]. As we explain in chapter 3, many argument quality datasets are collected
as annotated pairs of arguments and, therefore, require aggregating pairwise preferences into
rankings to extract ranked lists of arguments.

2.3 Argument Quality Evaluation

Argument quality evaluation or Argument quality assessment is the subfield tackling the
long-standing challenge of modeling argument quality. The difficulty of the task is mostly
explained by its subjectivity [6]. In this section, we look over the state-of-the-art for the
argument quality evaluation task, describing the solutions presented in the last 5 years. We
first define rigorously the argument and its components. We then present state-of-the-art
solutions to the two main tasks of argument quality evaluation: the classification task and
the ranking task, both of which have been defined and pioneered by [1]. The classification
task consists of choosing the most convincing argument, given 2 arguments on the same topic.
The ranking task can be expressed as the ordering of a list of arguments by their relative
measure of quality, as previously explained.

2.3.1 Definitions

First, we define the term argument. An argument consists of one or more phrases or
sentences, composed of the claim and the premise (also called evidence), jointly forming
the argument [4]. The claim is either supported or contested by one or multiple premises.
The argument is trying to convince the audience of a claim using the premises. In theory,
the audience would not believe the claim without evidence of the claim, in the form of
premises [21]. In the following example, the argument contains four components: one claim
(in bold) and three premises (italic) [22]:

“(1) Museums and art galleries provide a better understanding about
arts than Internet. (2) In most museums and art galleries, detailed descrip-
tions in terms of the background, history and author are provided. (3) Seeing an
artwork online is not the same as watching it with our own eyes, as (4) the picture
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online does not show the texture or three-dimensional structure of the art, which
is important to study.”

2.3.2 Traditional Machine Learning

Assessing argumentation quality was traditionally based on the evaluation of relevance,
sufficiency, acceptability of premises [23] or categorizing fallacies [24, 25]. [26] argues those
approaches create "ideal" models, and a gap can be observed between the argument quality
modeling of those approaches and real-world arguments.

[27] presents an approach, using linguistic features, to model argument quality. The vast
set of 23,345 handcrafted features consists, among others, of semantic density features, dis-
course and dialogue features, and syntactic property features. For example, the authors use
sentence length, word length, specificity of the sentences, the Kullback-Leibler divergence,
etc., as features to predict the quality of an argument. Modeling the prediction of argument
quality as a regression task, they use 3 different algorithms: Linear Least Squared Error,
Ordinary Kriging and Support Vector Machine (SVM) with a radial basis function kernel.
Through feature selection, [27] identifies the 10 features most correlated with the annotated
quality score where sentence length, the relative frequency of the root node within a sentence
(syntactic feature) and lexical n-grams shine as the most correlated linguistic features.

UKP Labs pioneered the task of assessing argument quality by focusing on the relative
convincingness of arguments and comparing pairs of arguments having the same stance on
a topic [1]. Their initial and main contribution is a dataset of annotated argument pairs,
UKPConvArg1, which we describe in chapter 3. In assessing argument quality by focusing
on the relative convincingness of arguments, they propose 2 tasks which define the argument
quality field and remain the basis of evaluation for any new state-of-the-art solution. The
first task, the classification task, consists in predicting the most convincing argument of a
pair of arguments. The second task, the ranking task, consists in ordering a list of arguments
by their relative measure of convincingness. For the classification task, they first present
a more traditional method: SVM using a set of rich linguistic features such as unigrams,
bigrams, contextuality measures, readability measures, spellchecking, etc.

[28] propose to utilize scalable Gaussian Process Preference Learning (GPPL) to learn
from noisy pairwise preferences ( [1]’s collected pairwise annotations), producing a classifier
which achieves significant improvement over [1]’s models. Compared to [1]’s two approaches



14

using either linguistic features or word embedding representations, [28] propose to leverage
both linguistic features and word embedding representations as input for one single model.
Each argument’s vector representation consists of 32 010 linguistic features combined with
Global Vectors for Word Representation (GloVe) word embeddings. Both feature sets are
reused from [1], feeding those features to a scalable Bayesian preference learning model, out-
performing [1]’s best performing model. [28], therefore, demonstrate the impact of combining
rich linguistic features with embedding representation for the argument quality assessment
task.

For the first task, the classification task, [28] leverages Gaussian process preference learning,
which they reuse for the second task as this method is directly applicable to the argument
quality ranking task. In fact, they argue this approach solves the disadvantages of classifier-
based and permutation-based models, by learning a function which outputs a real-valued
convincingness score. Therefore, their model, which is trained on pairwise preferences, takes
argument features as input and can be used to predict pairwise labels or scores for individual
arguments, and consequently, rankings. This makes for a more versatile solution. As a re-
sult, [28] reuses the model trained on the classification task, and outperforms both regression
models by [1] on the argument quality ranking task. Therefore, they demonstrate the supe-
riority of their approach compared to [1]’s approach, on both the classification and ranking
task.

2.3.3 Neural Machine Learning

UKP Labs present a second approach to the classification task: a Bidirectional Long
Short Term Memory (BiLSTM) using pre-trained GloVe. Therefore, they compare their first
approach using handcrafted features to a word embedding representation of the arguments
paired with a BiLSTM, a more modern solution gaining popularity for many natural language
task at the time [1]. Evaluated on the task of predicting the most convincing argument
of a pair, the SVM using linguistic features slightly outperformed the BiLSTM. However,
[1] outlines a noticeable difference: the SVM using linguistic features requires heavier pre-
processing prior to training compared to the BiLSTM, which might not justify the slight gain
in performance.

As said previously, [1] also introduces a second task to the field of argument quality: the
ranking of a given list of arguments on a topic, by their relative measure of convincing-
ness. This is the task we focus on, in this work. [1] initially collects the dataset as pairwise
annotations and, to extract rankings from those annotations, applies PageRank algorithm
(explained more in details in chapter 3). Many other methods exist to aggregate rankings
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from pairwise preferences, as we describe in section 2.2.2. Using PageRank, [1] generates
a new dataset, UKPConvArg1-Ranking, from their first dataset. The new dataset consists
of lists of arguments, ranked by their relative convincingness, each list of arguments being
related to a topic. For this ranking task, [1] modifies the SVM using linguistic features and
the BiLSTM, both used in the first task, by replacing the output layer with a linear acti-
vation function allowing to predict a quality score for every argument of a list, and then
order the arguments according to their quality score. Thus, they address the second task as
a regression task, which is as pointwise ranking.

[29] performs extensive feature selection over linguistic features and identifies 5 features
which stand out: length ratio (length of individual argument over length of average argument)
of words, length ratio of sentences, intersection with most common lemmas, stems ratios,
percentage of long words and intersection with most common nouns ratio. Using only those
5 features as input to a feed-forward neural network, [29]’s solution delivers performances
very close to [1]’s SVM using about 32, 000 features, while being much lighter to train.

[30] propose 2 supervised methods as well as non-supervised methods for the classification
task. First, they present a Siamese BiLSTM and a Siamese model using the sum of token
embeddings to represent an argument. The Siamese model with sum-of-token-embeddings
performs best, and even outperforms [1]’s models. As another approach, [30] proposes to
evaluate the similarity of an argument with Wikipedia texts, as a way of measuring its
quality. A similarity score of an argument is evaluated by summing the similarity between the
argument and each Wikipedia article. The similarity between the argument and a Wikipedia
article is calculated using the dot product. Given a pair of arguments, the similarity score is
calculated for each argument, and the argument with the highest similarity score is defined
as more convincing. This method doesn’t outperform [1]’s solutions.

For the ranking task, [18], which extends work from [30], proposes an architecture with
an objective similar to RankNet [31]. The model is trained on pairwise annotations, and
predict ranks, using a sum of word embeddings as representation of an argument. The model
produces scores independently for each argument, normalizing the scores of argument pairs
using the Softmax function. Trained on preference pairs of arguments, the model can then
be evaluated on the classification task and the ranking task. On the UKPConvArgRank
dataset, [18]’s solution sets the current benchmark for state-of-the-art performance, using
the Spearman ranking metric. As another contribution, [18] proposes an alternative method
to aggregate argument pairwise annotations into rankings: the WinRate (described in section
2.2.2) and compares it to [1]’s PageRank algorithm.
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[32] proposes a solution to the argument classification task that stands out from other
approaches. They further annotate the dataset UKPConvArg1 by [1] with topic aspects for
each argument. For example, for the topic Ban plastic water bottles with stance No, [32]
annotates the argument:

The American Water companies are Aquafina (Pepsi), Dasani (Coke), Perrier
(Nestle) which provide jobs for the american citizens.

with the topic aspect Economy and, similarly, they annotate the argument:

If bottled water did not exist, more people would be drinking sweetened liquids
because it would be the only portable drinks! People would become fat!

with the topic aspect Convenience and health. [32] annotates latent topic aspects to leverage
the assumption that arguments sharing the same topic aspect are more likely to demonstrate
the same level of convincingness. They propose a BiLSTM-GCN for the classification task,
consisting of a BiLSTM encoding a representation of each argument, and feeding its output
to a Graph Convolutional Network (GCN) which updates the vector representation of each
argument utilizing topic aspect information. This architecture yields a stronger performance
than other approaches on [1]’s classification task. However, it cannot be directly compared
to other approaches as it uses a modified dataset.

[2] presents a Siamese BiLSTM using word2vec embeddings, an architecture designed to
build a representation of each argument of the pair and then compare each representation
effectively. Each BiLSTM shares the same weights, allowing for each leg of the model to
learn a quality representation of an argument in the pair, and both legs’ output are compared
using a cross entropy classification loss. They argue that their approach, compared to [28]’s
solution, requires much lighter preprocessing steps. [28]’s rich linguistic features need heavy
preprocessing and might not be suitable for certain languages. [2]’s Siamese BiLSTM, on the
other hand, is not dependent on task-specific features, while achieving performance similar
to [28]. [2] also contribute a new argument quality dataset to the field, IBM-EviConv which
we describe in chapter 3.

Similarly to [28], [2] outlines how [1]’s proposed methods, SVM and BiLSTM, are constrained
by the fact that if they are trained on pairs of arguments, they can provide pairwise inference
only, making those models trained on the classification task not reusable for the ranking
task. [2]’s solution, similarly to [28]’s, is trained on pairwise annotations and can provide
pairwise as well as pointwise inference. In fact, for the task of ranking a list of arguments, [2]
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reuses one leg of their Siamese BiLSTM from the first task. Using that Siamese BiLSTM’s
leg, they predict a quality score for each argument individually. Evaluated on the ranking
dataset UKPConvArgRank by [1], [2]’s approach outperformed [28]’s scalable Bayesian pref-
erence learning model on the Pearson correlation metric and displays similar performance on
the Spearman correlation metric, thus demonstrating a better overall performance. While
the authors evaluated the Siamese BiLSTM on dataset IBM-EviConv for the classification
task, the ranking task was not evaluated on it. This can be explained by the fact that the
quality scores assigned to each individual argument, as part of the labeling process of the
dataset, come from the predictions of one leg of the Siamese BiLSTM [2] trained on the
pairs of arguments, from the first task. Therefore, the quality scores come from the model’s
predictions and are not collected from crowd annotators, like other datasets.

Pretrained language models

[7] demonstrates an approach outperforming previous solutions on the classification task,
on the dataset published by [1], UKPConvArg1, by leveraging deep pretrained language mod-
els. They apply BERT (described in section 2.1) to the argument classification task. The
model takes 2 arguments as input and uses a binary classification head to predict the most
convincing argument. BERT’s embeddings are fined-tuned on the argument classification
task. [7] presents how BERT establishes itself as the state-of-the-art on [1]’s first task: pre-
dicting the most convincing argument out of a pair. [7] also presents a new argument quality
dataset, IBM-ArgQ, which we describe in chapter 3.

To tackle the argument quality ranking task, both [7] and [6], which are initiatives by IBM
research, use BERT with a regression head. BERT’s strong performance on the first task
justifies its use on the second task. To predict a quality score for each argument, they use
BERT with 2 sequences as inputs: the topic and the argument. [7] reuses embeddings from
the BERT classifier trained on the first task for the BERT Regressor, which they compare to a
version of BERT with vanilla embeddings (not fined-tuned on any specific task). BERT with
fined-tuned embeddings shows a stronger performance. Performances reported by both [7]
and [6] demonstrate the effectiveness of using deep language models for the argument quality
ranking task. [6] also contributes to the field by releasing the largest argument quality dataset
to date, IBM-ArgQ-Rank-30k (see chapter 3).

Looking at state-of-the-art methods in argument quality evaluation, we can observe the
effectiveness of using BERT to build embedding representations of the arguments. In fact,
methods using BERT deliver the best performance for predicting the most convincing argu-
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ment of a pair. However, on the task of ranking a list of arguments, point-wise approaches
to learning-to-rank fall short. [18] demonstrates the benefits of using a ranking objective
(RankNet). Based on those observations, in this work, we compare a pointwise, pairwise
and list-wise approach to learning-to-rank on top of BERT, evaluating our approach on all
the major argument quality datasets. Before presenting our solution in details in chapter 4,
we thoroughly describe in chapter 3 each dataset included in our study. We compare our
approach to state-of-the-art solutions on each of these datasets.
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CHAPTER 3 DATASETS AND EVALUATION METRICS

In this section, we describe all major publicly available argument quality datasets released
in the last 5 years.

3.1 Datasets

These datasets are used in all our experiments to compare our solution to the state-of-the-art.
Descriptive statistics on these datasets are shown in Table 3.1 & 3.2. These datasets present
differences in the way the arguments were collected and the way they were annotated.

Table 3.1 Statistics on the most common datasets for the argument quality evaluation task.
PC stands for Pair Classification.

Dataset name Number of ar-
guments

Number
of topics

Task Source

UKPConvArg1Strict 11650 pairs of
arguments

32 PC Extracted from
createdebate.com and
convinceme.netUKPConvArg1-Ranking 1052 argu-

ments
32 Ranking

IBM-ArgQ-Pairs 9100 pairs of
arguments

22 PC Actively collected
arguments from
crowdsIBM-ArgQ-Args 5300 argu-

ments
22 Ranking

IBM-EviConv 5697 pairs of
arguments

69 PC &
Ranking

Automatically re-
trieved Wikipedia
sentences

IBM-ArgQ-Rank-30k 30000 argu-
ments

71 Ranking Actively collected ar-
guments from crowds

UKPConvArgStrict & UKPConvArgRank

The first datasets used to compare our approach to state-of-the-art solutions is from UKP
Lab. The UKP datasets contain arguments extracted from Web debate portals, where the
proficiency of writing varies greatly. The collected arguments consist of claims and evidences
[2]. A claim poses a statement about a subject, and an evidence is composed of facts presented
in support of an assertion (more developed than the claim). Arguments collected take a stance
on 16 different topics of various nature, from "Ban Plastic Water Bottles?" to "Christianity
or Atheism" [1]. Annotated through crowdsourcing, each argument pair was evaluated by
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Table 3.2 Detailed statistics on the arguments of the most common datasets for the argument
quality evaluation task.

Dataset name
Arg Length Topic Length

Mean Topic Arg Count

M
ea
n

M
in

M
ax

M
ea
n

M
in

M
ax

UKPConvArg1Strict 263 37 753 56 26 92 32UKPConvArg1-Ranking
IBM-ArgQ-Pairs 138 36 275 42 31 63 240IBM-ArgQ-Args
IBM-EviConv 189 60 495 34 20 55 26
IBM-ArgQ-Rank-30k 107 35 251 34 21 52 429

5 workers, who each had to choose the most convincing argument out of the pair (with a
justification). These are referred to as pair annotations by the authors. Workers could also
evaluate 2 arguments as equally convincing. The workers were instructed to be objective,
not to judge the truth of the proposition and not express their opinion. The argument pair
annotations are part of the dataset named UKPConvArgStrict. This dataset is used for the
classification task of predicting the most convincing argument out of a pair of arguments.
The authors also rank the arguments in order of convincingness for each topic, by computing
a score for each argument from the pair annotations. To obtain this score, they build a
graph representation where nodes represent arguments and directed edges indicate the most
convincing argument: the target of the edge is the most convincing argument of the pair.
PageRank is then used to rank all the arguments for each topic. This resulted in the dataset
UKPConvArgRank. This dataset can be used for the task of ranking a list of arguments given
a topic. Table 3.3 gives an example of an argument defending a stance on a topic, from the
UKPConvArgRank dataset. To summarize, UKPConvArgStrict was annotated using pairs
of arguments and those annotations needed an extra processing step to extract a pointwise
quality score for each argument, creating UKPConvArgRank.
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Table 3.3 Example of an argument for a topic given by [1].

Topic Should physical education be mandatory in schools?
Stance Yes
Argument PE should be compulsory because it keeps us constantly

fit and healthy. If you really dislike sports, then you can
quit it when you’re an adult. But when you’re a kid,
the best thing for you to do is study, play and exercise.
If you prefer to be lazy and lie on the couch all day then
you are most likely to get sick and unfit. Besides, PE
helps kids be better at team-work.

IBM-EviConv

[2] introduced the dataset IBM-EviConv. The dataset consists of a set of evidence pairs
extracted from Wikipedia, a heavily edited corpus, thus assuring a certain level of writing.
Table 3.4 gives an example of a collected pair of evidences. The extracted arguments take
a stance on 69 different topics of various nature, from "We should legalize prostitution" to
"We should introduce universal health care" [2]. Contrary to UKP datasets, which contain
claims and evidences, the dataset IBM-EviConv consists only of evidences (also referred to as
premises, as seen in section 2.3.1). The reason given by the authors for such a decision is to
counter an issue known with the UKP dataset: [1] demonstrated how a shallow feature such as
the argument length performed very well to predict convincingness. This could be explained
by the fact that an evidence is usually longer, providing more details compared to the claim
which is more concise. This implies that an evidence could be considered more convincing
than the claim by the model for the only reason of its length and not its content [2]. For
these reasons, IBM-EviConv consists only of evidences of roughly the same length, posing a
more challenging task. This forces a model to learn features from the argument’s content to
evaluate its convincingness instead of relying on shallow features like argument length.

As IBM-EviConv is annotated as a set of evidence pairs extracted from Wikipedia, an
extra step is needed to rank arguments. To extract rankings from those pairwise annota-
tions, [2] introduces a different ranking aggregation approach than [1]. They first train a
Siamese BiLSTM, where parameters are shared by each BiLSTM, both connected through a
Softmax layer on top. The Siamese BiLSTM is trained on the classification task using the
pairwise annotations extracted from Wikipedia. Then, to infer rankings for each argument,
one leg from the Siamese BiLSTM is used to generate a score for each argument. This allows
for [2] to extract a pointwise score for each argument from the collected pairwise annotations.
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Table 3.4 Example of a pair of collected evidences for topic We should legalize same sex
marriage given by [2].

Topic We should legalize same sex marriage.
Evidence #1 The California Supreme Court overturned California’s

ban on gay marriages on May 15, stating that depriving
gays and lesbians of the same rights as other citizens is
unconstitutional. (PRO)

Evidence #2 In his 2002 Senate campaign, Coleman pledged support
for an amendment to the United States Constitution
that would ban any state from legalizing same sex mar-
riage. (CON)

IBM-ArgQ

Dataset IBM-ArgQ, proposed by [7], is another argument quality dataset which differs
in the way the arguments were collected. Most previous argument quality datasets were
collected from online debates. IBM-ArgQ was collected actively via a dedicated user interface,
where contributors were guided to provide arguments per topic stance. Furthermore, the
authors demonstrate how the arguments from the IBM-ArgQ dataset are more homogeneous
in their length compared to UKPConvArgRank by [1]. They argue that this allows for a
model to learn argument quality properties not related to argument length. Such properties
would be more valuable to properly represent argument quality than a shallow feature like
argument length.

A key point about the dataset is the way the arguments were labeled. The previously
presented datasets were constructed by annotating argument pairs, and then a transformation
step was needed to extract a ranking of arguments from that pairwise annotation [1,2]. In this
case, IBM-ArgQ was built using two different labelling approaches: each individual argument
was annotated with a pointwise quality score, and also, argument pairs were labeled (similar
to previous approaches). [7] explains how they explore the two different labeling methods,
and analyze how the resulting labels of each method compare. They demonstrate that each
method yields consistent results. This resulted in, as per other initiatives, two datasets : one
for the task of predicting the most convincing argument of a pair and the other for the task
of ranking a list of arguments for a topic. However, in this case, both datasets were built
directly from human annotators, avoiding a transformation step such as using PageRank like
in [1].



23

IBM-ArgQ-Rank-30k

Dataset IBM-ArgQ-Rank-30k was proposed by [6]. For this dataset, the arguments are
annotated directly with an individual score, without the need for argument pair annotations.
Using crowd annotation, 30,497 arguments were collected from 280 contributors on 71 con-
troversial topics. The arguments were annotated as a binary decision. For each argument,
the annotators were asked if they would recommend a friend to use that argument or not.
Each argument was annotated by 10 people. A continuous quality score, between 0 and
1, was then derived from these binary annotations. [6] used two different ways of deriving
that score: the Weighted-Average (WA) and the Multi-Annotator Competence Estimation
(MACE) probability.

MACE probability [6] uses the MACE probability as a scoring function to infer a quality
score from crowd annotations. MACE is an unsupervised item-response generative model
[33]. Given annotations, it predicts each label’s probability. Moreover, a reliability score is
estimated by MACE for each annotator and is used to weight the annotator’s annotations.
The MACE model maximizes the probability of observed data, maximizing the marginal data
likelihood shown in equation 3.1 using Expectation Maximization (EM).

P (A; θ, ξ) =
∑
T,S

[
N∏
i=1

P (Ti) ·
M∏
j=1

P (Sij; θj) · P (Aij|Sij, Ti; ξj)] (3.1)

Where A is the matrix of annotations (Aij corresponds to observed annotation i from
annotator j), S is the matrix of spamming indicators (Sij corresponds to annotator j’s trust-
worthiness on annotation i), and T is the vector of true labels, noting that the true labels
and the spamming indicators are unobserved. The annotator reliability score of an annotator
j, or in other words, his trustworthiness, is represented as θj and ξj is a vector representing
how an annotator behaves when he is not trustworthy, and he is spamming [33].

Weighted-Average [6] proposes the Weighted-Average as an alternative to MACE prob-
ability. It consists of an average of the annotations, weighted by annotator-reliability, sim-
ilarly to MACE-P. Therefore, weighting each annotation by an annotator-reliability score
diminishes the impact of non-reliable annotators on the final argument quality score. The
annotator-reliability score is calculated similarly to [7]: using the average of the Cohen’s
kappa score (see section 5.2 for equation) between the annotator and other annotators (shar-
ing at least 50 common argument judgments). Equation 3.2 shows how the weighted-average
score is calculated, where Pa is the set of annotators who labeled argument a as positive and
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Na is the set of annotators who labeled argument a as negative. Annotator_Reli stands for
the annotator-reliability score of annotator i.

WA(a) =
∑
Annotatori∈Pa Annotator_Reli∑

Annotatorj∈Na+Pa Annotator_Relj
(3.2)

Both MACE-P and WA scores incorporate an annotator-reliability score to decrease the
impact of non-reliable annotators. The process yields a dataset with a continuous quality
score for each argument, aiming at the task of ranking the arguments for each topic. In this
work, we focus on the score WA instead of MACE-P following [6] who also prioritize WA
since they obtain better results using WA as a quality label instead of MACE-P.

3.2 Evaluation Metrics

In this section, we present the metrics used to evaluate our results, on the argument
quality ranking task. We first define 4 metrics commonly used by state-of-the-art solutions
to evaluate the performance of their approach: Accuracy, Pearson, Spearman and Kendall’s
Tau. Moreover, we introduce the NDCG metric to argument quality ranking, a metric
commonly used in ranking tasks.

3.2.1 Accuracy

The accuracy is a metric of evaluation for the classification task. The accuracy measures
the number of correctly predicted data points of all data points. As shown in equation 3.3,
the accuracy is calculated using the ratio of the True Positives (TP) and True Negatives
(TN) over the sum of the True Positives (TP), True Negatives (TN), False Positives (FP)
and False Negatives (FN) [34].

Accuracy = TP + TN

TP + TN + FP + FN
(3.3)

3.2.2 Pearson

The Pearson correlation metric ρ measures the linear relationship between two variables,
X and Y. Equation 3.4 and 3.5 show how the correlation is calculated. Pearson’s value is
between -1 and 1. A value of 1 indicates a perfect positive relationship, a value of 0 indicates
no relationship, and a value of -1 indicates a perfect negative relationship [35].
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ρ = cov(X, Y )
σxσy

(3.4)

Where cov(X, Y ) represents the covariance between variables X and Y, and σx and σy rep-
resents the standard deviation of variable X and Y, respectively.

ρ =
∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(3.5)

Where n is the sample size. xi, yi are the individual sample points indexed with i. x̄ and ȳ
are the sample mean and can be defined as shown in equation 3.6 and 3.7:

x̄ = 1
n

∑n
i=1 xi (3.6)

ȳ = 1
n

∑n
i=1 yi (3.7)

3.2.3 Spearman

Spearman’s rank correlation coefficient is another measure of correlation between the rank-
ing of two variables. It is equal to the Pearson metric between the rank values of two variables.
Spearman’s rank correlation coefficient identifies if the relationship between two variables is
a monotonic function. Whereas Pearson compares the values of two variables, Spearman
compares the ordering of the values of the two variables. Spearman allows identifying re-
lationships between two variables that Pearson can’t. Equation 3.8 shows how Spearman’s
rank correlation coefficient rs is calculated [36]:

rs = 1− 6∑ d2
i

n(n2 − 1) (3.8)

where di = the distance between the ranks of the variables xi and yi and n is the number of
samples.

3.2.4 Kendall’s Tau

Kendall rank correlation coefficient τ is a measure of ordinal association between two
variables. In other words, it is a measure of rank correlation. Compared to Spearman, which
is based on deviations, Kendall’s Tau is based on concordant and discordant pairs, and is
more insensitive to error, generally producing more accurate P-values with smaller sample
sizes. Equation 3.9 shows how it is calculated [37]:



26

τ = c− d
c+ d

= Sn
2

 = 2S
n(n− 1) (3.9)

where n corresponds to the sample size, c is the number of concordant pairs and d is the
number of discordant pairs in the ranks obtained from ranking the 2 variables, and S = c−d.
If there are ties between the ranked variables, the equation 3.10 shall be used to calculate
Kendall’s Tau:

τ = S√
n(n− 1)/2− T

√
n(n− 1)/2− U

(3.10)

T =
∑
t

t(t− 1)/2 (3.11)

U =
∑
u

u(u− 1)/2 (3.12)

where t is the number of tied observations of variable X and u is the number of tied obser-
vations of variable Y.

3.2.5 NDCG

Most initiatives in the argument quality evaluation field used Pearson & Spearman to
evaluate the ranking task. As we focus more on the ranking perspective of the task and less
on predicting an absolute score for each argument, we employ the Normalized Discounted
Cumulative Gain (NDCG) to evaluate our model’s performance, as it is a metric commonly
used for learning-to-rank. The NDCG can be defined as follows [38]:

NDCG = DCG
IDCG (3.13)

Where IDCG is the Ideal Discounted Cumulative Gain. This corresponds to the Dis-
counted Cumulative Gain (DCG) value of the best ranking of the elements. The Discounted
Cumulative Gain (DCG) is calculated as follows :

DCG =
n∑
i=1

2reli − 1
log(1 + i) (3.14)
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Where reli is the relevance value (as seen in section 2.2) of the argument at index i and n
corresponds to the sample size.

In section 4.4, we report the NDCG@K metrics of our models on all datasets, for various
values of K (5, 10 and 15). This allows to evaluate a ranking model’s performance at
identifying the top K most convincing arguments of a list. We also report our results using
Pearson, Spearman and Kendall’s Tau metrics, allowing to compare our results to other
initiatives of the state-of-the-art on argument quality ranking.

3.3 Performance of State-of-the-art Models

We previously described all the major available argument quality datasets. Those datasets
are used to evaluate our learning-to-rank model. To provide a basis for comparison, we
present in tables 3.5 and 3.6 a summary of the performance of state-of-the-art approaches
described in chapter 2, on the datasets presented in this chapter.

Table 3.5 shows the performance of solutions on the classification task. The dataset IBM-
Rank-30K is not included in this table as the arguments collected are annotated directly
with an individual score, without the need for argument pair annotations, therefore making
this dataset not suitable for the classification task. For dataset UKPConvArgStrict, we
can see that [28]’s Gaussian Process Classifier (GCP) outperforms [1]’s initial SVM and
BiLSTM solutions. [2]’s Siamese BiLSTM matches the performance of [28]’s GCP, while
not needing any heavy preprocessing. However, all these approaches are outperformed by
BERT, evaluated on the dataset UKPConvArgStrict by [7]. On the dataset IBM-EviConv,
[2] compares their Siamese BiLSTM model to [28]’s GCP. The Siamese BiLSTM model
outperforms the GCP model by a considerable margin. On dataset IBM-ArgQ, [7] first
evaluates [28]’s Gaussian Process Preference Learning (GPPL) model and then compares its
performance to the model they present for the classification task: BERT. BERT outperforms
the GPPL model by a significant margin. We can see in table 3.5 that BERT stands out
from other solutions, being the top performing model on [1]’s first task on 2 out of 3 datasets.
BERT has not been evaluated on the third dataset, IBM-EviConv.

Table 3.6 shows the performance of state-of-the-art models on the argument quality ranking
task. This time, the dataset IBM-EviConv is not part of the table because this dataset
wasn’t used to evaluate any state-of-the-art approach on the ranking task. As described
earlier, the quality score attributed to each individual argument was generated by one leg
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Table 3.5 Performance of notable models of state-of-the-art solutions for the argument pair
classification task, as described in chapter 2

Dataset Model Features Accuracy

UKPConvArgStrict

SVM (RBF kernel) [1] Linguistic features 0.780
BiLSTM [1] GloVe word embeddings 0.760
Forward-Feeding Neural
Network

5 Linguistic features 0.770

GPC (Gaussian Process
Classifier) [28]

Linguistic features +
GloVe embeddings

0.810

Siamese Sum-of-tokens [30] GloVe embeddings 0.825
Siamese BiLSTM [30] GloVe embeddings 0.742
Siamese BiLSTM [2] word2Vec embeddings 0.810
BERT Base Uncased for Bi-
nary Classification [7]

Fine-tuned BERT embed-
dings

0.830

IBM-EviConv
GPC (Model by [28], evalu-
ated by [2])

Linguistic features + GloVe
embeddings

0.670

Siamese BiLSTM [2] word2Vec embeddings 0.730

IBM-ArgQ

GPPL (Gaussian Process
Preference Learning, Model
by [28], evaluated by [7])

Linguistic features + GloVe
embeddings

0.710

BERT Base Uncased for Bi-
nary Classification [7]

Fine-tuned BERT embed-
dings

0.800

of a Siamese BiLSTM trained on the pair annotations, making this gold standard different
from other datasets. This might explain why no attempt to evaluate the ranking task on
IBM-EviConv was published. On the dataset UKPConvArgRank, [1]’s SVM with linguistic
features and BiLSTM with GloVe word embeddings are initially outperformed by [28]’s GPPL
model using a combination of linguistic features and GloVe word embeddings. These 3
approaches are outperformed, on the ranking task, on UKPConvArgRank dataset, by [2]’s
Siamese BiLSTM from which only one leg is used to predict a score for each argument. [18]
outperforms [2]’s Siamese BiLSTM using a Sum-of-Word Embeddings Feed Forward Neural
Net (SWE+FFNN) with GloVe word embeddings. BERT is evaluated on UKPConvArgRank
by [7] and [6]. Surprisingly, BERT in [7], which takes only the argument as input, outperforms
BERT in [6] which takes the argument and the topic as input. BERT in [7] achieves the
highest performance using the Pearson metric on the dataset UKPConvArgRank, but doesn’t
outperform [18]’s model using the Spearman metric. On the dataset IBM-ArgQ, only BERT is
evaluated for the ranking task, making it the state-of-the-art on this dataset. Finally, on the
IBM-Rank-30K dataset, [6] compares different configurations of BERT to a Support Vector
Regression (SVR) and BiLSTM models, which are both outperformed by BERT models. The



29

best performing configuration of BERT is BERT with fined-tuned embeddings, taking the
concatenated topic and argument as input. As for [1]’s first task, BERT stands out as one
of the best performing models on the second task, the ranking task, across datasets. The
only exception is found when ranking arguments on dataset UKPConvArgRank, where [18]’s
solution outperforms BERT for the Spearman metric.

Table 3.6 Performance of notable state-of-the-art for the argument quality ranking task, as
described in chapter 2

Dataset Model Features Pearson Spearman

UKPConvArgRank

SVM (RBF kernel) [1] linguistic features 0.351 0.402
BiLSTM [1] GloVe word embed-

dings
0.270 0.354

GPPL [28] Linguistic features +
GloVe embeddings

0.440 0.670

Siamese BiLSTM [2] word2Vec embeddings 0.470 0.670
SWE+FFNN [18] GloVe embeddings 0.480 0.690
BERT [7] Argument 0.490 0.590
BERT [6] Argument 0.450 0.630
BERT [6] Argument + Topic 0.460 0.620

IBM-ArgQ BERT [7] Argument 0.420 0.410

IBM-Rank-30K
(Predictions on
WA score)

SVR with RBF Kernel
[6]

BOW 0.320 0.310

BiLSTM [6] GloVe word embed-
dings

0.440 0.410

BERT Vanilla [6] Argument 0.480 0.430
BERT Fined-
Tuned [6]

0.510 0.470

BERT Fined-
Tuned [6]

Topic + Argument 0.520 0.480

In this chapter, we described the most notable datasets in the field of argument quality, and
their particular features. Since we intend to use them as a common basis for the evaluation of
our models and state-of-the-art solutions, it was important to first identify how the datasets
differ from each other. It is also noteworthy that the performance of state-of-the-art methods
varies from one dataset to another, suggesting that the differences in how the annotations
were collected, and how the scores were inferred, might impact the argument quality measure
computed for each dataset. We analyze in chapter 5 how the quality measure could be unified
in a single quality score for all datasets.
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CHAPTER 4 LEARNING-TO-RANK FOR ARGUMENT QUALITY
RANKING

In this chapter, we present our approach to argument quality ranking. This approach is
based on learning-to-rank methods and BERT as building blocks. We then evaluate our
model on the 4 different argument quality datasets presented in chapter 3, and we show how
a learning-to-rank approach based on BERT performs compared to state-of-the-art solutions,
for each dataset.

4.1 BERT Learning-to-rank Model

Focusing on the ranking task, the learning objective is, given a Topic T, a stance S and a list
of arguments A1, A2, ... , An, to assign a rank to each argument Ai from the most convincing
argument to the least convincing argument. We propose to use TFR-BERT (TensorFlow
Ranking BERT) [3], a learning-to-rank approach paired with BERT. In this architecture,
BERT [13], which has proven to be very efficient in learning text representations, is used as
a building block responsible for learning a representation of each argument. A ranking head
is used on top of BERT, allowing to apply a ranking loss function (see the section 4.2) over
multiple arguments at once. This neural approach to learning-to-rank is implemented using
the TF Ranking library [39].

4.1.1 Input Representation

The ranking model needs to be able to grasp the quality of an argument with respect to
a topic. The BERT module is responsible for building a representation demonstrating the
association between the argument and the topic. Each argument’s text is concatenated to its
respective topic’s text, in a typical BERT pair representation: [CLS] Topic [SEP] Argument
[SEP]. The special token [CLS] indicates the start of a sequence and [SEP] is the separator
between the topic and the argument (and also marks the end of the sequence).

4.1.2 Architecture

As shown in figure 4.1, for each argument, the BERT module takes a topic & argument
concatenated sequence and outputs the hidden units of the [CLS] token of the last layer. The
pooled outputs of each topic & argument sequence, for every argument in the list to rank,
are fed into a dense layer which acts as a scoring function. The scoring function learns to
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Figure 4.1 Architecture of the BERT Ranking Model based on [3].

associate a score to each argument. A ranking loss function is applied to the scores generated
by the neural ranking function (dense layer in figure 4.1) and is used to update the model’s
weights. The loss function used determines how many arguments are considered at once
when calculating the loss for back-propagation over the model’s weights.
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4.2 Ranking Loss Functions

In this work, we compare the performance of 3 types of ranking losses, and introduce list-
wise ranking loss functions to the argument quality evaluation task. When training a ranking
model, the loss function can either be applied to the arguments individually (pointwise loss),
by pairs (pairwise loss) or altogether (list-wise loss). For pointwise losses, the arguments are
considered independently. Therefore, pointwise losses are expected to optimize predicting a
score close to label without regard to the ordering. Pairwise losses use argument pairs to cal-
culate the loss. Since pairwise losses treat every pair with the same weight independently of
their position in the list, they usually display a lower performance at the top of the rankings
and improve at tail level. List-wise losses consider the order of the whole list of arguments,
and therefore directly optimize the ranking of the arguments. Table 4.1 shows the specific
loss functions we explore for each type of loss. We choose ranking losses which apply for
graded relevance labels. Indeed, the argument quality ranking task consists of predicting
graded relevance labels for each argument. Therefore, we explore every loss function com-
patible with graded relevance labels, except for the Gumbel Approx NDCG Loss, the Unique
Softmax Loss and the Pairwise Soft Zero One Loss. The time needed for the training of
TFR-BERT being considerable, multiplied by the 4 datasets we work with, we discard these
losses as they are special cases of the loss functions we already explore.

Table 4.1 Ranking loss functions presented in this section.

Loss Type Loss Function
Pointwise Mean Squared loss

Pairwise Pairwise Hinge Loss
Logistic Loss

Listwise
List MLE Loss
Softmax Loss
Approx NDCG Loss

4.2.1 Mean Squared Loss

The Mean Squared Loss, also known as Mean Squared Error (MSE), measures the average
of the squares of the difference between the predicted scores (s) and the scores from the
ground truth (y) [39]. The Mean Squared Loss is a pointwise loss function as each score of a
list of ranked items is compared individually to its ground truth. Equation 4.1 defines how
the Mean Squared Loss is calculated over the predicted list of scores s, using the list of scores
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y as ground truth for the ranking task. n corresponds to the sample size.

L({y}, {s}) = 1
n

n∑
i

(yi − si)2 (4.1)

4.2.2 Pairwise Hinge Loss

The Pairwise Hinge Loss is, as the name would suggest, a pairwise loss, and is based on
the difference in relevance between the arguments of each pair of the list to rank. Equation
4.2 defines how this loss is calculated. Given a pair of arguments, where argumenti’s rank
(yi) is higher than argumentj’s rank (yj) according to the ground truth, the Pairwise Hinge
Loss evaluates a correctly ordered pair of arguments as a loss of 0 if the difference between
the predicted rank of argumenti (si) and predicted rank of argument argumentj (sj) is at
least one. Otherwise, the loss is linearly increased with si - sj [39].

L({y}, {s}) =
∑
i

∑
j

I[yi > yj] max(0, 1− (si − sj)) (4.2)

Where I is the indicator function, which takes value 1 if the condition inside the brackets
is met, 0 otherwise.

4.2.3 Pairwise Logistic Loss

The Pairwise Logistic Loss is also calculated using the order of pairs of arguments in the
ranked list. Equation 4.3 shows how the loss is calculated over predicted list of scores s,
knowing the ranked list of scores y as ground truth [39].

L({y}, {s}) =
∑
i

∑
j

I[yi > yj] log(1 + exp(−(si − sj))) (4.3)

Where I is the indicator function, which takes value 1 if the condition inside the brackets
is met, 0 otherwise.

4.2.4 List MLE Loss

Part of the list-wise ranking losses, the List MLE Loss function utilizes the Maximum
Likelihood Estimation of the Plackett-Luce model, which defines a probability distribution
on permutations of objects, also known as permutation probability [14].
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L({y}, {s}) = − log(Ps(πy)) (4.4)

Where Ps(πy) is the Plackett-Luce probability of a permutation πy conditioned on the list
of scores s, which can be defined as follows:

Ps(πy) =
n∏
i=1

sπ−1(i)∑n
j=i sπ−1(j)

(4.5)

Where π−1(i) defines the object at rank i in permutation π (ranked list). Ps(πy) repre-
sents the likelihood of permutation πy knowing the list of scores s. This allows for a very
intuitive loss as the highest probability is assigned to the permutation in descending order
of scores (ranked list according to s) and, similarly, the lowest probability is assigned to the
permutation in ascending order of scores [14].

4.2.5 Softmax Loss

The Softmax Loss function, which is a list-wise loss, computes the Softmax cross-entropy
over predicted list of scores s and ranked list of scores y, used as ground truth, as shown in
equation 4.6.

L({y}, {s}) = −
∑
i

yi · log
(

exp(si)∑
j exp(sj)

)
(4.6)

4.2.6 Approx NDCG Loss

Part of the list-wise ranking losses, the Approx NDCG Loss function is an approximation
of the NDCG ranking metric, which is presented in section 3.2.

L({y}, {s}) = − 1
DCG(y, y)

∑
i

2yi − 1
log2(1 + ranki)

(4.7)

Where DCG(y, y) is the Discounted Cumulative Gain, and can be calculated using equa-
tion 3.14, as explained in section 3.2.5. ranki is a differentiable approximation of the non-
differentiable ranking function used to calculate the NDCG metric, an approximation based
on the logistic function, as shown in equation 4.8 [40].

ranki = 1 +
∑
j 6=i

1
1 + exp

(
−(sj−si)

temperature

) (4.8)



35

4.3 Methodology

4.3.1 Transforming Scores into Ranks

For all the datasets mentioned in chapter 3, the quality score is an absolute value and
cannot be directly used with a learning to rank model. We must first sort all the arguments
for a given topic by quality score, from lowest to highest. From that sorted list of arguments,
we attribute a relevancy rank to each of the argument, with the highest rank assigned to
the highest score. To transform scores into ranks, we use the function rankdata from the
Scipy library 1. To deal with arguments with tied scores, we choose the strategy ’dense’ to
transform the scores into ranks in a way that limits the range of the rank values. This implies
only a single rank value is assigned to arguments with tied scores, and ensures the ranking
model is able to learn to rank two arguments as equal if they have the same quality score.

4.3.2 Training Parameters

Maximum Sequence Length

The maximum length of the sequence passed as input to the BERT module is calculated
for every dataset. Looking at the distribution of the argument length for a dataset, we use
the 95th percentile as the maximum sequence length, ensuring 95% of the set of arguments
isn’t truncated (sequence length including the topic & the argument combined as seen in
the section 2.2). For the remaining 5%, corresponding to the longest arguments, the total
sequence is truncated to the fixed maximum length. The reason for this decision is to facilitate
the training. Given that the remaining arguments are the longest ones, keeping them whole
usually increased drastically the sequence length and caused the model to be heavier to train.
We decided the performance trade-off of losing the truncated tokens of 5% of the data wasn’t
worth it. For dataset UKP Rank, the maximum sequence length is set to BERT’s maximum
sequence length (512) as the 95th percentile exceeds this value for this dataset. We show in
table 4.2 the different maximum sequence length chosen for each argument quality ranking
dataset.

Argument Batches

During the training phase, memory limits did not allow fitting the whole list of arguments
for a topic. Thus, for each topic in our datasets, we divide the list of arguments into smaller
lists of 12 arguments as shown in table 4.3, the same list size used by [3]. At inference time,

1https://docs.scipy.org/doc/scipy/reference/generated/ scipy.stats.rankdata.html
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Table 4.2 Maximum sequence length values for each argument quality ranking dataset.

Dataset Maximum sequence length
UKPConvArgStrict & UKPConvArgRank 512
IBM Evi 357
IBM ArqQ Rank 261
IBM Arg 30K 227

however, full lists of arguments are fed to the model for predictions, ensuring the model is
evaluated on unmodified data (test set).

Tied Ranks and Scores

The methodology used to divide a list of arguments into smaller lists of 12 arguments
must take into account the number of arguments with the same score, otherwise it affects
the training of the model. In fact, many arguments have the same score, especially the most
convincing ones and the least convincing ones, resulting in equal ranks. Feeding the model
with batches of arguments with equal ranks would result in poor training. Consequently,
we divide the list of arguments in such a way that each batch has arguments of rank values
well spread across the rank range. To do so, we divide the list of arguments, sorted by
convincingness, into 12 slices. Each batchi takes argument i of every slice, generating uniform
batches of size 12, while ensuring no argument overlap between batches. In other words, every
list of arguments fed to the model for training contains strong and poor quality arguments,
as well as arguments considered relatively convincing. This allows for effective learning of
the ranking function.

Table 4.3 Training parameters of TFR-BERT for the argument quality ranking task.

Loss Function learning
rate

EPOCH optimizer train
batch
size

dropout
rate

list
size

MSE Loss 1e-5 2

adam 6 0.1 12
Hinge Loss

1e-6 3Logistic Loss
List MLE
Softmax Loss
Approx NDCG Loss
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Training & Validation Loss

During the training of model TFR-BERT on the argument quality ranking task, both train-
ing and validation loss are monitored. Monitoring the validation loss ensures the model does
not overfit on the training data and is able to generalize to new data examples. Therefore, the
final trained model is chosen, through model selection, using the checkpoint corresponding
to the lowest point of the validation loss. As an example, figure 4.2 shows the training and
validation loss of TFR-BERT trained using pairwise logistic loss on dataset UKP ConvAr-
gRanking. The training of the model took up to 7 hours.

Figure 4.2 Training loss and Validation loss during the training of TFR-BERT using pairwise
logistic loss on dataset UKP ConvArgRanking.

Ensemble TFR-BERT

[3] demonstrates how an ensemble approach to TFR-BERT, combining multiple ranking
losses, can improve predictions. We use the same approach for the task of argument quality,
combining the predictions of multiple versions of TFR-BERT, each trained using a different
ranking loss. For each prediction, we average the list of scores predicted over the different
versions of TFR-BERT. This increased the model’s performance considerably, as shown in
section 4.4.
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4.4 Results

In this section, we evaluate the model TFR-BERT, a learning-to-rank approach paired with
BERT, presented in section 4.1, on all major argument quality evaluation datasets available,
which we described in chapter 3. For each dataset, we compare the performance of TFR-
BERT to the state-of-the-art solution on that very dataset. The performance metrics used
for this evaluation are Pearson, Spearman, Kendall’s Tau and the NDCG@K for values of
5, 10 and 15. We further explore how each metric evaluates the model’s performance from
a different aspect. Also, to better visualize the variation in performance from one metric
to another, we analyze the predictions of the models, looking at the top N most convincing
arguments predicted by the model and comparing them to the gold standard.

When a division into train, validation and test sets was not provided in the dataset, we
divided it as 20% of the topics assigned to the test set, 20% assigned to the validation set and
the remaining to the train set. Table 4.4 shows descriptive statistics on the train, validation
and test sets. It is important to note that the test set never contains a topic already seen by
the model during training. For reproducibility purposes, we provide all the datasets as lists
of ordered arguments following the methodology described in section 4.3.1.

Table 4.4 Division of datasets into train, valid and test sets.

Dataset Train Valid Test
Topic Args Topic Args Topic Args

UKP Rank 18 602 7 222 7 228
IBM Evi 36 6632 12 2006 21 2756
IBM ArqQ Rank 12 2625 5 1586 5 1087
IBM Arg 30K 49 20974 7 3208 15 6315

4.4.1 UKP Rank

We first evaluate the performance of TFR-BERT on the UKP Rank dataset for the ar-
gument quality ranking task, comparing different loss functions. Table 4.5 shows Pearson,
Spearman, Kendall’s Tau as well as the NDCG@K metrics for every model. The first 3 met-
rics give a measure of how well the model ranks all the arguments of the list. The NDCG@K
values show how the model performs at outlining the top K most convincing arguments.
We can see in table 4.5 how TFR-BERT compares to BERT on UKP Rank: the majority
of TFR-BERT variants (TFR-BERT trained with specific loss function) outperform BERT
across many metrics, including models trained with pointwise, pairwise and list-wise losses.



39

The Ensemble TFR-BERT, which combines models trained with MSE, Hinge, Pairwise Lo-
gistic and Approx NDCG losses respectively, is the best performing variant of TFR-BERT.
Comparing it to the state-of-the-art [18]’s Sum-of-Words-Embeddings with Feed Forward
Neural Network, we find that Ensemble TFR-BERT performs similarly to their solution for
Pearson, Spearman and Kendall’s Tau metrics. Ensemble losses and the Pairwise Hinge loss
are the best performing TFR-BERT variants according to NDCG@K metrics, outperform-
ing BERT by a significant margin. Unfortunately, the NDCG@K metrics were not provided
by [18] when evaluating their solution.

Table 4.5 Evaluation of TFR BERT using different ranking losses on UKP Rank dataset.

Loss Model PEARSON SPEARMAN TAU NDCG@5 NDCG@10 NDCG@15

Pointwise BERT 0.44 0.56 0.40 0.53 0.62 0.68
TFR-BERT MSE Loss 0.45 0.68 0.51 0.59 0.67 0.72

Pairwise
TFR-BERT Hinge Loss 0.44 0.60 0.46 0.63 0.72 0.75
TFR-BERT Logistic Loss 0.38 0.59 0.45 0.43 0.57 0.61
State-of-the-art: Sum-
of-Words-Embeddings +
FFNN

0.48 0.69 0.52 - - -

List-wise
TFR-BERT Softmax
Loss

0.40 0.67 0.51 0.49 0.61 0.66

TFR-BERT List MLE 0.36 0.61 0.45 0.36 0.54 0.60
TFR-BERT Approx
NDCG Loss

0.47 0.59 0.44 0.54 0.66 0.69

Mix TFR-BERT Ensemble
Losses

0.48 0.68 0.51 0.60 0.72 0.77

Prediction of the Top 5 arguments

Looking at the performance metrics in table 4.5, we can see that TFR-BERT outperforms
BERT across NDCG@K metrics, for the majority of the loss functions presented, reinforcing
the interest of learning-to-rank methods for argument quality ranking. As a better perfor-
mance according to NDCG@5 metric implies better capability at outlining the 5 topmost
convincing arguments of a list, we decided to visualize how that translates into predictions
on one topic of the test set. We chose a random topic from the test set: Is the school uniform
a good or bad idea, with the stance good. Table 4.6 shows the top 5 most convincing argu-
ments on that topic, according to UKP Rank’s gold standard. We can see that the scores
of the top 5 are very close, making the task of comparing top arguments a very difficult
task. From there, we can compare the predictions of every model presented in table 4.5
to this gold standard, comparing the top 5 ranked arguments. To help visualize, when an
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argument predicted by a model is part of the top 5 according to the gold standard, it is
outlined with a bold font in the table. We start by analyzing BERT’s predictions, using this
model as baseline. Table 4.7 shows that BERT’s predicted top 5 arguments contains none
of the arguments of the top 5 according to the gold standard. However, we can also notice
that the predicted scores are very close to the scores in the gold standard, implying strong
performance according to Pearson metric, which allows evaluating a model’s performance at
predicting the right score for each argument, without consideration of the ordering of the
arguments. This demonstrates very well how BERT was trained with a pointwise ranking
objective, or in other words, a regression task. This generates a model good at predicting an
individual quality score for each argument but showing weaknesses when ordering arguments
by their relative measure of convincingness, therefore ranking them.

Table 4.6 Ground Truth of top 5 arguments for the topic Is the school uniform a good or bad
idea with the stance good on UKP Rank dataset.

Top N Arguments Score
0 According to the legacy educational resources, as fashion and trends change, students

become more concerned with how they look and how they are perceived than they do
with their academic success and achievement. The fashion of low rise jeans, bagging jeans,
large trench coats, low cut shirts, and many others contribute to behavior problems and
safety issues in the classrooms and in the hallways of schools today.

1.0000

1 I think it’s good within certain limits. I went to a school with a uniform, and it was far
less stressful than non-uniform college. I’d argue that it’s a leveler- prevents people from
showing off material wealth/ making others feel bad for not having ’cool’ stuff. <br/>
But it can be taken too far. By the end, we weren’t allowed coloured socks, which was
idiotic.

0.9990

2 That’s really good idea. As i remember every morning i though what was better to wear?
It was really problem, i spent quiet a lot of time. I asked my parents to buy new clothes
for me, it was happened not rare. I know that not everyone thought as me, but it much
better if the school has own uniform and everybody has to follow it. First it looks very
good, smart. Secondly there is no envy that somebody have really nice skirt or jeans.
Every pupil is the same and it would be easy to study, to not think about another things!!

0.9989

3 1. It makes everyone equal - if children can wear what they want some children will teased
and feel less equal to their peers around them vs. uniforms <br/> 2. Okay Look school
is for learning not how you look and dress but maybe in some levels it matters and most
people that go to schools that don’t have uniforms take like about 1 hr just to find their
pants or shirt I mean really?? When you have a uniform it takes less than 10 min just to
take it out and put it on and

0.9984

4 yas,of course . School uniform is important <br/> 1.school uniform is a logos for our
school <br/> 2.to remind us that we are part of the school <br/> 3.and if we use the
uniform basically student used to think what are they gonna do to, is it positive or negative
<br/> 4.in the morning we should use our uniform and if were not use our uniform the
teacher give us a punishment and from that we can learn to be a discipline student <br/>
5.if we go out from the school than the teacher will see we used the school uniform so
people will know that we from that school <br/> thankyou

0.9979
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Table 4.7 Ranking of top 5 arguments by BERT model for the topic Is the school uniform a
good or bad idea with the stance good on UKP Rank dataset. Arguments are shown in bold
if they are part of the top 5 according to gold standard.

Top N Arguments Predicted Score Score
0 I think school uniform is a good idea. Because there is the gap between the rich and poor,

school uniform is efficient in many ways. If they wore to plain clothes every day, they concerned
about clothes by brand and quantity of clothes. Teenager is sensible so the poor students can
feel inferior. Although school uniform is very expensive , it is cheap better than plain clothes.
Also they feel sense of kinship and sense of belonging. In my case, school uniform is convenient.
I don’t have to worry about my clothes during my student days.

0.9673 0.9972

1 Uniforms allow an equal and fair social status only based on personality and not looks. I do
half to admit wearing what you want is fun and creative but its only fun if everyone can do it
and for some children thats not the case and they cant afford to live up to their peers standards
so uniforms would make social life much easier and it would give a more mature look to the
school.

0.9636 0.9976

2 In a school all the students may not belong to the same financial status . Some may be rich ,
some may not be that rich . So uniform provides equal status to all the students so that there
is no gap among them . If there is no uniform , then the rich students will wear new dresses
everyday which the other students cannot afford and may lead to resentment among them .
<br/> Some insensitive children may also mock other students wear old cloths . <br/> So I
beleive that uniform is essential especially in developing countries .

0.9633 0.9978

3 I believe that the school uniform is a good idea because school uniform improve student at-
tendance and student doesn’t spend a lot of time to choosing and buying clothes for school,
espeacilly girls. That is why they can use more time to study.

0.9614 0.9899

4 I think that such a policy is a good idea. Uniforms make students equal on an economic level
This can be prevent envy and jealousy.

0.9610 0.9896

We previously established in table 4.7 that BERT wasn’t able to predict any of the top 5
arguments from the gold standard. We now visualize predictions from TFR-BERT to see how
this model performed on the task of outlining the top 5 most convincing arguments, on the
same topic, Is the school uniform a good or bad idea with the stance good. We are particularly
interested in identifying how the choice of a ranking loss function, either pointwise, pairwise
or list-wise, used during training, impacts the model’s performance at outlining the topmost
convincing arguments of a list.

Pointwise Loss Looking at table A.1, we can see that TFR-BERT trained with Mean
Squared Loss did predict the first top argument in the gold standard. This exemplifies the
better performance than the one of BERT at outlining the top 5 most convincing arguments.
However, looking at the predicted scores from TFR-BERT trained with Mean Squared Loss,
we can see a greater gap between the predicted scores and the gold standard scores, compared
to BERT.

Pairwise Losses Tables A.2 and A.3 show the predictions of both variants of TFR-BERT
trained with pairwise loss functions: the Pairwise Hinge Loss and the Pairwise Logistic
Loss. The lists of the 5 most convincing arguments predicted by those 2 models are very
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similar. They are identical for the first 4 arguments, and their fifth predicted argument is
different. While those 2 variants of TFR-BERT present similar top 5 arguments ranking,
the quality score predicted for each argument is quite different. TFR-BERT trained with
Pairwise Logistic Loss predicts scores much closer to the scores in the gold standard. On the
other hand, looking at the predicted scores from TFR-BERT trained with Pairwise Hinge
Loss, we can see a greater gap between the predicted quality scores and the gold standard
scores.

List-wise Losses We now analyze how list-wise ranking losses performed on the same
topic, looking at the top 5 most convincing predicted arguments. Table A.4 shows the
predicted top 5 arguments by TFR-BERT trained with Softmax Loss. Similarly to variants
of TFR-BERT trained with Pairwise Logistic Loss and Pairwise Hinge Loss, TFR-BERT
trained with Softmax Loss predicted one argument of the top 5 according to gold standard
as part of its own top 5. We can also see in table A.5 that the predicted top 5 arguments
by TFR-BERT trained with Approx NDCG Loss contains one argument of the top 5 in the
gold standard. TFR-BERT trained with List MLE Loss stands out on this topic. As we can
see in table 4.8, TFR-BERT trained with List MLE Loss predicted 2 arguments of the top
5 according to gold standard as part of its own top 5, showing slightly better capabilities at
outlining the topmost convincing arguments of a list, for that particular topic.



43

Table 4.8 Ranking of top 5 arguments by TFR-BERT model using List MLE Loss on the
topic Is the school uniform a good or bad idea with the stance good on UKP Rank dataset.
Arguments are shown in bold if they are part of the top 5 according to gold standard.

Top N Arguments Predicted Score Score
0 According to the legacy educational resources, as fashion and trends change, stu-

dents become more concerned with how they look and how they are perceived
than they do with their academic success and achievement. The fashion of low rise
jeans, bagging jeans, large trench coats, low cut shirts, and many others contribute
to behavior problems and safety issues in the classrooms and in the hallways of
schools today.

0.9692 1.0000

1 In a school all the students may not belong to the same financial status . Some may be rich ,
some may not be that rich . So uniform provides equal status to all the students so that there
is no gap among them . If there is no uniform , then the rich students will wear new dresses
everyday which the other students cannot afford and may lead to resentment among them .
<br/> Some insensitive children may also mock other students wear old cloths . <br/> So I
beleive that uniform is essential especially in developing countries .

0.9668 0.9978

2 1. It makes everyone equal - if children can wear what they want some children
will teased and feel less equal to their peers around them vs. uniforms <br/> 2.
Okay Look school is for learning not how you look and dress but maybe in some
levels it matters and most people that go to schools that don’t have uniforms take
like about 1 hr just to find their pants or shirt I mean really?? When you have a
uniform it takes less than 10 min just to take it out and put it on and

0.9043 0.9984

3 School uniform is a great idea, just because it makes impossible to hold the race for the fashion
among pupils. let it be, one pupil is richer than another. rich can begin to show off in front of
those who are poorer. this action will create a negative atmosphere in the school and can start
row between both pupils. As a rule, As a rule, it often occurs between the girls, although it is
not rare between the boys. that’s why school uniform liquidates all conflicts.

0.9016 0.9974

4 I believe that the wearing of the school uniform should be encouraged because it reminds each
child that they are equal (at least in school). It also shows unity and children feel included and
it helps them to work as a team.

0.8995 0.9960

Ensemble Losses Ensemble TFR-BERT is an average of multiple TFR-BERT trained
with different loss functions, as explained in 4.3.2. Its top 5 predicted arguments on the
topic Is the school uniform a good or bad idea with the stance good are shown in table A.6.
Ensemble TFR-BERT predicted one argument from the top 5 according to gold standard.

While there were some differences in the predictions of the top 5 from one loss function
to another when using TFR-BERT, we note that every TFR-BERT except for TFR-BERT
trained with Approx NDCG Loss, did predict the most convincing argument from the gold
standard in its top 5 arguments. We can’t say the same for BERT, which failed to outline
this argument in his top 5, nor any argument of the top 5 of the gold standard. Indeed, the
argument

According to the legacy educational resources, as fashion and trends change, stu-
dents become more concerned with how they look and how they are perceived than
they do with their academic success and achievement. The fashion of low rise
jeans, bagging jeans, large trench coats, low cut shirts, and many others contribute
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to behavior problems and safety issues in the classrooms and in the hallways of
schools today.

which takes a pro stance on the topic Is the school uniform a good or bad idea, is the strongest
argument of the list according to the gold standard. This high quality score explains itself
when looking at the argument more closely: the argument is clearly developed, well formu-
lated and doesn’t contain any spelling mistakes. A model not able to identify this argument
shows weaknesses in its ranking capabilities.

Prediction of the Bottom 5 arguments

In the previous section, we analyzed the prediction of the top 5 most convincing arguments
on a specific topic of dataset UKP Rank for different models. To be thorough, we analyze
the prediction of the 5 less convincing arguments on the same topic: Is the school uniform a
good or bad idea, with the stance good. In other words, we analyze the bottom 5 arguments
of the ranked list predicted by each model and compare it to the gold standard. Table 4.9
shows the 5 less convincing arguments according to the gold standard

Table 4.9 Ground Truth of the ranking of bottom 5 arguments for the topic Is the school
uniform a good or bad idea with the stance good on UKP Rank dataset.

Top N Arguments Score
29 Good idea for separate student from other people for at least increase garment

job. Why we use soldier uniform? For separate from civil. Why terrorist not
use soldier uniform? For harmonious with civil and easy to attack enemy.

0.8999

30 school uniform does no harm to students life emotions now as for the point
of expressing oneself imagine one bully wearing shirt,tie,pant all neatly ironed
and well polished shoes wont he look good.remember dressing sense also is a
part of ur interveiw

0.8960

31 Means you don’t have to worry about what you hve to wear! <br/> Less
awkward when people say wear school uniform and you wear mufti...

0.8933

32 Who in their right mind wants to get rid of Catholic school girl outfits? 0.0005
33 This is very. Bad as the uniforms are also cost effective 0.0000

Table 4.10 and table 4.11 show the prediction of the 5 less convincing arguments on the
topic Is the school uniform a good or bad idea (the stance being good) by BERT and TFR-
BERT trained with MSE loss respectively. Both outline 4 arguments as part of the bottom
5 according to gold standard, as part of their own bottom 5, demonstrating equally strong
performance at outlining the less convincing arguments of a list. A noticeable difference
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between BERT’s and TFR-BERT’s predictions is the predicted scores for the less convincing
arguments of the gold standard. Arguments Who in their right mind wants to get rid of
Catholic school girl outfits? and This is very. Bad as the uniforms are also cost effective
are labeled with a score of 0.0005 and 0.0000 respectively. BERT’s predicted scores for those
2 arguments are 0.5338 and 0.8055 respectively, which is very far from the gold standard.
TFR-BERT’s predicted scores for those 2 arguments, on the other hand, are much lower:
0.1911 and 0.3763, and therefore are closer to the gold standard. The analysis on this topic
shows that TFR-BERT’s prediction of the 5 less convincing arguments is more accurate than
BERT’s, when looking at the predicted scores of each argument.

Table 4.10 Ranking of bottom 5 arguments by BERT model for the topic Is the school uniform
a good or bad idea with the stance good on UKP Rank dataset. Arguments are shown in bold
if they are part of the bottom 5 according to gold standard.

Top N Arguments Predicted Score Score
29 it is good to follow to proper school code and the right to express emotions

is right but not necessary as we have come school for learning
0.8342 0.9343

30 school uniform does no harm to students life emotions now as
for the point of expressing oneself imagine one bully wearing
shirt,tie,pant all neatly ironed and well polished shoes wont he
look good.remember dressing sense also is a part of ur interveiw

0.8140 0.8960

31 This is very. Bad as the uniforms are also cost effective 0.8055 0.0000
32 Means you don’t have to worry about what you hve to wear!

<br/> Less awkward when people say wear school uniform and
you wear mufti...

0.6293 0.8933

33 Who in their right mind wants to get rid of Catholic school girl
outfits?

0.5338 0.0005
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Table 4.11 Ranking of bottom 5 arguments by TFR-BERT model using MSE Loss on the
topic Is the school uniform a good or bad idea with the stance good on UKP Rank dataset.
Arguments are shown in bold if they are part of the bottom 5 according to gold standard.

Top N Arguments Predicted Score Score
29 school uniform does no harm to students life emotions now as

for the point of expressing oneself imagine one bully wearing
shirt,tie,pant all neatly ironed and well polished shoes wont he
look good.remember dressing sense also is a part of ur interveiw

0.4389 0.8960

30 This is very. Bad as the uniforms are also cost effective 0.3763 0.0000
31 Wearing school uniform U can be sure that you go to school to study,

not showing how fashionable you are
0.2733 0.9628

32 Means you don’t have to worry about what you hve to wear!
<br/> Less awkward when people say wear school uniform and
you wear mufti...

0.2124 0.8933

33 Who in their right mind wants to get rid of Catholic school girl
outfits?

0.1911 0.0005

4.4.2 IBM Evi Dataset

Table 4.12 Evaluation of TFR BERT using different ranking losses on IBM Evi dataset.

Loss Model PEARSON SPEARMAN TAU NDCG@5 NDCG@10 NDCG@15

Pointwise BERT 0.57 0.51 0.37 0.88 0.90 0.89
TFR-BERT MSE 0.56 0.50 0.36 0.90 0.90 0.91

Pairwise TFR-BERT Hinge Loss 0.53 0.46 0.34 0.88 0.88 0.88
TFR-BERT Logistic Loss 0.37 0.36 0.26 0.86 0.84 0.86

List-wise
TFR-BERT Softmax
Loss

0.60 0.54 0.39 0.91 0.90 0.92

TFR-BERT list MLE 0.38 0.29 0.21 0.77 0.79 0.81
TFR-BERT Approx
NDCG Loss

0.55 0.52 0.36 0.90 0.89 0.80

Mix TFR-BERT Ensemble
Losses

0.61 0.56 0.41 0.91 0.89 0.89

For model evaluation on IBM Evi, we used the exact same test set as in the published
dataset [2]. We then reserved 25% of the training set for the validation set, as shown in table
4.4. Table 4.12 shows the performance of TFR-BERT trained with different loss functions on
IBM Evi, comparing its performance with BERT. We can see that 2 variants of TFR-BERT
outperform BERT for Pearson, Spearman & Kendall’s Tau metrics: TFR-BERT trained
with Softmax loss function and Ensemble TFR-BERT, which combines models trained with
MSE, Softmax and Approx NDCG losses respectively. Those two variants of TFR-BERT
also have the edge on BERT for the NDCG@5 metric. While BERT is not outperformed
on the NDCG@10, its performance is matched by both TFR-BERT trained with MSE loss
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and TFR-BERT trained with Softmax loss. TFR-BERT trained with Softmax loss func-
tion is the best performing model across NDCG@K metrics, outperforming all models on
the NDCG@15 metric. Ensemble TFR-BERT is the best performing model across Pearson,
Spearman & Tau metrics. Overall, Ensemble TFR-BERT is the best performing model on
the IBM Evi dataset, demonstrating the effectiveness of an ensemble approach of multiple
ranking loss functions, as described in section 4.3.2.

4.4.3 IBM ArqQ Rank

Table 4.13 Evaluation of TFR BERT using different ranking losses on IBM ArqQ Rank
dataset.

Loss Model PEARSON SPEARMAN TAU NDCG@5 NDCG@10 NDCG@15

Pointwise State-of-the-art:
BERT

0.42 0.41 0.22 0.55 0.60 0.63

TFR-BERT MSE 0.30 0.29 0.20 0.63 0.64 0.66

Pairwise TFR-BERT Hinge Loss 0.31 0.31 0.21 0.61 0.63 0.64
TFR-BERT Logistic Loss 0.33 0.34 0.24 0.60 0.63 0.66

List-wise
TFR-BERT Softmax
Loss

0.34 0.33 0.23 0.57 0.61 0.62

TFR-BERT List MLE 0.32 0.31 0.21 0.58 0.61 0.64
TFR-BERT Approx
NDCG Loss

0.29 0.32 0.22 0.62 0.64 0.67

Mix TFR-BERT Ensemble
Losses

0.35 0.34 0.23 0.64 0.67 0.66

Table 4.13 shows the ranking performance of TFR-BERT variants on IBM ArqQ Rank,
showing how challenging the dataset is for TFR-BERT. BERT, which is the state-of-the-art
on dataset IBM ArqQ Rank, is the best performing model on Pearson and Spearman metrics.
On Kendall’s Tau, however, many configurations of TFR-BERT outperform [7]’s state-of-the-
art BERT, TFR-BERT trained with logistic loss being the best performing model on that
metric. Almost all TFR-BERT configurations outperform BERT according to NDCG@K
metrics. Ensemble TFR-BERT, which combines models trained with MSE, Hinge, Logistic,
Softmax and list MLE losses respectively, remains the best performing model across most
metrics on IBM ArqQ Rank.



48

Table 4.14 Evaluation of TFR BERT using different ranking losses on IBM Arg 30K dataset.

Loss Model PEARSON SPEARMAN TAU NDCG@5 NDCG@10 NDCG@15

Pointwise State-of-the-art:
BERT

0.52 0.48 0.32 0.85 0.87 0.86

TFR-BERT MSE 0.50 0.45 0.32 0.87 0.87 0.87

Pairwise TFR-BERT Hinge Loss 0.49 0.45 0.31 0.90 0.89 0.88
TFR-BERT Logistic Loss 0.50 0.45 0.31 0.88 0.88 0.88

List-wise
TFR-BERT Softmax
Loss

0.49 0.43 0.30 0.86 0.86 0.86

TFR-BERT List MLE 0.51 0.45 0.32 0.89 0.90 0.89
TFR-BERT Approx
NDCG Loss

0.43 0.42 0.30 0.88 0.87 0.87

Mix TFR-BERT Ensemble
Losses

0.52 0.47 0.32 0.89 0.89 0.88

4.4.4 IBM Arg 30K

To ensure a proper comparison to the state-of-the-art on dataset IBM Arg 30K, we use
the exact same division into train, validation and test sets as described in the published
dataset [6], as shown in table 4.4. Table 4.14 shows the performance of BERT and different
configurations of TFR-BERT on dataset IBM Arg 30K. Comparing the TFR-BERT architec-
ture to BERT, we can see that Ensemble TFR-BERT, which combines models trained with
MSE, Hinge, Logistic, Softmax and list MLE losses respectively, matches BERT’s perfor-
mance on Pearson and Kendall’s Tau, and performs similarly on Spearman metric. However,
almost every configuration of TFR-BERT, including ensemble losses, outperforms BERT on
all NDCG@K metrics. TFR-BERT trained with List MLE loss is the best performing model
over most NDCG@K metrics, while TFR-BERT trained with Hinge loss is the best perform-
ing model on the NDCG@5 metric.

4.5 Discussion

In earlier chapters, we start by describing learning-to-rank methods and BERT, which
are the building blocks for the solutions we present in this chapter. Combining BERT with
learning-to-rank methods, we present TFR-BERT and then show how we leverage this ar-
chitecture, applied to the task of argument quality ranking. To thoroughly evaluate the
performance of our presented solution, we rely on 4 different argument quality datasets,
which have been described in chapter 3.
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The evaluation process, repeated over 4 datasets, demonstrate that TFR-BERT, evaluated
on every major argument quality dataset, generally outperforms state-of-the-art solutions
on NDCG@K metrics and performs similarly to the state-of-the-art on Pearson, Spearman
metrics & Kendall’s Tau. We show a summary of the performance of TFR-BERT compared to
the state-of-the-art on all datasets in table 4.15. TFR-BERT’s performance for the NDCG@K
metric shows the model is successful (to a degree) at returning the top K most convincing
arguments. To properly visualize this aspect of the model’s performance, for every variant
of TFR-BERT presented, we analyze closely how the top 5 arguments predicted compared
to gold standard and also, how it compared to BERT’s top 5 arguments. As BERT is
considered as the state-of-the-art solution for the argument quality ranking task on 3 out of
the 4 datasets, comparing its top 5 arguments predicted for a topic to TFR-BERT’s top 5
allowed to properly show an example of how TFR-BERT might have a stronger capability
at outlining the topmost convincing arguments of a list. This highlights the value of using
learning-to-rank methods for the argument quality ranking task. Considering applications of
argument quality ranking, one could say that returning the top K best arguments of a list
has more value than the whole ranked list in itself. This reinforces our call for the usage of
the NDCG@K metric for the task of argument quality ranking.

Comparing the different types of ranking losses, we can observe the pairwise and list-wise
ranking losses usually performed better for the NDCG@K metrics, and thus at identifying
top K most convincing arguments of a list. While one loss function did not stand out
as generally the best across datasets, an ensemble model of multiple TFR-BERT trained
with different loss functions always yielded better results. On almost every dataset it was
evaluated on, ensemble TFR-BERT outperforms every TFR-BERT trained using only one
ranking loss function, generally performing more uniformly across all metrics, demonstrating
a more robust approach to argument quality ranking.

It is important to note that each dataset had its own score of quality, where each score
differs in the way it is calculated, transformed from pairwise annotations or the way it was
collected. In the next chapter, we explore the feasibility of using a normalized score for all
argument quality datasets, thus unifying them.
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Table 4.15 Summary table of the evaluation of TFR BERT using different ranking losses on
all major argument quality datasets.

Loss Model PEARSON SPEARMAN TAU NDCG@5 NDCG@10 NDCG@15

U
K
P

Ra
nk

Pointwise BERT 0.44 0.56 0.40 0.53 0.62 0.68
TFR-BERT MSE Loss 0.45 0.68 0.51 0.59 0.67 0.72

Pairwise
TFR-BERT Hinge Loss 0.44 0.60 0.46 0.63 0.72 0.75
TFR-BERT Logistic Loss 0.38 0.59 0.45 0.43 0.57 0.61
State-of-the-art: Sum-
of-Words-Embeddings +
FFNN

0.48 0.69 0.52 - - -

List-wise
TFR-BERT Softmax
Loss

0.40 0.67 0.51 0.49 0.61 0.66

TFR-BERT List MLE 0.36 0.61 0.45 0.36 0.54 0.60
TFR-BERT Approx
NDCG Loss

0.47 0.59 0.44 0.54 0.66 0.69

Mix TFR-BERT Ensemble
Losses

0.48 0.68 0.51 0.60 0.72 0.77

IB
M

Ev
i

Pointwise BERT 0.57 0.51 0.37 0.88 0.90 0.89
TFR-BERT MSE 0.56 0.50 0.36 0.90 0.90 0.91

Pairwise TFR-BERT Hinge Loss 0.53 0.46 0.34 0.88 0.88 0.88
TFR-BERT Logistic Loss 0.37 0.36 0.26 0.86 0.84 0.86

List-wise
TFR-BERT Softmax
Loss

0.60 0.54 0.39 0.91 0.90 0.92

TFR-BERT list MLE 0.38 0.29 0.21 0.77 0.79 0.81
TFR-BERT Approx
NDCG Loss

0.55 0.52 0.36 0.90 0.89 0.80

Mix TFR-BERT Ensemble
Losses

0.61 0.56 0.41 0.91 0.89 0.89

IB
M

Ar
gQ

Ra
nk

Pointwise State-of-the-art:
BERT

0.42 0.41 0.22 0.55 0.60 0.63

TFR-BERT MSE 0.30 0.29 0.20 0.63 0.64 0.66

Pairwise TFR-BERT Hinge Loss 0.31 0.31 0.21 0.61 0.63 0.64
TFR-BERT Logistic Loss 0.33 0.34 0.24 0.60 0.63 0.66

List-wise
TFR-BERT Softmax
Loss

0.34 0.33 0.23 0.57 0.61 0.62

TFR-BERT List MLE 0.32 0.31 0.21 0.58 0.61 0.64
TFR-BERT Approx
NDCG Loss

0.29 0.32 0.22 0.62 0.64 0.67

Mix TFR-BERT Ensemble
Losses

0.35 0.34 0.23 0.64 0.67 0.66

IB
M

Ar
g
30
K

Pointwise State-of-the-art:
BERT

0.52 0.48 0.32 0.85 0.87 0.86

TFR-BERT MSE 0.50 0.45 0.32 0.87 0.87 0.87

Pairwise TFR-BERT Hinge Loss 0.49 0.45 0.31 0.90 0.89 0.88
TFR-BERT Logistic Loss 0.50 0.45 0.31 0.88 0.88 0.88

List-wise
TFR-BERT Softmax
Loss

0.49 0.43 0.30 0.86 0.86 0.86

TFR-BERT List MLE 0.51 0.45 0.32 0.89 0.90 0.89
TFR-BERT Approx
NDCG Loss

0.43 0.42 0.30 0.88 0.87 0.87

Mix TFR-BERT Ensemble
Losses

0.52 0.47 0.32 0.89 0.89 0.88
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CHAPTER 5 STANDARDIZED ARGUMENT QUALITY METRIC

5.1 Motivation

In chapter 3, we described in details each dataset we use in this work and showed they differ
in many ways. They differ in the way the data was collected. While most of the datasets were
collected as pairwise annotations, there are major differences in the way the argument quality
scores were induced from pair annotations. The transformation step to extract a point-wise
score for each individual argument from argument pair annotations creates heterogeneity
among datasets. For example, [1] used PageRank for this transformation step on UKP
ConvArgStrict dataset, while [2] used a Siamese BiLSTM for this transformation step on
dataset IBM Evi: training the Siamese BiLSTM on the pair annotations and using one leg
of the BiLSTM to predict a quality score for each argument. In this section, we explore
the feasibility of using a common score for the transformation step from pair annotations to
individual scores, that would allow to make the argument quality datasets more homogeneous.

Moreover, in chapter 4, we show in table 4.15 that the average performance of ranking
models varies from one dataset to another. We try to identify the source of those variations.
Two reasons could potentially explain the variation of performance. First, as explained
earlier, the transformation step from pair annotations to individual scores is different for
each dataset, which could explain the difference in performance. Second, we inquire on the
quality of the collected argument annotations from human annotators. In other words, if we
look at an argument from one of the datasets, would we be in agreement with the quality
score it is labeled with? Having those two possible explanations in mind, in this section, we
start by performing a qualitative analysis of the datasets in section 5.2, and then we explore
the feasibility of using a common metric for the transformation step from pair annotations
to individual scores, thus unifying argument quality datasets.

5.2 Qualitative Analysis of datasets

We performed a random qualitative evaluation of the four datasets, analyzing the validity
of the quality score of an argument. To do so, for each dataset, we randomly picked 5
topics from the train set and 5 topics from the test set. For each topic, we picked the 3
most convincing arguments and the 3 less convincing arguments. In total, this process yields
a sample of 60 arguments per dataset. Having that sample of very strong arguments and
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very weak arguments from random topics, we then asked 3 annotators to annotate those
arguments by hand. The directives were the following: would you use this argument if you
had to argue on the topic at hand? The decision had to be binary: yes or no. The annotators
carried out this exercise and their annotations were averaged, in a manner similar to [6]’s
WA (Weighted Average) score.

Table 5.1 shows the level of agreement of the average of the annotations and the original
quality scores on the sample of each dataset. This means that the argument quality scores
in each of the dataset are compared to the average score of 3 annotators on high quality
arguments and low quality arguments from random topics. From the results in table 5.1,
we can see that the annotations collected using our qualitative analysis demonstrated strong
correlation with the quality score for dataset UKP Rank and dataset IBM Arg30K. In fact,
in both cases, the correlation is over 0.8. This shows confidence in the correctness of the
quality scores for those two datasets. However, the correlation is lower for dataset IBM
ArgQ and much lower for dataset IBM Evi. This puts the correctness of the quality scores
of dataset IBM Evi into question. Let’s not forget that the dataset IBM Evi differs from
other datasets the most in the way the individual argument quality score was inferred from
pairwise annotations. A BiLSTM is initially trained on the argument pair classification task
using pairwise annotations and then, one leg of the BiLSTM is used to predict a score for
each argument. Therefore, this motivates looking into a common metric allowing to infer a
pointwise score from pair annotations, applicable to all datasets.

Table 5.1 Correlation between the average of annotator scores and the original score from
the sample of each dataset.

Dataset Pearson p-value
UKP Rank 0.8347 < 0.0001
IBM Evi 0.2376 0.0676
IBM ArgQ 0.6779 < 0.0001
IBM Arg30K 0.8860 < 0.0001

Having presented the correlation between the average of the annotations and the original
quality scores, we calculate the inter-annotator agreement using the Cohen Kappa Score.
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Cohen Kappa Score

The Cohen Kappa score is a measure of the agreement between two annotators classifying
N items into C mutually exclusive categories, taking into account the probability of the two
annotators agreeing by chance. The Cohen Kappa score is calculated as shown in equation
5.1:

κ = Po(w) − Pe(w)

1− Pe(w)
(5.1)

Where Po corresponds to the relative observed agreement among annotators and Pe cor-
responds to the expected proportion of agreement among annotators. fij corresponds to the
number of times the first annotator assigned an item to category i and the second annota-
tor assigned the same item to category j, generating a k by k confusion matrix. ri and cj

correspond to the row and column totals of the confusion matrix for category i and j [41].

Po = 1
N

k∑
j=1

fjj (5.2)

ri =
k∑
j=1

fij,∀i (5.3)

cj =
k∑
i=1

fij,∀j (5.4)

Pe = 1
N2

k∑
i=1

rici (5.5)

The Cohen Kappa score being a measure of the agreement, the interpretation of its value
is detailed in table 5.2 [42]. For example, a value of 0 indicates an agreement equivalent
to chance and a score of 1 indicates perfect agreement. We will use table 5.2 as reference
to describe the agreement level between annotators for the quality analysis of the argument
quality datasets.
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Table 5.2 Cohen Kappa Score interpretation.

Cohen Kappa Score Interpretation
0 Agreement equivalent to chance

0.1 – 0.20 Slight agreement
0.21 – 0.40 Fair agreement
0.41 – 0.60 Moderate agreement
0.61 – 0.80 Substantial agreement
0.81 – 0.99 Near perfect agreement

1 Perfect agreement

Table 5.3 shows the average Cohen Kappa score between annotators for the quality anal-
ysis of the sample for each dataset. From the average of Cohen Kappa score values, we
can conclude a moderate agreement between the annotators on datasets UKP Rank and
IBM Arg30K and a fair agreement on datasets IBM Evi and IBM ArgQ. Interestingly, the
datasets where the annotators show weaker agreement prove to be the datasets where the
original quality score shows weaker correlation with the average annotator quality score.

Table 5.3 Average Cohen Kappa Score for the annotation process of each dataset’s sample.

Dataset Cohen Kappa Score
UKP Rank 0.5455
IBM Evi 0.2643
IBM ArgQ 0.3229
IBM Arg30K 0.5719

5.3 WinRate Metric

We previously established differences in performance on the argument quality datasets.
We hypothesize that those differences are caused by the various ways of computing a point-
wise quality score from argument pair annotations. Therefore, we propose to unify argument
quality datasets using the WinRate metric, similarly to [18] on UKP Rank. The WinRate
metric, applied to pair annotations, consists of the number of time an argument is chosen as
the most convincing of the pair over the number of times the argument is shown overall, as
explained in section 2.2.2.
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5.3.1 Correlation with Original Quality Score

For every dataset except IBM Arg30K, we extract a pointwise quality score from the pair
annotations using the WinRate metric. This exercise can not be done with dataset IBM
Arg30K because the arguments were not collected through pair annotations but directly
with a score for each individual argument as explained in details in chapter 3. The pointwise
quality score extracted from the pair annotations using WinRate can be used for the argu-
ment quality ranking task similarly to each dataset’s original pointwise quality score. Before
evaluating any ranking model on the ranking task using the WinRate score, we first ana-
lyze the correlation between the WinRate score and each dataset’s original pointwise quality
score.

UKP ConvArgStrict Dataset

Dataset UKP Rank contains a pointwise quality score and is extracted from UKP ConvA-
rgStrict, a dataset of argument pair annotations. Recalling from chapter 3, [1] used PageRank
algorithm for that transformation step. They build a graph representation where nodes rep-
resent arguments and directed edges represent pair annotations. Edge direction indicates
the most convincing argument: the target of the edge is the most convincing argument of
the pair. PageRank allows to rank the arguments for each topic, using pair annotations.
Similarly to [1], we extract rankings from UKP ConvArgStrict, generating a new version of
UKP Rank, this time using the WinRate metric to extract rankings. We then compare the
WinRate to the score generated using PageRank. Table 5.4 shows the correlation between
the two scores.
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Table 5.4 Correlation between WinRate score and PageRank score on UKP ConvArgStrict
Dataset.

Topic Stance Pearson p-value
if your spouse committed murder and he or she
confided in you would you turn them in

yes 0.5713 0.0003
no 0.5037 0.0020

gay marriage right or wrong allowing gay marriage is wrong 0.6766 0.0000
allowing gay marriage is right 0.4910 0.0037

william farquhar ought to be honoured as the
rightful founder of singapore

no it is raffles 0.6065 0.0002
yes of course 0.6620 0.0000

personal pursuit or advancing the common good advancing the common good 0.6887 0.0000
personal pursuit 0.6411 0.0000

firefox vs internet explorer internet explorer 0.7290 0.0000
firefox 0.6478 0.0003

evolution vs creation creation 0.8380 0.0000
evolution 0.7162 0.0000

india has the potential to lead the world no against 0.6700 0.0000
yes for 0.7054 0.0000

ban plastic water bottles yes emergencies only 0.8687 0.0000
no bad for the economy 0.6339 0.0003

is it better to have a lousy father or to be fatherless lousy father 0.6445 0.0000
fatherless 0.5641 0.0008

christianity or atheism christianity 0.6873 0.0000
atheism 0.4267 0.0149

should physical education be mandatory in schools yes 0.7527 0.0000
no 0.7800 0.0000

pro choice vs pro life pro life 0.7446 0.0000
pro choice 0.6789 0.0000

human growth and development should parents
use spanking as an option to discipline

no 0.5963 0.0002
yes 0.4499 0.0067

tv is better than books books 0.4819 0.0109
tv 0.8099 0.0000

is porn wrong yes porn is wrong 0.6984 0.0001
no is is not 0.6176 0.0002

is the school uniform a good or bad idea bad 0.5711 0.0003
good 0.4847 0.0037

Average 0.6450 0.0014

IBM ArgQ Pairs

Dataset IBM ArgQ differs from other datasets because it is collected in two different
ways, as we explain in chapter 3. First, it is collected as argument pair annotations, as
per UKP ConvArgStrict and IBM Evi. However, it is also directly collected as pointwise
argument quality scores. This yields a dataset for the ranking task without the need for a
transformation step like [1]. Since there is no need for a transformation step on IBM ArgQ,
it gives us the perfect opportunity to evaluate the WinRate metric. We apply the WinRate
to the argument pair annotations and compare the result to the pointwise argument quality
score directly collected by [7]. Table 5.5 shows the correlation between the WinRate and the
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original score.

Table 5.5 Correlation between WinRate score and original score on IBM ArgQ Pairs Dataset.

Topic Stance Pearson p-value
Flu-vaccination-should-be-mandatory PRO 0.6655 0.0000
We-should-adopt-cryptocurrency PRO 0.6782 0.0000
Social-media-brings-more-good-than-harm CON 0.5822 0.0000
We-should-adopt-vegetarianism PRO 0.4905 0.0000
We-should-abandon-vegetarianism CON 0.5546 0.0000
We-should-ban-doping-in-sport CON 0.3477 0.0010
Gambling-should-be-banned PRO 0.6516 0.0000
Gambling-should-not-be-banned CON 0.6290 0.0000
We-should-discourage-information-privacy-laws CON 0.7205 0.0000
Social-media-brings-more-harm-than-good PRO 0.5395 0.0000
Online-shopping-brings-more-good-than-harm CON 0.6890 0.0000
We-should-limit-autonomous-cars PRO 0.4617 0.0000
Flu-vaccination-should-not-be-mandatory CON 0.5481 0.0000
We-should-not-ban-fossil-fuels CON 0.7616 0.0000
We-should-promote-autonomous-cars CON 0.5310 0.0000
We-should-legalize-doping-in-sport PRO 0.3464 0.0009
We-should-abandon-cryptocurrency CON 0.6487 0.0000
We-should-support-information-privacy-laws PRO 0.6343 0.0000
Online-shopping-brings-more-harm-than-good PRO 0.5043 0.0000
We-should-allow-the-sale-of-violent-video-games-to-minors CON 0.3861 0.0019
We-should-ban-the-sale-of-violent-video-games-to-minors PRO 0.4263 0.0004
We-should-ban-fossil-fuels PRO 0.4690 0.0001
Average 0.5575 0.0002

IBM EviConv

Dataset IBM EviConv’s pointwise quality score is, as described earlier, generated using
one single leg from a Siamese BiLSTM trained on the argument pair annotations. Therefore,
IBM EviConv’s pointwise quality score is very different from other datasets. The score is
predicted by a model instead of being directly collected by human annotations or inferred
from collected human annotations through a transformation step like PageRank. We com-
pare the pointwise quality score created using WinRate to the score generated by [2]’s leg of
the Siamese BiLSTM. Table 5.6 shows the correlation between the two different scores for
each topic and the average across the IBM EviConv dataset.
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Table 5.6 Correlation between WinRate score and original score on IBM EviConv Dataset.

Topic Pearson p-value
We should end affirmative action 0.0252 0.8775
We should subsidize condoms 0.2206 0.1501
We should legalize prostitution 0.4456 0.0031
We should adopt socialism 0.2054 0.4136
We should prohibit corporal punish-
ment

0.5128 0.0001

We should further exploit wind tur-
bines

0.3348 0.0816

We should ban trans fats usage in food 0.5499 0.0416
We should further exploit hydroelectric
dams

0.4036 0.0146

We should ban partial birth abortions 0.3566 0.0385
We should fight illegal immigration 0.2365 0.2659
We should legalize polygamy 0.2005 0.2211
We should adopt open source software 0.7749 0.0003
We should abolish the monarchy 0.2787 0.0817
We should legalize cannabis 0.3339 0.0085
We should adopt a zero tolerance policy
in schools

0.2767 0.4102

We should subsidize biofuels 0.4325 0.0021
We should further exploit geothermal
energy

0.4782 0.0065

We should lower the drinking age 0.5513 0.0986
We should ban male infant circumci-
sion

0.4371 0.0003

We should introduce universal health
care

0.3042 0.0564

We should further exploit wind power 0.4685 0.0002
We should adopt vegetarianism 0.5771 0.0001
Sex education should be mandatory -0.2634 0.1522
We should prohibit hydraulic fractur-
ing

0.2760 0.1140

We should introduce school vouchers 0.3447 0.0724
We should fight gender inequality -0.1013 0.8114
We should introduce a flat tax -0.0234 0.9220
We should abandon coal mining 0.1772 0.4548
We should increase government regula-
tion

-0.0122 0.9558

We should ban corporal punishment in
the home

0.2702 0.4820

Bullfighting should be banned -0.3819 0.0966
We should end international aid 0.0552 0.8277
We should ban fishing 0.6026 0.0293
Abstinence-only sex education should
be mandatory

0.1375 0.4769

We should abolish the right to keep and
bear arms

-0.1058 0.4740

... ... ...

Topic Pearson p-value
... ... ...

We should further exploit solar energy 0.1139 0.5281
We should ban full-body scanners 0.4326 0.0643
We should ban breast implants 0.1810 0.4324
We should ban boxing 0.4193 0.3490
Holocaust denial should be a criminal
offence

0.2602 0.6725

We should increase gun control -0.3642 0.0342
We should abolish zoos 0.4840 0.1314
We should abandon online dating ser-
vices

0.7494 0.2506

We should increase wealth redistribu-
tion

-0.1173 0.7313

Physical education should be manda-
tory

-0.2005 0.6665

We should abolish intellectual property
rights

0.5881 0.0958

Homeschooling should be banned -0.0210 0.9363
We should cancel the speed limit -0.2683 0.4536
We should ban human cloning 0.5018 0.0055
The free market should be protected 0.3119 0.0275
We should prohibit flag burning -0.0469 0.8091
We should ban gambling 0.0090 0.9676
We should limit the freedom of speech -0.0178 0.9166
We should further exploit nuclear
power

0.1064 0.3988

We should increase ecotourism 0.2795 0.1094
We should end mining -0.0097 0.9631
We should legalize same sex marriage -0.1868 0.1085
We should subsidize recycling 0.5203 0.0077
We should adopt multiculturalism 0.0389 0.8192
We should legalize the growing of coca
leaf

0.2335 0.5162

We should ban the sale of violent video
games to minors

0.2058 0.2357

We should fight for Palestinian inde-
pendence

0.2430 0.1878

We should end censorship -0.1532 0.5710
We should abolish electronic voting -0.1224 0.7937
We should protect endangered species 0.0842 0.7655
Big governments should be abandoned -0.4706 0.2392
We should support water privatization -0.1025 0.8698
We should limit genetic testing -0.4694 0.5306
We should adopt blasphemy laws -0.0577 0.9022
Average 0.1817 0.3584
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From the correlation between the WinRate and the original quality score of each dataset,
we can see a relationship definitely exists between the 2 different scores for dataset UKP
ConvArgStrict and dataset IBM ArgQ Pairs. Dataset IBM Evi shows weaker correlation
with WinRate metric. This doesn’t come as a surprise, since it is the only dataset where the
score comes from model predictions.

5.3.2 Comparison of Manual Scores to WinRate Scores

In the previous section, we evaluated the correlation between the WinRate and the original
quality score of each dataset. In this section, we investigate how the WinRate compares to
the annotations of the quality analysis of datasets done in section 5.2. The quality analysis
consisted in annotating the top 3 most convincing arguments and bottom 3 less convincing
arguments for 10 topics for every dataset, each argument annotated by 3 annotators. Earlier,
we analyzed the correlation between the average score of the 3 annotators and the dataset
quality score. Now we analyze the correlation between the average score of the 3 annotators
and the WinRate score. Table 5.7 shows the correlation of interest for all datasets, also show-
ing the correlation with the original quality score for comparison purposes. The WinRate
score demonstrates a higher correlation with the average score of the 3 annotators than the
original quality score, reinforcing the use of the WinRate score as an argument quality metric
to generate a pointwise score from argument pair annotations.

Table 5.7 Comparison of the correlation between the average of annotator scores and the
original score versus the correlation between the average of annotator scores and the WinRate
score, on the sample of each dataset.

Dataset Original Score WinRate
Pearson p-value Pearson p-value

UKP Rank 0.8347 0.0000 0.8981 < 0.0001
IBM Evi 0.2376 0.0676 0.4532 0.0003
IBM ArgQ 0.6779 0.0000 0.6874 < 0.0001

5.3.3 Top 5 Arguments According to WinRate

We showed in the last section that the WinRate score is more aligned with the manual
score obtained through our qualitative analysis. To further explore how scores extracted using
WinRate differ from the original quality scores, we compare the top 5 arguments on a topic
(chosen randomly) according to WinRate to the top 5 arguments according to PageRank
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on UKP ConvArg. While this exercise doesn’t reflect the whole dataset, it helps visualize a
sample of the difference between the two quality scores, a difference which we demonstrated
in the previous section.

Table 5.8 Top 5 arguments according to PageRank on topic is the school uniform a good
or bad idea with stance good of UKP Rank dataset. Arguments in bold are common to
WinRate’s top 5.

Top N Arguments Score
0 According to the legacy educational resources, as fashion and trends

change, students become more concerned with how they look and how
they are perceived than they do with their academic success and achieve-
ment. The fashion of low rise jeans, bagging jeans, large trench coats, low
cut shirts, and many others contribute to behavior problems and safety
issues in the classrooms and in the hallways of schools today.

1.0000

1 I think it’s good within certain limits. I went to a school with a uniform,
and it was far less stressful than non-uniform college. I’d argue that it’s a
leveler- prevents people from showing off material wealth/ making others
feel bad for not having ’cool’ stuff. <br/> But it can be taken too far.
By the end, we weren’t allowed coloured socks, which was idiotic.

0.9990

2 That’s really good idea. As i remember every morning i though what was better to
wear? It was really problem, i spent quiet a lot of time. I asked my parents to buy
new clothes for me, it was happened not rare. I know that not everyone thought as
me, but it much better if the school has own uniform and everybody has to follow
it. First it looks very good, smart. Secondly there is no envy that somebody have
really nice skirt or jeans. Every pupil is the same and it would be easy to study, to
not think about another things!!

0.9989

3 1. It makes everyone equal - if children can wear what they want some children will
teased and feel less equal to their peers around them vs. uniforms <br/> 2. Okay
Look school is for learning not how you look and dress but maybe in some levels it
matters and most people that go to schools that don’t have uniforms take like about
1 hr just to find their pants or shirt I mean really?? When you have a uniform it
takes less than 10 min just to take it out and put it on and

0.9984

4 yas,of course . School uniform is important <br/> 1.school uniform is a logos for
our school <br/> 2.to remind us that we are part of the school <br/> 3.and if we
use the uniform basically student used to think what are they gonna do to, is it
positive or negative <br/> 4.in the morning we should use our uniform and if were
not use our uniform the teacher give us a punishment and from that we can learn to
be a discipline student <br/> 5.if we go out from the school than the teacher will
see we used the school uniform so people will know that we from that school <br/>
thankyou

0.9979

Comparing WinRate’s top 5 with PageRank’s top 5 most convincing arguments, we can see
some differences. Table 5.8 and table 5.9 show that they have 2 arguments in common and 3



61

different arguments. Analyzing the dissimilar arguments, we can notice that arguments based
on PageRank do not display as high quality as would be expected. For example, argument #4
of table 5.8 contains familiar language and is missing clarity to a point where the argument’s
message is in jeopardy. Moreover, argument #2 is missing words and argument #3 uses
familiar language, making those arguments of lower quality. Arguments #2, #3 and #4, in
our opinion, shouldn’t be part of the top 5 most convincing arguments or at least, shouldn’t
be labeled with a quality score so high (higher than 0.99). On the other hand, arguments part
of WinRate’s top 5 are of higher quality. Another aspect to consider is the score assigned
to each argument of the top 5. PageRank assigned scores ranging from 0.9979 to 1.0000
to 5 arguments which, in our opinion, are of a very different level of quality. For example,
argument #0 is clearly of higher quality than argument #4 in table 5.8. However, their
assigned score is very close (1.0000 vs 0.9979). WinRate assigned a wider range of scores:
from 0.9091 to 1.0000. We can also clearly visualize the difference in quality proportional to
the difference in score. Table 5.9 shows how argument #1 being a high quality argument is
assigned a score of 1.0000 and argument #4, which is more informal and contains a repetition
of a group of words, is assigned a score of 0.9091. WinRate metric seems to demonstrate a
better grasp of the quality difference between 2 arguments. This analysis has its limitations:
we realize the analysis should be done on the whole dataset instead of just one topic and
might not reflect the rest of the dataset.
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Table 5.9 Top 5 arguments according to WinRate on topic is the school uniform a good or bad
idea with stance good of UKP Rank dataset. Arguments in bold are common to PageRank’s
top 5.

Top N Arguments Score
0 In a school all the students may not belong to the same financial status . Some may

be rich , some may not be that rich . So uniform provides equal status to all the
students so that there is no gap among them . If there is no uniform , then the rich
students will wear new dresses everyday which the other students cannot afford and
may lead to resentment among them . <br/> Some insensitive children may also
mock other students wear old cloths . <br/> So I beleive that uniform is essential
especially in developing countries .

1.0000

1 According to the legacy educational resources, as fashion and trends
change, students become more concerned with how they look and how
they are perceived than they do with their academic success and achieve-
ment. The fashion of low rise jeans, bagging jeans, large trench coats, low
cut shirts, and many others contribute to behavior problems and safety
issues in the classrooms and in the hallways of schools today.

1.0000

2 I think school uniform is a good idea. Because there is the gap between the rich
and poor, school uniform is efficient in many ways. If they wore to plain clothes
every day, they concerned about clothes by brand and quantity of clothes. Teenager
is sensible so the poor students can feel inferior. Although school uniform is very
expensive , it is cheap better than plain clothes. Also they feel sense of kinship and
sense of belonging. In my case, school uniform is convenient. I don’t have to worry
about my clothes during my student days.

0.9615

3 I think it’s good within certain limits. I went to a school with a uniform,
and it was far less stressful than non-uniform college. I’d argue that it’s a
leveler- prevents people from showing off material wealth/ making others
feel bad for not having ’cool’ stuff. <br/> But it can be taken too far.
By the end, we weren’t allowed coloured socks, which was idiotic.

0.9524

4 School uniform is a great idea, just because it makes impossible to hold the race
for the fashion among pupils. let it be, one pupil is richer than another. rich can
begin to show off in front of those who are poorer. this action will create a negative
atmosphere in the school and can start row between both pupils. As a rule, As
a rule, it often occurs between the girls, although it is not rare between the boys.
that’s why school uniform liquidates all conflicts.

0.9091

5.3.4 Predicting WinRate

In previous sections, we evaluate how the WinRate metric correlates with the argument
quality score published with each dataset and also how it correlates with the quality analysis
annotations. Now we evaluate the performance when training and evaluating a predictive
model on the WinRate score. We evaluated the models presented earlier: BERT and TFR-
BERT trained with 6 different ranking loss functions. The training parameters are exactly
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the same as seen in 4.3 to ensure consistency in the comparison to the dataset’s original
quality score.

UKP ConvArgStrict Dataset

Table 5.10 shows the performance of the different models predicting WinRate applied to
dataset UKP ConvArg. We can see that ensemble TFR-BERT outperforms BERT across
all metrics. While ensemble TFR-BERT is the best performing TFR-BERT variant across
Pearson, Spearman and Kendall’s Tau metrics, TFR-BERT trained with Approx NDCG Loss
is the best performing TFR-BERT variant across NDCG@K metrics.

Table 5.10 Evaluation of TFR BERT using different ranking losses on the WinRate metric
applied to UKP ConvArg dataset.

Loss Model PEARSON SPEARMAN TAU NDCG@5 NDCG@10 NDCG@15

point-wise BERT 0.73 0.74 0.58 0.82 0.82 0.85
TFR-BERT MSE Loss 0.68 0.68 0.53 0.83 0.83 0.86

Pairwise
TFR-BERT Hinge Loss 0.67 0.68 0.52 0.81 0.82 0.84
TFR-BERT Logistic Loss 0.71 0.72 0.56 0.83 0.83 0.86

List-wise
TFR-BERT Softmax
Loss

0.70 0.73 0.57 0.85 0.87 0.88

TFR-BERT List MLE 0.63 0.64 0.49 0.79 0.79 0.82
TFR-BERT Approx
NDCG Loss

0.67 0.72 0.55 0.90 0.89 0.90

Mix TFR-BERT Ensemble
Losses

0.75 0.76 0.60 0.89 0.87 0.89

IBM ArgQ Pairs

Table 5.11 shows the performance of models predicting WinRate applied to dataset IBM
ArgQ Pairs. We can observe that ensemble TFR-BERT outperforms BERT across all metrics.
Moreover, ensemble TFR-BERT is the best performing TFR-BERT variant across all met-
rics, outperforming every TFR-BERT variant trained with one loss function. While ensemble
TFR-BERT’s performance according to Pearson, Spearman and Kendall’s Tau metrics is not
much higher than BERT, it outperforms BERT on NDCG@K metrics by a considerable mar-
gin.
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Table 5.11 Evaluation of TFR BERT using different ranking losses on the WinRate metric
applied to IBM ArgQ Pairs dataset.

Loss Model PEARSON SPEARMAN TAU NDCG@5 NDCG@10 NDCG@15

point-wise BERT 0.39 0.40 0.29 0.79 0.71 0.70
TFR-BERT MSE 0.30 0.33 0.24 0.70 0.67 0.67

Pairwise TFR-BERT Hinge Loss 0.40 0.41 0.30 0.80 0.77 0.72
TFR-BERT Logistic Loss 0.41 0.40 0.30 0.74 0.73 0.72

List-wise
TFR-BERT Softmax
Loss

0.39 0.39 0.28 0.72 0.71 0.70

TFR-BERT List MLE 0.32 0.32 0.23 0.78 0.74 0.70
TFR-BERT Approx
NDCG Loss

0.34 0.37 0.27 0.84 0.77 0.74

Mix TFR-BERT Ensemble
Losses

0.42 0.43 0.31 0.90 0.80 0.76

IBM EviConv

Table 5.12 shows the performance of the different models predicting WinRate applied to
dataset IBM EviConv. We can see that ensemble TFR-BERT and most TFR-BERT variants
outperform BERT across all metrics. Ensemble TFR-BERT is the best performing TFR-
BERT model across NDCG@K metrics.

Table 5.12 Evaluation of TFR BERT using different ranking losses on the WinRate metric
applied to IBM EviConv dataset.

Loss Model PEARSON SPEARMAN TAU NDCG@5 NDCG@10 NDCG@15

point-wise BERT 0.34 0.32 0.24 0.69 0.70 0.71
TFR-BERT MSE 0.45 0.46 0.36 0.73 0.73 0.76

Pairwise TFR-BERT Hinge Loss 0.37 0.35 0.28 0.67 0.67 0.70
TFR-BERT Logistic Loss 0.39 0.40 0.30 0.74 0.74 0.76

List-wise
TFR-BERT Softmax
Loss

0.40 0.40 0.30 0.72 0.72 0.75

TFR-BERT list MLE 0.42 0.44 0.34 0.72 0.73 0.75
TFR-BERT Approx
NDCG Loss

0.43 0.44 0.34 0.69 0.71 0.71

Mix TFR-BERT Ensemble
Losses

0.46 0.45 0.34 0.75 0.74 0.76

5.4 Discussion

In this chapter, we explore the feasibility of standardizing argument quality datasets with
a common metric, motivated by the differences in how the quality score is calculated for
each dataset and by the variation of performance across datasets. This led to questions
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about the interest of the available datasets’ scores. Therefore, we first start by performing
a qualitative analysis of the datasets: annotating a sample of arguments from each dataset.
Those annotations proved to be very correlated with the dataset’s quality score for UKP
Rank and IBM Arg30K datasets, and moderately correlated for IBM ArgQ. However, the
annotations showed weak correlation with IBM Evi’s quality score. We then propose the
WinRate as a metric to extract pointwise quality scores from argument pair annotations.
We thoroughly compare the correlations between the WinRate and each dataset’s quality
score (except for IBM Arg30K, as we explain in section 5.3.1). The WinRate demonstrated a
correlation with the dataset’s original quality score for datasets UKP Rank and IBM ArgQ,
but very weak correlation for dataset IBM Evi. Dataset IBM Evi’s quality score stands out
as the least correlated to WinRate and qualitative analysis annotations, thus reducing the
level of confidence in its validity.

Moreover, we compare the WinRate score to the average score of annotations collected
through the qualitative analysis of the datasets. Some noteworthy results are the following:
the WinRate score is more correlated with annotations from the qualitative analysis than
the original quality score is, for all three datasets: UKP Rank, IBM Evi and IBM ArgQ. Ad-
ditionally, we show that the WinRate labels topmost convincing arguments more accurately
than PageRank, giving the top 5 arguments of topic is the school uniform a good or bad idea
with stance good of UKP Rank dataset as an example to properly visualize it. The 5 most
convincing arguments according to WinRate are globally of higher quality than the 5 most
convincing arguments according to PageRank, in our opinion.

Having demonstrated WinRate as a viable metric to replace each dataset’s own quality
score, we evaluated BERT and all TFR-BERT variants on predicting the WinRate as the
argument quality score. We report the performance for predicting the WinRate in section
5.3.4. We inquire how well a ranking model is able to learn to rank arguments through
WinRate compared to using the original quality score. We compare the models’ performance
to predict the WinRate score to their performance predicting each dataset’s original quality
score in table 5.13. For good measure, we limit the comparison to BERT and the overall
best performing variant of TFR-BERT: ensemble losses. We can see that for dataset UKP
Rank, both BERT and ensemble TFR-BERT perform better at predicting the WinRate score
than the PageRank score, across all metrics, by a significant margin. This demonstrates how
a ranking model can learn more from WinRate than PageRank to rank arguments by their
measure of quality. For dataset IBM Evi, however, the performance of both BERT and TFR-
BERT ensemble is higher on the dataset’s original quality score. For dataset IBM ArgQ, the
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performance of ensemble TFR-BERT is higher on the WinRate score than it is on the original
quality score. The performance of BERT is higher on the WinRate score for most metrics.
Therefore, we can say that for the majority of cases, the WinRate is a metric from which a
ranking model is more able to learn to rank arguments by their measure of quality, compared
to other scores like PageRank, for example.

Table 5.13 Comparison of the ranking task on WinRate score vs the original score of each
dataset.

Model Score PEARSON SPEARMAN TAU NDCG@5 NDCG@10 NDCG@15

U
K
P

Ra
nk BERT WinRate 0.73 0.74 0.58 0.82 0.82 0.85

PageRank Score 0.44 0.56 0.40 0.53 0.62 0.68

TFR-BERT Ensemble Losses WinRate 0.75 0.76 0.60 0.89 0.87 0.89
PageRank Score 0.48 0.68 0.51 0.60 0.72 0.77

IB
M

Ev
i BERT WinRate 0.34 0.32 0.24 0.69 0.70 0.71

Original Score 0.57 0.51 0.37 0.88 0.90 0.89

TFR-BERT Ensemble Losses WinRate 0.46 0.45 0.34 0.75 0.74 0.76
Original Score 0.61 0.56 0.41 0.91 0.89 0.89

IB
M

Ar
gQ BERT WinRate 0.39 0.40 0.29 0.79 0.71 0.70

Original Score 0.42 0.41 0.22 0.55 0.60 0.63

TFR-BERT Ensemble Losses WinRate 0.42 0.43 0.31 0.90 0.80 0.76
Original Score 0.35 0.34 0.23 0.64 0.67 0.66



67

CHAPTER 6 CONCLUSION

6.1 Summary of Contributions

In this work, we propose a different view on the task of ranking arguments by quality.
Steering away from trying to predict an absolute quality score for each argument, we instead
focus on learning how to order them by their relative convincingness. At the beginning,
we ask ourselves: How can learning to rank techniques coupled with pretrained language
models contribute to automatic argument quality evaluation? Therefore, we propose to use
an architecture based on learning-to-rank built on top of BERT. We demonstrate that pairing
a learning-to-rank approach with BERT’s powerful ability in building a representation of an
argument yields stronger ranking capabilities. This shows in the results obtained using TFR-
BERT, which demonstrate better performance for the NDCG@K metrics, meaning superior
capability at outlining the top K most convincing arguments. We argue that this might
have more significant applications than focusing on ranking all the arguments with equal
importance. We also demonstrate how combining multiple ranking loss functions (pointwise,
pairwise and list-wise) as an Ensemble model of TFR-BERT shows better performance across
many metrics.

Secondly, we answer the following research question: How can argument quality datasets
be standardized with a common metric, to facilitate the comparison of the ranking task?
We explore the feasibility of standardizing argument quality datasets with the WinRate
metric. We demonstrate how the WinRate metric correlates with most dataset’s original
metric. Moreover, the WinRate metric shows greater correlation with annotations from the
qualitative analysis of the sample of the datasets, than the datasets’ original quality score
does. We also show how, for the majority of datasets, the performance of ranking models is
higher predicting the WinRate metric than the original quality score. This shows how the
ranking models are able to learn more from the WinRate metric to model argument quality.
This positions the WinRate metric as a viable candidate for a standardized metric to unify
argument quality datasets collected from pairwise annotations.

Another contribution of this work is the publication of a research paper to the 2022 FLAIRS
conference, where we present learning-to-rank methods paired with BERT for the argument
quality ranking task. As part of the publication, we demonstrate the effectiveness of TFR-
BERT and compare it to state-of-the-art solutions on the 4 argument quality datasets, as
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shown in this work.

6.2 Limitations

One limitation of our work lies in the WinRate. Since it is a ratio of the number of times
chosen over the number of times shown, it gives the same score to an argument shown once
and chosen once than to an argument shown 10 times and chosen 10 times. In this case,
both arguments would be given a score of 1. However, we can easily say that in the case of
the second argument, we have much more certainty in the score. Therefore, the WinRate
metric fails to capture the notion that the number of voters implies a bigger certainty in
the assessment of the quality of the argument. In this scenario, a metric used to transform
pairwise annotations into a pointwise score should be able to identify the second argument
as an argument of higher quality than the first argument.

In this work, we explore pointwise, pairwise and list-wise ranking losses for the argument
quality ranking task. However, for all the models we presented, the resulting trained model
remained a pointwise scorer. In other words, a model trained with a list-wise loss function
takes into account a whole list of arguments during training, but at inference time, however,
a score is predicted for each argument individually. While some groupwise scoring learning-
to-rank methods exist, scoring multiple arguments jointly ( [43] ), some problems would arise
applying them to the argument quality ranking task. Combining groupwise multivariate
scoring learning-to-rank methods with a deep pre-trained language model like BERT would
require to decrease the maximum sequence length and decrease the number of arguments to
rank at once because of high memory usage for such an architecture. Therefore, it would
not be feasible to rank all arguments for a topic, all at once. Dividing the list of arguments
into batches to rank doesn’t solve the issue, as aggregating the ranked batches into one
ranked list induces bias, similarly to [1]’s aggregation of pairwise annotations into ranks.
Therefore, memory limitations didn’t allow us to explore how groupwise multivariate scoring
learning-to-rank methods could contribute to the argument quality ranking task.

6.3 Future Research

As we described in chapter 2, some state-of-the-art solutions approached the argument
quality task as a ranking aggregation task. In fact, they trained their model on pairwise
annotations and then evaluated their model’s performance predicting ranks. This is an
exercise to perform in future work, training TFR-BERT on the argument pairwise annotations
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and then evaluating its performance at ranking lists of arguments.

In future work, we also would like to explore other metrics to unify argument quality
datasets. As described in section 6.2, the WinRate metric entails some limitations. The
WinRate metric was introduced to argument quality by [18] and demonstrated strong utility
in the field. However, seeing its limitations, a useful future work would be to explore two well
established methods to map pairwise annotations to individual scores: the Bradley-Terry-
Plackett-Luce model [16,44,45] and the Elo model [19], on the datasets used in chapter 5 and
compare them to WinRate. This would determine if those alternatives to WinRate overcome
the limitations described in section 6.2.

Finally, we would like to explore other language models paired with learning-to-rank meth-
ods for the argument quality ranking task. In fact, new language models such as Robustly
Optimized BERT Pretraining Approach (RoBERTa) [46] and Electra [47] have demonstrated
a performance improvement on other tasks. It would be valuable to evaluate them as alterna-
tives to BERT for all the learning-to-rank models presented for the argument quality ranking
task.
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APPENDIX A PREDICTION OF THE TOP 5 ARGUMENTS ON UKP
RANK

Table A.1 Ranking of top 5 arguments by TFR-BERT model using Mean Squared Loss on
the topic Is the school uniform a good or bad idea with the stance good on UKP Rank dataset.
Arguments are shown in bold if they are part of the top 5 according to gold standard.

Top N Arguments Predicted Score Score
0 In a school all the students may not belong to the same financial status . Some may be rich ,

some may not be that rich . So uniform provides equal status to all the students so that there
is no gap among them . If there is no uniform , then the rich students will wear new dresses
everyday which the other students cannot afford and may lead to resentment among them .
<br/> Some insensitive children may also mock other students wear old cloths . <br/> So I
beleive that uniform is essential especially in developing countries .

0.8717 0.9978

1 According to the legacy educational resources, as fashion and trends change, stu-
dents become more concerned with how they look and how they are perceived
than they do with their academic success and achievement. The fashion of low rise
jeans, bagging jeans, large trench coats, low cut shirts, and many others contribute
to behavior problems and safety issues in the classrooms and in the hallways of
schools today.

0.8659 1.0000

2 School uniform is a great idea, just because it makes impossible to hold the race for the fashion
among pupils. let it be, one pupil is richer than another. rich can begin to show off in front of
those who are poorer. this action will create a negative atmosphere in the school and can start
row between both pupils. As a rule, As a rule, it often occurs between the girls, although it is
not rare between the boys. that’s why school uniform liquidates all conflicts.

0.8570 0.9974

3 year,i support this view. when i was studying in the school,for me wasn’t a problem what to
wear . In the university....i spend too much time in choosing clothes. firstly, it is wasting a time.
secondly, when all students wear one uniform, there wouldn’t be any discrimination, dividing
into social status groups. A uniform shows students equality.

0.8270 0.9889

4 yes, i believe it’s nice to have a school uniform. Each school ’s uniform signifies its goal for
instant i wore white shirt and blue skirt in my school days, white color is an indication of peace
and blue of fidelity in relationships moreover identical uniform also removes the wall of status.
it also depicts that whether a child comes from high or low class they all are treated equally
under one roof .

0.7873 0.9930
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Table A.2 Ranking of top 5 arguments by TFR-BERT model using Pairwise Hinge Loss on
the topic Is the school uniform a good or bad idea with the stance good on UKP Rank dataset.
Arguments are shown in bold if they are part of the top 5 according to gold standard.

Top N Arguments Predicted Score Score
0 According to the legacy educational resources, as fashion and trends change, stu-

dents become more concerned with how they look and how they are perceived
than they do with their academic success and achievement. The fashion of low rise
jeans, bagging jeans, large trench coats, low cut shirts, and many others contribute
to behavior problems and safety issues in the classrooms and in the hallways of
schools today.

0.8809 1.0000

1 In a school all the students may not belong to the same financial status . Some may be rich ,
some may not be that rich . So uniform provides equal status to all the students so that there
is no gap among them . If there is no uniform , then the rich students will wear new dresses
everyday which the other students cannot afford and may lead to resentment among them .
<br/> Some insensitive children may also mock other students wear old cloths . <br/> So I
beleive that uniform is essential especially in developing countries .

0.8401 0.9978

2 I think school uniform is a good idea. Because there is the gap between the rich and poor,
school uniform is efficient in many ways. If they wore to plain clothes every day, they concerned
about clothes by brand and quantity of clothes. Teenager is sensible so the poor students can
feel inferior. Although school uniform is very expensive , it is cheap better than plain clothes.
Also they feel sense of kinship and sense of belonging. In my case, school uniform is convenient.
I don’t have to worry about my clothes during my student days.

0.8282 0.9972

3 Uniforms allow an equal and fair social status only based on personality and not looks. I do
half to admit wearing what you want is fun and creative but its only fun if everyone can do it
and for some children thats not the case and they cant afford to live up to their peers standards
so uniforms would make social life much easier and it would give a more mature look to the
school.

0.7954 0.9976

4 They prepare people for the clothes they may have to wear later on in life. They ensure that
no unsuitable clothing is worn.

0.7724 0.9747
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Table A.3 Ranking of top 5 arguments by TFR-BERT model using Pairwise Logistic Loss on
the topic Is the school uniform a good or bad idea with the stance good on UKP Rank dataset.
Arguments are shown in bold if they are part of the top 5 according to gold standard.

Top N Arguments Predicted Score Score
0 According to the legacy educational resources, as fashion and trends change, stu-

dents become more concerned with how they look and how they are perceived
than they do with their academic success and achievement. The fashion of low rise
jeans, bagging jeans, large trench coats, low cut shirts, and many others contribute
to behavior problems and safety issues in the classrooms and in the hallways of
schools today.

0.9943 1.0000

1 In a school all the students may not belong to the same financial status . Some may be rich ,
some may not be that rich . So uniform provides equal status to all the students so that there
is no gap among them . If there is no uniform , then the rich students will wear new dresses
everyday which the other students cannot afford and may lead to resentment among them .
<br/> Some insensitive children may also mock other students wear old cloths . <br/> So I
beleive that uniform is essential especially in developing countries .

0.9730 0.9978

2 I think school uniform is a good idea. Because there is the gap between the rich and poor,
school uniform is efficient in many ways. If they wore to plain clothes every day, they concerned
about clothes by brand and quantity of clothes. Teenager is sensible so the poor students can
feel inferior. Although school uniform is very expensive , it is cheap better than plain clothes.
Also they feel sense of kinship and sense of belonging. In my case, school uniform is convenient.
I don’t have to worry about my clothes during my student days.

0.9669 0.9972

3 School uniform is a great idea, just because it makes impossible to hold the race for the fashion
among pupils. let it be, one pupil is richer than another. rich can begin to show off in front of
those who are poorer. this action will create a negative atmosphere in the school and can start
row between both pupils. As a rule, As a rule, it often occurs between the girls, although it is
not rare between the boys. that’s why school uniform liquidates all conflicts.

0.9521 0.9974

4 I believe that the wearing of the school uniform should be encouraged because it reminds each
child that they are equal (at least in school). It also shows unity and children feel included and
it helps them to work as a team.

0.9143 0.9960
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Table A.4 Ranking of top 5 arguments by TFR-BERT model using Softmax Loss on the
topic Is the school uniform a good or bad idea with the stance good on UKP Rank dataset.
Arguments are shown in bold if they are part of the top 5 according to gold standard.

Top N Arguments Predicted Score Score
0 In a school all the students may not belong to the same financial status . Some may be rich ,

some may not be that rich . So uniform provides equal status to all the students so that there
is no gap among them . If there is no uniform , then the rich students will wear new dresses
everyday which the other students cannot afford and may lead to resentment among them .
<br/> Some insensitive children may also mock other students wear old cloths . <br/> So I
beleive that uniform is essential especially in developing countries .

1.0000 0.9978

1 School uniform is a great idea, just because it makes impossible to hold the race for the fashion
among pupils. let it be, one pupil is richer than another. rich can begin to show off in front of
those who are poorer. this action will create a negative atmosphere in the school and can start
row between both pupils. As a rule, As a rule, it often occurs between the girls, although it is
not rare between the boys. that’s why school uniform liquidates all conflicts.

0.9403 0.9974

2 According to the legacy educational resources, as fashion and trends change, stu-
dents become more concerned with how they look and how they are perceived
than they do with their academic success and achievement. The fashion of low rise
jeans, bagging jeans, large trench coats, low cut shirts, and many others contribute
to behavior problems and safety issues in the classrooms and in the hallways of
schools today.

0.9108 1.0000

3 year,i support this view. when i was studying in the school,for me wasn’t a problem what to
wear . In the university....i spend too much time in choosing clothes. firstly, it is wasting a time.
secondly, when all students wear one uniform, there wouldn’t be any discrimination, dividing
into social status groups. A uniform shows students equality.

0.8662 0.9889

4 Uniforms allow an equal and fair social status only based on personality and not looks. I do
half to admit wearing what you want is fun and creative but its only fun if everyone can do it
and for some children thats not the case and they cant afford to live up to their peers standards
so uniforms would make social life much easier and it would give a more mature look to the
school.

0.7111 0.9976
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Table A.5 Ranking of top 5 arguments by TFR-BERT model using Approx NDCG Loss on
the topic Is the school uniform a good or bad idea with the stance good on UKP Rank dataset.
Arguments are shown in bold if they are part of the top 5 according to gold standard.

Top N Arguments Predicted Score Score
0 Uniforms allow an equal and fair social status only based on personality and not looks. I do

half to admit wearing what you want is fun and creative but its only fun if everyone can do it
and for some children thats not the case and they cant afford to live up to their peers standards
so uniforms would make social life much easier and it would give a more mature look to the
school.

0.9925 0.9976

1 1. It makes everyone equal - if children can wear what they want some children
will teased and feel less equal to their peers around them vs. uniforms <br/> 2.
Okay Look school is for learning not how you look and dress but maybe in some
levels it matters and most people that go to schools that don’t have uniforms take
like about 1 hr just to find their pants or shirt I mean really?? When you have a
uniform it takes less than 10 min just to take it out and put it on and

0.9750 0.9984

2 In a school all the students may not belong to the same financial status . Some may be rich ,
some may not be that rich . So uniform provides equal status to all the students so that there
is no gap among them . If there is no uniform , then the rich students will wear new dresses
everyday which the other students cannot afford and may lead to resentment among them .
<br/> Some insensitive children may also mock other students wear old cloths . <br/> So I
beleive that uniform is essential especially in developing countries .

0.9705 0.9978

3 I believe that the wearing of the school uniform should be encouraged because it reminds each
child that they are equal (at least in school). It also shows unity and children feel included and
it helps them to work as a team.

0.9333 0.9960

4 i think it’s a good idea. so the student don’t have to worry about what would they wear. they’ll
become more concentrate with their study so it’s more efficient. if other says they can’t express
them self, oh please, there’s so many things you can do to express yourself. and i think, uniform
indirectly give thought how to dress correctly. if we let them dress theirself, they could wear
Inappropriate clothes such as hot pants, rebel jeans or sexy clothes. that’s not good for their
mind.

0.9282 0.9972
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Table A.6 Ranking of top 5 arguments by Ensemble TFR-BERT on the topic Is the school
uniform a good or bad idea with the stance good on UKP Rank dataset. Arguments are
shown in bold if they are part of the top 5 according to gold standard.

Top N Arguments Predicted Score Score
0 In a school all the students may not belong to the same financial status . Some may be rich ,

some may not be that rich . So uniform provides equal status to all the students so that there
is no gap among them . If there is no uniform , then the rich students will wear new dresses
everyday which the other students cannot afford and may lead to resentment among them .
<br/> Some insensitive children may also mock other students wear old cloths . <br/> So I
beleive that uniform is essential especially in developing countries .

0.9206 0.9978

1 According to the legacy educational resources, as fashion and trends change, stu-
dents become more concerned with how they look and how they are perceived
than they do with their academic success and achievement. The fashion of low rise
jeans, bagging jeans, large trench coats, low cut shirts, and many others contribute
to behavior problems and safety issues in the classrooms and in the hallways of
schools today.

0.8872 1.0000

2 School uniform is a great idea, just because it makes impossible to hold the race for the fashion
among pupils. let it be, one pupil is richer than another. rich can begin to show off in front of
those who are poorer. this action will create a negative atmosphere in the school and can start
row between both pupils. As a rule, As a rule, it often occurs between the girls, although it is
not rare between the boys. that’s why school uniform liquidates all conflicts.

0.8727 0.9974

3 Uniforms allow an equal and fair social status only based on personality and not looks. I do
half to admit wearing what you want is fun and creative but its only fun if everyone can do it
and for some children thats not the case and they cant afford to live up to their peers standards
so uniforms would make social life much easier and it would give a more mature look to the
school.

0.8155 0.9976

4 year,i support this view. when i was studying in the school,for me wasn’t a problem what to
wear . In the university....i spend too much time in choosing clothes. firstly, it is wasting a time.
secondly, when all students wear one uniform, there wouldn’t be any discrimination, dividing
into social status groups. A uniform shows students equality.

0.8133 0.9889


	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Motivation
	1.2 Research Objectives
	1.3 Contributions
	1.4 Thesis Outline

	2 BACKGROUND AND LITERATURE REVIEW
	2.1 BERT
	2.2 Learning-to-rank
	2.2.1 Learning for Ranking Creation
	2.2.2 Ranking Aggregation for pairwise preferences

	2.3 Argument Quality Evaluation
	2.3.1 Definitions
	2.3.2 Traditional Machine Learning
	2.3.3 Neural Machine Learning


	3 DATASETS AND EVALUATION METRICS
	3.1 Datasets
	3.2 Evaluation Metrics
	3.2.1 Accuracy
	3.2.2 Pearson
	3.2.3 Spearman
	3.2.4 Kendall's Tau
	3.2.5 NDCG

	3.3 Performance of State-of-the-art Models

	4 LEARNING-TO-RANK FOR ARGUMENT QUALITY RANKING
	4.1 BERT Learning-to-rank Model
	4.1.1 Input Representation
	4.1.2 Architecture

	4.2 Ranking Loss Functions
	4.2.1 Mean Squared Loss
	4.2.2 Pairwise Hinge Loss
	4.2.3 Pairwise Logistic Loss
	4.2.4 List MLE Loss
	4.2.5 Softmax Loss
	4.2.6 Approx NDCG Loss

	4.3 Methodology
	4.3.1 Transforming Scores into Ranks
	4.3.2 Training Parameters

	4.4 Results
	4.4.1 UKP Rank
	4.4.2 IBM Evi Dataset
	4.4.3 IBM ArqQ Rank
	4.4.4 IBM Arg 30K 

	4.5 Discussion

	5 STANDARDIZED ARGUMENT QUALITY METRIC
	5.1 Motivation
	5.2 Qualitative Analysis of datasets
	5.3 WinRate Metric
	5.3.1 Correlation with Original Quality Score
	5.3.2 Comparison of Manual Scores to WinRate Scores
	5.3.3 Top 5 Arguments According to WinRate
	5.3.4 Predicting WinRate

	5.4 Discussion

	6 CONCLUSION
	6.1 Summary of Contributions
	6.2 Limitations
	6.3 Future Research

	REFERENCES
	APPENDICES

