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RÉSUMÉ

La mise en forme par grenaillage est utilisée dans l’industrie aérospatiale pour façonner de
larges plaques métalliques, telles que des revêtements d’ailes ou des segments de réservoirs de
carburant. Le procédé consiste à traiter une plaque avec un jet de billes rigides (grenailles) qui
sont projetées à travers une buse mobile. Un tel traitement induit une déformation plastique
dans la couche extérieure du matériau, ce qui fait plier la plaque. Le jet de grenailles est
appliqué localement selon un motif de grenaillage, et des différents motifs de grenaillage
entraînent des différentes formes courbées.

Nous avons développé un logiciel de simulation de la mise en forme par grenaillage. Le logiciel
prédit l’effet d’application d’un motif donné et calcule un motif optimal qui mène à la forme
cible. En d’autres mots, le logiciel résout les problèmes direct et inverse respectivement.
Le logiciel est basé sur la théorie des plaques non euclidiennes qui fournit des instruments
théoriques pour décrire la déformation des structures minces. De plus, le logiciel utilise
le concept d’eigenstrains permettant de modéliser efficacement des charges induites par le
grenaillage sans simuler chaque impact. Ensemble, la théorie des plaques non-Euclidiennes
et le concept d’eigenstrains fournissent une formulation numérique concise pour le logiciel de
simulation. Le solveur du problème inverse implémenté de cette manière montre une vitesse
de calcul et une précision élevées, ce qui rend le logiciel applicable industriellement.

Un autre avantage de notre solveur du problème inverse est sa capacité d’opérer avec plusieurs
régimes de grenaillage. Cette caractéristique améliore la précision de la mise en forme.
Lorsque le motif est calculé, notre logiciel le divise en segments traités uniformément, ce
qui est requis par les conditions de grenaillage pratiques. La segmentation est effectuée soit
avec un algorithme de regroupement (grouping) soit avec un algorithme de partitionnement
(clustering). L’algorithme de regroupement est utilisé lorsque les régimes de grenaillage
sont fixes et leur ajustement est limité, tandis que l’algorithme de partitionnement calcule
automatiquement les régimes de grenaillage optimaux. Les deux algorithmes sont suivis d’un
algorithme de filtrage qui corrige les erreurs de segmentation locales. Le solveur du problème
inverse ainsi que les algorithmes de regroupement, de partitionnement et de filtrage ont été
testés numériquement à l’aide de 200 cas de tests générés aléatoirement.

En s’appuyant sur notre logiciel de simulation, nous avons automatisé le procédé de la mise
en forme par grenaillage. À savoir, nous avons développé un flux de travaux comprenant
toutes les étapes nécessaires pour la mise en forme automatisée d’une plaque métallique
à l’aide d’un robot de grenaillage. Dans cette thèse, nous décrivons comment calibrer le
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logiciel de simulation, comment programmer automatiquement le robot en fonction du motif
de grenaillage, comment appliquer efficacement le motif prescrit et comment évaluer la qualité
de la mise en forme. Lorsque le logiciel est calibré, l’intervention humaine n’est nécessaire
que pour l’installation et la désinstallation du composant traité. Le flux de travaux est
ajustable pour toutes les formes cibles et, de plus, il est économiquement optimisé. Nous
présentons à la fois les détails théoriques et pratiques, donc cette thèse est un guide complet
pour l’automatisation du procédé.

Le flux de travaux automatisé a été appliqué pour façonner des plaques d’aluminium de
forme libre et pour fabriquer le revêtement d’une aile d’avion modèle. Dans chaque cas, nous
caractérisons l’erreur entre la forme simulée et la forme développée, nous révélons les causes
de cette erreur et nous suggérons des pistes d’amélioration.
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ABSTRACT

Shot peen forming is an industrial process for shaping thin and large metal panels. It is widely
used in the aerospace industry to shape, for example, wing skins or fuel tank segments. The
process consists in treating the plate with a stream of rigid shot that are projected through
a moving nozzle. Such a treatment induces plastic deformation in the outer layer of material
and makes the plate bend. The shot stream is applied locally according to the peening
pattern, and different peening patterns lead to different curved shapes.

We developed a peen forming simulation software that predicts the effect of applying a given
pattern and computes an optimal peening pattern that leads to the target shape, i.e., solves
respectively the forward and the inverse problems. The software is based on the theory of non-
Euclidean plates, which provides efficient theoretical instruments to describe deformation of
thin structures. In addition, the software uses the eigenstrain approach that allows to rapidly
model the peening-induced loads without simulating every impact. Together, the theory of
non-Euclidean plates and the eigenstrain approach provide a concise numerical formulation
for the simulation software. The inverse problem solver implemented in this way shows high
computation speed and precision, which makes the software industrially applicable.

Another advantage of our inverse problem solver is its ability to operate with multiple peening
regimes. This feature enhances the forming precision. When the pattern is computed, our
software splits it into uniformly treated segments, which is required by practical peening
conditions. The segmentation is done using either the grouping or the clustering algorithm.
The grouping algorithm is used when the peening regimes are fixed and their adjustment is
restricted, while the clustering algorithm automatically computes optimal peening regimes.
Both algorithms are followed by the filtering algorithm that corrects local segmentation
errors. The inverse problem solver along with the grouping, the clustering and the filtering
algorithms were tested numerically using 200 randomly generated test cases.

Relying on our simulation software, we have automated the peen forming process. Namely,
we developed a workflow including all necessary steps for the automated shaping of a metal
plate with a shot peening robot. We describe how to calibrate the simulation software, how
to automatically program the robot in accordance with the peening pattern, how to efficiently
apply the prescribed pattern and how to evaluate the quality of shaping. When the software is
calibrated, the human intervention is necessary only for installation and deinstallation of the
treated component. The workflow fits for all target shapes, and, moreover, it is economically
optimized. We present both theoretical and practical details, so this thesis is a complete
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guide for the process automation.

The automated workflow was applied to shape freeform aluminum panels and the skin of a
model airplane wing. In each case, we characterize the error between the simulated and the
practically developed shapes, we reveal the causes of this error and we suggest avenues for
further improvement.
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CHAPTER 1 INTRODUCTION

Fabricating of aircrafts and space missiles requires forming large aluminum plates with high
precision. These plates constitute, for example, wing skins, fuselage shells or fuel tank
segments. The outlined components often have a nonuniform double curvature, meaning
that they are locally curved in two directions and that the local radii of curvature vary over
the plate. A cost-effective, yet efficient, shaping method that delivers such forms is called
shot peen forming. This treatment consists in projecting a stream of rigid shot towards the
surface of the plate. The shot stream plastically deforms the surface and induces a convex
curvature on the treated side [1]. The stream width is smaller than the plate size, and the
treatment can be applied to both sides of the plate with a variable intensity. This means
that the developed curvatures can be locally controlled by altering the peened segments and
the peening parameters. Consequently, peen forming does not require any dies, which is the
main advantage of this shaping method when compared to the conventional methods such
as rolling, pressing, or bending. In terms of cost-efficiency, the absence of dies is especially
advantageous when shaping large plates in moderate amounts, which is the case of aerospace
projects.

Numerical simulation of shot peen forming is necessary to ensure its precision and time ef-
ficiency. The simulation of this process involves the resolution of the forward and of the
inverse problems [2]. The forward problem resolution means computing the deformation re-
sulting from a predefined peening treatment. The inverse problem resolution means defining
a necessary treatment to achieve a predefined target shape. A numerical inverse problem
resolution is crucial for industrial companies to design a new peen forming procedure. With-
out it, design of the procedure is a trial and error process, which may last for several weeks
or months and leads to the deterioration of many components. Under these conditions, the
time and resources spent on the design depend on the craft experience of the specialists in
charge and on the complexity of the target shape. This limits, in particular, the size of the
shaped components. Therefore, the absence of a numerical inverse problem solver diminishes
the economic benefits of shot peen forming.

The publicly available inverse problem solvers lack precision and computational efficiency,
which hinders their industrial implementation. The early solvers proposed constant relation
between the peening-induced loads and the developed curvature, which is only the case if the
induced rotations are small [3, 4]. This limitation was later overcome with the help of the
eigenstrain approach [5, 6]. In the peen forming case, it involves formulating the peening-
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induced loads in terms of plastic strains (eigenstrains), which stay constant regardless of the
rotations magnitude. This allows to represent the peened plate as a shell subjected to internal
loads and to model deformations resulting from these loads using the finite element method.
However, the computation speed of the existing eigenstrain-based solvers is not high enough
to make them applicable for large industrial parts. For example, generation of the training
examples for the eigenstrain-based neural network presented in Ref. [6] takes 20 hours for a
plate meshed with 1024 rectangular elements.

The eigenstrain approach bridges the gap between shot peen forming and the theory of non-
Euclidean plates. This theory considers the reconfiguration of plates and shells subjected to
internal non-elastic strains that make their metric non-Euclidean. The theory is based on
geometrical relations between the surface metric and curvature, which explain, for example,
why a flat paper cannot be wrapped over a sphere. The researchers working in this field
have overcome the issue of excessive computational burden needed for the inverse problem
resolution [7]. Namely, they have developed an analytical approach to the inverse problem
resolution, which requires a negligible amount of time with respect to cutting edge numerical
methods used in the peen forming context [5, 6].

The peening treatment is applied according to the peening pattern, which constitutes the
inverse problem solution. The pattern indicates the treated segments of the plate and the set
of peening parameters prescribed to each segment. A set of peening parameters is called the
peening regime. Each peening regime induces a different local deflection. Consequently, the
forming of a complexly curved shape requires multiple regimes in the pattern. The segments
treated with different regimes must be strictly delimited because the peening equipment does
not allow to gradually vary the peening parameters during treatment. However, the existing
inverse problem solvers either do not split the pattern into segments [3, 4, 8] or operate
with only one predefined regime [5, 6]. In the former case, the pattern must be manually
split into segments during post-processing. In the latter case, the optimal regime must be
determined through trial and error computations. Hence, an efficient inverse problem solver
must compute optimal regimes and split the pattern into segments automatically. We can
formulate the division of a pattern into segments as a clustering problem, which can be
resolved with an appropriate clustering algorithm [9].

A high repeatability of the peen forming process is only ensured if it is applied using an
automated equipment. Such equipment typically includes a programmable robotic arm with
a peening nozzle attached to its extremity, which is presented in Figure 1.1 a). However,
the efficient use of the automated equipment requires additional tools and a well established
workflow. Thus, the equipment must be controlled by a numerical inverse problem solver, so
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that the trial and error process is avoided. The peening pattern computed by the solver must
be automatically transmitted to the robotic arm because manual programming of the robotic
arm is time consuming. If the solver formulates the pattern in terms of eigenstrains, then
a calibration strategy must be determined to relate the actual peening parameters and the
eigenstrain. Another calibration must be done to ensure that the peened segments are treated
uniformly and that the rest of the plate is not affected by peening. Finally, the prescribed
pattern must be reproduced in the least amount of time, and the treated component must be
optimally fixed during treatment. A complete workflow encompassing all these details is not
available in the modern literature. The industrial leaders state to have automated the peen
forming process but keep details secret [10, 11]. Consequently, companies are still applying
peen forming manually, as it is illustrated in Figure 1.1 b).

This thesis focuses on three subjects: the simulation of shot peen forming, the segmentation
of the peening pattern and the automation of the peening process. The thesis is structured
as follows. Chapter 2 reviews achievements that are currently made in the mentioned do-
mains and examines limitations of the proposed studies. Chapter 3 summarizes the literature
review and defines the research objectives. Chapters 4-6 present the achievements made in
the framework of this research. Each of these three Chapters is structured as an indepen-
dent article. Chapter 4 describes the simulation software, which is based on the eigenstrain
approach and on the theory of non-Euclidean plates. It also presents results of the numerical
validation of the inverse problem solver. Chapter 5 describes the strategy for the segmenta-
tion of a peening pattern that automatically computes optimal peening regimes. Chapter 6
describes the automated shot peen forming workflow, which was applied for the experimental
validation of the simulation software. Chapter 7 compares the applied modeling methods to
similar techniques. Finally, Chapter 8 reviews the findings and provides recommendations
for future work.
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Figure 1.1 Automated and manual shot peen forming. a) A robotic arm equipped with
a peening nozzle, which is projecting a stream of shot towards the component. c© KSA
Kugelstrahlzentrum Aachen GmbH. Reproduced with permission. b) Manual peen forming
process. The peening nozzle is moved by the operator, and the reflected particles are absorbed
by vacuum surrounding the nozzle. c© SONACA Montreal. Reproduced with permission.
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CHAPTER 2 LITERATURE REVIEW

We start the literature review with a primer on the shot peen forming process and its mechan-
ics. This brings us to the eigenstrain approach that serves for modeling of the peening-induced
loads. In this context, we examine the existing eigenstrain-based methods for the forward
problem resolution. We then pass to the theory of non-Euclidean plates, that provides effi-
cient theoretical tools for analysis of the mechanics of plates subjected to eigenstrain. We
show that the theoretical and numerical results obtained in this field are applicable for the
peen forming simulation. The last three sections of the literature review are dedicated to the
aspects of the peen forming process that have a potential for improvement. The first aspect
is the numerical inverse problem resolution. We perform a critical analysing the existing
methods and examine the improvements that can be brought by the theory of non-Euclidean
plates in this domain. The second aspect is segmentation of the peening pattern, which is
necessary to make the inverse problem solution applicable in practice with a finite number of
treatments. The third aspect is the shot peen forming automation. A conventional method
for automation of this process does not exist, so we explore achievements done in this field
so far.

2.1 Mechanics of shot peen forming

The peening particles (shot) have spherical form with a diameter of less than 4 mm and are
made of steel, glass or ceramics [12]. The shot velocity and their size is set high enough to
induce a “fully plastic” material response [13]. Thus, each impact creates a spherical dimple
and induces plastic strain in the radial directions around the dimple [14]. The peening nozzle
projects numerous shot at a time, and a multitude of impacts plastically deform the whole
outer layer of material in the treated segment [15]. This effect is equivalent to stretching of
the outer layer, which creates a bending moment and a stretching force influencing the whole
structure. Thinner pieces such as metal plates succumb to these loads, i.e., they bend and
stretch [16]. This effect underlies shot peen forming.

2.1.1 Characterization of the shot peening treatment

There are two key parameters that describe a shot peening treatment: intensity and coverage.
The intensity is measured by means of a standardized procedure, which is based on the effect
of bending of metal plates caused by peening. The procedure involves the peening of Almen
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strips – small 76×19 mm sized coupons made of SAE 1070 steel. The thickness of the Almen
strips depends on the anticipated intensity and is classified into three types: A, N and C. The
strips are clamped and peened with the same parameters but for different exposure times t.
When released from clamping, the treated strips adopt an arc-shape. The strips treated for
a longer time have a larger deflection (arc height), which is measured using a special device
- an Almen gage [17]. The arc height ah of each strip is then plotted on a coordinate plane
as a function of the exposure time, and a trendline named saturation curve is traced across
the points. The main objective of the intensity measurement is to find the saturation point
(tsat, aSh) on the saturation curve, such that the point (2tsat, 1.1aSh) also lies on the saturation
curve. The arc height aSh serves as the peening intensity value [18]. Figure 2.1 illustrates the
saturation curve and the saturation point.

The peening coverage c is defined as a ratio of the impacted area to the total area of the
treated specimen. The coverage depends on the exposure time and is usually determined “by
observation at 10-30X magnification” [19]. Due to stochastic nature of impacts, the coverage
of exactly 100% is not realizable in practice, so 98% is defined as full coverage. The coverage
values beyond 98% are achieved by extending the time needed for the full coverage in the
corresponding proportion. For example, a coverage of 196% is considered to be reached when
a part is peened twice longer than it is necessary to obtain 98% coverage [19].
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Figure 2.1 The saturation curve serving for the determination of the peening intensity. In
this example, four Almen strips were treated with a different exposure time t. Their arc
heights ah were measured and traced as points on a coordinate plane (t, ah). The saturation
curve was then traced as a trendline. The saturation point (tsat, aSh) was determined based
on the condition that the point (2tsat, 1.1aSh) belongs to the saturation curve. The arc height
aSh defines the peening intensity. Adapted from Ref. [18] with permission from A. Gariépy.
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2.1.2 The strain and the stress in the treated segment

Consider a flat metal plate peened uniformly at the full coverage. The surface of the plate is
covered with numerous overlapping dimples, and this induced surface roughness can influence
the fatigue life both positively and negatively, depending on the specific case [20,21]. However,
the surface roughness is insignificant in terms of shot peen forming. Indeed, this process
influences the shape of the whole plate, so the small variations of plastic strain over the
surface can be neglected in case of full coverage [22]. Consequently, we assume that the
generated plastic strain is homogeneous in the in-plane directions. Moreover, the shear
components are zero due to translational invariance [23]. However, the plastic strain varies
in the through-thickness direction, so the the plastic strain tensor ε has the following form:

ε(z) =


εxx(z) 0 0

0 εyy(z) 0
0 0 εzz(z)

 , (2.1)

where x and y are Lagrangian coordinates that follow the plate mid-surface, and z is the
through-thickness Lagrangian coordinate. The thickness of the plastically affected outer layer
depends on the peening parameters and on the treated material. For example, in the case
of aluminum, the layer thickness is typically less than 2.5 mm [2]. The components εxx(z)
and εyy(z) are positive inside this layer and equal zero further from the surface. At the same
time, εzz = −(εxx + εyy) due to volume conservation.

The plate bends and stretches elastically to compensate the loads induced by the plastically
deformed layer. The elastic strain provoked in this way is denoted by εel. Same as ε, the
εel is uniform along the surface of the uniformly treated segment and depends only on z.
The peening-induced strains are small [22], so the resulting strain εres may be decomposed
as [23,24]:

εres = ε+ εel. (2.2)

If the treated material is isotropic and free of initial stresses, then εxx(z) = εyy(z) = γ(z),
εelxx(z) = εelyy(z) = γel(z) and εresxx (z) = εresyy (z) = γres(z). Figure 2.2 illustrates the general
shape of the profiles γ(z), γel(z) and γres(z).

The deformed structure stays residually stressed. The linear elasticity theory relates the
residual stress σ and the elastic strain εel as:σxx = Y

1−ν2

(
εelxx + νεelyy

)
,

σyy = Y
1−ν2

(
εelyy + νεelxx

)
,

(2.3)
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Figure 2.2 Strains in an isotropic plate that was bent by means of a uniform shot peening
treatment. The Lagrangian coordinates x and y follow the plate mid-surface, and the La-
grangian coordinate z points in the through-thickness direction. The strains are distributed
uniformly along x and y but vary along z. The plastic strain γ(z) is induced by the treat-
ment. The elastic strain γel(z) springs back in response to the loads created by γ(z). The
resulting strain γres(z) is the sum of γ(z) and γel(z). Under the Kirchhoff-Love straight
normals assumption, the through-thickness profile of γres(z) is a straight line.

where Y is the Young’s modulus and ν is the Poisson’s ratio of the treated material. All
the other components of the residual stress tensor are equal to zero. The non-diagonal
components equal to zero due to absence of the shear strains. The fact that σzz = 0 follows
from the equilibrium equations. Thus, the equilibrium requires div(σ) = 0 at each point,
so the profile σzz(z) is constant. Moreover, the presence of free upper and lower surfaces
requires σzz = 0 on the surfaces. Consequently, σzz(z) = 0 for every z (Ref. [25], Appendix
D). For the case of an isotropic non-prestressed material, Equations 2.3 reduce to:

σxx(z) = σyy(z) = σγ(z) = Y

1− ν γ
el(z). (2.4)

An approximate expression for the form of the profile σγ = f(z) is presented in Ref. [26]. It
was developed theoretically and adjusted using empirical results presented in Ref. [27].

2.1.3 The force and the moment induced by the treatment

Now let us consider a clamped plate that underwent a uniform treatment but stays perfectly
flat and unstretched due to the clamping. In this case εres = 0 and εel = −ε. For simplicity,
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we consider an isotropic material, which is free of initial stresses. The stretching force Fp and
the bending moment Mp induced by the treatment are of the same magnitude as the force
and the moment acting on the clamping support [16]:

Fp = −
∫ h

2

− h
2

σγ(z)dz, (2.5)

Mp = −
∫ h

2

− h
2

σγ(z)zdz, (2.6)

where h denotes the plate thickness. The displacements are equal to zero in this case, so
using Eqn. 2.4 and taking into account that γel(z) = −γ(z) we express ~F and ~M in terms
of γ(z) as:

Fp = Y

1− ν

∫ h
2

− h
2

γ(z)dz = Y

1− νΓ, (2.7)

Mp = Y

1− ν

∫ h
2

− h
2

γ(z)zdz = Y

1− νΓ1. (2.8)

Here, Γ denotes the total plastic strain and Γ1 stands for the first plastic strain moment [2].

2.2 The eigenstrain approach in the modeling of shot peen forming

The cause for deformation of a shot peened plate is the plastic strain ε induced by the
treatment. Consequently, a natural way to compute the deformed shape of the component
is to input ε in the structure and to compute the elastic springback, i.e, to find εel and εres.
The plastic strain ε fits definition of eigenstrain, which is a term encompassing all nonelastic
strains [28]. Moreover, ε is the only type of eigenstrains present in a shot peened component.

2.2.1 Implementation of an eigenstrain model

The resulting strain εres depends only on Γ and Γ1. These quantities imply integrating over
the plate thickness, so different through-thickness eigenstrain profiles ε(z) can induce the
same εres(z), provided that Γ and Γ1 induced by these profiles are equal. Several authors use
this rule and input an idealized eigenstrain profile in their simulations [2, 29]. The concept
of the idealized eigenstrain profile is illustrated in Figure 2.3. Such a profile simplifies the
problem formulation and accelerates the computations. It should be noted that different ε(z)
induce different elastic strain profiles εel(z) and thus different residual stress profiles σ(z).
Given that the main objective of the peen forming simulation is to relate the peening pattern
and the resulting deformation, this circumstance is usually ignored.
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One strategy for idealization of the eigenstrain profile is homogenization of the eigenstrain
through the whole plastically affected layer (Figure 2.3 c), which results in the “step” eigen-
strain profile:

γst(z) =

ε∗ for
(
h
2 − h∗

)
< z < h

2 ,

0 for − h
2 < z <

(
h
2 − h∗

)
.

(2.9)

Here, ε∗ denotes the eigenstrain assigned to the expanding layer and h∗ denotes its thickness.
If the plate is treated from both sides, then it takes the form of a trilayer :

γtri(z) =


εt∗ for

(
h
2 − h

t
∗

)
< z < h

2 ,

0 for
(
hb∗ − h

2

)
< z <

(
h
2 − h

t
∗

)
,

εb∗ for − h
2 < z <

(
hb∗ − h

2

)
.

(2.10)

Here, ht∗ and hb∗ denote the thickness of the top and bottom layers respectively, while εt∗ and
εb∗ denote the eigenstrain assigned to the top and bottom layers. If the same peening regimes
are simultaneously applied from the top and bottom sides, then εt∗ = εb∗ and ht∗ = hb∗.
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Figure 2.3 Different eigenstrain profiles used as input for the springback simulation. a) A
continuous eigenstrain profile induced by shot peening. b) A slightly idealized (discretized)
eigenstrain profle. The plastically deformed layer is split into 8 sublayers. Each sublayer
expands uniformly through its thickness, but the expansion magnitude is different for each
layer. c) The fully idealized eigenstrain profile. The plastically deformed layer is represented
as a single layer expanding uniformly through its thickness. Its thickness is denoted by h∗,
and the assigned eigenstrain is denoted by ε∗. All three profiles lead to the same deformed
shape because they induce the same total eigenstrain Γ and the first eigenstrain moment
Γ1. The profile idealization reduces the number of variables in the model and accelerates the
springback simulation.
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Otherwise, the plate can be represented as a bilayer consisting of two equally thick layers
(Ref. [25], Chapter 4):

γbi(z) =

ε
t for 0 < z < h

2 ,

εb for − h
2 < z < 0.

(2.11)

If the treatment is applied from the top side, then εt > 0 and εb < 0. Moreover, |εt| > |εb|,
so that Γ is positive. In the case of the bottom side treatment, the inequalities are opposite.
When the treatment is applied from both sides using the same regime, then εt = εb > 0.

2.2.2 Relating shot peening parameters with eigenstrain

A set of peening parameters is called a peening regime. Every combination of a peening
regime and a treated material induces different eigenstrain. Hence, to simulate peen forming
using the eigenstrain approach, one has to first determine this relation. The first steps in
this direction were done using theoretical considerations. Thus, the depth of the plastically
deformed layer was expressed in terms of the shot velocity, their radii and the treated material
properties [29,30]. The deformed layer thickness was assumed to be the same as the thickness
of the plastically deformed segment induced by a single indentation. This value was obtained
by combining solutions for the Hertz and the Boussinesq problems under the assumption that
the impact is normal to the surface. This simplified formulation implies no superposition
between the impacts and does not provide the eigenstrain magnitude.

An accurate determination of the trough-thickness eigenstrain profile is challenging, and it
can only be done by means of numerical simulations or experimental measurement. The
main complexity lies in the stochastic nature of the shot projection [31]. Thus, in practice
not all impacts are normal to the surface, and the impacts often superimpose with each
other. The impacts harden and heat the material thus altering its response to the subsequent
indentations [32]. The material hardening, however, is not always proportional to the number
of impacts [33]. In addition, the shot are not perfectly spherical [12], and their projection
speed may fluctuate due to imperfections in the shot peening system.

Another challenge lies in the anisotropic mechanical properties of aluminum plates that vary
depending on the fabrication process [34]. For example, a flat plate produced by rolling
contains anisotropic residual stresses [35], and it also demonstrates plastic anisotropy [36].
For this reason, a symmetrical impact induces different through-thickness eigenstrain profiles
in the rolling and in the transversal directions [34]. In the context of shot peen forming, the
phenomenon of eigenstrain anisotropy was examined in Ref. [35].
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Numerical impact simulations

One of the first numerical impact simulations was performed by Han et al. [37, 38]. At first,
the authors modeled a single impact, and then they simulated 32 consecutive batches of
16 impacts applied on a small representative volume of 8 × 8 × 4 mm. The simulations
provided the eigenstrain profiles γ(z) for different peening conditions, but these profiles were
not validated experimentally. It was observed that a 3D model gives more realistic profiles
than a simplified 2D model. It was also noted that the profiles depend on the coefficient
of friction between the shot and the treated material. Moreover, it was proved that σγ(z)
generated by a single shot is different from that generated by multiple shot. Therefore, the
extrapolation of σγ(z) and γ(z) generated by one shot over the whole shot peened segment
is inaccurate.

Another simulation of multiple impacts was perfomed by Wang et al. [39]. The authors
modelled peening of a 20×20×4 mm plate using the finite element method. They made use
of the symmetry and simulated the treatment of a quarter of the plate with 100-800 impacts.
This simulation clearly showed that the eigenstrain ε in the treated segment is organized
in layers, or, mathematically speaking, that ε depends only on z. The same simulation
was further improved by Kang et al. [40] using a denser mesh. The computed profile γ(z)
was compared to through-thickness microhardness measurements in experimentally treated
specimens, that confirmed that γ(z) was qualitatively well predicted. The simulations were
also validated in terms of local deflections of the specimens, that were slightly underestimated.

A similar approach was later presented by Chen et al. [22]. The authors simulated the
peening of type C Almen strip — a 76 × 19 × 2.39 mm steel coupon commonly used for
the determination of peening intensity. The strip was treated uniformly with arbitrarily
distributed shot, which fully covered the strip. Different numbers of shot (1200 − 6000)
and different shot velocities (50 − 75 m/s) were considered. The simulations examined the
behaviour only of a quarter of the strip, and the results were then extrapolated to the whole
component. Figure 2.4 illustrates the simulation strategy and the strip in its deformed state.
It was proven that, in the case of full coverage, the eigenstrain ε and the residual stress σ
have a layered structure, which is visible in Figure 2.4 b). It also was noted that, under the
described conditions, the simulated springback did not influence the eigenstrain, so ε was
constant before and after the springback.

All impact simulations presented in this subsection were performed using the dynamic explicit
analysis. The shot were modelled as undeformable spheres, and the impacted surface was
densely meshed either with tetrahedral [39] or with hexahedral [22, 38, 40] volumetric finite
elements. An accurate dynamic simulation required a dense mesh: the element size had to be
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Figure 2.4 Numerical simulation of 6000 peening impacts impinging an Almen strip conducted
by Chen et al. [22]. a) The researchers simulated impacting of a quarter of the strip with 1500
shot at the speed of 75 m/s. The symmetry boundary conditions were imposed to the internal
boundaries. The strip was meshed with hexahedral finite elements and supported by a rigid
surface. The shot were modeled as rigid spheres. b) The strip in its deformed state. The
color indicates local residual stress σxx along the x-axis. In this research, (x, y, z) is the ab-
solute coordinate system, and the strip is oriented along the x-axis. The figure demonstrates
that despite local variations, the through-thickness residual stress profile has a layered form.
Adapted from Ref. [22] with permission from the American Society of Mechanical Engineers.

ten times smaller than the shot diameter [37]. At least nine elements were used in the through-
thickness direction as well [40]. This made such computations time-consuming. Thus, the
model presented in Ref. [22] was composed of 84774 elements, and the simulation took 20
hours involving a supercomputer. The model presented in Ref. [40] was composed of 150 000
elements and it required 6 minutes to simulate each impact. A long computation time makes
dynamic impact simulations unsuitable for industrial applications, unless a supercomputer
is involved.

Direct experimental determination of eigenstrain

Given that the eigenstrain stays constant if the induced rotations are small [22], it can be
determined on a thick shot peened specimen by means of X-ray diffraction (XRD). The
corresponding procedures are described in Refs. [41] and [21]. Essentially, the XRD measures
local γel(z) profiles. The γ(z) profiles can then be easily determined relying on Eqn. 2.1
and by assuming that the γres(z) profile is a straight line [41]. The specimens presented
in Ref. [21] did not undergo any springback, so, in this case, the eigenstrain was measured
directly assuming that εel = −ε. The performed measurement allowed Zhang et al. [41] to
conclude that the γres(z) profiles do not depend on the thickness of the treated material, if
the thickness is sufficiently large. The authors assume that this rule is valid for all thicknesses
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that are at least twice larger than the depth of the plastically affected layer.

Although XRD proved its efficiency for theoretical research, its use for everyday eigenstrain
measurement in industry is cumbersome. Thus, the process is time-consuming, and the result
may depend on the material texture, the grain size and the net intensity. Also, the depth of
penetration of the X-rays is very low (few microns), so one has to drill or cut the specimen
to examine the eigenstrain distribution along the whole thickness. This may introduce a
considerable error in the measurements [42]. Finally, the residual stress measurement requires
costly equipment and highly-qualified staff.

Combination of modeling and experiments

Another strategy for the eigenstrain characterization involves experiments and an already
implemented springback simulation model. For example, the eigenstrain profile ε(z) can be
reconstructed from the measured residual stress profile σ(z). The residual stress, in turn,
can be measured with cheaper and less time-consuming methods than XRD. For instance,
this can be done using the hole drilling method [43]. The eigenstrain profile γ(z) in this case
is numerically optimized using the simulation model in the way that it generates the same
residual stress profile as the measured one. The profile γ(z) can be represented as the sum
of basis functions ξk(z) [2, 44]:

γ(z) =
N∑
k=1

ckξk(z), (2.12)

where

ξk(z) =


(
h
2 − h∗ − z

)k+2
for

(
h
2 − h∗

)
< z < h

2 ,

0 for − h
2 < z <

(
h
2 − h∗

)
.

(2.13)

The numerically optimized variables are the coefficients ck and the thickness of the plastically
deformed layer h∗.

If the springback simulation model relies on an idealized eigenstrain profile, then the de-
termination of the real eigenstrain profile presents an unnecessary additional step and can
be omitted. Indeed, the single-layer eigenstrain profile in this case is determined by only
two variables: h∗ and ε∗. If one of them is determined in advance, then the other can be
calibrated experimentally. This strategy was adopted in Ref. [29]. The h∗ value was deter-
mined as a function of the process parameters relying on the theoretical results of Al-Hassani
et al. [30]. The ε∗ value was adjusted to fit the simulated deflection of a 76 × 19 × 3 mm
aluminum coupon to the experimentally measured value. This strategy works without any
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supplementary equipment or numerical models in addition to the shot peening machine and
the eigenstrain-based springback simulation model.

The analytical relation for h∗ presented in Ref. [30], however, is not exact. It is based on
the depth of penetration of the plastic strain induced by one impact, but the simulations
performed by Han et al. demonstrated that the plastic strain depth induced by multiple
impacts is different [37]. Nevertheless, given that the bilayer deflection depends only on
Γ1, the parameter ε∗ can be adjusted to accurately reproduce Γ1 even if h∗ is inaccurately
estimated. In turn, the total eigenstrain Γ in this case is different from the real one, and thus
the stretching of the specimen is not simulated correctly. This circumstance must be taken
into account for the applications where an accurate simulation of the stretching is important.

2.2.3 Resolution of the forward problem using the eigenstrain approach

In the eigenstrain formulation, the forward problem consists in determining of the elastic
springback induced by a predefined eigenstrain field.

Theoretical challenges

Shot peening induces small eigenstrain of the order of 10−3 [2, 35]. The elastic springback
also implies small strains, but the arising displacements may be large [22]. At the same
time, the treated plate stays residually stressed after the springback because its only stress-
free configuration implies delamination. Large displacements and the absence of an integral
stress-free state make standard linear elastic theories inappropriate for the forward problem
resolution in a general case [45]. Thus, due to large displacements, the plate may exhibit
a geometrically nonlinear behaviour. This means that the local elastic strain depends not
only on the eigenstrain, but also on the geometry of the plate. For instance, Pezzula et al.
showed that the directional curvature of a bilayer plate subjected to eigenstrain is different
from the curvature of a beam cut out of this plate in the same direction [46] (see Figure 2.5).
The standard equilibrium equations for the total forces and moments are unsuitable in this
case either. They are formulated in terms of stresses, which are related to the elastic strains.
However, the elastic strains are derived with respect to the virtual stress-free state that the
plate can never adopt, and this factor alters the plate mechanics [47].

Numerical achievements

Notwithstanding the complexity of an analytical forward problem resolution, this problem
can always be solved numerically using the finite element method in its shell [2, 48] or vol-
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Figure 2.5 Bending of a bilayer plate and a bilayer beam subjected to eigenstrains. The
two layers of the plate are made of two different polymer materials (PVS Zhermack Elite
Double 32 and 8), and the beam is cut out of the plate. a) The initial state of the plate and
the beam. b) The polymer chain flow induces eigenstrains, i.e., it makes the bottom layer
expand uniformly. As a result, the plate adopts a cylindrical shape, and the beam bends.
However, the curvature of the beam κ0 is lower than the principal curvature of the cylinder.
Source: [46]. Reproduced with permission from the Royal Society of Chemistry.

umetric [49, 50] formulation. The number and the density of integration points along the
thickness can be varied thus allowing flexible simulation of different through-thickness eigen-
strain profiles. The commercial FEM packages allow to efficiently model eigenstrain as an
irreversible thermal expansion, which is mechanically equivalent to the plastic strain [51].
Otherwise, the eigenstrain can be induced by compression of the upper layer of material [52].

One of the first eigenstrain-based peen forming simulations is presented in Ref. [52]. The
authors simulated a uniform treatment of a small 50× 10× 0.9 mm strip and a 0.9 mm thick
disc having 25 mm in diameter using volumetric finite elements. The eigenstrain was applied
by fixing the nodes along the thickness and squeezing the outer surface of the material. After
that, the nodes were released and the springback was computed. The proposed approach
was innovative for the time of its creation, but it has two shortcomings. The first one was a
complex relation between the squeezing force and the shot peening parameters, that was not
examined precisely. The second one consists in a necessarily large number of elements along
the thickness, which limits the approach to small components.

Another simulation involving volumetric finite elements was performed by Chaise et al. [49,
50]. The authors simulated a uniform treatment of 60 × 18 × 2 mm coupons using thermal
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expansions to reproduce the through-thickness eigenstrain profile. The simulations were
reproduced experimentally, and the deflection of the coupons differed from the simulated one
by less than 0.2 mm. Nevertheless, the use of volumetric finite elements made the springback
computation expensive, so that the forward problem resolution for the 60 × 18 × 2 mm
specimen took “few hours”.

Wang et al. [29] considered a similar problem: the researchers simulated the uniform treat-
ment of a 76× 19× 3 mm coupon. In this paper, the forward problem was solved using shell
finite elements, and the through-thickness eigenstrain profile was idealized. The error in de-
flection between the simulations and the experiments was also of the order of 10−2 mm. The
shell finite element formulation takes less computational time than the volumetric formula-
tion. This study also shows that this formulation provides high accuracy if the eigenstrain is
correctly calibrated in advance.

Several authors used the eigenstrain approach to simulate the peen forming of plates that are
significantly bigger than the Almen strip. This was commonly done using shell finite elements
and the thermal expansion approach. For instance, Levers et al. [48] simulated the forming
of a wing skin panel. However, the paper only describes the concept without providing any
validation details. More recently, Faucheux et al. [2] simulated a uniform one-side treatment
applied on 1 × 1 m aluminum plates of different thicknesses: 5, 10 and 15 mm. The study
showed that a uniformly peened plate adopts either spherical or cylindrical shape. Moreover,
if the treatment is fixed, then this choice is determined by the plate thickness. Thus, the
5 mm thick plate morphed into a cylindrical patch, while the 15 mm thick plate adopted
a spherical shape. This conclusion was also proven experimentally, which is illustrated in
Figure 2.6.

In addition, Faucheux [25] and Miao et al. [35] simulated the uniform treatment of rectangular
aluminum plates with various aspect ratios and dimensions, ranging from 254 to 1016 mm.
The researchers examined the influence of material plastic anisotropy, of the initial stresses
and of the additional prestress on the eigenstrain anisotropy. The eigenstrain anisotropy was
included in these simulations using the coefficient χ implying the relation

εxx = (1 + χ)εyy/(1− χ) (2.14)

at any point of the treated segment. The simulations showed that χ is another factor that
influences the transition between the spherical and the cylindrical shapes. It was demon-
strated that, in the cylindrical regime, the rectangular plates always bend along their long
direction in the case of χ = 0. Otherwise, when χ 6= 0, the bending direction is determined
both by χ and by the aspect ratio of the plate.
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Figure 2.6 Deflection of uniformly treated 1 × 1 m 2024-T3 aluminum plates of different
thicknesses described in Ref. [2]. The plates were treated at 80% coverage with Almen
intensity of 0.57 mm C (Section 2.1.1). The 15 mm thick plate adopted a spherical shape
(a), the 10 mm thick plate adopted a quasi-cylindrical shape with a slight curvature in
the y-direction (b), and the 5 mm thick plate adopted a purely cylindrical shape (c), as
was predicted by the numerical simulations. The deformation of the plates is magnified
for illustration purposes. The developed shapes were scanned with a coordinate-measuring
machine (CMM). Figure d) traces vertical cross-sectional deflection of the three plates. In this
research, (x, y, z) is the absolute coordinate system. Adapted from Ref. [2] with permission
from Elsevier Science & Technology Journals.

The experimental validation of the simulations presented in Refs. [2, 25, 35] demonstrated a
good qualitative accordance, but a significant error was observed in terms of the predicted
curvature. The authors explain it with the fact that the plates were free to deform during
treatment. Thus, the progressive deformation of the plates created the effect of prestress,
which altered the local eigenstrain. Consequently, the eigenstrain did not correspond to
the simulated one. The influence of the prestress on the developed eigenstrain was further
examined in detail in Ref. [53].

The shell finite elements along with the thermal expansion approach also provide enough
versatility to simulate the application of more complex peening patterns. Each finite element
can be subjected to the thermal expansion independently, so the peening pattern essentially
denotes a set of eigenstrains prescribed to each element. With this, Miao et al. [5] simulated
application of peening patterns that made 305 × 305 mm sized aluminum plates adopt a
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cylindrical or a saddle shape. The experimental validation showed that the overall shape of
each plate was predicted correctly, so the errors in deflection were of the order of 0.1 mm.
In the worst case the error constituted 14% of the total deflection. Same as in the case of
uniformly treated plates, the error was influenced by progressive deformation of the plates
during treatment. In addition, the model did not take into account the anisotropy of eigen-
strains induced in shot peened aluminum plates [25, 35], and this factor also increased the
simulation error.

2.3 The theory of non-Euclidean plates

The eigenstrain is an internal load, and the elastic springback does not depend on its physical
cause. This allows to solve the forward problem for shot peen forming using general theories
describing the springback of elastic plates subjected to eigenstrain. Among those, the theory
of non-Euclidean plates is specifically adapted to describe large displacements in the absence
of an integral stress-free configuration. In fact, the latter condition gives the name to the
theory: the plate is called non-Euclidean when its rest, i.e., stress-free configuration, is not
embeddable in Euclidean space without the loss of integrity. The theory of non-Euclidean
plates was initially developed and structured by Efrati and collaborators [45,47,54].

2.3.1 Fundamental principles

The theory of non-Euclidean plates adopts standard Kirchhoff-Love assumptions:

• straight lines normal to the mid-surface remain straight and normal to the mid-surface
after deformation;

• the distance of any material point to the mid-surface remains unchanged after defor-
mation.

This allows to associate the plate shape with the shape of its mid-surface. The mid-surface
is parameterized with Lagrangian curvilinear coordinates (x, y) ∈ U ⊂ R2. The domain U

determines the borders of the mid-surface. The position of each point of the mid-surface
in 3D space is given the mapping ~m : U 7→ R3 [47]. The mid-surface shape is uniquely
described using standard quantities coming from differential geometry: the first and the
second fundamental forms. The former defines the local stretching and is defined by the
2× 2 matrix a:

a =
∂x ~m · ∂x ~m ∂x ~m · ∂y ~m
∂y ~m · ∂x ~m ∂y ~m · ∂y ~m

 . (2.15)
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The latter defines the local curvature and is defined by the 2× 2 matrix b:

b =
∂xx ~m · ~n ∂xy ~m · ~n
∂yx ~m · ~n ∂yy ~m · ~n

 , (2.16)

where ~n stands for the local normal vector of a unit length. In these equations, ∂x and
∂y denote the partial derivatives ∂/∂x and ∂/∂y respectively, so ∂x ~m and ∂y ~m are the local
tangent vectors. Figure 2.7 illustrates the concept of surface parameterization and the vectors
involved.

The two fundamental forms uniquely describe a surface in Euclidean space under the con-
dition that they are compatible. Mathematically, this means that they must satisfy the
Gauss–Peterson–Mainardi–Codazzi (GPMC) equations, which may be found, for instance,
in Ref. [55]. The introduction of eigenstrain is similar to the prescription of a new rest config-
uration to the plate, which is described by the two fundamental forms (ar,br). If ar and br
do not satisfy the GPMC equations, which is often the case, then the rest configuration is not
embeddable in Euclidean space without the loss of integrity, so the plate is non-Euclidean.
The final shape, i.e., the shape that the plate actually adopts, is described by compatible
fundamental forms (af ,bf ). Hence, the forward problem in this formulation consists in the
determination of (af ,bf ) as a function of (ar,br). This is done by minimizing the elastic
energy functional EML, which is based on the Saint Venant - Kirchhoff hyperelastic material
model [56], with respect to (af ,bf ) [7, 45]:

EML = 1
2

∫
U

[
h

4
∥∥∥a−1

r af − I
∥∥∥2

e
+ h3

12
∥∥∥a−1

r (bf − br)
∥∥∥2

e

]√
det ar dxdy, (2.17)

where ‖ · ‖ = αTr2 (·) + 2βTr(·2) with α = Y ν/(1− ν2) and β = Y/(2 + 2ν).

2.3.2 Theoretical results

An important theoretical achievement, which is applicable for the shot peen forming simula-
tions, was made by van Rees and collaborators [7]. It was proven that every non-Euclidean
plate having a rest configuration (ar ,br) can be represented as a bilayer subjected to an
in-plane eigenstrain on one or both layers. Such in-plane eigenstrain prescribes new rest first
fundamental forms (ar,t, ar,b) to the top and the bottom layers respectively. The plate is
non-Euclidean if ar,t and ar,b are locally different because such rest configuration prescribes
delamination. The two formulations of the rest configuration can be easily transformed one
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∶ � → ℝ3 m

Figure 2.7 Surface pameterization. Each point of the surface is endowed with a fixed 2D
coordinate (x, y), and the mapping ~m : U 7→ R3 defines position of the point in space. The
mapping thus defines the field of local normals ~n(x, y) and the field of local tangent vectors
∂ ~m(x, y)/∂x and ∂ ~m(x, y)/∂y. These quantities participate in the computation of the local
fundamental forms a and b that uniquely define the shape of the surface. Adapted from
Ref. [7] with permission from the Proceedings of the National Academy of Sciences.

into another [7]: 
ar = 1

2 (ar,b + ar,t) ,

br = 3
4h (ar,b − ar,t) .

(2.18)

Inversely, 
ar,t = ar −

2h
3 br,

ar,b = ar + 2h
3 br.

(2.19)

Here, it is assumed that the bilayer consists of two equally thick layers. Such bilayer formula-
tion of a non-Euclidean plate exactly corresponds to the idealized peening-induced eigenstrain
profile (Eqn. 2.11). In this case, ar,t and ar,b are defined by εt and εb respectively. To find the
final configuration (af ,bf ) induced by peening, one can transform (ar,t , ar,b) into (ar ,br) us-
ing Equations 2.18 and then minimize EML with respect to (af ,bf ). Another solution would
be to directly substitute (ar,t , ar,b) to the bilayer elastic energy functional EBL formulated in
Ref. [7] and to minimize it with respect to (af ,bf ).

In certain cases, the theory of non-Euclidean plates also allows to analytically describe the
final shape of flat plates subjected to eigenstrain. Thus, Pezzulla et al. [57] described the
curvature of a monolayer disc induced by isotropic swelling of its centre or of its outer
part. The curvature depended on the swelling magnitude and on the ratio between the
swelling and the passive areas. The analytical results showed good agreement with numerical
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simulations and with experiments conducted using swelling elastomer sheets. It was observed
that swelling of the central part induces a spherical shape, while swelling of the borders leads
to a saddle shape. These experiments can be reproduced using peen forming by applying
treatment from both sides on a metal disc in the segments that must undergo swelling.

Pezzulla et al. [46,58] also considered the case of a bilayer with an isotropically swelling upper
layer. In terms of peen forming, this case corresponds to uniform treatment of a plate from
one side (Eqn. 2.9). It was proved analytically that the plate in this case adopts either a
spherical or a cylindrical shape depending on which shape minimizes the elastic energy (Eqn.
2.17). The authors derived relations for the curvature of the plate in both configurations.
They also formulated the criterion of transition between the two configurations. Essentially,
it was proven that a larger thickness promotes the adoption of a spherical shape, while a larger
area of the plate, a larger Poisson’s ratio and a larger eigenstrain magnitude promote the
adoption of a cylindrical shape. This result is consistent with the simulations and experiments
performed by Faucheux et al. in the field of shot peen forming [2].

2.3.3 Numerical results

The shell finite element method can be reformulated using the theory of non-Euclidean plates
[59]. In this formulation, the eigenstrain is embedded in the rest configuration imposed on
the plate, which eliminates the need to simulate its mechanical cause. The shell elements
are triangular, and the fundamental forms are constant inside each element. Consequently,
the integration in the expression for the global elastic energy functional EML (Eqn. 2.17)
transforms into the sum over all elements of the mesh. The forward problem is solved through
numerical minimization of EML with respect to the local final fundamental forms (af ,bf ),
that, in turn, are defined by the positions of vertices and normals. As stated in the Appendix
to Ref. [7], “in the context of finite element methods this numerical method is essentially a
geometric reformulation of the constant-strain triangle (CST) for the membrane energy, and
the Morley triangular element [60] for the bending energy [61,62]”.

A validation of this numerical method against theoretical results is presented in Ref. [63]. The
authors solved the forward problem for several cases that admitted an analytical solution,
such as a spherical cap, a hyperboloid cap or a cylindrical patch. The first and the second
fundamental forms of these surfaces are well known, and they were imposed as the rest
configuration (ar,br) to a flat unstretched square shell. This monolayer formulation of the
rest configuration can be easily transformed into the bilayer case, which is closer to the
shot peen forming simulation, by inverting Equations 2.18. In the considered cases, the rest
fundamental forms were compatible because they described existing surfaces. Consequently,
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the minimization of EML was supposed to provide af = ar and bf = br. However, this was
not exactly the case because, numerically, EML is minimized not with respect to (af ,bf ),
but with respect to the positions of vertices and normals in the final mesh configuration.
The final configurations were compared to the analytical shapes in terms of the maximal
local discrepancy (the Hausdorff distance). The initial square shell had a unit area, and the
Hausdorff distance for the three mentioned final shapes lied between 1× 10−2 and 3.5× 10−2

for a mesh consisting of 2686 vertices. The simulations also revealed that the error was
slightly mesh-dependent but did not always decrease with a denser mesh.

The numerical implementation of the theory of non-Euclidean plates was also validated qual-
itatively against experiments with 4D printed shells [59, 63]. Such structures are printed
flat, and, similar to shot peen forming, their deformation is caused by the eigenstrain. The
eigenstrain is embedded in the structures during the printing phase and is “activated” with
external stimuli, such as heat, humidity, or light [64]. For instance, van Rees et al. simulated
the reconfiguration of 4D printed polymers that adopted complex shapes, such as a helicoid,
a catenoid or a sombrero [59]. Each shell consisted of two layers containing oriented filaments
that swelled when immersed in water. The technical details for printing of such structures
are presented in Ref. [65]. The numerical simulations of van Rees et al. provided excellent
visual consistency with the shapes developed in practice, which is illustrated in Figure 2.8.
Nevertheless, the error was not quantified. In a similar fashion, Chen et al. [63] simulated
the wrinkling of a polymer disc with radially varying eigenstrain activated in a hot bath [66]
and of a bilayer pasta that was changing its shape during cooking [67]. The simulations also
showed good qualitative accordance with experiments.

Finally, the numerical method was tested for the case of high eigenstrain of the order of
1. For example, van Rees et al. [7] applied it to simulate the reconfiguration of a flat disc
into a human face and of a flat square into a 3D map of a mountainous landscape. In this
connection, Chen et al. [63] also modeled wrapping of a flat disc into a sphere. Although
these simulations were not experimentally validated, they showed that the algorithm is robust
even in the case of a high eigenstrain magnitude. Also, they showed that in this case the
reconfiguration must be simulated in several steps with the eigenstrain gradually increasing
from zero up to the value prescribed by the rest configuration (see Appendix of Ref. [7]). The
final configuration computed on each step is thus used as the initial guess for the next step.
This process “guides” the optimization algorithm and reduces the chance for it to get stuck
in a local minimum. However, an optimal strategy for the eigenstrain interpolation was not
determined. This problem is of secondary importance for the shot peen forming simulations
due to a low eigenstrain magnitude, but a multi-step simulation can still increase accuracy
of the forward problem resolution.
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Figure 2.8 Comparison of the simulations and experiments conducted in the field of 4D
printed non-Euclidean shells. The shells were printed flat and contained oriented filaments
with embedded eigenstrain, which was released by humidity. The eigenstrain made the shells
morph into a helicoid (a), a catenoid (b) or a sombrero (c). The numerical simulations (d-f)
conducted using the geometric reformulation of the finite element method demonstrated good
qualitative accordance with experiments. Adapted from Ref. [59] with permission from the
Royal Society of Chemistry.

2.4 The inverse problem resolution

2.4.1 Early achievements

The first steps towards numerical resolution of the inverse problem were made by VanLuchene
and Cramer [3]. The authors simulated the process using shell finite elements, and the effect
of peening was reproduced with a stretching force and a bending moment applied to each
element. The authors made an assumption that the deformed shapes can be represented
as a linear combination of the deformed shapes induced by elementary loads. The relation
between the loads and the actual peening parameters was calibrated experimentally [68].
With this, the inverse problem was resolved using a constrained least-squares algorithm,
which optimized the sum of squared distances between the nodes of the target mesh and
the current mesh with respect to the applied loads. Any experimental validation of the
proposed approach is, however, not reported. The main drawback of this approach is the
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representation of the peening-induced loads in terms of forces and moments. Thus, large
peening-induced rotations provoke geometrically nonlinear behavior of the plate, which breaks
the experimentally developed relations between these loads and the peening parameters [25].

The approach presented in Ref. [8] proposes a simpler optimization strategy. It involves a
direct relation between the developed curvature and the peening parameters, thus bypassing
the simulation stage. Hence, the curvature is numerically represented as a sum of two sine
functions containing the peening parameters and six correction factors, that are calibrated
experimentally. Although the method was validated for the case of freeform plates consti-
tuting a chair, the developed error was not quantified. A similar strategy was proposed by
by Wang et al. [4], who developed a nonlinear relation between the arc height of a peened
part and the exposure time. The local exposure times were thus optimized as a function
of the local arc heights using a sequential quadratic programming algorithm [69]. Despite
their simplicity, the proposed approaches are not suitable for the case of complex peening
patterns, because the local curvatures are influenced by the curvatures in the neighboring
zones. Moreover, the proposed relations may not hold for new geometries, thicknesses or
materials.

Another strategy for the inverse problem resolution was reported by Essa et al. [70]. It consists
in virtually flattening the target shape of the component by compressing it between two rigid
surfaces and in observing the regions of compressive stress. According to the authors, the
magnitude of the local compressive stress is proportional to the residual stress that must
be developed by the peening treatment in the corresponding region. The residual stress, in
turn, is related to the peening regimes through numerical impact simulation performed in
advance. Same as the previously examined approaches, this approach loses its precision in the
case of complex geometries and peening patterns. Unlike the eigenstrain, the residual stress
evolves in a complex way during the reconfiguration of the component [25]. Consequently,
the relation between the local peening-induced stresses and the final shape of the component
has to be recalibrated for each particular peening case.

2.4.2 Eigenstrain-based approaches

In terms of the eigenstrain simulations, an efficient algorithm for the inverse problem reso-
lution was proposed by Faucheux [25] and Miao et al. [5]. Similarly to Ref. [3] or [4], it is
based on the numerical optimization of the sum of squared distances between the vertices
of the target and the current meshes. However, the current mesh is computed on each it-
eration using the forward problem solver based on the shell finite element method, which is
presented in Ref. [2]. The researchers use the trilayer formulation of the eigenstrain profile
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(Eqn. 2.10), so the numerical optimizer locally adjusts εt∗ and εb∗ to fit the deflection to
the target shape. Hence, the forward problem is solved on each iteration of the numerical
optimization, that allows to take into account all nonlinearities appearing with complex pat-
terns and large rotations. Moreover, if the relation between the eigenstrain and the peening
parameters is established in advance, then the algorithm does not need to be recalibrated
for new geometries or thicknesses. The numerical optimization is performed using the in-
terior point algorithm [71], which provides more flexibility in the problem formulation than
the constrained least squares algorithm applied in Ref. [3]. The proposed method was ap-
plied to compute optimal patterns for shaping the 2024-T3 aluminum plates having sizes of
305× 305× 4.9 mm and 762× 762× 4.9 mm into saddle and cylindrical shapes. One of the
peening patterns prescribed in the saddle case is shown in Figure 2.9. The maximal local error
in deflection between the target shapes and the simulated shapes provided by the computed
patterns was less than 15.9% of the target shape deflection. The corresponding maximal
error between the target shapes and the experimentally developed shapes was 13.8%.

Despite these promising results, the proposed method has two disadvantages. The first
one is the formulation of the cost function for the optimization problem in terms of nodal
positions of the target and current meshes in absolute coordinates. Such formulation raises
a question of optimal positioning of the initial mesh with respect to the target mesh before
beginning the optimization process. Indeed, different positions would make the optimization
algorithm prescribe different nodal displacements and thus different local eigenstrains to the
elements. At the same time, the eigenstrain is an internal load, so the final configuration of
the body induced by such a load does not depend on its position in space. Consequently,
the inverse problem solution must not depend on the mesh positions neither. This reasoning
also applies to the methods described in Ref. [3], [8] and [4]. The second disadvantage
is a long computation time. Indeed, the gradients needed for the numerical optimization

Target shape Top side peening pattern Bottom side peening pattern

- treated segments

Figure 2.9 Example of a peening pattern prescribed to a 305×305×4.9 mm 2024-T3 aluminum
plate by the inverse problem solver presented in Ref. [5]. The target shape in this case is
a saddle, and its deflection is amplified for the illustration purposes. Adapted from Ref. [5]
with permission from Elsevier Science & Technology Journals.
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are computed using the adjoint state method [72], as it is summarized in Ref. [73] in the
context of a similar eigenstrain-based optimization problem. On each iteration, the adjoint
method implies computing the inverse tangent stiffness matrix and its multiplication with
the pseudo-load vector [73]. The number of variables in this problem equals twice the number
of elements in the mesh because each element is assigned with a couple (εt∗, εb∗) (Eqn. 2.10).
Consequently, computation of the gradients takes a considerable amount of time with respect
to the forward problem resolution, which is also performed on each iteration. In addition, the
thicknesses of the active layers were fixed throughout the optimization process at a constant
level: hb∗ = ht∗ = const. This formulation reduced the number of variables but did not allow
to correctly compute the stretching induced by the treatment because the total eigenstrain
Γ induced by the idealized eigenstrain profile in this case was not always realistic (Eqn. 2.7).

Another eigensrain-based method was proposed by Siguerdidjane et al. [6], who solved the
inverse problem using an artificial neural network. The training phase for the neural network
implies fixing the initial mesh, generating a large number of random peening patterns and
solving the forward problem for each pattern. The random patterns are generated using the
maze algorithm [74]. This algorithm traces random nozzle paths along the plate, so that the
eigenstrain is then assigned to the elements that lie along the paths. The forward problem is
solved using the shell finite element method in a similar fashion as in Ref. [2]. When the final
shape is computed, the software measures the local Gaussian curvatures of each element of
the final mesh. Multiple generated examples train the neural network to predict the peening
pattern as a function of the local curvatures of the target shape, i.e., to solve the inverse
problem. All in all, 50 000 examples were generated to train the network for a plate meshed
with 1024 rectangular elements. The researchers considered treatment from one side only
with one available peening regime, so they formulated the idealized eigenstrain profile as a
step profile (Eqn. 2.9).

The neural network approach was validated numerically against 10 000 random target shapes,
that were, in turn, induced by the maze patterns. The network correctly assigned the eigen-
strain to 98.8% of elements in average. Along with the accuracy, the advantage of the
proposed approach is the swiftness of the inverse problem resolution after the end of the
training phase (45 microseconds). In fact, the same trained neural network may also be ap-
plied to rapidly solve the forward problem. Another improvement with respect to previously
mentioned works is the description of the target shape in terms of Gaussian curvature. It is
an intrinsic property of the surface that does not depend on its position in space.

On the other hand, the main limitation of the proposed method is a long phase of the training
data generation, which took 20 hours in the described case. Furthermore, the neural network
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is only trained for fixed initial geometry, mesh and peening regime. Hence, the training
process must be reinitialized if one of these parameters changes. In addition, in practice
the component is often treated from both sides with different peening regimes. Accounting
for this fact would increase the number of training cases by several times, that would make
the training phase computationally heavy. The same effect happens with the increase of the
number of elements in the model.

2.4.3 Solution provided by the theory of non-Euclidean plates

An analytical relation that simplifies the inverse problem resolution in the case of bilayers
subjected to eigenstrain was proposed by van Rees et al. [7]. It can be summarized as follows.
Let us consider a target shape described by the two fundamental forms of its mid-surface
(atar,btar). These fundamental forms are a priori compatible because they describe a real
surface in Euclidean space without any fractures. Thus, the prescription of ar = atar and
br = btar as the rest configuration makes a flat plate deform into the target configuration
because in this case EML = 0. The authors have shown that the rest configuration (ar,br)
imposed on the mid-surface of the bilayer and the rest configuration (ar,t , ar,b) imposed on
its two layers lead to the same final shapes when these rest configurations are related with
Eqn. 2.19. Consequently, the bilayer adopts the target shape (atar,btar) if it is prescribed
with the target configuration (ar,t , ar,b) defined as:


ar,t = atar −

2h
3 btar,

ar,b = atar + 2h
3 btar.

(2.20)

This means that to numerically solve the inverse problem one needs to estimate the local
fundamental forms (atar,btar) for each element of the mesh, to compute (ar,t , ar,b) using Eqn.
2.20 and to deduce the eigenstrain prescribed to the two layers by (ar,t , ar,b). This method is
executed in one iteration and involves simple arithmetic operations with 2×2 sized matrices,
so it takes a negligible amount of time with respect to the numerical optimization algorithms.

The simulations of reconfiguration of a flat disc into a human face and of a flat square into
a mountainous landscape (see Section 2.3.3) were executed in order to test the proposed
method. The authors quantified the error between the target shapes and the simulated
shapes provided by the computed patterns in terms of the Hausdorff distance divided by the
square root of the total area of the target shape. This value equaled 0.91% for the human
face and 0.05% for the landscape. This error was mostly induced by the imperfection of the
forward problem solver, that was also discussed in Refs. [59] and [63]. Namely, given that
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the target shapes implied an high eigenstrain of the order of 100%, the numerical minimizer
for the elastic energy may not have found the exact global minimum but converged to a close
value.

Although the proposed method is precise and computationally efficient, it is not completely
suitable for the shot peen forming case. Thus, in the general case, the rest configuration
(ar,t , ar,b) computed using Eqn. 2.20 prescribes anisotropic and arbitrary oriented eigenstrain
to each element of the mesh. The principal eigenstrain direction can also be different for the
two layers. On the contrary, the eigenstrain anisotropy in the peen forming case is caused
by the material properties or the prestress, so its direction cannot be locally controlled.
Nevertheless, the rest configuration formulated in this way may provide an initial guess for
an iterative algorithm for the inverse problem resolution in the peen forming case.

2.5 Segmentation of the peening pattern

The shot peen forming equipment imposes constraints on the peening pattern. For example,
the maximal applied intensity is limited by the equipment capacity, so the algorithms for
the inverse problem resolution presented in Section 2.4 constrain the optimized variables in
an admissible range [3–5]. Furthermore, the peening equipment operates with fixed peening
regimes and does not admit their gradual variation over the treated component. Therefore,
the pattern must be divided into segments treated uniformly with fixed peening regimes.
Figure 2.10 illustrates the concept of the pattern segmentation. The necessity for the pattern
segmentation is only accounted for in the eigenstrain-based inverse problem solvers [5,6,25].
Thus, in Refs. [5,25] they make use of the Solid Isotropic Material with Penalization (SIMP)
method, that had been originally developed in the field of topology optimization [73, 75]. It
consists in limiting the overall area assigned with the eigenstrain. This forces the optimization
engine to “activate” only the segments that must necessarily be treated and to assign the
maximal available eigenstrain to these segments. This penalizes all intermediate eigenstrain
values in the peening pattern. Consequently, this method strictly divides the pattern into
treated and untreated segments, but it is only suitable for one available peening regime,
which corresponds to the maximal eigenstrain value. The same effect is achieved with the
help of the artificial neural network presented in Ref. [6]. The neural network computes the
peening pattern as a set of local probabilities. The probability is assigned to every element
and indicates if it must be treated or not. Thus, only the elements with high probabilities
are actually assigned with the eigenstrain. In turn, the eigenstrain magnitude is fixed and
corresponds to the magnitude used in the training examples. This method is suitable for
multiple available regimes, but such condition considerably extends the training phase.
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A particularity of the inverse problem solvers presented in Refs. [5, 6, 25] is that they oper-
ate with a single predefined eigenstrain magnitude, which is chosen manually. Hence, the
solvers only optimize the eigenstrain distribution but keep the magnitude constant. However,
manual adjustment of the eigenstrain magnitude may be challenging because it is the main
factor determining the induced curvature. Thus, a different eigenstrain magnitude leads to a
different eigenstrain distribution, and the effect of an increase or a decrease of the eigenstrain
magnitude is not always predictable. Moreover, the curvature of the target shape may be
variable, and a fixed eigenstrain magnitude does not provide enough flexibility to precisely
shape all segments. Consequently, the use of one predefined eigenstrain magnitude reduces
both efficiency and precision of the proposed solvers.

At the same time, the problem of segmentation of a peening pattern is similar to the problem
of clustering of points in space [9, 76]. The purpose of clustering algorithms is to optimally
split a set of points into groups, i.e., clusters, based on the coordinates of points. In terms
of the peening pattern, this means splitting the mesh into segments based on the eigenstrain
values assigned to each finite element. Moreover, the clustering algorithms are able to find
an optimal centroid for each cluster, i.e., to find the mean point representing the given
cluster. With regard to the peening pattern, this allows to find the mean eigenstrain in the
given segment and to homogenize the eigenstrain in this segment. Each eigenstrain value
corresponds to a peening regime, so a clustering algorithm is in fact able to prescribe an
optimal peening regime for each segment. However, the segmentation of a peening pattern

a) Non-segmented pattern b) Segmented pattern
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Figure 2.10 Examples of a non-segmented and of a segmented pattern. The non-segmented
pattern (a) prescribes a gradual variation of the peening intensity over the plate, which is
not reproducible with the peening equipment. The segmented pattern (b) leads to a similar
target shape but consists of uniformly treated segments. This pattern is reproducible, and
the effect of its application can be precisely simulated because each peening regime implied
in the pattern can be characterized in advance. Both patterns are traced on a square plate
meshed with triangular finite elements.
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was never considered in terms of clustering so far.

The homogenization of eigenstrain inside the segments changes the peening pattern, so the
final shape induced by the clustered pattern may be different from the one induced by the
original pattern. Consequently, an optimal clustering algorithm for the peen forming case
would only group the elements that are prescribed with close eigenstrains, so that the differ-
ence between the original and the segmented patterns is minimal. This can be accomplished
using the k-means clustering algorithm [77], which groups points based on their proximity.
More precisely, it iteratively finds optimal positions of the centroids and attributes the ele-
ments to the closest centroid in terms of the squared Euclidean distance. The particularity
of the k-means algorithm is that it is not only simple to implement but also one of the
most computationally efficient [76]. However, the result of clustering is dependent on the
initial guess on the centroid positions [9], but this drawback can be mitigated by running the
algorithm several times with different initial guesses and by picking the best result.

2.6 Automation of the peening process

The shot peening equipment propels the particles through a nozzle either using compressed
air or using a rotating turbine that “throws” the particles. The nozzle is attached to the
propelling equipment with an elastic pipe, so it can be displaced and redirected without
the need to move the whole machine. The nozzle position is either controlled manually or
automatically, meaning that the nozzle can be attached to a CNC-controlled robotic arm.
In the latter case, the peening parameters can also be preprogrammed. Figure 2.11 presents
an example of an automated shot peening machine. The automated peening is usually
applied for repeatable operations that are intended to enhance the fatigue life of industrial
parts [78]. This process implies uniform treatment of the component with a constant intensity.
The forming operations, on the other hand, are often executed manually due to a higher
complexity of the peening patterns [79]. This strategy is preferred by smaller companies that
do not have the resources to develop a software for automated programming of the peening
robot for each target shape. In the absence of such software, the resolution of the inverse
problem is a trial and error process, and it is cheaper to execute it manually than to reprogram
the robot for each trial. Even when an optimal pattern is developed, its translation into a
program for the peening robot is a challenging problem that requires highly qualified staff.
However, several commercial companies state to have automated their peen forming process,
but the provided information is limited by commercial secrecy [10,11,80].

An extensive work towards automation of shot peen forming was done by the Aachen Shot
Peening Centre (KSA). Thus, one of the first approaches for the shot peen forming automation
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Figure 2.11 The automated shot peening equipment installed in the Aerospace Technology
Center (CTA), Quebec, Canada. a) Schematic side of view of the peening machine. The
treatment is executed inside a closed peening cell. The shot are propelled using compressed
air, which is supplied externally. Used shot are continuously collected and passed to the
filtering system that sorts out highly deformed shot using separator screens. The shot that
pass through the screens are fed back to the propelling system. Adapted from Ref. [53] with
permission from John Wiley & Sons - Books. b) The peening nozzle is attached to a robotic
arm installed inside the peening cell. The nozzle is fed with shot by the propelling system
through an elastic pipe. The robotic arm is covered with protective cloth preventing damage
from reflected shot.
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is described in Ref. [80]. It was designed to shape a square plate into a cylindrical patch.
The approach involves consecutive shaping of the treated segments, so that the treatment of
each segment begins only when the previous segment is shaped accurately. The plates are
clamped in the middle of two edges, and the segments that are closer to the clamped part
are shaped first. The quality of shaping of each segment is evaluated in real time using a
coordinate measuring machine (CMM), so the proposed approach is essentially a feedback
loop. A disadvantage of the CMM method in this case is the dependence of coordinates
in each segment on the quality of shaping of the previously treated segments. Indeed, the
segments treated at last are further from the clamping, so they are “hanging” attached to the
previously shaped segments. Consequently, even if the current segment is shaped correctly
but the previous segments were not, the CMM indicates an error in the current segment.
With this, determination of the local error becomes a challenging task because the local
error is the sum of errors developed in the previously shaped segments. Hence, the approach
requires a precise shaping of each segment and a dense grid for the CMM, which is not always
realizable in practice. The bending of the hanging part caused by the plate’s own weight
is not taken into account either, but it might be significant for large and thin industrial
parts. In addition, the researchers compute the local peening intensity using direct relations
between the developed curvature and the peening parameters without any global simulations.
This strategy requires an extensive experimental work to determine how the local curvature
is affected by the curvature in the adjacent segments. An important public contribution
of this research consists in the strategy for choosing an offset between the parallel nozzle
paths. Thus, it was shown that the particles in the shot stream are distributed according to
the Gaussian function. This means that determination of the offset that provides uniform
coverage boils down to determining an offset between adjacent Gaussian functions in the way
that their superposition is a constant function.

According to a later publication made by the KSA [10], the drawbacks of the approach de-
scribed in Ref. [80] were eliminated. The researchers state having a reliable software for
the inverse problem resolution and a closed loop peen forming system, which is based on a
CNC-controlled shot peening robot and an integrated 3D shape measuring gage. The system
adjusts the peening pattern in real time based on the measurements provided by the gage. In
turn, the pattern is formulated in terms of the peening parameters thus bypassing any tran-
sitory values, such as eigenstrain. Nevertheless, the report only describes the achievements
without providing any technical information.

A simpler approach for peen forming automation is presented in the brochure issued by the
Metal Improvement Company [11]. The company forms wing skins using a “feed through,
gantry type machine”. This type of machines projects particles from multiple nozzles that
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are installed inside a peening cell. The treated plates are passed through the cell at a low
speed using a conveyor system. In that way, the plates are uniformly treated with a constant
intensity. This means that in order to apply a peening pattern, one needs to protect the
segments that are not supposed to be treated with a mask, which absorbs the energy of
shot. The mask fabrication is normally a manual process, although it is not described in
the brochure. If the pattern involves multiple peening regimes, then the component must be
passed through the peening cell multiple times, one time for each prescribed regime. The
necessity for masking and the constant peening intensity inside the cell reduce the fabrication
speed, but the authors do not provide details on the efficiency of their approach.

A similar semi-automated approach was also applied in Refs. [5, 25] to validate the inverse
problem solver. In this work, the authors used a CNC-controlled peening nozzle, which
was programmed for the uniform treatment of a component with a fixed peening regime.
The untreated segments were masked manually using a butyl tape. The plates were free to
deform during peening, and the authors state that this factor can be one of the sources of
the developed error (see Section 2.2.3). Consequently, the authors recommend to hold the
component flat during treatment.

All in all, the strategy proposed in Refs. [5, 25] allows to apply the pattern but does not
use the full potential of the peening equipment. Indeed, a CNC-controlled robotic arm can
be programmed to treat only the segments prescribed by the pattern, so that the need for
masking is eliminated. However, manual programming of the robotic arm for each pattern
is more time-consuming than fabrication of a mask. Consequently, a strategy for automated
programming of the peening equipment is crucial for the full process automation. Moreover,
the automated programming strategy must access the whole range of peening parameters
because the peening pattern can include various peening regimes.
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CHAPTER 3 OBJECTIVES AND RATIONALE

The deformation of a shot peened component is generated by the plastic strain induced by
the treatment and the resulting geometrical incompatibility. Therefore, a natural way to
simulate the peening-induced loads is to introduce the plastic strain in the model in the
form of eigenstrain [24]. The eigenstrain in a uniformly treated segment is uniform along the
surface and varies in the through-thickness direction. It is possible to idealize the through-
thickness eigenstrain profile with no loss in the simulation accuracy [2]. This idealization
reduces the number of variables in the model and accelerates the forward problem resolution.
When the eigenstrain is defined, the forward problem can be solved either using the standard
finite element method [29, 48], or using its geometric reformulation based on the theory of
non-Euclidean plates [59,63].

An important step for the peen forming simulation is the software calibration. If the loads
are represented as eigenstrain, the calibration implies relating the eigenstrain to the actual
peening regimes applied on the given material. Due to a vast variety of peening regimes and
materials, this procedure must be simple and fast to be implemented in industry. The exper-
imental identification of the eigenstrain using uniform treatment of small coupons fits these
characteristics [29]. This procedure does not require the development of complex material
models or the use of additional equipment. However, it must be followed by characterization
of the eigenstrain anisotropy, and an efficient solution for this problem has to be determined.

The literature on peen forming lacks efficient methods for the inverse problem resolution.
Two eigenstrain-based numerical tools were recently developed for this purpose. One of
them uses gradient-based optimization [5] and another one is based on machine learning [6].
They both have an important disadvantage: a long computation time needed for densely
meshed models. This problem stems from the fact that these tools are based on generic
algorithms and do not take sufficient advantage of the thinness of the simulated components.
At the same time, an efficient method for the inverse problem resolution was developed in
the field of the theory of non-Euclidean plates [7]. Although the published method cannot
be applied to peen forming directly, the theory of non-Euclidean plates provides powerful
instruments for the development of an efficient inverse problem resolution algorithm for the
peen forming case. The main advantage of this theory is that it is specifically developed to
compute the deformation of plates induced by eigenstrain.

The inverse problem solution, i.e. the peening pattern, must be divided into segments with
uniformly prescribed eigenstrain. The existing eigenstrain-based inverse problem solvers as-
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sume having one fixed peening regime available [5,6], although one of the described methods
can be extended to multiple predefined regimes [6]. However, none of the two methods
proposes optimal peening regimes if they are not predefined. If the inverse problem solver
prescribes a gradually varying eigenstrain along the surface, then the determination of the op-
timal peening regimes and the division of the pattern into segments is essentially a clustering
problem.

There exist industrial shot peening robots with programmable nozzle trajectories and peening
parameters [53]. At least one commercial company also states to have fully automated the
peen forming process [10]. However, the existing literature provides a limited number of
details on the peen forming automation. In other words, the literature lacks a workflow for
developing various target shapes without any manual adjustment for each shape. For this
reason, the only way for a company to automate the peen forming process nowadays is to
develop its own in-house procedure.

Based on this synthesis of literature review and our identification of gaps, the following
objectives were defined for this doctoral project:

1. Develop a peen forming simulation software that solves the inverse problem
using the theory of non-Euclidean plates.

Our simulation software includes the forward and the inverse problem solvers. Chapter
4 provides details on both solvers and on their numerical implementation. It also
provides results of numerical validation of the inverse problem solver that involved
randomly generated target shapes. Chapter 6 describes the experimental validation of
both the forward and the inverse problem solvers. A particular attention in Chapter 6
is paid to the software calibration.

2. Develop a pattern segmentation strategy that computes optimal peening
regimes.

Our segmentation strategy presented in Chapter 5 divides any peening pattern gen-
erated by the inverse problem solver of the Objective 1 into segments that must be
treated uniformly with fixed peening regimes. The peening regimes are numerically
optimized during segmentation. The segmentation strategy relies on the k-means clus-
tering algorithm. A strategy for grouping of the peening pattern in the case when the
peening regimes are predefined is described in Chapter 4.
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3. Develop a complete workflow for automated shot peen forming.

Chapter 6 describes a complete workflow for the automated shot peen forming process,
starting from a numerical model of the target shape and finishing with the ready-to-
use component. We present both theoretical and practical details, so this Chapter is
a complete guide for the process automation in industry. We also closely examine the
strategy for evaluating the error between the target and the final shapes.
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CHAPTER 4 ARTICLE 1: DETERMINATION OF OPTIMAL SHOT
PEEN FORMING PATTERNS USING THE THEORY OF

NON-EUCLIDEAN PLATES

Vladislav Sushitskii, Wim M. van Rees, Martin Lévesque, Frédérick P. Gosselin

Submitted to the Journal of Manufacturing Science and Engineering on the 18th of October
2021.

This article is dedicated to the core element of the automated peen forming workflow — the
simulation software. Our forward problem solver is principally based on the solver developed
by prof. Wim M. van Rees1 for the general case of bilayer shells subjected to eigenstrains. Its
adaptation to shot peen forming was done during the internship at the Massachusetts Institute
of Technology in March-April 2018. The inverse problem resolution algorithm, which is the
main contribution of this paper, was conceived by the author of this thesis. Its numerical
implementation was fused with the forward problem solver into a single simulation software.
The software also includes the grouping algorithm that serves for the pattern segmentation.
This version of the software was used during the experimental campaign presented in Chapter
6. Later, we developed the clustering and the filtering algorithms, which are presented in
Chapter 5, and we included them in the software to enhance the pattern segmentation.

Abstract

We show how a theoretical framework developed for modeling nonuniform growth can model
the shot peen forming process. Shot peen forming consists in bombarding a metal panel
with multiple millimeter-sized shot, that induce local bending of the panel. When applied to
different areas of the panel, peen forming generates compound curvature profiles starting from
a flat state. We present a theoretical approach and its practical realization for simulating
peen forming numerically. To achieve this, we represent the panel undergoing peen forming as
a bilayer plate, and we apply a geometry-based theory of non-Euclidean plates to describe its
reconfiguration. Our programming code based on this approach solves two types of problems:
it simulates the effect of a predefined treatment (the forward problem) and it finds the optimal
treatment to achieve a predefined target shape (the inverse problem). Both problems admit
using multiple peening regimes simultaneously. The algorithm was tested numerically on 200
randomly generated test cases.

1Assistant Professor, Van Rees Lab, Department of Mechanical Engineering, Massachusetts Institute of
Technology
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4.1 Introduction

Shot peen forming is a cost-effective technology for shaping large metal plates, such as air-
plane wing skins, without dies. It consists in bombarding the surface of a component with
a large number of millimeter sized shot made of steel, glass or ceramic. The velocity of a
shot is sufficiently high to plastically deform the upper layer of the plate upon impact and to
stretch the plate locally. This effect causes local bending of thin components and leads to a
convex curvature on the peened side [1]. Repeated impacts also induce a field of compressive
residual stress, that can improve fatigue life [20].

When developping a shot peen forming process, one is faced with two types of problems
as schematized in Fig. 4.1: the forward problem and the inverse problem [25]. The forward
problem is formulated with the following question: which shape will the component adopt if
it is peened according to a given pattern? The inverse problem denotes the following: given
an initial shape of the component and the target shape, how should one peen the component
to make it deform into the target shape? A numerical solver for both problems is necessary
to optimize the forming process. Thus, without numerical resolution of the inverse problem,
the design of a peen forming procedure for each new component is a craft trial-and-error
process plagued with risk and uncertainty. It lasts up to several months and implies many
scrapped parts. On the other hand, numerical resolution of the forward problem is necessary
to check the quality of the inverse problem resolution and to simulate the effect of additional
treatments.

A straightforward simulation of individual peening impact, such as the one conducted in [22],
is precise but computationally expensive. For this reason, simplified multiscale simulation
approaches, such as the eigenstrain approach, were developed. It implies formulating the
applied peening loads in terms non-elastic strains imposed on the component [28] [23]. The
eigenstrain approach represents the treated plate as a thin bilayer where each layer undergoes
a nonuniform plastic in-plane swelling or shrinking. The forward problem in this formulation
can be numerically solved using shell finite element models [2] [6]. In addition, such models
allow to implement an inverse problem resolution algorithm based on the topology optimiza-
tion methods [73] [5]. A similar inverse problem resolution approach was also applied in [81]
in the context of the laser peen forming process. Given that this method is based on numeri-
cal optimization, its speed decreases with the number of elements in the model. On the other
hand, the inverse problem can be solved using an artificial neural network [6]. The neural
network provides near-perfect accuracy and fast calculation on-line. However, it requires the
generation of a large finite-element forward problem solution database and a long training
phase for each new plate geometry.
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Figure 4.1 The two problems of the shot peen forming simulation. a) The forward problem
consists in the determination of the final shape of the component given its initial shape and
the peening pattern. b) The inverse problem consists in determination of the optimal peening
pattern given the initial shape of the component and its target shape.

To overcome these issues during the inverse problem resolution, we turned to the theory of
non-Euclidean plates [45] [47]. This theoretical framework lies at the intersection of mechanics
and differential geometry. It precisely describes distortion of multilayer plates induced by the
prescription of a nonuniform non-elastic strain. Prescription of such strain makes the surface
metric non-Euclidean so that it does not satisfy the compatibility conditions of the Euclidean
space, which gives name to the theory [47]. Experiments conducted in the field of 4D printing
with elastic polymer sheets have proven the accuracy of the theory of non-Euclidean plates
in numerical forward problem resolution. Thus, this theory precisely predicted curvature of
spherical, cylindrical and saddle shapes grown out of a flat state by induction of a nonuniform
plastic strain [57] [46]. Numerical simulation of growth for these three cases also showed good
accordance with analytical shapes [63]. Moreover, this theory predicted the form of more
complex shapes, such as helicoid, catenoid or an orchid flower grown out of a flat state
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using polymer bilayers with oriented filaments [59]. The theory of non-Euclidean plates also
provides instruments for an efficient inverse problem resolution. Such algorithms for the case
of polymers with oriented local growth are reported in [59] and [82].

In this paper we propose to use the eigenstrain approach to represent the treated plate as
a bilayer, and we resort to the theory of non-Euclidean plates to calculate the resulting
distortion of the bilayer. To numerically solve the inverse problem, we created an iterative
algorithm that implies resolving the forward problem on each iteration. The algorithm adjusts
the peening pattern based on the discrepancy between the current shape, i.e., the shape
obtained with the current pattern, and the target shape. The adjustment is done on a
local scale using simple arithmetic operations, so the computation speed on this stage stays
constant with an increasing number of variables. This stage does not require any preliminary
training phase either. The algorithm constitutes a general approach for the inverse problem
resolution in case of bilayers subjected to isotropic, i.e. non-oriented, local growth, such as
those examined in [46]. When the iterative adjustment is finished, we group the peening
pattern to make it practically applicable. In other words, we divide the pattern into zones
treated with constant peening regimes. The number of available peening regimes and their
intensities are pre-determined based on the practical constraints.

We start this paper with the theoretical background section. First, we examine the eigenstrain
approach that relates peen formed plates and swelling non-Euclidean bilayers. Next, we
move to the theory of non-Euclidean plates, namely to the geometrical shape description
and the forward problem resolution method that it implies. In this section we also formulate
the inverse problem in terms of the theory of non-Euclidean plates. We then pass to the
methodology section by presenting our inverse problem resolution algorithm and an approach
for its numerical implementation. The grouping and validation strategies are presented in
the same section. The results of the validation campaign are presented subsequently, and
finally the advantages and limitations of our approach are discussed.

4.2 Theoretical background

4.2.1 The eigenstrain approach and strain decomposition

The term eigenstrains denotes all non-elastic strains arising in the material, such as plastic,
thermal or piezoelectric strains [28]. The only type of eigenstrain generated by peen forming
is the plastic strain. Indeed, numerous overlapping impact indentations plastically stretch
the outer layer of material, and the rest of the material responds to this newly-introduced
eigenstrain with the emergence of stress. In order to conserve its integrity and to balance the
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stress, the plate deforms elastically. In case of small strains the residual strain tensor εres is
additively decomposed into the eigenstrain part ε and the elastic part εel ( [7], Appendix):

εres = ε+ εel. (4.1)

This relation holds for peen forming because the process deals with thin plates and the
peening-induced strains are small [22]. The elastic strain may affect the whole plate, while
the eigenstrain is present only in the stretched outer layer. The thickness of the plastically
deformed outer layer varies depending on the peening parameters and the treated material.
With the eigenstrain approach, the resolution of the forward problem for shot peen forming
consists in introducing the eigenstrain over the whole shot peened area and determining the
elastic springback.

The through-thickness eigenstrain profile

We endow the mid-surface of the plate with two Lagrangian coordinates (x, y), and we assign
a Lagrangian coordinate z in the through-thickness direction. The Lagrangian coordinates
follow the plate as it deforms. We assume that the material is plastically isotropic, so
the eigenstrains are the same in all in-plane directions: εxx (x, y, z) = εyy(x, y, z). Also,
εzz = −2εxx due to plastic incompressibility. For a small area around a point (x0, y0) on
the mid-surface, the through-thickness eigenstrain profile εxx (x0, y0, z) = εyy (x0, y0, z) can
be measured directly using the X-ray diffraction method [21]. Otherwise, it can be deduced
from the residual stress profile, which is determined with such methods as hole drilling [43],
layer-removal [43] [27] or the two cut compliance method [83]. In this case, the through-
thickness eigenstrain profile is reconstructed numerically from the measured residual stress
profile [2] [44].

Mechanically, the introduction of the eigenstrain can be modeled as slicing the plate into thin
layers, stretching the outer layers separately following the eigenstrain profile, and then gluing
everything back. To numerically simplify the problem, we virtually idealize the eigenstrain
profile by assuming that the plate consists of two layers of equal thickness that can separately
undergo nonuniform in-plane swelling or shrinking. The idealized eigenstrain profile leads to
the same deformed shape as the real one. Figure 4.2 illustrates both profiles induced on a
uniformly treated plate. Mathematically, the idealization procedure consists in finding the
local eigenstrain εt(x, y) to be introduced in the top layer and the local eigenstrain εb(x, y)
to be introduced in the bottom layer. It is done by equating the total eigenstrain Γ(x, y) and
the first eigenstrain moment Γ1(x, y) induced locally by the real eigenstrain profile to those
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induced locally by εt(x, y) and εb(x, y) [2]. In the general case, Γ and Γ1 are defined as:

Γ (x, y) =
∫ h/2

−h/2
εxx(x, y, z)dz, (4.2)

Γ1 (x, y) =
∫ h/2

−h/2
εxx(x, y, z)zdz, (4.3)

where h stands for the plate thickness. For the idealized bilayer profile Γ and Γ1 are expressed
as:

Γ (x, y) = h

2
(
εt (x, y) + εb (x, y)

)
, (4.4)

Γ1 (x, y) = h2

8
(
εt (x, y)− εb (x, y)

)
. (4.5)

The idealized eigenstrain is positive on the side that undergoes the peening treatment and is
negative on the other side. It should be noted that although εt and εb give rise to the same
in-plane extension and curvature as the real eigenstrain profile, the idealized one generates a
different residual stress profile.

4.2.2 The theory of non-Euclidean plates applied to the modeling of shot peen
forming

The theory of non-Euclidean plates allows to numerically determine the elastic response of
thin bodies to an applied nonuniform non-elastic strain, e.g., biological growth or eigen-
strain. The introduction of such strain leads to the emergence of stresses, which are entirely
eliminated only if the plate adopts a so-called rest configuration. The rest configuration im-
plies εres = ε, so it is generally not realizable without the loss of integrity. Instead of the
rest configuration the plate adopts an integral final configuration (final shape), which is still
residually stressed. The theory of non-Euclidean plates relates the rest and the final con-
figurations through elastic energy and uses tools from differential geometry to describe the
shape of plates. We adopted the approach described in [7] for its numerical implementation.

Geometrical shape description

In the framework of the theory of non-Euclidean plates, the plate shape is associated with
the shape of its mid-surface [7]. We denote by U the domain of the plane containing the
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Figure 4.2 The real and idealized eigenstrain profiles induced by uniform shot peening of
a plate. We denote the plate thickness as h. The coordinate z goes along the thickness
and measures form the midplane. a) The plate undergoes uniform shot peening (side view).
b) The through-thickness eigenstrain profile is nonuniform along z, and its peak value εmax
is close to the surface [2]. Its effect is accurately simulated by virtually dividing the plate
into thin layers and imposing different eigenstrain to each of the layers thus reproducing
the profile shape. c) We idealize the eigenstrain profile and represent the plate as a bilayer
consisting of two layers of the thickness h/2. The eigenstrain εt and εb assigned to each of
the layers is derived from the real eigenstrain profile by equating the total eigenstrain and
the first eigenstrain moment. d) Both real and idealized eigenstrain profiles lead to the same
deformed shape, which is bent and stretched with respect to the initial state.
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coordinates (x, y) that parametrize the mid-surface: (x, y) ∈ U ⊂ R2. The position of each
point of the mid-surface in a 3D space is defined by the mapping ~m : U → R3. We adopt the
Kirchhoff-Love assumptions, so the position ~r of a point belonging to the plate is expressed
as:

~r (x, y, z) = ~m (x, y) + z~n (x, y) , (4.6)

where ~n is the unit normal vector. The mid-surface shape is described by the first and the
second fundamental forms, that are binary quadratic forms associated with a symmetric 2×2
matrix. Both fundamental forms are local quantities varying smoothly along the surface. The
first fundamental form describes changes in the length of curves and areas of regions on the
surface. In other words, it describes the local stretching of the surface. The 2 × 2 matrix
containing coefficients of the first fundamental form a(x, y) is computed as:

a (x, y) =
∂x ~m · ∂x ~m ∂x ~m · ∂y ~m
∂y ~m · ∂x ~m ∂y ~m · ∂y ~m

 , (4.7)

where ∂x ~m = ∂ ~m/∂x and ∂y ~m = ∂ ~m/∂y are two vectors tangent to the mid-surface at the
point ~m(x, y). If a certain area of the surface does not undergo any stretching, the first
fundamental form in this area is represented by the identity matrix I.

Together with the first fundamental form, the second fundamental form determines local
curvatures on a surface. The matrix containing its coefficients b(x, y) is computed as:

b(x, y) =
∂xx ~m · ~n ∂xy ~m · ~n
∂yx ~m · ~n ∂yy ~m · ~n

 = −
∂x ~m · ∂x~n ∂x ~m · ∂y~n
∂y ~m · ∂x~n ∂y ~m · ∂y~n

 , (4.8)

where ∂xx ~m, ∂xy ~m and ∂yy ~m denote the second derivatives of ~m(x, y). If a surface is locally
flat, its second fundamental form at this area is described by the zero matrix, because all
second derivatives of the mapping ~m are orthogonal to the normal vector ~n.

The two fundamental forms define a unique surface up to solid body motions. The surface is
integral if its fundamental forms are compatible, i.e., if they satisfy three partial differential
equations called the Gauss–Peterson–Mainardi–Codazzi (GPMC) equations [55]. Hence, the
two final fundamental forms of a non-Euclidean plate are compatible, while its rest fun-
damental forms are not. This phenomenon illustrated in Fig. 4.3 is also called geometric
incompatibility.
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Figure 4.3 An example of geometric incompatibility inspired by [57]. The initial configuration
described by the fundamental forms (ainit,binit) is a flat unstretched disc, so that ainit is the
identity matrix and binit is the zero matrix along the whole surface. The rest configuration
(ar,br) prescribes isotropic in-plane stretching of the central part (green) while conserving
the flat shape, so that ar 6= ainit and br = binit. In the general case, br can be different from
binit as well. The rest fundamental forms are incompatible, because the adoption of the rest
configuration means superposition of the inner (green) part and the outer (blue) part of the
disc and thus loss of integrity. In order to conserve its integrity, the disc adopts a curved
final configuration (af ,bf ) described by compatible fundamental forms. However, the disc
stays residually stressed in its final configuration.

Elastic energy and the forward problem resolution

In the terms of the theory of non-Euclidean plates, the forward problem consists in deter-
mining the final configuration as a function of the rest configuration. First, we consider the
simple case of an initially flat monolayer plate, which is subjected to a rest configuration de-
scribed by the incompatible fundamental forms ar and br. The rest and final configurations
of such a plate are related through the elastic energy functional. We denote the final funda-
mental forms as af and bf and we express the elastic energy EML of an integral monolayer
plate as [7]:

EML = 1
2

∫
U

[
h

4
∥∥∥a−1

r af − I
∥∥∥2

e
+ h3

12
∥∥∥a−1

r (bf − br)
∥∥∥2

e

]√
det ar dxdy. (4.9)

In this expression we have introduced the elastic norm ‖A‖2
e = αTr2 (A) + 2βTr(A2) with

coefficients α = Y ν/(1 − ν2) and β = Y/(2 + 2ν). Here, Y is the Young modulus and ν is
the Poisson’s ratio.
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A zero elastic energy means that the final configuration perfectly coincides with the rest
one. If the rest fundamental forms are incompatible, an integral plate adopts an equilibrated
final configuration that minimizes the elastic energy under constraints that af and bf be
compatible. The first term of the elastic energy functional represents the stretching energy,
and the second term defines the bending energy. If the plate is thin, the bending term is
small in comparison to the stretching one, so the plate stretches as prescribed by the rest
configuration but adopts a different curvature. In other words, af in this case is close to ar,
but bf can be largely different from br. On the contrary, a thick plate adopts the curvature
prescribed by the rest configuration but stretches in a different way, so that bf is close to
br [45].

Now let us consider a bilayer plate, where each layer is of thickness h/2. We suppose that the
plate is initially flat, and that its layers exhibit nonuniform in-plane swelling or shrinking.
The eigenstrain introduced in each layer may vary along the surface, but it is constant along
the layer thickness. Locally, the eigenstrain is different for each layer, so that the rest first
fundamental forms of each layer (ar,t and ar,b) are different. Matrices ar,t and ar,b contain
information on the principal eigenstrain direction and magnitude on the top and bottom
layers respectively. Essentially, the ar,t and ar,b describe stretching that the layers would
adopt if they were not attached together. By assuming that each layer expands uniformly
across its thickness, all terms of the rest second fundamental form of each layer are zero along
the whole surface:

br,t = br,b =
0 0

0 0

 . (4.10)

Accordingly, ar,t and ar,b fully describe the rest configuration. The forward problem consists
in finding af and bf that describe the shape of the integral plate mid-surface after reconfigu-
ration. The reconfiguration process for the bilayer case is presented in Fig. 4.4. Following [7],
we express the elastic energy of the bilayer plate as the sum of the elastic energies of two
monolayers of thickness h/2. After integration over the total plate thickness we obtain:

EBL = 1
2

∫
U

[
h

8
∥∥∥a−1

r,b af − I
∥∥∥2

e
+ h3

24
∥∥∥a−1

r,bbf
∥∥∥2

e
+ h2

8
〈(

a−1
r,b af − I

)
, a−1

r,bbf
〉
e

]√
det ar,b dxdy

+1
2

∫
U

[
h

8
∥∥∥a−1

r,t af − I
∥∥∥2

e
+ h3

24
∥∥∥a−1

r,t bf
∥∥∥2

e
− h2

8
〈(

a−1
r,t af − I

)
, a−1

r,t bf
〉
e

]√
det ar,t dxdy.

(4.11)
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Figure 4.4 An example of geometric incompatibility in a bilayer plate inspired by [7]. The
initial configuration described by the fundamental forms (ainit,binit) is a flat unstretched
rectangular plate, so that ainit is the identity matrix and binit is the zero matrix along the
whole surface. The rest configuration (ar,t, ar,b) prescribes isotropic in-plane stretching of
the top layer and shrinking of the bottom layer while conserving the flat shape, so that
ar,t 6= ainit, ar,b 6= ainit, br,t = binit and br,b = binit. Since peen forming causes in-plane
eigenstrain we do not consider cases when br,t 6= 0 and br,b 6= 0 for our simulations, so that
the rest configuration is entirely described by (ar,t, ar,b). Adoption of the rest configuration
means dissection of the plate in two layers. Instead, the plate adopts an integral but residually
stressed final configuration (af ,bf ) described by compatible fundamental forms.

The elastic energy inner product 〈·, ·〉e introduced in this context defines the following oper-
ation: 〈A,B〉e = αTr (A)Tr (B) + 2βTr(AB). Similarly to the monolayer case, the plate
adopts a curved final configuration (af ,bf ) that minimizes the elastic energy. Generally, the
final configuration is not unique, and moreover, the plate can get stuck in a configuration
corresponding to a local energetic minimum on its way to the global minimum.

For a bilayer subjected to any rest configuration (ar,b, ar,t), there exists an equivalent mono-
layer that morphs into the same final configuration (af ,bf ) after being subjected to a rest
configuration (ar,br). The relation between (ar,b, ar,t) and (ar,br) is derived by equating the
monolayer energy (Eqn. 4.9) and the bilayer energy (Eqn. 4.11) and is expressed as [7]:


ar = 1

2 (ar,b + ar,t) ;

br = 3
4h (ar,b − ar,t) .

(4.12)

Inversely,


ar,t = ar −

2h
3 br;

ar,b = ar + 2h
3 br.

(4.13)

Here, the monolayer and bilayer plates are supposed to have the same initial geometry and
the same total thickness h.
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The inverse problem resolution

The inverse problem consists in determining the rest configuration that leads to a target
configuration due to the elastic material response. In the bilayer case, it means finding the rest
first fundamental forms of the bottom and top layers ar,b and ar,t, respectively as a function
of the target shape described by atar and btar. As each fundamental form is represented by a
symmetric 2× 2 matrix, the target configuration is locally defined by six scalar variables. At
the same time, the rest configuration also has six degrees of freedom, so the problem admits an
analytical solution provided by Eqn. (4.13). Moreover, the final configuration obtained with
this solution is stress-free [7]. A practical application of the analytically calculated solution
means inducing local orthotropic eigenstrain, so that ε11(x, y, z) 6= ε22(x, y, z), where ε11 and
ε22 are the local principal eigenstrains. In other words, one has to locally control the principal
strain directions and the strain magnitude along both directions, and this – at each of the two
layers separately. Such local control over the direction of expansions is generally not possible
with shot peen forming, because here we assume that shot peening induces local isotropic
in-plane strain. Thus, at each point we only control two degrees of freedom: εt(x, y) and
εb(x, y). Hence, we have control over fewer degrees of freedom than input variables. In this
case, a solution leading exactly to the target shape may not exist, so we can only numerically
optimize ar,t and ar,b. The uniqueness of solution is not guaranteed either.

4.3 Methodology

Our method for the inverse problem resolution consists in the iterative correction of the
peening pattern on a local scale until convergence is reached within a tolerance and subsequent
grouping of the pattern. The grouping algorithm divides the pattern in zones treated with
predefined peening regimes.

4.3.1 Iterative adjustment of the peening pattern

The iterative method idea is to adjust the rest configuration by comparing the local stretching
and curvature of the current shape with the stretching and curvature of the target shape. The
current shape is computed at each iteration through a numerical resolution of the forward
problem. For the initial guess, we use analytical expressions to approximately define an
appropriate rest configuration.
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The initial guess

We characterize the target configuration in terms of fundamental forms (atar,btar). Let
us consider the monolayer rest configuration

(
aorthor ,borthor

)
described by aorthor = atar and

borthor = btar, that in a general case prescribes local orthotropic in-plane strain. According to
the expression for the elastic energy (Eqn. 4.9), imposition of this rest configuration makes
the plate adopt exactly the target configuration, because the elastic energy in this case equals
zero. Following [7], we express the equivalent bilayer rest configuration

(
aorthor,t , aorthor,b

)
using

Eqn. (4.13):


aorthor,t = aorthor − 2h

3 borthor ;

aorthor,b = aorthor + 2h
3 borthor .

(4.14)

Equivalently, using the definition of
(
aorthor ,borthor

)
we rewrite:


aorthor,t = atar −

2h
3 btar;

aorthor,b = atar + 2h
3 btar.

(4.15)

Thus, application of the rest configuration
(
aorthor,t , aorthor,b

)
leads to the target shape (atar,btar).

However, this configuration implies local orthotropic eigenstrain, which is not feasible with
shot peen forming. We comply with this constraint and find a suitable local isotropic eigen-
strain based on this prediction. To that end, we first compute the local eigenstrains in the
principal directions in the top (εt11, εt22) and bottom (εb11, εb22) layers of the bilayer prescribed
by aorthor,t and aorthor,b , respectively. Next, we take their averages εtavg and εbavg and impose them
locally in all in-plane directions thus making the initial guess.

To find (εt11, εt22) and (εb11, εb22) we perform a spectral decomposition of aorthor,t and aorthor,b ,
respectively [7]. At the top layer, the distortions prescribed by aorthor,t imply stretching by a
factor of (εt11 + 1) in the first principal direction and by a factor of (εt22 + 1) in the orthogonal
second principal direction. The first principal direction is rotated by an angle of θt with
respect to the x-axis. At the bottom layer, the stretch factors are (εb11 + 1) and (εb22 + 1),
and the first principal direction is rotated by an angle of θb with respect to the x-axis. The
initial configuration is unstretched, so its first fundamental form ainit is represented by the
identity matrix:
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ainit = I. (4.16)

Consequently, the eigenvalues of aorthot equal (εt11 + 1)2 and (εt22 + 1)2, and the eigenvalues of
aorthob equal (εb11 + 1)2 and (εb22 + 1)2, so that:

aorthor,j =
cos(θj) −sin(θj)

sin(θj) cos(θj)

T (εj11 + 1)2 0
0 (εj22 + 1)2

cos(θj) −sin(θj)
sin(θj) cos(θj)

 , for j = t, b.

(4.17)

We deduce the local eigenstrain in the principal directions (εt11, εt22) and (εb11, εb22) from the
eigenvalues and calculate the average local eigenstrain εtavg and εbavg for both layers:

εjavg = εj11 + εj22
2 , for j = t, b. (4.18)

We impose the local isotropic eigenstrain εtavg and εbavg on the top and bottom layers, re-
spectively, thus making the initial guess. The bilayer rest fundamental forms ar,t and ar,b
corresponding to this strain are expressed as:

ar,j =
(εjavg + 1)2 0

0 (εjavg + 1)2

 , for j = t, b. (4.19)

We substitute (ar,t, ar,b) to the bilayer elastic energy functional (Eqn. 4.11) and find the
current shape (ac,bc) that minimizes the elastic energy.

Following Eqn. (4.12), it is possible to find equivalent monolayer rest fundamental forms
(ar,br). Prescription of the rest fundamental forms (ar,br) to a monolayer plate leads to the
same current shape (ac,bc) as the prescription of (ar,t, ar,b) to a bilayer plate. Essentially,
(ar,br) can be viewed as the rest configuration imposed on the bilayer mid-surface. The
forms ar and br may be incompatible as they were defined analytically, but ac and bc are
always compatible because they describe a surface in Euclidean space. Consequently, (ac,bc)
are typically different from (ar,br).

Adjustment of the local stretching

In the previous subsection, we defined a procedure to obtain a quick estimate of the inverse
problem by solving for orthotropic expansions and averaging them to estimate isotropic
expansions. In this subsection and the next, we seek to iteratively correct these expansions
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by using only local information.

As the rest configuration (ar,t, ar,b) prescribes local isotropic in-plane strain, we measure
stretching in terms of local areas. The area A of each region of the surface constrained by
(x, y) ∈ U1 ⊂ R2 is expressed in terms of the first fundamental form a asA =

s
U1

√
det(a) dxdy.

The first fundamental form is considered constant inside small regions, so we conclude that
the current area of each small region Ac and its target area Atar are related as:

Atar
Ac
≈

√
det (atar)√
det (ac)

= kA. (4.20)

This means that if we locally multiply ac by the coefficient kA, then the current area will
equal that of the target. However, we are only able to influence ac indirectly through the
adjustment of ar. Consequently, as a part of the iterative procedure, we multiply ar by kA
and thus obtain the equivalent monolayer rest fundamental form anewr to be imposed during
the subsequent iteration:

anewr = kAar. (4.21)

The anewr may be different from the current first fundamental form on the subsequent iteration
anewc , and thus this correction of the rest fundamental form does not lead to an exact solution
but allows to approach it. In other words, multiplication of ar by kA does not correct the
local area exactly by the coefficient kA but reduces the difference between the current local
stretching and the target one.

Adjustment of the local curvature

We characterize the surface curvature in terms of the local mean curvature H. By definition,
H is the average of two local principal curvatures κ1 and κ2, that are computed as eigenvalues
of the shape operator S = a−1b [84]. We compute the local ratios kH between the current
mean curvatures Hc and the target mean curvatures Htar and assign an upper threshold δ

for |kH |:


kH = Htar

Hc

for
∣∣∣∣Htar

Hc

∣∣∣∣ < δ;

kH = δ · sgn
(
Htar

Hc

)
for

∣∣∣∣Htar

Hc

∣∣∣∣ ≥ δ.

(4.22)

Here, Htar is the average of the two eigenvalues of Star = a−1
tarbtar, and Hc is the average of
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the two eigenvalues of Sc = a−1
c bc. The threshold δ is assigned in order to deal with special

cases when |Hc| is small. Provided that multiplication of a matrix by a constant multiplies
its eigenvalues by the same constant, the multiplication of Sc by kH would make the current
local mean curvatures equal to those of the target. As we are unable to adjust any of the
current fundamental forms (ac,bc) directly, we influence them through adjustment of the
rest fundamental forms (ar,br) in order to get:

Snewr = kHSr = kHa−1
r br = kHkA

a−1
r

kA
br = kHkA (anewr )−1 br. (4.23)

Thus, we define:

bnewr = kHkAbr. (4.24)

Once the anewr and bnewr are found, we compute the bilayer rest fundamental forms (anewr,t , anewr,b )
as:


anewr,t = anewr − 2h

3 bnewr ;

anewr,b = anewr + 2h
3 bnewr .

(4.25)

Next, we substitute (anewr,t , anewr,b ) to the bilayer elastic energy functional (Eqn. 4.11) and find
the current shape (anewc ,bnewc ) that minimizes the elastic energy.

Subsequent iterations and stop criterion

We compare the current shape with the target shape and recalculate the bilayer rest fun-
damental forms until a convergence criterion is satisfied. The convergence criterion is based
on the calculation of the Hausdorff distance dH between the new current configuration Cnew

c

defined by (anewc ,bnewc ) and the current configuration from the previous iteration Cc defined
by (ac,bc). We nondimensionalize dH by the square root of the total area of the plate in its
initial configuration Atotal. We stop iterating either when a predefined maximal number of
iterationsM is reached, or when the nondimensionalized Hausdorff distance becomes inferior
to a chosen threshold τ :

dH(Cc,Cnew
c )√

Atotal
< τ. (4.26)
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Calculation of the adjusted eigenstrain

We denote the bilayer final rest fundamental forms, i.e., the ones obtained on the last it-
eration, as (arf,t , arf,b). To relate them with peen forming parameters, we determine the
recalculated eigenstrain (εrf,t, εrf,b).

Provided that the iterative adjustment implies only addition, subtraction and multiplication
by a constant of diagonal matrices, the arf,t and arf,b are diagonal. Moreover, the imposed
local eigenstrain (εrf,t, εrf,b) is isotropic, so arf,t and arf,b have the following form:

arf,j =


(
εrf,j + 1

)2
0

0
(
εrf,j + 1

)2

 , for j = t, b. (4.27)

Consequently,

εrf,j =
√
a11
rf,j − 1, for j = t, b. (4.28)

4.3.2 Numerical implementation

We mesh the plate mid-surface with triangular elements and follow the energy calculation
strategy presented in [59] [61]. The first and the second fundamental forms are estimated
separately for each element and are constant inside the element. The global elastic energy is
calculated as a sum of local energetical contributions from all the elements.

The first fundamental form on a triangular element such as that schematized in Fig. 4.5
depends entirely on the coordinates of the vertices. The three vertices are defined by position
vectors ~v0, ~v1 and ~v2, and the edge vectors constituting the triangle are expressed as: ~e0 =
~v1 − ~v0, ~e1 = ~v2 − ~v1, ~e2 = ~v0 − ~v2. These vectors are tangent to the plane containing
the triangle, so following Eqn. (4.7), the first fundamental form on a triangular element is
computed as:

a =
~e1 · ~e1 ~e1 · ~e2

~e2 · ~e1 ~e2 · ~e2

 . (4.29)

In a general case of isotropic eigenstrain εr imposed on a triangular element, its rest first
fundamental form ar is expressed as:
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ar =
~e init

1 · ~e init
1 ~e init

1 · ~e init
2

~e init
2 · ~e init

1 ~e init
2 · ~e init

2

(εr + 1)2 0
0 (εr + 1)2

 = ainit

(εr + 1)2 0
0 (εr + 1)2

 ,
(4.30)

where ~e init
1 , ~e init

2 , ~e init
3 are the edge vectors in the initial configuration and ainit is the element

first fundamental form in its initial configuration. Otherwise, if an orthotropic in-plane strain
is imposed, then the rest first fundamental form aorthor becomes:

aorthor = ainit

cos(θ) −sin(θ)
sin(θ) cos(θ)

T (εr11 + 1)2 0
0 (εr22 + 1)2

 cos(θ) −sin(θ)
sin(θ) cos(θ)

 , (4.31)

where εr11 and εr22 define the eigenstrain imposed in the principal directions and θ stands for
the angle between the first principal direction and the x axis.

The second fundamental form defines the surface curvature, so the information about surface
normals is required. In this connection we introduce a unit normal vector ~ni, i = 1, 2, 3 at
the center of each edge of the mesh (the edge-director). This vector is normal to the edge,
and its angle of inclination ϕi, i = 1, 2, 3 in the plane perpendicular to the edge provides a
supplementary degree of freedom. This angle is measured with respect to the average of the

Figure 4.5 A triangular mesh element and vectors that determine local fundamental forms:
the vertex position vectors (~v0, ~v1 and ~v2), the edge vectors (~e0, ~e1 and ~e2) and the mid-edge
normals (~n0, ~n1 and ~n2). The mid-edge normals are perpendicular to the edge, and their
direction is determined by the angle of inclination with respect to the average normal of the
two adjacent faces. Thus, the direction of ~n2 is determined by the angle ϕ2. This angle is
measured with respect to ~navg , which is the average normal of the two faces that share the
edge ~e2.
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adjacent face normals [61]. A finite-difference approximation of the derivatives appearing in
Eqn. (4.8) yields the following expression for the second fundamental form of a triangular
element:

b =
~e1 · 2(~n0 − ~n2) ~e1 · 2(~n1 − ~n0)
~e1 · 2(~n1 − ~n0) ~e2 · 2(~n1 − ~n0)

 =
~e1 · 2(~n0 − ~n2) −~e1 · ~n0

−~e1 · ~n0 ~e2 · 2(~n1 − ~n0)

 . (4.32)

According to Eqn. (4.11), the global elastic energy for a plate composed of K triangular
elements is expressed in terms of local fundamental forms as:

EBL = 1
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(4.33)

The local plate thickness hk can be different for each element. Similarly, the local Young’s
modulus Yk and the Poisson’s ratio νk can vary along the plate.

As follows from Eqn. (4.30), the element’s rest first fundamental forms ar,t and ar,b for
the isotropic growth case are defined by the imposed local eigenstrain εt and εb and the
initial vertex positions ~v init

i , i = 1, 2, 3. At the same time, according to Eqn. (4.29) and
Eqn. (4.32), the two final fundamental forms af and bf are defined by the final vertex
positions ~v fi , i = 1, 2, 3, and final angles of inclination of the edge directors ϕfi , i = 1, 2, 3.
Numerically, the forward problem consists in minimizing the global elastic energy functional
(Eqn. 4.33) with respect to ~v fi and ϕfi provided with ~v init

i , εt and εb. We perform the
minimization using a quasi-Newton L-BFGS algorithm [85]. The gradients of the elastic
energy functional required by the minimization algorithm are computed analytically following
[86]. The corresponding programming code for the forward problem resolution was developed
by van Rees et al. and is publicly accessible [87].

In this implementation, the inverse problem resolution consists in finding the local eigenstrain
εrf,t and εrf,b to be imposed on each triangular element. This means that the iterative
correction of the rest fundamental forms ar,t and ar,b is executed on a local scale for each
element separately, whilst the forward problem is resolved on each iteration on a global scale,
thus reflecting the mechanics of the plate.
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Algorithm 1 The inverse problem resolution

The iterative loop

1: while condition (4.26) is not satisfied and the number of iterations is below maximum
do

2: for each triangular element do
3: Find principal curvatures (κc1, κc2) as eigenvalues of the shape operator Sc = a−1

c bc
4: Compute the current mean curvature as Hc = 0.5 (κc1 + κc2)
5: Compute the current area as Ac =

√
det (ac)

6: Compute the ratios kA and kH following Eqn. (4.20) and Eqn. (4.22) respectively
7: Compute the monolayer rest fundamental forms ar and br following Eqn. (4.12)

using only local information
8: Compute the adjusted monolayer rest fundamental forms anewr and bnewr following

Eqn. (4.21) and Eqn. (4.24) respectively
9: Compute the adjusted bilayer rest fundamental forms anewr,t and anewr,b following

Eqn. (4.25)
10: end for
11: Substitute anewr,t and anewr,b to the bilayer elastic energy functional (Eqn. 4.33) and min-

imize it to solve the forward problem and find the current configuration (anewc ,bnewc )
12: end while

The initial guess

1: for each triangular element do
2: Compute the first fundamental form of the initial shape ainit following Eqn. (4.29)
3: Compute the monolayer fundamental forms of the target shape atar and btar following

Eqn. (4.29) and Eqn. (4.32) respectively
4: Find principal curvatures κtar1 and κtar2 as eigenvalues of the target shape operator

Star = a−1
tarbtar

5: Compute the target mean curvature as Htar = 0.5(κtar1 + κtar2 )
6: Compute the target area as Atar =

√
det (atar)

7: Compute the orthotropic bilayer rest fundamental forms aorthor,t and aorthor,b following
Eqn. (4.15)

8: Find eigenvalues λj1 and λj2 of (a−1
initaorthor,j ) for j = t, b

9: Compute the orthotropic eigenstrain as εjii =
√
λji − 1 for i = 1, 2 and j = t, b
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Algorithm 1 The inverse problem resolution

10: Compute the average eigenstrain εtavg and εbavg following Eqn. (4.18)
11: Compute bilayer rest fundamental forms ar,t and ar,b by substituting εtavg and εbavg

respectively for εr in Eqn. (4.30)
12: end for
13: Substitute ar,t and ar,b to the bilayer elastic energy functional (Eqn. 4.33) and minimize it

to solve the forward problem and find the current configuration (ac,bc)

Final step after exiting the iterative loop

1: for each triangular element do
2: Compute the eigenstrain εrf,t and εrf,b prescribed by arf,t = anewr,t and by arf,b = anewr,b

respectively following Eqn. (4.28)
3: end for

4.3.3 Grouping of the peening pattern

In the general case, the eigenstrains (εrf,t, εrf,b) provided by Algorithm 1 are different for
each element and can take any real values. Peen forming often deals with smoothly curved
target shapes, so (εrf,t, εrf,b) may also vary smoothly along the surface given that these two
values depend on the target shape curvature. We call the eigenstrain pattern provided by the
Algorithm 1 the free pattern. From a practical point of view, each pair (εrf,t, εrf,b) represents
a peening regime. However, a limited number of regimes is available when peening a real
part. Thus, we divide the pattern into zones with uniform prescribed eigenstrain and obtain
a grouped pattern.

We associate all triangular elements with points on a plane with cartesian coordinates
(
εt, εb

)
,

and the coordinates of each point k are determined by the eigenstrain
(
εrf,tk , εrf,bk

)
assigned

to the corresponding element k, as illustrated in Fig. 4.6. We divide the points in groups,
and the group centroids are determined by the predefined peening regimes. We denote the
centroid of a group n by

(
εcen,tn , εcen,bn

)
. Each point

(
εrf,tk , εrf,bk

)
is attributed to the group

with the closest centroid in terms of Euclidean distance. When all points are grouped, we
homogenize the eigenstrain inside each group, i.e., we assign the eigenstrain

(
εcen,tn , εcen,bn

)
to

all triangular elements that fall into the group n.

Consider N predefined peening regimes such as the ones illustrated in Fig. 4.7. Regime
i = 1, 2, ..., N induces expansions εti and εbi on the treated and opposite layers, respectively.
In addition, we consider the lack of treatment εt0 = εb0 = 0. Since the top and bottom
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Figure 4.6 Graphical representation of grouping of the eigenstrain pattern. The triangulated
flat initial configuration (a) and the target configuration - wavy shape (b) - are the input data
for the inverse problem resolution. We divide the eigenstrain pattern (c) into three zones
treated uniformly (d). A plane with cartesian coordinates (εt, εb) (e) illustrates the grouping
from the numerical point of view. The colored points correspond to the eigenstrain assigned
to each element of the triangular mesh. The four centroids are denoted by colored squares.
They are generated by one peening regime and the lack of treatment as an additional regime.
The grouping is based on calculation of the least Euclidean distance from the points to the
group centroids. In the presented case there are no points close to the centroid denoting
treatment from both sides, so the corresponding group is empty. Once the points are divided
in groups, we homogenize the eigenstrain for all the elements attributed to the same group.

surfaces can be peened independently, there are (N + 1)2 possible treatment combinations.
Each treatment combination gives rise to a group centroid. Combining regime i = 1, 2, ..., N
on the top surface with regime j = 1, 2, ..., N on the bottom surface leads to the following
expansions of the top and bottom surface: (εti, εbi) + (εtj, εbj) = (εcen,tij , εcen,bij ). Figure 4.7
illustrates this principle. Figure 4.6 e) also provides a cartesian representation of (N + 1)2

centroids for the case N = 1.

4.3.4 Numerical validation of the inverse problem solver

We generated target shapes numerically to test our algorithms for the iterative inverse prob-
lem resolution and grouping. To ensure that the target shapes were achievable with peen
forming, we generated them by assigning a random peening pattern to the initial configu-
ration and then solved the forward problem. The random peening patterns were generated
following Algorithm 2.

When the target shapes were generated, we solved the inverse problem for each of them
following Algorithm 1 and then grouped the peening pattern. The predefined regimes were
fixed as those that were originally used to generate the target shapes. To quantify the error,
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Figure 4.7 Calculation of the group centroids. The group ij implies treatment from the
bottom side with regime i and treatment from the top side with regime j. Its centroid is
determined by a pair of parameters εcen,tij and εcen,bij , and each of them is a superposition of
eigenstrain generated by the two regimes that form this group: εcen,tij = εti+εtj, ε

cen,b
ij = εbi +εbj.

In this example, the regime i is more intense than the regime j, so εcen,tij < εcen,bij .

we solved the forward problem for the free and the grouped patterns. We thus obtained two
final shapes for each test case and compared them with the target shape by calculating the
nondimensionalized Hausdorff distance Ω:

Ω = dH(Cf ,Ctar)√
Atotal

, (4.34)

where Cf stands for the final configuration and Ctar stands for the target configuration. The
overall process for the inverse problem validation is schematized in Fig. 4.8.

Algorithm 2 Generation of random peening patterns

1: Mark 1 to 6 random points on the top and bottom surfaces of the plate
2: for each point do
3: Draw a square of random size (but not bigger than the plate size) centred on the

point
4: Assign randomly one of the available peening regimes to the square
5: if the square protrudes beyond the plate area then
6: Translate the part that protrudes symmetrically on the other side of the plate
7: end if
8: if the square superimposes with a previously drawn square on the same side then
9: Erase the previously assigned regime in the superimposing area and leave only the

latest one
10: end if
11: end for
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Figure 4.8 A validation process to test the quality of the inverse problem resolution. The
initial shape is fixed as a flat 1×1 m plate, its thickness and Poisson’s ratio are chosen
randomly. These parameters are kept constant throughout the whole validation process. A
random peening pattern is generated following Algorithm 2 and assigned to the initial shape.
Different colors on the peening pattern correspond to different peening regimes applied from
the top, bottom or both sides. We solve the forward problem taking the random pattern
as input, and the result is used as the target shape for the inverse problem validation. The
eigenstrain pattern is determined following Algorithm 1 and grouped using pre-determined
regimes. Finally, the forward problem is resolved for the free and the grouped patterns.
The difference between the target shape and the two final shapes is quantified with the
nondimensionalized Hausdorff distance Ω.

4.4 Results

We generated 200 random patterns with Algorithm 2 and applied them on a flat square
plate (1 × 1 m). The plate thickness was arbitrarily assigned in each case and ranged from
2 mm to 15 mm. The Poisson’s ratio was also arbitrarily picked between 0.32 and 0.36. The
plate was meshed with 1152 triangular elements. The forward problem resolution took 10-30
seconds for one shape, depending on the pattern and the plate thickness. Thus, the forward
problem resolution took longer time for thinner plates with bigger treated areas due to larger
deflection of these plates.

For the first 100 test cases (series 1 ), we made only one peening regime available, so the
entire treated area was peened with the same parameters. For the second 100 test cases
(series 2 ), we assigned randomly one of four available peening regimes to each square on
both sides. We considered real peening regimes presented in [2]. The authors of this paper
deduced idealized eigenstrain profiles from the residual stress measurements performed on
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the treated specimens. The idealized eigenstrain profiles were formulated as one uniformly
expanding layer of a constant thickness. The layer thickness and the eigenstrain magnitude
were different for each regime. We reformulated the idealized eigenstrain profiles in terms
of
(
εt, εb

)
by equating the total eigenstrain Γ and the first eigenstrain moment Γ1 induced

by
(
εt, εb

)
and by the one expanding layer. Table 4.1 summarizes the eigenstrain

(
εt, εb

)
induced by each of the four regimes applied on a 5 mm thick plate from the top side.

Figures 4.9 and 4.10 present the free and the grouped patterns along with the convergence
curves for two particular test cases from series 2: a low-error case and a high-error case.
Figures 4.9 b) and 4.10 b) show that the free pattern on the final iteration is locally close
to the originally generated random pattern. Due to that, most of the elements are grouped
correctly, so that the eigenstrains prescribed by the grouped and the random patterns to these
elements become equal (Fig. 4.9 c and Fig. 4.10 c). However, in each case there are elements
that are attributed to a wrong group. In the low-error case this happens only for several
elements. Consequently, the dimensionless error Ω is lower for the grouped pattern than
for the free pattern. In the high-error case the grouped pattern undergoes the checkerboard
problem, meaning that the pattern locally alternates two peening regimes over a certain
area (Fig. 4.10 c). A large area affected by the checkerboard problem increases the Ω in
comparison with the free pattern (Fig. 4.10 e). Nevertheless, the regimes that are mixed
up in the checkerboard-affected zone have only a slight difference in terms of the induced
eigenstrain, so the Ω increases up to 0.23% at most.

In terms of convergence, the most important correction is done on the first iteration after
the initial guess, as illustrated by Fig. 4.9 e) and Fig. 4.10 e). Thus, the first iteration
decreases the Ω by 65% on average, and the Ω becomes inferior to 0.1% for all the cases.
All the subsequent iterations together decrease the Ω obtained on the first iteration by 60%
on average. Because of the local nature of the eigenstrain adjustment, the solution does not

Table 4.1 The in-plane eigenstrain induced by the regimes used to generate the random
peening patterns. The in-plane eigenstrain is presented for the case of a 5 mm thick plate.
The peening regimes represent four real treatments inducing different eigenstrain profiles,
which are examined in [2].

Regime εt × 103 εb × 103

1 2.5 -0.4
2 3.2 -0.6
3 1.7 -0.4
4 2.0 -0.4
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Figure 4.9 One of the test cases from series 2 with low dimensionless error. The plate is 7 mm
thick, and the Poisson’s ratio equals 0.34. a) The random peening pattern generated for this
test case (top layer). Different colors on the peening pattern denote different peening regimes.
b) The free peening pattern on the final iteration. c) The grouped peening pattern. A visual
comparison of (c) and (a) shows that almost all elements were attributed to a correct group.
Consequently, grouping decreased the dimensionless error Ω. d) The target shape induced
by the pattern (a). The deformations are at their original scale. e) The convergence curve
showing the dimensionless error Ω on each iteration. The optimization required 10 iterations,
that was the maximum fixed for this test.

converge to the exact target shape but to a shape which is close to the target. In other words,
after several iterations the Ω plateaus at a low but finite level (Fig. 4.9 e and Fig. 4.10 e). The
Ω may slightly grow during the subsequent iterations, but the stop criterion (4.26) terminates
the iterative process as soon as this happens.

The results of the numerical validation are presented with histograms in Fig. 4.11. The
inverse problem solver provided free peening patterns that led to the target shape with the
Ω inferior to 0.35% for both series of tests (Fig. 4.11, top). The pattern optimization needed
between 2 to 10 iterations, depending on the target shape.

The histograms in Fig. 4.11 show that the pattern grouping has decreased the Ω in most
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Figure 4.10 One of the test cases from series 2 with high dimensionless error. The plate is
4 mm thick, and the Poisson’s ratio equals 0.34. a) The random peening pattern generated
for this test case (top layer). Different colors on the peening pattern denote different peening
regimes. b) The free peening pattern on the final iteration. c) The grouped peening pat-
tern. A visual comparison of (c) and (a) indicates elements that were not attributed to a
correct group. The deformations are at their original scale. However, grouping decreased the
dimensionless error Ω in this case. d) The target shape induced by the pattern (a). e) The
convergence curve showing the dimensionless error Ω on each iteration. The optimization
required 3 iterations to converge.

of the cases. Thus, the original pattern was perfectly reproduced for all test cases in series
1, so the Ω after grouping became less than 10−3%. The corresponding Ω for series 2 was
bigger because of the higher complexity of the grouping problem: four available regimes
induced twenty-five group centroids for series 2, while there were only four centroids induced
by one available regime for series 1. The group centroids for series 2 were situated close to
each other, so several test cases were significantly affected by the checkerboard problem, as
illustrates Fig. 4.10 c). This explains the increased error after grouping for 18 cases out of
100 from series 2.
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Figure 4.11 Histograms evaluating the dimensionless error Ω between the target shapes and
the final shapes obtained during the numerical validation of the inverse problem solver. All
in all, 200 test cases were considered. They were divided in two series of 100 cases each. The
target shapes in series 1 were obtained with one peening regime, and the same peening regime
was fixed as the only available for the grouping stage. The target shapes in series 2 were
obtained with four different peening regimes, and the four predefined regimes were available
for grouping. Figures (a) and (b) show the dimensionless error induced by application of the
free pattern for series 1 and 2 correspondingly. Similarly, figures (c) and (d) represent the
dimensionless error induced by the grouped pattern.

4.5 Discussion

The described inverse problem resolution algorithm relies on the assumption that the peening
treatment induces isotropic expansions. In practice, however, peen forming sometimes in-
duces different eigenstrain along the x and y axes: εxx (x, y, z) 6= εyy(x, y, z). Such anisotropic
expansions are due to plastic anisotropy of the treated material, which is especially explicit
for rolled aluminum sheets, and to prestressing the component in one direction before treat-
ment, i.e., stress peen forming. This effect is examined in detail in [35]. For uniform plastic
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anisotropy which does not vary over the area of the plate, the inverse problem resolution
algorithm can be easily adapted by introducing a fixed eigenstrain anisotropy coefficient χ
in the model:

εjxx = (1 + χ)
(1− χ)ε

j
yy, for j = t, b. (4.35)

This relation may be imposed after adjustment of the bilayer rest fundamental forms ar,t
and ar,b on each iteration. Thus, the forward problem will be solved taking into account the
plastic anisotropy.

Given that the rest fundamental forms are numerically adjusted for each triangular element
separately, the efficiency of the inverse problem resolution depends on the consistency between
the target mesh and the initial mesh. More precisely, it depends on the mapping ~m between
the initial 2D shape and the target 3D shape. The general requirement for the mapping
is to preserve the shape of each triangular element as well as possible. This minimizes the
local eigenstrain assigned by the algorithm and makes the computed free pattern smoother.
This problem was not faced during the numerical validation because the target shapes were
derived from the initial shapes through the forward problem resolution, so they were optimally
meshed by default.

The mesh consistency can be ensured by fixing the target shape mesh and by its mapping
onto the initial 2D geometry. The fixed initial geometry is an important constraint for
the mapping because it involves a fixed 2D boundary. The mapping can be done using
the methods oriented on maximal preservation of local angles, such as the Least Squares
Conformal Mapping (LSCM) algorithm [88]. Next, local mesh distortions with respect to the
target mesh can be minimized using a numerical optimization algorithm. For example, the
L-BFGS algorithm that we use for the global elastic energy minimization can cope with this
task.

4.6 Conclusion

The theory of non-Euclidean plates in combination with the eigenstrain approach provides
an extensive theoretical framework for the modeling of shot peen forming. The eigenstrain
approach represents the treated plate as a bilayer undergoing nonuniform eigenstrain, and
the theory of non-Euclidean plates accurately solves the forward problem for this case. The
deformed shape is calculated through minimization of the global elastic energy following
analytical gradients.
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The iterative inverse problem resolution is based on the comparison of geometrical properties
of the plate in its current and target configurations. The adjustment of the prescribed eigen-
strain on each iteration is done on a local scale involving simple arithmetic operations and
takes negligible amount of time. A low number of iterations (not more than 10) ensures fast
resolution of the inverse problem. The eigenstrain formulation of the inverse problem makes
the algorithm applicable for any type of processes that induce small isotropic eigenstrain.
These include, among others, laser peen forming of metal plates or 4D printing of shape-
shifting polymer structures. The precision of the inverse problem resolution is independent
of plate thickness and its mechanical properties. It is, however, dependent on consistency
between the initial and the target meshes.

The pattern grouping makes the inverse problem solution practically applicable. It adds
uncertainty to the solution, but in many cases it decreases the induced error. The grouping
algorithm can locally mix up the peening regimes having slightly different intensities. A
method for correction of the local grouping errors would enhance the solution quality.

The future work implies experimental validation of the proposed inverse problem simulation
technique. It will reveal practical constraints that may cause simulation error. Among others,
we will examine influence of the peening parameters and of the material plastic anisotropy
on the induced eigenstrain.
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CHAPTER 5 SEGMENTATION OF THE PEENING PATTERN BASED
ON THE k-MEANS CLUSTERING

This chapter deals with the clustering and the filtering algorithms that serve for the pattern
segmentation and are not published. Both algorithms are included in the simulation software
(see Chapter 4) and can be applied after the inverse problem resolution. The necessity for
these two algorithms was revealed during the experimental campaign presented in Chapter
6. The experiments showed that the manual search for optimal peening regimes and the
manual correction of the segmentation errors are time-consuming. Therefore, we developed
the clustering algorithm, which automatically computes the optimal regimes, and the filtering
algorithm, which automatically corrects local clustering errors.

5.1 Introduction

The numerical inverse problem resolution implies the discretization of the initial geometry
with shell finite elements, so the computed peening pattern is a discrete map. In the general
case, the eigenstrain prescribed to each element may vary from one element to another. On
the other hand, the practical conditions limit this variation. Thus, the maximal eigenstrain
that can be prescribed to a segment is limited by the equipment capacity. In addition, the
peening parameters can not be varied gradually during treatment, so a gradual variation of
the eigenstrain in the pattern can not be reproduced. Moreover, each modification of peening
parameters during treatment slows down the shaping process, which is especially the case
for changing the media [25]. These reasons suggest that the elements must form segments
united by the same eigenstrain prescribed, and these segments must be larger than the shot
stream width. Furthermore, the segmented peening pattern must involve as few as possible
peening regimes while preserving the precision of the final shape. In practice, such segmented
patterns are usually applied using masks [12, 89]. The masks are glued to the surface of the
component and protect the zones that should not be treated. If the peening equipment
admits only uniform treatment of the component during one cycle, then a separate mask is
produced for each peening regime involved.

In particular, the above-mentioned limitations on the prescribed eigenstrain are addressed in
Ref. [5,6]. The presented inverse problem solvers operate with one available peening regime,
so the peening pattern is essentially a set of treated and untreated segments. This effect is
achieved in Ref. [5] by limiting the overall treated area, so that the optimization algorithm
is forced to assign only the maximal available eigenstrain to the elements. On the other
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hand, the neural network presented in Ref. [6] naturally operates with only one eigenstrain
magnitude, which is set during the training phase. Nevertheless, the usage of one available
peening regime considerably limits the range of achievable target shapes because the peening
regime is the main factor determining the locally induced curvatures.

The inverse problem solver presented in Chapter 4 does not restrict the variation of the
eigenstrain assigned to each element. The division of the pattern into segments is done during
post-processing with the help of grouping. This approach allows any number of regimes in
the pattern, which means that it is flexible in terms of target shapes. However, the original
and the grouped patterns induce different final shapes, so the peening regimes have to be
thoroughly adjusted to minimize this difference.

The described strategies for segmentation of the peening pattern share a common drawback:
they require having pre-defined peening regimes. This suggests that if the current peening
regimes do not allow to achieve the target shape according to the simulations, then the
optimal regimes must be found by trial and error. Thus, if the segmentation is embedded in
the inverse problem solver [5, 6], then each new trial means restarting the inverse problem
solver. For instance, the solver presented in Ref. [5] must be restarted with a new maximal
eigenstrain. Similarly, the neural network presented in Ref. [6] has to be retrained with
another fixed eigenstrain value. Otherwise, if the segmentation is executed after the inverse
problem resolution by means of grouping (see Chapter 4), then the grouping algorithm must
be relaunched with a new combination of peening regimes, which are defined manually.

Here, we present a numerical strategy for segmenting the peening pattern without pre-defined
peening regimes. It is designed as a post-processing tool that complements the inverse prob-
lem solver described in Chapter 4. The segmentation strategy is based on the k-means
clustering [77], which means that the original variation of the eigenstrain in the pattern is
preserved as much as possible. This feature reduces the difference between the final shapes
provided by the original and the segmented patterns.

5.2 Methodology

We start the Methodology section by examining two common eigenstrain formulations of
the peening pattern. Next, we consider the relation between the k-means clustering and
segmentation of the peening pattern. Subsequently, we examine in detail the two clustering
algorithms developed for the two eigenstrain formulations. At the end, we present the filtering
algorithm that corrects local clustering errors and thus makes the pattern fully applicable.



70

5.2.1 The two eigenstrain formulations

The eigenstrain prescribed to each finite element by an eigenstrain-based inverse problem
solver is considered constant in the in-plane direction inside the element, but it is assumed to
vary along the through-thickness coordinate z. The exact number of variables prescribed to
each finite element depends on the adopted formulation of the through-thickness eigenstrain
profile ε(z). To make our formulation clearer, we assume that the treated material is isotropic
and not pre-stressed, so that εxx(z) = εyy(z) = γ(z) and εzz(z) = −2γ(z). The peening-
induced isotropic eigenstrain profile γ(z) is a continuous function, but it can be idealized,
i.e., discretized, in the way that the final shape induced by the idealized profile is the same
as that induced by the original profile (see Section 2.1.2). In the general case of treatment
from both sides, the simplest idealized profiles involving the fewest variables are the trilayer
and the bilayer.

The trilayer formulation implies the assignment of eigenstrain to the two outer layers of a
variable thickness. Under the assumption that the origin of the through-thickness coordinate
z is at the level of the mid-surface, the trilayer profile γtri(z) takes the form:

γtri(z) =


εt∗ for

(
h
2 − h

t
∗

)
< z < h

2 ,

0 for
(
hb∗ − h

2

)
< z <

(
h
2 − h

t
∗

)
,

εb∗ for − h
2 < z <

(
hb∗ − h

2

)
,

(5.1)

where the parameters εt∗ and εb∗ stand for the eigenstrains assigned to the top and bottom
layers respectively, the parameters ht∗ and hb∗ denote the thicknesses of these layers, and h

denotes the total plate thickness. Consequently, in the trilayer formulation, the eigenstrain
assigned to each element is determined by four variables: (εt∗, ht∗, εb∗, hb∗). All four variables are
non-negative because the outer layers expand due to peen-forming. In terms of the peening
regimes, the regime applied from the top side determines (εt∗, ht∗) and has no influence on
(εb∗, hb∗). The same principle applies to the bottom side peening regime, which is related
only to (εb∗, hb∗) [25]. We suppose that the plate is fixed flat during treatment, so it does not
undergo progressive bending that can influence the induced eigenstrains.

The bilayer eigenstrain profile γbi(z) implies that the plate consists of two equally thick layers
assigned with the eigenstrains εt and εb:

γbi(z) =

ε
t for 0 < z < h

2 ;

εb for − h
2 < z < 0.

(5.2)
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Hence, the equal thickness of both layers allows to describe the bilayer profile with two
variables: (εt, εb). In this formulation, each of the two peening regimes applied from the
top and bottom sides influences both εt and εb. Consequently, the values of εt and εb are
superpositions of contributions made by the top and the bottom side peening regimes.

5.2.2 k-means clustering applied to the peening pattern

In terms of clustering, the variables (εt∗, ht∗, εb∗, hb∗) and (εt, εb) can be viewed as coordinates of
points in space, where each point corresponds to the peening state of a finite element in the
peening pattern. The k-means algorithm, in turn, divides the points in space into clusters
and computes a centroid for each cluster. In terms of peen forming, a cluster regroups all
elements assigned with the same top and bottom peening regimes, and its centroid determines
these peening regimes. We developed two separate clustering algorithms for the bilayer and
the trilayer formulations, and they both are based on the k-means algorithm. Typical of a
k-means algorithm, our implementation uses a pre-defined number of centroids, or in other
words, a pre-defined number of peening regimes.

When the points are clustered, the algorithms homogenize the eigenstrain for all finite ele-
ments that fall into the same cluster, so that the eigenstrain is uniform inside each segment.
Namely, each element inside a cluster is assigned with the eigenstrain corresponding to the
centroid of this cluster. This strategy allows, in particular, to constrain the maximal eigen-
strain in the pattern by constraining the coordinates of the centroids. Given that the cluster
centroids are related to the peening regimes, the clustering algorithms essentially output top-
and bottom-side peening patterns formulated in terms of peening regimes.

The k-means clustering is an iterative process involving the relocation of the centroids on
each iteration. The result of clustering is dependent on the initial guess of the centroid
positions, which are assigned randomly. For this reason, the algorithm must be relaunched
several times, each time with different initial positions of the centroids. Each trial, in turn,
comprises several iterations. At the end of each trial, the algorithm evaluates the quality of
clustering by computing the sum of squared Euclidean distances between the points and the
centroids of clusters to which the points are assigned. The trial providing the lowest sum of
distances is chosen as the optimal clustering.

5.2.3 Clustering in the trilayer case

In the trilayer formulation, each finite element e is assigned with the variables
(εt∗e, ht∗e, εb∗e, hb∗e) by the inverse problem solver. The range of peening regimes that can be
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applied from the top and bottom sides is the same, so the eigenstrains assigned to the top
and bottom layers are clustered simultaneously. This means that each element generates
two points on a coordinate plane with axes ε∗ and h∗. The coordinates of these points are
(εt∗e, ht∗e) and (εb∗e, hb∗e). The points are clustered using the standard k-means algorithm [77],
except for the fact that the zero centroid (0, 0) corresponding to the absence of treatment
is fixed at the origin (Algorithm 3). The presence of this centroid suggests that N peening
regimes actually induce k = (N + 1) cluster centroids. The other N centroids are initialized
at random positions in the rectangle limited by the minimal and the maximal coordinates of
the generated points:


min (min

e
εt∗e ,min

e
εb∗e) < ε∗ < max (max

e
εt∗e ,max

e
εb∗e);

min (min
e
ht∗e ,min

e
hb∗e) < h∗ < max (max

e
ht∗e ,max

e
hb∗e).

(5.3)

Algorithm 3 The clustering algorithm in the trilayer case

1: for each finite element e do
2: Initialize two points with coordinates (εt∗e, ht∗e) and (εb∗e, hb∗e)
3: end for
4: Initialize N centroids at random positions in coordinates (ε∗, h∗) under constraints 5.3.
5: Initialize the zero centroid at the origin
6: while at least one centroid changes its position do
7: for each point do
8: Compute the squared Euclidean distance to each centroid
9: Assign the point to the cluster formed by the closest centroid

10: end for
11: for each cluster except for the zero cluster do
12: Compute the mean of all points in the cluster
13: Assign the mean as the new cluster centroid
14: end for
15: end while
16: for each finite element e do
17: Assign the top layer with a couple (εt∗, ht∗) corresponding to the centroid of the cluster

containing point (εt∗e, ht∗e)
18: Assign the bottom layer with a couple (εb∗, hb∗) corresponding to the centroid of the

cluster containing point (εb∗e, hb∗e).
19: end for
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5.2.4 Clustering in the bilayer case

In the bilayer formulation, the treatment from the top side induces positive εt and negative εb,
while treatment from the bottom side induces negative εt and positive εb (see Chapter 4). For
this reason, we characterize a peening regime with a couple

(
ε(1), ε(2)

)
, where, by convention,

ε(1) is positive and ε(2) is negative. Hence, if a plate is treated from the top side with regime
i inducing

(
ε

(1)
i , ε

(2)
i

)
and from the bottom side with regime j inducing

(
ε

(1)
j , ε

(2)
j

)
, then their

combination results in
(
ε

(1)
i + ε

(2)
j

)
in the top layer and in

(
ε

(2)
i + ε

(1)
j

)
in the bottom layer.

An unclustered pattern consists of such eigenstrain combinations assigned to each element,
but the aim of the clustering algorithm is to find the optimal regimes. Consequently, the
clustering algorithm must split the combinations into contributions made by the top and
bottom peening regimes.

The clustering algorithm starts with initialization of the points that are to be clustered on the
coordinate plane (εt, εb). Each finite element e generates one point with coordinates (εte, εbe),
where (εte, εbe) is the eigenstrain prescribed to this element by the inverse problem solver.
Therefore, in the bilayer formulation, the elements and the points are directly associated.
Subsequently, the clustering algorithm initializes the “void” regime (0, 0) corresponding to
the absence of treatment, and it also randomly initializes N peening regimes in terms of(
ε(1), ε(2)

)
under the following constraints:


0 < ε(1) < max (max

e
εte ,max

e
εbe);

min (min
e
εte ,min

e
εbe) < ε(2) < 0.

(5.4)

These constraints impose signs to ε(1) and ε(2) and set limits based on the eigenstrain range
of the given pattern.

Afterwards, the clustering algorithm initializes the cluster centroids, that are computed as
all possible combinations of the peening regimes. Hence, there are k = (N + 1)2 centroids
initialized, and each of them represents a cluster. A centroid formed by regime i applied from
the top side and by regime j applied from the bottom side is marked as ij (Table 5.1). The
void regime is numbered as 0, so the centroids marked as i0 and 0i correspond to treatment
with regime i only from the top side and only from the bottom side respectively. Figure 5.1
a) shows the points and the centroids initialized on the plane.

The next stage is deletion of all centroids that lie above the line εt = εb. Indeed, the range
of available peening regimes is the same for both sides of the plate, but the centroids ij and
ji are induced by the same peening regimes applied conversely. This principle also applies to
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Table 5.1 Formation of the cluster centroids in the bilayer case. Each centroid represents a
combination of peening regimes applied from the top and bottom sides. N available peen-
ing regimes form (N + 1)2 centroids because the absence of treatment is considered as an
additional “void” regime numbered as 0.

Centroid Peening regime
(top)

Peening regime
(bottom)

00 0 0
01 0 1
02 0 2
... ... ...
ij i j
... ... ...

NN N N

the points corresponding to the elements. Thus, the eigenstrains (εte, εbe) and (εbe, εte) represent
the same treatment combination applied from different sides. However, the points cannot be
deleted like the centroids because all points contain information on the given pattern, so the
clustering algorithm reflects all points that lie above the line εt = εb across this line. With
this, the points lying on either side of the line εt = εb are fused and clustered simultaneously.
Figure 5.1 b) traces the reflected points and the preserved centroids.

Next, the iterative process begins. Same as during the standard k-means clustering, each
point, i.e., element, is assigned to the cluster represented by the closest centroid, which is
shown in Figure 5.1 c). However, the centroids cannot be relocated freely for every itera-
tion because they are interconnected. Indeed, the relocation of centroid ij means altering
the eigenstrains induced by regimes i and j. This induces a simultaneous relocation of all
centroids formed by regimes i and j in combination with another regime. Hence, the bilayer
clustering algorithm does not relocate centroids but adjusts the peening regimes directly.
The new centroid positions are then computed as a function of the new peening regimes.

The peening regimes are adjusted using the notion of contributions. Let us consider a point
(εte, εbe) generated by element e, which is assigned to cluster ij on the current iteration. The
centroid of this cluster represents the combination of treatments with regimes i and j. In
turn, point e also represents a combination of treatments, but the contributions made by the
top and bottom peening are not defined. However, the clustering algorithm derives these
contributions, which have coordinates

(
ε

(1)
e,i , ε

(2)
e,i

)
and

(
ε

(1)
e,j , ε

(2)
e,j

)
, and uses them to adjust

regimes i and j, respectively. The contributions are derived in the way that they are as close
as possible to the eigenstrains induced by regimes i and j.
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We formulate the expression for the coordinates of the contributions using the method of
Lagrange multipliers [90]. These coordinates must minimize the sum of squared Euclidean
distances f to the regimes i and j:

f =
(
ε

(1)
e,i − ε

(1)
i

)2
+
(
ε

(2)
e,i − ε

(2)
i

)2
+
(
ε

(1)
e,j − ε

(1)
j

)2
+
(
ε

(2)
e,j − ε

(2)
j

)2
. (5.5)

In addition, the combination of contributions
(
ε

(1)
e,i , ε

(2)
e,i

)
and

(
ε

(1)
e,j , ε

(2)
e,j

)
must equal (εte, εbe):

ε
(1)
e,i + ε

(2)
e,j = εte,

ε
(2)
e,i + ε

(1)
e,j = εbe.

(5.6)

With this, the Lagrangian function L takes the form:

L =
(
ε

(1)
e,i − ε

(1)
i

)2
+
(
ε

(2)
e,i − ε

(2)
i

)2
+
(
ε

(1)
e,j − ε

(1)
j

)2
+
(
ε

(2)
e,j − ε

(2)
j

)2

− λ1
(
ε

(1)
e,i + ε

(2)
e,j − εte

)
− λ2

(
ε

(2)
e,i + ε

(1)
e,j − εbe

)
.

(5.7)

The stationary point of the Lagrangian function is:


ε
(1)
e,i = 0.5

(
ε

(1)
i − ε

(2)
j + εte

)
,

ε
(2)
e,i = 0.5

(
ε

(2)
i − ε

(1)
j + εbe

)
,

ε
(1)
e,j = 0.5

(
ε

(1)
j − ε

(2)
i + εbe

)
,

ε
(2)
e,j = 0.5

(
ε

(2)
j − ε

(1)
i + εte

)
,

(5.8)

λ1 = εte − ε
(1)
i − ε

(2)
j ,

λ2 = εbe − ε
(1)
j − ε

(2)
i .

(5.9)

The two contributions computed according to Eqn. (5.8) minimize the sum of squared
Euclidean distances (5.5) and satisfy conditions (5.6), simultaneously.

Let Ti be the set of points assigned to all the centroids formed using regime i on the current
iteration. The algorithm computes the new eigenstrain induced by regime i as the mean of
all contributions

(
ε

(1)
e,i , ε

(2)
e,i

)
for e ∈ Ti. The “void” regime is, however, fixed at point (0, 0).

When all regimes are adjusted, the algorithm recalculates the centroids and reassigns the
points to the clusters. Same as with the standard k-means algorithm, this iterative process
is repeated until stabilization of the peening regimes and, consequently, of the centroids.
The clustering algorithm in the bilayer case is summarized as Algorithm 4. Figure 5.1 d)
illustrates the result of clustering.
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Figure 5.1 Example of clustering in the bilayer case with N = 2 available peening regimes.
a) At the beginning, the clustering algorithm traces the points (grey dots) that are to be
clustered at coordinates (εt, εb). Each point represents a finite element, and its coordinates
reflect the eigenstrain assigned to the element by the inverse problem solver. The clustering
algorithm randomly initializes the peening regimes and traces the cluster centroids (colored
squares), each of which is a combination of two peening regimes for all possible permutations.
The coordinates of centroid ij represent the eigenstrain induced by the application of regime
i from the top side and of regime j from the bottom side.
b) Next, the algorithm eliminates the symmetry by reflecting the points that lie above the
line εt = εb across this line. The centroids that lie above this line are deleted.
c) Subsequently, each point is assigned to the closest centroid (cluster) in terms of squared
Euclidean distance.
d) The algorithm iteratively adjusts the peening regimes, derives new centroid positions and
reassigns the points until the stabilization of the centroids. The centroid (0, 0) is fixed at the
origin during all iterations. In this example, no points were attributed to cluster 11 (purple),
which corresponds to the treatment with regime 1 from both sides.
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Algorithm 4 The clustering algorithm in the bilayer case

1: for each finite element e do
2: Initialize one point with coordinates (εte, εbe)
3: end for
4: Randomly initialize N peening regimes in terms of

(
ε(1), ε(2)

)
under constraints 5.4

5: Initialize the “void” regime (0, 0)
6: Compute the centroids in coordinates (εt, εb) as all possible combinations of two peening

regimes
7: for each centroid that lies above the line εt = εb do
8: Delete the centroid
9: end for

10: for each point that lies above the line εt = εb do
11: Swap its coordinates εt and εb

12: end for
13: while at least one centroid changes its position do
14: for each point do
15: Compute the squared Euclidean distance to each centroid
16: Assign the point to the cluster formed by the closest centroid
17: Compute the two contributions using Eqn. (5.8)
18: end for
19: for each regime except for the “void” regime do
20: Compute the mean of all contributions belonging to this regime
21: Assign the mean as the new peening regime
22: end for
23: Compute the centroids as the combinations of the adjusted peening regimes
24: end while
25: for each finite element e do
26: Assign the element with the eigenstrain corresponding to the centroid of the cluster

containing point (εte, εbe)
27: end for
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5.2.5 Filtering of the peening pattern using cellular automata

The two clustering algorithms group the finite elements based on the eigenstrain prescribed
during the inverse problem solution. After clustering, each finite element in the peening
pattern is assigned with a peening regime. The elements assigned with the same regime can
be physically situated in different parts of the plate and thus form separate segments. In
practice, however, the minimal size of the segments is limited by the shot stream width or the
masking resolution. For example, a segment consisting only on one element is not typically
reproducible in practice. The presence of such segments in the clustered pattern is called
the checkerboard problem, which is illustrated in Figure 5.2. This problem arises when the
eigenstrain prescribed by the inverse problem solver is on the border between two clusters,
so the elements assigned with different peening regimes are mixed together after clustering.

We cope with the checkerboard problem with a filtering algorithm, which is executed after
clustering for the top and bottom patterns separately. More precisely, we use an image noise
filter based on cellular automata (CA) described in Ref. [91]. The filter is initially conceived
for images consisting of square pixels that are assigned with a gray level, but we reformulate it
for the case of triangular meshes where each element is assigned with a peening regime. The
filtering algorithm scans the elements and notes the regimes assigned to each element and to
its three neighbors, i.e., to its triangular Von Neumann neighborhood [92]. If the algorithm
detects that the element is mostly surrounded by elements prescribed with another regime,
then it assigns the element with the regime that constitutes the majority. In case when none
of the peening regimes constitutes a majority in the local neighborhood, then the element is

- no peening

- regime 1

- regime 2

Figure 5.2 Example of a peening pattern heavily affected by the checkerboard problem after
clustering. The pattern is traced on a square plate, which is meshed with triangular finite
elements. The elements assigned with different peening regimes of a close intensity are locally
mixed, so the proposed pattern is not reproducible in practice.
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assigned with the regime corresponding to its first neighbor. The same principle applies to
the edge elements that have only two neighbors. The corner elements are strictly assigned
with the regime corresponding to their single neighbor. The filtering algorithm is iterative
and lasts until the stabilization of the assigned regimes. All triangular elements are scanned
and corrected simultaneously at each iteration. This filter can also be applied after the
grouping of the peening pattern (Chapter 4), because the grouped patterns can also face the
checkerboard problem.

The filtering algorithm is summarized as Algorithm 5. We use a general notation and for-
mulate the algorithm in terms of the peening regime ρe assigned to element e. The regimes
assigned to the neigboring elements are denoted as ρe1, ρe2, ρe3.

5.3 Results

The clustering algorithm for the bilayer case and the filtering algorithm were validated nu-
merically using 200 random target shapes. For each test case, we firstly solved the inverse
problem using the algorithm presented in Chapter 4 and obtained the free peening pattern.
Secondly, we applied the clustering algorithm (Algorithm 4) and thus obtained the clustered
peening pattern. Thirdly, we applied the filtering algorithm (Algorithm 5) and obtained the
filtered clustered peening pattern. Finally, we simulated the application of each of these three
patterns using the method presented in Chapter 4 to evaluate the induced error. In other
words, we solved the forward problem for each pattern and thus obtained three final shapes.
We computed the dimensionless error Ω in each case as the Hausdorff distance between the
final shape and the target shape divided by the total area of the plate.

The target shapes were generated as a result of the application of random peening patterns
on a 1×1 m square plate. The plate thickness and the Poisson’s ratio were randomly assigned
in each test case. The plates were meshed with 1152 triangular elements, and the random
peening patterns were generated on this mesh using the algorithm presented in Chapter 4.
The first 100 test cases (series 1) involved only one available peening regime, which was
applied in randomly situated rectangular segments of the plate. The second 100 cases (series
2) involved four available regimes applied in random segments.

Figure 5.3 illustrates the numerical validation workflow using one test case from series 2.
The presented clustered pattern (Figure 5.3 d) leads to the highest Ω in series 2 because the
pattern is significantly affected by the checkerboard problem. The filtered clustered pattern
(Figure 5.3 e) contains irregularly shaped peening segments, but it is not subjected to the
checkerboard problem, so it is applicable in practice.
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Algorithm 5 The filtering algorithm

1: while the eigenstrain is reassigned at least for one element do
2: for each finite element e do
3: if the element has three neighbors then
4: if ρe 6= ρe1 and (ρe1 = ρe2 or ρe1 = ρe3) then
5: Assign the value of ρe1 to ρe
6: else if ρe 6= ρe2 and ρe2 = ρe3 then
7: Assign the value of ρe2 to ρe
8: else if
9: (ρe 6= ρe1 and ρe 6= ρe2 and ρe 6= ρe3) and

10: (ρe1 6= ρe2 and ρe1 6= ρe3 and ρe2 6= ρe3) then
11: Assign the value of ρe1 to ρe
12: end if
13: end if
14: if the element has two neighbors then
15: if ρe 6= ρe1 and ρe 6= ρe2 then
16: Assign the value of ρe1 to ρe
17: end if
18: end if
19: if the element has one neighbor then
20: if ρe 6= ρe1 then
21: Assign the value of ρe1 to ρe
22: end if
23: end if
24: end for
25: end while

Figure 5.4 summarizes the validation results in terms of Ω. The efficiency of the inverse
problem resolution with a free pattern was earlier discussed in Chapter 4. The histograms
demonstrate that both clustering and filtering algorithms had a slight influence in terms of
Ω. Nevertheless, Ω stayed inferior to 0.4 for all test cases. Moreover, Ω stayed inferior to 0.1
for more than 80% of cases in series 1 and for more than 70% of cases in series 2.

During the clustering phase, we fixed the number of available regimes as one for series 1



81

Clustered pattern

b)

c) d)

Filtered clustered pattern
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a)

Figure 5.3 One of the test cases from series 2 that demonstrated a marked checkerboard
problem. a) The random peening pattern generated on a 1 × 1 m sized plate using the
algorithm presented in Chapter 4. Different colors on the peening pattern denote different
peening regimes. b) The target shape generated by application of the random pattern. The
plate is 6 mm thick, and the Poisson’s ratio equals 0.36. The deflections are at the original
scale. c) The free pattern computed using the inverse problem resolution algorithm (Chapter
4). d) The clustered peening pattern computed by application of Algorithm 4 to the free
pattern. e) The filtered clustered algorithm obtained by application of Algorithm 5 to the
clustered pattern. We solved the forward problem for the patterns c), d) and e) and computed
the dimensionless error Ω for each case.

and as four for series 2. No other information on the peening regimes was provided to
the clustering algorithm, and the centroid positions were not constrained. With this, the
clustered pattern decreased Ω with respect to the free pattern for 78 cases in series 1 and for
32 cases in series 2. This difference is explained by the fact the clustered patterns in series 1
were less subjected to the checkerboard problem. Indeed, the only available peening regime
was situated far from the origin in terms of (εt, εb), so the majority of elements was assigned
to correct clusters. The main source of error in this case was the peening regime itself, which
was slightly different from the peening regime applied in the original random pattern. On
the other hand, the regimes in series 2 were situated close to each other, so the quantity of
neighboring elements that were assigned to different clusters was more significant. Also, the
four computed peening regimes did not exactly correspond to the original regimes.

It should be noted that although we fixed the quantity of peening regimes N for each series
of tests, in practice N is not always pre-determined. In a such case, the clustering algorithm
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Figure 5.4 Histograms tracing the dimensionless error Ω between the target shapes and
the final shapes computed during validation of the clustering and filtering algorithms. We
considered 200 test cases that were divided in two series of 100 cases each. In each case, we
solved the inverse problem, clustered the peening pattern and applied the filtering algorithm.
One peening regime was available for clustering in series 1, and four regimes were available in
series 2. We simulated application of the peening patterns on each stage and computed the
dimensionless error Ω. Figures (a) and (b) trace the simulated Ω provided by the unclustered
free patterns in series 1 and 2 respectively. Figures (c) and (d) trace the simulated Ω provided
by the clustered patterns, and figures (e) and (f) show Ω provided by the filtered clustered
patterns.
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can be launched several times for different N , and the best suitable N can be determined
based on the minimal Ω. A larger N provides more flexibility in terms of target shapes but
extends the time needed for application of the pattern.

The filtered clustered pattern decreased Ω with respect to the clustered pattern for 23 cases
in series 1 and for 33 cases in series 2. The reason for an increase in Ω in most of the cases is
that the filtering algorithm often enlarges the segments assigned to wrong clusters instead of
eliminating them. This is explained by the fact that the algorithm does not measure Ω, so
its output depends only on the free pattern. Consequently, the usage of this algorithm must
be limited only to the patterns that are significantly affected by the checkerboard problem
because there is a probability of a slight increase in Ω. If a clustered pattern contains only
several elements assigned to wrong clusters, then a manual reassignment of the eigenstrain
prescribed to these elements is more efficient.

5.4 Conclusion

We developed a general strategy for the segmentation of the peening pattern, which makes
every pattern applicable with shot peening equipment. The segmentation strategy computes
optimal peening regimes and the segments where they should be applied, so the need for
trial and error determination of the optimal regimes is eliminated. The strategy consists
in a clustering and a filtering algorithms. These algorithms are conceived for the case of
patterns formulated in terms of eigenstrain. Two separate clustering algorithms based on
the k-means method were developed for the trilayer and the bilayer eigenstrain formulations.
When applied consecutively, the clustering and the filtering algorithms remove from the
pattern all eigenstrain variations that are not reproducible in practice. Hence, the strategy
provides a ready-to use peening pattern, which is suitable for industrial reproduction using
masking.

The bilayer clustering algorithm and the filtering algorithm were validated numerically us-
ing the existing bilayer shell model. The validation showed that the clustering algorithm
had a weak influence on the quality of the peening pattern, so that the original and the
clustered patterns induced similar final shapes. The clustered pattern is less affected by the
checkerboard problem if the number of peening regimes is low, but a large number of regimes
provides more flexibility in terms of target shapes. The filtering also has a slight but majorly
negative influence on the final shape. However, it efficiently deals with the checkerboard
problem and rapidly eliminates local clustering errors. Numerical validation of the trilayer
clustering algorithm is left for future studies.
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CHAPTER 6 ARTICLE 2: SIMULATION AND AUTOMATION OF
ALUMINUM PANEL SHOT PEEN FORMING

Vladislav Sushitskii, Pierre-Olivier Dubois, Hong Yan Miao, Martin Lévesque, Frédérick P.
Gosselin

Submitted to the International Journal of Material Forming on the 27th of January 2022.

In this article, we present the automated shot peen forming workflow. It was initially designed
for the purpose of experimental validation of the simulation software presented in Chapter 4.
The workflow regroups all methods that are used to apply a peening pattern, which is provided
by the simulation software, in practice. An important part of the workflow, namely, the soft-
ware that translates the peening pattern into a program for the peening robot, was designed
and implemented by Pierre-Olivier Dubois1. The practical manipulations related to the for-
ward problem solver validation were done by the author of this thesis and by Raphaël Paradis2

during their internships at the Aerospace Technology Center (CTA). Raphaël Paradis also de-
signed and fabricated the fixture for clamping of the panels during treatment. The practical
manipulations related to the inverse problem solver validation were done by Nada Abbassi3.
An assistance in fabrication of the demonstrator was also provided by Olivier Duchesne4.

Abstract

We present a methodology for automated forming of metal plates into freeform shapes us-
ing shot peening. The methodology is based on a simulation software that computes the
peening pattern and simulates the effect of its application. The pattern generation requires
preliminary experimental characterization of the treatment. The treatment is applied by a
shot peening robot. The program for the robot is generated automatically according to the
peening pattern. We validate the methodology with a series of tests. Namely, we form nine
aluminum plates into doubly curved shapes and we also shape model airplane wing skins.
The article describes the complete workflow and the experimental results.

1Leader of the robotics team, Aerospace Technology Center (CTA)
2Intern, Aerospace Technology Center (CTA)
3Intern, Laboratory for Multiscale Mechanics (LM2), Department of Mechanical Engineering, Polytech-

nique Montreal
4PhD student, Laboratory for Multiscale Mechanics (LM2), Department of Mechanical Engineering, Poly-

technique Montreal
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6.1 Introduction

Shot peen forming (peen forming) is an industrial process for forming metal plates into
smoothly curved shapes. It consists in projecting a stream of rigid particles (shot) towards a
metal plate surface at high velocity. Numerous overlapping impacts induce plastic expansion
of the outer layer of material, which causes bending of the plate in the treated segment. The
set of treated segments over the flat plate surface is called the peening pattern. Altering the
pattern shape or the treatment effectiveness alters the deformed shape as well. This versatility
makes peen forming an efficient instrument for achieving complex curvature profiles on large
plates, such as airplane wing skins [1] or rocket tank bulkheads [93]. In contrast to stretch
forming, which is often used for forming of such components, shot peen forming requires no
punch matrices, dies or intermediate heat treatments [94,95]. In addition, shot peen forming
allows to shape composite aluminum panels that constitute fuselage skins [96].

Nowadays, the market proposes a wide range of programmable peen forming robots, such
as those mentioned in Refs. [10] and [97]. Nevertheless, there exists no publicly accessible
numerical tool that would automatically control a peening robot, bridging the gap between
the numerical model (CAD) and the robot path. Such a tool must generate an optimal
peening pattern for a given target shape, i.e., solve the inverse problem, then translate the
pattern into a program for the peening robot, and simulate the effect of its application, i.e.,
solve the forward problem. At least one commercial company claims to have developed an
appropriate tool, but the adopted approach is confidential [10, 79]. Smaller companies thus
use manual peen forming, which is cheaper but less efficient. It is a trial-and-error process
that provides lower repeatability than the automated one. The quality of forming in this
case relies completely on the operator’s experience, which involves costly training. Moreover,
it can lead to chronic health problems for the operator [79].

In the matter of peen forming simulation, a straightforward modelling of every impact would
be computationally unachievable for the case of large industrial parts [22]. However, the
simulation can be accelerated by means of the eigenstrain representation of the peening-
induced loads [28]. In the peen forming case, it implies formulating the loads as an anelastic
strain (eigenstrain) introduced in the treated segments analogous to thermal expansion, so
that the individual impacts are not simulated [2, 23]. The deformation of the plate caused
by the eigenstrain is described as the elastic material response, i.e., the springback [44].
It can be computed using the shell finite element method [2, 6]. This method can also be
reformulated in terms of the theory of non-Euclidean plates [59], which is specifically designed
to describe the reconfiguration of plates subjected to eigenstrain. The eigenstrain approach
together with the theory of non-Euclidean plates provide a framework for the inverse problem
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resolution [98].

In terms of the eigenstrain approach, the peening pattern is described by the eigenstrain
magnitude and its distribution over the surface of the plate. However, from a practical point
of view, the pattern is described by the shot stream parameters and by the shape of the
treated segment. The eigenstrain magnitude can be related with the shot stream parameters
through direct impact simulation on a small representative volume of material [22,40]. This
requires building a specific simulation model that reflects plastification of material induced
by the impacts. Otherwise, the eigenstrain can be quantified experimentally using small
specimens made of the same material as the plates subjected to forming. The specimens
must be uniformly treated with the same parameters that are applied for treatment of the
plates. The peening-induced plastic strain, i.e., eigenstrain, is either measured directly using
X-ray diffraction [41,42], or computed based on the residual stress measurements [2]. These
strategies require costly measuring equipment and can be replaced by an eigenstrain-based
simulation software. Indeed, in such case the eigenstrain is deduced from the deflection of
a uniformly treated specimen [29, 99]. More precisely, the eigenstrain is adjusted in the way
that the simulated deflection corresponds to the measured one. Although this method does
not allow reconstructing the full residual stress profile, it allows quantifying the macroscopic
bending and stretching induced by the treatment, and since it does not require any specific
equipment or numerical models, it can be efficiently applied in industry.

The eigenstrain induced in an aluminum plate by a perfectly symmetrical impact can be
anisotropic [34]. The main causes for this effect are the material plastic anisotropy [100,101]
and the initial stresses induced by the fabrication process [25,35]. Another potential cause is
the prestress, i.e., pre-bending of the plate with clamping supports during peening, which is
not present if the plate is held flat during treatment. The influence of the three causes can
be quantified experimentally using an additional equipment [35]. Otherwise, the eigenstrain
anisotropy can be characterized using an eigenstrain-based simulation software, so that the
anisotropy is numerically adjusted to fit the simulations to the experiments. In terms of
this method, a particular challenge lies in the fact that the influence of the eigenstrain
anisotropy on the final shape depends on the geometry of the plate [35]. Consequently,
the characterization should ideally be done using exactly the same plates as those that are
supposed to be shaped afterwards.

Precise reproduction of the peening pattern shape is crucial for the process efficiency. One
possible approach implies masking of the untreated segments with subsequent uniform treat-
ment of the plate. The masks are glued to the surface of the plate to absorb the energy of
the shot and to protect the material underneath. A thick adhesive tape or cardstock cope
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well with this task. The masks are shaped either manually or using a laser cutter and are
manually glued to the component [5, 25]. This approach is cumbersome when the applied
pattern changes from one component to another, because a different mask needs to be fabri-
cated for each pattern. For this reason, an automated peen forming system would require a
different approach to remove this manual and time consuming component of the workflow.

In the existing literature on shot peen forming, the experimental validation of the numerical
forward problem resolution is mostly limited to uniform treatment of small coupons [29,38].
Such experiments do not require an automated peen forming system due to the simplicity
of the applied pattern. Moreover, the existing literature on the numerical inverse problem
resolution in this domain is mostly limited to the description of the developed algorithms [3]
or to their numerical validation [6, 98]. Only Faucheux and Miao et al. have validated their
inverse problem resolution strategy experimentally on complex shapes such as a cylinder, a
saddle and a wave [5,25]. The peening patterns in this research were applied using masking,
so the overall peen forming workflow is not completely automated. Moreover, the developed
deflection was of the order of millimeters for 1 × 1 m panels, which is too small to reveal
nonlinear geometric effects appearing with large deflections.

Here, we present a fully automated peen forming workflow implying a programmable peening
robot. We describe the numerical tools, the steps for their calibration and the specifically
designed installations for the robot. The numerical tools include the simulation software
and the translation software. The former solves both the forward and the inverse problems
and allows to quantify the eigenstrain anisotropy. The latter automatically converts the
peening pattern into the nozzle paths. Hence, the shot stream “paints" the peening pattern
on the plate, so the necessity for masking is eliminated. Together, the numerical tools form a
“CAD-to-path" solution allowing the user to input a desired shape and to generate the robot
program with a minimal intervention.

The automated workflow was developed for experimental validation of the numerical forward
and inverse problem solvers described in Ref. [98]. The forward problem solver validation
involves randomly generated and strongly curved target shapes that have deflection of 10−
31 mm. The inverse problem solver validation consists in shaping parts of a model airplane
wing skin of a predefined geometry.

6.2 Methodology

The methodology section begins with a description of the underlying principles of our simu-
lation software. Next, we present the translation software and the peen forming robot. We
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then examine our strategy for the estimation of the experimental error implying 3D scan-
ning. Subsequently, we describe the experimental steps for the software calibration. They
include characterization of the shot stream, determination of the eigenstrain induced by a
given treatment and quantification of the eigenstrain anisotropy on a given component. All
the elements mentioned above constitute together the automated peen forming workflow,
which is schematized in Figure 6.1. The end of the methodology section is dedicated to the
experimental validation of the forward and the inverse problem solvers.

6.2.1 The simulation software

Representation of peening-induced loads with eigenstrain

Following Ref. [98], we virtually divide the plate into two layers of equal thickness to simulate
the curving effect of peen forming. We assign in-plane swelling to one layer and in-plane
shrinking to the other in the spots where the plate is treated. The swelling layer is located
on the side that undergoes treatment. The swelling and shrinking are assigned in the form
of eigenstrain and are analogous to thermal expansions [2]. The eigenstrain magnitude is
constant in the through-thickness direction for each layer but varies along the plate surface
according to the peening pattern. We denote the eigenstrain tensors imposed on the top and
bottom layers as εt and εb respectively. The incompatibility between εt and εb forces the
plate to bend.

We endow the component with Lagrangian coordinates x, y, z, where the x− and y−axes
follow the plate mid-surface. Both eigenstrain tensors in these coordinates have the following
form [25]:

εj =


εjxx 0 0
0 εjyy 0
0 0 −(εjxx + εjyy)

 for j = t, b. (6.1)

For a plate with uniform properties and initial stresses, the proportion between εjxx and εjyy
is constant along the whole component. It is expressed with the anisotropy coefficient χ [35]:

ε
j
xx = (1 + χ)εj,

εjyy = (1− χ)εj,
for j = t, b, (6.2)

where εj = (εjxx + εjyy)/2 5. If the material is plastically isotropic and free of stresses then
5In the original version of the paper submitted to the International Journal of Material Forming on the

27th of January 2022, εj is denoted as εj
∗. The correction was made in order to ensure the uniformity of

notations throughout the thesis.
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Figure 6.1 Schematic overview of the automated shot peen forming workflow. The numerical
model of the target shape (a) is input into the simulation software (b). The latter computes
an optimal peening pattern (c), that must be applied to form the plate into the target shape.
The peening pattern is input into the translation software (d), which generates the peening
program (e). The peening program includes the nozzle paths and a set of peening parameters
that allow the peening robot (f) to reproduce the peening pattern. The peening program is
loaded into the peening robot in the form of a programming code. When the treatment is
finished, we characterize the curved shape of the plate using a 3D scanner (g) and trace an
error map (h), which shows discrepancy between the target and the scanned shapes. The
simulation and the translation softwares require experimental calibration, which consists
in characterizations of the shot stream (i), of the eigenstrain (j) induced by the peening
treatment, and of the eigenstrain anisotropy (k). The shot stream is characterized with flat
dummy specimens, the eigenstrain is measured using 76×19 mm aluminum coupons, and the
anisotropy is quantified with the help of square aluminum plates. Art by IMPAKT Scientifik.
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εjxx = εjyy = εj.

Geometrical shape description

Provided that peen forming deals with thin plates, we associate the plate shape with the
shape of its mid-surface. We numerically discretize the mid-surface with triangular elements.
Following Ref. [7], we describe the shape of each element with two matrices: a and b.
The former represents the local first fundamental form and the latter represents the local
second fundamental form, that respectively characterize the local stretching and the local
curvature [55]. The set of fundamental forms computed for each element uniquely describes
the shape of a triangulated surface. For a triangular element defined by vertices ~v0, ~v1, ~v2

and edges ~e0 = ~v1 − ~v0, ~e1 = ~v2 − ~v1, ~e2 = ~v0 − ~v2 the two matrices are computes as:

a =
~e1 · ~e1 ~e1 · ~e2

~e2 · ~e1 ~e2 · ~e2

 ; (6.3)

b =
~e1 · 2(~n0 − ~n2) −~e1 · ~n0

−~e1 · ~n0 ~e2 · 2(~n1 − ~n0)

 . (6.4)

Here, ~ni stands for a vector normal to the edge ~ei, i = 1, 2, 3. The angle of inclination of ~ni
with respect to the plane enclosing the triangular element is variable and thus allows a more
flexible shape description. Figure 6.2 illustrates the components of a triangular element that
participate in computation of the fundamental forms.

The local principal curvatures can be computed for each element as the eigenvalues of the
shape operator S = a−1b [102, 103]. The local mean curvature H is the average of the
two principal curvatures, and the curvature along any direction may be deduced from the
principal curvatures using Euler’s formula [102].

The forward problem resolution

In terms of peen forming, the forward problem consists in the determination of the deformed
shape of the component provided with the eigenstrain pattern. For this, we rely on the
approach presented in Ref. [7]. We assume that the plate is free to deform and that the
treatment is applied instantly from both sides. We also assume that the initial configuration
is flat, and we denote the initial lengths of the element edges as ~e0, ~e1, ~e2. We consider
the eigenstrain constant inside a triangular element. An anisotropic eigenstrain (εxx, εyy)



91

Figure 6.2 A triangular mesh element and the vectors serving for computation of the local
fundamental forms. The vectors ~v0, ~v1, ~v2 define positions of the element vertices in the
global coordinate system. The edge vectors ~e0, ~e1, ~e2 are computed as the difference between
the corresponding vertex vectors. The vectors ~n0, ~n1, ~n2 are traced in the center of the
corresponding edges and define the local curvature of the mesh. They are normal to the
edges, but their angle of inclination with respect to the element constitutes a degree of
freedom.

prescribes new rest edges ~e r0 , ~e r1 , ~e r2 :

~e ri = (εxx + 1)~eix + (εyy + 1)~eiy for i = 1, 2, 3. (6.5)

Here, ~eix is the projection of ~ei on the x-axis and ~eiy is the projection of ~ei on the y−axis.
New edges induce a new rest first fundamental form ar:

ar =
~e r1 · ~e r1 ~e r1 · ~e r2
~e r2 · ~e r1 ~e r2 · ~e r2

 . (6.6)

A different eigenstrain (εtxx, εtyy) and (εbxx, εbyy) imposed on the top and bottom layers respec-
tively induce different first fundamental forms ar,t and ar,b. Concurrently, all components of
the rest second fundamental forms br,t and br,b equal zero because the edge normals stay
perpendicular to the plane englobing the flat initial configuration.

Prescription of a different eigenstrain to the top and bottom layers does not make the plate
delaminate. Instead, the plate adopts a curved configuration described with the final funda-
mental forms af and bf . Hence, from the mathematical point of view, the forward problem
resolution consists in the determination of af and bf taking ar,t and ar,b as the input. This
is done through numerical minimization of the global elastic energy functional EBL [98]:
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Here, the index k is attributed to the fundamental forms belonging to the element k, and
K denotes the total number of elements in the model. The matrix I is the 2 × 2 identity
matrix. The elastic norm

∥∥∥ · ∥∥∥ and the elastic energy inner product
〈
·, ·
〉
denote the following

operations: ∥∥∥A∥∥∥ = αTr2 (A) + 2βTr(A2), (6.8)〈
A,B

〉
= αTr (A)Tr (B) + 2βTr(AB), (6.9)

where A and B are arbitrary matrices, α = Y ν/(1 − ν2) and β = Y/(2 + 2ν). The values
ν and Y stand respectively for the Poisson’s ratio and the Young modulus of the treated
material.

We minimize the elastic energy functional with the help of the Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) optimization algorithm [85] using the analytically
computed gradients [86].

The inverse problem resolution

In terms of peen forming, the inverse problem consists in the determination of the eigenstrain
tensors εt and εb imposed on each element taking the target shape as input. Another nec-
essary input is the initial shape geometry. Our algorithm for the inverse problem resolution
relies on full consistency between the initial and the target meshes. For this reason, the
initial mesh is generated as a function of the target mesh, which is illustrated in Figure 6.3.
It is done in two steps. Firstly, the target mesh is projected on the initial geometry using
the Least Squares Conformal Mapping (LSCM) algorithm [88]. Secondly, the initial vertex
positions are numerically optimized using the L-BFGS algorithm to minimize the element
distortion with respect to the target mesh. The initial shape boundary is kept fixed during
the optimization.
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Conformal mapping
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Minimization of distortion

b) Initial geometry

a) Target mesh
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Figure 6.3 Generation of the initial mesh. The mesh of the curved target shape (a) is projected
on the flat initial geometry (b) using the LSCM algorithm. The distortion of each element
in the projected mesh is then minimized with respect to the target mesh using the L-BFGS
algorithm. The resulting mesh (c) is used as the initial mesh during the inverse problem
resolution.

The target shape is described with two fundamental forms atar and btar. Our algorithm
for the inverse problem resolution is iterative. Each iteration implies an adjustment of the
eigenstrain pattern and subsequent computation of the new current shape provided by the
adjusted pattern. The eigenstrain tensors are adjusted for each triangular element separately
based on comparison of the current shape with the target shape. More precisely, on each
iteration, we multiply εt and εb by the ratio between the local mean curvatures of the target
shape Htar and of the current shape Hc:

εj,new = εj
Htar

Hc

for j = t, b. (6.10)

Next, we solve the forward problem for (εt,new, εb,new) and thus obtain a new current shape.
These two steps are repeated until stabilization of the current shape. The anisotropy coef-
ficient χ is pre-defined with a calibration step described in Section 6.2.5 and kept constant
throughout the iterations.

The initial guess is made in terms of ar,t and ar,b as presented in Ref. [98]. Thus, we first
compute the ar,t and ar,b as: ar,t = atar − 2h

3 btar,

ar,b = atar + 2h
3 btar.

(6.11)
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Then, for each layer, we take the average of the eigenstrains prescribed by ar,t and ar,b in
each direction and use this eigenstrain as the initial guess.

This algorithm constitutes a simplified version of that described in Ref. [98]. Namely, the
eigenstrain is adjusted in the way that it leads to the target curvature, but the stretching of
the target shape is not taken into account. This formulation was adopted because the target
shapes implied large rotations but small stretch with respect to the initial state.

The final step of the inverse problem resolution is the pattern grouping [98], which is done
after the last iteration. The aim of this process is to split the peening pattern into segments
treated with practically attainable peening regimes. Each attainable peening regime is re-
lated to the corresponding induced eigenstrain during the calibration phase. The grouping
algorithm takes the eigenstrain assigned to each element and reassigns it the closest eigen-
strain among the limited number of attainable ones. This removes gradual variation of the
eigenstrain along the plate surface and divides the pattern into strictly defined peened seg-
ments. When the grouped pattern is computed, we solve the forward problem taking this
pattern as input. This step serves for preliminary estimation of the error between the target
shape and the final shape developed with the ready-to-use pattern.

Inverse identification of the anisotropy coefficient

This problem is similar to the inverse problem, except for the condition that the local eigen-
strains εt and εb are pre-defined and the anisotropy coefficient χ must be determined. We
assume that χ is a global property of the treated material, so it is uniform along the plate
surface. The initial mesh is generated based on the target mesh in the same way as it is done
during the inverse problem resolution.

The problem is solved through the iterative adjustment of χ based on the comparison of
the current and target shapes. We compute local curvatures along the x-direction for both
shapes: κcx for the current shape and κtarx for the target shape. We average their absolute
values κcavg and κtaravg and then adjust χ as follows:

χnew = (1 + χ)
κtaravg
κcavg

− 1. (6.12)

We then adjust the local eigenstrain tensors according to Eqn. (6.2) and solve the forward
problem. Starting with an initial guess of χ = 0, the process is repeated until the convergence
of κcavg and κtaravg, providing us with an evaluation of the anisotropy coefficient χ.
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6.2.2 The translation software

The translation software fills the gap between the numerical peening patterns and the actual
peen forming process. The peening pattern that it takes as input is provided in the form of
a mesh with the eigenstrain assigned to each of the elements. The pattern is divided into
segments with different prescribed eigenstrain that correspond to treatment with different
peening regimes. The relation between each peening regime, i.e., each set of the peening
parameters, and the corresponding eigenstrain is defined during the calibration phase and
saved in the software. The software first detects borders of the segments treated with the
same peening regime. It then generates the nozzle paths that fill each segment and assigns
the peening parameters corresponding to each segment. Finally, the software wraps up the
paths and the peening parameters in a programming script written in Karel programming
language [104], which is then loaded in the peening robot. The script controls all parameters
of the robot operation and does not require any manual adjustment.

The translation software is able to fulfill a peened segment with two types of nozzle paths,
which are presented in Figure 6.4. The first path type is called “Zigzag" and implies straight
parallel nozzle paths. The second type is called “Circular". The paths generated in this
way constitute a set of concentric closed lines, and the longest line is the outline of the
treated segment. The “Circular" paths better fill complexly shaped segments. However, the
neighboring paths of this type may not always have a constant offset, that results in a less
uniform coverage.

outline of the peened segment on the top side

nozzle paths

"Circular" paths"Zigzag" paths

outline of the peened segment on the bottom side

Figure 6.4 Two types of nozzle paths generated by the translation software. The example
pattern implies treatment from the top and bottom sides with the same peening regime.
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The software allows adjusting several common parameters for both path types. Thus, the
outline of the treated segment can be smoothed with respect to its actual border prescribed
by the peening pattern. This allows filtering out features too small to peen with respect
to the shot stream width. Moreover, the outline can be offset with respect to the border,
which allows scaling the peened segment without resorting to the simulation software. The
offset between the paths can also be adjusted depending on the shot stream width, which
is measured during the calibration phase. The path offset is adjusted in the way that the
peening coverage in the treated segment is as uniform as possible. Figure 6.5 illustrates the
adjusted outline and the concept of the path offset. The speed of movement of the nozzle
along the peening paths can also be adjusted depending on the peening regime and is usually
set to 50-100 mm/s. The peening robot is not able to block the shot stream during the
program execution, so the nozzle moves between different peened segments and different
paths inside one segment at a high speed of 1 500 mm/s.

6.2.3 The peening robot

The peening robot involved in the experiments is based on a Canablast shot peening machine.
It possesses a FANUC M20iA programmable robotic arm, which guides the peening nozzle.

Path offset

Border according to the peening pattern

Smoothed border

Outline

Nozzle paths

Figure 6.5 Adjustment of the peened segment executed with the translation software. The
outline of the peened segment is smoothed with respect to its initial border and offset to
increase the size of the treated segment. The path offset is adjusted to ensure uniform
coverage.
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The robotic arm and the treated component are installed inside a closed peening cell shown
in Figure 6.6.

We developed a specific peen forming fixture to treat square panels of 320 × 320 mm. The
fixture is designed in two main parts: the fixed and the removable frames. The first ensures
a precise location of the peened part in terms of the robot’s reference frame and the latter
clamps the plate along its perimeter. This system eases the installation process and allows
removing the plate from the shot peening cell while keeping it under the clamping constraints.

Media supply hose

Nozzle

FANUC M20iA

Removable frame

Fixed frame

Rotary axis

Figure 6.6 The interior on the robotic peen forming cell. The programmable robtic arm
FANUC M20iA guides the peening nozzle, and the media is supplied to the nozzle through
the elastic hose. The treated plate is clamped by the removable frame along its perimeter.
The removable frame is mounted on the fixed frame attached to the rotary axis.
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The fixture is mounted on a rotary axis, so the plate can be treated from both sides with
no need for manual reinstallation. The rotary axis turns the plate by 180◦ in 2 seconds, and
during this process the programming script points the nozzle aside, that prevents undesired
impacts.

6.2.4 3D scanning and error map

Once a plate is treated, we compare its curved shape with numerical prediction. We remove
the plate from the frame and we scan it using a Hexagon StereoScan neo 3D scanner. Before
scanning, the plate is covered with Magnaflux SKD-S2 aerosol to make its surface non-
reflective. The result of 3D scanning is a meshed surface describing the plate shape.

Next, we numerically superimpose each scanned shape with the corresponding predicted
shape and we compute the Hausdorff distance dH [105] between the two shapes. We nondi-
mensionalize the Hausdorff distance by dividing it by the deflection of the target shape ∆z,
which is computed as the smallest dimension of a box bounding the plate. Thus, we obtain
a nondimensionalized error Ωz:

Ωz = dH
∆z . (6.13)

Figure 6.7 illustrates the workflow for determining Ωz. The optimal alignment of the two
shapes is done through least squares estimation of the transformation parameters [106].

6.2.5 Calibration steps

The shot stream characterization

We first estimate the shot stream intensity for each peening regime that we use. It is done
following the standard procedure involving type A Almen strips and the Almen gage [12].
Each peening regime used for the treatment of the plates is applied until saturation, and the
intensity measurement is necessary to estimate the appropriate number of nozzle passages.
In other words, we estimate how many times the nozzle must pass along the paths prescribed
by the translation software to achieve saturation in the whole treated segment.

The nozzle paths are lines that direct the center of the nozzle, but the actual shot stream
has a finite width. Hence, we measure the distribution of shot inside the stream to define
the nozzle path offset. It is mainly influenced by the distance from the nozzle to the treated
component. We perform this test using a 418×127 mm flat dummy specimens. We make one
peening passage in the center of the specimens along the longitudinal direction translating the
nozzle at a high speed of 1 500 mm/s and then scan the specimen with a document scanner.
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Figure 6.7 Determination of the dimensionless error Ωz = dH/∆z between the simulated
shape and the shape of the treated plate. a) The simulated shape and its bounding box.
The deflection ∆z is computed as the smallest dimension of the bounding box. b) A photo
of the plate treated following the computed pattern that leads to the simulated shape. The
non-reflective surface is the treated part. c) The meshed shape scanned with a 3D scanner.
d) Map of the local distances d between the simulated and the scanned shapes that were
optimally aligned. The map is traced on the simulated shape. The Hausdorff distance dH is
the maximal value of local distances d.

Next, we post process the scanned image, i.e., we highlight the white pixels corresponding to
impacts and we darken the background corresponding to the untreated surface. The picture
resolution is 4830×1470 pixels, and we count the number of white pixels in each pixel column
out of 1470. Figure 6.8 shows an example of the shot distribution measured in this way. We
set the paths offset to the largest value that ensures uniform coverage of the treated segment
with a maximal variation in coverage of 1%. This value equals approximately half of the shot
stream width but is specific for each particular distribution.

Determination of the eigenstrain

Every combination of peening regime and treated material induces different εt and εb. We
determine εt and εb experimentally using rectangular coupons of size 76 × 19 mm. The
coupons are cut with waterjet cutting from the same aluminum plates as those that are shaped
afterwards. The coupons are clamped in the Almen holder and treated until saturation.

The bending behavior of the coupon is governed by the dimensionless load ΓB [35]:

ΓB = 3
2(1 + ν)∆ε, (6.14)
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Figure 6.8 Spatial distribution of shot on a 418×127 mm flat dummy specimen that underwent
one passage of the peening nozzle in the longitudinal direction. The nozzle travelled at a
speed of 1500 mm/s, and the nozzle distance in this case equaled 152.4 mm. The graph
indicates the percentage p of the peening-affected surface as a function of the transverse
coordinate d. More precisely, we virtually divided the specimen into 1470 columns traced
in the longitudinal direction, and the percentage p denotes the ratio of the peening-affected
area in each column with respect to its total area.

where ∆ε = εt − εb. For small values of ΓB, the curvature κ measured at the center of
the treated coupon is the same in any direction. Moreover, in this case the load ΓB is
proportional to the dimensionless curvature κh [35]. The treated coupon has a convex shape
(κ is negative), and the relation takes the form:

κh = −µΓB. (6.15)

The proportionality constant µ can be determined using numerical simulations (see Appendix
6.5). Therefore, ∆ε can be deduced from κ. According to the simulations, the linear relation
holds at least up to ΓB = 8× 103.

The curvature κ, in turn, is deduced from the coupon deflection u, which is measured using
the Almen gage [17]. We can approximate the shape of a curved coupon to that of an elliptic
paraboloid [107], which allows to express u as:

u = −κ
l2x + l2y

2 . (6.16)

Here, lx=15.87 mm and ly=7.94 mm are the dimensions of the rectangle formed by the
supports of the Almen gage [17].
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The dimensionless curvature κh depends on ∆ε and does not depend on the sum (εt + εb),
which only influences stretching of the plates [98]. However, shot peening induces small
eigenstrain [22], so we conclude that the peening-induced stretching is also small and assume
that εt = −εb. Combining Eqns. (6.14 – 6.16) yields:


εt = 2hu

3µ(1 + ν)(l2x + l2y)
;

εb = − 2hu
3µ(1 + ν)(l2x + l2y)

.

(6.17)

For better stability of the results, we treat four coupons with each regime and compute their
average deflection uavg. We then substitute uavg for u in Eqn. (6.17) and thus find εt and εb.

Determination of the anisotropy coefficient

Aluminum plates are produced by rolling, and this process is one of the key factors induc-
ing the eigenstrain anisotropy. Namely, the peening induced eigenstrain is different in the
rolling direction (L) and in the in-plane transverse direction (T). This effect alters the local
curvatures induced by peening in the L- and T-directions. Thus, if peen forming is simulated
assuming that the material is isotropic, then in practice the local curvature in one direction
is bigger than that simulated, and the local curvature in the other direction is smaller [35].
A similar effect is also observed during peen forming of metal laminates containing oriented
filaments [108].

We quantify the eigenstrain anisotropy using the “wave” experiment. For this, we use the
plates that have the same size and are produced in the same way as those used for the
forming experiments. We treat two plates following the “wave” pattern illustrated in Figure
6.9. This pattern consists in treating half of the plate from one side and the other half from
the other side. The orientation of the “wave” pattern controls the bending direction of the
plate. Hence, for the first plate, the halves are separated along the T-direction thus forcing
the plate to bend in the L-direction. On the contrary, the same pattern rotated by 90◦ makes
the second plate bend along the T-direction.

We scan both treated plates using the 3D scanner and obtain their meshed numerical models.
These models serve as target shapes for numerical determination of the eigenstrain anisotropy
coefficient as described in Section 6.2.1. We orient the coordinate system in the way that
the x-axis points in the “wave” direction, i.e., in the L-direction for the first plate and in
the T-direction for the second plate. To compute the κtaravg, we take into account only the
elements that fall into a 200 × 200 mm square traced in the center of the plate (see Figure
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6.9). The curvature of the other elements is not taken into account to reduce the influence
of the edge effects.

In this way we determine two anisotropy coefficients: χL for the first plate and χT for the
second plate. One of them is positive and the other is negative. We then compute the
average of their absolute values χ∗ = (|χL|+ |χT |)/2 and thus find the eigenstrain anisotropy
coefficient for the given material. For the subsequent simulations we make a convention that
the x-axis follows the principal eigenstrain direction, so that χ∗ is positive.

Theoretically, χL must equal −χT , so the “wave” treatment of one plate should be sufficient
to determine χ∗. However, exact equality is rarely observed because of practical constraints.
For example, the simulations do not take into account the initial stresses, which are different
for each particular component, or the influence of clamping. For this reason, treatment of two
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Figure 6.9 The “wave” experiment. The “wave” peening pattern is applied on two 320 ×
320 mm sized aluminum plates. The pattern forces the plates #1 and #2 to bend along
the L-direction (a) and the T-direction (b) respectively. The plates are scanned in 3D after
peening. Figures c) and d) show the deformed state of the plates #1 and #2 respectively.
For each plate, we compute the average absolute value of κx for all the elements contained
in the 200× 200 mm square traced in the center of the plate (blue), and thus obtain κtaravg.
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plates stabilizes the measured result and allows to check if εt and εb were correctly determined
in advance. Moreover, the usage of more than two plates could further improve the precision
of this experiment.

6.2.6 Experimental validation of the simulation software

The experiments consisted in shaping 320× 320 mm aluminum plates. For this, we fixed six
peening regimes described in Table 6.1. The peening equipment was charged with the cut
wire CW28 media having shot diameter of 0.71 mm.

Validation of the forward problem solver

We shaped nine plates following randomly generated peening patterns and compared the
developed shapes with the numerical predictions. The plates were 2.06 mm thick and were
made of aluminum 6061-T6. The patterns implied one peening regime listed in Table 6.1 as
#1.

To ensure that each pattern induces a different shape, we generated the patterns based on
random target shapes. At first, we generated nine different shapes using the peaks function
embedded in Matlab programming language. We then solved the inverse problem for each
shape and thus obtained the peening patterns. We took into account the measured coefficient
of eigenstrain anisotropy, i.e., we imposed the ratio (1 − χ∗)/(1 + χ∗) between the induced
eigenstrain in the L- and T-directions.

Table 6.1 Parameters of the peening regimes used in the experimental campaign. The nozzle
was oriented perpendicularly to the treated surface. The mass flow rate determines the mass
of media that passes through the nozzle. The nozzle distance is the distance from the nozzle
to the treated surface. The pressure is created by compressed air. The peening intensity and
the number of passes to saturation were measured following the standard procedure using
type A Almen strips [12]. The speed of the nozzle travelling was fixed at 100 mm/s.

Regime
Mass flow

rate
(kg/min)

Nozzle
distance
(mm)

Pressure
(kPa)

Intensity
(A)

Saturation
(Number of
passes)

#1

2.27

152.4 248.2 23.5 5
#2 152.4 172.4 19.2 4
#3 152.4 137.9 17 4
#4 152.4 103.4 13.6 4
#5 152.4 68.9 10.9 8
#6 304.8 48.2 8 9
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The target shapes were generated without any constraints on their deflection. The inverse
problem solution showed that their development implied much larger eigenstrain magnitude
than those achievable with regime #1. Thus, according to the forward problem resolution, the
simulated shapes induced by the grouped pattern were less curved than the initially generated
target shapes. Consequently, we used these less curved simulated shapes as reference for the
experiments.

Validation of the inverse problem solver

The inverse problem resolution was validated using 320 × 320 × 1.6 mm plates made of
aluminum 2024-T3. The objective of this validation was to shape parts of the upper and
lower skins of a model airplane wing. The wing had constant cross-section in the form of
NACA 5430 airfoil [109] with the total chord length of 500 mm (see Figure 6.10). The two
target shapes had the same area as the flat plates: 320× 320 mm.

We first solved the inverse problem for both target shapes and obtained the peening patterns.
We then solved the forward problem to predict the dimensionless error Ωz with respect to
the target shapes. Next, we translated the peening patterns into programs for the peening
robot and treated the aluminum plates. Finally, we compared the experimentally developed
shapes with the target shapes constituting the NACA airfoil in terms of Ωz.

The peening patterns consisted of segments treated with the regimes #2-5 from Table 6.1.
The plates were also uniformly treated from both sides with regime #6 before the application
of the peening pattern. Such low intensity pre-treatment is commonly used in industry to
enhance the fatigue life of the components. It also makes the surface finishing more uniform.

Figure 6.10 The two target shapes for the 320×320 mm sized panels made of aluminum 2024-
T3. The target shapes constituted parts of the upper (blue) and lower (orange) airplane wing
skins. The wing was shaped as the NACA 5430 airfoil with the chord length of 500 mm.
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6.3 Results

6.3.1 Calibration steps

The width of the peening-affected band was approximately 4 cm for the nozzle distance of
152.4 mm and approximately 8 cm for the nozzle distance of 304.8 mm. The largest path
offsets that provided uniform coverage corresponded to 19 mm and 38 mm respectively.

We determined the eigenstrain using 76×19 mm aluminum coupons (see Section 6.2.5). The
2.06 mm thick coupons made of aluminum 6061-T6 were treated to saturation from one side
with regime #1. The 1.6 mm thick coupons made of aluminum 2024-T3 were first treated
to saturation from both sides with regime #6 and then treated to saturation from one side
with the regimes #2-5. The average deflection of the four coupons treated with each regime
is presented in Table 6.2. Table 6.2 also shows the eigenstrain εt induced by each regime. It
was computed as a function of deflection uavg using the Eqn. (6.17). We observed a slight
difference in deflection of less than 1 % of average in each bunch of the four coupons. It is
explained by the presence of initial stresses coming from the manufacturing process.

To characterize the eigenstrain anisotropy (see Section 6.2.5), we treated the 6061-T6 plates
following the “wave” pattern with regime #1. The 2024-T3 plates were first treated uniformly
with regime #6 and then underwent the “wave” treatment with regime #2. The anisotropy
coefficients revealed by the “wave” experiment for the two materials are presented in Table
6.3. The 6061-T6 plates demonstrated a 4.6 times stronger eigenstrain anisotropy than the
2024-T3 plates.

Table 6.2 Results of the eigenstrain measurements performed using the bunches of four 76×
19 mm sized aluminum coupons (see Section 6.2.5). The coupons were fixed during peening
with an Almen holder, and their deflection was measured with an Almen gage. The thickness
of the coupons is denoted by h. The average deflection in each bunch of four coupons is
denoted by uavg, and the parameter σu describes the standard deviation in deflection. The
eigenstrain induced in the top layer is denoted by εt. In this study we suppose that the
eigenstrain εt equals −εb, which stands for the eigenstrain induced in the bottom layer.

Regime
Pre-

treatment
(regime)

Material h
(mm) uavg (mm) σu

(mm) εt × 103

#1 - 6061-T6 2.05 0.341 0.003 1.19
#2

#6 2024-T3 1.6

0.543 0.005 1.47
#3 0.302 0.015 1.2
#4 0.443 0.004 0.82
#5 0.174 0.007 0.47
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Table 6.3 The anisotropy coefficients determined using the “wave” experiment for the two
materials. The coefficient χ∗ is the average of the absolute values of χL and χT . The
coefficient χ∗ was used as the eigenstrain anisotropy coefficient during the simulations.

Material χL χT χ∗
6061-T6 -0.143 0.193 0.168
2024-T3 0.013 -0.06 0.0365

6.3.2 The forward problem solver validation

The nine random peening patterns used for validation of the forward problem solver are
presented in Figure 6.11. The patterns and the corresponding simulated shapes were num-
bered from #1 to #9. Figure 6.12 (a-f) shows three representative cases demonstrating the
smallest, the biggest and an average dimensionless error Ωz. This figure also traces the local
dimensionless mean curvature Hh of each shape, showing that the curvature was qualita-
tively well simulated. The simulations were performed on the same irregular mesh as that
generated by the 3D scanner to allow element-wise curvature comparison. Thus, the irregular
mesh was projected onto the initial geometry using the LSCM algorithm and optimized using
the L-BFGS algorithm in the same way as during the inverse problem resolution (Figure 6.3).

The dimensionless error lied in a compact range between 20.5% and 28.5% for seven shapes
out of nine. This means that the Hausdorff distance dH generally increases with ∆z, which
is illustrated in Figure 6.12 (g). The shapes #4 and #7 demonstrated significantly smaller
Ωz than the others (8% and 12% respectively), which is explained by the following reason.

The developed jig did not completely prevent deformation of plates during treatment. It
clamped the perimeter but let the interior part deform. At the same time, the peening pattern
was first fully reproduced from the top side and then from the bottom side. Consequently,
when the treatment was applied from the bottom side, the plates were already bent towards
the top side. This created an effect of prestress that decreased the eigenstrain in the segments
treated from the bottom side [97]. Accordingly, the curvature in these segments was smaller
than the simulated one.

The induced prestress varies locally along the plate and is also dependent on the peening
pattern. We quantified this effect with the parameter ψ that indicated the ratio of areas
treated on the top and bottom sides:

ψ = Atop − Abot
Atotal

, (6.18)

where Atop and Abot are the areas of the segments treated on the top and bottom sides
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#1 #2 #3

#4 #5 #6

#7 #8 #9

- top side treatment

- no treatment

- bottom side treatment

Figure 6.11 The nine peening patterns that were applied during the experimental validation
of the forward problem solver. Each pattern implied treatment from both sides. The plates
were clamped along their perimeter, so the clamped part did not undergo any treatment.
For this reason, each pattern has margins along the plate edges. The patterns were applied
using regime #1 without any pre-treatment.

respectively, and Atotal is the total plate area. Figure 6.12 (h) plots Ωz as a function of ψ. This
graph shows that the plates #4 and #7 had the smallest ψ among the others, which means
that these plates were prestressed less than the others when peened from the bottom side.
Accordingly, these shapes showed the smallest Ωz. Essentially, the problem of an undesirable
prestress may be mitigated in practice by constant alternation of the peened sides during
treatment. Moreover, this problem becomes less important for stiffened industrial parts,
because the stiffeners block bending of the component in the longitudinal direction unless
they are not treated themselves [67].

Another issue that increased Ωz in all the cases consisted in the shot stream width. Thus,
the shot stream was not sufficiently narrow to precisely reproduce the borders of the treated
segments, which is illustrated in Figure 6.13. This effect had stronger negative influence on
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Figure 6.12 Results of the forward problem solver validation. We present three represen-
tative simulated shapes, which showed the smallest (a), an average (b) and the biggest (c)
discrepancy with the experimentally developed shapes. The 3D scanned shapes developed in
practice are marked as d), e) and f) respectively. The colormap indicates the local dimen-
sionless mean curvature Hh. The discrepancy was quantified in terms of the dimensionless
error Ωz (Eqn. 6.13). The graph g) traces the Hausdorff distance dH for all nine cases de-
pending on the plate deflection. The graph h) traces Ωz as a function of the parameter ψ,
that indicates the difference between the treated areas on the top and bottom sides (Eqn.
6.18). Each point on the graphs is marked with the number of plate that it corresponds to.
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patterns prescribing highly irregular borders to the peened segments. Hence, the plates #5
and #9 demonstrated a high Ωz while having a relatively small ψ (see Figure 6.12 h), because
the borders of the corresponding peened segments were strongly curved (see Figure 6.11).
On the contrary, the plates #1 and #6 demonstrated a moderate Ωz while having a large
ψ, because the corresponding patterns prescribed smoothly shaped peening segments. The
described effect may be mitigated technically with a nozzle that provides a narrower shot
stream.

The third source of error consisted in the forces and the moments induced by clamping, which
influenced local curvatures inside the treated areas. Thus, the simulations prescribed uniform
curvature inside each treated segment, but the experiments revealed that the curvature along
the perimeter of the treated segment was higher than in the middle of the segment. This
effect was observed on all plates and is visible in Figure 6.12 (a-f). The influence of this effect
depends on the shape of the peening pattern, and its quantification is left for further studies.
Nevertheless, we expect the influence of clamping to be weaker for real size industrial panels
that have much bigger radii of curvature.

6.3.3 The inverse problem solver validation

The results of the inverse problem solver validation using the 2024-T3 plates are presented
in Figure 6.14. The fact that these plates were peened from only one side reduced the effect
of the undesired prestress. Nevertheless, the outlines of the treated segments were blurred
by the wide shot stream, and clamping of the plates altered their curvature, which caused

Figure 6.13 Difference between the prescribed peening pattern and the pattern that was
actually applied during treatment. a) The treated area prescribed by the pattern #3 on the
top side. b) A photo of the top side of the plate that was treated following pattern #3. The
contour of the treated segment is smoother than the one prescribed by the pattern, because
the shot stream was too wide to reproduce the contour precisely.
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discrepancy between the simulations and the scanned shapes.

The discrepancy between the simulated shapes and the target shapes showed that the fixed
peening regimes did not suit perfectly for the chosen target shapes. Thus, the simulated
Ωz equaled 1.2 % for the upper part and 1.4 % for the lower part with the free pattern,
that was adjusted iteratively and was free of constraints, and grew up to 5.5 % and 12.9 %
respectively with the grouped pattern, that implied only the fixed peening regimes. The
main reason for this is that the precise reproduction of the target curvature required gradual
transition of intensities from the front line of the wing towards the back line. However, having
four predefined peening regimes was not sufficient to ensure smoothness of this transition.
Moreover, the highest required eigenstrain for the upper (0.0023) and for the lower (0.0016)
parts was higher than that provided by the most intense regime #2 (0.0015). Consequently,
the curvature induced by the grouped pattern along the front line was inferior to the target
one. Figure 6.15 provides details on the free and the grouped patterns for both target shapes.

The upper plate showed a bistable behaviour after treatment. Thus, the computed final shape
appeared to be an unstable state of equilibrium, and the plate tended to curve along the
diagonal axis in an unconstrained state. For this reason, we applied a weight on two corners
of this plate during scanning, which is a common practice during the accuracy measurements
in the peen forming industry. The weight the plate to keep the prescribed longitudinal
symmetry, but the two corners had to be discarded from the numerical model provided by
the 3D scanner (see Figure 6.14).

We used the two plates to assemble a physical model of the NACA 5430 airfoil, which is
presented in Figure 6.16. The forward and the back parts of the model wing, which are
colored in black in Figure 6.10, were printed in 3D using an FDM printer charged with
the PLA plastic. These parts also served as supports for the aluminum plates. The plates
were drilled and assembled with the printed parts using binding barrels and screws. The
constraints induced by the binding have eliminated the shaping error, so the plates perfectly
fit the NACA profile. This situation is often the case in industry, where the parts are shaped
up to a pre-defined tolerance, and the error is entirely eliminated only when the part is
installed.
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Figure 6.14 Results of the inverse problem solver validation. The target shapes constitute
upper (a) and lower (b) parts of the airplane wing skin reproducing the NACA 5430 airfoil.
The inverse problem was solved for both shapes. We simulated deformation induced by the
prescribed patterns for the upper (c) and lower (d) skins and compared the simulated shapes
with the target shapes. The aluminum plates were treated according to the patterns, and
the 3D scans of the upper (e) and lower (f) skins were compared to the target shapes. The
deflection ∆z is computed as a function of the target shape. The parameter Ωz describes
the dimensionless error with respect to the target shape (Eqn. 6.13). The plates were made
of aluminum 2024-T3 and had the size of 320 × 320 × 1.6 mm. They underwent uniform
treatment from both sides with regime #6 before application of the peening patterns.



112

Upper skin Lower skin

Free pattern

a) b)

Grouped pattern

c) d)

� 

- #2

Peening regimes

- #3

- #4

- #5

- no peening

0

0.0023

Figure 6.15 The eigenstrain patterns prescribed by the inverse problem solver to shape the
airplane wing skin parts. Before grouping, the patterns assign gradual transition of the
eigenstrain along the plate surface to shape the upper (a) and the lower (b) skins. The
grouping process divides the patterns for the upper (c) and lower (d) parts into segments
with constant eigenstrain. The eigenstrain in the grouped segments corresponds to the one
induced by the fixed peening regimes.

Figure 6.16 The model of an airplane wing skin shaped as the NACA 5430 airfoil with a chord
length of 500mm. The upper and lower skins were shaped using the shot peen forming, and
the forward and the back parts (black) were printed in 3D. The structure is assembled using
binding barrels and screws.
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6.4 Conclusion

We developed a complete workflow for the shot peen forming automation. We generate
the numerical peening pattern and we automatically translate it into a program for the
shot peening robot. The program admits application of multiple peening regimes following
complex patterns and thus allows to shape complex doubly-curved shapes. The workflow
implies preliminary characterization of the shot stream effect in terms of eigenstrain and
characterization of the eigenstrain anisotropy. These preliminary stages are necessary to
generate the peening pattern and the nozzle paths. Simple yet efficient procedures were
designed for this purpose.

The workflow was validated experimentally. The validation implied treatment following
randomly generated patterns and shaping skins of a model airplane wing. The treatment
was performed at high Almen intensities of 10.9-23.5A to reveal all possible errors appearing
with large deformations. The validation showed promising results but revealed an error
between the simulated shapes and the practically developed shapes from 8% to 28.5% of
the total deflection. We expect this error to be smaller for industrial parts that have bigger
radii of curvature and include stiffeners, because these components are less subjected to the
undesirable prestress and to the influence of clamping supports. The inverse problem solver
validation also emphasized the importance of an optimal choice of the peening regimes for
each target shape.

The vast experimental campaign indicated directions for the workflow improvement. The
simulation error was provoked by an incomplete consistency between the simulated and the
real peening conditions. The major difference lies in the fact that the software simulates
immediate application of the peening treatment from both sides, while in practice it was
first fully applied from one side and then from the other. The future experiments will imply
uniform application of the pattern from both sides, i.e., alternation of the peened sides after
each pass of the peening nozzle. In addition, the peening nozzle will be modified in order
to provide a narrower shot stream and thus to reproduce the pattern more accurately. The
effect of clamping on the eigenstrain distribution will also be quantified.
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6.5 Appendix A: Proportionality between the dimensionless load and curvature

We performed a specific series of simulations in order to find the proportionality constant µ
relating κh and ΓB (Eqn. 6.15). Namely, we took a range of the dimensionless loads ΓB and
simulated its application on aluminum coupons of size 76× 19 mm and various thickness h.
All in all, 100 test cases for ΓB ranging between 0 and 0.008 were simulated. For each test
case, εt was positive and εb was negative, but the ratio εt/εb was chosen randomly between
-1 and 0. The material was considered plastically isotropic. Additionally, the thickness h
ranged randomly from 2 to 4 mm for each test case. The Poisson’s ratio ν was fixed equal
to 0.33, that is a typical value for aluminum. We meshed the coupons with 760 triangular
elements and solved the forward problem as described in Section 6.2.1. For all the test cases,
the curvature κ measured at the center of the coupon varied by less than 0.015% in different
directions, that proves the results presented in Ref. [35].

6.6 Appendix B: Influence of the eigenstrain anisotropy

The eigenstrain anisotropy is majorly caused by the material properties, but its influence
is not always perceptible during uniform treatment of the 76 × 19 mm coupons. Thus, the
1.6 mm and 2.06 mm thick coupons develop the same local curvature in both directions
when treated with the regimes described in Table 6.1. This is explained by the fact that the
curvature of uniformly peened rectangular specimens depends on [25] [35]:

ΓB = ΓB
D2

h2 , (6.19)

where D is the characteristic length of the specimen. Namely, rectangular specimens adopt
spherical shape for low values of ΓB independently of the eigenstrain anisotropy. Thus, the
applied treatment was not intense enough to make the 76 × 19 mm sized coupons develop
different curvatures in the L- and T-directions. The 320 × 320mm sized plates have 17.7
times bigger ΓB than the coupons of the same thickness treated with the same regime.
Consequently, this type of plates was used for determination of the eigenstrain anisotropy.
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6.7 Appendix C: Influence of pre-treatment on the induced eigenstrain

We performed additional measurements to characterize the eigenstrains induced in the 2024-
T3 panels that did not undergo the preliminary double-side treatment with regime #6.
First, we measured the eigenstrains induced in the 76 × 19 mm coupons cut of the same
plates (see Section 6.2.5). The results of this measurement are summarized in Table 6.4.
The induced deflection of the coupons was bigger than in the case with pre-treatment, so
the induced eigenstrains were bigger as well. This phenomenon is explained by hardening of
the surface generated by the pre-treatment, which is discussed for example in Ref. [49]. The
influence of hardening was more significant for less intense peening regimes (Table 6.1). Thus,
the absence of pre-treatment increased the eigenstrain induced by the regime #5 by 169%,
while the eigenstrain induced by the regime #2 was only increased by 30%. The graphical
comparison of the eigenstrain induced in both cases is presented in Figure 6.17.

Next, we characterized the eigenstrain anisotropy using the “wave” experiment (see Section
6.2.5). Thus, we treated two 2024-T3 panels following the “wave” pattern with regime #2
without pre-treatment. The experiment revealed a mild eigenstrain anisotropy, which is
characterized in terms of the coefficient χ∗ in Table 6.5. The principal eigenstrain direction
has changed with respect to the case with pre-treatment, but the value of χ∗ is of the order
of 10−3, which means that the eigenstrain is almost isotropic. Given that the eigenstrain
anisotropy demonstrated by the pre-treated plates was mild as well (Table 6.3), we conclude
that the pre-treatment did not have a tangible influence on this parameter.

Table 6.4 Results of the additional eigenstrain measurements performed using the bunches
of four 76 × 19 × 1.6 mm sized aluminum coupons (see Section 6.2.5). The coupons were
made of aluminum 2024-T3 and did not undergo any pre-treatment. They were fixed during
peening with an Almen holder, and the deflection was measured with an Almen gage. The
average deflection in each bunch of four coupons is denoted by uavg, and the parameter σu
describes the standard deviation in deflection. The eigenstrain induced in the top layer is
denoted by εt. The right column shows the increase in εt with respect to the pre-treated
coupons peened with the same regimes (Table 6.2).

Regime uavg (mm) σu (mm) εt × 103 Increase in εt
#2 0.706 0.008 1.91 169%
#3 0.629 0.015 1.7 92%
#4 0.582 0.012 1.58 42%
#5 0.467 0.001 1.26 30%
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Figure 6.17 Graphical comparison of the eigenstrain εt induced by the same peening regimes
on pre-treated and not pre-treated coupons. The coupons had the size of 76× 19× 1.6 mm
and were made of aluminum 2024-T3. The pre-treatment was done using the regime #6.
The parameters describing each peening regime are presented in Table 6.1. The exact values
of εt for each case are presented in Tables 6.2 and 6.4.

Table 6.5 The anisotropy coefficients determined using the “wave” experiment for 2024-T3
plates that were not pre-treated. The “wave” pattern was applied using the regime #2. The
eigenstrain anisotropy coefficient χ∗ is the average of the absolute values of χL and χT .

χL χT χ∗
-0.013 0.003 0.008
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CHAPTER 7 GENERAL DISCUSSION

This chapter offers a critical look back at several aspects of our modeling approach. Firstly,
we discuss the numerical shell model that we use to solve the forward problem and compare
it with analogs. Secondly, we consider the energy-based formulation for the inverse problem
solver, which can potentially be implemented instead of the analytical formulation presented
in Chapter 4. We discuss its benefits and the barriers for its implementation. Thirdly, we
explore the practical differences between various types of the idealized through-thickness
eigenstrain profiles, and we explain our choice of the bilayer profile throughout this research.

7.1 Choice of an optimal shell model

The numerical method that we use for the forward problem resolution (see Chapter 4) is
a geometric implementation of the shell finite element method in its constant-strain and
constant-moment formulation. The degrees of freedom (DOF) of the shell model are the
positions of vertices and the angles of inclination of the edge directors. Such a model is
called the discrete Cosserat shell (DCS) [61]. A similar constant-strain and constant-moment
element can also be implemented in a rotation-free formulation, meaning that the only DOF
of the model are the vertex positions. A shell model of this type is called the discrete Koiter
shell (DKS) [61]. The DKS model works faster on the same mesh due to lower number
of optimized variables and, moreover, it is easier to implement. However, the absence of
rotational degrees of freedom makes the DKS model sensitive to mesh irregularities [110],
while the additional edge-director degree of freedom is specifically introduced in the DCS
model cope with this problem [111]. Consequently, the DKS model is inappropriate for the
the shot peen forming simulations in the general case. Indeed, complex part geometries may
be meshed irregularly. In addition, the target shape can be provided by 3D scanning of a
sample part, and the 3D scanners typically generate highly irregular meshes. Nevertheless,
both models are suitable for regularly meshed plates [61,62] such as those considered during
the numerical validation campaign described in Chapter 4.

Weischedel et al. (see Ref. [61]) solved a series of “benchmark” FEM problems using both
the DKS and the DCS models and different meshes. The solutions were also compared to
those obtained in Ref. [112] using a conventional shell finite element formulation with free
vertex positions and rotations (S4R elements in ABAQUS software). Figure 7.1 provides the
results of one of these benchmark tests. The test simulates lifting of one end of a slit annular
plate with a distributed vertical force, while the other end is clamped. The curves plotted
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in Figure 7.1 show the deflection of the plate computed with different methods and different
mesh resolutions. According to these results, the DKS model acts too stiff for irregular
meshes thus underestimating the deflection. Nevertheless, a finer regular mesh makes both
the DKS and the DCS models converge to the S4R model. At the same time, the original
results of Sze et al. (see Ref. [112]) suggest that the SR4 model is less sensitive to the mesh
resolution than the DKS and the DCS. Thus, the slit annular plates meshed with 180 SR4
elements (1302 DOF) and 800 SR4 elements (5346 DOF) demonstrated a negligible difference
in deflection.

Figure 7.1 Load-deflection curves obtained with different shell models during the slit annular
plate test presented in Ref. [61]. One end of the plate is lifted with a distributed force ~P ,
and the other end is clamped. The annulus has thickness of 0.03, its internal and external
radii equal 6 and 10 respectively, the maximal applied force per unit length Pmax equals 0.8,
and the Young’s modulus of the plate equals 21 × 106 (see Ref. [112]). The curves trace
deflection of the points A and B on the lifted end of the plate. The numbers in the legend
stand for the number of DOF in each model. All models are meshed with a regular mesh
except for those marked as “irregular” in the legend. Adapted from Ref. [61] with permission
from Fraunhofer Institute for Industrial Mathematics ITWM.
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The fact that the DCS and the S4R models converge to the same results with a fine mesh
suggests that a forward problem solver for the peen forming case can be efficiently imple-
mented using either of these models. The advantage of the DCS model is that it is specifically
designed for the case of internal loads [59], so it does not require formulating an external
load stimulus. In addition, the DCS model naturally takes into account the geometric non-
linearities due to a nonlinear elastic energy formulation (Eqn. 2.17). Finally, the DCS model
incorporates the concepts of fundamental forms and curvatures, so that no supplementary
commands have to be applied to estimate these values. This is an important advantage for
implementation of the inverse problem solver (see Chapter 4), which operates with the ge-
ometrical properties of elements. However, the DCS model is resolution-dependent, which
means that a finer mesh could slightly decrease the simulation error obtained during the
experimental validation campaign presented in Chapter 6.

7.2 Energy-based inverse problem solver: advantages and challenges

For the sake of clarity, in this section we use a general notation applicable to all multilayer
eigenstrain models. The reasoning presented in this section was developed by prof. Wim M.
van Rees1 and communicated in person on the 17th of April 2018.

Formulated in terms of the theory of non-Euclidean plates, the forward problem consists in
finding the final configuration Cf induced by the rest configuration R prescribed to the plate.
The plate adopts a Cf that minimizes its elastic energy E (see Chapter 4):

Cf = arg min
Cc

E(R,Cc), (7.1)

where Cc denotes a current configuration that the plate can adopt during reconfiguration.
The fact that Cf corresponds to the global energetic minimum means that Cf is a state of
equilibrium. The plate, however, can stay stressed in this configuration, which means that
the elastic energy in its global minimum can be superior to zero. We solve the forward
problem numerically using the L-BFGS algorithm [85], which minimizes E with respect to
Cc. During minimization, the gradients ∇CcE are computed analytically [86].

Theoretically, the inverse problem can be formulated and solved in a similar way. This prob-
lem consists in finding the rest configuration Rtar that induces the target configuration Ctar.

1Assistant Professor, Van Rees Lab, Department of Mechanical Engineering, Massachusetts Institute of
Technology
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We note that Ctar has to be a state of equilibrium, which enforces the following condition:

Ctar = arg min
Cc

E(Rtar,Cc), (7.2)

or equivalently
∇CcE(Rtar,Cc)

∣∣∣
Cc=Ctar

= 0. (7.3)

This condition is satisfied if Rtar is computed as:

Rtar = arg min
R

[
∇CcE(R ,Cc)

∣∣∣
Cc=Ctar

]
. (7.4)

Eqn. 7.4 provides a concise energy-based formulation for the inverse problem solver. Same
as the forward problem solver, it can be based on a numerical optimization algorithm. A
possibility to compute the gradients ∇R∇CcE algebraically is an advantage with respect to
the methods proposed by Faucheux [25] and Miao et al. [5]. Moreover, the energy-based
solver is more precise than the analytical solver presented in Chapter 4. Indeed, as we state
in Chapter 4, “because of the local nature of the eigenstrain adjustment, the solution does
not converge to the exact target shape but to a shape which is close to the target” (see
Figures 4.9 and 4.10). The energy-based formulation 7.4 overcomes this problem, because
the numerical optimization algorithms such as L-BFGS converge to the exact minimum of
the optimized function.

Nonetheless, the energy-based approach has robustness issues. Thus, the target shape Ctar

has to be the exact state of equilibrium, or in other words, Ctar has to be perfectly achievable
in the framework of the implied eigenstrain model. Otherwise, if Ctar deviates from equilib-
rium, then the formulation 7.4 does not force the optimization algorithm to compute Rtar

leading to the closest to Ctar state of equilibrium. This means that the result of computa-
tions in this case is barely predictable. Moreover, even if Ctar is a state of equilibrium, an
optimization algorithm can get stuck at a local minimum of the optimized function on its
way to the global minimum [7]. For these reasons, the robust analytical solver described in
Chapter 4 was deemed more relevant for the peen forming application.

7.3 Choice of the eigenstrain formulation

The eigenstrain formulation characterizes local peening-induced loads with the help of two
quantities: the total eigenstrain Γ and the first eigenstrain moment Γ1 (see Section 2.1.3).
The value of Γ determines the stretching force and the value of Γ1 determines the bending
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moment. Both quantities involve through-thickness integration, so the shape of the through-
thickness eigenstrain profile does not influence the forming behavior. Therefore, we idealize
the eigenstrain profile for the simulation purposes. An optimal idealized profile involves a low
number of variables but allows to reproduce all practically achievable Γ and Γ1 (see Section
2.2.1). There are two eigenstrain profiles that satisfy these requirements the best: the trilayer
(Eqn. 2.10) and the bilayer (Eqn. 2.11). Each of them has its own advantages.

The trilayer profile is essentially the “step” profile (Eqn. 2.9) generalized for the case of
double-side treatment. It reflects well the mechanical nature of the forming process because
the eigenstrain in this formulation is concentrated near the surfaces (see Figure 2.3). This al-
lows, in particular, to roughly estimate the residual stress induced by the treatment. Another
benefit of the trilayer formulation is that the active layers do not superimpose. This simplifies
the pattern segmentation algorithm and makes the segmentation more precise. Indeed, the
formulation does not require to optimally split the eigenstrain into contributions made by
the top and the bottom side peening regimes because these contributions are characterized
with different variables (see Chapter 5).

On the other hand, the bilayer profile is characterized with a lower number of variables
than the trialyer — two against four. Multiplication of this number by the number of
finite elements in the numerical model gives the total quantity of variables for the inverse
problem resolution. Consequently, this difference becomes significant if the inverse problem
is solved through numerical optimization as in Ref. [5]. In addition, the fact the number of
local variables characterizing the bilayer profile (two) corresponds to the number of peening-
induced loads (Γ and Γ1) is favourable for the inverse problem solver presented in Chapter
4. The solver is based on the comparison of the local stretching and curvature of the current
shape with those of the target shape. This comparison locally provides two equations that
are solved for the two eigenstrain variables, so the solution is exact. The use of the trilayer
profile in this context requires the solution of two equations against four variables, so an
optimization technique has to be involved. In this case the optimization has to be done on
each iteration of the adjustment phase, while the bilayer profile faces this problem only when
splitting the peening regimes during segmentation.

All in all, we conclude that the bilayer profile is more efficient in the general case due to a
lower number of variables. However, if the treatment is applied from one side only, then the
“step” profile is more advantageous. Indeed, it is also described by two variables but makes
the simulation more realistic in terms of residual stress.
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

8.1 Summary of findings

This thesis aimed at modeling, optimizing and automating of the shot peen forming process.
We developed a simulation software that allows to rapidly design an optimal forming proce-
dure. The software is able to solve the forward and the inverse problems and to segment the
peening pattern after the inverse problem resolution. We also conceived a workflow allowing
to execute the designed procedure with an automated equipment.

Our simulation software combines the eigenstrain approach with the recent advances in the
theory of non-Euclidean plates. The eigenstrain approach allows to model the peening-
induced loads without simulating their mechanical cause, which is challenging and computa-
tionally expensive. The loads are represented as incompatible plastic strains (eigenstrains),
and a plate loaded in this way falls within the definition of a non-Euclidean plate. The theory
of non-Euclidean plates provides a concise energy-based formulation for the forward prob-
lem solver. We implemented it numerically using the constant-strain and constant-moment
shell finite element model, which is described in Chapter 4. Additionally, the theory of non-
Euclidean plates provides efficient theoretical instruments for the inverse problem resolution.
Our inverse problem solver presented in Chapter 4 is iterative, and each iteration implies
adjustment of the eigenstrain and resolution of the forward problem. The advantages of this
solver include a precise initial guess, a low number of iterations required and an instantly
executed adjustment phase. Therefore, the solver provides a precise solution within several
minutes, that was proven during the numerical validation campaign described in Chapter 4.

A practically applicable peening pattern must consist of uniformly treated segments. To
fulfill this requirement, we developed a pattern segmentation strategy. We apply it to the
pattern provided by the inverse problem solver. The strategy consists of two stages: the
first stage involves grouping or clustering, and the second stage implies correction of the
checkerboard problem. The grouping algorithm described in Chapter 4 is applied if the set
of peening regimes is fixed in advance and cannot be adjusted. In this case, the one-to-one
correspondence between the peening regimes and the eigenstrains must be established in
advance. On the other hand, the clustering procedure presented in Chapter 5 automatically
computes optimal eigenstrains and segments the pattern into zones prescribed with a uniform
eigenstrain. The peening regimes can be adjusted afterwards to reproduce the prescribed
eigenstrains. In the absence of practical restrictions, the use of clustering is preferable to
grouping, because it allows to avoid the trial and error search for optimal peening regimes.
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Both grouping and clustering algorithms can produce local segmentation errors, which are
corrected by the filtering algorithm formulated in Chapter 5.

The influence of grouping, clustering and filtering algorithms on the quality of the inverse
problem solution was examined during the numerical validation campaign presented in Chap-
ters 4 and 5. It was revealed that the influence of all three algorithms can be either positive
or negative. However, the error for a series of tests stayed in the same range as before the
application of the algorithms. The clustering algorithm is specifically designed to minimize
the influence on the solution, while in the grouping case this influence can only be minimized
by a thorough adjustment of the fixed peening regimes. Concerning the filtering algorithm,
we conclude that its application is optional and reserved for the cases when the segmentation
errors are too numerous to be manually corrected.

The automated peen forming workflow described in Chapter 6 regroups the theoretical reason-
ing and the practical manipulations that are necessary for the shot peen forming automation.
Namely, it explains in detail how to calibrate the simulation software, how to automatically
convert a peening pattern into a program for the peening robot, how to efficiently execute
this program and how to estimate the quality of forming. Particular attention is given to
a simple yet efficient experimental procedure for establishing a one-to-one correspondence
between the peening regimes and the eigenstrains. We also present a procedure for the eigen-
strain anisotropy characterization, which enhances the quality of simulations. We applied the
automated workflow to validate the simulation software and we characterized the simulation
error. It was revealed that the error is caused by the practical aspects that did not correspond
to the simulated peening conditions, so we propose ways to correct this discrepancy from the
practical side. All in all, it was demonstrated that the proposed workflow allows to shape an
airplane wing skin.

8.2 Limitations and recommendations for future work

Primarily, we suggest ways for improving the automated peen forming workflow in terms of
precision and cost-effectiveness. Thus, the simulation error can be reduced by accounting for
peening-induced stretching in the simulations and by decreasing the influence of clamping on
the eigenstrain distribution. Also, the “wave” experiment that characterizes the eigenstrain
anisotropy can be optimized in terms of precision and material waste. In addition to the
workflow improvement, we propose to validate our clustering method experimentally and to
adapt our simulation software for integrally stiffened panels.



124

Determination of the peening-induced stretching

In Chapter 6, we determine the peening-induced eigenstrains using small uniformly treated
coupons. The coupons are made of the same material and have the same thickness as the
full-size plates that are supposed to be shaped. We measure the deflections of the coupons
and deduce the dimensionless load ΓB, which is essentially a nondimensionalized version of
the first eigenstrain moment Γ1. Given that the peening-induced eigenstrain is small, we
neglect the total eigenstrain Γ and set this value to zero. However, the value of Γ determines
the peening-induced stretching, and its accurate determination can be necessary for high-
precision industrial applications.

The relation between the peening-induced stretching and Γ can be found in a similar fashion
as the relation between the peening-induced deflection and ΓB, i.e., using numerical simula-
tions. In turn, measurement of the stretching is a technical problem. If the coupon is treated
from one side only, this can be done with a strain gauge installed on the untreated side. The
mid-surface stretching can then be determined using the Kirchhoff-Love straight normals
assumption and the data on deflection. The strain gauge provides high precision, but its
implication requires special care and slows down the calibration process. Another approach,
which was used in Ref. [68], consists in peening the coupon with the same intensity from
both sides. Given that the coupon stays flat after such a treatment, its stretching can be
measured with a caliper. This method is simpler but less precise, because a high-intensity
treatment can significantly deform the edges of the coupon. Nonetheless, an optimal method
for determination of the peening-induced stretching is yet to be found and tested.

Decreasing the influence of clamping

The forward problem solver validation presented in Chapter 6 revealed that the clamping
forces created by the fixture influenced the local curvatures. The local curvatures are deter-
mined by local eigenstrains, so these forces essentially influenced the plastic flow. As a result,
the eigenstrain induced in uniformly treated segments was higher along the borders of these
segments than in the center. This effect was not taken into account during the numerical
simulations and, consequently, increased the simulation error. Accounting for the influence
of clamping on the plastic flow in the simulations is left for future studies.

The described problem can be mitigated from the practical side practice by decreasing the
compressing force between the two parts of the removable frame. This would let the treated
plate expand while preventing it from bending. In other words, this would eliminate the
external contracting force acting in the plane of the plate, which is the main cause of problem
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according to our hypothesis. The removable frame can also be modified to let the fixed plate
expand freely. All in all, an optimal practical method for decreasing the influence of clamping
during forming is yet to be found. It should be noted that industrial parts have larger sizes
and thicknesses, so the magnitude of peening-induced expansion in this case is lower, and
the described issue is less severe.

Optimizing characterization of the eigenstrain anisotropy

A uniformly peened aluminum plate demonstrates anisotropic bending behavior only when
its size and the peening intensity are sufficiently large with respect to its thickness, i.e.,
when the dimensionless value ΓB is sufficiently large [35]. Our experiments with uniformly
treated 76 × 19 mm coupons cut in different directions with respect to the rolling direction
(the L- and T- directions) have confirmed this observation (see Chapter 6). Accordingly, we
characterized the eigenstrain anisotropy using 320 × 320 mm plates, for which the value of
ΓB was larger. We applied the “wave” pattern thus forcing the plates to bend either in the
L- or in the T- direction. The plates have exhibited an anisotropic behavior, but their size
was defined by the size of the removable frame. Hence, this size can be decreased in the
future to reduce the material waste. This would involve a similar series of simulations as
those conducted in Ref. [35]. Namely, one has to find the minimal value of ΓB that reveals
the eigenstrain anisotropy for plates treated with the “wave” pattern. Moreover, the pattern
itself can be further optimized to explicitly reveal the effect of anisotropy on small plates.
Finally, we suggest repeating the anisotropy measurement (see Chapter 6) several times with
the same parameters to improve the stability of results.

Experimental validation of the clustering method

The inverse problem solver validation described in Chapter 6 showed that the predefined
peening regimes were not perfectly suited for shaping the upper skin of the NACA profile.
Namely, the induced eigenstrain was not high enough to precisely shape the front edge. In
this connection, we developed the clustering algorithms presented in Chapter 5 to avoid this
issue in the future. Our clustering algorithms compute the eigenstrain that must be induced
by each of the peening regimes involved. However, an optimal strategy for choosing the
actual peening parameters as a function of the prescribed eigenstrain is yet to be found.
This can be done by trial and error measurements, but it would be more efficient to establish
a continuous relation between one of the peening parameters and the induced eigenstrain.
For example, the peening regimes #1-5 described in Chapter 6 differ only by the peening
pressure. This parameter allows to vary the peening intensity and, consequently, the induced



126

eigenstrain. Hence, a continuous function would allow to easily find the pressure inducing
the required eigenstrain, but this hypothesis is yet to be verified in practice.

Modeling of shot peen forming of stiffened plates

Our forward and inverse problem solvers described in Chapter 4 are designed for the case
of smooth plates and shells. In the industry, however, shot peen forming is also applied for
shaping integrally stiffened panels, such as that shown in in Figure 8.1. Although the DCS
model that we use admits variation of thickness and Young’s modulus over the surface (see
Appendix to Ref. [7]), it does not allow to include the stiffeners in the structure directly. More
precisely, the formulation is based on the concept of edge directors, which is not adapted for
the case when three finite elements share the same edge.

The presence of stiffeners can potentially be simulated by the prescription of a large thickness
or a large Young’s modulus to the elements situated along the line of attachment of stiffeners.
This hypothesis is yet to be verified. Given that the stiffeners can be shot peened themselves,
such a formulation would require additional calibration steps in order to simulate this effect.
Otherwise, the DCS model can be replaced with a more standard finite element formulation
with 6 degrees of freedom for each vertex, which corresponds for example to the S3R or the
S4R models in ABAQUS software. In this case, the stiffeners can be physically included in
the structure, but the inverse problem solver has to be reformulated in order to operate with
the eigenstrains induced in the stiffeners.

Figure 8.1 An integrally stiffened skin panel undergoing automated shot peening treatment.
c© KSA Kugelstrahlzentrum Aachen GmbH. Reproduced with permission.
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