
Titre:
Title:

Single-Min LDPC Offset Optimization Methods

Auteur:
Author:

Daniel Bowen Dermont

Date: 2022

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Dermont, D. B. (2022). Single-Min LDPC Offset Optimization Methods [Master's
thesis, Polytechnique Montréal]. PolyPublie. https://publications.polymtl.ca/10295/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/10295/

Directeurs de
recherche:

Advisors:
François Leduc-Primeau

Programme:
Program:

Génie électrique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/10295/
https://publications.polymtl.ca/10295/

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Single-min LDPC offset optimization methods

DANIEL BOWEN DERMONT
Département de génie électrique

Mémoire présenté en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées
Génie électrique

Avril 2022

c© Daniel Bowen Dermont, 2022.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Ce mémoire intitulé :

Single-min LDPC offset optimization methods

présenté par Daniel Bowen DERMONT
en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

Christian CARDINAL, président
François LEDUC-PRIMEAU, membre et directeur de recherche
Éric ROY, membre

iii

DEDICATION

for Aunt Nita

iv

ACKNOWLEDGEMENTS

First, I would most like to thank Prof. Leduc-Primeau for this opportunity and his support
through the pandemic. Special thanks to Jeremy Nadal for his patience, help and positive
attitude. I would like to extend my thanks to my professors and collaborators from class - in
particular, Profs. Cardinal, Frigon, Pesant and Cappart. Finally, I would like to thank my
colleagues in the office for all the laughs; Hamed, Sebastien, Louis-Normand, and Simon.

v

RÉSUMÉ

Notre monde est de plus en plus dépendant des technologies à faible consommation d’énergie.
Les téléphones mobiles et les ordinateurs portables ont une empreinte énergétique croissante,
ce qui nécessite une amélioration constante des technologies employées dans les réseaux de
communications. En plus d’augmenter le débit de transmission, les futurs réseaux de com-
munication ont des contraintes en latence, en fiabilité et en consommation énergétique de
plus en plus fortes. Bien que ces réseaux évoluent rapidement, les techniques sous-jacentes
utilisées pour coder les messages sont restées les mêmes. Si les techniques de codage de
canaux ont connu des avancées majeures au cours des 30 dernières années, les changements
monumentaux que nous constatons dans la pratique sont le résultat d’innombrables heures
d’optimisation et d’adaptation de ces techniques à des technologies comme Ethernet, WiFi et
5GNR. Les codes low-density parity-check (LDPC) sont largement utilisés dans les systèmes
de communication.

Nous proposons des méthodes pour améliorer davantage l’efficacité énergétique des décodeurs
LDPC, en utilisant des décodeurs single-minimum (SM). Contrairement aux décodeurs Min-
Sum (MS), ces décodeurs ne calculent qu’un seul minimum pendant l’opération de mise
à jour des messages, et appliquent un facteur de correction pour estimer le second. Bien
que ces décodeurs soient beaucoup plus efficaces sur le plan énergétique que les décodeurs
utilisés en pratique aujourd’hui, leur taux d’erreur binaire est dégradé en raison de la perte
inhérente d’informations générée par l’émulation du second minimum. Les méthodes que
nous proposons servent à optimiser les facteurs de correction utilisés dans l’émulation du
second-min de manière à atténuer cette dégradation.

Dans ce mémoire, nous présentons une formulation générale du problème d’optimisation
des facteurs de correcteur SM. Nous présentons ensuite des approches basées sur les sim-
ulations Monte Carlo (MC) pour résoudre ce problème, y compris des solutions obtenues
avec une nouvelle méthode heuristique, appelée window search algorithm (WSA). Nous ex-
plorons également des solveurs basés sur des fonctions objectives à contraintes relaxées qui
optimisent des facteurs de correction non-quantifié (valeur réelle). Ces facteurs sont ensuite
quantifiés pour étudier l’effet du nombre de bits de quantifications sur les performances en
taux d’erreur binaire. De plus, nous avons adapté l’analyse density evolution (DE) aux deux
premières itérations du décodage SM, et nous avons proposé une méthode basée sur cette
méthode de DE pour optimiser les facteurs de correction émulant le second-min. Nous éval-
uons ces méthodes proposées à l’aide de deux codes différents (normes 5G et Ethernet 10G)

vi

et les comparons aux méthodes d’optimisation existantes.

Nous montrons que, pour l’Ethernet 10G, la méthode d’optimisation WSA surpasse significa-
tivement, en taux d’erreur binaire, le décodeur SM à décalage fixe pour des valeurs élevées
de rapport signal/bruit (SNR). Pour le code 5G, des gains importants de taux d’erreur bi-
naire sont observés, en particulier pour la méthode DE, qui nécessite également moins de
temps de calcul. Cette méthode optimise les facteurs de correction SM uniquement pour les
deux premières itérations, tandis que les facteurs de correction des itérations restantes sont
extrapolés. Par conséquent, nous pensons que l’écart de performance entre les décodeurs MS
et SM peut être encore réduit. Cela encourage la poursuite des recherches pour améliorer
l’analyse DE pour les décodeurs SM.

vii

ABSTRACT

Our world is increasingly dependent on low power technology. Mobile phones and laptops
have a smaller footprint each year, requiring endless improvement on ever-changing technolo-
gies. Communication networks require less latency and higher sensitivity to climb to faster
transmission speeds and higher bandwidths. However, as fast as these networks change, the
underlying techniques used to encode our messages have stayed the same. While there have
been major advances in channel coding over the past 30 years, the monumental changes
we see in practice are the result of countless hours of optimization and adaptation of those
techniques to technologies like Ethernet, WiFi and 5GNR.

Low-density parity-check (LDPC) codes are widely used in communication systems. We
propose methods for further improving the energy efficiency of LDPC decoders, specifically
using single-minimum (SM) decoders - quantized min-sum (MS) decoders which find a sin-
gle minimum during the parity check operation and apply an offset to estimate the second.
While these decoders are far more energy-efficient than decoders employed in practice today,
they generally have impractical error-correction performance due to the inherent loss of in-
formation generated from second-min emulation. The methods we propose serve to optimize
correction factors used in second-min emulation such that this degradation in performance
may be mitigated.

In this thesis, we have formulated the generalized SM offset problem. We then present Monte
Carlo-based (MC) approaches to solve this problem, including solutions gathered with a novel
heuristic method, called the window search algorithm (WSA). We explore relaxed-constraint
objectives and real-valued decoder results to investigate the effect of quantization constraints.
We have additionally extended density evolution (DE) analysis to the first two iterations
of SM decoding, and have incorporated a DE-based optimization method for second-min
emulation.

We evaluate these proposed methods using two different codes (5G and 10G Ethernet stan-
dards) and compare with existing optimization methods. We show that, for 10G Ethernet,
the WSA optimization method significantly outperform the fixed offset SM decoder at high
signal-to-noise ratio (SNR) values. For the 5G code, large BER gains are observed, particu-
larly for the DE method, which also requires less computation time. This method optimizes
the SM offsets for only the first two iterations, while the remaining ones are extrapolated.
Therefore, we believe that the performance gap between MS and SM decoders can be further
reduced. This encourages further investigation to improve DE analysis for SM decoders.

viii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . x

LIST OF SYMBOLS AND ABBREVIATIONS . xiii

LIST OF APPENDICES . xiv

CHAPTER 1 INTRODUCTION . 1
1.1 Applications of LDPC . 2
1.2 Practical implementation . 3
1.3 DE-based analysis . 4
1.4 Thesis Organization . 4

CHAPTER 2 LITERATURE REVIEW . 6
2.1 Channel Model . 6
2.2 Channel Coding and Decoding . 8
2.3 Graph Representation . 9
2.4 Quasi-cyclic codes . 11
2.5 Decoding . 12

2.5.1 Notation . 12
2.5.2 Sum-Product Algorithm . 12
2.5.3 Min-Sum . 14
2.5.4 Min-Sum with correction . 15
2.5.5 Message-passing Scheduling . 16

2.6 Quantization . 17
2.7 Single-Min Decoding . 19

2.7.1 Existing Methods . 21

ix

CHAPTER 3 Single-Min Offset Optimization . 23
3.1 Problem formulation . 23
3.2 Top-level optimization using coordinate descent 24
3.3 Relaxed Real-Valued Decoder Method . 25

3.3.1 Problem Formulation . 25
3.3.2 Nonlinear Optimization . 26

3.4 SM offset optimization using windowed search 29
3.5 Discrete Optimization Methods . 29

CHAPTER 4 Application of Density Evolution . 32
4.1 DE for MS Decoding . 32

4.1.1 Variable-to-Check message PMF . 33
4.1.2 Check-to-Variable message PMF . 33
4.1.3 Finite-length Transformation . 38

4.2 Proposed SM offset optimization using DE 38
4.2.1 On the message dependencies . 39
4.2.2 Optimization for the first iterations 40

CHAPTER 5 Results and Discussion . 41
5.1 Real-Valued Decoding . 41

5.1.1 Simulation Setup . 41
5.1.2 Results . 41

5.2 Discrete SM Offset Optimization Methods 43
5.2.1 Simulation setup . 43
5.2.2 Results for the 10GE code . 44
5.2.3 Results for the 5G code . 45

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS 48
6.1 Summary . 48
6.2 Future Research . 48

REFERENCES . 50

APPENDICES . 56

x

LIST OF FIGURES

Figure 2.1 Generalized communication channel 6
Figure 2.2 Depiction of Tanner graphs and PCMs for a regular and irregular code,

with a highlighted cycle . 10
Figure 2.3 Example of a circular shift performed on an identity matrix size z = 3,

along with the corresponding permutation indices 11
Figure 2.4 Min-Sum decoder check node update as seen from variable node i . . 15
Figure 2.5 Illustration of one iteration of a flooding-scheduled decoder 16
Figure 2.6 Illustration of one sub-iteration of a row-layer-scheduled decoder . . . 16
Figure 2.7 Architecture of the 2-min search elementary block [1, Fig. 2b] 19
Figure 2.8 General memory framework of min-sum decoder [2, Fig. 1] 20
Figure 3.1 Example of an iteration of the generic windowed search 30
Figure 5.1 Results depicting the performance of real-valued SM decoders against

real-valued MS decoders . 42
Figure 5.2 Active-Set RVQ results for 5-, 7- and 10-bit quantization schemes . . 43
Figure 5.3 Comparison of BER performance for SM decoders against optimized

min-sum (MS) for the 802.3an-2006 code 45
Figure 5.4 Comparison of SM decoding methods against an MS decoder 46
Figure B.1 Histogram showing the occurrence of SM offsets for all DE Optimized

edges of the 10GE code . 62
Figure B.2 Histogram showing the occurrence of SM offsets for all DE Optimized

edges of the 5G code . 65

xi

LIST OF SYMBOLS AND ABBREVIATIONS

10GE 10 Gb/s Ethernet

5G 5th generation cellular networks

APP a posteriori probability

ARQ automatic repeat request

BER bit-error rate

BG base-graph

BLER block error rate

BP belief propagation

BPSK binary phase-shift keying

C2V check-to-variable

CC convolutional code

CCDF complementary CDF

CD coordinate descent

CDF cumulative distribution function

CG conjugate gradient

CGU clock gating unit

CN check node

DE density evolution

EVW extended variable weight

FEC forward error correction

FER frame error rate

xii

FF flip-flop

GA genetic algorithm

HARQ hybrid automatic repeat request

KKT Karush-Kuhn-Tucker

LDPC low-density parity-check

LLR log-likelihood ratio

LUT look-up table

MC Monte Carlo

MET multi-edge type

MS min-sum

MSE mean squared error

NMS normalized min-sum

OMS offset min-sum

PCM parity check matrix

PCS physical coding sublayer

PDF probability-density function

PMF probability-mass function

QC quasi-cyclic

RMS relaxed min-sum

RV real-valued

RVQ real-value quantized

SM single-minimum

xiii

SNR signal-to-noise ratio

SO soft output

SPA sum-product algorithm

SQP sequential quadratic programming

THz terahertz

V2C variable-to-check

VN variable node

WSA window search algorithm

xiv

LIST OF APPENDICES

Appendix A Probability Review . 56

Appendix B SM Offset Values . 59

1

CHAPTER 1 INTRODUCTION

Since the discovery of low-density parity-check (LDPC) codes by Gallager in his 1962 disser-
tation [3], a major question has swirled around the application of these codes: how efficient
can a decoding approach be while maintaining a practical performance level?

The goal of our work is to advance the most energy-efficient channel decoding techniques for
use in low-power applications. To that end, we have identified an often-overlooked, efficient
algorithm for LDPC decoding which is ripe for improvement - single-minimum decoding. The
reason we see relatively little activity in this area of research is because of the performance
degradation inherent in using only a single minimum in the min-sum parity check calcula-
tion. However, the difference in efficiency is hard to ignore; an single-minimum (SM) check
node processor is estimated to be 48% the size of a conventional min-sum (MS) check node
processor [4]. We propose in this thesis methods for improving the performance of the SM
decoder; namely, methods for finding optimized single-min correction factors.

Belief propagation (BP) decoding for LDPC codes has existed since their inception as the
best-performing approach to LDPC decoding with respect to error correction [3]. This is the
approach used by MacKay and Neal in their work which is credited with reigniting inter-
est in LDPC codes [5]. MacKay’s sum-product formulation was done without knowledge of
Gallager’s previous work. Tanner’s work on bipartite graphs in [6] was published in 1981,
between the discovery of LDPC codes and their reintroduction by MacKay and Neal. This
paper introduces a graphical model for long error-correction codes, notably including LDPC
codes by name. More practical BP decoding algorithms have since been introduced, which
improve on the efficiency of the decoder in exchange for a degradation in error correction per-
formance - for example, the min-sum algorithm with correction and the reduced-complexity
BP approaches presented in [7–9]. We see our work as a continuation of this trend, present-
ing the feasibility of more efficient approaches in BP approximation algorithms, especially
with regards to quasi-cyclic (QC) LDPC codes. QC-LDPC codes are highly parallelizable
and simple to implement in hardware using relatively little memory and cyclic shift registers.
More information on QC-LDPC implementation is given in section 2.4.

The second goal of this research is to bring attention to the possibilities and difficulties in
implementing density evolution analysis in single-min decoding schemes. Investigating the
behavior of LDPC decoders generally involves long, costly Monte Carlo simulations. DE
allows these analyses to be performed over probability mass functions rather than Monte
Carlo results, and is therefore a much more resource efficient tool. DE relies on a few key

2

assumptions, outlined in Chapter 4. We will present the challenges inherent in extending
this analysis tool to single-min decoding schemes, as well as optimization methods for SM
decoders using DE.

1.1 Applications of LDPC

LDPC codes have highly parallel architectures and the ability to approach channel capacity.
Forward error correction (FEC) refers to the ability of a code to iteratively correct errors
during the channel decoding process. This method, as compared to automatic repeat request
(ARQ), has a clear advantage in throughput. The two methods are often hybridized, where
selective repeat requests are made if error correction is unsuccessful. This is known as hybrid
automatic repeat request (HARQ). HARQ increases the average latency of the decoding
process, but generally improves error-correction performance. LDPC codes are, like Turbo
codes, capacity-approaching, meaning that their performance approaches the Shannon Limit,
or capacity of a channel. First outlined in [10], the capacity of a channel refers to the
maximum rate of transmission that information may be transmitted over a noisy channel free
of errors, or with minimal errors. As explored by Richardson and Urbanke in [11] and [12],
it is possible to design LDPC codes such that they perform at rates very close to this limit.
LDPC decoding architectures, especially implementations using QC-LDPC codes, are highly
parallelizable. Unlike Turbo codes, LDPC codes may be scaled to a desired code rate. That
is, a turbo code achieves different code rates through puncturing a parent code, and therefore
all decoders at all code rates are of the same complexity, whereas the complexity of LDPC
codes may be scaled for specific applications.

Since their reintroduction by MacKay, LDPC codes have made their way from theory into
practice - which is made possible in large part due to the efficiency offered by their highly
parallel node processing architectures. We see LDPC codes built for a variety of applications -
the most visible of which being 5th generation cellular networks (5G) [13]. 10 Gb/s Ethernet
(10GE) technology refers to a set of ethernet network standards, many of which are still
in use. Published in 2006, 10GBASE-T, or IEEE 802.3an-2006, is one such standard that
uses forward error correction using LDPC decoding in the physical coding sublayer (PCS)
[14]. The DVB-S2 digital video broadcasting standard’s most major improvement over its
predecessor, DVB-S, was the incorporation of a much improved channel coding scheme using
LDPC codes as opposed to concatenated convolutional and Reed-Solomon codes. The choice
was made due the ease of implementation for LDPC codes due to their highly parallelizable
architecture, as well as their 35% performance improvement over DVB-S standard Reed-
Solomon and convolutional codes [15].

3

Quasi-cyclic binary LDPC codes are already the standard for 5G data channels, and with
terahertz (THz) band technology making an entrance in 6G, LDPC will be the best choice
for error correction coding, as it offers high performance with low decoding complexity [16].
Convolutional code (CC) LDPC codes are already being considered for use in impending
6G networks [17]. There already exist limitations in hardware in reaching the higher 5G
transmission speeds [18]. The peak data rate proposed for 6G networks will be 1 Tbps, 50
times that of 5G networks [19]. There is a need for more efficient algorithms and hardware
architectures to meet the upcoming demand that 6G presents.

1.2 Practical implementation

LDPC decoding architectures have gone through major changes since the first BP decoding
algorithms proposed by Gallager in [3]. The highest error-correction performance is achieved
using the sum-product algorithm (SPA) decoder, the algorithm which underlies Gallager’s
A and B algorithms outlined in [3]. SPA is the standard decoding algorithm for capacity-
approaching codes. However, SPA includes a parity check process involving a product of
hyperbolic tangent operations performed on continuous values. This is simply too costly to
implement effectively in hardware. Therefore, reduced-complexity SPA decoding algorithms
were developed, including MS decoding. As described in section 2.5.3, MS decoding replaces
the costly product operation with a minimum operation - which in practice must find both
the global minimum value and the next minimal value (explained in detail in section 2.7).
MS decoding architectures have proven practical and may have error correction performance
approaching the level of SPA decoding if parameterized correctly. However, as stated above,
advancements in practical LDPC decoding must meet very high demands required by emer-
gent network designs.

One way this may be done is by further reducing the complexity of the MS decoder parity
check, by implementing the minimum operation to find the global minimum, and using this
information to emulate the next minimal value. In the past, this modification was not made
due to the inherent performance degradation that these SM decoders present. The goal of
this thesis is to reduce the performance gap between MS decoding and SM decoding enough
to allow for practical SM implementations.

4

1.3 DE-based analysis

Usually, we evaluate the error correction performance of an LDPC code for different noise
powers using Monte Carlo (MC) simulations. However, these simulations are not time- or
memory-resource efficient. In fact, the high execution times of MC simulations were the
major roadblock in evaluating SM decoder implementations throughout this research.

Density evolution (DE) analysis is a method where, given a transmission error rate to design
for, an upper bound for a channel noise parameter performing at or below this error rate is
established. Conversely, DE may be used to find the transmission error rate at a designed-for
channel signal-to-noise ratio (SNR) value. DE is an important tool for qualifying empirical
results in this space - and doubles as a very useful tool in exploring error performance for
LDPC codes without using the same resources as a conventional simulation - supposing the
results of DE analysis for an LDPC code ensemble can be shown to be within a permissible
range of error when compared to Monte Carlo simulations. In addition, DE analysis is very
resource-efficient.

Based on channel model and noise power, we have a channel output distribution from which
we can gather a density function. DE begins by assuming a code is of infinite length, and
that no cycles exist in the decoder implementation. Though these assumptions are false,
they allow analysis to proceed using evolving probabilistic random variables. We obtain an
“infinite-length” result from DE applied under these assumptions. The work presented in [20]
and [21] introduces a transformation considering finite-length codes, which improves the
densities rendered by DE compared to the results of simulations performed on real decoders.

1.4 Thesis Organization

Chapter 2 offers a review of channel coding, with a particular focus on belief propagation for
LDPC codes. We begin with a review of the communication channel model, followed by an
exploration of Tanner graph representations and code generation techniques. We then review
LDPC decoding algorithms, beginning with the sum-product algorithm and moving step-by-
step to min-sum decoding with correction. We show how relaxing some of the constraints
of sum-product decoding can lead to very practical algorithms for LDPC decoding. A short
review of flooding and layered decoder scheduling is given, and we present a short overview
of our quantization scheme. We end this chapter with a detailed overview of the SM Offset
decoding approach; the most basic SM approach and the trade-offs inherent in implementing
it. Next, we present improved algorithms from the literature, using both fixed and variable
offset approaches.

5

In Chapter 3, we present our approach for optimizing the single-min Offsets used in the
Single-Min decoding algorithm. We present the choice of single-min offsets as an optimiza-
tion problem, where the objective is reduction of Bit Error Rate for a MC simulation, based
on our choice of discrete SM offset input. We next present a coordinate descent (CD) pro-
cess which simplifies the search space by targeting optimization parameters individually. We
then present a relaxed-constraint approach where a solution is emulated using an analagous,
continuous-valued problem. We explore more efficient methods of optimization, including
a new heuristic method called window search algorithm (WSA), which is a method of de-
composing these optimization problems into smaller searches while incorporating memory
between decoder iterations. Finally, an overview is given for a number of discrete optimiza-
tion methods which are incorporated into WSA.

Chapter 4 begins with a review of properties of random variables that motivate DE analysis.
An in-depth description of DE analysis for MS decoding follows, including a transformation
which improves the accuracy of DE analysis using code length. We then present our approach
to DE for the single minimum case, including a successful analysis of the first and second
decoder iterations. Finally, we present an optimization method that uses DE to calculate
SM offsets for each edge by minimizing mean squared error (MSE) against the performance
of a standard MS decoder.

In Chapter 5, we present the preliminary results for the relaxed-constraint solution to the
SM offset problem, which did not perform as expected. We then show the error performance
of our discrete optimization solutions for SM decoders plotted against the performance of an
MS decoder for both a regular (10GE) and irregular (5G) code. This notably includes SM
offsets obtained using WSA and our DE optimization method.

In Chapter 6, we present our conclusions regarding the SM decoder performance results.
This chapter includes a review of the contributions presented herein and a roadmap for
future work.

6

CHAPTER 2 LITERATURE REVIEW

2.1 Channel Model

Modulation

Channel

Channel Encoding
(Code Rate R)

DemodulationChannel Decoding

Source

Destination

Data Data + Parity
...010101......0101...

...0101... ...010101...

Figure 2.1 Generalized communication channel

Figure 2.1 depicts a communication channel model. This is the scheme by which information
travels across a channel. We begin with source encoding, the process by which information
is encoded from its original form to a form that may be manipulated by the modules in
the transmitter (often binary code). Channel encoding represents a transformation of this
source-encoded data which allow parity checks to be performed upon receipt of the data on by
the decoder. These parity checks - performed in the highlighted “Channel Decoding” module
in Figure 2.1 - allow the receiver to evaluate the quality of data and/or correct transmission
errors. Modulation is the process by which the channel encoded data is transformed into a
signal suitable for transmission across the specific channel. While modulation may affect the
reliability of a communication channel with respect to error rate, channel coding represents
the most significant process in preventing transmission errors and creating a robust channel.

7

The BI-AWGN channel model allows additive noise to be applied according to a normal
distribution on real-valued symbols representing the belief for a bit-value in the transmitted
code. This is the channel model used in the following research. We assume symbols are
transmitted in a causal sequence i = 0,1,2, ... and are modulated. We represent the ith

transmitted symbol with noise, at channel output, yi, as a sum of the ith modulated symbol
xi ∈ {−1,1} with the noise wi:

yi = xi + wi , (2.1)

where wi has variance σ2 and mean 0. In this research, binary phase-shift keying (BPSK)
modulation is employed, meaning that we may express xi in terms of bit values as follows:

xi = 1 − 2bi , (2.2)

where bi represents the ith bit value transmitted and bi ∈ {0,1}. An advantage of this
modulation method is that, upon receipt of BPSK modulated xi values with added noise, a
hard decision can be made for the bit-value yi by simply evaluating its sign. Therefore, the
conditional probability of bi = {0,1} given the channel output yi is defined: [22]

Pr(bi = 1|yi) =
(
1 + e

−2yi
σ2

)−1
, (2.3)

Pr(bi = 0|yi) =
(
1 + e

2yi
σ2

)−1
. (2.4)

According to the mapping performed by (2.2), a hard decision ŷi can be taken based on the
sign of the channel output:

ŷi =


1 , yi ≤ 0 ,

0 , yi > 0 .
(2.5)

Decoding performed on hard decision values introduces a loss of information and, in turn,
an error performance degradation - typically 2 − 3 dB. It is preferable to perform decoding
on ‘soft’ inputs, where the initial belief value for the channel output and the message values
being passed in the decoder are continuous log-likelihood ratio (LLR) values.

8

We apply channel output LLR values to a corresponding variable node in the decoder to find
our "initial belief" value for each bit. This likelihood value is referred to as Li, where i is
the variable node index, or alternatively the ith transmitted bit. We define our log-likelihood
ratio

Li = L(bi |yi) = log
(

P(bi = 0|yi)

P(bi = 1|yi)

)
, (2.6)

where yi is the channel output received by the ith variable node (VN) and bi is the true value
of the corresponding message bit. Since we are operating with a BI-AWGN channel, we can
combine Equations (2.4) and (2.6) to form

Li =
2yi

σ2 . (2.7)

2.2 Channel Coding and Decoding

Channel coding refers to a process by which a message, often a binary encoded message, is
transformed into a codeword, a version of the message which contains redundant information.
After transmission over the channel and upon reception, an inference based on this codeword
is made to find the original data that was sent by the source. FEC coding is a channel
coding paradigm where the decoding process allows one to recover the original message with
some probability. An initial likelihood for each message symbol is determined by the received
codeword, and this likelihood is updated based on parity check operations specified by the
code. These parity check operations are specified by a Parity Check Matrix (PCM), which
uniquely describes an FEC code. A Low Density Parity Check (LDPC) code is an FEC code
with a very large, sparse PCM. Non-zero entries of the PCM specify connections between
variable nodes (VN) - which represent the current belief for a bit value at a particular iteration
- and check nodes (CN) - which represent the parity check operation. For instance, a non-zero
entry of the PCM at (j, i) represents a connection between the j th check node and the ith

variable node. We are concerned in this research with binary LDPC codes.

The PCM, often represented mathematically as H, uniquely defines a generator matrix G that
is used for encoding transmissions. The binary message which is encoded is often referred to
as the ‘data’ or ‘data word,’ which we will represent u. The encoded message - the product
uG - is referred to as the ‘codeword,’ and we will represent it here as b. The set of all valid
codewords is called a ‘codebook,’ and the number of bit differences between two codewords
is called ‘distance’. The ‘minimum distance,’ or ‘Hamming distance,’ is defined for a code,
and is the shortest distance between any two codewords in the codebook. The “code rate”

9

R = k/n = | |u | |/| |b | | denotes the proportion of data in the overall codeword, where k is the
number of rows in the H-matrix and n is the number of columns, or, alternatively, k is the
bit-length of the data word u, and n is the bit-length of the codeword b.

Due to the symmetric behavior of both the channel and the decoder, as well as the linearity
of the LDPC code, additive noise functions the same no matter the channel input. Therefore,
an all-zero codeword is employed to simplify Monte Carlo simulation. The error performance
of an LDPC decoder is independent of the transmitted codeword, so it is equivalent to use
the all-zero codeword - which is always present in any linear block code’s codebook.

Decoding error performance is calculated using two main metrics: bit-error rate (BER) and
block error rate (BLER), also known as frame error rate (FER). A bit error occurs when a
bit-value at the output of the decoder does not match the corresponding bit-value at channel
input. A block error occurs when the codeword at the decoder output does not match the
channel input, or equivalently when at least one bit-error occurs in the transmitted block.
We may obtain these metrics through Monte Carlo simulation. A bit error rate (BER) curve
depicts the BER performance of a particular decoder over a range of channel normalized
signal-to-noise ratio (Eb/N0) values measured in decibels, graphed with a log-scale for the
error rate axis. The BER and BLER behaviors of an LDPC code often follows a specific
pattern; error correction performance improves steadily at low Eb/N0, but, at some Eb/N0

value, the performance improves very sharply. This region of sharp improvement is called the
‘waterfall’ region. At a larger Eb/N0 value, the sharp improvement ceases and the perform
stagnates due to message saturation or cycles in the code. This flat region is called the ‘error
floor’ region. These distinct behaviors and their Eb/N0-value boundaries are important for
evaluating the error correction performance of a decoder. Two decoders may be compared
at a specific BER or BLER value by measuring the dB ‘gap’ between curves at the specified
error rate, or by measuring the gap in error performance seen at a specified Eb/N0 value.

2.3 Graph Representation

While an LDPC code may be uniquely represented by a PCM, the code may also be rep-
resented as a corresponding bipartite graph known as a Tanner graph. On one side of the
graph are variable nodes, often represented with circles, and on the other are check nodes,
often represented by boxes. The nodes are connected by a series of edges, which represent
bi-directional connections between the check and variable nodes. Nodes connected by these
edges are said to be ‘neighbors.’ A check node will have a number of neighboring variable
nodes, and likewise a variable node has a number of neighboring check nodes. The number
of edges connected to a check or variable node is denoted as the ‘degree’ of the node. If

10

we instead see this from the perspective of the parity-check matrix, the row weight of row
j denotes the degree of check node j and the column weight of column i corresponds to the
degree of variable node i.

A code for which the check node degree of each check node and variable node degree of each
variable node are constant is said to be ‘regular,’ and a code for which this does not hold
is consequently ‘irregular.’ The check and variable node degree of a regular code are often
identified by a convention: a (dc, dv)-regular code has CN degree dc and VN degree dv.

1 1 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 1 1

0 1 1 1 0 1

1 1 0 0 0 1

1 0 0 0 1 1

1 0 1 1 1 0

(a) (b)

Figure 2.2 Depiction of Tanner graphs and PCMs for a regular and irregular code, with a
highlighted cycle

A ‘cycle’ in the code may more easily be identified using the Tanner graph. Referring to
Figure 2.2, side (a) depicts a (2,3) regular code. Side (b) depicts an irregular code with VN
degrees {2,3} and CN degrees {3,4}. A cycle has been identified in the regular code, the
participating edges shown in red. The ‘girth’ of a code is measured as the length of the
shortest cycle. Cycles are not desirable, as they introduce dependencies, and allow certain
errors to be amplified during decoding. However, a cycle-free Tanner graph cannot support
good codes, or codes that perform better than those with cycles [23]. This is because the
cycle-free constraint for a Tanner graph imposes an upper bound on the minimum distance

11

of the code - the minimum distance d for any code rate R cannot exceed 2 for a cycle-free
code. This is an unsuitable condition for FEC. We often therefore employ codes of girth 6 or
8, as the errors in these longer cycles take more iterations to propagate, while allowing for
the implementation of codes with significantly higher minimum distances.

2.4 Quasi-cyclic codes

A quasi-cyclic (QC) code is a parity-check code with a PCM which consists of cells which are
represented by cyclically permuted identity matrices. A PCM for a QC code may alternatively
be represented as a base-graph (BG). Each entry of the base graph represents an identity
matrix with a particular circular shift applied. The dimension of the identity matrix cells is
known as the ‘lifting size,’ z, and the alphabet used in the base graph is determined by this
parameter. Entries of the base graph may take integer values within the domain [−1, z − 1].
Each identity permutation is expressed as an integer on [0, z − 1]. The entry −1 represents a
square zero matrix with dimension z, and the 0 entry represents an identity without a shift
applied. Each entry of the BG corresponds to a permutation index, which is determined by
the circular shift rule respected. In this case, permutation indices correspond to the number
of rows shifted from the bottom of the matrix to the top. Figure 2.3 shows an example of
this permutation index rule applied to a matrix z = 3. Permutation index 0 corresponds to
the identity matrix.

1
1

1

0 2

1
1

1

Figure 2.3 Example of a circular shift performed on an identity matrix size z = 3, along with
the corresponding permutation indices

A BG representation of the PCM simply represents all z × z non-zero cells of the PCM with
their corresponding permutation indices. This representation of the PCM is much smaller,
and since encoding and decoding may be performed on QC codes using only circular shifts
on the data and codewords respectively, the BG stores all necessary information to describe
a QC-LDPC code.

12

2.5 Decoding

2.5.1 Notation

The following notation will be used to discuss message-passing throughout the remainder of
this thesis. Refer to Figure 2.4 for an abstract model depicting message variables. Variables
i, j, and ` are scalars:

• λ
(`)
j→i: Variable-to-Check node message from VN j to CN i at iteration `

• γ
(`)
i→ j : Check-to-Variable node message from CN i to VN j at iteration `

• Λ
(`)
j : Log-likelihood ratio total stored in VN j at iteration `

• Vj : the set of VN indices connected to CN j

• Ci: the set of CN indices connected to VN i

2.5.2 Sum-Product Algorithm

The sum-product algorithm (SPA) is the unaltered belief propagation decoding algorithm,
and is therefore the best known algorithm with respect to error correction. [24] However, as we
will see below, the check node update operation in this algorithm is too costly and inefficient
to use for most applications. Below we detail the flooding scheduled SPA algorithm.

SPA decoding starts by updating variable nodes with channel output information. We set
the outgoing VN message λ(0)i→ j = Li, as shown in Equation (2.7), for every non-zero entry of
the parity check matrix (PCM) H , denoted h j,i = 1. A check node receives VN messages from
its neighbors, and updates outgoing CN messages accordingly. Importantly, a CN message
update operation excludes the extrinsic VN message information - that is, if the ith VN is
being sent a CN message from the j th check node, the message λ

(`−1)
i→ j from the previous

decoder iteration is excluded in the calculation of γ(`)j→i. We can think of this as considering
the subset of VN indices Vj \ {i}. We define f (.) as the generalized check-to-variable (C2V)
γ-update rule function, in the case of SPA, the update rule given by: [24]

γ
(`)
j→i = f (λ(`−1)

i→ j) = 2 tanh −1

(∏
k∈−Vj\{i}

tanh 1
2λ
(`−1)
k→ j

)
. (2.8)

The initial C2V message is given by γ(0)j→i = 0.

13

Next, we have the variable node and LLR total update operations. These operations are
standard in all BP LDPC decoding algorithms. To calculate the next outgoing VN message,
a sum of all incoming neighboring CN messages except the one received on the edge being
updated is taken, including the initial belief value. For a message from VN i to CN j, the
update operation is as follows:

λ
(`)
i→ j = Li +

∑
k∈Ci\ j

γ
(`−1)
k→i . (2.9)

The LLR total is the updated estimation for the codeword at a given decoding iteration.
While very similar to the VN update calculation, note that this LLR sum is taken over all
VN neighbors without excluding any incoming messages. The LLR total is given by:

Λ
(`)
i = Li +

∑
k∈Ci

γ
(`−1)
k→i . (2.10)

After the variable nodes update their LLR total, the current iteration is over. The check
node and variable node update operations alternate until a stopping criterion is met. We
have:

γ
(`)
j→i = f

(
λ(`−1)
ē,i→ j

)
, (2.11)

λ(`−1)
ē,i→ j = [λ

(`−1)
i→k]∀k∈Vj\ j , (2.12)

with λ(`−1)
ē,i→ j corresponding to the vector composed of all λ-messages connected to CN index

j, excluding the extrinsic message (edge i → j). Note that the subscript ē here refers to
extrinsic message exclusion.

Stopping Criterion

The current iteration’s estimate for the codeword is given

v̂
(`)
i =


1 , if Λ(`)i < 0 ,

0 ,else.
(2.13)

This is essentially the hard decision outlined in Equation (2.5) at an arbitrary iteration of
the decoder, `. If v̂HT = 0, the potential codeword v̂ is valid. The product v̂HT is known as
a ‘syndrome,’ and therefore a ‘zero syndrome’ corresponds with a valid codeword. For a long

14

enough code, there is a small probability of receiving a false positive, and receiving a valid
codeword is a strong enough stopping criterion. An iteration limit, `max, is often imposed,
meaning that once a threshold is reached (` = `max), the potential codeword v̂ is used as
decoder output. These stopping criteria are standard among BP decoding algorithms.

The LLR total stored by the variable nodes during decoding operates as our ‘best guess’ at the
transmitted bit value at the corresponding codeword bit. The rule given in Equation (2.13)
outlines the current iteration’s ‘decision’ for the transmitted codeword; v̂ j is the decoder’s
estimate at the current iteration for the transmitted codeword. This is a ‘hard decision,’ as
the estimator has chosen the bit values for each transmitted bit, whereas the vector Λ(`)i shows
the corresponding ‘soft decision,’ the real-valued LLR totals which correspond to the belief
for the bit value at the current iteration. Equation (2.13) may be equivalently represented
using the signum function, with bit-decisions performed by evaluating s(λ(`)i→ j + γ

(`)
j→i), where

s(.) represents the signum function.

2.5.3 Min-Sum

The min-sum algorithm adjusts SPA by making a simple assumption about the product
operation: that the minimal incoming VN message dominates the product. If this assumption
holds, it means that the CN update product operation may be replaced instead by a more
simple minimum calculation. Min-Sum is therefore a far less complex algorithm, which only
suffers a slight performance degradation [25,26].

We begin by decomposing each outgoing VN message value into sign and magnitude

λ
(`)
i→ j = sign (λ(`)i→ j) × |λ

(`)
i→ j | . (2.14)

Now that we have our message values decomposed, we can formulate a new CN update rule
using the assumption stated above: the product of message values taken in the SPA CN
update is dominated by their minimum value. We define f (.) for min-sum decoding by: [27]

f (λ(`−1)) =
⌊

max
(
min |λ(`−1) |,0

)
×

∏
λ(`−1)∈λ(`−1)

s(λ(`−1))
⌋
. (2.15)

This approximate algorithm, while slightly more error-prone, is far less costly to implement
due to the product approximation, and, as we will see, may be altered to improve performance
using scaling and offset parameters.

15

Figure 2.4 depicts the min-sum decoder’s check node update function from (2.15). Let the
message contributed by VN i, λ(`−1)

i→ j , during this update be the global minimum LLR value
received by CN j, and let the global minimum be unique. For the min-sum decoder to
calculate the outgoing CN message to VN i, γ(`)j→i, the message λ

(`−1)
i→ j must be excluded

as it is the extrinsic message. This means that the global minimum among the remaining
messages, circled in green in Figure 2.4, must be found. It is equivalent to find both the
global minimum and next minimal LLR value, and apply this second minimum when the
extrinsic message is the unique global minimum.

CN j

VN i

λi→j
γj→i

Figure 2.4 Min-Sum decoder check node update as seen from variable node i

2.5.4 Min-Sum with correction

We can improve the error correction performance of the MS algorithm by applying correction
factors to the message values in the CN update. For an MS decoder with correction, we
introduce a normalization factor η ∈ R∗+ and an offset value β ∈ N. An offset min-sum
algorithm uses an offset value, β, which can further improve the decoder’s error correction
performance. The values η and β can be designed for at fixed Eb/N0 values according to the
desired performance benchmarks. Of course, a decoder may utilize both forms of correction.
Equation (2.15) can be changed to introduce normalization factor and offset:

f (λ(`−1)) = η ×
⌊

max
(
min |λ(`−1) | − β,0

)
×

∏
λ(`−1)∈λ(`−1)

s(λ(`−1))
⌋
. (2.16)

Note that, for η = 1 and β = 0, the formulas in Equations (2.15) and (2.16) will be equivalent.

16

2.5.5 Message-passing Scheduling

λ γ

Figure 2.5 Illustration of one iteration of a flooding-scheduled decoder

There are two main scheduling paradigms in BP decoding: flooding (parallel) and layered
(serial) scheduling. The algorithms described above all adhere to a flooding schedule as they
are presented; this means that all outgoing variable node messages, λ(`−1)

i→ j , update at once,
followed by all outgoing check node messages, γ(`)j→i, updating at once. Figure 2.5 depicts a
flooding scheduled decoder. The left side of the figure, labeled λ, shows the outgoing VN
messages, while the right side depicts the outgoing CN messages, labeled γ.

We can instead perform these update operations adherent to a layered schedule. A layered
schedule is divided into sub-iterations, where each sub-iteration represents a single layer
updating. There are different ways to layer the schedule of the decoding process - we will
use a row-layered schedule as an example.

λ1 γ1

1 12 2

Figure 2.6 Illustration of one sub-iteration of a row-layer-scheduled decoder

Figure 2.6 shows a sub-iteration of a row-layer-scheduled decoder. In a row-layered schedule,
a number of row layers are established. For instance, the rows of the PCM associated with a
row of the base-graph of a QC-LDPC code, explained in Section 2.4, could be grouped into
a row layer. This is represented in Figure 2.6 by the dashed box about the first two check
nodes. A sub-iteration begins with all variable nodes neighboring the check nodes in the

17

subject row layer updating at once, labeled λ1 in the figure, and each check node in the layer
in turn updating its neighbors, labeled γ1. The subscript is used here to clarify that this is a
sub-iteration and does not represent the full layered iteration. The variable nodes contribute
incomplete belief values. This process continues for each layer, so that after the final layer
has been updated, each outgoing variable node message is completed. The advantage of using
a layered schedule is that, for long enough codes, decoding is expected to converge in half
the number of iterations as for a flooding schedule [28].

2.6 Quantization

In evaluating LDPC for practical applications, quantization must be considered, as practical
decoders quantize LLR message values. A quantized channel LLR message may be given
L ∈ [−Q,Q], where Q ∈ N∗ represents the maximum value representable by our chosen
quantization scheme. All messages and channel outputs are quantized. The maximum value
Q is determined by the number of bits used to represent message values. Given the number
of bits, n, used in the quantization scheme, we have Q = 2n−1 − 1.

Real-valued channel outputs and messages passed between nodes are rounded to values rep-
resentable under this scheme. Using an LLR scaling factor α, the step size of the quantization
scheme are scaled to parameterize and improve the precision of the scheme, as the LLR scal-
ing factor is allowed to be a floating point number. We can apply this quantization scheme
for our BPSK modulated, AWGN channel by transforming Equation (2.7):

Li = satQ

⌊
2αyi

σ2 +
1
2

⌋
, (2.17)

where yi is the received channel output message received by the ith VN, σ2 is the noise
variance, α is a constant LLR scaling factor, b.c is the floor operator and satQ is a saturation
operator that ensures that Li ∈ [−Q,Q]. A variable with a tilde - such as λ̃(`)i→ j - is a shorthand
for a message where saturation has been applied. Any message value below −Q is rounded
to −Q and, likewise, any value above Q is rounded to Q:

satQ(x) =


Q , if x > Q ,

−Q , if x < −Q ,

x , otherwise.

(2.18)

18

Parameter α should be chosen such that the least amount of saturation occurs for a given
application, as oversaturation leads to reinforcement of noise and an elevated error floor.
There is an inherent tradeoff in choosing the scaling factor. A higher LLR scaling factor
α allows for more precise calculations due to the smaller step size. However, a higher LLR
scaling factor also makes saturation more likely, and will lead to a loss of information. We
can see that if we allow α to tend toward infinity in Equation (2.17), the channel output
yi will directly determine the decoder output due to saturation - an operation equivalent to
performing a hard decision on the raw channel output. And, if we allow α to tend toward 0,
we lose any initial information for message values, as Li |α=0 = b

1
2c = 0.

In addition to channel output, saturation is applied to internal message values and offsets. If
we consider a real-valued offset MS decoder with no quantization, following Equation (2.16),
we will apply an offset β to the message magnitude value |λ(`)i→ j |. When a quantized case is
then considered, it is important to apply LLR scaling not only to |λ(`)i→ j |, but distribute the
scaling to β as well. To have an equivalent value for β in the quantized case, we incorporate
LLR scaling factor α:

βQ = bα × βe, (2.19)

where βQ represents the equivalent min-sum offset for a quantized case with LLR scaling
factor α, and the operator b.e represents a rounding to the nearest integer. If both β and
Li are quantized using integer values, all decoder operations are performed on integers for
all iterations. However, variable-to-check (V2C) message still need to be saturated to avoid
overflow.

Equation (2.9) shows the VN update operation that is common to all BP LDPC decoding
algorithms. For iteration 1, we take a sum of dv − 1 incoming CN messages with the channel
output - an operation which can achieve a maximum value of Q × dv. Without saturation,
performing subsequent iterations’ VN update would further increase this possible maximum.
Therefore, we saturate VN message values, changing the decomposition shown in Equation
(2.14) to reflect this: λ̃(`)i→ j = sign (λ̃(`)i→ j) × |λ̃

(`)
i→ j |.

VN belief Λ has a max value of (dv + 1)Q, and is quantized on dlog2
(
(dv + 1)Q

)
e bits. We

can saturate these values on the interval [−(dv + 1)Q, (dv + 1)Q].

LLR scaling factors are stored as floating point numbers, as a high precision LLR scaling
factor has a high impact in terms of performance.

19

2.7 Single-Min Decoding

Due to the exclusion of extrinsic LLR information during the check node update, a practical
min-sum decoder will find both the global minimum of incoming messages and a second min-
imum which excludes the global minimum message. To achieve high decoding throughput, a
cascaded tree-like structure is implemented. The elementary block in this cascaded structure
is shown in Figure 2.7. It finds the first and second minimum for 2 couples of first minimum
and second minimum message values previously computed. While clearly less complex than
the sum-product algorithm, this 2-min search structure is still the highest-area component
in the LDPC decoder.

>

1
0

min1b

min1a

min1

1
0

1
0

min2a
min2b

>

1
0 min2

Figure 2.7 Architecture of the 2-min search elementary block [1, Fig. 2b]

This cascaded structure generally corresponds to the critical path of the LDPC decoder if
no pipeline registers are added. Pipelining is a method by which a process may be divided
into sub-processes, where each sub-process is buffered by a register which stores inputs and
outputs at each step. This allows the sub-processes to be completed in parallel, and therefore
can greatly increase the throughput and reduce idle time for any particular step. For a
decoder architecture processing up to dc messages in parallel, the tree depth is equal to
DT = dlog2 dce, and the number of cascaded comparator blocks is Ncomp = 2 × DT . This
means that, for a deeply pipelined architecture, up to Ncomp pipeline registers need to be
instantiated. This further increases the area and the power consumption of the decoder.
Additionally, layered-schedule LDPC architectures have trouble supporting high pipeline
depths due to potential conflicts during the VN update. This leads to either BER degradation
or decoding throughput loss due to inserted idle cycles. When considering hybrid scheduled
LDPC architectures, high pipeline depths can lead to higher decoding iterations, which leads
to a penalty in the decoding throughput.

20

Therefore, there is an interest in further simplifying the offset min-sum (OMS) decoding
algorithm. One simple approach is to replace the 2-min search tree with a global minimum
search and a second minimum emulation; a method known as single-minimum (SM) decoding.
By consequence, the min search elementary block in Figure 2.7 is replaced, with only the
comparator and the multiplexer outputting min1 remaining. While the tree depth DT remains
unchanged, the number of cascaded comparators needed for the SM architecture is halved
when compared to the typical 2-min search architecture (Ncomp = DT). The number of
required pipeline registers is likewise reduced, saving area and power consumption. But one
question remains: what level of BER performance degradation is incurred by this single-min
approach?

The MS γ-update function can be simplified for SM decoding by only computing one min-
imum magnitude per check node, as proposed in [4]. This is equivalent to violating the
extrinsic exclusion rule during the message update:

γ
(`)
e,j→i = s

(
λ
(`−1)
i→ j

)
f
(
λ(`−1)
e, i→ j

)
, (2.20)

λ(`−1)
e, i→ j = λ

(`−1)
i→k , ∀k ∈ Vj . (2.21)

MEM

Λ(ℓ) -

VNP

Front

2-MIN

CNP

+

VNP

Back

C2V MEM

λ Λ(ℓ+1)γ (ℓ)(ℓ)

Figure 2.8 General memory framework of min-sum decoder [2, Fig. 1]

The subscript e here refers to the inclusion of extrinsic information in the message update
function. As a result, the number of cascaded comparators is divided by 2 in the check
node processing unit, reducing its complexity and propagation delay by half. This is an
important consideration - and a major motivation for improving single-min architectures.
We can consider a general framework for the min-sum decoder as depicted in Figure 2.8.

21

To reduce the performance gap, [29–31] propose an emulation of the second minimum magni-
tude by adding a correction factor in the form of an offset that may vary during the decoding
procedure. The most general approach is to affect an offset ω(`)i,j , referred to as an SM offset,
for an edge i → j and iteration `. The emulation of the second minimum occurs when the
minimum V2C message magnitude is extrinsic: |λ(`−1)

i→ j | < |γ
(`)
ē,j→i |, γ

(`)
ē,j→i being the message

obtained using (2.16) without applying correction factors. Thus, we have: [4, 31, 32]

γ
(`)
e,j→i = s

(
γ
(`)
ē,j→i

)
× |γ

(`)
e,j→i |, (2.22)

|γ
(`)
e,j→i | =


min

(
η
⌊
|λ
(`−1)
i→ j | + ω

(`)
i,j

⌋
,Q

)
if |λ(`−1)

i→ j | < |γ
(`)
ē,j→i |,

max
(
η
⌊
|γ
(`)
ē,j→i | − β

⌋
,0

)
otherwise.

(2.23)

2.7.1 Existing Methods

Equation (2.22) shows the most general formula for applying a correction factor in a single-
min decoder. The case ω(`)i,j = 0 corresponds to the single-min decoder output taken without
any correction. We see this decoder explored in the literature mainly as a point of compar-
ison, [4]. The performance of this decoder is heavily affected by the loss of the second min
calculation, and this decoder tends to saturate and have a high error floor. The correction
scheme outlined in [4] is the case ωSM = 1. This correction factor improves somewhat the
performance of the single-min decoder, though the BER error floor region is still high. We can
alternatively attempt to find an optimal value within some bounds for the value ω(`)i,j . This
approach was implemented in [29,30,33] with a configurable correction offset, which is shown
to outperform the algorithm introduced in [4] and closer approximate the performance of a
min-sum decoder. However, to more accurately correct the minima, it will become necessary
to vary the single-min offsets in terms of the iteration number or CN degree.

Varying single-min offsets by iteration is a concept explored in [31]. We see that not only do
the authors have a fixed SM offset decoder, whose performance is compared to both min-sum
and normalized min-sum performances, but the authors include a scheme for varying SM
offsets by iteration number. The decoders are layered scheduled, with a maximum iteration
count of 30. Several quantization precisions are explored, using a [q : f] paradigm, where
q represents the total number of bits used for quantization (including the sign bit), and f

represents the number of fractional bits used. A [7 : 2] scheme would therefore correspond
to a 7-bit quantized decoder with an LLR scaling factor of 4 according to the our paradigm,
shown in Section 2.6. The single-min offsets used in this paper are given as a vector of
weights and a vector of thresholds. The thresholds correspond to the iteration where the
next weight-vector entry is applied. While this scheme does allow for changing single-min

22

offsets with respect to decoder iteration, the quantization scheme used limits the performance
of the decoder. The LLR scaling quantization scheme we implement allows for more optimally
chosen quantization values.

Reference [34] applies these ideas to offset min-sum decoding, with a similar approach to
weighting the correction factor as compared to [31]. The work in [34] notably includes offsets
varying not only by iteration number, but also by check node degree. The code used is a 5G
basegraph index 1 code, and shows the most notable gain in performance of any SM offset
optimization. The SM offset optimization in [34] first establishes the following setup, where
CN’s of the given degrees use the SM offsets correspondent to the group: G1 = {3},G2 =

{6,7,8,9,10} and G3 = {19}. CN group setup is formalized in Section 3.1. Based on their
group index, SM offsets are then passed to CN’s based on a polynomial function varying by
iteration number. Notably, the quantization scheme of the SM decoders presented in [34] is
unclear. Figure 5.4 shows the results of the highest performance SM offsets from [34], named
EvwsmOMS, using a coordinate descent (CD) optimized LLR scaling and normalization
factor.

23

CHAPTER 3 Single-Min Offset Optimization

The object of the most relevant existing methods is, as stated in Section 2.7.1, to find an
optimal value within some bounds for the value ω(`)i,j . These solutions should also be discrete
valued - employing the LLR scaling quantization method described in Section 2.6. Little
attention has been paid in the literature as to how single-minimum (SM) offsets may be
efficiently optimized. We propose a more general formulation of the offset optimization
problem, as well as solutions using novel techniques. Notably, the SM offset optimization
problem has not received a formal definition in the literature, which we present here. We
then present a number of discrete optimization methods applied to this problem.

3.1 Problem formulation

Let there be a matrix of positive integer SM offsetsΩ of size nedge×`max, where nedge =
∑

j |Vj |

is the number of edges in the Tanner graph and `max is the maximum number of iterations
supported by the decoder. Each matrix entry corresponds to an SM offset ω(`)i,j applied at
a specific decoder iteration ` ∈ [1, `max] and edge j → i,∀ j, i ∈ Vj . We wish to find the
matrix Ω such that BER is minimized. Let the (η,α,Ω) tuple represent a particular choice of
decoder parameters. Correction factors η,α and offset matrix entries ω(`)i,j have for maximum
values ηmax, αmax and ωmax. The optimal parameters (η?, α?,Ω?) that minimize the BER
performance B(η,α,Ω, ζ) of the SM decoder fixed at Eb/No = ζ are given by solving

(η?, α?,Ω?) = arg min
(η,α,Ω)

B(η,α,Ω, ζ). (3.1)

The BER B(η,α,Ω, ζ) can be estimated through MC simulation. Problem (3.1) is infeasible
to jointly optimize since it is non-convex and the solution space is large. In addition, MC
simulation requires extensive simulation times. Hence, the search space must be reduced.
One solution is to constrain the offset matrix Ω using one of three approaches: i) similarly
to [29, 30], all offsets can be set to a single scalar value (ω(`)i,j = ω), ii) the offset values only
vary with the iteration index (ω(`)i,j = ω

(`)) or iii) with the edge index (ω(`)i,j = ωi,j).

Approach (iii) can be simplified by grouping edges into NG groups, then assigning the same
offset value ωu to all edges belonging to the uth group for a given iteration `. It is useful
in practice to design these groups based on the CN degree dc j = |Vj | of each message, as
proposed in [34]. If Gu is the set of CN degrees belonging to group u (Gu ∩Gu′ = ∅ if u , u′),
then ω

(`)
i,j = ωu,∀i if dc j ∈ Gu. Note that the approach described in this paragraph can be

24

combined with (ii), i.e. offset values vary by both edge-group and iteration index. Then, Ω
can be equivalently represented as an NG × `max matrix denoted ΩG = [ω

(`)
u]. For the rest of

this section, we consider ΩG as the offset matrix to be optimized.

It is worth noting that it is not necessary to perform a full search over the maximum iteration
count intended for the SM decoder. Instead, the findings gathered from a search over fewer
iterations can be extrapolated to design for the intended iteration limit `max. For approaches
ii) and iii), extrapolation can be performed using linear regression, with saturation at zero if
extrapolated offsets take negative values. To design ΩG, two-dimensional extrapolation can
be performed using a modified Akima method [35,36], derived from cubic interpolation.

3.2 Top-level optimization using coordinate descent

To further simplify the search space for optimizing (η,α,ΩG), we propose optimizing these
parameters through CD [37]. CD allows optimization to target each parameter separately; the
remaining parameters are fixed while a search is performed to find the best BER-performing
value for the targeted parameter, as shown in the equations below

Ω?G = arg min
ΩG

B(η?, α?,ΩG), (3.2)

η? = arg min
η

B(η,α?,Ω?G), (3.3)

α? = arg min
α

B(η?, α,Ω?G). (3.4)

The above equations are applied in a loop over I iterations. For (3.3) and (3.4), a single-
variable minimizer tool may be used, as these values are scalars with definite bounds. Op-
timizations stopping criteria depend on methods used, though a comparison limit may be
imposed. We use a minimization algorithm based on a golden section search and parabolic
interpolation, with tolerance value 10−4 [38,39]. Problem (3.2) is more complex; methods to
solve it will be described in further detail in Section 3.4 and Section 4.

An initial solution must be identified for all parameters before performing CD. We observed
there is little difference in CD-optimized α and η between MS decoding and fixed offset SM
decoding. Therefore, we propose to first find initial values for α and η using CD on (3.3) and
(3.4), with BER obtained through MS decoding (variable ΩG is excluded). We then move to
the SM decoder to set the initial value of ΩG. For simplicity, we consider that all coefficients
of ΩG are fixed to ω, such that ω(`)u = ω. This constraint applies only for this initial step.
Then, ω is obtained by performing CD on (3.2)–(3.4). This allows α and η values to be
further optimized.

25

3.3 Relaxed Real-Valued Decoder Method

We have explored a relaxed-constraint search for regular codes: it is a straightforward ap-
proach to first solve problems using real-valued decoders and then quantize the results. A
real-valued decoder in this case refers to SM decoding performed without quantization; this is,
of course, impractical, but allows for the relaxed-constraint solution. This raises the question:
how precise can our quantization scheme be while maintaining this superior performance?

3.3.1 Problem Formulation

The real-valued varying offset decoders which utilize the solutions found by the nonlinear
optimizations can be referred to as real-valued (RV) decoders, as opposed to decoders using
their corresponding quantized solutions which can be referred to as real-value quantized
(RVQ) decoders. We can rewrite Equation (3.2) to instead consider the real-valued solution
ΩRV :

Ω?RV = arg min
ΩRV

B(η?, α?,ΩRV). (3.5)

Once this solution is rendered by the solver, the real-valued offsets can be quantized according
to :

ΩG = dα
′ ×Ω?RV c, (3.6)

where Ω?RV corresponds to the real-valued offsets rendered by the solver, and α′ is a scaling
factor for quantization that can be different from the LLR scaling factor α. However, for
simplicity, we consider α′ = α. All solutions were initialized using the optimal SM fixed offset
solution.

The goal of this method is to quantize the results of our real-valued single-min offset searches
to see at what precision - or number of bits used in quantization - is needed to preserve this
performance. Quantization will inherently degrade the error-correction performance of an SM
decoder, however, the execution time of performing the convexity-solver search, quantization
and measuring the performance of the resultant SM decoder is much faster than that of an
exhaustive search. Unfortunately, as shown in Section 5.1, the real-value performance could
not be recovered at a practical level of precision for a regular code, and thus this method is
impractical.

26

3.3.2 Nonlinear Optimization

Four separate nonlinear optimization algorithms, shown in [40], were employed to solve (3.5):
Trust-Region-Reflective [41, 42], Active-Set [43–45], SQP [46] and Interior-Point [47–49].
Suppose we have an objective function describing an optimization problem, m(x), subject to
constraints ni(x) ≥ 0, i ∈ [1, µ]. We have:

min
x

m(x), (3.7)

ni(x) = 0 , 1 ≤ i ≤ µe , (3.8)

ni(x) ≥ 0 , µe + 1 ≤ i ≤ µ , (3.9)

xlb ≤ x ≤ xub . (3.10)

where there exist µe equality constraints and µ− µe inequality constraints, and x is bounded
according to x ∈ [xlb, xub]. Given a constraint ni(x), the constraint is considered active at x

if ni(x) = 0, and is considered inactive at x if ni(x) > 0. The ‘Active set’ is made up of those
constraints which are active at x [46].

Trust-Region-Reflective

If we consider a simplified function m′(x) which approximates the behavior of m(x) within
some neighborhood, or ‘trust region,’ N about x, we can establish a step s by minimizing
about N:

min
s

{
m′(s), s ∈ N

}
, (3.11)

If m(x + s) < m(x), the current point is updated and a new trust region is determined.
Otherwise, the trust region N is reduced and the step is recomputed [50]. However, in the
Trust-Region-Reflective method used, a two-dimensional step subspace is calculated, using
the linear subspace determined by a first step s1 in the direction of the gradient, and another
either (i) in an approximate direction Hx · s2 = −g, or (ii) a direction of negative curvature
sT
2 · Hx · s2 < 0. Hx here refers to the Hessian matrix of m taken at x, and g refers to the
gradient [51,52].

27

Active-Set and SQP

The Karush-Kuhn-Tucker (KKT) equations describe first-order derivative tests which are
both necessary and sufficient for an optimal solution. They are given:

∇m(x) +
µ∑

i=1
λi∇ni(x) = 0 , (3.12)

λi∇ni(x) = 0, 1 ≤ i ≤ µe , (3.13)

λi ≥ 0, µe + 1 ≤ i ≤ µ . (3.14)

where λi here represents Lagrange multipliers.

Solving the KKT equations motivates many nonlinear optimization algorithms, and these
algorithms are referred to as sequential quadratic programming (SQP) algorithms [Note:
SQP is used to refer to the particular algorithm used for simulation, SQP refers to the gen-
eral formulation of a sequential quadratic programming optimization]. The remaining three
methods (Active-Set, SQP, and Interior-Point) are all SQP methods. We wish to iteratively
solve a QP subproblem. This problem is obtained, as shown in [43, 45], by first making
a quadratic approximation of the Lagrangian function, and then linearizing the nonlinear
constraints for a particular solution xk ∈ [xlb, xub]:

L(x, λ) = m(x) +
µ∑

i=1
λini(x), (3.15)

min
d∈R2

1
2dT Hxk d + ∇m(xk)

T d , (3.16)

∇ni(xk)
T d + ni(xk) = 0, 1 ≤ i ≤ µe , (3.17)

∇ni(xk)
T d + ni(xk) ≤ 0, µe + 1 ≤ i ≤ µ . (3.18)

The solution of the QP problem is used to formulate successive solutions according to step
size ak : xk+1 = xk+ak dk . Finally, the solution rendered by the QP subproblem dk is evaluated
using a merit function, which in turn determines the step size ak . The merit function used,
implemented in [53,54], is:

Ψ(x) = m(x) +
µe∑

i=1
ri · ni(x) +

µ∑
i=µe+1

ri · max[0,ni(x)], (3.19)

28

where ri is a penalty, in [54] determined by

ri = (rk+1)i = max
{
λi,
(rk)i + λi

2

}
, i ∈ [1, µ], (3.20)

and initialized as

ri =
| |∇m(x)| |
| |∇ni(x)| |

. (3.21)

An iteration of a generalized SQP algorithm consists of: (1) Updating the Hessian matrix
Hxk , (2) Solving the QP subproblem, (3) Evaluating the merit function.

The Active-Set and SQP algorithms are similar, with SQP having important differences.
The step size ak in SQP is constrained by bounds. SQP can take a step that fails - where
the objective function for the candidate solution is undefined. In this case, SQP will attempt
a smaller step size, as opposed to simply re-initializing, as Active-Set would. Additionally,
SQP uses more memory-efficient algebraic methods to solve the QP subproblem (Equations
(3.16)-(3.18)).

Interior-Point

While the Interior-Point algorithm does take ‘direct steps,’ in which it evaluates the KKT
equations to determine the next solution, it may alternatively determine a step using a
conjugate gradient (CG), which uses a trust region. If a direct step fails, a CG step is
attempted, meaning Interior-Point, like SQP, can take a step that fails.

A barrier function is an approximation of the original problem (3.7), described in [47–49].
The barrier function is given (∀π > 0):

min
x,σ

mπ(x,σ) = min
x,σ

m(x) − π
∑

i

ln (σi), i ∈ [µ + 1, µ]. (3.22)

subject to the same constraints as (3.7), with the addition of σ ≥ 0. There are as many
entries of σ as there are inequality constraints. As π → 0, the minimum of mπ will approach
that of m. This barrier function determines the ‘slack’ variables σ, which are in turn used to
determine steps in both the direct step and conjugate gradient paradigms. The constraint
σ ≥ 0 is used to esure that these steps are taken within a trust region.

29

3.4 SM offset optimization using windowed search

SM decoding operations involve dependencies that allow the offset at one iteration to change
the behavior of later iterations. This can be explained by the fact that messages become
correlated over successive iterations due to the extrinsic exclusion principle being violated,
as demonstrated later in Section 4.2.1. Therefore, problem (3.2) is not convex, and unlike
MS decoding, offsets cannot be optimized on a per-iteration basis. We propose introducing
a top-level heuristic that incorporates memory from previous decoder iterations to optimize
subsequent ones, which we refer to as WSA.

We denote as ΩG[`] the offset matrix of the ` ≤ `max first iterations (size NG × `). Defining
a window length L, we propose finding ΩG = ΩG[`max] by successively optimizing ΩG[`]

from ` = L to ` = `max with step p ∈ [1, L]. During each step, the L last columns of ΩG[`],
corresponding to a submatrix W of size NG × L, are optimized through a search. Meanwhile,
the remaining coefficients are kept constant during the optimization process. The resulting
optimized offset matrix is denoted Ω?G[`]. By noting that ΩG[`] = [Ω

?
G[`− L],W], Ω?G[`] can

be obtained by solving the following optimization problem:

W? = arg min
W

B(η?, α?, [Ω?G[` − L],W]), (3.23)

and setting Ω?G[`] = [Ω
?
G[` − L],W?]. The size of the window W governs the complexity of

this optimization, along with the discrete method chosen. In this research, the search over
W is performed using a genetic algorithm, or, when L × NG is sufficiently small, through
exhaustive search (see Section 3.5). Then, ` is incremented by p, and the next offset matrix
ΩG[`] is optimized through the same procedure. This process repeats until ` = `max. Figure
3.1 depicts an iteration of the search for p = 1, at an arbitrary iteration `:

Windowed search can alternatively be applied to a complete solution. In this case, the search
is applied as before, but iterations beyond the window are initialized to that of an existing
solution, and ` = `max for every iteration of the search.

3.5 Discrete Optimization Methods

There remains a question: what optimization method may we employ to solve the WSA
subproblem (3.23)? Additionally, these solutions must be discrete valued. Two of the simplest
archetypes for optimizations are exhaustive and random searches.

An optimization by exhaustive search simply tests all possible inputs for the most optimal
among them. This method is achievable for regular codes over few enough iterations, and

30

ω1,ℓ-L+1

... ...

... ωN,ℓ

Decoder Max Iter, L < ℓ < ℓlim

C
N

 G
ro

up
, 1

<
n

<
N

... ...

ω1
(ℓ-L)

ωN
(ℓ-L) ωN

(ℓ)

...

ω1
(ℓ-L)

...

ωN
(ℓ-L)

...

ω1,ℓ-L+1

... ...

... ωN,ℓ

ω1
(ℓ-L+1)

... ...

ωN
(ℓ-L+1) ωN

(ℓ+1)

Search Iteration ℓ Search Iteration ℓ+1

W* W*

...

...

Ω*[ℓ - L]

Figure 3.1 Example of an iteration of the generic windowed search

ensures the optimality of the solution. However, if we wish to apply SM integer offsets
ω
(`)
i,j ∈ [0,10] over `max iterations, this requires 11`max trials of our Monte Carlo simulation,

which is simply not feasible due to time constraints. A random search instead instantiates
a random solution - in this case, choosing SM offsets for each edge at random within an
established range. While this solution is easily the fastest, it will render the optimal solution
with very low probability.

A stochastic optimization is an optimization performed using random variables. A practical
stochastic optimization method is the genetic algorithm. This algorithm mirrors natural
selection by establishing a set of candidate solutions (‘individuals’), or a ‘population,’ mea-
suring the performance of each (‘fitness’), choosing the best performing solutions (‘elites’),
and then combining them with other individuals (‘selection’). At each iteration, the popula-
tion generated is called a ‘generation.’ In the case of SM offset optimization, this is performed
by simply generating SM offset matrices, evaluating their performance through an objective
function (a Monte Carlo decoding simulation), and partitioning and recombining the elite
solutions. ‘Mutations’ may also be introduced, by simply randomly applying additive noise
to entries of the SM offset matrix [55].

The genetic algorithm begins with a random initial population, for generation g = 0, C0,
determined by an initial population count |C |, with individuals Cgi and bounds Cglb ≤ Cgi ≤

Cgub . The performance of this population is measured, and fitness values ρ are assigned

31

based on each individuals performance. A number ne of the most fit individuals are chosen
as elites. The formation of subsequent generations (‘children’ of the current generation) is
done according to three rules: (1) Elite children: Elites pass to the subsequent generation
automatically, (2) Crossover children: pairs of individuals are chosen for combination into
new candidates, (3) Mutation children: a single individual is chosen for mutation. The
algorithm may end when a number of stopping criteria are met, including when a maximum
number of generations Ilim have been performed or the algorithm has stalled for a number of
iterations Istall, an overall time limit tlim or a maximum stall time within a generation tstall

has been reached, or a fitness limit ρlim has been attained by a candidate solution.

32

CHAPTER 4 Application of Density Evolution

The main drawback of MC-based searches outlined in the previous section resides in their
long simulation time. In the following chapter, we investigate a faster, analytical approach
for solving (3.2) using DE. We present DE analysis for MS decoding. We then present our
findings regarding the DE analysis of the first two iterations of the generalized SM decoder.
This chapter presents the findings regarding DE from [32] in more detail. The work presented
in [32] introduces both the DE analysis for the first two iterations of an SM decoder, as well
as the DE-based SM offset optimization method. A review of properties of random variables
that are important for deriving DE equations may be found in Appendix A.

4.1 DE for MS Decoding

DE, first proposed for sum-product decoding in [11], is an analysis tool that uses probabilistic
properties of belief propagation to predict the behavior of a decoder at each iteration. If we
assume that a code is free of dependencies introduced by cycles in the Tanner graph, we can
accurately predict the performance of a decoder at each iteration by evolving the probability
density of the channel output. The result given by this analysis assumes that the LDPC
code length tends to infinity. A review of DE for MS decoders is given in [56]. To simplify
presentation, we present the equations for single-edge-type codes, but it is also possible to
develop equations for multi-edge-type codes.

Assuming an AWGN channel, the channel output LLR cumulative distribution function
(CDF), denoted Φ(0)λ (k), k ∈ [−Q,Q], is given by

Φ
(0)
λ (k) =

1
2 +

1
√

4σ2
erf

((
k +

1
2

)σ2

α
− 1

)
, (4.1)

erf(x) = 2
√
π

∫ x

0
e−t2 dt , (4.2)

where erf(x) is the Gauss error function. The resulting probability-mass function (PMF) is
denoted P(0)λ (k) or P

(0)
λ
= [P(0)λ (−Q), ...,P(0)λ (Q)] in vector format.

33

4.1.1 Variable-to-Check message PMF

The density of V2C messages at iteration ` is given:

P(`)λ (k) =

([
~
dv−1

P(`)γ

]
~ P(0)

λ

)
(k), (4.3)

where P(`)γ = [P
(`)
γ (−Q), ...,P(`)γ (Q)] is the C2V message PMF vector and ~n operator is a n-

fold convolution on a vector X with itself. We can see that equation (4.3) requires determining
the PMF of a sum of dv random variables. This formula is presented in equation (A.11) in
Section A.

4.1.2 Check-to-Variable message PMF

The PMF of the C2V message corresponds to P(`)γ (k) = Pr
(
s(γ(`))|γ(`) | = k

)
, which can be

calculated by separating the cases:

• where k < 0, implying that s
(
γ(`)

)
= −1 and |γ(`) | = −k,

• where k = 0, implying that γ(`) = 0,

• where k > 0, implying that s
(
γ(`)

)
= 1 and |γ(`) | = k.

This translates to the following equation:

P(`)γ (k) =


Pr

(
|γ(`) | = −k ∩ s(γ(`)) = −1

)
k < 0 ,

Pr
(
γ(`) = 0

)
k = 0 ,

Pr
(
|γ(`) | = k ∩ s(γ(`)) = +1

)
k > 0 .

(4.4)

First, we consider the simplest case, when k = 0:

P(`)γ (0) = Pr
(
min |λ(`−1) | = 0

)
. (4.5)

We can instead think of the probability that k = 0 as the complement of the probability that
k , 0. The equation related to the PMF of the minimum of a vector is given in Section A,
using either equation (A.6) or (A.7), which gives:

P(`)γ (0) = 1 −
(
1 − P|λ(`−1) |(0)

)dc−1
. (4.6)

34

Next we consider the case when k > 0, denoted P(`)γ,+(k):

P(`)γ,+(k) = Pr
(
min |λ(`−1) | = k ∩ s(λ(`−1)) = +1

)
. (4.7)

First, let Sp be a set of δ = [δ1, ..., δdc−1] vectors, ∀i, δi ∈ {−1,+1}, such that there are exactly
p negative (“−1”) elements in each δ vector:

δ ∈ Sk ⇔

dc−1∑
i=1

δi = dc − 1 − 2p. (4.8)

Let E be a set of δ vectors such that there is an even number (including 0) of negative (“−1”)
elements in each δ vector:

E =
⋃

p even
Sp . (4.9)

Obviously, s(λ(`−1)) = +1 if there are an even number of negative λ(`−1) values, i.e. s(λ(`−1)) ∈

E. Therefore, by listing all the possible s(λ(`−1)) combinations, (4.7) becomes

P(`)γ,+(k) =
∑
∀δ∈E

Pr
(
min |λ(`−1) | = k ∩ s(λ(`−1)) = δ

)
. (4.10)

Furthermore, each λ(`−1) random variables are identically distributed, meaning the position
of each λ(`−1) in λ(`−1) does not matter. This also applies for their sign. For instance, we
have Pr

(
s(λ(`−1) = [−1,−1,1,1, ...,1]

)
= Pr

(
s(λ(`−1) = [1, ..,1,−1,−1]

)
, where the two “−1”

signs are located in the last rows of the vector instead of the beginning. In other words,
∀(δn, δm) ∈ S

2
k ,n , m, we have

Pr
(
min |λ(`−1) | = k ∩ s(λ(`−1)) = δm

)
= Pr

(
min |λ(`−1) | = k ∩ s(λ(`−1)) = δn

)
. (4.11)

Therefore, all the terms in (4.10) with δ ∈ Sp, p even, can be factorized by a common term
denoted δp. For instance, δp can be defined such that the first p rows are composed of “−1”,
and the remaining rows composed of “+1”:

δp = [−1,−1, ...,−1︸ ︷︷ ︸
length p

,+1,+1,+1, ...,+1,+1︸ ︷︷ ︸
length dc−1−p

]. (4.12)

35

The number of terms factorized is equal to the cardinality (number of elements) of Sp is
given by

|Sp | =

(
dc − 1

p

)
. (4.13)

Equation (4.10) can be rewritten:

P(`)γ,+(k) =
∑

p even

(
dc − 1

p

)
Pr

(
min |λ(`−1) | = k ∩ s(λ(`−1)) = δp

)
. (4.14)

Let us now focus on the probability term in the equation. There is no reason to think that
the events “min |λ(`−1) | = k” and “s(λ(`−1)) = δp” are independent, so we have to consider
the conditional probability:

Pr
(
min |λ(`−1) | = k ∩ s(λ(`−1)) = δp

)
= Pr

(
min |λ(`−1) | = k

��� s(λ(`−1)) = δp
)
× Pr

(
s(λ(`−1)) = δp

)
. (4.15)

We first look at the conditional term. If δp exists, this implies that the first p elements in
λ(`−1) have negative values, and the dc − 1 − p following elements have positive values. After
taking the magnitude, the first p elements become positive, but with a PMF corresponding
to the negative value of λ(`−1). The last elements keep the PMF related to their positive
values.

Let λ(`−1)
p = [−λ(`−1)

p,− ,λ(`−1)
p,+], with λ

(`−1)
p,− corresponding to the vector composed of the p first

λ(`−1) < 0 in λ(`−1), and λ(`−1)
p,+ corresponding to the vector composed of the dc − 1 − p last

λ(`−1) > 0 in λ(`−1). The conditional term in (4.15) can now be rewritten

Pr
(
min |λ(`−1) | = k

��� s(λ(`−1)) = δp
)
= Pr

(
min [−λ(`−1)

p,− ,λ(`−1)
p,+] = k

)
, (4.16)

= Φ
p

λ
(`−1)
−
(k − 1)Φdc−1−p

λ
(`−1)
+

(k − 1) − Φp

λ
(`−1)
−
(k)Φ

dc−1−p

λ
(`−1)
+

(k).

(4.17)

36

Φ
λ
(`−1)
+

and Φ
λ
(`−1)
−

correspond to the complementary CDFs of the random variables in λ(`−1)
p,+

and −λ(`−1)
p,− , respectively, and can be expressed as

Φ
λ
(`−1)
+
(k) =

Q∑
l=k+1

Pr
(
λ(`−1) = l | l > 0

)
, (4.18)

=

Q∑
l=k+1

P(`−1)
λ (k)

Pr(λ(`−1) > 0)
, (4.19)

=
1

Φλ(`−1)(0)

Q∑
l=k+1

P(`−1)
λ (l)︸ ︷︷ ︸

A+(k+1)

, (4.20)

and,

Φ
λ
(`−1)
−
(k) =

−(k+1)∑
l=−Q

Pr(λ(`−1) = l | l < 0), (4.21)

=
1

Φλ(`−1)(−1)

−(k+1)∑
l=−Q

P(`−1)
λ (l)︸ ︷︷ ︸

A−(k+1)

, (4.22)

Then, (4.16) becomes

Pr
(
min |λ(`−1) | = k | s(λ(`−1)) = δp

)
=

Ap
−(k)A

dc−1−p
+ (k) − Ap

−(k + 1)Adc−1−p
+ (k + 1)(

Φλ(`−1)(−1)
) p (

Φλ(`−1)(0)
)dc−1−p . (4.23)

We calculate the remaining, non-conditional term in (4.15):

Pr
(
s(λ(`−1)) = δp

)
= Pr

(
λ(`−1) < 0

) p
× Pr

(
λ(`−1) > 0

)dc−1−p
, (4.24)

=
(
Φλ(`−1)(−1)

) p (
Φλ(`−1)(0)

)dc−1−p
, (4.25)

which simplifies with the denominator of (4.23). Combining terms, we have

P(`)γ,+(k) = Φ+(k) − Φ+(k + 1), (4.26)

Φ+(k) =
∑

p even

(
dc − 1

p

)
Ap
−(k)A

dc−1−p
+ (k). (4.27)

37

A− and A+ are respectively the complementary CDF (CCDF) of the negative and positive
values of the saturated V2C messages at iteration ` − 1 [56]:

A−(k) =
k∑

x=−Q

P(`−1)
λ (x), k < 0 , (4.28)

A+(k) =
Q∑

x=k

P(`−1)
λ (x), k > 0 . (4.29)

The last case to consider is k < 0, denoted P(`)γ,−(k):

P(`)γ,−(k) = Pr
(
min |λ(`−1) | = −k ∩

∏
∀i

s(λ(`−1)) = −1
)
. (4.30)

The derivation mirrors that of the P(`)γ,+(k) equation above. This time s(λ(`−1)) = −1, there
are an odd number of negative λ(`−1) values, i.e. s(λ(`−1)) ∈ O, where

O =
⋃

p odd
Sp . (4.31)

By listing all possible s(λ(`−1)) combinations and factorizing common terms, (4.30) becomes

P(`)γ,−(k) =
∑

p odd

(
dc − 1

p

)
Pr

(
min |λ(`−1) | = −k ∩ s(λ(`−1)) = δp

)
. (4.32)

Following the same reasoning given for P(`)γ,+(k) for k < 0

P(`)γ,−(k) = Φ−(k) − Φ−(k − 1), (4.33)

Φ−(k) =
∑

p odd

(
dc − 1

p

)
Ap
−(−k)Adc−1−p

+ (−k). (4.34)

This translates to the following equation (as in [56]):

P(`)γ (k) =


Φ+(k) − Φ+(k + 1) k > 0 ,

1 −
(
1 − P(`−1)

λ (0)
)dc−1

k = 0 ,

Φ−(k) − Φ−(k − 1)) k < 0 .

(4.35)

38

4.1.3 Finite-length Transformation

The final step in our density evolution analysis is to transform the infinite-length result, as
this result does not as accurately portray the performance of our code in a real decoder.
We perform the transformation shown in [20] to receive a more accurate estimation of the
performance of our code for a finite-length code:

P(`)γ,N (p0) =

∫ 1
2

0
P(`)γ,∞(pob)GN

(
pob; p0,

p0(1 − p0)

N

)
dpob . (4.36)

Where GN (x; µ,σ2) is the probability density function of a normal Gaussian random variable
with mean µ and variance σ2, P(`)γ,∞(pob) is the message PDF for an infinite code at itera-
tion `, and P(`)γ,N (p0) is the message PDF for a finite code of length N at iteration `. This
transformation greatly improves our estimation of the performance of a decoder.

4.2 Proposed SM offset optimization using DE

Instead of directly solving (3.2), we propose to find the offset ω(`)i,j that minimizes the mean
square error (MSE) ε(ω(`)i,j) between the C2V messages obtained respectively through the
single-minimum (SM) and min-sum (MS) message update rules, for a given edge i → j and
iteration `. This translates to the following optimization problem:

arg min
ω
(`)
i, j

ε(ω
(`)
i,j) = arg min

ω
(`)
i, j

E
���γ(`)e,j→i − γ

(`)
ē,j→i

���2 . (4.37)

This method does not guarantee finding the optimal solution of problem (3.2), but its main
advantage is that offsets can be independently optimized for each edge, and, more impor-
tantly, analytical methods can be applied to solve this problem. Recalling that the SM C2V
message update rule can be formulated as in (2.22), the MSE term can be expressed as

ε(ω
(`)
i,j) =

∑
(q,v)
|q |< |v |

(
ω
(`)
i,j + |q | − |v |

)2
P
(
λ
(`−1)
i→ j = q ∩ γ

(`)
ē,j→i = v

)
︸ ︷︷ ︸

θ
(`)
i, j (q,v)

, (4.38)

with (q, v) ∈ [−Q,Q]2 and θ
(`)
i,j (q, v) being the joint probability mass function of the (λ(`−1)

i→ j ,

γ
(`)
ē,j→i) random variables. If these variables are independent, we have θ(`)i,j (q, v) = P(`−1)

λ (q) ×

P(`)γē (v). The message dependencies will be further discussed in the next sub-section.

39

Problem (4.37) is convex, having solution:

dε(ω̄(`)i,j)

dω̄(`)i,j

= 2
∑
(q,v)
|q |< |v |

(
ω̄
(`)
i,j + |q | − |v |

)
θ
(`)
i,j (q, v) = 0 , (4.39)

=⇒ ω̄
(`)
i,j =

∑
(q,v)
|q |< |v |

(
|v | − |q |

)
θ
(`)
i,j (q, v)∑

(q,v)
|q |< |v |

θ
(`)
i,j (q, v)

, (4.40)

where ω̄(`)i,j is the optimal real-valued SM offset, and ω(`)i,j = bω̄
(`)
i,j + 1/2c.

4.2.1 On the message dependencies

DE equations are derived based on the fact that all messages are independent, a consequence
of the extrinsic exclusion rule and the cycle-free assumption. However, when the γ-update
rule includes the extrinsic message, the message independence assumption no longer holds.
To illustrate this, we study how messages propagate while being exchanged with the first VN
in a cycle-free code. For ease of notation, we consider that this VN is connected to the first
dv CNs in the Tanner graph. By noting that, in a SM decoder without offset compensation,
γ
(`)
e,j→i = s(λ

(`−1)
i→ j) × f ([λ(`−1)

i→ j , γ
(`)
ē,j→i]), we have

λ
(`)
1→i = L1 +

dv∑
j=1
i, j

s(λ
(`−1)
1→ j) f

(
[λ
(`−1)
1→ j , γ

(`)
ē,j→1]

)
︸ ︷︷ ︸

γ
(`)
e, j→1

. (4.41)

Through recursion, all λ(`−1)
1→ j variables are correlated with γ

(`−1)
ē,j→1 and L1. Consequently, the

γ
(`)
e,j→1 variables are not independent, and (4.3) cannot be applied to derive P(`)λ . Performing

DE for the SM decoding algorithm requires conditioning the message PMFs on each message
value in the computation tree. Since the number of possibilities grows exponentially with `,
the number of message bits and check node degree, this method is computationally expensive.

40

4.2.2 Optimization for the first iterations

When ` ∈ [1,2], (4.35) is valid and can be used to derive P(`)γē . Furthermore, with λ
(1)
i→ j and

γ
(2)
ē,i→ j being independent, θi,j can be easily calculated and the optimal offsets can be deduced

for the first two iterations through (4.39). However, P(1)λ cannot be obtained with (4.3) since
γ
(1)
e,j→i is correlated with Li, as shown in (4.41). Instead, we have

P(1)λ (k) =
Q∑

l=−Q

P(0)λ (l)
(
~
dv−1

P(1)
γe |L

)
(k − l), (4.42)

where P(1)
γe |L = [P

(1)
γe |L
(−Q |l), ... ,P(1)

γe |L
(Q |l)] is the PMF vector of the SM C2V messages when

the extrinsic message value (corresponding to the channel LLR) is l:

P(1)
γe |L
(k |l) =


P(1)γē (k) |k | ≤ |l |,∑Q

m=|l |+1 P(1)γē
(
s(k)m

)
|k | = min

(
|l | + ω(`)i,j ,Q

)
,

0 otherwise.

(4.43)

Extending DE results to each subsequent iteration becomes exponentially more complex.
Therefore, the offset of the remaining iterations ` > 2 are obtained by linearly extrapolat-
ing the real-valued offsets deduced by the method described in this section for the first 2
iterations: ω̄(`)i,j =

(
ω̄
(2)
i,j − ω̄

(1)
i,j

)
× (` − 1) + ω̄(1)i,j .

The DE optimization method outlined here is an analytical approach. The execution time
of this method will not depend on the Eb/N0 analyzed, whereas the Monte Carlo-based
approaches have execution times which scale with noise power.

41

CHAPTER 5 Results and Discussion

This section presents the BER performance results for a number of SM decoders. We start
with a presentation of preliminary results gathered for RV and RVQ decoders. We then show
the final results for discrete optimized SM offset decoders, for both a regular and irregular
LDPC code. For both paradigms, a description of the simulation setup precedes the figures
and discussion of BER performance. The solution values for the SM offset vectors may be
found in Appendix B.

5.1 Real-Valued Decoding

5.1.1 Simulation Setup

To validate the relaxed-constraint, real-valued optimization methods, MC simulation are
performed to measure the error correction performance for a (1723,2048)-regular LDPC code
from the 802.3an-2006 10GE standard [14]. Message values for the 10GE decoders are passed
on a flooding schedule for a maximum of 25 iterations. The four search algorithms outlined in
Section 3.3 are: SQP, Interior-Point, Active-Set and Trust-Region-Reflective. The algorithms
are implemented using the MATLAB function fmincon. The RV SM offsets are bounded by
0 and ωmax = 4.0. The maximum iteration number for all algorithms with the exception of
Interior-Point is 400, and for Interior-Point it is 1000. The step tolerance for all algorithms
with the exception of Interior-Point is 10−6, and for Interior-Point it is 10−10. The optimality
tolerance of all algorithms is 10−6.

SM offset solutions for these four algorithms are rendered for normalized signal-to-noise ratio
ζ = 3.8 dB, as this Eb/N0 value falls well within the waterfall region for these decoders. These
are then compared to optimized normalized MS and fixed SM offset decoding methods. The
best-performing among these solutions is then chosen to evaluate the effect of quantization on
real-valued solutions - by quantizing the solution on different numbers of bits and evaluating
the performance of the resultant quantized decoding method.

5.1.2 Results

Figure 5.1 depicts the performance of a real-valued MS decoder against that of the solutions
rendered by the real-valued search methods, as well as an optimized fixed SM offset decoder.
The SM fixed offset decoder has an offset value of 5. Parameters in the legend correspond
to (η,ωSM). We can see that the solutions rendered by the four search algorithms perform

42

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

Eb/No [dB]

10 -8

10 -6

10 -4

10 -2
B

it
 E

rr
o
r

R
a
te

MS (0.615, -)

SM fixed offset (0.506, 1.638)

SQP (0.5, -)

Interior-Point (0.5, -)

Active-Set (0.5, -)

Trust-Region-Reflective (0.5, -)

Figure 5.1 Results depicting the performance of real-valued SM decoders against real-valued
MS decoders

almost identically to the MS decoder. The best BER result at ζ = 3.8 dB of the real-valued
solutions is rendered by the Active-Set algorithm. Appendix B shows the results for the
real-valued optimizations.

We must now evaluate whether there exists a practical bit-precision for quantization of these
decoders which preserves the RV performance. Figure 5.2 depicts the BER performance of
the Active-Set solution, using 5, 7 and 10-bit quantization schemes. Parameters in the legend
correspond to (α,η).

We can see that there is a diminishing return with respect to increasing bit-precision for
SM decoders for the 10GE code, and that the level of performance shown to be possible
for RV decoding cannot be recovered by the RVQ decoder. However, this solution was
outperformed by the discrete SM offset optimization methods described in Sections 3.4 and
3.5, and therefore was not applied to 5G codes. Appendix B shows the results for the RVQ
decoders at different bit-precisions.

43

3 3.2 3.4 3.6 3.8 4

Eb/No [dB]

10 -5

10 -4

10 -3

10 -2

10 -1

B
it
 E

rr
o
r

R
a
te

Real-Valued

5-bit Quantized (3.019, 0.506)

7-bit Quantized (3.019, 0.506)

10-bit Quantized (1.551, 0.760)

Figure 5.2 Active-Set RVQ results for 5-, 7- and 10-bit quantization schemes

5.2 Discrete SM Offset Optimization Methods

5.2.1 Simulation setup

To validate the more practical optimization methods, MC simulations are again performed
to measure the error correction performance for two different codes: i) a (1723,2048)-regular
LDPC code from the 802.3an-2006 10GE standard [14]; ii) a 5G code with base graph index
1, code length N = 16128, lifting size Z = 384 and code rate 0.5238 [13]. For all MC searches,
at least 1000 frames were measured in error before stopping. Message values for the 10GE
decoders are quantized on 7 bits and passed on a flooding schedule for a maximum of 40
iterations. For the 5G decoders, messages are quantized on 6 bits, and passed on a flooding
schedule for a maximum of 40 iterations. Different precisions were used for comparison with
state of the art methods.

We propose comparing four offset optimization methods for the SM decoder. All methods
use CD as described in Section 3.2 to optimize (η,α,ΩG) parameters. These parameters,
and subsequently the SM offset vectors determined by the stochastic searches, are optimized
for αmax = 10, ωmax = 10 and η ∈ [0.25,0.5,0.75,1] to ease hardware implementation. The
differences between the methods resides in how (3.2) is solved. The first method (M1), called
fixed offset, only optimizes a single offset ω following approach (i) described in Section 3.1.
The second method (M2) optimizes ΩG following approach (iii), where (3.2) is solved using

44

genetic algorithm [57] for the regular 10GE code. For the 5G codes, SM offsets are selected
based on the extended variable weight (EVW) method reported in [34], then (η,α) are op-
timized using CD. This method is here referred to as CD-EVW. The third method (M3)
is the proposed WSA performed with L = 3, p = 1, with (3.23) solved through exhaustive
search for the 10GE code and genetic algorithm for the 5G code using the following group
setup: G1 = {3}, G2 = {6,7,8,9,10} and G3 = {19}. The last method (M4) corresponds to
the DE-based optimization proposed in Section 4.

For the 10GE code, problem (3.2) is solved when considering 25 decoding iterations. The
remaining iterations use the final SM offset gathered during the optimization procedure. For
the 5G code, WSA is applied for 10 decoding iterations, and the modified Akima method
was performed to extrapolate SM offsets from 10 to 40. For all instances where the genetic
algorithm is used, the parameters are set to a population of 200 individuals, including 10
elites, from which 152 are selected for crossover. The maximum generations Ilim is 12000 and
Istall = 50. The time limit and maximum stall times are both undefined; tlim = tstall = ∞.
The fitness limit ρlim = −∞. All generation, crossover and mutation functions are restricted
to integer solutions.

5.2.2 Results for the 10GE code

Figure 5.3 shows the BER performance for the regular 10GE code when considering the four
offset optimization methods for the SM decoder. BER results for the MS decoder are also
shown as reference. Triples in the legend correspond to (α, η, ωSM). All parameters are
optimized for ζ = 3.8 dB for all codes and methods, indicated by the red vertical line in the
figure. This Eb/N0 value again falls within the waterfall region for these decoders. Appendix
B shows the results for (M2)-(M4) for the 10GE code.

We measured the execution times of each method on the same computer (at ζ = 3.8 dB),
and obtained the following results: (M1) 14min; (M2) 20h; (M3) 314h; (M4) 0.7s. The DE
method (M4) is by far the fastest method. Notably, the compute time is constant for any ζ
value, whereas MC approaches require more simulation trials with decreasing noise power.
This opens the possibility to re-design the offsets “on-the-fly”, when the decoding parameters
change.

The results for the stochastic searches show that the difference in performance between
optimized varying offset methods (M2) and (M3) is negligible. However, for ζ > 4 dB,
the fixed offset method is outperformed by both (M2) and (M3), with a gap of 0.1 dB
observed at 10−5 BER. We can see also that the difference in performance between methods
(M2) and (M3) is very small when compared to the standard MS decoder. Concerning the

45

DE method (M4), we observe a performance loss compared to other optimization methods.
This is likely due to the fact that only SM offsets of the first two iterations are optimized,
while we approximate the remaining ones by linear extrapolation. However, this method
has significantly lower execution time compared with (M2) and (M3), with more than 1e 6×
speedup.

3.2 3.4 3.6 3.8 4 4.2

Eb/No [dB]

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

B
it
 E

rr
o

r
R

a
te

MS (2.3249, 0.75, -)

(M1) Fixed Offset (2.3418, 0.5, 5)

(M2) Genetic Algorithm (2.3418, 0.5, -)

(M3) Windowed Search (2.3418, 0.5, -)

(M4) DE Optimization (9.1031, 0.5, -)

Figure 5.3 Comparison of BER performance for SM decoders against optimized MS for the
802.3an-2006 code

5.2.3 Results for the 5G code

Figure 5.4 depicts the BER of SM decoders for the 5G code; performed using a 5G code BG1
[N=16128, R=0.5238]. For the MS decoder, we have the MS offset β = 1, applied at each
iteration. Parameters are optimized at the following Eb/No values: ζ = 1.1 dB for the MS
decoder (blue vertical line), ζ = 2.8 dB for the SM fixed offset method (red vertical line) and
ζ = 2 dB for the CD-EVW, WSA and DE-based methods (green vertical line). CD-EVW
is a CD-optimized version of the SM optimization employed in [34]. Triples in the legend

46

correspond to (α, η, ωSM). These placements are based on the projected waterfall regions for
each decoder, while the fixed offset decoder was observed to perform best when optimized
within the floor region. Appendix B shows the results for (M2)-(M4) for the 5G code.

1 1.5 2 2.5 3

Eb/No [dB]

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

B
it
 E

rr
o

r
R

a
te

MS (6.055, 0.95, -)

(M1) Fixed OS (3.705,0.9,13)

(M2) CD-EVW (7.687,0.9,-)

(M3) GA Windowed Srch (2.425,0.75,-)

(M4) DE Optimization Method (3.369,0.5,-)

Figure 5.4 Comparison of SM decoding methods against an MS decoder

There is a significant gain in error performance for varying versus fixed offset SM decoding in
the 5G code presented. The SM offsets obtained with WSA outperforms the ones obtained
using CD-EVW by 0.1 − 0.2 dB in the Waterfall region. Furthermore, contrary to the 10GE
code, the DE analysis method (M4) significantly outperforms both CD-EVW and WSA.
This can be explained by the fact that SM offsets are optimized separately for each edge
of the base graph. This additional degree of freedom provides gains since the 5G code has
several edge types and CN/VN degrees. It should be noted that further performance gains
for method (M4) could be achieved by improving the DE analysis to optimize the SM offsets
for all iterations, instead of extrapolating them. In addition, a significant advantage in time
resources used is observed for the DE optimization method. The WSA method required
hundreds of hours of compute time, whereas the DE-based method requires on average 0.6 s,

47

using the same simulation framework and the same machines. Since DE optimization is both
the highest performance and lowest cost algorithm to implement, time complexity analysis
was not performed for MC approaches. Consequently, DE-based optimization is the most
efficient method for the 5G SM decoder.

48

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS

6.1 Summary

In this research we have explored the problem of optimizing second-minimum emulation offset
values for SM decoders. These decoders require less hardware resources than typical MS
decoders, but their performance depends heavily on well-optimized SM offsets. [4] suggests
that an SM decoder requires a check node processor roughly 48% the size of a standard
MS check node processor, suggesting SM decoders are much more efficient to implement
than a standard MS decoder. We first presented a general formulation of the problem and
proposed a simplification with the coordinate descent algorithm. We then solved for offset
values by proposing two methods: 1) a Monte Carlo-based method referred to as WSA 2) A
DE-based analytical method. We evaluate these proposed methods using two different codes
(from the 5G NR and 10Gbps Ethernet standards) and compare with existing optimization
methods. We additionally attempted to solve a relaxed-constraint version of the problem to
infer a solution to the original problem. However, these RVQ decoders cannot match the
performance of either the WSA or the DE optimization techniques. We show that, for the
5G code, large BER gains are observed, particularly for the DE method, which also requires
less computation time. This method optimizes the SM offsets for only the first two iterations,
while the remaining ones are extrapolated. Therefore, we believe that the performance gap
between MS and SM decoders can be further reduced. This encourages further investigation
to improve DE analysis for SM decoders.

6.2 Future Research

The most important next steps will be:

• Applying the proposed optimization methods for each Eb/N0 value simulated. This will
better validate the behavior of offset values, and should ensure even better performance.

• Extending DE analysis for SM decoders by another iteration, thus allowing for DE
optimization with more initial information, and allowing for more robust extrapolation
for later iterations. If DE analysis for SM decoders were extended to enough iterations,
it would be interesting to explore the feasibility of DE optimization of regular codes.

As stated in Section 4.2.1, DE analysis for SM decoding becomes exponentially more complex
as the number of decoding iterations increases, and therefore this second step would likely

49

be costly to implement using current methods. On the other hand, alternative optimization
methods based on Monte-Carlo simulation are also fairly computation intensive. One possi-
bility for future research would be to qualify the tradeoff between the complexity of DE SM
offset optimization and the practicality of MC-based approaches.

The searches proposed in this research are done offline at design time, for a single normalized
signal-to-noise ratio. The offsets found are stored in a look-up table (LUT), then applied
for multiple noise powers in Chapter 5, suggesting that re-designation of parameters for
minor changes in Eb/N0 does not seem to be necessary to achieve practical performance.
However, considering a channel subject to, for instance, user mobility, it is possible that
noise power could significantly change during normal operation, leading to a performance
degradation. The SM decoder performance could be improved by designing SM offsets for
multiple target Eb/N0 values. Practically, this would mean for any searches performed at
design time, many LUTs would be required to store the integer offsets for multiple noise
power targets. Therefore, we expect a tradeoff between resolution of noise powers simulated
- and therefore performance - and hardware complexity. However, as mentioned in Section
5.2.2, the low execution time of the DE-based optimization method opens the possibility for
“on-the-fly” design of SM offsets. In this case, a single reconfigurable LUT could be used
instead.

50

REFERENCES

[1] F. Leduc-Primeau, F. R. Kschischang, and W. J. Gross, “Modeling and energy opti-
mization of ldpc decoder circuits with timing violations,” IEEE Transactions on Com-
munications, vol. 66, no. 3, pp. 932–946, Mar. 2018.

[2] J. Nadal, M. Fiorentino, E. Dupraz, and F. Leduc-Primeau, “A deeply pipelined, highly
parallel and flexible ldpc decoder,” in 2020 18th IEEE International New Circuits and
Systems Conference (NEWCAS), June 2020, pp. 263–266.

[3] R. Gallager, “Low-density parity-check codes,” IRE Trans. on Information Theory,
vol. 8, no. 1, pp. 21–28, Jan. 1962.

[4] A. Darabiha, A. Carusone, and F. Kschischang, “A bit-serial approximate min-sum
LDPC decoder and FPGA implementation,” in 2006 IEEE International Symposium on
Circuits and Systems, May 2006.

[5] D. Mackay and R. Neal, “Near shannon limit performance of low density parity check
codes,” Electronics Letters, Aug. 2002.

[6] R. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions on
Information Theory, vol. 27, no. 5, pp. 533–547, 1981.

[7] X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implementations
of the sum-product algorithm for decoding ldpc codes,” GLOBECOM’01. IEEE Global
Telecommunications Conference (Cat. No.01CH37270), vol. 2, pp. 1036–1036E vol.2,
Nov. 2001.

[8] C. Jones, E. Valles, M. Smith, and J. Villasenor, “Approximate-min constraint node
updating for LDPC code decoding,” in IEEE Military Communications Conference,
2003. MILCOM 2003., vol. 1, Oct. 2003, pp. 157–162 Vol.1.

[9] M. Viens and W. E. Ryan, “A reduced-complexity box-plus decoder for ldpc codes,” in
2008 5th International Symposium on Turbo Codes and Related Topics, Sept. 2008, pp.
151–156.

[10] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 27, no. 3, pp. 379–423, July 1948.

51

[11] T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under
message-passing decoding,” IEEE Trans. on Information Theory, vol. 47, no. 2, pp.
599–618, Feb. 2001.

[12] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregu-
lar low-density parity-check codes,” IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 619–637, Feb. 2001.

[13] 3GPP TS 38.212, “3rd Generation Partnership Project; Technical Specification Group
Radio Access Network; Multiplexing and channel coding,” Aug. 2021.

[14] IEEE, 802.3an, “ Standard for Information Technology – LAN/MAN - CSMA/CD Ac-
cess Method and Physical Layer Specifications - Parameters for 10 Gb/s Operation,
Type 10GBASE-T ,” pp. 1–181, Sept. 2006.

[15] M. Eroz, F.-W. Sun, and L.-N. Lee, “DVB-S2 low density parity check codes with near
shannon limit performance,” International Journal of Satellite Communications and
Networking, vol. 22, no. 3, pp. 269–279, June 2004.

[16] Y. Yuan, Y. Zhao, and B. Zong, “Potential key technologies for 6g mobile communica-
tions,” Science China Information Sciences, no. 183301, May 2020.

[17] K. Zhu and Z. Wu, “Comprehensive study on CC-LDPC, BC-LDPC and polar code,”
in 2020 IEEE Wireless Communications and Networking Conference Workshops (WC-
NCW), Apr. 2020, pp. 1–6.

[18] J. Nadal and A. Baghdadi, “FPGA based design and prototyping of efficient 5G QC-
LDPC channel decoding,” in 2020 International Workshop on Rapid System Prototyping
(RSP), Sept. 2020.

[19] I. F. Akyildiz, A. Kak, and S. Nie, “6G and beyond: The future of wireless communica-
tions systems,” IEEE Access, vol. 8, July 2020.

[20] F. Leduc-Primeau and W. J. Gross, “Finite-length quasi-synchronous LDPC decoders,”
in 2016 9th International Symposium on Turbo Codes and Iterative Information Pro-
cessing (ISTC), Sept. 2016, pp. 325–329.

[21] R. Yazdani and M. Ardakani, “Waterfall performance analysis of finite-length LDPC
codes on symmetric channels,” IEEE Trans. on Communications, vol. 57, no. 11, pp.
3183–3187, Nov. 2009.

52

[22] W. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge University
Press, 2009.

[23] T. Etzion, A. Trachtenberg, and A. Vardy, “Which codes have cycle-free tanner graphs?”
Information Theory, IEEE Transactions on, vol. 45, pp. 2173 – 2181, Sept. 1999.

[24] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product al-
gorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498–519, Feb.
2001.

[25] A. A. Emran and M. Elsabrouty, “Simplified variable-scaled min sum ldpc decoder for
irregular ldpc codes,” in 2014 IEEE 11th Consumer Communications and Networking
Conference (CCNC), Jan. 2014, pp. 518–523.

[26] H. Hatami, D. G. M. Mitchell, D. J. Costello, and T. Fuja, “A modified min-sum algo-
rithm for quantized ldpc decoders,” in 2019 IEEE International Symposium on Infor-
mation Theory (ISIT), July 2019, pp. 2434–2438.

[27] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of
low-density parity check codes based on belief propagation,” IEEE Transactions on
Communications, vol. 47, no. 5, pp. 673–680, May 1999.

[28] E. Sharon, S. Litsyn, and J. Goldberger, “Convergence analysis of serial message-passing
schedules for ldpc decoding,” in 4th International Symposium on Turbo Codes Related
Topics; 6th International ITG-Conference on Source and Channel Coding, Apr. 2006,
pp. 1–6.

[29] C. Zhang, Z. Wang, J. Sha, L. Li, and J. Lin, “Flexible LDPC decoder design for
multigigabit-per-second applications,” IEEE Trans. on Circuits and Systems I: Regular
Papers, vol. 57, no. 1, pp. 116–124, Mar. 2009.

[30] F. Yi and P. Wang, “Low complexity decoding algorithm of QC-LDPC code,” in 2010
IEEE Asia-Pacific Services Computing Conference, Dec. 2010, pp. 531–534.

[31] F. Angarita, J. Valls, V. Almenar, and V. Torres, “Reduced-complexity min-sum al-
gorithm for decoding LDPC codes with low error-floor,” IEEE Trans. on Circuits and
Systems I: Regular Papers, vol. 61, no. 7, pp. 2150–2158, Feb. 2014.

[32] D. B. Dermont, J. Nadal, and F. Leduc-Primeau, “Single-minimum ldpc decoding off-
set optimization methods,” in 2022 17th Canadian Workshop on Information Theory
(CWIT), June 2022, [to appear].

53

[33] S. Hemati, F. Leduc-Primeau, and W. J. Gross, “A relaxed min-sum LDPC decoder with
simplified check nodes,” IEEE Communications Letters, vol. 20, no. 3, pp. 422–425, Jan.
2016.

[34] V. L. Petrović and D. M. El Mezeni, “Reduced-complexity offset min-sum based layered
decoding for 5G LDPC codes,” in 2020 28th Telecommunications Forum (TELFOR),
Nov. 2020, pp. 1–4.

[35] H. Akima, “A new method of interpolation and smooth curve fitting based on local
procedures,” J. ACM, vol. 17, no. 4, p. 589–602, Oct. 1970.

[36] H. Akima, “A method of bivariate interpolation and smooth surface fitting based on
local procedures,” Commun. ACM, vol. 17, no. 1, p. 18–20, Jan. 1974.

[37] S. J. Wright, “Coordinate descent algorithms,” Mathematical Programming, vol. 151,
no. 1, pp. 3–34, Mar. 2015.

[38] G. E. Forsythe, M. A. Malcolm, and C. B. Moler, “Computer methods for mathematical
computations,” ZAMM - Journal of Applied Mathematics and Mechanics, vol. 59, no. 2,
pp. 141–142, 1979.

[39] R. P. Brent, Algorithms for Minimization without Derivatives, 1st ed. Englewood Cliffs,
New Jersey: Prentice-Hall, 1973.

[40] MathWorks. (2022) Constrained nonlinear optimization algo-
rithms. [Online]. Available: https://www.mathworks.com/help/optim/ug/
constrained-nonlinear-optimization-algorithms.html

[41] T. F. Coleman and Y. Li, “An interior trust region approach for nonlinear minimization
subject to bounds,” SIAM J. Optim., vol. 6, pp. 418–445, May 1996.

[42] T. Coleman and Y. li, “On the convergence of reflective newton methods for large-scale
nonlinear minimization subject to bounds,” Math. Program., vol. 67, pp. 189–224, Oct.
1994.

[43] R. Fletcher and M. J. D. Powell, “A Rapidly Convergent Descent Method for Minimiza-
tion,” The Computer Journal, vol. 6, no. 2, pp. 163–168, Aug. 1963.

[44] D. Goldfarb, “A family of variable-metric methods derived by variational means,” Math-
ematics of Computation, vol. 24, pp. 23–26, Jan. 1970.

https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html

54

[45] P. E. Gill, W. Murray, and M. H. Wright, Practical optimization. London: Academic
Press, Jan. 1981.

[46] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York, NY, USA:
Springer, July 2006.

[47] R. H. Byrd, J. C. Gilbert, and J. Nocedal, “A Trust Region Method Based on Interior
Point Techniques for Nonlinear Programming,” INRIA, Research Report RR-2896, Nov.
1996, projet PROMATH.

[48] R. H. Byrd, M. E. Hribar, and J. Nocedal, “An interior point algorithm for large-scale
nonlinear programming,” SIAM Journal on Optimization, vol. 9, no. 4, pp. 877–900,
Sept. 1999.

[49] R. Waltz, J. Morales, J. Nocedal, and D. Orban, “An interior algorithm for nonlinear
optimization that combines line search and trust region steps,” Mathematical Program-
ming, vol. 107, no. 3, pp. 391–408, July 2006.

[50] J. J. Moré and D. C. Sorensen, “Computing a trust region step,” SIAM Journal on
Scientific and Statistical Computing, vol. 4, no. 3, pp. 553–572, Jan. 1983.

[51] M. A. Branch, T. F. Coleman, and Y. Li, “A subspace, interior, and conjugate gradient
method for large-scale bound-constrained minimization problems,” SIAM Journal on
Scientific Computing, vol. 21, no. 1, pp. 1–23, Sept. 1999.

[52] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, “Approximate solution of the trust region
problem by minimization over two-dimensional subspaces,” Mathematical Programming,
vol. 40, no. 1, pp. 247–263, Jan. 1988.

[53] S. P. Han, “A globally convergent method for nonlinear programming,” Journal of Op-
timization Theory and Applications, vol. 22, no. 3, pp. 297–309, June 1977.

[54] M. J. D. Powell, “A fast algorithm for nonlinearly constrained optimization calculations,”
in Numerical Analysis, G. A. Watson, Ed., Berlin, Heidelberg, June 1978, pp. 144–157.

[55] MathWorks. (2022) How the genetic algorithm works. [Online]. Available: https:
//www.mathworks.com/help/gads/how-the-genetic-algorithm-works.html

[56] A. Balatsoukas-Stimming and A. Burg, “Density evolution for min-sum decoding of
LDPC codes under unreliable message storage,” IEEE Communications Letters, vol. 18,
no. 5, pp. 849–852, Apr. 2014.

https://www.mathworks.com/help/gads/how-the-genetic-algorithm-works.html
https://www.mathworks.com/help/gads/how-the-genetic-algorithm-works.html

55

[57] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing, vol. 4, no. 2, pp.
65–85, June 1994.

56

APPENDIX A PROBABILITY REVIEW

In this section, we review some characteristics of random variables that must be understood
to develop the DE analysis tool.

Calculating the probability of the minimum of N random variables

Let X be a vector composed of N discrete-valued random variables, given X = [X0, ...,XN−1],
with Xi being integer-valued, and Xi ∈ [0,Q]∀i. We consider Y = min X , where Y takes the
minimum value from the random variables in the vector X . We want to calculate the PMF
of Y , i.e. the probability that Y is equal to k, denoted PY (k) , Pr(Y = k). It is assumed
that each of the random variables in X are independent, but can have different distributions,
i.e. PX0(k) , PX1(k) , PX2(k), ... We also denote the CDF φY (k) , Pr(Y ≤ k) and ΦXi (k) ,

Pr(Xi ≤ k). The CMF ΦY (k) = Pr(min X ≤ k) implies that at least one Xi in X is smaller
than k. The probability that at least one Xi is smaller than k is equivalent to one minus the
probability that all Xi are greater than k, i.e. ΦY (k) = 1−Pr(X0 > k∩X1 > k∩ ...∩XN−1 > k).
Since Xi is independent for all i, then the probability that Xi is greater than k is

Pr(X0 > k ∩ X1 > k ∩ ... ∩ XN−1 > k) =
N−1∏
i=0

Pr(Xi > k), (A.1)

=

N−1∏
i=0

(
1 − Pr(Xi ≤ k)

)
, (A.2)

=

N−1∏
i=0

ΦXi (k). (A.3)

Since ΦXi (k) = 1 − ΦXi (k), we have

ΦY (k) = 1 −
N−1∏
i=0

ΦXi (k), (A.4)

ΦY (k) =
N−1∏
i=0

ΦXi (k), (A.5)

57

and

PY (k) =

ΦY (0) k = 0 ,

ΦY (k) − ΦY (k − 1) k > 0 .
(A.6)

The above equation can also be rewritten as follows:

PY (k) =


1 − ΦY (0) k = 0 ,

ΦY (k − 1) − ΦY (k) k > 0 .
(A.7)

Calculating the probability of the sum of N random variables

Let us consider a vector X composed of N random discrete valued variables X = [X1, ...,XN−1].
It is assumed that each random variable is independent, but can have different PMFs, each
denoted PXi (k). We also have Xi ∈ [−Q,Q],∀i, where −Q = min X and Q = max X are
the minimum and maximum representable values for all variables Xi. Therefore, we have
PXi (k) = 0,∀k < [−Q,Q].

We have Y =
∑N−1

i=0 Xi, where Y corresponds to the sum of each variable Xi. We want to
calculate the PMF of Y , i.e. the probability that Y equals k, denoted PY (k) , Pr(Y = k). We
first consider the partial sum Yn =

∑n
i=0 Xi = Xn + Yn−1. The PMF of the partial sum Yn can

be written as follows:

PYn(k) = Pr(Xn + Yn−1 = k) = Pr
(

Q⋃
q=−Q

(Xn = q ∩ Yn−1 = k − q)

)
, (A.8)

=

Q∑
q=−Q

Pr(Xn = q ∩ Yn−1 = k − q), (A.9)

=

Q∑
n=−Q

PXn(q)PYn−1(k − q). (A.10)

Note that (A.10) corresponds to a convolution between PMFs vector PXn = [PXn(−Q), ...,

PXn(Q)] and PYn−1 = [PYn−1(−Q), ...,PYn−1(Q)]. Denoting ~ the convolution operator, we then
have PYn = PXn ~ PYn−1 .

58

The PMF PY (k) = PYN−1(k) can be obtained through recurrence by successively calculating
PY1(k), PY2(k), ..., using (A.8). This corresponds of successively performing convolution for
each variable Xn.

In vector format, the PMF vector PY can be then written as

PY =
N−1
~
n=0

PXn . (A.11)

59

APPENDIX B SM OFFSET VALUES

For all SM offset vectors excluding DE optimized SM decoders B and B, entries are shown in
the boxes beside the iteration number for which they are applied. CN groups are displayed
in headings where applicable. For DE optimized SM decoders, histograms depicting the
occurence of SM offsets at iterations 1, 10, 20, 30, and 40 are shown.

RV Decoders (25 Flooding Iterations)

Figure 5.1 SQP

1. 1.63758701248424

2. 1.63758700655411

3. 1.63758700877995

4. 1.63758701263943

5. 1.63758701132231

6. 1.63758701096495

7. 1.6375870124679

8. 1.63758700619471

9. 1.63758700378508

10. 1.63758701002152

11. 1.63758701433842

12. 1.63758701572294

13. 1.63758701183078

14. 1.63758701112423

15. 1.63758701473254

16. 1.63758701006236

17. 1.63758700928638

18. 1.63758701475909

19. 1.63758701506131

20. 1.63758701360328

21. 1.63758701417914

22. 1.6375870130601

23. 1.63758700583939

24. 1.63758701342767

25. 1.6375870102053

Figure 5.1 Interior-Point

1. 2.16915594194178

2. 2.19455967008582

3. 2.1891458774703

4. 1.42551357590406

5. 1.45075251874128

6. 2.21704957037426

7. 1.4732881378088

8. 2.22478190421139

9. 2.19617003711467

10. 1.96651992348663

11. 1.44959244931687

12. 2.19792760667628

13. 2.21924533087449

14. 2.21022397407853

15. 1.43833137168987

16. 2.20124445436116

17. 2.2143352627657

18. 2.23743913653796

60

19. 2.23529367876001

20. 1.43236481330027

21. 1.43217688813485

22. 2.22091345423594

23. 2.21129421991636

24. 2.23792925963835

25. 1.45890103500736

Figure 5.1 Active-Set

1. 1.36864885124676

2. 2.05161557953655

3. 2.04728473930635

4. 2.13896101515846

5. 2.10125902318712

6. 1.88677133157319

7. 2.02384696194694

8. 2.12556725019548

9. 2.13929867773197

10. 1.90428704380838

11. 2.02136355940529

12. 1.30885525335493

13. 2.05296494252675

14. 2.14001348081344

15. 1.99342781365927

16. 2.18967709356206

17. 2.06996970254221

18. 1.24025698553853

19. 1.98026310252799

20. 2.14518808114736

21. 1.99589506045517

22. 2.04565518768703

23. 2.12945450044758

24. 1.90682657030548

25. 1.97834058191798

Figure 5.1 Trust-Region-Reflective

1. 1.72055681963314

2. 2.12266560577333

3. 1.68795069084901

4. 1.59536344246211

5. 1.7008391555497

6. 1.96886017214349

7. 2.15760357628667

8. 2.1046361838147

9. 1.98810505224015

10. 1.94779075108765

11. 1.89304688101835

12. 1.99156594164502

13. 2.50638616748284

14. 1.30338357466903

15. 1.82618653329918

16. 1.57830495051274

17. 1.9146588171397

18. 1.84426016296193

19. 2.02222796077836

20. 1.54022008613437

21. 1.80685916707815

22. 2.09994322356435

23. 1.53423685908377

24. 1.92817678368601

25. 2.31077243920219

61

RVQ Decoders (Quantized Active-Set Solution, 25 Flooding Iterations)

Figure 5.2 5-bit Quantized

1. 1

2. 2

3. 2

4. 2

5. 2

6. 1

7. 2

8. 2

9. 2

10. 1

11. 2

12. 1

13. 2

14. 2

15. 2

16. 2

17. 2

18. 1

19. 1

20. 2

21. 2

22. 2

23. 2

24. 1

25. 1

Figure 5.2 7-bit Quantized

1. 4

2. 6

3. 6

4. 6

5. 6

6. 6

7. 6

8. 6

9. 6

10. 6

11. 6

12. 4

13. 6

14. 6

15. 6

16. 7

17. 6

18. 4

19. 6

20. 6

21. 6

22. 6

23. 6

24. 6

25. 6

Figure 5.2 10-bit Quantized

1. 17

2. 25

3. 25

4. 27

5. 26

6. 23

7. 25

8. 26

9. 27

10. 24

11. 25

12. 16

13. 25

14. 27

15. 25

16. 27

17. 26

18. 15

19. 25

20. 27

21. 25

22. 25

23. 26

24. 24

25. 25

10GE Stochastic Search Comparison (40 Flooding Iterations)

Figure 5.3 (M2) Genetic Algorithm (Extrapolated to 40)

62

1. 5

2. 6

3. 5

4. 6

5. 7

6. 5

7. 6

8. 7

9. 7

10. 7

11. 7

12. 8

13. 5

14. 6

15. 7

16. 5

17. 7

18. 7

19. 8

20. 6

21. 5

22. 7

23. 5

24. 6

25. 7

Figure 5.3 (M3) Windowed Search (Extrapolated to 40)

1. 5

2. 4

3. 5

4. 5

5. 6

6. 6

7. 5

8. 9

9. 8

10. 5

11. 5

12. 10

13. 6

14. 4

15. 5

16. 5

17. 6

18. 7

19. 6

20. 7

21. 5

22. 7

23. 10

24. 4

25. 8

Figure 5.3 (M4) DE Optimization

0 10 20 30 40 50 60 70 80

SM Offset Value

0

2

4

6

8

10

O
c
c
u
rr

e
n
c
e

10
4

1

10

20

30

40

Iteration

Figure B.1 Histogram showing the occurrence of SM offsets for all DE Optimized edges of
the 10GE code

63

5G Stochastic Search Comparison (40 Flooding Iterations)

Figure 5.4 (M2) CD-EVW

G1 = {3}

1. 3

2. 4

3. 6

4. 7

5. 9

6. 10

7. 11

8. 13

9. 14

10. 15

11. 17

12. 18

13. 19

14. 21

15. 22

16. 24

17. 25

18. 26

19. 28

20. 29

21. 30

22. 32

23. 33

24. 35

25. 36

26. 37

27. 39

28. 40

29. 41

30. 43

31. 44

32. 45

33. 47

34. 48

35. 50

36. 51

37. 52

38. 54

39. 55

40. 56

G2 = {6,7,8,9,10}

1. 2

2. 3

3. 4

4. 5

5. 5

6. 6

7. 7

8. 8

9. 9

10. 10

11. 11

12. 12

13. 13

14. 14

15. 15

16. 16

17. 17

18. 17

19. 18

20. 19

21. 20

22. 21

23. 22

24. 23

25. 24

26. 25

27. 26

28. 27

29. 28

30. 29

31. 29

32. 30

33. 31

34. 32

35. 33

36. 34

37. 35

38. 36

39. 37

40. 38

G3 = {19}

1. 1 2. 2 3. 3 4. 3 5. 4

64

6. 5

7. 6

8. 7

9. 8

10. 9

11. 9

12. 10

13. 11

14. 12

15. 13

16. 14

17. 15

18. 15

19. 16

20. 17

21. 18

22. 19

23. 20

24. 20

25. 21

26. 22

27. 23

28. 24

29. 25

30. 26

31. 26

32. 27

33. 28

34. 29

35. 30

36. 31

37. 32

38. 32

39. 33

40. 34

Figure 5.4 (M3) GA Windowed Search (Extrapolated to 40)

G1 = {3}

1. 4

2. 6

3. 8

4. 8

5. 8

6. 8

7. 7

8. 9

9. 8

10. 1

G2 = {6,7,8,9,10}

1. 5

2. 3

3. 4

4. 4

5. 5

6. 6

7. 7

8. 8

9. 9

10. 10

G3 = {19}

1. 2

2. 0

3. 0

4. 0

5. 1

6. 2

7. 3

8. 4

9. 4

10. 10

65

Figure 5.4 (M4) DE Optimization Method

0 20 40 60 80 100 120

SM Offset Value

0

50

100

150

200

O
c
c
u
rr

e
n
c
e

1

10

20

30

40

Iteration

Figure B.2 Histogram showing the occurrence of SM offsets for all DE Optimized edges of
the 5G code

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Applications of LDPC
	1.2 Practical implementation
	1.3 DE-based analysis
	1.4 Thesis Organization

	2 LITERATURE REVIEW
	2.1 Channel Model
	2.2 Channel Coding and Decoding
	2.3 Graph Representation
	2.4 Quasi-cyclic codes
	2.5 Decoding
	2.5.1 Notation
	2.5.2 Sum-Product Algorithm
	2.5.3 Min-Sum
	2.5.4 Min-Sum with correction
	2.5.5 Message-passing Scheduling

	2.6 Quantization
	2.7 Single-Min Decoding
	2.7.1 Existing Methods

	3 Single-Min Offset Optimization
	3.1 Problem formulation
	3.2 Top-level optimization using coordinate descent
	3.3 Relaxed Real-Valued Decoder Method
	3.3.1 Problem Formulation
	3.3.2 Nonlinear Optimization

	3.4 SM offset optimization using windowed search
	3.5 Discrete Optimization Methods

	4 Application of Density Evolution
	4.1 DE for MS Decoding
	4.1.1 Variable-to-Check message PMF
	4.1.2 Check-to-Variable message PMF
	4.1.3 Finite-length Transformation

	4.2 Proposed SM offset optimization using DE
	4.2.1 On the message dependencies
	4.2.2 Optimization for the first iterations

	5 Results and Discussion
	5.1 Real-Valued Decoding
	5.1.1 Simulation Setup
	5.1.2 Results

	5.2 Discrete SM Offset Optimization Methods
	5.2.1 Simulation setup
	5.2.2 Results for the 10GE code
	5.2.3 Results for the 5G code

	6 CONCLUSION AND RECOMMENDATIONS
	6.1 Summary
	6.2 Future Research

	REFERENCES
	APPENDICES

