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RÉSUMÉ

L’accrétion de glace en vol est un risque important dans le domaine de l’aviation car elle
entraîne une dégradation des performances. Ce phénomène est une partie importante des
processus de conception et de certification. Il représente un domaine de recherche actif car les
mécanismes sous-jacents ne sont pas encore bien compris. Les simulations numériques sont
utilisées comme alternatives aux essais expérimentaux, permettant de traiter une variété
de conditions de givrage à moindre coût. Les fondements mathématiques des principaux
logiciels de givrage, tels que LEWICE3D, IGLOO3D et FENSAP-ICE, sont majoritairement
basés sur des méthodes algébriques et des systèmes d’équations différentielles partielles. Le
phénomène d’accrétion de la glace est donc représenté du façon continue et déterministe,
dans laquelle la densité de la glace est traitée comme une variable indépendante. Cependant,
les structures de glace discrètes et aléatoires observées dans les essais expérimentaux, telles
que les plumes de glace, qui peuvent mener à des formes de glace significatives et à une
dégradation sévère des performances ne sont pas capturées par ces méthodes. De plus, les
logiciels à l’état de l’art ne modélisent pas la variabilité observée dans la forme de la glace
obtenue pour de multiples essais des mêmes conditions de givrage. Des alternatives aux outils
numériques traditionnels ont donc été proposées pour surmonter ces limitations et améliorer
la compréhension du phénomène de givrage.

L’objectif principal de ce travail est de fournir un cadre numérique original, bidimensionnel,
discret et stochastique pour modéliser le phénomène d’accrétion de glace, basé sur de récents
travaux présents dans la littérature. Les développements sont implémentés dans CHAMPS,
un logiciel interne de dynamique des fluides numérique.

Tout d’abord, le domaine d’accrétion est discrétisé en utilisant un algorithme d’avance de
front non-structuré, habituellement utilisé pour la génération de maillage. La technique
est basée sur la création d’éléments de glace à partir de gouttelettes d’eau. Des éléments
triangulaires sont générés à mesure que le front de glace avance dans l’espace. Les gouttelettes
d’eau sont traitées une par une, et leur trajectoire est extraite du champ de vitesse obtenu à
partir d’un solveur de gouttelettes eulérien. Les gouttelettes sont rassemblées en amas pour
réduire le coût de calcul, et ces derniers sont injectés à une position initiale aléatoire, sur un
plan d’injection, en amont de la géométrie étudiée. La stochasticité est également introduite
dans la taille des gouttelettes, en les échantillonnant de manière aléatoire à partir de la
distribution expérimentale de taille. Le point d’impact correspond à l’intersection entre la
trajectoire des gouttelettes et le front de glace. À partir de là, selon l’état thermodynamique
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calculé avec un modèle de Messinger itératif, la goutte peut soit geler au point d’impact,
soit former un film d’eau, ruisselant sur la surface selon la direction de l’écoulement d’air
à la surface, et geler plus loin en aval. Lors de la congélation, un nouvel élément de glace
est créé avec l’algorithme d’avance de front. La méthode développée correspond à un cadre
monocouche, c’est-à-dire que l’écoulement d’air, le champ de vitesse des gouttelettes et les
échanges thermodynamiques ne sont résolus qu’une seule fois avant la méthode stochastique.
Cependant, l’effet de la croissance de la glace sur les trajectoires est pris en compte d’une
manière plus fine que dans le cadre multicouche, grâce à la technique d’avance de front
et à la représentation discrète de la glace. Cela conduit au traitement de la densité de la
glace comme une variable dépendante et à une meilleure représentation des zones d’ombre
observées derrière les cornes de glace, par exemple.

Ensuite, la vérification des calculs de la trajectoire des gouttelettes est effectuée en comparant
l’efficacité de captation obtenue pour deux cas tests aux résultats déterministes de CHAMPS,
montrant un bon accord entre les deux méthodes. De plus, l’effet de la taille de l’élément
généré avec l’algorithme d’avance de front sur la densité de la glace est évalué par une étude
de convergence en espace, montrant la convergence de la méthode développée en espace.

Finalement, la méthode est validée sur quatre cas tests. Les formes de glace obtenues sont
en bon accord avec les résultats expérimentaux. La variabilité dans la forme de la glace est
observée pour plusieurs essais du même cas, et des plumes de glace discrètes sont capturées.
De plus, des cornes de glace sont modélisées, bien que le cadre soit monocouche.

Pour conclure, la méthode développée conduit à une meilleure modélisation des structures
de glace discrètes et variables, ainsi qu’à une représentation plus fine des zones d’ombre, tout
en traitant la densité de la glace comme un résultat du processus. Les résultats suggèrent
qu’une extension du modèle en trois dimensions est nécessaire pour bien représenter la densité
variable de la glace et les mécanismes de givrage sous-jacents. En outre, des simulations
multicouches sont nécessaires pour mieux modéliser la croissance de cornes de glace.
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ABSTRACT

In-flight ice accretion is a significant hazard in aviation as it leads to performance degrada-
tion. The phenomenon is an important part of the design and certification processes and
represents an active field of research as the underlying mechanisms are still not well under-
stood. Numerical simulations are used as alternatives to experimental trials, allowing to
treat a variety of icing conditions at a lower cost. The mathematical foundations of lead-
ing icing software, such as LEWICE3D, IGLOO3D, and FENSAP-ICE, are mainly based
on algebraic methods and partial differential equations systems. This leads to a continuous
and deterministic representation of the ice accretion phenomenon, in which the ice density
is treated as an independent variable. However, discrete and random ice structures observed
in experimental frameworks, such as ice feathers, leading to significant ice shapes and severe
performance degradation are not captured by these methods. Additionally, state-of-the-art
software do not model the variability observed in the ice shape obtained for multiple trials of
the same icing conditions. Alternatives to the traditional numerical tools are thus proposed
to overcome these limitations and further the understanding of the icing phenomenon.

The main objective of this work is to provide an original two-dimensional, discrete and
stochastic numerical framework to model the ice accretion phenomenon, based on recent
works of the literature. The developments are implemented in CHAMPS, an in-house com-
putational fluid dynamic software.

First, the accretion domain is discretized using an unstructured advancing front algorithm,
usually used for mesh generation. The technique is based on the creation of elements of ice
from incoming water droplets. In a building block manner, triangular elements are generated
as the ice front advances in space. The water droplets are treated one at a time, and their
trajectory is extracted from the velocity field obtained with an Eulerian droplet solver. The
droplets are gathered in clusters to reduce the computational cost, and the latter are seeded
at random initial positions, on a seeding plane, upstream of the studied geometry. Stochas-
ticity is also introduced in the droplet size, randomly sampling it from the experimental
size distribution, using the inverse transform sampling method. The impingement location
corresponds to the intersection between the droplet trajectory and the ice front. From there,
according to the thermodynamic state computed with an Iterative Messinger model, the
droplet can either freeze at the impingement location or form a water film, flowing on the
surface according to the direction of the shear stress at the wall, and freeze further down-
stream. Upon freezing, a new element of ice is created with the unstructured advancing front
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algorithm. The developed method corresponds to a single-layer framework, i.e., the airflow,
the droplet velocity field, and the thermodynamic exchanges are resolved only once before
the stochastic method. However, the effect of the ice growth on the trajectories is taken into
account in a finer way than the state-of-the-art multi-layer framework due to the advancing
front technique and the discrete representation of the ice. This leads to the treatment of
the ice density as a dependent variable and to a better representation of the shadow zones
observed, for example, behind ice horns.

Second, the verification of the droplet trajectory computations is performed with the com-
parison of the obtained collection efficiency for two test cases to the deterministic results
of CHAMPS, leading to good agreement between the two methods. Additionally, the effect
of the element size generated with the unstructured advancing front algorithm on the ice
density is assessed through a space convergence study, showing the space convergence of the
implemented method.

Finally, the method is validated against four test cases. The obtained ice shapes are in good
agreement with the experimental results. Variability is observed for multiple trials of the
same test case in the ice shape, and discrete ice feathers are captured. Furthermore, ice
horns are modeled, although the framework is single-layer.

To conclude, the developed method leads to better modeling of the discrete and variable ice
feathers, as well as a finer representation of the shadow zones, while treating the ice density as
a result of the process. The results suggest that an extension of the model in three dimensions
is needed to well capture the variable ice density and underlying icing mechanisms in the
spanwise direction. Furthermore, multi-layer simulations are required to better model the
growth of ice horns.
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CHAPTER 1 INTRODUCTION

1.1 Context

Ice accretion, often referred as icing, is a common issue in various engineering applications.
Accretion due to the impingement and freezing of supercooled water droplets can be observed
on exposed surfaces of aircrafts, helicopters, wind turbines, ships, offshore facilities, and
power lines. The accreted ice increases the mass of the systems which can lead to higher fuel
consumption and crash for aircrafts, capsizing of ships, and collapse of power lines [8]. This
thesis focuses on aircraft applications, although the method developed can be used in other
fields.

1.1.1 Effects of Aircraft Icing

Ice accretion on aircraft wings (or rotor blades) leads to changes in the geometry of the
airfoil. These changes can affect the aerodynamic performances by decreasing the maximum
lift and the stall angle and increasing the drag [4]. Ice can also accumulates on measuring
probes, such as the Pitot tube, and leads to a false lecture of the flight instruments, which
is a major safety issue [4,8,9]. Degradation of the engine performances or its failure are also
possible impacts of in-flight ice accretion [9].

The worst-case scenario is when the ice buildup leads to the crash of an aircraft, which
can cause fatalities. Since the first reported fatal event due to icing in the 1920s, the icing
phenomenon is investigated, and manufacturers are required to certify the capacity of the
aircraft to operate in specific icing conditions since 1964 [3]. These conditions are stated in
the Federal Airworthiness Regulations (FAR), part 25 Appendix C for Supercooled Standard
Droplets (SSD) [10]. Following incidents involving Supercooled Large Droplets (SLD) and
Ice Crystal Icing (ICI) [3, 4], regulations have been added to the FAR: part 25 Appendix O
for SLD [11] and part 33 for ICI [12].

1.2 Theoretical Framework

Aircraft icing is due to the impingement and freezing of supercooled water droplets, or ice
crystals, when an aircraft passes through a cloud of droplets. The airflow carries the droplets
and drives the impingement map on the exposed surface. Upon impingement and according
to the thermodynamic exchanges at the surface, the droplets can either freeze at their impact
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location or form a water film and flow downstream on the substrate. The icing conditions,
driving the impact conditions and thermodynamic exchanges, govern how and when the
freezing of supercooled water droplets happens [13].

1.2.1 Icing Conditions and Ice Geometries

The different icing conditions result in various ice accretion shapes [8] and lead to various
impacts on the degradation of the aerodynamic performances [14]. The different ice mor-
phologies are illustrated in Figure 1.1.

Ice Roughness

At the beginning of the process, before any significant alteration of the airfoil shape, the ice
tends to accumulate as an initial surface roughness [14]. The thin rime ice layer is formed
of a smooth zone in the stagnation region, which transitions into a rough zone, and ends
with an area where ice feathers are observed [3, 14], as shown in Figure 1.1(a). In addition
to the increase of skin friction, ice roughness can cause early boundary layer transition [14]
and modify the convective heat transfer [15, 16].

It is worth mentioning that after the accumulation of the initial layer of ice, the surface of
the ice shape is rough, no matter the type of accretion [14].

Rime Icing Conditions

Streamwise ice is observed at rime icing conditions (Figure 1.1(b)), which occurs at lower
temperatures, where the water supercooling is greater. Droplets freeze upon impingement,
resulting in an ice shape that initially forms following the geometry shape. Therefore, stream-
wise ice can be interpreted as an extension of the leading edge (LE) [14], resulting in little
effects on the airflow. The rime ice tends to have a lower density due to air trapped in the
ice at the droplet impingement [3, 13].

FeathersRough
Zone

Smooth
Zone

(a) Ice roughness (b) Streamwise ice (c) Horn ice (d) Spanwise-ridged ice

Figure 1.1 Ice geometries
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Glaze Icing Conditions

Glaze conditions are characterized by warmer temperatures at which the impinging droplets
do not freeze entirely upon impact. The unfrozen water forms a water film, known as runback
water, flowing downstream of the stagnation region, driven by the airflow shear stress [3, 4].
Denser ice can form further downstream in complex shapes, such as ice horns (Figure 1.1(c))
and spanwise ridges (Figure 1.1(d)), resulting in larger separation regions and performance
degradations [14].

Mixed Ice Conditions

The observed ice geometries often feature different types of ice, mainly due to the local
variations in the flow field [13]. Therefore, a combination of rime and glaze ice shapes can
be observed on the same exposed surface.

Discrete Ice Structures

Ice feathers Ice structures known as ice feathers, shown in Figure 1.2, can grow at discrete
locations, away from the main ice accretion, or be part of the latter, depending on the icing
conditions. In the early stages of their formation, the feathers grow as individual elements
from small surface roughness. Later on, they can lead to the formation of horns, ridges,
or scallops, especially for SLD conditions [2, 17]. The mechanisms behind the growth of ice
feathers, and their development into significant ice structures are yet to be understood [17].

Ice Scallops Accretion on swept wings can lead to the formation of highly 3D structures
referred to as scallops or lobster tails [18], mainly in glaze icing conditions. They are formed
from glaze ice feathers [2, 19]. Scallops are complex, discontinuous, and periodic, and lead
to large voids within the ice accretion [19,20]. Furthermore, taking into account their highly
3D characteristics, the perturbations of the scallops on the flow are significant [3].

1.2.2 Stochasticity of the Ice Geometries

The ice accretion is random by nature [17]. Indeed, the ice geometries obtained in experimen-
tal setups are highly variable [3, 6]. Case 242, presented at the 1st Ice Prediction Workshop
(IPW) [1], illustrates well this variability. As presented in Figure 1.3(a), at the same icing
conditions, several experimental trials lead to different ice shapes. Additionally, within the
same trial, the ice shape can vary in the spanwise direction (Figure 1.3(b)), even for pseudo-
2D cases, which are tested on full 3D wings with spanwise invariant geometries. Symmetrical
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Figure 1.2 Scan of the ice shape for case 251 [1]

airfoils at 0° of angle of attack (AOA) also present differences in the ice shapes of the upper
and lower surfaces, and the variability is similar to the one occurring in multiple experimental
trials for the same icing conditions [17].

Furthermore, roughness elements and feathers appear at random positions [17]. Figure 1.2
presents the scan of the experimental ice shape obtained for case 251 of the IPW [1]. Feathers,
highlighted in the zoom of Figure 1.2, are observed at different locations and their size varies
randomly.

A common way to represent the experimental ice shape variations in the spanwise direction
is the extraction of the maximum combined cross section (MCCS) [1]. This process consists
of identifying the outer-most ice contour obtained from the combinations of multiple cuts of
the experimental ice scan in the spanwise direction.
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Figure 1.3 Experimental results of case 242 [1]

Sources of Stochasticity

One of the significant sources of randomness comes from the cloud of supercooled droplets
[13], which is known to have a stochastic structure [21]. Two main aspects are considered
here: the spatial distribution of the droplets and their size distribution.

First, the position of the droplet in the cloud is random. Additionally, the probability of
finding a droplet at a specific position can be considered as constant within the cloud, i.e.,the
spatial distribution follows a uniform probability density function (PDF) [22]. Second, the
droplet size varies throughout the cloud. Typically, the distribution of sizes is described in
terms of :

• the median volume diameter (MVD), representing the diameter at which half of the
water mass loading is contained in the smaller droplets and half in the larger [23];

• the liquid water content (LWC) fraction, representing the fraction of the total water
mass loading in a given volume (i.e.,the cloud) coming from droplets in a given diameter
range.

As for the other sources of randomness, one can note :

• the random distribution of surface imperfections, acting as nuclei for the freezing process
[3];
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• the stochastic nucleation at the liquid/subtrate interface [8].

1.3 Problem Statement

While ice accretion is a well-known problem, it is still not entirely understood [3, 8]. The
effect of the stochasticity and the mechanisms at the microscopic and mesoscopic scales on
the macroscopic phenomenon, i.e.,what we observe, are yet to be completely assessed [8].
There are two main active fields of research to further the understanding of these underlying
processes [13]:

• Experimental tests;

• Numerical simulations.

The experimental tests include in-flight tests and icing wind tunnel experiments. While
these tests allow studying the actual icing phenomenon, they are expensive, hazardous, and
restrictive [3, 13]. On one hand, in-flight tests can compromise the safety of the flight crew.
On the other, icing wind tunnels, due to their limited size, require to match the actual scale of
the studied cases; in most cases, it is not possible to fit the full-scale wing. This involves the
design of alternative geometries that are small enough to fit in the wind tunnel, while keeping
the flow field constant at the LE compared to the full-scale conditions, i.e.,the leading edge
radius, the droplet diameter and the non-dimensional numbers, such as the Reynolds and
Mach numbers, are kept constant [3]. Therefore, numerical simulations are used to study a
large variety of icing conditions at a lower cost. Additionally, they are used in the design of
de-icing systems and in the certification process to predict the ice shape resulting from the
icing conditions stated in the FAR. Wind tunnel experiments are still needed to validate the
numerical models, but the need for these tests is reduced [3].

The state-of-the-art of icing software typically involves the resolution of the following mod-
ules:

1. flow field;

2. droplet trajectories;

3. thermodynamic exchanges;

4. geometry evolution.
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Typically, partial differential equations (PDE) are the mathematical foundations of these
computational models. This numerical framework is based on the assumption that the icing
process is a quasi-steady phenomenon. However, the real icing phenomenon is a dynamic
process that evolves in time. Multiple time scales are involved, such as the freezing time
of a single droplet or the global icing time in which the macroscopic phenomenon of the
ice growth is observed. To increase the accuracy in the latter time scale, the previously
mentioned modules are resolved in a time loop, which allows taking into account the effect of
the newly iced geometry on the rest of the process [3,13]. The flow field, droplet trajectories,
and thermodynamic exchanges are therefore resolved in steady-state for a fraction of the
icing time, then the geometry is morphed, and the process is restarted until reaching the
total icing time, requiring to re-discretize the computational domain after each evolution of
the geometry (new mesh generation). This method is known as multi-layer [3].

The Reynolds Averaged Navier-Stokes (RANS) equations are resolved to obtain the flow field
around the studied geometry. The droplet trajectories are computed using a Lagrangian par-
ticles tracking or an Eulerian representation of the droplet equation of motion [24]. The
thermodynamic exchanges resolution is based on the iterative resolution of an algebraic for-
mulation of the mass and energy balances or PDE systems. The iced geometry is typically
obtained from an algebraic method, which moves the vertices of the surface according to the
ice accretion mass rate [3].

This state-of-the-art framework is continuous and deterministic (i.e.,always leads to the same
solution). Thus, it is not possible to capture the accretion of the discrete and stochastic ice
morphologies mentioned in Section 1.2.2 [25]. Furthermore, the time step required to keep
a reasonable computational time in the multi-layer framework can be too large to capture
the initiation of those morphologies. For example, ice feathers can grow immediately at the
initiation of the icing process [17] from small scale ice roughness elements [2], as illustrated
in Figure 1.4. Additionally, the ice density is typically lower than the bulk ice due to air
pockets trapped into the ice. However, it is treated, most of the time, as an independent
variable in those models.

1.4 Research Objectives

Icing software can help to increase the understanding of the icing phenomenon. Underlying
mechanisms, such as the formations of ice feathers, must be studied and their modeling
requires to break with the determinist and continuous framework. Therefore, the current
research project aims to model the stochastic ice shapes and the discrete ice structures within
a non-determinist framework. Specific objectives are proposed :
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Figure 1.4 Schematic formation of ice feathers. Adapted from [2]

1. Model the ice shape in various icing conditions (rime and glaze);

2. Model the variability within the ice shape for multiple trials of the same conditions;

3. Investigate the model capacities to capture variable ice density and discrete ice struc-
tures.

Previous works, presented by Szilder and Lozowski [25] and Bourgault-Côté [3,5], introduce
stochasticity in the impingement and freezing processes to model the accretion of random
and discrete structures. Both approaches, based on a discretization of the accretion domain
using a Cartesian grid, lead to variable ice density and capture discrete and stochastic ice
structures. Bourgault-Côté’s approach, developed at Polytechnique Montréal, successfully
simulates rime ice conditions. However, glaze ice shapes are not well captured, limiting
the applicability of the model to simpler ice conditions [3, 5], far from the current state-of-
the-art icing software requirements. Therefore, the current research project focuses on the
development of a stochastic and discrete ice accretion model in the extension of Bourgault-
Côté’s work [3, 5].

1.5 Thesis Outline

Chapter 2 presents the state-of-the-art icing software, combined with a literature review of
the existing alternatives to the deterministic and continuous frameworks. More specifically,
stochastic and Lagrangian approaches are described. Chapter 3 proposes a complete original
icing framework introducing randomness in the icing process to reproduce the stochastic
structure of the cloud, thus breaking with the multi-layer determinist approach. Results are
presented in Chapter 4, including test cases in rime and glaze icing conditions on 2D and
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2.5D (i.e., swept wing) geometries. The conclusion completes the thesis in Chapter 5, along
with the limitations of the proposed method and recommendations for future work.
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CHAPTER 2 LITERATURE REVIEW

This chapter presents the framework typically used for the numerical simulation of the in-
flight icing phenomenon, which is deterministic and continuous. An overview of alternative
approaches is then presented, focusing on stochastic and discrete frameworks.

2.1 Deterministic Approach

The deterministic framework is the current state-of-the-art approach for icing software. At
the first IPW, the results of nineteen participants out of twenty were obtained from deter-
ministic solvers [1]. In general, the simulations follow the workflow illustrated in Figure
2.1.

Airflow Solver

Figure 2.1 Typical deterministic workflow

As illustrated, the different models are solved sequentially, meaning that the icing phe-
nomenon is treated in an one-way coupled fashion. Furthermore, even if the icing phe-
nomenon is unsteady, the modules are resolved in a steady-state framework [3]. The icing
process is considered as a quasi-steady phenomenon: the total icing time is split into inter-
vals, referred to as layers of ice. After each layer, the obtained iced geometry is used as
the studied geometry for the next layer. This process is represented by the loop in Figure
2.1 and requires generating a new volume mesh at the end each layer to discretize the new
computational domain. To that end, for the resolution of the RANS equations, elliptic or
hyperbolic mesh generators are typically used [3].
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Each module is described in the following sections.

2.1.1 Airflow Solver

The flow resolution is required to simulate icing conditions as it drives the convective heat
transfer and the droplet impingement on the airfoil surface. To that end, two main flow
solvers are used in icing software: i) inviscid resolution with the potential method or Euler
equations and ii) viscous resolution with the RANS equations.

The inviscid solver (either the panel method or the Euler solver) is coupled with a boundary
layer method to resolve the heat transfer [4, 6, 26]. Although this method leads to fast
resolution of the flow field, it is limited by the impossibility to compute the flow separation
and the associated recirculation zones found behind horns [3, 6]. This framework is typical
of the first generation of icing software [3, 4].

The resolution of the RANS equations enables the treatment of a wider range of geome-
tries and scenarios, taking into account the viscous effects. It is also used to assess the
performance degradation resulting from the ice accretion. This framework is typical of the
second generation of icing software [3, 4], such as LEWICE3D [20], FENSAP-ICE [27] and
IGLOO3D [28]. The convective heat transfer coefficient (HTC), one of the most important
terms involved in the thermodynamic exchanges, is directly obtained from the resolution of
the RANS equations with Newton’s law of cooling, using either one flow field solutions [27],
or two [29].

2.1.2 Droplet Solver

Once the flow field is obtained, the droplet impingement map on the surface is computed.
One of the main simplifying assumptions associated with the droplet trajectory resolution
is that the droplets do not affect the airflow due to their small mass loading, allowing for a
one-way coupled resolution [3, 6, 24]. Here, the droplet cloud is referred to as the disperse
phase.

The droplets are driven mainly by the drag, which depends on their velocity and shape, and
the gravity. The associated trajectories are obtained from the resolution of the droplet equa-
tions of motion. The problem is described in either a Lagrangian or an Eulerian framework.
Both methods result in the computation of the collection efficiency, which can be interpreted
as the non-dimensional water impingement rate at the wall.
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Lagrangian Method The Lagrangian description of the problem involves the discretiza-
tion of the disperse phase by numerical particles, enabling the simulations of splashing,
rebound, and break-up phenomena [3]. The equations of motion of each particle are resolved
from a seeding point and the process stops when the particle reaches the geometry wall or
leaves the computational domain [6]. The system is solved using an integration scheme, such
as backward difference schemes or Runge-Kutta solvers [6, 30]. The time step is selected to
ensure the stability of the integration scheme (if it is explicit). While the original Lagrangian
description is a gridless method, Rendall and Allen [30], among others, proposed to resolve
Newton’s second law for finite volume framework using the RANS volume mesh, enabling
the droplet to cross each RANS cell in a single time step. The method is based on the
intersections between the droplet trajectories and the RANS mesh facets.

Eulerian Method Instead of the particle representation of the droplets, Bourgault [24]
proposed to represent them as a continuous flow, based on the assumption that their concen-
tration in the airflow is high enough [3, 31]. Therefore, the volume fraction, i.e.,the density,
and the velocity field of the droplets are computed from the continuity and momentum equa-
tions, which form a PDE system. The resolution can be performed on the same mesh as the
RANS equations, and the Eulerian approach simplifies and generalizes the droplet trajectory
resolution [3, 24].

2.1.3 Thermodynamic Exchanges

With the HTC and the impingement map, the ice mass rate on the surface is computed from
the thermodynamic exchanges. The mass and energy balances, performed on a control volume
at the geometry surface, are illustrated in Figure 2.2, based on the work of Messinger [32].
Here, the balances are resolved with the assumption that the mass and energy exchanges
reach the steady-state. More details on the formulation of the heat fluxes can be found in [4].
The control volume corresponds to the surface discretization of the RANS mesh.

An important parameter in Messinger work is the freezing fraction, which corresponds to the
ratio between the ice mass rate and the sum of the incoming mass rates [32]:

ffr = ṁice

ṁin + ṁimp − ṁev,sub

(2.1)

For glaze cases, ffr < 1.0, meaning that there is water flowing out of the volume control; the
runback water mass rate ṁout 6= 0.0. The ice mass rate ṁice and the runback water rate ṁout

are found with respectively the energy and the mass balances, posing Ts = Tfus, where Ts is
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Figure 2.2 Mass and energy balances on a control volume. Adapted from [3,4].

the surface temperature [33]. For rime cases, ffr = 1.0, meaning that all the incoming water
freezes. The ice mass rate ṁice corresponds to the incoming mass rate (ṁin + ṁimp− ṁev,sub)
and Ts is found posing ṁout = 0.0.

The thermodynamic state is resolved for each surface element of the mesh from the stagnation
point, where ṁin is set to 0.0, to the trailing edge (TE), assuming that the water flows in the
same direction, following the airflow streamlines [33,34]. This corresponds to the limitation of
the Messinger model: it depends on the stagnation point [3] and is not suitable for complex
geometries having multiple stagnation points [34]. Other models have been developed to
overcome this limitation [33], such as the Iterative Messinger model [34] described briefly
in the following section, the Extended Messinger model [35] and the Shallow Water Icing
model [4, 36].

Iterative Messinger Model The Iterative Messinger model, developed by Zhu et al. [34],
is based on the mass and energy balances of the Messinger model. However, the inflow mass
rate ṁin is treated as a system unknown. The runback direction is found using the shear
stress direction at the geometry wall. The inflow mass rate is initialized at 0.0 in every
surface element and the balances are resolved within an iterative loop, updating the values
of ṁin at each resolution, until reaching convergence.

2.1.4 Geometry Evolution

The state-of-the-art geometry evolution algorithms model the ice growth as a normal dis-
placement of the surface vertices from the study geometry, such as the algebraic, level-set
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and hyperbolic methods [3]. The distance of the displacement corresponds to the ice thick-
ness and is associated with the ice mass rate, found with the thermodynamic model, and
the icing time. One of the drawbacks of these methods is that the ice growth is treated as a
normal extrusion of the studied geometry, instead of an accumulation phenomenon. Another
challenging aspect is to ensure mass conservation while keeping a valid and well-discretized
geometry in concave/convex regions [3].

2.2 Non-Deterministic Approaches

While the deterministic approaches are the state-of-the-art of icing software, underlying phe-
nomena are neglected and discrete ice structures are missed, as presented in Section 1.3.
Therefore, alternative approaches are proposed by different authors to further the under-
standing of the icing phenomenon. An overview of four methods is presented in the following
sections. Other alternatives, such as the application of the lattice Boltzmann [37], the volume
of fluid and moment of fluid [38] methods, are not discussed, but represent active research
fields.

2.2.1 Morphogenetic Model

The Morphogenetic model, developed by Szilder and Lozowski [25,39], is a Lagrangian frame-
work modeling the ice accretion by computing the thermodynamic state of individual fluid
elements (liquid or frozen), represented by the cells of a Cartesian grid. It aims to pre-
dict at once discrete structures, namely rime ice feathers, and the water film encountered in
glaze ice conditions. Furthermore, it leads to a variable ice density, which is known to be
a shortcoming of the deterministic frameworks as the density is treated as an independent
variable.

The method was initially developed in 2D for the simulations of the accretion of ice over
cylinders exposed to freezing rain, such as power transmission lines [40]. Then, it was ex-
tended to in-flight icing on 2D cases, approximating the airfoil LE to a half-cylinder and using
empirical relations to compute the mass and energy balances. The most recent developments
allow the treatment of 3D geometries, namely swept wings [18,41].

Cartesian Grid Discretization

The core of the Morphogenetic model is the use of a Cartesian grid to discretize the accre-
tion domain. A complete rectangular lattice is overlaid on a portion of the geometry, as
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represented in Figure 2.3. Each cell of the grid represents a single fluid element. The ice is
accumulated in this grid in a building block manner, one element at a time [41].

Figure 2.3 Representation of the rectangular lattice used in the Morphogenetic model

To reduce the computational cost, each cell of the grid represents a cluster of water droplets.
This leads to the assumption that the gathered droplets follow exactly the same evolution;
their trajectory, impinging location, and thermodynamic state are the same. The mass of the
cluster is related to the size of the Cartesian grid cells, which is denoted by δ and corresponds
to the cell side length.

The elements move into the Cartesian grid by successively visiting empty cells of the lattice,
referred to as sites, from a random impingement location, which corresponds to an empty cell
in the neighborhood of a frozen cell or on the clean surface. The visited sites are also on the
surface of the current clean/iced geometry: at least one of their neighbor is either a frozen
cell or a geometry wall. In this way, the method models the fluid motion on the surface to
enable glaze ice simulation.

Random Impingement

The fluid element impinges the clean or iced surface randomly, respecting the collection
efficiency distribution on the clean geometry [41]. The latter is given as an input to the
Morphogenetic model and is obtained from a Lagrangian droplet trajectory solver performed
for the clean airfoil using a monodisperse droplet size distribution. The collection efficiency is
constant throughout the process and the impingement location of a fluid element is randomly
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selected from the generation of a pseudo-random number (PRN), using a heuristic process
[42]. It is not obtained directly from the trajectories of the fluid elements. The water mass
distribution in impinged elements on the surface is limited by the distribution of the collection
efficiency on the clean surface.

In an optimization of the Morphogenetic model, Burtnarasu et al. proposed to obtain the
droplet trajectories by integrating the streamlines of an Eulerian droplet velocity field [42,43].
However, the integration is performed for each Cartesian cell visited using a Runge-Kutta
scheme from the far-field to the airfoil surface, and the local droplet velocity is interpolated
from the Eulerian field. While leading to a better representation of the trajectories than
the original Morphogenetic model, the method is presented without much details on its
implementation and the computation of the impingement locations. Additionally, since the
integration is computed for each Cartesian cell visited, the associated computational costs
are assumed to be significant.

Random Walk Model and Freezing

Upon impingement, a fluid element can either freeze or continue its motion to the next
available site [41]. A random walk model controls the motion of each fluid element from its
randomly selected impingement site: at each site along the surface a freezing probability Pfr

is compared to a uniform PRN to determine the state of the fluid element at this site.

The Morphogenetic model uses Messinger’s formulation of the steady-state mass and energy
balances [32] to establish, at each visited site along the surface, the freezing probability,
which corresponds to the definition of the freezing fraction on the clean geometry [25, 41].
The freezing probability at a site is locally computed using empirical relations for the heat
flux formulations [25, 41].

There are two possible outcomes of the freezing probability comparison to the generated
PRN [41]:

1. If Pfr > PRN, the entire fluid element freezes at this site;

2. Else, the entire fluid element continues its motion to the next site.

The next treated site is the immediate neighbor site in the same orientation as the shear
stress, based on the assumption that the airflow drives the water motion on the surface.

In the case of rime ice conditions (Pfr = 1.0), the fluid element freezes upon impact enabling
the formation of ice feathers, while for glaze ice conditions (Pfr < 1.0), it can move further
downstream on a significant distance [41].
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Cradle Search

Szilder and Lozowski proposed a method, named the cradle search, to obtain relatively
compact ice by modeling the tendency of the water to fill gaps due to its surface tension [25].
The cradle search is performed when a fluid element freezes, and consists of finding a cradle
location, i.e.,the final resting position of the fluid element, within a given radius of the freezing
cell: respectively 5δ and δ for glaze and rime ice, where δ is the element size. The final freezing
position corresponds to the empty cell in this neighborhood which has the highest number
of ice neighbors. If there is more than one site respecting this condition, the cradle location
is randomly selected using a PRN. The choice of 5δ and δ for the neighborhood radius is
arbitrary and only supported by the fact that the model results are within a reasonable
range [25].

Extension to Multi-Layer

Burtnarasu et al. proposed an extension of the original Morphogenetic model to perform
multi-layer simulations [42,43]. At the end of each layer computation, the contour of the ob-
tained ice shape is extracted from the Cartesian grid, and the next volume mesh is generated
from this new geometry. However, it is unclear how the extraction of the ice boundaries is
performed, and how it is processed to obtain a valid volume mesh.

2.2.2 Cartesian Advancing Front Algorithm

Bourgault-Côté proposed a stochastic alternative to the Morphogenetic model, replacing
the complete Cartesian grid with a Cartesian advancing front technique [3,5]. The accretion
domain is limited to the ice front, reducing the computational requirements due to its minimal
size. The flow and droplet fields, as well as the thermodynamic exchanges, are resolved before
the stochastic method, using respectively the RANS and Eulerian droplet solvers and the
Iterative Messinger model.

The initial front, formed of Cartesian cells, is created around the studied geometry wall, as
presented at Figure 2.4(a). Two layers of halo cells are also created around the initial front to
ease the advancing process. The cells are referred to as pixels. As proposed by Szilder [25],
each pixel represents a fluid element.

To identify the pixels available to receive water, the collection efficiency and the droplet
velocity, obtained from the Eulerian droplet solver in the RANS mesh, are interpolated to
obtain the values in each Cartesian pixel. The impingement of a front pixel is possible only
if the interpolated droplet velocity vector points towards it. In that case, the pixel status is
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switched to active, represented in red in Figure 2.4(b). As proposed by Szilder [25], the active
pixels are randomly impinged by the generation of a PRN, and the interpolated collection
efficiency limits the impingement process. The impinging water mass is directly seeded in
the front (active) pixels, the droplet trajectories are not computed.

Once an active pixel is randomly selected to be impinged, the latter can either freeze at the
receiving pixel position (rime ice state) or flow downstream on the ice front (glaze ice state),
following the same rationale proposed by Szilder [25]. However, the freezing probability is
directly converted from the freezing fraction computed by the Iterative Messinger model.
To that end, the freezing fraction is interpolated in the same manner as for the collection
efficiency and droplet velocity. If a pixel freezes, it receives the status of frozen, and the front
is updated and advances (new pixels are created), as illustrated in Figure 2.4(c). Although
the process models successfully rime ice conditions, the glaze ice conditions are yet to be
modeled [5].

(a) Created front (b) Initial front (c) Updated front

Figure 2.4 Cartesian advancing front process [5]

The framework proposed by Bourgault-Côté also enables multi-layer simulations. To extract
the ice contour at the end of each layer, a heuristic process is used to identify the frozen
pixels located at the boundary of the ice and the air. Then, the coordinates of these pixels
are converted to an ordered data set, and the corresponding new geometry is generated using
a B-spline formulation to enable a robust multi-layer framework [44]. The following ice layer
computations then starts with the re-meshing of this new geometry.

The results for this method on a rime case are presented in Figure 2.5 [5]. Figure 2.5(a)
shows the stochastic ice mesh obtained from a single-layer simulation and the final ice front,
represented by the active pixels in red. The B-spline extracted from the latter is represented
in black, and the new geometry is smooth, contrary to the final ice front. Figure 2.5(b)
presents the results for different numbers of layers. The single-layer result presents the
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typical bubble-like ice shape [4], meaning that the random impingement process leads to
water being seeded behind the ice front, i.e.,the shadow zones are not completely captured.
The multi-layer results are in good agreement with the experimental ice shape.

(a) Details of the Cartesian ice mesh created and the
B-spline extraction. The B-spline is represented in
black.

(b) Results for different number of layers

Figure 2.5 Results on rime case 01 [6] for the method of Bourgault-Côté [5]

2.2.3 Particle-Based Methods

Particle-based frameworks are also of interest for icing simulations, as they alleviate the
restrictions imposed by the use of grids. Among others, two are presented here.

Spherical Element Framework

In a similar way to Szilder and Bourgault-Côté, Leroy developed a Lagrangian framework in
which the fluid elements are represented by spherical particles of the same diameter as the
treated droplets [45]. The method aims to reproduce the formation of ice scallops on swept
cylinders in a 3D framework. The droplets are treated sequentially and they are seeded in
the computational domain at a random position on a seeding plane upstream of the studied
cylinder. The flow field is resolved beforehand with the panel method, and empirical relations
are used to obtain the HTC. The trajectories are obtained from a Lagrangian solver. The
droplets can either impinge on the clean geometry or previously frozen spheres. From there,
the local freezing fraction is computed using Messinger’s formulation of the mass and energy
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balances. An empirical HTC model is proposed to include its variation depending on the
position of the droplet on the ice front: if the droplet is on a local summit, the HTC is
increased, while if it is in a local valley, the HTC is decreased. This variation is taken into
account in the local freezing fraction computation. If ffr = 1.0, the droplet performs one or
two rotations on the ice front to reach a more stable resting position, which has a similar
effect to the cradle search in Szilder’s framework [25, 39]. If ffr < 1.0, the runback water
is modeled by the rolling motion of the individual spheres on the clean geometry or the
previously frozen spheres. At each rotation, the local freezing fraction is computed to obtain
the mass of ice to be accumulated, and a sphere of the corresponding diameter is left at this
location to represent the frozen fluid element. The remaining mass flows downstream: a new
sphere of the associated diameter rotates to the next runback site and the process is repeated
until the remaining mass is negligible. Therefore, contrary to Szilder’s framework [25, 39],
partial freezing of the fluid elements is allowed.

Droplet-Scale Framework

Yuki and Yamamoto applied the moving particle semi-implicit (MPS) method, initially de-
veloped by [46] for nuclear applications, to the icing phenomenon [47]. In this approach, the
water droplets are discretized as clusters of small numerical particles, enabling the modeling
of droplet rebound and splashing phenomena [47]. The method aims to compute the phase
change of each numerical particle from liquid to solid. This means that a single droplet can
be constituted, at the same time, of liquid and solid numerical particles. The governing
equations are the Navier-Stokes and the continuity equations, and they are resolved for the
numerical particles. The droplets are inserted from a random initial location in the compu-
tational domain. The initial method only accounts for rime ice conditions and successfully
reproduces ice feathers. However, the flow influence on the droplets is neglected, i.e.,they are
traveling in a straight line. In a recent extension of the model, Toba et al. proposed a hybrid
grid- and particle-based method to take into account the flow and heat transfer effects at the
airfoil wall to simulate glaze ice cases [48]. To that end, the flow field is obtained from the
RANS equations resolution with a finite difference method (grid-based), and the droplet tra-
jectories are obtained within a Lagrangian framework (particle-based). The phase change of
the numerical particles is then resolved using the MPS method, adding the resolution of the
heat conduction equations to compute the heat transfer between the particles and the wall
(particle-particle and particle-wall heat exchanges). Although the method leads to plausible
ice shapes, it has yet to be validated on real icing conditions [48].
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A comparison between the fluid element representation of the Cartesian grid methods and
the particle-based frameworks is illustrated in Figure 2.6.

Geometry

(a) Cartesian grid representation (Szilder [25]
and Bourgault-Côté [3, 5])

Geometry

(b) Spherical element representation (Leroy [45])

Geometry

Splashing

(c) MPS representation (Yuki and Yamamoto
[47])

Figure 2.6 Comparison of the element representations. A single fluid element is represented
on the left for each method. On the right, a simplified representation of the ice accumulation
on the geometry is illustrated.
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CHAPTER 3 NUMERICAL MODELING

This chapter presents an original and complete stochastic model. The Computational Fluid
Dynamic software in which it is implemented is first presented. The methodology developed is
then described in detail, including the modeling of the accretion of individual elements of ice,
the droplet trajectory computations, and the thermodynamic exchanges to enable the simula-
tions of glaze icing conditions. The verification of the process is then presented, followed by
the proposition of an extension of the 2D model to improve the obtained results.

3.1 CHApel Multi-Physics Simulation

CHApel Multi-Physics Simulation (CHAMPS) is the new Computational Fluid Dynamic
(CFD) solver developed using the Chapel programming language [49] at Polytechnique Mon-
tréal in professor Éric Laurendeau’s team [50]. It is a 2D, 2.5D and 3D unstructured
cell-centered finite volume framework solving the RANS equations, which are closed with
Spalart-Allmaras [51,52] or the K-ωSST-V [53] turbulence models. The convective fluxes are
discretized using Roe [54] or AUSM [55] schemes. The second-order of accuracy is achieved
through Green-Gauss or Weighted Least Square formulations [55] for the gradients compu-
tations of the flow variables, and Barth-Jespersen [56], Venkatakrishnan [57], Van Leer or
Van Albada [55] methods for their limiters. Time integration is performed using either the
hybrid multi-stage Runge-Kutta scheme [58], or the implicit Lower-Upper Symmetric-Gauss-
Seidel and Generalized Minimal Residual schemes. The solver is parallelized over shared and
distributed memory, natively supported by Chapel.

The droplet trajectories are obtained from the resolution of the Eulerian equations [24].
The convective fluxes are computed using an upwind scheme and the gradient and limiter
formulations are re-used from the flow solver. The thermodynamic exchanges on the geometry
surface are resolved with an Iterative Messinger model [34]. To that end, the convective heat
transfer coefficient (HTC) is obtained from the flow solver using Newton’s law of cooling
[4, 27].

For the evolution of the geometry in the deterministic framework, a Lagrangian (or algebraic)
method, or a hyperbolic scheme [3] are used to move the vertices of surface mesh following a
normal extrusion. Then, to achieve multi-layer icing simulations, the computational domain
is re-meshed to take into account the geometry evolution using a hyperbolic mesh generation
[59].
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3.2 Rationale

In order to represent the accretion domain, the original Morphogenetic model [25, 39] uses
a complete rectangular lattice, while Bourgault-Côté [3, 5] proposed a Cartesian advancing
front technique to reduce the computational cost. However, both approaches are not body-
conforming and required post-processing to extract the ice front. To that end, heuristic rules
are used to treat problematic features of the ice front, such as holes in the grid [3], leading
to a possible lack of robustness in both methods.

The present work proposed an alternative that uses an unstructured advancing front algo-
rithm instead of the Cartesian advancing front technique proposed by [3], to model the growth
of the ice. This body-conforming approach allows representing the ice front as a valid surface
mesh throughtout the process. Each element of the unstructured mesh corresponds to an
element of ice, generated accordingly to the impingement location and the thermodynamic
state, thus keeping the Lagrangian framework proposed in [3, 5, 25, 39]. In addition to the
accretion domain discretization, the proposed method aims to better model :

• the droplet trajectory;

• the thermodynamic state;

• the runback water (displacement on the geometry and/or ice front).

Furthermore, the proposed method aims to account for the evolution of the geometry in a
finner way than the multi-layer approach. This is the reason why the ice accretion is treated
in a piecewise manner, using a stochastic and Lagrangian framework. The concept of droplet
clusters is introduced in the same way as in the Morphogenetic model [25].

3.3 Global Process

Before the stochastic accretion process, the flow and droplet fields are resolved on the RANS
volume mesh using respectively the RANS and Eulerian equations, as presented in the deter-
ministic framework, described in Section 2.1. The thermodynamic exchanges are also com-
puted in a deterministic manner on the RANS surface mesh, using the Iterative Messinger
model, described in Section 2.1.3.

The global process, illustrated in Figure 3.1, goes as follows:

1. Insertion of a droplet cluster upstream of the studied geometry at a random location;
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2. Resolution of the trajectory of the cluster :

(a) If there is an intersection between the trajectory and the geometry, computation
of the thermodynamic state;

(b) Else, return to step 1.

3. Depending of the thermodynamic state, i. e. the freezing fraction ffr, determination
of the fraction of the cluster to be frozen :

(a) If ffr = 1.0, the cluster completely freezes;

(b) Else if ffr < 1.0, a fraction of the cluster freezes. The remaining mass moves
downstream of the impingement location, on the clean and/or iced geometry;

• Determination of the thermodynamic state at the new location of the cluster.
Return to step 3a.

4. Return to step 1 until the targeted mass of the accumulated ice is reached.

In the process, each droplet is treated sequentially. The ice elements are created when a
cluster freezes using an unstructured advancing front mesh generator, and the geometry is
updated after the generation of each new element. Stochasticity is introduced through the
insertion of the cluster in the computational domain. First, the cluster initial position is
randomly generated on a seeding plane, upstream of the geometry, using a PRN. Second, the
diameter of the droplets in the cluster is obtained randomly from the droplet size distribution,
which is treated as a cumulative distribution function (CDF).

The main difference between the proposed alternative and the deterministic geometry evo-
lution methods lies in the way to model the ice growth: in the latter, the ice is generated as
a normal extrusion of the surface, while in the former, the ice is accreted on the surface in
building block manner.

3.4 Unstructured Advancing Front Algorithm

The unstructured advancing front algorithm is a mesh generation technique in which elements
(triangles in 2D or tetrahedra in 3D) are generated successively from the initial discretization
of the boundary conditions, namely the initial front. The method is based on the dynamic
evolution of this front and its update to generate a complete mesh.

To ease the description of the process, the definition of the following topological elements are
required :
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Random initial 
position

a) Impingement location b) Generation of a new 
element

c) Generation of several new 
elements

d) Generation of a significant
ice shape

Droplet 
trajectory

Figure 3.1 Global stochastic process

• A node is a 0D element, described by a single coordinate.

• A facet represents a surface and is formed by two nodes in 2D and at least three in
3D. In 2D, it is geometrically a line.

• An element represents a volume and is formed by at least three facets in 2D and four
in 3D. In the present 2D framework, it is geometrically a triangle.

• The front is formed of the facets available to generate new elements.

The key components of the use of this mesh generator in the present icing context are:

• the initial front, which is the studied geometry;

• the order of treatment of the front facets;

• the stop criterion.

The usual implementation of the technique is first presented, then its application to the icing
process is developed.

3.4.1 General Process

The unstructured advancing front technique implemented in the present work is based on the
methodologies proposed by Lohner and Parikh [60], Peraire et al. [61] and Jin and Tanner [62].

The process goes as follows [63]:
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1. Discretization of the boundaries, which form the initial front, as presented in Figure
3.2(a) in red;

2. Selection of the next front facet based on the predefined order of treatment.

3. Generation of the next element from the selected front facet, as illustrated in Figure
3.2(b);

(a) Selection of an existing node or creation of a new node;

(b) Validation of the new element (check intersections with existing elements), if in-
valid, return to step (2a);

4. Update of the front by removing the treated facet and adding the created facets (Figure
3.2(b), in red);

5. Repeat steps 2 to 4 until reaching the stop criterion (Figure 3.2(c)), which is usually
when the front is empty.

Generation of an Element

The generation of a new element starts with the selected front facet. Then, an existing front
node, or a new one, is selected to have the required number of nodes to form a complete
element. This selection is based on a search of the neighboring front nodes.

It is performed around an optimal node position, which is (Figure 3.3):

Popt = Pfacet + δ
√

3
2 ~nfacet (3.1)

(a) Initial front (b) Generation of one element and
update of the front

(c) Front and mesh after several it-
erations

Figure 3.2 Unstructured advancing front process. The front is represented in red.
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where Pfacet and ~nfacet are respectively the center of the selected front facet and its unit
normal, and δ is the targeted element size. The term δ

√
3/2 is the height of an equilateral

triangle with a side length of δ. The existing front nodes within a radius of 0.75δ of the
optimal node are tested to assess if they form a valid element with the selected front facet.

Figure 3.3 Optimal node position

The validity tests consist of checking if there is an intersection between existing elements of
the mesh and the potential new element. If there is more than one valid potential element,
the most regular one (i.e.,equilateral triangle) is selected. The validity and well-shapeness
tests are well described in [60–62]. If no existing node forms a valid element, then a new
node is created at the optimal node position (only if the corresponding element is valid).

The algorithm is converged when for each front facet treated, a valid element is generated.
A complete and valid mesh then results from the process. In the case that no valid element
can be formed for any remaining front facets, it is not converged and the generated mesh is
incomplete.

3.4.2 Application to Icing

The interest of this method of generation of elements in the icing framework is related to
three aspects of the advancing front process, namely :

• the order of treatment of the front facet;

• the creation of a new node;

• the selection of an existing node.
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Before addressing these aspects, it is important to specify how the front and the element size
are treated.

Initial front

As presented in Figure 3.2(a), the unstructured advancing front algorithm requires the dis-
cretization of the boundary conditions to initialize the mesh generation. In the present icing
framework, it is the surface discretization of the studied airfoil. To ensure the regularity
of the surface discretization, required for the convergence of the algorithm, the surface dis-
cretization of the RANS mesh is not used. Instead, a uniform surface mesh is used, based
on the same geometry as the RANS mesh, as presented in Figure 3.4. It allows controlling
the targeted element size of the ice mesh, independently of the volume mesh discretization.
As a result, the surface mesh is generally an over-discretization of the RANS surface mesh.
To simplify the following sections, the uniform surface mesh and the ice mesh generated
by the unstructured advancing front are respectively referred to as the initial front and the
stochastic mesh.

Active front

The active front is made of the facets that are available for the generation of a new element.
In the present framework, these facets are the ones available for impingement. Throughout
the generation of new ice elements, the active front becomes the ice front that “advances” in
space, as the ice would grow in an experimental (or in-flight) context.

Element Size and Stop Criterion

Due to the droplets being gathered in clusters, the targeted element size must be linked to
the mass of the cluster and the stop criterion to be consistent with the mass conservation.

In 2D, the volume of an element Velement, in m2, is the area of a triangle. Since the process
aims to generate regular elements (i.e.,equilateral triangles), the cluster mass mcluster, in
kg/m, is set to correspond to the mass of a regular element :

Velement, reg = δ2√3
4 (3.2)

mcluster = Velement, reg · ρbulk,ice (3.3)

where ρbulk,ice is the bulk ice density, ρbulk,ice = 917 kg/m3. It is important to note that the
mass is expressed in unit of span due to the present framework being in 2D.
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Figure 3.4 Comparison of the initial front and RANS surface mesh on the lower surface of a
NACA0012

Throughout the process, even if it aims to generate regular elements, little variations are
introduced in the element mass when an existing node is selected to form a new element.
Therefore, the real element mass melement is computed after its generation to be consistent
with the mass conservation. Thus, the distinction between mcluster and melement is important
for the stop criterion of the process, but also for the thermodynamic model presented at
Section 3.6.

With the knowledge of the element mass, the accumulated mass of ice can be monitored.
The process stops when it reaches the targeted mass, which is derived from the ice mass rate
on the clean surface of the studied geometry, ṁice in kg/s, obtained from the deterministic
thermodynamic model. This choice was made to respect the mass conservation.

The model used is the Iterative Messinger, presented in Section 2.1.3. The main assumption
in this approach is that the system reaches the steady state; meaning that the thermodynamic
exchanges are solved in terms of mass rate. Thus, the total ice mass to accumulate, Mtotal,ice,
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is expressed according to :
Mtotal,ice = ∆ticing ·

n∑
i=1

ṁice,i (3.4)

where ∆ticing is the accretion time in seconds and n the number of surface elements of the
RANS mesh. The process stops when :

N∑
i=1

melement = Mtotal,ice (3.5)

where N is the number of ice elements in the stochastic mesh.

Order of Treatment of the Front Facets

Usually, the order of treatment of the front facet is based on their area [60–62]. In the present
application of the unstructured advancing front technique, it depends on the droplet trajec-
tories. Their computations are described in Section 3.5. For a given cluster of droplets, the
intersection between its trajectory and the active front is computed to obtain the impinge-
ment location and the next front facet to be treated. For rime ice cases, the impingement
location corresponds to the freezing location. Thus, a new element of ice is generated with
the intersected front facet. For glaze ice cases, the thermodynamic state is checked upon
impingement to assess the state of the cluster at this location, as described in Section 3.6.
Therefore the intersected facet is not necessarily the next front facet to be treated. Indeed,
if there is runback water, a fraction of the cluster is moved downstream on the ice front,
requiring additional considerations to respect the mass conservation and thermodynamic
state.

While the ice accumulates (i.e., elements are generated), the front advances creating a bound-
ary to the droplet trajectories, as illustrated in Figure 3.5. Therefore, the proposed method
allows accounting for the shadowing effect of the ice, which is not considered in the approach
of Bourgault-Côté [3, 5] or in single-layer deterministic approaches.

Creation of a New Node

At the beginning of the process, the front corresponds to the clean geometry. The first
elements of ice are generated with new nodes since no existing nodes are available. The
creation of these new nodes allows reproducing the dynamic growth of the ice, thus supporting
the choice of the advancing front technique.
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Shadow
zones

Droplet
trajectories

Figure 3.5 Shadow zones

Selection of an Existing Node

The order of treatment of the front facets and the selection of an existing node to generate a
new element of ice enables the process to create air pockets in the ice. This is the characteristic
of the method which leads to the ice density being a dependent variable. The creation of a
pocket is illustrated in Figure 3.6. It happens when the main ice front closes on itself and
becomes two distinct fronts :

1. the main ice front, represented by the solid red line;

2. the air pocket front (its boundaries), represented by the dashed red lines.

As shown in Figure 3.5, the creation of air pockets results also from the shadowing effect of
the ice front: once created, the droplets can not impinge the boundaries of the pocket since
they are behind the main ice front.

3.5 Droplet Trajectory Computations

The computation of the droplet trajectories is required to know the impingement map on
the exposed surface, and therefore the order of treatment ice front facets (Section 3.4.2). As
the ice grows, the impingement map changes due to the shadowing effect of the accretion.
At the macroscopic scale, it can be observed behind ice horns where the droplets can not
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Figure 3.6 Creation of an air pocket

impinge, as illustrated in Figure 3.5. At the mesoscopic scale, the same phenomenon occurs
behind ice feathers and roughness elements, leading to a greater accretion rate on the exposed
surface of these structures [41]. As previously stated in Section 1.2.1, feathers can lead to
more significant and hazardous ice structures, thus showing the need to better model their
formations.

Therefore, the proposed methodology aims to take into account little changes of the geometry,
generated by the unstructured advancing front technique, on the trajectories. To that end, a
Lagrangian framework is proposed in which the clusters of droplets are treated sequentially
as distinct elements. It is important to remind that the droplets forming the cluster follow
the same evolution. Therefore, the trajectory of the cluster corresponds to the trajectory of
a single droplet subject to the same conditions.

The interest in a Lagrangian framework comes from the fact that it allows computing the
intersection point between the trajectory and the active front, i.e.,the impingement location.
Knowing this, ice can be accreted as discrete elements upon impingement, or downstream of
this location if there is runback water.

To obtain the trajectory, the equation of motion of the droplet can be resolved as described
in Section 2.1.2. However, in the present framework, the Eulerian droplet solver is used for
two reasons :

1. the impingement map on the clean surface is needed to compute the thermodynamic
exchanges, required for the stop criterion previously presented (Section 3.4.2);

2. the impingement limits are needed to avoid the computational cost associated with the
droplets not impacting the active front.
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Therefore, the droplet trajectories are extracted from the Eulerian droplet velocity field, also
proposed in [42]. However, here, the method follows the rationale of Rendall and Allen [30],
who have proposed a finite volume representation of the flow streamlines and an extension
to introduce the droplet equation of motion within their framework. Since the droplet veloc-
ity field is already known in the present framework, only the streamlines representation of
Rendall and Allen is used: the trajectories are extracted as the streamlines of the Eulerian
droplet velocity field.

The process uses the connectivities of the RANS volume mesh and requires the knowledge
of the RANS cell in which the droplet is seeded. It does not require the integration of any
differential equation, namely the droplet equation of motion [30]. There are two connectivity
lists involved: i) cell-to-facets and ii) cell-to-cells defined. They are already computed in the
RANS mesh pre-processing for the flow resolution, thus no additional steps are required.

As previously stated, the droplet is inserted at a random position, denoted Pd,0, within the
field and upstream of the studied geometry. Therefore, the initial cell has to be found. To
avoid extensive research in the entire computation domain, the cell containing the point Pd,0

is found using an octree research algorithm [64].

From the insertion of the droplet in the initial cell, the trajectory is extracted according to
the following steps [30], illustrated in Figure 3.7:

1. Compute the intersections between the current cell’s velocity ray ~ud passing by the
entry point Pd,entry and the facets of the cell (Figure 3.7(a)), using the cell-to-facets
connectivity list.

• There are only two intersections possible : the entry point Pd,entry and the exit
point Pd,exit. The other facets are not intersected.

2. Select the intersection point in the same direction as the velocity ray :

(Pd,exit − Pd,entry) · ~ud > 0

3. Locate the next cell to be crossed, which is on the other side of the intersected facet,
using the cell-to-cells connectivity list.

4. Return to step 1, the exit point in the current cell being the entry point in the next
cell (Figure 3.7(b)).

The facet/velocity ray intersection is computed using the parametric form of :
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Current cell
Next cell

(a) Facet/velocity ray intersection computations in
the current cell (in solid black)

(b) Droplet trajectory in the RANS mesh (in solid
black)

Figure 3.7 Droplet trajectory computation

• a line segment (the facet)→ X(s) = (1− s)P0 + sP1 for s ∈ [0, 1], where P0 and P1 are
the nodes forming the facet, and

• a ray → Y (t) = Q+ t~d for t ≥ 0, where Q and ~d are respectively the origin of the ray
(Q = Pd,entry in the present case), and the direction vector (~d = ~ud).

where s and t are the parametric independent variables. The intersection point, if any, is
found solving X(s) = Y (t) [65].

3.5.1 Seeding Process

The droplets are inserted at a random position on a seeding plane. Since the velocity field
is already known, there is no minimum distance upstream of the geometry, unlike other La-
grangian approaches requiring a seeding plane sufficiently far so the flow velocity is close to
the freestream value [66]. The only requirement is to accommodate the ice growth, i.e.,the
droplets can not be inserted behind the ice front. It reduces the cost of trajectory computa-
tions.

In the present 2D approach, the seeding plane is a line. To simplify the seeding process, the
plane is parallel to the vertical axis (noted y in the present framework) : x = pseed where
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pseed is the position of the plane on the x-axis, as presented in Figure 3.8(a). Hence, the
initial coordinate of the droplet is : Pd,0 = (pseed, yd,0, 0.0).

Seeding Limits

To avoid computing unnecessary trajectories that do not impinge, the droplet initial positions
are limited to an interval on the seeding plane, as illustrated in Figure 3.8(a). The limits
are obtained with the upwind streamlines starting from the impingement limits on the clean
surface (RANS surface mesh) [42]. Using the collection efficiency computed by the Eulerian
solver, as presented in Section 2.1.2, the two positions on the surface from which β < ε are
identified, where ε = 10−8 for the numerical implementation, as shown in Figure 3.8(b). They
are then used as the initial positions for the computation of the upwind streamlines (Figure
3.8(a)).

To compute these streamlines, the same process presented at the beginning of this section
is used. The only difference lies within the selection of the exit point (and by doing so, the
following entry point). Indeed, the intersection point in the opposite direction of the velocity
ray is selected [30], such that:

(Pd,exit − Pd,entry) · ~ud < 0

The process stops when the streamline reaches the seeding plane, that is Pd,exit,x < pseed,
and Pd,exit,y is an extremum for the initial position of the droplets. To take into account
the growth of significant ice shapes, the interval is extended of at least 50% and is denoted
[yd,0,min, yd,0,max].

Pseudo-Random Intial Position

The droplet initial position is then obtained by the generation of a pseudo-random y-coordinate,
yd,0, to reproduce the stochastic structure of the cloud described in Section 1.2.2. A PRN
is generated in the interval [yd,0,min, yd,0,max] following an uniform distribution. Section 3.7
describes in more detail the PRN generator used in this process.

3.5.2 Impingement Location

The process proposed by Rendall and Allen stops when a wall boundary facet is reached [30],
easily detected by the size of the cell-to-cells connectivity list of the last cell. However, in
the present process, the ice grows (the ice front advances), and therefore the process stops if
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Figure 3.8 Seeding process

the ice front is intersected.

The intersection between the droplet trajectory and the ice front corresponds to the impinge-
ment location illustrated in Figure 3.9. To reduce the computational cost of the intersection
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checks between the front facets and the trajectory, only the facets within a disc with a radius
of r = 0.5 ||Pd,exit − Pd,entry|| centered at Pd,entry + r are tested, shown in solid red in Figure
3.9(b). An octree is used again to identify those facets.

From there, the intersection between each facet (forming a line segment) and the line segment
between the points Pd,entry and Pd,exit is computed in the same manner as the facet/velocity
ray intersection. If none of the identified front facets are intersected, then the process contin-
ues to the next RANS cell to be crossed. If there is more than one intersection, the nearest
of the point Pd,entry is chosen as the impingement location.

3.5.3 Droplet Size Distribution Treatment

For the same initial position, the trajectory and the impingement location change according
to the droplet size. The velocity fields and the trajectories for different droplet sizes in
the same flow conditions are shown in Figure 3.10. One can note the variations in the
impingement limits: the larger droplets tend to impinge further downstream compared to
the smaller droplets, due to their inertia. Therefore, it is important to take into account the
size distribution to well capture the limits and thickness of the ice. Other non-determinist
approaches do not consider it [3, 5, 25,39].

The droplet size distribution of the cloud is continuous. However, to resolve the droplet
field, the distribution is expressed in a discrete form as the cumulative fraction of the LWC
versus the droplet diameter. Figure 3.11 compares the continuous and the discrete forms
of the Langmuir D distribution, commonly used in the literature when the experimental
distribution is not available [4]. In the determinist framework, the droplet velocity field is
obtained for each droplet diameter, referred to as bin, using the Eulerian solver and the
collection efficiency at the wall is the weighted average of the surface solutions. Since the
present framework treats the droplet as individual elements, their size is generated as a
random sample that follows the size distribution of the studied case, as described in the
following sub-section.

Hence, when a cluster is seeded in the computational domain, its trajectory is computed using
the velocity field associated with the randomly sampled droplet diameter. It is important to
note that in the proposed model, the element size used in the unstructured advancing front
algorithm does not change since it is associated with the cluster size and not the droplet
diameter.
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(a) Droplet trajectory intersection with the ice front

Search 
radius

(b) Intersection check zoomed

Figure 3.9 Computation of the impingement location, mark by the red “X”. The droplet
trajectory is in solid blue and the ice front in red delimiting the ice in light blue.
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(a) Droplet trajectories for Ddroplet = 6.40µm
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(b) Droplet trajectories for Ddroplet = 99.9µm

Figure 3.10 Comparison of the trajectories for different droplet diameters for case 364 [1].
The droplet trajectories are in solid blue and the geometry in black.
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Figure 3.11 Langmuir D distribution. Data extracted from [7].

Sampling Method

The inverse transform sampling generates a random sample of the variable Θ following a
given continuous PDF, p(Θ), using the associated CDF, F (Θ), and an uniform random
variable, u ∈ [0, 1] [67]. The process associates u to Θ using the inverse of u = F (Θ), that
is Θ = F−1(u), as illustrated in Figure 3.12(a), and insures that a distribution of n uniform
variables u follow p(Θ).

For discrete PDFs, such as the dropet size distribution, the same rationale is applied, as shown
in Figure 3.12(b). In the proposed framework, the size distribution is directly converted to a
discrete CDF, and each bin i corresponds to a sub-interval, Ii, of the unit interval [0, 1]. The
droplet diameter is obtained from the discrete CDF and the process follows these steps:

1. Generate an uniform PRN, u ∈ [0, 1];

2. Find the interval Ii of the discrete CDF for which u ∈ Ii, where i is the bin;

3. Return the diameter associated to the bin i.

The PRN is generated in the same way as for the initial position, and more details are given
at Section 3.7.
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(b) Process for a discrete CDF

Figure 3.12 Inverse transform sampling

3.6 Thermodynamic Modeling

As previously stated, upon impingement, the cluster can either freeze or flow downstream
according to the thermodynamic state. Its modeling enables the treatment of glaze icing
conditions and requires to treat of two main phenomena:

1. the partial freezing of the incoming water, and

2. the water motion on the surface (runback).

The Morphogenetic method uses a random walk model based on Messinger’s formulation of
the mass and energy balances to compute a local freezing probability, Pfr, at each step of the
fluid element motion, as presented in Section 2.2.1. This framework enables to successfully
model glaze conditions and captures ice horns [18, 41]. Empirical relations for the heat flux
and the freezing probability computations are used, simplifying the model and allowing to
compute the freezing fraction locally at each visited site [41], to the author understanding.
However, given the current icing software requirements of accuracy, empirical relations are
not sufficient. Bourgault-Côté thus proposed to use an Iterative Messinger model to compute
the freezing probability, posing Pfr = ffr [3,5], but glaze icing conditions are not successfully
modeled within this framework, as presented in Section 2.2.2.

Leroy proposed to compute a local freezing fraction and the process allows that only the
corresponding fraction of the water freezes at each motion of the fluid element [45],as de-
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scribed in Section 2.2.3, unlike Szilder’s work [25,41]. The local freezing fraction is computed
upon impingement based on a modified formulation of the Messinger balances: the rate of
incoming water from the runback water is ṁin = 0.0. This modification comes from the fact
that the model treats the freezing of the fluid elements independently, i.e.,the water film is
only formed by the downstream motion of the fluid element currently treated and there is no
liquid water remaining from the previously treated elements.

The present method proposes a hybrid method of these previous works:

• the global thermodynamic state is computed before the stochastic process, using the
Iterative Messinger model, as Bourgault-Côté, and;

• partial freezing of the clusters is permitted, as Leroy.

3.6.1 Global Process

The thermodynamic process starts after the impingement location computation. Since the
freezing fraction is computed on the clean surface, its value at the impingement location is set
to the value of the nearest element of the surface RANS mesh (on which the thermodynamic
exchanges are computed by the Iterative Messinger solver). This nearest element is denoted
as the donor element. It is worth noting that the freezing fraction is constant throughout the
process since the thermodynamic solver and the stochastic model are launched sequentially
[3, 5]. This allows being consistent with the proposed stop criterion of the entire process,
presented in Section 3.4.

Recalling the freezing fraction definition :

ffr = ṁice

ṁimp + ṁin − ṁes

Here, the evaporation/sublimation mass rate is neglected, following the work of Leroy [45].
Furthermore, the freezing fraction is expressed in terms of masses (instead of mass rates),
since a cluster represents a mass of water in the present framework:

ffr = mice

mimp +min

Therefore, the mass of water to be frozen is obtained using :

mice = ffr(mimp +min) (3.6)



42

The mass of water remaining forms the runback water and is obtained according to :

mout = mimp +min −mice (3.7)

which represents the mass balance at the surface of the receiving front facet.

The process workflow is illustrated in Figure 3.13. Upon impingement, the rate of incoming
water min is null, as proposed in [45]. This assumption can be interpreted looking at the first
treated cluster: there is no water on the surface, and the water running back is entirely frozen
at the end of its motion. Since the process treats the clusters individually and sequentially,
there is no impingement mass for the subsequent steps of the cluster motion on the front:
mimp = 0.0.

Then, each front facet downstream of the impinged facet is sequentially treated to compute
the mass of water that freezes at this step, according to Equation 3.6. The remaining mass
mout (Equation 3.7) flows to the neighbor front facet in the same orientation of the skin
friction coefficient ~Cf , and corresponds to min in the next mass balance computation. This
front facet is referred to as the receiving facet.

The process stops when the remaining mass of water mout is negligible. The threshold,
heuristically chosen, is : mout ≤ 0.01mcluster. This happens in two situations:

• the cluster reaches ffr = 1.0, or;

• the runback water has run out.

Then, the next cluster is seeded in the computational domain, according to the process de-
scribed in Section 3.5. Given that, the proposed method is not stochastic for the thermody-
namic and runback modeling. The stochasticity is only introduced by the droplet trajectory
solver via the random impingement location.

Runback Modeling

At each step of the cluster motion on the surface, only a fraction of the water freezes.
However, new elements of ice are not necessarily generated from this fraction of water to
ensure that the advancing front algorithm converges by generating mostly regular elements
respecting the targetted element size δ.

A new element of ice is generated only when the mass of ice stored on a front facet respects
the following heuristic criterion :

mice ≥ 0.9mcluster (3.8)
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Figure 3.13 Workflow of the thermodynamic model

It is selected to insure the generation of mostly regular elements with the advancing front
technique. Figure 3.14 illustrates this process.

If the criterion is not respected, the mass of water to be frozen is stored on the current
front facet and the motion continues to the neighbor facet. The next time this front facet is
treated, the criterion is checked again, taking into account the ice mass previously stored to
determine if a new element of ice is generated.
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(a) First impingement and cluster mass distribution on the active front

(b) Second impingement

(c) Generation of new ice element from a front facet respecting the criterion of Equation 3.8

Figure 3.14 Cluster motion on the active front
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Runback Direction

Two aspects of the motion of the water are modeled in this framework :

1. the shear stress orientation;

2. the selection of the receiving facet.

Shear stress orientation The runback water flows according to the airflow on the surface.
In the present framework, the flow field is computed only at the beginning of the process,
such as in a single layer approach. Therefore, the effect of the ice growth on the airflow is
not taken into account, and the real orientation of the shear stress at the ice front surface is
not available.

Two approximations of the runback orientation are considered :

• the skin friction coefficient ~Cf at the nearest cell of the surface RANS mesh;

• the interpolated value of the airflow velocity ~Ua obtained at the initial resolution of the
flow field.

The former formulation is selected and Figure 3.15 illustrates this choice: the orientation
of ~Cf and ~Ua are compared at a given position on the ice front, marked in red. The black
arrows represent the streamlines of the flow field. Knowing that the real orientation of the
shear stress is tangential to the ice, depicted by the blue curve, the ~Cf orientation gives a
better approximation than ~Ua.

This method is limited to streamwise ice shapes. For cases with significant ice horns, this
definition quickly becomes false as the horns grow, given their strong effect on the airflow [14].

Selection of the receiving facet Since the stochastic mesh is formed of triangular ele-
ments, the ice front is irregular and concavities are formed. For example, if the impingement
location is within a concavity, marked in red in Figure 3.16(a), the selection of the next
receiving facet is ambiguous, as the two neighbor front facets are in the opposite direction
(highlighted by the black arrows) of ~Cf .

Therefore, the receiving facet is obtained using the front connectivity. The orientation of the
facets in a 1D stencil of N neighbor facets on the left and right sides of the impinged facet
is tested, as illustrated in Figure 3.16(b). The side (left or right) for which there are more
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Figure 3.16 Selection of the next receiving facet



47

facets in the same direction of ~Cf is selected as the runback side. A facet is considered to be
in the same direction of ~Cf if :

(Pfacet,i − Pfacet,imp) · ~Cf > 0 for i ∈ [1, N ]

where Pfacet,i and Pfacet,imp are respectively the center the ith neighbor facet and the impinged
facet. The vector (Pfacet,i − Pfacet,imp) is represented by the black arrows in Figure 3.16(c).
This process is carried out only once, upon impingement, and the subsequent steps of the
water motion follow the selected side.

Figure 3.16(c) illustrates this process for a stencil of four facets, but the number is higher
(approximately twenty) and user-defined to ensure the robustness of the method.

3.7 Pseudo-Random Number Generator

The Chapel language provides a Permuted Linear Congruential Random Number Genera-
tor (PCG), implemented following the work of O’Neil [68]. It is an efficient PRN generation
scheme providing good statistical properties (period, uniformity, and predictability) and lead-
ing to better quality PRNs (closer to real random numbers). Its key feature is the use of
a permutation function to enhance the quality of a medium-quality PRN generator. More
details on the PCG are available in [68].

Chapel implementation features the generation of integers and real numbers, and it is verified
against statistical test suites used in the original implementation of O’Neil [49,68]. Therefore,
the choice of this PRN generator is justified by its convenience (it is a standard library of
Chapel) and the statistical quality of the generated PRNs.

3.8 Verification and Initial Results

The following section presents the verification of the developed proposed and initial results.
The icing conditions for the selected cases are described in Table 3.1.

3.8.1 Verification of the Collection Efficiency

The collection efficiency obtained is verified to ensure that the stochastic process reproduces
the deterministic impingement map. To that end, two cases are selected from the IPW [1]:
cases 241 and 364. The collection efficiency is computed only on the initial front and no ice
elements are generated to enable a direct comparison to the deterministic results of CHAMPS.
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Table 3.1 Rime test cases input parameters

Test Case Case 241 [1] Case 364 [1]
Geometry NACA23012 NACA0012
Chord [m] 0.4572 0.9144
Sweep [◦] 0.0 30.0
AoA [◦] 2.0 0.0
Mach [-] 0.325 0.354
Temperature [K] 255.2 259.8
Pressure [kPa] 92.5 89.6
LWC [g/m3] 0.42 0.50
MVD[µm] 30.0 20.5
Icing Time [min] 5.0 17.7
ks [m] 1.0× 10−3c 1.0× 10−3c

The collection efficiency for each front facet, βi,stoch, is computed following its Lagrangian
definition:

βi,stoch = ni,imp mcluster

∆ticing ∆si LWC Uinf

Where :

• ni,imp is the number of times the front facet i is impinged.

• ∆ticing is the icing time in seconds.

• ∆si is the area of the front facet in m (the length of the facet).

• Uinf is the norm of the free stream velocity in m/s.

The results for the two selected cases are presented in respectively Figure 3.17 and Figure
3.18.

The collection efficiency for case 241 is obtained from a monodisperse droplet size distribution
where ddroplet = MVD. Case 364 is a swept wing case (treated as 2.5D) and the experimental
droplet size distribution, which can be found in Appendix A, is used for the presented results.

In both cases, the stochastic collection efficiency reproduces well the deterministic results
while keeping its non-deterministic aspect. Furthermore, the agreement between the two
frameworks allows verifying the treatment of the droplet size distribution.

However, in case 364, one can note little discrepancies around βmax, which are linked to the
position of the stagnation point. Since the velocity ~ud is taken from the RANS mesh cell
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Figure 3.17 Verification of the collection efficiency for case 241. δ = 1.25× 10−4c.
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Figure 3.18 Verification of the collection efficiency for case 364. δ = 2.5× 10−3c.
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that is currently crossed by a given droplet, its value in the neighbor cells is not taken into
account. For example, in a symmetric case (as the case 364), on both sides of the stagnation
point, the sign of the y-component of ~Ud changes. Therefore, if the RANS mesh is parallel
to the streamlines at the stagnation point, i.e.,such as in a structured-type RANS mesh,
the trajectory is unstable in this region, and the direction away from the stagnation point
is preferred, creating a shadow zone. This situation is illustrated in Figure 3.19. If a front
facet is in this shadow zone, it is not impinged by any cluster. It leads to a decrease in the
collection efficiency at the stagnation point and an increase in the region on both sides.

X [m]
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m
]

0.015 0.01 0.005 0

0.005

0

0.005

Figure 3.19 Limitation of the droplet trajectory computation. The trajectories are represented
by the blue lines.

This corresponds to a limitation of the proposed approach. It can be mitigated with a
refinement of the RANS mesh in the stagnation region or by the use of an unstructured
mesh.
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3.8.2 Element Size Effect

The effects of the element size, and therefore the cluster mass, are presented for case 241.
The accretion time ∆ticing is set to 2.5 minutes to reduce the computational cost of this study.
The convergence of the ice density according to the element size is also presented. The ice
density is selected as the study parameter since it is a dependent variable in the framework,
as proposed by Bourgault-Côté [3]. Furthermore, a rime ice case is selected because the ice
density for glaze ice cases is usually constant at the bulk ice value.

The element size δ varies from 1.0 × 10−3c to 6.25 × 10−5c with a refinement factor of 2,
where c is the chord length. The ice shapes obtained from one run for δ = 1.0 × 10−3c to
δ = 1.25× 10−4c are presented in Figure 3.20.

Ice Density Extraction

The obtained ice mesh is post-processed within Tecplot [69] to reproduce the extraction of a
core sample of ice in experimental setups. The process is illustrated in Figure 3.21 and goes
as follows:

1. A scalar D is set to 1 for all the ice elements of the stochastic mesh (represented in
blue in Figure 3.21);

2. A fine Cartesian mesh of N ×N cells (delimited by the black square in Figure 3.21) is
overlaid on the stochastic mesh at the LE, and the scalar is set to 0 for each Cartesian
cell (represented in blue in Figure 3.21);

3. The scalar D of the stochastic mesh is interpolated on the Cartesian mesh, using the
linear interpolation available in Tecplot:

• For the ice elements, the scalar in the corresponding cells of Cartesian mesh is 1
(blue in the zoom of Figure 3.21).

• For the holes in the stochastic mesh, the scalar is not defined. Therefore, the scalar
in the corresponding Cartesian cells mesh stays 0 (red in the zoom of Figure 3.21).

4. The sum of the scalar over the Cartesian mesh is computed and the ice density corre-
sponds to :

ρice =
∑N2

i=1 Di

N2 · ρice,bulk

Here, ρice,bulk is used as the density of a single ice element as described in Section 3.4.
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Figure 3.20 Element size effect on the ice shape

Ice Density Convergence Study

For each element size, five runs are performed and the average of the ice density is used to
study its convergence. Since the exact density for this case is unknown, it is approximated
to the ice density obtained from the finer stochastic mesh (δ = 6.25× 10−5c) : ρ∗

ice = 753.81
kg/m3. The result is presented in Figure 3.22.

The 1st- and 2nd-orders of accuracy are presented in Figure 3.22 only for reference purposes;
the observed order of the stochastic model is not of interest since there is no formal order
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Figure 3.21 Extraction of the ice density from the stochastic mesh. The Cartesian grid is
represented by the black square at the LE.

of accuracy for this process. Here, the important outcomes of this study is that the method
converges.

3.8.3 Initial Results

Initial results on case 241 for the complete icing time are presented to introduce the following
section.

Here, two conclusions are drawn from the comparison to the experimental and deterministic
results:

• The ice thickness is overestimated;

• There are fine and long structures resembling ice feathers downstream of the main
accretion.

Knowing that the ice density used in CHAMPS for the deterministic result is 820.0 kg/m3 and
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Figure 3.22 Ice density convergence study

that the stochastic ice density converges towards the value of 753.8 kg/m3, the assumption
that the ice density obtained from the stochastic method is too low for this case is raised.
The same observation is made for the zones of feathers. In this case, the density is lowered
by the void between the feathers. Furthermore, their formation seems to be numerically
amplified. This observation is based on the following aspects :

• The feathers are long and thin.

• Once they are created, all the feathers grow at the same angle from the flow field.

While some of these features are expected for ice feathers (constant thickness, small spacing)
[2], their general aspect suggests that their final shape and placement is mainly driven by
their initialization.

Therefore, an extension of the present method is proposed in the following section to improve
the results and complete the validation of the stochastic process.
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Figure 3.23 Initial results for case 241

3.9 Permeable Ice Front

Similar observations on the lower ice density are raised by Szilder, who proposed the cradle
search to fill some of the created air pockets to obtain a denser ice, emulating the tendency
of the water to fill gaps due to its surface tension [25,39] (see Section 2.2.1). Unlike Szilder,
the lower ice density obtained in the present method is assumed to be a result of the 2D
framework. This assumption is based on the observation of the numerical and experimental
ice shapes, mainly in the zones of feathers.

In a 3D reference frame, the ice shape varies within the spanwise axis (here referred to as
the z-axis), as shown in Section 1.2.2. Thus, it is assumed that for two droplets seeded at
the same position in the xy plane, but at slightly different positions along the spanwise axis,
the impingement location can be significantly different.
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To model this 3D mechanism in the proposed 2D framework, it is considered that the solution
of the stochastic model for a given case is the set of the ice shapes obtained from different runs,
referred to as outcomes. The resulting ice shape is therefore the overlay of these outcomes.

In the present framework, the outcomes are interpreted as 2D slices of the ice in the spanwise
direction, as illustrated in Figure 3.24.

z = -ε

z = 0

z = +ε

 

Figure 3.24 Interpretation of the outcomes in the spanwise direction and permeability of the
ice front

At z = 0±ε in Figure 3.24, z = 0 being the position of the current outcome and ε representing
a small distance in the spanwise direction, the droplet may pass next to the feather and
impinged further downstream on the neighbor outcome at z = ±ε, or shed if there is no
other impingement location. Therefore, the concept of a permeable ice front is introduced.

The permeable ice front consists in allowing that a fraction of the clusters impinges behind
the main ice front. A given cluster can either :

1. impinge on the main ice front;

2. impinge on an air pocket front;

3. be shed.

The fraction of clusters passing through the front is controlled by a stochastic process.

If the cluster passes through the main front to impinge on an air pocket front or to be shed, it
continues its trajectory for a given distance dmax. Therefore, from the first intersected front
facet, the process is illustrated in Figure 3.25 and goes as follows for each seeded cluster:

1. Compute the distance d between the current intersection and the first intersected front
facet and generate a uniform PRN (0 or 1);

2. If PRN = 1 and d ≤ dmax, the current facet is the impinged facet. Continue to the
thermodynamic module;
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3. Else if PRN = 0 and:

• d ≤ dmax, compute the next intersection between the trajectory and a front facet
facing upstream (~nfacet · Ud < 0), and return to step 1;

• d > dmax, the cluster is shed. Break (treat the next cluster).

d

dmax
Cluster
trajectory

Figure 3.25 Process to emulate the permeability of the ice front

In the event that the cluster is shed, it is considered to be impinged on the neighbor outcome
at z = ±ε, and therefore its mass is not taken into account in the stop criterion presented in
Section 3.4.2.

Here, the parameter dmax is not physically representative and it requires to be calibrated.
However, the higher it is, the denser the ice is.

It is important to note that this process needs further developments to ensure the convergence
of the process and its validity. However, it is presented here to show that the extension of
this stochastic model is required in future works to capture important physical phenomena
that are missed in the 2D framework.
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CHAPTER 4 ICING RESULTS

This chapter presents the results of the proposed method on four test cases from the literature
to assess its capability to model the ice accretion phenomenon. For each case, the numerical
ice shapes of multiple runs are compared against the experimental results. Additionally, the
comparison to the deterministic approach single- and multi-layer ice shapes for the selected
cases is discussed.

4.1 Rime Ice Conditions

The two rime ice cases presented in Table 3.1 for the verification of the implementation are
studied in this section. They are selected due to the availability of the experimental ice shape
scans [1], which give an insight of the variations of the ice in the spanwise direction and the
envelope of the experimental results.

For the NACA23012 geometry (case 241), an unstructured grid is used based on the wind-
tunnel geometry provided by the IPW committee [1] with a total of 68000 cells. The airfoil
and the wind tunnel walls are respectively discretized with 778 and 198 vertices, as presented
in Figure 4.1. For the NACA0012 geometry (case 364), the RANS mesh used is a structured
O-type grid and has 385 vertices in the i direction and 257 in the j direction.

(a) Airfoil discretization (b) Wind tunnel walls discretization

Figure 4.1 NACA23012 RANS mesh
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4.1.1 Case 241

Case 241 [1] is performed for an element size of δ = 2.5× 10−4c and for dmax = 2.0× 10−3c.
The experimental droplet size distribution is used, which can be found in Appendix A. The
results are shown for five outcomes in Figure 4.2. The outcomes are overlaid and the grayscale
represents the likelihood of the results: the darker the area is, the higher the probabilities
are to have ice in this region. The grayscale is obtained by setting the opacity of each ice
shape to 20% to highlight the zone of higher variability. Note that for clarity purposes, only
the ice front for each outcome is presented in Figure 4.2; the air pockets within the ice are
not represented. The light blue zone represents the variation of the experimental scan over
the entire span, projected in the xy plane.
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Figure 4.2 Results for case 241

The ice shape obtained with the stochastic method is in good agreement with the expected
results. The ice thickness at the LE corresponds to the experimental ice shape, despite a
small discrepancy. The stochastic method captures the tapered shape of the scan, while the
deterministic 5-layers result of CHAMPS presents a rounder shape.

The ice thickness downstream, on the lower and upper surfaces, corresponds to the experi-
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mental envelope, and the ice limits are well respected, as presented in Figure 4.3, where the
only one outcome is shown.

Additionally, one can observe more variability on the lower and upper surfaces, in the area
where feathers are observed. This is expected since the feathers in experimental setups appear
at random positions, behind the main ice accretion [17]. It is also observed in the scan of
the experimental ice shape: the scan envelope in Figure 4.2 is thicker, meaning that there is
more variability between the maximum and minimum ice heights in the spanwise direction
for those zones. Therefore, the stochastic method captures these variations, whereas the
deterministic framework mainly leads to a smooth ice shape.
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Figure 4.3 Result of one outcome for case 241

Sensibility to dmax

The sensibility of the ice shape to dmax is presented in Figures 4.4 and 4.5 for case 241. The
values tested range from 5.0× 10−4c to 3.2× 10−2c, with a scaling factor of 2.

The results show that as dmax increases, the ice is denser, as expected. Additionally, the
feathers observed on the lower and upper surfaces are thicker and shorter for higher values
of dmax. Furthermore, they grow closer to each other. While most of the studied values lead
to ice shapes in the expected range, there is no physical meaning associated with them. For
the values of 5.0 × 10−4c to 4.0 × 10−3c, the ice thickness at the LE is in better agreement
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with the ice scan than for the higher values, and the overall feather shape represents the
expected behavior. However, the height of the feathers is in better agreement with the ice
envelope for the values of 8.0× 10−3c to 1.6× 10−2c. It suggests that the proposed extension
of the method with the permeable front needs to be properly calibrated. Another avenue is
to extend the original framework in 3D to take into account the spanwise component of the
ice porosity and the feather formation.

(a) dmax = 5.0× 10−4c (b) dmax = 1.0× 10−3c

(c) dmax = 2.0× 10−3c (d) dmax = 4.0× 10−3c

Figure 4.4 Effect of dmax on the ice shape
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(a) dmax = 8.0× 10−3c (b) dmax = 1.6× 10−2c

(c) dmax = 3.2× 10−2c

Figure 4.5 Effect of dmax on the ice shape (continued)

4.1.2 Case 364, 2.5D

Case 364 [1] is a swept wing case and is performed for an element size of δ = 2.5 × 10−4c

and for dmax = 1.0 × 10−3c. The experimental droplet size distribution is used, which can
be found in Appendix A. The flow and droplet fields are resolved using the 2.5D approach
implemented in CHAMPS, as described in [4]. The results for five outcomes are presented
in Figure 4.6.

The variability in the feather zone, downstream of the main ice accretion, observed in the
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Figure 4.6 Results for case 364

experimental ice scan, is well captured by the stochastic approach, as well as the ice limits.
Individual feathers are obtained, as observed in the experimental scan, while the deterministic
approach results in a smooth ice shape.

Figure 4.7 shows the ice shape for only one run. The angle at which the main ice accretion
grows corresponds to the scan envelope. Furthermore, the ice height at the LE is in good
agreement with the experimental shape. However, the horn-like structures are not captured.
It suggests that there is runback water not captured by the Iterative Messinger model in a
single-layer framework.

While the stochastic approach does not capture properly the entire ice shape, it is in bet-
ter agreement with the expected range compared to the deterministic single-layer result of
CHAMPS.

Additionally, Figure 4.7 depicts well the geometry of the feathers generated by the stochastic
approach. As expected, they appear at discrete and random locations [17]. Their height
is also variable and respects the experimental envelope. The prediction of such discrete
structures is in agreement with the experimental observation [2] and enables to further the
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numerical investigations of their formation and effects, where the deterministic and contin-
uous frameworks fail. It is important to remind that the results of the stochastic method
are obtained from only one resolution of the flow and droplet fields, showing an advantage of
the piecewise accretion framework compared to the deterministic and continuous single layer
approaches.
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Figure 4.7 Result of one outcome for case 364

4.2 Glaze Ice Conditions

This section presents two glaze ice cases. The icing conditions are described in Table 4.1.
The RANS meshes presented in Section 4.1 are re-used for these cases.

4.2.1 Case 04 Trontin, Glaze

Case 04, presented by Trontin et al. [6], is performed for an element size of δ = 2.5×10−4c and
for dmax = 8.0×10−3c. A monodisperse droplet size distribution is used for the droplet trajec-
tory computations since the experimental data is not available. The results of five outcomes
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Table 4.1 Glaze test cases input parameters

Test Case Case 04 [6] Case 242 [1]
Geometry NACA0012 NACA23012
Chord [m] 0.5334 0.4572
Sweep [◦] 0.0 0.0
AoA [◦] 4.0 2.0
Mach [-] 0.314 0.310
Temperature [K] 262.3 265.7
Pressure [kPa] 101.3 92.9
LWC [g/m3] 0.6 0.75
MVD[µm] 15.0 15.4
Icing Time [min] 6.4 5.0
ks [m] 1.0× 10−3c 1.0× 10−3c

are presented in Figure 4.8 and compared to two deterministic approaches : CHAMPS and
IGLOO2D [6]. The results of the latter are obtained from its predictor/corrector framework.

The height and angle of the upper horn are well captured by the stochastic method, as well
as the ice limits. However, the lower horn is not predicted. Additionally, the ice thickness at
the LE is overestimated.

As the horn position and thickness are mainly controlled by the runback water, it is assumed
that the Iterative Messinger model does not well predict the water film behavior on the lower
surface. This observation is confirmed by the deterministic ice shape obtained from CHAMPS
in single layer (represented by the red curve in Figure 4.8): while there is a horn-like structure
developed on the upper surface, it misses the horn on the lower surface. It suggests that an
extension of the stochastic method to enable multi-layer simulations is required to better
predict the zone where there is runback water. Care must be taken looking at the ice shape
of the predictor step of IGLOO2D since a variable ice density model is used.

Finally, the variability of the ice shape is observed mainly on the lower surface and near
the ice limit on the upper surface. Again, feather structures are observed, which are also
expected for glaze ice cases [2].

4.2.2 Case 242 IPW, Glaze

Case 242 presented at the IPW [1] is performed for an element size of δ = 2.5 × 10−4c and
for dmax = 8.0 × 10−3c. The result of a single outcome is represented in Figure 4.9 by the
solid blue curve and compared to the same five experimental trials presented in Figure 1.3.
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Figure 4.8 Results for case 04

These results are overlaid and the blue-scale depicts their likelihood.

Here, only one outcome is presented since no significant variation of the obtained ice shapes is
observed within the different runs performed. However, the experimental results show great
variations in the shape of the horns, as presented in Figures 1.3 and 4.9. It suggests that the
variability observed in the icing phenomenon does not only come from the stochastic structure
of the cloud and the investigation of other sources of randomness, such as the stochastic
nucleation, the distribution of surface imperfections, and the experimental uncertainty is
required to assess their effect on the numerical ice shapes.

Despite the observed experimental variability, the position and angle of the horns, as well as
the ice limits follow the same trends. Additionally, the ice thickness in the stagnation region
is mainly constant. Therefore, these parameters are used for the following analysis of the
numerical results.

The two horns are well captured, as for their position and angle. However, their height is
underestimated, as well as the accreted ice mass. The ice limits and the ice thickness in the
stagnation region are in the expected range.
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Figure 4.10 compares the obtained ice shape to the results presented by the other participants
of the IPW [1]. The solvers used by the participants are deterministic and continuous frame-
works with multi-layer or predictor/corrector capacities to take into account the growth of
the ice. The ice shapes obtained for case 242 are the most scattered results of the workshop.
In addition to the ice limits being further downstream of the experimental limits, the horns
are mainly under-developed and there is a significant offset in their position. Care must be
taken when looking at individual results, as some participants used tuned variable density or
surface roughness models.

Interestingly, the stochastic method succeeds at once to capture the ice limits and the position
of the horns, while only resolving once the flow and droplet field, as well as the thermodynamic
exchanges. This suggests that for this case, the small differences in the geometry at the
beginning of the icing time have a great effect on the final ice shape.

The stochastic method is able to capture these small differences because it captures a smaller
time scale of the phenomenon by accumulating the ice one element at a time. Therefore,
the Lagrangian framework can be interpreted as a smaller time step compare to the multi-
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Figure 4.9 Results for case 242
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layer continuous methods. This allows to model the associated shadow zone and predict the
right limits of ice, while the multi-layer frameworks miss them. It can be assumed that if
a sufficiently small time step is used at the beginning of the icing time in the multi-layer
frameworks, this phenomenon could be accurately captured, but it could also lead to greater
computational costs.
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Figure 4.10 Results for case 242 compared to the participants of the IPW [1]
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CHAPTER 5 CONCLUSION

5.1 Summary of Works

The overarching objective of the present research project is to model stochastic ice shapes
and discrete ice structures by developing a non-deterministic 2D framework for numerical
simulations of the in-flight ice accretion phenomenon.

The first sub-objective is to model rime and glaze icing conditions. An unstructured advanc-
ing front mesh generator is proposed to model the ice growth, enabling a body-conforming
method. The developments are implemented in the new CFD solver CHAMPS. The frame-
work is Lagrangian: the water droplets, gathered in clusters, are treated sequentially, from
their injection in the computational domain to their freezing on the studied geometry. The
trajectory of each cluster is computed using the extraction of its streamline from the droplet
velocity field obtained with an Eulerian droplet solver. The intersection between the trajec-
tory and the ice front corresponds to the impingement location. Upon impact, the droplet
either freezes or flows on the front to freeze further downstream, depending on the ther-
modynamic state obtained from an Iterative Messinger model. The orientation of runback
water is obtained from the shear stress direction of the nearest RANS surface cell. When the
cluster freezes, a new element of ice is generated with the unstructured advancing front mesh
algorithm. Partial freezing of the cluster is allowed in the case of glaze ice conditions, leading
to the prediction of ice horns in this single-layer framework. The ice shapes obtained for
two glaze ice cases are presented and compared against the experimental and deterministic
results. The position and angle of the horns are well captured, while some discrepancy in the
height is observed for one case. The stochastic model is also validated against two rime ice
cases for 2D and 2.5D geometries. The predicted ice thickness at the LE corresponds to the
experimental shape, as well as the ice limits, and the overall ice shape is within the expected
range for both cases.

The second sub-objective is to capture the variability within the ice shape for multiple trials
of the same conditions. Stochasticity is introduced in two modules of the process: i) in
the droplet trajectory computations and ii) in the permeable front technique. The initial
position of the droplet is randomly generated on a seeding plane using a uniform PRN.
The droplet size is randomly obtained with the inverse transform sampling method, using
the experimental droplet size distribution. The variation of the ice shape in the spanwise
direction is taken into account using an original technique, allowing the droplets to randomly
cross the ice front over a given distance. For three test cases out of the four presented, five
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trials are performed, and the variability in the ice shape is obtained, mainly in the zones
where feathers are observed, corresponding to the experimental envelope.

The third sub-objective is to capture variable ice density and discrete ice structures. The ice
density variation according to the element size is studied within the verification of the model.
Additionally, stochastic and discrete ice structures, referred to as feathers, are observed in
the stochastic ice shapes of the presented test cases and are in good agreement with the
experimental results.

5.2 Limitations

The limitation identified throughout the previous chapters are listed below:

• The droplet trajectory computations lead to a diminution of the collection efficiency
in the stagnation point region when the RANS mesh is parallel to the streamlines in
this zone. This limitation results in an impossibility to impinge the facets of the active
front in this region.

• The proposed method corresponds to a single-layer framework. Although the ice growth
is taken into account in the impingement location computations, the flow field is not
updated as the geometry evolves. This limitation has two main effects :

1. The changes in the HTC and the associated thermodynamic exchanges are not
computed. As a result, ice horns could be not captured due to a wrong prediction
of the thermodynamic state (rime or glaze).

2. The shear stress is kept constant at the clean geometry value, leading to a wrong
approximation of the runback water direction, mainly at the tip of the horns.

• The stochasticity is mainly introduced through the droplet trajectory computations.
However, the variations in the overall geometry of the horns observed in experimental
results are not captured by the stochastic model. The ice shape variability obtained is
limited to the zones where feathers are observed.

• The extension of the model with the permeable front technique is based on the obser-
vations made from the initial results. The assessment of its validity is limited to the
predicted ice shapes being in the expected range.

• The model is limited to 2D or 2.5D geometries. Highly 3D ice structures can not be
obtained with the proposed method, such as scallops presenting significant variability
in the spanwise direction.
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5.3 Future Research

In light of the presented limits of the model, the following research topics are suggested to
enhance the icing phenomenon understanding:

• An extension of the model to a multi-layer framework represents the main recommen-
dation. This leads to the need for an ice front extraction and treatment to enable the
generation of a valid volume mesh. It could include the local surface irregularities as
the surface roughness in the subsequent ice layer computations to take into account the
observed ice shape variability.

• The effects of other sources of stochasticity could be introduced to enable the prediction
of variable horn shapes. In particular, the freezing process could be extended to be non-
deterministic by studying the impact of the local irregularities of the ice front on the
thermodynamic exchanges.

• Furthermore, a local model to better capture the way the water droplets impinge and fill
the porous ice front could be added to the permeable front technique, leading to physical
foundations for the proposed extension instead of the presented heuristic thinking.

• Finally, a 3D extension is also proposed to better model the spanwise variation of the
ice shape and porosity, as suggested by the results obtained from the permeable front
technique.
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APPENDIX A EXPERIMENTAL DROPLET SIZE DISTRIBUTION

This appendix contains the experimental droplet size distributions used for the computations
of cases 241 and 364.
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Figure A.1 Experimental droplet size distribution for case 241 [1]
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Figure A.2 Experimental droplet size distribution for case 364 [1]
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