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RÉSUMÉ 

Cette thèse traite de la quantification et des origines de l’auto-(dé)focalisation et de la propagation 

des impulsions femtosecondes à travers des suspensions aqueuses de nanoparticules métalliques 

avec des impulsions amplifiées et des impulsions à haut taux de répétition. Dans les deux cas, des 

équations de propagation non linéaires sont utilisées pour décrire physiquement les observations 

expérimentales, en traitant le matériau composite en se basant sur ses propriétés optiques de milieu 

effectif. 

Il est bien connu qu’au-dessus d’une puissance seuil, les impulsions femtosecondes amplifiées 

subissent une auto-focalisation lorsqu’elles se propagent dans l’eau pure, ce qui entraîne les effets 

de la filamentation laser et de la génération de supercontinuum. Il est intéressant de noter que le 

renforcement et la modulation du supercontinuum ont été observés lorsque l'eau est dopée avec des 

nanoparticules plasmoniques. Ce phénomène a été principalement attribué à l'amélioration de la 

non-linéarité de Kerr de l'eau, toutefois, sans que les origines physiques de l'interaction ne soient 

clairement établies. En fait, les mesures z-scan dans des échantillons minces de nanocomposites 

métalliques donnent typiquement une faible non-linéarité de Kerr, pratiquement impossible à 

distinguer de leur hôte diélectrique non dopé, lorsque des impulsions femtosecondes sont utilisées. 

Une autre façon de quantifier le renforcement plasmonique serait d'étudier directement la puissance 

seuil pour l'autofocalisation à travers des échantillons épais, avec la manifestation simultanée de la 

filamentation laser et de la génération de supercontinuum. 

À cette fin, une technique de limitation de la puissance optique a été utilisée, pour la première fois 

avec des impulsions femtosecondes.  En premier lieu, il était important de démontrer l'applicabilité 

de la technique dans le cas de la transparence optique, c'est-à-dire sans dopage plasmonique. En 

effet, le montage a été testé sur de l'eau pure et de l'éthanol. On a montré que le signal optique de 

sortie ne présente pas une réponse de type ‘step-function’ par rapport à la puissance de l'impulsion, 

comme cela est généralement attendu lorsque des impulsions nanosecondes ou picosecondes sont 

utilisées. Cependant, le signal présente des caractéristiques de la transformation des impulsions en 

ondes coniques non linéaires.  La réponse a été systématiquement étudiée et il a été démontré 

comment la non-linéarité de Kerr peut être évaluée de manière fiable. 
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Dans un deuxième temps, des colloïdes de nanobâtons d'or résonants de concentration variable ont 

été étudiés par la même technique. On a montré comment la non-linéarité de Kerr peut être 

entièrement déterminée en utilisant la technique proposée en combinaison avec (i) des mesures de 

transmittance optique, pour évaluer la partie imaginaire, (ii) une analyse spectroscopique, pour 

estimer les effets de déformation des particules et (iii) des simulations numériques, pour modéliser 

les conditions d’effondrement optique. Physiquement, il a été démontré que les échantillons 

présentent une saturation de l'absorption bien avant le seuil d'autofocalisation. Cependant, une 

déformation considérable des particules se produit près du seuil précité. En effet, la non-linéarité 

de Kerr "renforcée par les plasmons" du composite est fortement saturée à proximité du seuil de 

collapse optique. Cela s'explique par la génération ultrarapide d'une population d'électrons non 

thermiques près des surfaces des nanoparticules métalliques, qui détruisent la cohérence 

plasmonique et l'amplification du champ, en modulant la permittivité diélectrique du métal. 

Au contraire, au-dessus d'un seuil de puissance, les impulsions femtosecondes à haut taux de 

répétition présentent une propagation phénoménologique sans diffraction (self-channeling) à 

travers les nanocolloïdes plasmoniques. En particulier sous une illumination cw, l'effet 

susmentionné a été attribué à des forces optiques de gradient exercées sur les particules, induisant 

une modulation locale de l'indice de réfraction par transport de masse, ou à l'absorption, donnant 

lieu à des gradients de température et à un effet de lentille thermique non linéaire. Nous montrons 

ici que dans les conditions de focalisation typiques rapportées dans la littérature, self-channeling 

est en fait un effet de lentille thermique non linéaire, même pour une longueur d'onde d'illumination 

non résonante. Notamment, sous un éclairage cw, les forces de gradient ne peuvent devenir 

dominantes que par le confinement thermique spatial en employant des conditions de focalisation 

plus fortes. Ces observations sont généralisées au cas d'impulsions femtosecondes à taux de 

répétition élevé. En outre, les observations résolues dans le temps de la lentille thermique à haute 

puissance montrent que les impulsions femtosecondes, par opposition à l'illumination cw, peuvent 

être utilisées pour obtenir un confinement thermique spatio-temporel. Une discussion détaillée 

montre comment ce dernier peut potentiellement être optimisé par le paramètre du taux de 

répétition avec la possibilité de favoriser self-channeling par des forces de gradient. 
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ABSTRACT 

This thesis deals with the quantification and origins of femtosecond laser self-(de)focusing and 

propagation through aqueous suspensions of metallic nanoparticles with amplified pulses and with 

high-repetition rate pulses. In both cases, nonlinear propagation equations are employed to describe 

the physical picture in accordance with experimental observations, treating the composite material 

based on its effective medium optical properties. 

It is well-known that above a threshold power, amplified femtosecond pulses undergo self-focusing 

when they propagate through pure water, which leads to the effects of laser filamentation and 

supercontinuum generation. Interestingly, enhancement and modulation of the resulted 

supercontinuum has been noted when water is doped with plasmonic nanoparticles. It has been 

principally attributed to enhancement of the Kerr nonlinearity of water, however, without clear 

insights on the physical origins of the interaction. In fact, z-scan measurements in thin samples of 

metallic nanocomposites yield typically a weak Kerr nonlinearity, hardly distinguishable from their 

undoped dielectric host, when femtosecond pulses are employed. An alternative approach to 

quantify plasmonic enhancement would be to directly investigate the threshold power for self-

focusing through thick samples, under the concurrent manifestation of laser filamentation and 

white-light continuum generation. 

Toward this objective, a power limiting technique has been employed, for the first time with 

femtosecond pulses. An important first step was to demonstrate the applicability of the technique 

in the simpler case of optical transparency, i.e., without plasmonic doping. Indeed, the setup was 

tested on pure water and ethanol. It was shown that the output optical signal does not exhibit a step-

like function response versus the input power as usually expected when nanosecond or picosecond 

pulses are employed, yet it features the underlying physics of the transformation of the pulses into 

nonlinear conical waves. The response was systematically studied, and it was demonstrated how 

the Kerr nonlinearity can be reliably evaluated.  

As a next step, gold nanorod colloids of varying concentration were studied by the same technique. 

The peak of the plasmon resonance of the samples was purposely chosen to lie near the employed 

optical wavelength. It was demonstrated how the Kerr nonlinearity can be fully determined by use 

of the proposed technique in conjunction with (i) optical transmittance measurements, to evaluate 
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the imaginary part of the nonlinearity, (ii) spectroscopic analysis, to estimate particle deformation 

effects and (iii) numerical simulations, to model the experimentally obtained optical collapse 

conditions. Physically, it was shown that the samples exhibit saturation of optical absorption well 

before the self-focusing threshold, yet considerable particle deformation occurs concurrently only 

near the foresaid threshold. Effectively, the “plasmon-enhanced” Kerr nonlinearity of the 

composite is strongly saturated near the optical collapse threshold. This is because of the ultrafast 

generation of a large population of nonthermal electrons near the surfaces of the metallic 

nanoparticles, which destroy plasmon-oscillation coherence and field amplification, by drastically 

modulating the electronic energy-level structure of the metal and its dielectric permittivity. 

Contrarily, nonlinear propagation of high-repetition rate femtosecond pulses through metallic 

nano-colloids is governed by a quasi-cw self-channeling effect (a phenomenological diffraction-

free propagation) above a threshold power. Particularly under cw illumination, the observed self-

channeling effect has been attributed to occur due to either gradient optical forces exerted on the 

particles, inducing a local refractive index modulation through mass transport, or due to absorption, 

giving rise to temperature gradients and a nonlinear thermal lensing effect. Here it is shown that 

under typical focusing conditions reported in the literature, self-channeling is in fact a nonlinear 

thermal lensing effect even for an illumination wavelength far from the plasmon resonance. 

Notably, under cw illumination, gradient forces can only become dominant through spatial thermal 

confinement by employing tighter focusing conditions. The above observations are generalized for 

the case of high-repetition rate femtosecond pulses (quasi-cw self-channeling). Importantly, 

through time resolved observations of high-power thermal lensing, it is further shown that 

femtosecond pulses, as opposed to cw illumination, can be used to achieve spatiotemporal thermal 

confinement. A detailed discussion shows how the latter can potentially be optimized through the 

repetition rate parameter with the possibility of promoting self-channeling through gradient forces. 
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Figure 4.10 Modelling of the intrinsic third order susceptibility of small spherical metallic 

nanoparticles. (a) Comparison of analytical Equation 4.19 (deduced originally by Rautian) 

with numerical simulations for two different sizes (here denoted by d) of Ag nanoparticles. 

Adapted with permission [144]. Copyright 2011, American Physical Society. (b) Application 

of the corrected model of Rautian (HRFR, solid black curve) for small metallic Ag spheres, 

fitted on experimental data on the effective medium. The dotted lines correspond to the 

originally proposed formulation developed by Hache et al. [142] (HRF model), which is 
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inversely proportional to nanoparticle size. Adapted with permission [145]. Copyright 2004, 

American Chemical Society. .................................................................................................. 41 

Figure 4.11 (a) Reverse saturation of absorption (RSA) pathways in plasmonic (Ag) hollow 

nanocubes. (b) As the pumping intensity increases, either multiphoton absorption, free-carrier 

generation or photoejection of electrons becomes possible, reversing the plasmon bleaching 

and increasing absorbance (reducing transmittance) due to thermo-modulation of the 

electronic band structure of the metal. Adapted with permission [32]. Copyright 2020, 

American Chemical Society. The plasmon band transients and their intensity dependence is 

shown in (c-f) for Ag nanoparticle (c, d) and Au nanorod (e, f) colloids. It is noteworthy that 

there are circumstances where the transient transmittance shown in (d) and (f) increases at 

adjacent frequencies to the plasmon band for increasing pumping intensity due to broadening, 

which is the inverse picture of the one observed in the RSA case. (c, d) were adapted with 

permission [155]. Copyright 2015, American Institute of Physics. (e, f) were adapted with 

permission [21]. Copyright 2019, The Optical Society. ........................................................ 47 

Figure 4.12 Origins of nonlinear absorption in metallic nanoparticles. (a) The first Brillouin zone 

of Au and the corresponding symmetry points and axes and (b) sequential two-photon 

absorption initiated by intraband transitions near the X, L symmetry points. Adapted with 

permission [162]. Copyright 2005, American Physical Society. (c-e) Effect of lattice 

crystallinity on photoluminescence spectra from gold nanorods. Adapted with permission 

[165]. Copyright 2014, American Chemical Society. (c) Schematic of how sequential 

interband transitions result into multiphoton luminescence (filling of hole by interband 

transition and relaxation of excited state). During third harmonic generation there is no energy 

exchange with the material, thus, excitation in a real state is not required. (d) SEM images of 

poly- and monocrystalline gold nanorods and (e) corresponding multiphoton 

photoluminescence spectra, showing dependency on the crystallinity of the structure for the 

same material (Au). (f-g) Interpretation of photoluminescence in gold nanorod as radiation 

from relaxation of the heated electron gas. Adapted with permission [166]. Copyright 2017, 

American Chemical Society. (f) Mechanisms involved in detection of photoluminescence. (g) 

Power exponent law fittings of experimental data. Best fitting acquired for intraband 

luminescence, an indication of relaxation of the thermal electron gas. ................................. 48 
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Figure 4.13 Predicted nanoparticle temperature increase versus the input intensity (shown by black 

solid curves) under cw illumination if thermal conductivity dependence on temperature is 

considered. The usually employed linear relation (blue dots) is plotted for comparison. 

Adapted with permission [174]. Copyright 2020, American Physical Society. .................... 50 

Figure 4.14 (i) Conceptual schematic of mass transport induced nonlinearity and soliton formation 

in plasmonic colloidal suspensions. Adapted with permission [39]. Copyright 2014, American 

Chemical Society. In cases (a), (b) nanoparticles of positive or negative polarizability, 

respectively, are suspended in the solution at the wavelength of the laser beam. As a result, 

nanoparticles are either attracted toward the beam or repelled away from it, inducing an 

artificial nonlinear response within the medium due to local modulation of the effective 

refractive index. (ii) (Top) Conceptual schematic of orientation ordering of suspended 

nanorods in a colloid along the polarization of a propagating soliton beam when the beam is 

propagating in the medium. (Bottom) Induced birefringence probed by a coupled beam with 

the one that orients the particles (see Section 4.7.1.2). Adapted with permission [55]. 

Copyright 2017, The Optical Society. (iii) Self-confinement and guiding of optical beams due 

to combined thermal (positive) nonlinearity (absorption of energy by particles and heating of 

solvent) and concurrent motion of particles due to radiation pressure. Adapted with permission 

[58]. Copyright 2018, The Optical Society. ........................................................................... 51 

Figure 4.15 Experimental measurements of the dependence of the intrinsic nonlinear susceptibility 

of metals and metallic nanocomposites on the employed laser pulsewidth. (i) Real and 

imaginary evaluation of the third order susceptibility of Au. Reproduced with permission 

[180]. Copyright 2012, Elsevier. (ii) Modulus of the third order susceptibility of Au, Ag and 

Cu nanoparticles, obtained by experimental measurements in various host materials 

(matrices), i.e., water, acetone, glass, SiO2 and Al2O3 (not shown in the figure). Produced by 

data found in Table 1 of Ref. [94] and references therein. ..................................................... 53 

Figure 4.16 Numerical example of the effect of external focusing on the thermal lensing effect. The 

σ2 beam width has been evaluated by solution of Equation 3.4.32, considering propagation in 

a plasmonic aqueous (water) suspension of nanoparticles (e.g., Au nanospheres of d ~ 10 - 50 

nm) of absorption coefficient a0 = 2 cm-1 (depending on size and concentration), thermo-optic 

coefficient dn/dT = 10-4 K-1, thermal conductivity KT = 0.6 W/(Km) and linear refractive index 
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n0 = 1.33. The illumination wavelength has been assumed to be λ = 800 nm. The input power 

is shown over each solid-line curve in Watts. Dashed lines indicate the linear regime in all 

cases. (a) No external focusing. (b, c) The radius of curvature is calculated assuming that the 

geometrical focus is located at (b) 30 mm and (c) 15 mm in the medium. At all cases the input 

beam width is w0 = 180 μm. It is noteworthy that there are conditions where a power-

dependent self-collimation effect is observed in cases (b, c) due to thermal lensing. ........... 58 

Figure 4.17 Numerical modelling results of supercontinuum generation in plasmonic 

nanocomposites. (A) Spectral broadening of a 20 fs pulse in a fused silica medium doped with 

silver nanoparticles of filling factor 10-3, obtained by solution of Equation 4.41. Reproduced 

with permission [45]. Copyright 2009, The Optical Society. (B-E) Numerical results of 

filamentation and supercontinuum generation in an aqueous suspension of Au nanoparticles. 

(B) Transverse fluence profiles. (C) axial profiles of the peak intensity in pure water along 

propagation for various input pulse powers (D) Spectral broadening comparison between pure 

water and colloidal gold. Attenuation rather than amplification of supercontinuum is observed. 

(E) Absorbed power by two colloids of two different concentrations as a function of the 

incident pulse power. Reproduced with permission [50]. Copyright 2019, The Optical Society.

 ................................................................................................................................................ 63 

Figure 4.18 Induced waveguiding in plasmonic nanocolloids. (a-g) Demonstration attributed to 

soliton formation induced by mass transport of particles. (a) The experimental setup. (b) The 

nanoparticle inclusions of the suspension in which the waveguiding demonstration takes 

place. (c) Soliton beam (532 nm) (d-e) side and output of the IR probe beam when the soliton 

beam is absent. (f-g) Same as (d-e), however, with soliton beam present. Adapted with 

permission [54]. Copyright 2016, The Optical Society. (h) Demonstration attributed to 

thermal lensing and self-collimation. On the left, shown in red, is a side view of a probe beam 

steered in a gold aqueous nanosuspension (3-5 nm Au nanoparticles) by a pump beam. Output 

view of the pump and steered probed beams are shown on the right, in green and red, 

respectively), which is steered accordingly. Reproduced with permission [38]. Copyright 

2021, American Institute of Physics. A demonstration of steering due to thermal lensing in 

the same context is also shown in [37]. .................................................................................. 65 
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Figure 4.19 Orientation ordering of gold nanorods in a aqueous suspension by an external electric 

field, and nonlinearity control. (a) Experimental setup. (b) Calculated spectra of polarizability 

depending on nanorod orientation. (c) Measured absorption spectra when the polarization of 

the input white light is parallel (red curve) or perpendicular (blue curve) to the applied field. 

Black curve indicates the absorption spectrum in the absence of the external field. (d-e) Output 

beam profile of a probe beam for two different input powers. For 40 mW the beam is 

phenomenologically self-trapped.  (f-g) The normalized transmission and output beam size 

for two different input polarizations of the probe beam of 790 nm wavelength as a function of 

the applied external field strength. (e-f) Same as (c-d), however for a probe beam of 930 nm 

wavelength. Adapted under terms of the CC-BY license [57]. Copyright 2021, John Wiley 

and Sons/Wiley-VCH. ............................................................................................................ 66 

Figure 4.20 Waveguiding with structured light beams in plasmonic nanocolloids. (a-d) 

Demonstration of a CW vortex pump beam-waveguide, attributed to thermal lensing. (a) The 

experimental setup. (b-d) Images of the beam profiles at the output face of the cell. 

Waveguiding of a probe beam (red light) by (b) a simple vortex pump beam (c) a Bessel vortex 

pump beam and (d) a cosine Bessel vortex beam. Adapted with permission [38]. Copyright 

2021, American Institute of Physics. (e-h) Demonstration of a 80 ps pulsed vortex beam-

waveguide (soliton beam) attributed to nonlinearity management. (f) Low pump power – 

soliton beam “off” at the input of an optical cell and after 3, 5 and 10 mm of propagation. (g) 

Same as (f), however at higher input power, i.e., soliton beam is “on”. (h) Coupled probe beam 

output profile when the soliton beam is “on”. Adapted with permission [86]. Copyright 2016, 

The Optical Society. ............................................................................................................... 68 

Figure 4.21 (a-c) Q-swithed pulse generation by use of a plasmonic TiN/PVA film as a saturable 

absorber. (a) The nonlinear transmittance modulation curve. (b) Autocorrelation trace of the 

generated pulses. (c) The output power curve as a function of the pump power. Adapted with 

permission [223]. Copyright 2019, John Wiley and Sons. (d-g) Mode-locking in a fiber laser 

cavity by use of plasmonic nanorod array as a saturable absorber. (d) SEM image of the array. 

(e) Polarization dependent transmittance through the array. (f) Autocorrelation trace of the 

mode-locked pulses. (g) The output power of the cavity as a function of the pump power. The 

shaded regions demarcate single-soliton, single-soliton with cw and soliton molecule regimes 
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with green, red, and blue color, respectively. Adapted under terms of the CC-BY license  [31]. 

Copyright 2020, Springer Nature. .......................................................................................... 70 

Figure 4.22 Supercontinuum generation in plasmonic nanocomposites under conditions of two-

photon resonance with the localized plasmon mode. (A) Size distribution and TEM image of 

Ag nanoparticles synthesized in a 2 mm WO3 glass matrix. (B) Absorbance spectra after 4 

hours of thermal annealing (red curve). (C) Measured supercontinua (spectral broadening) 

after propagation through the doped (solid red curve) and undoped (dashed black curve) 

matrix. The orange dotted and blue dotted curves correspond to numerical calculations 

accounting for or ignoring a stimulated Raman scattering contribution term, respectively. 

Adapted with permission [227]. Copyright 2011, Institute of Physics. (D) Absorbance spectra 

of an aqueous Au nanorod colloidal solution. (E) Measured supercontinua after propagation 

through a water sample (dashed curves) and the Au nanorod suspension sample (colored 

curves) in the anomalous dispersion regime of water [pump at 1300 (top figure) and 1200 nm 

(bottom figure)]. Adapted with permission [226]. Copyright 2013, American Physical 

Society. ................................................................................................................................... 72 

Figure 4.23 Spectroscopic studies in aqueous suspensions of plasmonic nanoparticles. (A-D) 

Observation of plasmon peak modulation under intense pumping and filamentary propagation. 

(A) Experimental setup. (B) Linear transmittance of suspensions of different concentrations. 

(C) Supercontinua obtained for pure water and Au nanocolloid. (D) Optical density spectra 

obtained by filamentary propagation through Au colloid and normalized over the spectrum of 

plain water at various pumping intensities (colored curves) and linear optical density (black 

curve). Adapted with permission [51]. Copyright 2019, American Institute of Physics. (E-G) 

Spectroscopic measurements at 3 different locations across the propagation axis of a formed 

filament in Au nanocolloid. Adapted under terms of the CC-BY license [49]. Copyright 2018, 

Springer Nature. (H) Utilization of Au nanoparticles as contrast agents for imaging 

filamentary plasma grating in experiments of crossing filament THz generation through a 

water sample. Reproduced with permission [231]. Copyright 2018, American Institute of 

Physics. ................................................................................................................................... 73 

Figure 4.24 Filamentation in a AuAg alloy (25:75) aqueous suspension. The sample preparation is 

described in  [232]. (a) The experimental setup: a 10 cm optical cuvette is filled with the 
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sample. A 1/e2 beam radius ~2.4 mm is focused approximately at the middle of the cuvette by 

a 150 mm positive lens. Side views were collected by a digital camera and far-field output 

profiles projected on a screen. (b) Calculations of the absorption, scattering and extinction 

cross sections of the examined nanoparticles. The transmitted and scattered colors are shown 

in the right top and bottom figures. (c) Side views of filamentation when the cuvette was filled 

with the plasmonic nano-colloid (top) or water (bottom). Strong phase modulation gives rise 

to Anti-Stokes wing broadening of the laser spectrum at the incident power (~35 times the 

critical power of water). Generated frequencies near the plasmon resonance are heavily 

scattered or absorbed, filtering out the involved frequencies of the laser spectrum at the output 

as observed in far-field profiles in (d). Scattering of “redder” frequencies is observed near the 

output face of the cuvette, either due to complete filtering of spectral broadening below 500 

nm or due to strong modulation of the dielectric function of the particles (hence, the SPR). 

Still, the first scenario appears more possible considering reported blue shifting of the SPR 

under similar conditions of very intense pumping in Au aqueous nano-suspensions [51]. Note 

that the filament channel observed in the case of water is phenomenologically comparable in 

length to the one in the case of the plasmonic nanoparticle in contrast to recent reported 

observations [49]. ................................................................................................................... 74 

Figure 4.25 Evaluation of the threshold power for self-focusing in Au nanorod colloids by the 

power limiting method. (a) The experimental setup. Reproduced under terms of the CC-BY 

license [236]. Copyright 2021, Springer Nature. (b) The examined samples of varying 

concentration. (c) Typical measurements obtained by the power limiting method in the 

samples shown in (b) for two different positions of the optical cuvette along the propagation 

axis. Note that saturation of absorption and partial particle deformation is observed near the 

threshold power. (d) The experimentally evaluated threshold power for self-focusing versus 

the absorption of the nanorod colloids. The solid and dotted curves correspond to numerical 

simulations by solution of a nonlinear propagation equation of Schrodinger type, which 

accounts for saturation of absorption. Adapted under terms of the CC-BY license [237]. 

Copyright 2021, The Optical Society. .................................................................................... 75 

Figure 5.1 Typical experimental measurements in deionized water (black solid lines) and ethanol 

(red solid lines) by the optical power limiter in the filamentation regime. The top figures (a, 
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b, c) present the output signal averaged over 10 shots and the bottom figures (d, e, f) show the 

standard deviation of these measurements. Top and bottom figures (presented in column pairs) 

correspond to different locations of the pinhole: (a, d) z = zi, (b, e) z = zi – 1.5 × zR,i and (c, f) 

z = zi + 1.5 × zR,i. Distinct features related to collapse of the beam become evident for case 

(b). In all three cases, a decrease in optical transmission and sudden increase in the standard 

deviation of the measurement is observed for ethanol at an input power ~7.2 MW, which is 

identified as an optical breakdown threshold. ........................................................................ 80 

Figure 5.2 Imaged (far-field) beam size dependence on the input pulse power for deionized water 

at the three examined z-coordinates. In the far-field, a maximum divergence should 

correspond to a minimum beam size near the focal plane inside the sample. There is a strong 

implication of beam-width transformation due to the collapse, therefore, the local maximum 

at 6.7 MW is identified as the critical power for self-focusing Pcr. ....................................... 83 

Figure 5.3 (a) Relative spectral broadening of the pulse as a function of the input power in deionized 

water. The estimation has been performed as in [247]. Note that the authors of [247] have 

chosen Δω/ω0(Pin=PSC) ≈ 0.5, so here, PSC is close to 6.7 MW. (b) Experimentally obtained 

supercontinuum spectra for water as a function of the input power. ..................................... 84 

Figure 5.4 Numerical calculations based on Equations 5.3-5.4 (Methods) in water. (a), (b) and (c) 

show the time-integrated and normalized far-field spectra S(t, k⊥) versus the time-averaged 

instantaneous transverse wavenumber 〈k⊥〉, calculated by the Hankel transformation of the 

solution of Equations 5.3-5.4 at (a) z = zf – zR,f, (b) z = zf and (c) z = zf + zR,f respectively. The 

distributions are identified as the radiant energy angular spread, understood as the far-field 

counterpart of the pulse fluence (radiant energy exposure). (d) Beam size inside the 

propagation medium (near the focal plane of L1) versus input pulse power. (e) The standard 

deviation of 〈k⊥〉 taken from (a), (b) and (c) has been used to calculate the standard deviation 

of divergence 〈θ〉 of the beam as a function of the input power at a distance d from reference 

z = zf = 0 (first-order approximation). (f) Calculated imaged beam size in the far-field versus 

the input pulse power (first-order approximation). ................................................................ 88 

Figure 5.5 The optical power limiter experimental setup. A combination of a half-waveplate and a 

polarizer are used to control the power of the laser pulses. Two positive lenses are used to 
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focus the beam on the sample and image onto the apertured (by a 15 μm pinhole) 

photodetector. The setup has been modified by placing a pinhole on a motor stage to allow 

translation towards z coordinate. ............................................................................................ 91 

Figure 5.6 Conceptual diagrams used for calculation of the beam size at the imaging (far-field) 

planes. (a) Τhe correspondence of focal and imaging planes so that the linear magnification 

of the system MA remains invariant. (b) A diagram that shows how the beam size wi,0 at a 

distance d in the far-field shifts to wi when accounting for the power dependence of the 

divergence θ. .......................................................................................................................... 94 

Figure 6.1 Initial optical density spectra of the prepared samples of varying concentration. The 

dashed lines indicate the FWHM bandwidth of the excitation laser. The inset figure is used 

for clarity to demonstrate the initial optical density spectra of the diluted sample C0.5, relative 

to samples C1 and C3. The optical path length of the examined samples is 2 mm. .............. 98 

Figure 6.2 (a) The setup of the power limiting method. Two different positions of the optical cuvette 

with respect to the focus of the +200 mm lens were examined: case I corresponds to the 

position of the focus at the center of the cuvette (5 mm from the entrance) and case II 

corresponds to the position of the focus 1 mm in front of the entrance of the cuvette. (b) 

Optical transmittance setup: For high intensity measurements, the setup of power limiting 

method was used by removing the pinhole at the imaging plane. For low intensity 

measurements, a flip mirror was employed to send the beam through a ×0.45 telescope to an 

identical setup as the one used for high intensity measurements and power limiting. ........ 100 

Figure 6.3 (a) Results obtained by using the power limiting setup in the case I configuration. (b) 

Results from the power limiting setup in the case II configuration. The black arrows indicate 

the evaluated threshold power for self-focusing Pth
e
 of the nanorod effective medium, as 

explained in detail in Ref. [236]. The inset of (b) is a rescaled figure to show more clearly the 

obtained signals for C13 and C19. ....................................................................................... 102 

Figure 6.4 (a) Spectroscopic evaluation of nanorod reshaping. The optical density is reduced for 

all samples after the power limiting treatment. The longitudinal and transverse plasmon mode 

peaks show a blueshift and an increase of the absorption peak, respectively. The results are 

indicative of partial, surface melting of a distribution of nanorods, which results in reshaping 



xxvii 

 

 

into shorter nanorods or melting into spherical particles. (b) The average observed blueshift 

of ~9 nm of the longitudinal plasmon band is consistent with implications of reshaping. (c) 

Relative spectral broadening of the reshaped longitudinal plasmon band. .......................... 104 

Figure 6.5 (a) Low intensity optical transmittance measurements. At low input pulse power, the 

absorption is linear. The saturation intensity is observed around 25 GW/cm2, which 

corresponds to an input pulse power of ~1 MW (at a 55 μm beam spot size). (b) High intensity 

optical transmittance measurements. A strong modulation on the optical transmittance is 

observed, which reaches an almost constant value at high input intensities. We use this 

constant value to define the non-saturated absorption ans. In both (a) and (b) the red lines are 

theoretical fittings of Equation 6.3 to the data of both graphs. ............................................ 105 

Figure 6.6 . Experimentally evaluated threshold power for self-focusing of the effective medium 

Pth
e. The data of case I (red circles) are plotted against the linear absorption coefficient a0, 

whereas the data of case II (black circles) are plotted against the non-saturated absorption ans. 

The solid lines correspond to numerical evaluation of Pth
e accounting for the enhancement of 

the nonlinear refractive index as the concentration of particles (absorption) increases obtained 

by our numerical treatment for each case respectively. The dashed lines correspond to 

numerical evaluation of Pth
e  accounting for the nonlinear refractive index values extracted by 

case I treatment and applied for case II theoretical solution and vice versa (details of the 

calculations are presented in Appendix B/Supplemental document, section B.3). .............. 110 

Figure 6.7 Evaluation of the effective nonlinear refraction and absorption of the examined gold 

nanorod colloids as a function of the concentration. Only the values of n2
e obtained from the 

case I treatment are presented on the grounds of the better fitting of the theoretical model 

solution on the experimental data of both case I and II, as shown in Figure 6.6. The values of 

n2
e obtained by the case II treatment are presented in Table B.4 of the Supplemental document 

for completeness. .................................................................................................................. 111 

Figure 7.1 The experimental setup (detailed in Appendix C/Supplemental Material). (b) The figures 

on the left show the three examined cuvette positionings with respect to the geometrical focus 

of lens L in air, as defined by the parameter 𝒹. The figures on the right indicate quantitatively 

the shift of the actual beam waist position inside the 20 mm long cuvette, when filled with the 
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examined colloids (linear regime). This is because of the difference between the refractive 

index of air (n0 ≈ 1) and colloids (n0 ≈ 1.33). The values in air (dashed curves) correspond to 

experimentally measured beam width along X-axis (shown in Figure C.1b, Appendix 

C/Supplemental Material). The values in the colloids (solid curves) have been evaluated by 

Equation C.1b (Appendix C/Supplemental Material) for n0 = 1.33. .................................... 118 

Figure 7.2 Experimental measurements of the far-field FWHM beam width and divergence θ for 

sample S1 as a function of power for three different values of 𝒹 (15, 10 and 5 mm). The beam 

width was determined at two different positions in the far field (shown in Figure 7.1a and in 

Figure C.1a of the Appendix C/Supplemental Material) to evaluate θ. Results over both Y and 

X axis are presented. The shaded, light-blue areas indicate the observed power onset of Airy 

function-type diffraction interference on the beam profile. ................................................. 118 

Figure 7.3 Same as Figure 7.2, for the samples S2, S3 and S4 and for 𝒹 = 15 mm. ................... 119 

Figure 7.4 Far-field beam width profiles under fs excitation of samples S1, S2, S3 and S4 for 

various optical input powers recorded at Position 1 and 𝒹 = 15 mm. The figure demonstrates 

similar behaviour for all samples: The first column shows the initial profile, the second 

column shows the required power for shrinking of the beamwidth to approximately half of the 

initial, the third column shows the appearance of Airy-type diffraction interference, and the 

fourth column shows further shrinkage of the central Airy disk and downward displacement 

δy of the beam profile due to convection currents. The horizontal line shows the initial position 

of the beam center on the Y direction. The inset scale and axes apply for all figures. The x 

axis is horizontal, and the y axis is vertical and pointing downwards to define the positive 

direction of δy. ...................................................................................................................... 120 

Figure 7.5 Comparison between use of cw and fs excitation on the experimental measurements of 

the far-field FWHM beam width and divergence θ for sample S1, as a function of power for 

𝒹 = 15 mm. .......................................................................................................................... 121 

Figure 7.6 Far-field beam width profile under fs and cw excitation of sample S1 for high input 

powers recorded at Position 1 and 𝒹 = 15 mm. Beam profile break-up effects are observed 

beyond 120 mW for both cases. Pronounced beam break-up is observed under cw excitation 

at lower input power and strong thermal blooming beyond 160 mW with a characteristic 
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highly asymmetric lower half-portion. In the case of fs operation, a less asymmetric, yet 

complex profile is observed. The downward displacement can be compared in the two cases 

with respect to the low-input-power position of the center of the beam (white horizontal line).

 .............................................................................................................................................. 122 

Figure 7.7 Time-resolved far-field beam width profile under fs and cw excitation of sample S1 for 

input powers of ~140 mW and ~120 mW, respectively, recorded at Position 1 and 𝒹 = 15 mm. 

The selection of the foresaid input power leads to a fair comparison between the two profiles 

due to the 15% higher absorption coefficient calculated in the case of cw operation. Note the 

subtle downward displacement of the beam core and onset of beam break-up just after 200 ms 

for the case of cw operation. Contrarily, for fs operation, downward displacement is observed 

only after ~466 ms and the onset of beam break-up is observed after ~821 ms. Finally, a drastic 

beam profile break-up is observed for the fs case between the time interval of 1000 and 1890 

ms (Supplemental Video). .................................................................................................... 123 

Figure 7.8 Results of numerical simulations based on the nonlinear Schrödinger equation with a 

thermal nonlinearity (Equations C.3a-C.3b, Supplemental Material) and comparison with 

experimental observations for 𝒹 = 15 mm. (a) Numerical evaluation of the σ2 beam width at 

the output w(z = h) (solid curves) and of the σ2 nonlinear beam waist w(zNL) (dashed curves) 

as a function of Pin. The calculations correspond to the values of absorption coefficient a0 of 

the examined samples (in cm-1, shown close to each curve). Dotted lines indicate that at the 

inflexion points of w(z = h) (i.e., at Pin = P0) the nonlinear beam waist w(zNL) is stretched by 

the same factor 𝓂 ~ 1.75 compared to the linear beam waist wf = 21 μm. (b) Comparison of 

P0(a0) by numerical simulation (squares), fitting of analytical expression (2) for 𝓂 = 1.75 

(solid line) and experimental values (circles). (c) Comparison of θ(a0) between numerical 

simulations (squares) and experimental measurements (circles). ........................................ 125 

Figure 7.9 Numerical simulation results at Pin = P0 for (S1) a0 = 2.10, (S2) a0 = 0.84, (S3) a0 = 

0.24 and (S4) a0 = 0.06 cm-1 First column shows the σ2  beam width as a function of z for 𝒹 

= 15 mm (black lines) and 10 mm (blue lines). The dashed lines correspond to the linear case 

(low input power ~0.1 mW). The second and third column show the calculated spatial 

temperature profiles at Pin = P0 for 𝒹 = 15 mm and 10 mm, respectively. .......................... 127 
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Figure 7.10 Comparison of (a) the displacement δy, and (b) the average velocity 〈u〉 of the beam 

profile due to convection under fs and cw operation on sample 𝑆1 and d = 15 mm as a function 

of input power. The δy values are shown for two different times t1 and t2 after the opening of 

the shutter. The solid lines are linear fittings and the dashed lines in (a) show the average value 

of data taken for t1 at each case. The 〈u〉 values are calculated for time t2 after the opening of 

the shutter. ............................................................................................................................ 130 

Figure 8.1 Results of numerical simulations by solution of Equation B.2 (A = 0), (Appendix B). 

The black solid line shows the analytical approximation by Luther et al. [300]. Notably, the 

latter underestimates the threshold calculated numerically for a collimated beam (open and 

closed circles) as δ becomes large, which is also demonstrated by Luther et al. [300]. A linear 

correction by 3/4 (black dashed line) shows however a remarkable agreement with the 

numerical solution. Importantly, chromatic dispersion has a significantly weaker influence on 

the threshold power when external focusing is applied (open and closed diamonds), (F = 0.36), 

matching the experiment, as discussed in Appendix B). ...................................................... 135 

Figure 8.2 The results of numerical simulations of Equation B.2 compared with the analytical 

approximation proposed by Butylkin et al. [272] (Equation 8.2). ....................................... 137 

Figure B.1 Goodness of fit evaluation of saturable absorption models a(I) ∝ (1 + I/Isδ)-1 (red solid 

lines), a(I) ∝ (1 + I/Isδ)-1/2 (green dashed lines) and a(I) ∝ [1 + (I/Isδ)1/2]-1 (blue solid lines) 

(a) low intensity measurements and (b) high intensity measurements data, as presented in 

Figure 6.5 of the Chapter 6/main manuscript. ...................................................................... 173 
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CHAPTER 1 INTRODUCTION 

The use of plasmonics for the purpose of modulation of electromagnetic wave propagation in 

engineered metamaterials and waveguides has been the subject of research for over 30 years. The 

principal motivation was mainly fueled by the objective of either development of all-optical 

switching and communication devices based on free-electron, Kerr-type nonlinearities, or 

observation of plasmon-mediated coherent nonlinear responses [1-3]. Both involve the 

enhancement of the nonlinear interaction of an optical field with an optical medium, which has 

indeed been predicted by early theoretical studies, specifically focused on the formulation of the 

effective nonlinear susceptibility of plasmonic nanocomposites [4-7] (i.e., plasmonic nanoparticles 

embedded in a dielectric host). However, as it turns out there exist major constraints imposed by 

the real physical picture framing the proposed theory, which account mainly for (i) whether the 

nonlinearity is “fast” or “slow” (or equivalently, whether it involves virtual or real electronic 

transitions, respectively), (ii) the losses related to resonant interactions and (iii) the existence of 

optical saturation or damage [1, 2]. 

The first constraint is related to the origin, time response and strength of the nonlinearity. If the 

induced nonlinear polarization involves virtual transitions, the response is ultrafast and coherent, 

yet intrinsically weak. Conversely, nonlinearities due to excitation of electrons to real states ensue 

latency due to all involved relaxation processes, however, bringing about the advantage of typically 

stronger responses. Quite encouraging has been the fact that, in metallic nanoparticles, ultrafast 

incoherent nonlinearities have been observed under intense pumping [8-12]. Still, for the case of 

optical phase-switching with plasmonics, latency is not the only concern, since a significant amount 

of the incident field energy is stored as electromechanical energy of excited electrons (especially 

near the plasmon resonance) [13], which in turn complicates phase-switching over one extinction 

length of wave propagation in the composite medium [1, 2, 14]. Finally, ultrafast, and localized 

optical field-enhancement near metallic nanoparticles under intense pumping is limited by 

saturation effects [15-21] or by thresholds of thermodynamic transitions both in the host material 

and the metallic inclusions of the composite, eventually leading to optical damage [1, 2, 22-26]. 

Despite all above constraints, there have been still numerous developments related to waveguide-

free nonlinear electromagnetic wave propagation in plasmonic nanocomposites within the 

framework of effective medium properties. For instance, metallic nanoparticles have been 
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employed, due to their thermal nonlinear absorption properties, for the development of absorption 

modulation optical components or optical limiting technologies [27-34]. Additionally, experiments 

in plasmonic nanocomposites (specifically in the picosecond pulsed regime) have showed that they 

possess customizable, determined by the volumetric metal concentration, nonlinear responses due 

to management of high-order nonlinearities [35].  Also, plasmonic nanocomposites have 

demonstrated capabilities of configurable nonlinearities and self-induced waveguiding in soft-

matter systems [36-39]. Among others, all above advancements will be discussed in detail in 

Chapter 4 of this thesis. 

Of principal interest of the author is the investigation of features of nonlinear propagation of 

femtosecond laser pulses in metal nanoparticle aqueous suspensions (considered a specific case of 

a plasmonic nanocomposite). In this context, two interaction regimes of long-scaled, diffraction 

limited propagation are identified: one of the instantaneous response of a single, high energy (~1 

μJ) femtosecond pulse propagation and another one, quasi-steady state propagation regime, arising 

from accumulation of high repetition rate, low energy (~1 nJ) femtosecond pulses. 

The first type of nonlinear propagation involves the effects of femtosecond filamentation [40, 41] 

and supercontinuum generation [42, 43], which have been extensively studied and understood in 

the past 20 years for the case of optical transparency. These effects were reported for the first time 

in a plasmonic nanocomposite (Ag nanoparticle aqueous suspension) in 2007 [44]. A promising 

observation was noted therein, the one of the enhancement of supercontinuum generation in the 

presence of nanoparticles in comparison with the undoped dielectric. The effect was attributed to 

enhancement of the Kerr self-focusing nonlinearity on the presence of nanoparticles, however, 

without clear insights related to the physical constraints discussed above. Other theoretical works 

have followed on the modelling of nonlinear propagation of femtosecond pulses in glasses doped 

with plasmonic nanoparticles, reporting also on the possibility of low-threshold and enhanced 

supercontinuum, under non-resonant pumping conditions and for propagation distances of the 

order of the Rayleigh length [45-47]. However, more recently, a contradictory experimental 

observation has been reported in the case of filamentary propagation of femtosecond pulses in 

colloidal Au; that of overall power dissipation as incoherent electronic kinetic energy in each 

nanoparticle upon beam collapse and transformation into nonlinear, conically emitted 

supercontinuum [48-52]. 
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A major concern based on the foregoing discussion is the optical characterization of the nonlinear 

susceptibility, which is typically very weak in the femtosecond regime [2]. For instance, results 

obtained by the widely employed z-scan technique indicate that the self-focusing nonlinearity of 

plasmonic nanocomposite materials is hardly distinguishable from their dielectric host. 

Accordingly, examination of whether the origin of the reported supercontinuum enhancement (if 

any) is attributed on the plasmon-enhanced Kerr nonlinearity of a doped dielectric, urges the 

determination of the critical power for self-focusing upon femtosecond filamentation. In return, 

one benefits from an alternative to z-scan, and more direct in this case, optical characterization 

approach, by gaining further insights on the effect itself and tackling at the same time issues related 

to the z-scan technique, e.g., beam walk-off and limitations ensued by the thin sample 

approximation (to avoid filamentation) [53]. 

When femtosecond pulses of high repetition rate are employed, the working mechanisms of 

nonlinear propagation in colloidal media are entirely different. Phase-front modulation is expected 

to arise from diffusive (“slow”) nonlinearities as a result of accumulative effects. As a point of 

reference, let us invoke the numerous recent studies of steady-state, continuous wave (cw) self-

channeling (i.e., observation of phenomenologically diffraction-free propagation over several 

diffraction lengths) in plasmonic soft-matter since utilization of high-repetition rate femtosecond 

pulses in the same framework has yet to be explored. In those studies, self-channeling has been 

attributed to two seemingly opposing physical mechanisms; either (i) mass transport induced by 

gradient optical forces [39, 54-57] or (ii) temperature gradients induced by optical absorption and 

heating of the solvent [37-39, 58, 59]. A clear demonstration of self-phase modulation arising from 

mass transport effects in metallic nanoparticle suspensions has not been reported to this day, while 

experimental evidence and interpretation of self-channeling as a result of thermal lensing, thus, 

self-collimation of an externally focused beam due to absorption, appears to be more robust. 

The work presented in this dissertation aims to: 

1. Provide (a) an overview of state-of-the art theoretical background of nonlinearities in 

plasmonic metamaterials and (b) a compendium of recent experimental advances and 

theoretical modelling related to nonlinear propagation of laser light in plasmonic 

nanocomposites within the effective medium approximation. 
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2. Characterize and gain insights on the Kerr self-focusing nonlinearity of plasmonic 

nanocolloids in the regime of femtosecond laser filamentation. 

3. Explore the utilization of high-repetition rate femtosecond laser pulses (as opposed to cw 

illumination) for the purpose of laser self-channeling in plasmonic nanocolloids induced by 

either mass or thermal diffusion effects. 

In the remainder of this section, a brief synopsis of each chapter is presented as related to the above 

problems. 

Chapter 2 provides an overview of the theory of self-focusing in transparent materials, which will 

be later useful for the description of processes involving nonlinear light wave propagation in the 

case of plasmonic nano-colloids, such as self-trapping, optical collapse, laser filamentation, etc. 

Chapter 3 presents the scientific reasoning of this work and general organization of the thesis, 

indicating the coherence of the presented articles with respect to the research objectives. 

Chapter 4 presents a synthesis of most important works in recent literature related to the topic of 

nonlinear laser light propagation in plasmonic nanocomposites. Even though the theory of 

nanocomposites constitutes a more general case (including the cases of both colloidal and solid-

state matter metamaterials), it is useful to examine since it provides insights on the influence of the 

dielectric environment on the discussed nonlinearities. Most importantly, the purpose of Chapter 4 

is to clarify the fundamentals of optical nonlinearities in bulk metals, metallic nanoparticles and 

their composites, organise information on recent applications and identify gaps in the existing 

literature of the field. This Chapter is a paper submitted for publication to Laser & Photonics 

Reviews journal. 

Thereafter, the main body of this work is divided into two parts: The first part consists of Chapter 

5 and Chapter 6, which deal with the development of a power limiting method in the femtosecond 

filamentation regime. Chapter 5, published in Scientific Reports journal, sets the foundations of the 

technique in the framework of optical transparency, while Chapter 6, published in Optics Express 

journal, demonstrates the applicability of the method in the presence of nonlinear absorption, for 

the characterization of the Kerr nonlinearity of gold nanorods. 
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Chapter 7, published in Nanophotonics journal,  constitutes the second part of the main body of 

this work, addressing the case of self-channeling in plasmonic nanocolloids. The main idea is to 

introduce the use of high repetition femtosecond laser pulses to alleviate accumulative thermal 

effects and promote self-channeling by means of mass transport, i.e., by induced optical forces 

acting at the particles. 

A general discussion of this dissertation is presented in Chapter 8. Several aspects of self-focusing 

of femtosecond laser pulses in normal-dispersion and absorptive media are discussed, as related 

with the development of the proposed characterization technique (presented in Chapter 5 and 

Chapter 6). Further, Chapter 8 discusses the main conclusions drawn by the work presented in 

Chapter 7, providing further strategies for the realization of optical force-induced self-channeling 

effect in plasmonic nano-colloids. 
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CHAPTER 2 LITERATURE REVIEW ON THE THEORY OF SELF-

FOCUSING IN TRANSPARENT MATERIALS 

To describe with clarity nonlinear laser light propagation in plasmonic metamaterials, I present in 

this Chapter several key fundamental concepts of nonlinear optics and of the self-focusing theory 

for the case of optical transparency, i.e., the electric susceptibility of the propagation medium is 

considered a real quantity (a fair approximation for dielectric materials). The present chapter was 

compiled by a synthesis of related topics found in the following bibliography [40-42, 53, 60-65], 

also recommended to the interested reader for further studying. 

2.1 Nonlinear wave interactions 

Consider the electric field of an electromagnetic wave 𝐸⃗ (𝑟 , 𝑡) which is incident to a nonlinear 

medium. A cardinal principle of the interaction between light and matter is that the dielectric 

susceptibility of the medium and therefore, its electromagnetic response, is dependent on the 

strength the external applied electric field 𝐸⃗ (𝑟 , 𝑡). Accordingly, under irradiation with intense laser 

pulses, the response of an optical medium is described by the induced, instantaneous polarization 

density 𝑃⃗ (𝑟 , 𝑡), which can be expressed as 

𝑃⃗ (𝑟 , 𝑡) = 𝑃⃗ (1)(𝑟 , 𝑡) + 𝑃⃗ (2)(𝑟 , 𝑡) + 𝑃⃗ (3)(𝑟 , 𝑡) + ⋯

= 𝜀0[ 𝜒
(1) ∙ 𝐸⃗ (𝑟 , 𝑡) + 𝜒(2) ∙ 𝐸⃗ 2(𝑟 , 𝑡) + 𝜒(3) ∙ 𝐸⃗ 3(𝑟 , 𝑡) + ⋯ ] 

2.1 

where 𝑃⃗ (𝑛)(𝑟 , 𝑡) denotes the various orders of the induced polarization, 𝜀0 is the vacuum dielectric 

permittivity and 𝜒(𝑛) represents the various orders of susceptibility. Even though the optical 

susceptibilities are in principle represented by a tensor of (𝑛 + 1) order that depends specifically 

on the medium atomic or molecular crystal structure, in the case of isotropic  and homogeneous 

materials, there are cases where we can isolate a specific component of the nonlinear susceptibility 

that contributes in a nonlinear process, and treat it as a scalar. In general, the electric field 𝐸⃗ (𝑟 , 𝑡) 

and induced first order polarization 𝑃⃗ (1)(𝑟 , 𝑡) can be represented as the sums of their frequency 

components 𝜔𝑚 
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{𝐸⃗ (𝑟 , 𝑡), 𝑃⃗ (1)(𝑟 , 𝑡)} = ∑{𝐸⃗ 𝑚(𝑟 ), 𝑃⃗ 𝑚
(1)(𝑟 )}𝑒−𝑖𝜔𝑚𝑡 + 𝑐. 𝑐.

𝑚

= ∑
1

2
{ℰ 𝑚, 𝒫⃗ 𝑚

(1)
}𝑒𝑖(𝑘⃗ 𝑚∙𝑟 −𝜔𝑚𝑡) + 𝑐. 𝑐.

𝑚

 

2.2 

where ℰ 𝑚(𝑟 ), 𝒫⃗ 𝑚
(1)

 are the complex amplitudes of the electric field and the induced first order 

polarization respectively and 𝑘⃗ 𝑚 their corresponding wavevectors. For a single monochromatic 

laser beam, the electric field, and the induced polarization can be viewed as comprised by a single 

frequency component 𝜔0, which denotes the optical frequency of the field. 

In the generalized case that the susceptibility is treated as a tensor, for materials that are 

characterized by inversion center symmetry (centrosymmetric media), transformation operations 

over all the even-order nonlinear susceptibility tensors impose that the only way for the latter to 

remain unchanged, is to vanish to zero. The odd-order susceptibilities however do not incur this 

constraint; on the contrary, inversion transformations leave them unchanged. Thus, in the case of 

centrosymmetric materials, where the second order susceptibility vanishes, the third order one will 

be the first non-zero nonlinear term in the expansion of polarization described by Equation 2.1. 

The third order nonlinear polarization is then described by the inner product of the third order 

susceptibility tensor with all the involved input electric fields in the summation of Equation 2.2. 

Thus, the third order susceptibility is a 4th rank tensor of 81(= 34) independent components by 

reason of all the combinations of the different vectoral components (analyzed in a coordinate 

system, e.g., Cartesian) of the three interacting fields 𝐸⃗ (𝑟 , 𝑡) to yield the induced third order 

polarization 𝑃⃗ (3)(𝑟 , 𝑡). 

However, due to various inversion symmetries that characterize centrosymmetric isotropic media 

(liquids, gases, amorphous solids), the number of independent components of the third order 

susceptibility tensor reduces to only three. The discussion simplifies even further when we consider 

permutations of the input fields (since the order that the susceptibility tensor acts on the three input 

fields does not matter if some of them are indistinguishable) and the superposition of input fields 

travelling parallel to each other, linearly polarized, inducing a nonlinear polarization parallel to 
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them. In that case we may treat the fields, but most importantly the third order susceptibility, as 

scalars. 

In that framework, let us assume the three fields 𝐸⃗ (𝑟 , 𝑡), each of them comprised by different 

frequencies 𝜔𝑚, involved in a 𝜒(3) process in a nonlinear medium. Accordingly, the induced 

nonlinear polarization 𝑃⃗ (3)(𝑟 , 𝑡) will be comprised by a linear combination of terms, each 

oscillating at a specific frequency that corresponds to a contribution of a resulting combination of 

the interacting fields of various frequencies as shown in Equation 2.2 since 

𝑃⃗ (3)(𝑟 , 𝑡) = 𝜀0𝜒
(3) ∙ [∑𝐸⃗ 𝑚(𝑟 )𝑒−𝑖𝜔𝑚𝑡 + 𝑐. 𝑐.

𝑚

]

3

=
𝜀0𝜒

(3)

8
∙ [∑ℰ 𝑚𝑒𝑖(𝑘⃗ 𝑚∙𝑟 −𝜔𝑚𝑡) + 𝑐. 𝑐.

𝑚

]

3

 2.3 

Subsequently, two types of contributions to the nonlinear polarization are revealed. The ones that 

belong to the first type are characterized by the same wavevector, therefore will be automatically 

phase matched. Physically, this means that the nonlinear polarization does not lead to energy 

exchange between the fields. Ultimately, the terms that are automatically phase matched are 

associated with self-phase or cross-phase modulation of the generated field. The second type of 

contribution gives rise to a new wave vector, implicating energy exchange between the different 

fields, or, in other words, phase matching is required. The above becomes clearer by considering 

the following simple case: a single input monochromatic field is launched into the nonlinear 

medium, all interacting fields are linearly polarized at the same direction, propagating parallel to 

each other; thus, we may write in scalar form 

𝑃(3)(𝑧, 𝑡) =
1

8
𝜀0𝜒

(3)[ℰ𝑒𝑖(𝑘0𝑧−𝜔0𝑡) + 𝑐. 𝑐. ]
3

=
1

8
𝜀0𝜒

(3)[ℰ3𝑒𝑖(3𝑘0𝑧−3𝜔0𝑡) + 3|ℰ|2ℰ𝑒𝑖(𝑘0𝑧−𝜔0𝑡) + 𝑐. 𝑐. ]

=
1

2
[𝒫𝑇𝐻𝐺

(3)
𝑒𝑖(3𝑘0𝑧−3𝜔0𝑡) + 𝒫𝑆𝑃𝑀

(3)
𝑒𝑖(𝑘0𝑧−𝜔0𝑡) + 𝑐. 𝑐. ]

= 𝑃𝑇𝐻𝐺
(3) (𝑧)𝑒−𝑖3𝜔0𝑡 + 𝑃𝑆𝑃𝑀

(3) (𝑧)𝑒−𝑖𝜔0𝑡 + 𝑐. 𝑐. = 𝑃𝑇𝐻𝐺
(3) (𝑧, 𝑡) + 𝑃𝑆𝑃𝑀

(3) (𝑧, 𝑡) 

2.4 

The expression of the resulting 𝑃(3)(𝑧, 𝑡) is comprised by two terms, one oscillating at a new 

frequency 3𝜔0 [phase matching, and therefore energy exchange between the fields is required, so 
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that the new wavevector 𝑘0(3𝜔0) satisfies the relation 3𝑘0(𝜔0) = 𝑘0(3𝜔0)] and a second term 

that oscillates at the fundamental frequency 𝜔0. In this simple example, the first term corresponds 

to the effect of third harmonic generation (THG) and the second corresponds to self-phase 

modulation (SPM) due to refractive index shift in the medium, implicating the manifestation of the 

self-focusing effect. The latter process is described in the following section. 

2.2 Self-focusing and the Nonlinear Schrödinger equation 

2.2.1 Stationary Nonlinear Schrödinger equation 

2.2.1.1 Derivation 

When a linearly polarized electromagnetic wave interacts linearly with a dielectric, the induced 

electric displacement field 𝐷 reads (scalar form) 𝐷 = 𝜀0𝐸 + 𝑃(1) = 𝜀0(1 + 𝜒(1))𝛦 = 𝜀0𝑛0
2𝛦, 

where 𝑛0 is the linear refractive index of the dielectric. In the case of a SPM process (neglecting 

THG), the displacement field reads 𝐷 = 𝜀0𝛦 + 𝑃(1) + 𝑃𝑆𝑃𝑀
(3)

= 𝜀0(1 + 𝜒(1) + 3𝜒(3)|𝐸|2)𝛦 =

𝜀0𝑛
2𝛦, where 𝑛2 = 𝑛0

2 + 3𝜒(3)|𝐸|2, or by series expansion 𝑛 ≈ 𝑛0 +
3𝜒(3)

2𝑛0
|𝐸|2 when it  holds 

3𝜒(3)|𝐸|2 ≪ 𝑛0. Physically, our discussion so far assumes 𝜒(3) related to the distortion of the 

orbitals of non-resonant bound electrons (arising from interband transitions) in a dielectric. 

However, it can be generalized for 𝜒(3) arising from molecular reorientation or electrostriction [61, 

64]. 

Examining Maxwell’s equations for the case of light propagation in free space and accounting for 

the oscillating electric field, the wave equation ∆𝐸⃗ (𝑟 , 𝑡) = 𝑐−2𝜕𝑡𝑡𝐸⃗ (𝑟 , 𝑡) is derived. According to 

the definitions presented in the previous paragraph, one can further derive the linear Helmholtz 

equation by dropping the time dependence of 𝐸⃗ (𝑟 , 𝑡) and retaining only 𝐸⃗ (𝑟 ), so that ∆𝐸⃗ (𝑟 ) +

𝑘0
2𝐸⃗ (𝑟 ) = 0. For the wavevector in free space, the dispersion relation holds 𝑘0 ≡

𝜔0

𝑐
.  

Assuming propagation along z-axis, we can write ∆≡ ∇𝑇
2 + 𝜕𝑧𝑧

2  and 𝑘0
2 = 𝑘⊥

2 + 𝑘𝑧
2, where ∇𝑇

2  and 

𝑘⊥ are the transverse Laplace operator and transverse wavenumber respectively. In the case of 

paraxial propagation along z axis, it holds that 𝑘⊥
2 ≪ 𝑘𝑧

2, which also entails 𝑘𝑧 ≈ 𝑘0. 



10 

 

 

For paraxial propagation in a linear dielectric, it can be shown that Helmholtz equation is identical 

to the one just presented, with 𝑘0 → 𝑘 = 𝑘0𝑛0. In extent, for a dielectric that responds nonlinearly, 

it holds 𝑘 = 𝑘0𝑛(|𝐸|2), resulting in the (scalar) nonlinear Helmholtz equation ∆𝐸 +

𝑘0
2(𝑛0

2 + 3𝜒(3)|𝐸|2)𝐸 = 0. Finally, under the paraxial approximation, writing 𝛦 as a function of 

the envelope field 𝐸 =
1

2
ℰ𝑒𝑖𝑘0𝑧, and by substituting to the nonlinear Helmholtz equation, the 

stationary 2D nonlinear Schrödinger equation (NLSE) is derived: 

2𝑖𝑘𝜕𝑧ℰ + ∇𝑇
2ℰ = −

𝜔0
2

𝑐2

𝒫𝑆𝑃𝑀
(3)

𝜀0
 2.5 

NLSE generally provides a good approximation for the physical interpretation of the effect of self-

focusing in the case of cw laser beams, under the assumption of paraxial propagation. Such 

analyses are described in what follows. 

2.2.1.2 Self-trapping 

The notion of self-trapping was introduced by Chiao et al. [66]. A physical argument was 

developed to interpret early experimental observations of damage in fused silica in the form of ~ 

cm filaments (induced by high power laser radiation), considerably higher than the diffraction limit. 

Indeed, under a SPM process, it is possible for a laser beam to self-focus in a medium that responds 

nonlinearly to the incident field, so that the refractive index 𝑛 changes depending on the magnitude 

of the product 3𝜒(3)|𝐸|2. In this context, it was argued in [66] that when an optical beam obtains a 

critical power, the induced nonlinearity balances the diffraction term of the NLSE. Thus, it was 

argued the beam is self-trapped and propagates as a soliton wave. 

The critical power for self-trapping was estimated by considering that the diffraction angle (derived 

from Fraunhofer diffraction theory) 𝜃𝑑𝑖𝑓𝑓 ≈ 1.22𝜆 (2𝑤0𝑛0)⁄ , where 𝜆 is the optical wavelength 

and 𝑤0 denotes the radius of a Top-hat profile distribution, balances out a self-focusing angle 𝜃𝑠𝑓, 

which “traps” the beam by means of a total internal reflection mechanism (according to Snell`s 

law). The result of the balance provides an estimate of the critical power for self-trapping 𝑃𝑐𝑟 ≈

𝜀0𝑛0𝑐𝜋 (1.22𝜆)2 (6𝜒(3))⁄ . Although this result was a crude estimation of the critical power for 

self-focusing (here, for self-trapping), Chiao et al. [66] introduced a radial solitary-wave solution 
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of the NLSE, where nonlinearity and diffraction balance perfectly each other along propagation. 

The solution (under cylindrical symmetry governed by 𝑟, 𝑧 coordinates) was given in the form of 

the function ℛ(√𝜔𝑟) =
ℰ(𝑟,𝑧)

√𝜔
𝑒−𝑖𝜔𝑧, which was demonstrated to be the solution of the equation 

−ℛ + 𝑟−1𝜕𝑟𝑟𝜕𝑟ℛ + ℛ3 = 0, known as the Townes profile [60, 64]. 

An important aspect of the self-trapping soliton of the NLSE is its stability. It turns out the soliton 

solution of the NLSE is unstable to perturbations, leading to either diffraction or optical collapse 

(discussed next).  Interestingly, by defining the parameter 𝜉, Equation 2.5 constitutes the so-called 

critical NLSE (𝜉 = 1), which is determined by the nonlinearity term, when written as ∝ |ℰ|2𝜉ℰ. In 

the case where 𝜉 < 1, the NLSE becomes subcritical and is inherently stable, whereas for 𝜉 > 1 

one deals with the supercritical NLSE (unstable) [64]. 

2.2.1.3 Optical collapse 

The notion of optical collapse following self-focusing was first introduced by Kelley [67]. The 

author considered the case, where self-focusing in a transparent dielectric overcomes diffraction, 

and the solution of the NLSE blows up. The characteristic self-focusing length 𝐿𝑆𝐹 was introduced 

and estimated for the first time, scaling as 𝐿𝑆𝐹~
𝑤0

2

√𝑃𝑖𝑛
, where 𝑃𝑖𝑛 denotes the input beam power. 

Accordingly, the critical power for optical collapse was determined by the condition that 𝐿𝑆𝐹 ≥ 𝐿𝑑, 

where 𝐿𝑑 denotes a characteristic diffraction length. 

Quite remarkably, both Chiao et al. [66] and Kelley [67] noted that the critical quantity for optical 

collapse induced by self-focusing is the optical power and not the field intensity as one would 

intuitively expect. Therefore, application of a powerful lens shall not affect the required amount of 

optical power to observe collapse, which is because both self focusing and diffraction scale as ~𝑤0
2. 

As explained in ref. [64, 68], in theory, the strict definition of the critical power for self-focusing 

is formed in terms of the Townes profile. The critical power in that case has been calculated 

numerically by solution of ∫|ℛ|2𝑟𝑑𝑟, which yields 𝑃𝑐𝑟 ≡ 𝑃𝑐𝑟
𝑇𝑜𝑤𝑛𝑒𝑠 = 1.8625

𝜆2

4𝜋𝑛0𝑛2
, (where the 

nonlinear refractive index is defined as 𝑛2 ≡
3

4𝑛0
2𝜀0𝑐

𝜒(3)) and sets a “lower bound” of optical 

collapse. However, for any other profile, optical collapse occurs at a somewhat larger power. The 
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latter power, according to Fibich [64], sets an “upper bound” for optical collapse and it defines the 

threshold power for self-focusing (or filamentation) for any profile other than the Townes. For 

example, for Gaussian profiles it has been calculated 𝑃𝑡ℎ
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 1.8962

𝜆2

4𝜋𝑛0𝑛2
 1. The threshold 

power for self-focusing 𝑃𝑡ℎ > 𝑃𝑐𝑟
𝑇𝑜𝑤𝑛𝑒𝑠 (“upper bound” value) has also been derived for various 

input spatial beam profile distributions [68].  

2.2.1.4 The aberration-free (or Geometric optics) approximation 

To analyze self-focusing, Akhmanov et al. [69] have employed the aberration-free approximation 

to the NLSE. Specifically, the field envelope was written by use of its eikonal and re-introduced in 

the NLSE. Thus, the authors significantly reduced the partial differential NLSE problem, to a 

system of three ordinary differential equations, one of which expresses the evolution of the 

normalized beam width ℒ as 

ℒ𝑧𝑧 = (
1

𝐿𝑑
2 −

1

𝐿𝑆𝐹
2 )

1

ℒ3
. 

2.6 

Importantly, within the aberration-free approximation, the value of 𝑃𝑐𝑟 has been determined by the 

condition that the optical collapse is self-similar, i.e., the beam profile retains its functional form 

while spatially becomes narrower [64]. Nonetheless, in truth, this physical picture is exact only for 

the case of the Townes profile, while any other profile that undergoes self-focusing “re-organises” 

gradually its functional form to the Townes profile before the optical collapse. The latter statement 

suggests that there is always a power transfer from the high-intensity collapsing core to the lower-

intensity non-collapsing “tail” of the beam during the foresaid re-organization process of a beam 

profile to the Townes functional [64]. This is exactly the process that establishes the threshold 

power mentioned in the previous section as the upper bound of optical collapse. Additionally, this 

 

1 Note that this is exactly Equation 5.1 (also in Equation 5.2), in which the notation 𝑃𝑐𝑟  has been used—due to 

convention, or,  according to [64], confusion in the literature. Technically, the notation 𝑃𝑡ℎ (threshold power) should 

have been used instead since 𝑃𝑐𝑟  (critical power) should correspond solely to the Townes profile. 
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is the reason why the aberration-free approximation (i.e., self-similar collapse description) leads to 

overestimation of the threshold power for self-focusing in the case of Gaussian beam profiles. 

2.2.2 The Nonlinear Schrödinger equation in the case of ultrashort laser pulses 

Starting from Maxwell equations to describe an electromagnetic wave propagating in a dielectric 

medium that responds nonlinearly, one can derive the following extended NLSE for the case of 

ultrashort laser pulses [62-64]2: 

2𝑖𝑘𝜕𝑧ℰ + 2𝑘 ∑
𝑘0

(𝑛)

𝑛!
(𝑖𝜕𝑡)

𝑛

∞

𝑛=2

ℰ + 𝑇̂−1∇𝑇
2ℰ = −

𝜔0
2

𝑐2
𝑇̂

𝒫𝑆𝑃𝑀
(3)

𝜀0
 2.7 

where the operator 𝑇̂ ≡ 1 +
𝑖

𝜔0
𝜕𝑡 and a dispersion term (𝑘0

(𝑛)
 denotes the 𝑛𝑡ℎ order dispersion) 

were introduced. It is evident in this relation that the collapse dynamics differ significantly in the 

case of self-focusing of femtosecond laser pulses since, as the beam collapses, it undergoes space-

time focusing and self-steepening, which is modeled by action of the operator 𝑇̂ on the diffraction 

and SPM terms, respectively. These effects become significant typically for fs pulses shorter than 

100 fs for propagation of laser light of frequencies in the visible-NIR spectrum in most bulk 

dielectrics. Evidently, the afore-mentioned result of the critical power for self-focusing, derived in 

the case of the stationary NLSE, is only used by most authors as a reference for optical collapse, 

rather as a strict demarcation. A discussion on this aspect is further developed in Sections 5.4.1.4 

and 8.1.1. 

A remarkable consequence of self-focusing of ultrashort laser pulses in transparent dielectrics is 

the manifestation of laser filamentation, which is typically accompanied by a broadband 

supercontinuum generation. Laser filamentation is essentially perceived as a phenomenologically 

 

2 This equation is written in accordance with the Slowly Evolving Wave Approximation, while Equation 5.3 is written 

in the context of the Minimal Approximation (see ref. [63]). The main differences between the two, is that in the former 

approximation, (i) a small correction on the dispersion term is neglected (see Generalized Few-cycle Envelope 

Approximation), and (ii) the self-steepening operator 𝑇̂ replaces all 𝜅/𝑘 operators included in the latter approximation 

(𝜅 is defined in section 4.6.6), which introduces a slight distortion in the space-time focusing effect. 
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diffraction-free propagation, along which, a low-density plasma channel is formed. The plasma 

channel does not reach optical breakdown during the course of the pulse duration since the peak 

intensity of the pulse ionizes the medium only via a highly-nonlinear multiphoton ionization 

process, while optical breakdown can only be reached via avalanching (unless very strong external 

focusing is imposed, or the beam is spatially confined by an interface [41, 70-72]). Evidently, for 

pulses shorter than 1 ps, there is no sufficient time for avalanching to affect pulse dynamics. 

However, the low-density plasma induced by multi-photon ionization counter-acts self-focusing, 

forcing the pulse to undergo focusing-defocusing cycles. Effectively, there is a balanced field 

intensity that can be reached in the formed plasma channel core, termed clamped intensity, for 

which the magnitude is determined by the band gap of the dielectric, thus the order of multiphoton 

absorption [40, 41]. 

The band gap of a given dielectric, hence the magnitude of intensity clamping, has been shown to 

affect the extent of the induced supercontinuum [43]. The latter is initiated by the SPM process, 

introducing a broadening 𝛿𝜔 on the frequency bandwidth of the femtosecond pulse. Specifically, 

the leading and trailing fronts of the pulse acquire redder and bluer frequencies, respectively. 

Consequently, in a normally dispersive medium, while the pulse undergoes spatio-temporal self-

focusing (various frequency components propagate at different velocities), the pulse splits into two 

sub-pulses, since redder and bluer frequency components accumulate (due to increasing velocities 

at these frequencies in view of normal dispersion) toward the leading and trailing fronts. It has been 

shown by numerical simulations that a steep temporal gradient is formed on the intensity profile of 

the trailing edge of the trailing sub-pulse, referred to as an “optical shock”, accompanied also by 

temporal chirp accumulation, while the leading sub-pulse undergoes a significantly less steep 

“optical shock” on the opposite direction. These effects have been evoked to interpret 

supercontinuum generation (observed as a typically asymmetrically large broadening of the pulse 

spectrum at the anti-Stokes wing, as opposed to the Stokes wing), when an ultrashort pulse 

propagates in transparent dielectrics at the normal dispersion regime. In the anomalous dispersion 

regime, the pulse is self-compressed rapidly since both trailing bluer frequencies and leading redder 

frequencies move along the center of the beam during self-focusing. Accordingly, such strong self-

compression gives rise to an extremely broad continuum generation, typically observed in the 

anomalous dispersion regime of various transparent materials [42, 62].  
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CHAPTER 3 RESEARCH APPROACH AND ORGANIZATION 

This chapter describes the research approach, motivation, and reasoning in the process of 

addressing the problems introduced in Chapter 1. It further presents the organization of the 

presented herein peer-reviewed articles, or articles submitted in peer-reviewed journals, produced 

during my candidacy, and establishes a clear link between them. 

3.1 Motivation and research approach 

Experiments that involve the interaction between femtosecond laser pulses and plasmonic nano-

colloids are frequently performed in the laboratory facilities of the Laser Processing and 

Plasmonics Laboratory (LP2L) research group. The rather distinct effect of laser filamentation and 

supercontinuum generation at the output of a sample of plasmonic nanoparticles (through a ~5-10 

mm thick cell) is readily attainable when the input power of a single (amplified) femtosecond pulse 

surpasses the critical power for self-focusing of the solvent of the colloidal solution. Typically, this 

type of nonlinearity is undesirable in the context of biomedical applications developed by our 

research group. In fact, assuming that truly self-focusing nonlinearity enhancement is attained 

within an irradiated tissue area by plasmonic doping, unwanted effects related to laser filamentation 

might potentially be exacerbated during a laser-induced surgical treatment. Thus, a requirement for 

a deep understanding of the origins of the effect itself has been a principal trigger, allowing myself 

to initiate investigation within the general framework and problematic of this work. 

There are two major components of the described (in Chapter 1) physical problem, which I closely 

approached and explored throughout this research project. Firstly, the nonlinear response of a 

plasmonic nano-colloid to laser illumination (and all accompanying laser operation parameters) 

since it is the key for interpreting the strength of the interaction and potentially engineer an 

application. Secondly, the mathematical formulation of self-focusing and the nonlinear propagation 

equation of the Schrödinger type, tailored appropriately to model the most important physical 

contributions in the studied problem. Indeed, the latter is a powerful tool for gaining insights on 

laboratory observations; therefore, for the quantification of measurable nonlinear properties of the 

examined materials as well. 



16 

 

 

A plasmonic nano-colloid, namely a colloidal solution of plasmonic nanoparticles, constitutes a 

metal-dielectric nanocomposite, a metamaterial of artificial (nonlinear) optical properties. Given 

the complexity of the examined materials, it is required to review first the nonlinear properties of 

metals, metallic nanoparticles, and metal nanocomposites at various laser excitation timescales. It 

is indeed extremely important to account for the origins of nonlinear laser-material interaction to 

assess its strength. For instance, in the present work, interactions of femtosecond laser pulses with 

plasmonic nano-colloids have been principally explored. Despite the ultrafast transient interaction 

in the case of a single pulse, femtosecond oscillator systems provide high repetition rate running 

operation leading to nonlinearities by means of accumulative effects (for example, heating or free 

carrier generation). Thus, establishing the theoretical foundations of laser-material interaction in a 

wide temporal (from femtosecond to cw illumination) and spatial (from nanometric objects to 

effective medium properties) range is needed to assess the means of the experimental approach of 

nonlinear characterization in the two examined cases of amplified or high repetition rate 

femtosecond illumination. 

In each case, having understood the origins of nonlinear response of plasmonic nano-colloids 

formulated by effective (macroscopic) medium properties, the mathematical description of laser 

light propagation was approached through the nonlinear Schrödinger equation. In the case of single 

pulse transient interaction, one must deal with the problem of femtosecond filamentation. However, 

the examined materials are semi-transparent in contrast to the extensively studied case of optical 

transparency. Consequently, the critical power for self-focusing (a key parameter of the present 

work) must be assessed numerically and only approximated by analytical formulas accounting for 

the effects of absorption, chromatic dispersion and external focusing on the process. In the case of 

femtosecond pulses of high repetition rate, the problem of nonlinear propagation can be formulated 

in the steady state. Nevertheless, attention is required on assessing experimentally the nature of the 

nonlinearity by dynamic monitoring of the system while it approaches stationarity; both thermal 

and mass transport effects were considered but also transient effects related to electron dynamics.  

In the following section, I will go through the organization of the produced, during my candidacy, 

research articles as presented in this thesis, conforming to what has been discussed so far. 
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3.2 Organization and coherence of articles 

The thesis is structured in 4 articles, which are presented in the context of the approach described 

in the previous paragraphs to address the research problematic. 

The first article, submitted to Laser & Photonics Reviews,  is entitled “Nonlinear propagation of 

laser light in plasmonic nanocomposites” and it constitutes an in-depth critical literature review of 

this thesis. More specifically, the article covers in detail the most recent developments on the 

understanding of the nonlinear response of metals, metallic nanoparticles and plasmonic 

nanocomposites in various temporal regimes. Furthermore, it provides a synthesis of their 

experimentally determined third-order properties obtained by various standard experimental 

techniques, among with practical considerations. It subsequently presents computational models 

used for the theoretical formulation of nonlinear wave propagation in plasmonic nanocomposites, 

corresponding to applicable concepts. Most recent developments in related applications are 

concisely summarized, indicating the directions of increasing interest in the field, and outlining 

shortcomings. 

The next two articles deal with the development of a characterization technique, namely, an optical 

power limiting method, in the femtosecond filamentation regime. Therefore, this part of the thesis 

is devoted on the use of amplified, single femtosecond pulse nonlinear propagation and interaction 

with a plasmonic nano-colloid. The studied technique is employed to address the problem of the 

characterization of ultrafast Kerr nonlinearity of metal nano-colloids by evaluation of the critical 

power for self-focusing. This is done in two steps: firstly, the applicability of the technique is 

demonstrated in the case of optical transparency, which is the main subject of the second article of 

this thesis entitled “Optical power limiter in the femtosecond filamentation regime” published in 

Scientific Reports. Secondly, the developed technique is further employed for the full 

characterization of a gold nanorod colloid in the filamentation regime, as presented in the third 

article entitled “Femtosecond nearly resonant self-focusing in gold nanorod colloids” published in 

Optics Express. 

Finally, the fourth article entitled “Nonlinear thermal lensing of high repetition rate ultrafast laser 

light in plasmonic nano-colloids”, published in Nanophotonics, provides a broad description of the 

phenomenon of self-focusing and nonlinear propagation through various plasmonic nano-colloids 
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by use of either femtosecond pulses of high repetition rate or cw illumination. A principal idea this 

part attempts to explore is whether alleviation of accumulative thermal heating upon laser 

illumination of the studied samples can be achieved by means of temporal localization between 

each femtosecond pulse as opposed to cw illumination. Such effect can potentially be advantageous 

toward the so-called nonlinear self-trapping induced by mass transport effects. 
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CHAPTER 4 ARTICLE 1: NONLINEAR PROPAGATION OF LASER 

LIGHT IN PLASMONIC NANOCOMPOSITES 

Review article submitted to Laser & Photonics Reviews in 2022. 

4.1 Authors and author contributions 

Leonidas Agiotis and Michel Meunier. L.A. conducted the literature review, analysed literature 

data, performed critical and numerical analyses, and wrote the main manuscript. M.M. discussed 

the work and reviewed/commented the main manuscript. 

4.2 Introduction 

Nonlinear propagation of laser light in optical media has been a subject of intense research over 

the past decades. From a fundamental point of view, this type of propagation differs from the linear 

electromagnetic wave propagation, in the sense that the field amplitude exhibits other than first 

degree dependence on time and space as it propagates through an optical medium. This arises from 

the nonlinear response of a medium to a laser’s electric field and various accompanying self-action 

effects, which can be Kerr-type, thermal, orientational, photorefractive, quadratic and others [53, 

61, 73, 74]. In this context, significant advancements have emerged in the field of nonlinear optics 

such as the development of all-optical switching and modulation devices [75, 76], optical limiters 

[77] and laser mode-locking technologies [78]. In the regime of continuous wave and long-pulsed 

laser irradiation, the observation of optical solitons, has led to applications such as waveguiding, 

beam-splitting, frequency conversion and others [74]. In the case of ultrashort pulses, new 

phenomena have been observed due to the finite time response of plasma formation in an optical 

medium, giving rise to the effect of femtosecond laser filamentation [40, 41]. The latter has 

triggered research in accompanying effects such as supercontinuum generation [42], pulse 

compression [79], parametric processes [80], terahertz generation [81, 82] spectroscopy [83], 

remote sensing [84] and others.  

A cardinal role for the engineering of applications based on the concepts just discussed plays the 

use of tailored optical materials. The significant progress made over the past decades in the 

fabrication of such “metamaterials” entails the emergence of unique nonlinear phenomena and 
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applications [36, 85]. Notably, plasmonic nanocomposites, namely, metallic structures with 

nanometric sizes embedded in dielectric hosts, constitute such metamaterials due to their ability to 

confine optical energy in the nanoscale [13]. Indeed, in the context of effective medium 

approximations, early theoretical studies in plasmonic nanocomposites indicated enhanced 

nonlinear responses due to confined local fields [4, 6]. Nonetheless, phase switching through such 

media is limited due to either strong absorption or local-field saturation [1, 36]. Deeper 

understanding of the time-dependent nonlinear response of bulk metals and plasmonic composites, 

gained over the past decades, demonstrated that their ultrafast nonlinearities are mainly of thermal 

origin [8, 9]. Thus, coherent enhancement would be typically attainable in sophisticated nanometric 

structures and at low excitation regimes [3, 36, 86, 87].  

Despite all above limitations, numerous studies still demonstrated the unique potential of 

engineered nonlinear properties of plasmonic nanocomposites. Several examples constitute the 

reconfigurable nonlinearities in soft-matter systems due to optical control over particle diffusion 

[36, 39, 55-57, 88], judicious adjustment of the nonlinear response of plasmonic nanocomposites 

depending on metallic concentration [35], waveguiding by optical vortices [38, 59, 89], engineered 

optical limiting [32, 90, 91], ultrafast spectroscopy [49, 51], and laser mode-locking [28, 29, 34]. 

The primary objective of this work is to provide an overview of the underlying physics of nonlinear 

propagation of light in plasmonic nanocomposites, within the effective medium description, and 

present in this context a compendium of relevant recent applications. To that end, in Section 4.3 

we introduce related fundamental concepts of linear nano-plasmonic and nonlinear optics. In 

Section 4.4, we discuss in detail most recent advancements on the understanding of the origins of 

the nonlinear response of metals and plasmonic nanocomposites on different timescales, from 

femtosecond pulsed to continuous wave interactions. In Section 4.5, we analyze reported 

experimental evaluations of nonlinearities of metals and metallic nanocomposites at various 

timescales and provide a synthesis of recent results and figures of merit. In Section 4.6, we present 

an overview of most recent numerical models of nonlinear wave propagation in plasmonic 

nanocomposites in the context of a subset of novel nonlinear processes and proposed applications. 

The latter are categorized in Section 4.7 according to the interaction timescales of the involved 

nonlinearities, dictated by the duration of applied pulsed photoexcitation. 
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4.3 Basic concepts 

In this section, we cover the fundamental principles of linear nano-plasmonics, the effective 

medium approximation and elements of nonlinear optics (the latter, based on a synthesis from 

several exceptional selected textbooks [53, 61, 65]) that focus on the requirements of the present 

work. 

4.3.1 Linear nano-plasmonics 

4.3.1.1 The localized surface plasmon resonance 

For the sake of briefly reviewing several fundamental concepts of nano-plasmonics, let us restrict 

ourselves to a system of a single plasmonic nanoparticle embedded in a dielectric matrix and 

exposed to an externally applied optical field. Due to the nanometric size 𝑑 of the particle, an 

applied optical field of wavelength 𝜆 ≫  𝑑 , can penetrate the structure and drive an electro-

mechanical in nature collective oscillation of the electron gas (i.e., a plasmon) of the nanometric 

metallic object [13, 92, 93]. This oscillation is bound by the particle’s surfaces; thus, a resonance 

frequency, widely referred to as the localised surface plasmon resonance (SPR) is determined by 

how the particle’s geometry affects the electron gas motion. The term “surface” is used due to the 

intrinsic difference between this type of resonance and the bulk medium “volume” plasma 

frequency 𝜔𝑝. The term “localised” is used to indicate that the surface plasmon oscillation is bound 

in space by a nanometric-sized object, which in turn is different from “propagating” surface 

plasmons observed at an interface between a metal and a dielectric.  

4.3.1.2 Factors that influence the localised surface plasmon resonance 

The existence of surface plasmons depends entirely on the condition that the real part of the 

dielectric function of the nano-object is negative (case of noble metals). [13, 93]. This condition is 

related to the opposite sign of the phase of the electronic oscillations across the nanomaterial upon 

excitation by an incoming optical field. Moreover, plasmon oscillations become pronounced when 

the imaginary part of the dielectric function of the nano-object is small compared to its real 

counterpart. This condition ensures slower decay of the mode. The type (order) of excited modes 

is dictated by the skin depth 𝛿𝑠, which is relevant to the field’s penetration depth and the optical 
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energy’s localization [13]. For example, if we consider a spherical particle, when its size gets 

smaller than its skin depth (typically 25 nm for noble metals [13]), plasmon oscillations can be 

treated as a quasi-static problem, hence solution of Laplace’s equation suffices for its description 

[93]. For larger particles electromagnetic retardation must be considered and the Lorenz gauge 

should be used instead. Gustav Mie has solved this problem analytically by a special technique (for 

spherical particles) and provided the solution in a set of normal excited plasmon modes [92].  

A sufficiently small spherical plasmonic particle can be envisaged as a dipole plasmon mode. At 

the SPR, the involved electronic transitions match energetically the frequency of an incident field, 

and energy exchange between the field and the plasmon modes becomes maximum. It follows that 

the SPR condition necessitates understanding of the involved electronic transitions and the 

determination of the dielectric function of the metal, over a range of frequencies. Let us assume 

that the dielectric function of the metal follows Drude’s model [93]: 

𝜀𝑚(𝜔) ≈ 𝜀𝑚
𝐷 (𝜔) = 1 −

𝜔𝑝
2

𝜔2 + 𝑖𝛾𝜔
 4.1 

where 𝜔 denotes the incident photon radial frequency, 𝜔𝑝 is the plasma frequency and 𝛾 is the 

plasmon damping frequency (discussed in Section 4.4.1.1). In the quasi-static regime and 

accounting for small 𝐼𝑚𝜀𝑚
𝐷 , one can arrive to an expression for the polarizability in the case of a 

metallic sphere and find a resonance condition of a dipole plasmon mode to be [92, 93] 

𝑅𝑒𝜀𝑚
𝐷 = −2𝜀𝑑 4.2 

where 𝜀𝑑 denotes the dielectric function of the surrounding medium. Assuming that 𝜀𝑚 is described 

by Drude’s model and 𝜔 ≫ 𝛾, resonance occurs at a frequency 𝜔0 = 𝜔𝑝 √1 + 2𝜀𝑑⁄ , where 𝜔𝑝 is 

the plasma frequency. This result was derived considering the geometry of the nanoparticle (here 

spherical), the dielectric environment, and the frequency dependent dielectric function of the metal 

(here it follows Drude’s model). Thus, SPR highly depends on these parameters.  

As for the dielectric function of metals, an accurate description accounts for interband transitions 

contribution 𝜀𝑚
𝑖𝑏 at high photon energies, which can be added to Equation 4.1. Typically, 𝜀𝑚

𝑖𝑏 is 

calculated by using band structure theoretical models of the studied metal, and then by integration 
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over all the involved transition dipole matrix elements and probabilities that describe excitations 

from bound states to quasi-free states due to absorption of a probe beam photon energy [8, 9]. For 

the case of Au and Ag (and their alloys) simple analytical expressions have been deduced [94] 

(Figure 4.1).  

Conclusively, for a nanometric particle of specific dielectric properties (governed by the material 

it consists of), the energy of its SPR is configurable depending on the particle’s geometry in the 

presence of an applied field and the influence of the dielectric environment. These effects have 

established nano-plasmonics as an extremely versatile platform for a broad spectrum of 

applications in linear optics and disciplines within the domain of nanotechnology [95].  

 

Figure 4.1 The dielectric function of Au. Open circles indicate measured data by Johnson and 

Christy [96]. The solid curve corresponds to the analytical model described in [94], which is 

comprised by sum of Drude’s model and two interband contributions. The interband contributions 

are expressed as parametric functions derived from integration over the joint density of states of 

Au around two different types of critical points CP1 (at X symmetry point) and CP2 (at the L 

symmetry point) [94]. 

4.3.1.3 Local Fields 

One of the most important consequences of the excited surface plasmon modes at metallic nano-

inclusions embedded in a dielectric material, is the localization of optical energy in the vicinity of 

each nano-inclusion. For a metallic spherical particle, under the influence of an applied field 𝛦⃗ 0, 

the homogeneous local electric field 𝛦⃗ 1 inside the particle reads [93, 97] 
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𝐸⃗ 1 =
3 𝑑

𝜀𝑚 + 2𝜀𝑑
𝛦⃗ 0 4.3 

a result obtained by classical electrostatics. This simple result indicates the existence of a local 

field factor 𝐿 =
3𝜀𝑑

𝜀𝑚+2𝜀𝑑
, by which, the applied field is enhanced. Minimization of the denominator 

of this factor occurs at the resonance Equation 4.2, in accordance with what described above. 

Additionally, the local field outside, in the vicinity of the nanosphere, is enhanced. Importantly, 

local fields will greatly influence the nonlinear optical properties of the composite material since 

higher power electric-field interactions will carry the factor 𝐿 to the correspondent power. 

4.3.1.4 The effective medium within the Maxwell-Garnett approximation 

A nanocomposite material is a heterogeneous medium, meaning, it consists of two different kinds 

of materials; the first corresponds to a host matrix and the second to nanometric-dimension 

inclusions [6, 98, 99]. Over the years, several homogenization theories have been implemented to 

describe effective optical properties, characteristic of the composite [100]. Here, we will focus on 

nanocomposites consisting of nanostructures of dimensions typically smaller than 100 nm 

embedded in a dielectric host. Additionally, low volumetric filling factors 𝑓 ≪ 1 will be 

considered. These assumptions allow for the use of Maxwell Garnett’s effective medium 

approximation because of the way the latter is formulated; no time dependence is assigned since 

the particles bear features smaller than any electromagnetic length scale (≲ 𝜆/4). Further, the 

considered topologies impose that 𝜆 is also larger than the mean distance between particles (Figure 

4.2a). Alternative mixing formulas are described in [99], however, they refer to different 

geometries than the ones described in this work. 

Maxwell Garnett’s approximation considers a medium where spherical inclusions are randomly 

distributed in a dielectric host matrix The medium is characterized by an effective dielectric 

permittivity 𝜀𝑒𝑓𝑓 calculated by a formula that requires as inputs the dielectric functions of the nano-

inclusions 𝜀𝑚 and the host 𝜀𝑑, and the volumetric filling factor 𝑓. Maxwell Garnett’s formula is 

further generalized considering anisotropy. The generalization can be performed by assuming an 

ensemble of uniformly distributed and similarly oriented ellipoids (particles), and integration over 
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a region of elliptical shape of same ellipticity. Accounting for a depolarization factor 𝑣𝑝 (where 

𝑣𝑝 = 1/3 for spherical symmetry), the generalized Maxwell Garnett’s formula reads [100]  

𝜀𝑒𝑓𝑓 = 𝜀𝑑

𝜀𝑑 + [𝑣𝑝(1 − 𝑓) + 𝑓](𝜀𝑚 − 𝜀𝑑)

𝜀𝑑 + 𝑣𝑝(1 − 𝑓)(𝜀𝑚 − 𝜀𝑑)
 4.4 

A numerical example is shown in Figure 4.2b. For details on the Maxwell Garnett formula we refer 

the interested reader to reference [100]. For calculations related to local field factor in composite 

materials an excellent review is found in [99].  

 

Figure 4.2 (a) Simplified schematics of the topology of the composite material within Maxwell-

Garnett’s formalism for two different values of depolarization factor 𝑣𝑝. Note that the shape of the 

integration area (dashed curve) has the same shape as the nanometric inclusions of the composite. 

(b) Numerical example of the generalized Equation 4.4. An effective medium is assumed to be 

comprised by Au nanoparticles suspended in water as shown in (a). The analytical formula of Au 

dielectric function shown in Figure 4.1 was used in the calculations. (c) Schematic representation 

of an array of vertically aligned Au nanorods, as introduced in [101, 102]. (d) Angular dispersion 

and volumetric filling factor 𝑓 dependence of the metamaterial slab of ℎ = 150 nm as shown in 

(c). All calculations have been performed according to formulations and methodologies described 

in reference [102] . 

Notably, the effective permittivity of an array of vertically aligned Au nanorods embedded in a 

dielectric matrix (Figure 4.2c) has been formulated within the Maxwell Garnett formalism. Such 

metamaterials possess unique spatial dispersion properties, arising from anisotropy in their 
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dielectric permittivity dispersion (hyperbolic). Hence, the response of a hyperbolic metamaterial 

slab (thickness ℎ) depends on the angle 𝛩 that is formed between the 𝑘⃗ -vector of an impinging 

wave and the x-y plane surface of the slab and on the concentration 𝑓 of the nanorod array, as 

shown for example in Figure 4.2c, d. In turn, unique nonlinear optical Kerr responses have been 

engineered with such metamaterials as discussed in [102] and references therein.  

4.3.2 Nonlinear propagation and the Kerr nonlinearity in absorbing media 

4.3.2.1 Nonlinear wave propagation in absorbing materials 

Based on effective medium optical properties, a plasmonic nanocomposite can be viewed as a low-

absorption or semi-transparent medium. From Maxwell’s equations, we can derive the vectoral 

wave equation of a light beam (field 𝐸⃗ ) propagating along z-axis in a nonlinear medium that reads 

𝛻2𝐸⃗ − 𝛻(𝛻 ∙ 𝐸⃗ ) −
1

𝑐2

𝜕2

𝜕𝑡2
𝐸⃗ = 𝜇0

𝜕2

𝜕𝑡2
𝑃⃗  4.5 

where 𝑃⃗  denotes the induced polarization density, 𝑡 defines time, 𝑐 and 𝜇0 stand for the free-space 

speed of light and permeability, respectively. Ιn centrosymmetric materials, by neglecting wave-

mixing and second-order effects, 𝑃⃗  can be written as the summation of linear and nonlinear 

polarizations as 𝑃⃗ = 𝑃⃗ 𝐿 + 𝑃⃗ 𝑁𝐿 . The corresponding linear part 𝑃⃗ 𝐿 and nonlinear part  𝑃⃗ 𝑁𝐿 describe 

the response of the material to an electric field 𝐸⃗ , as 

𝑃⃗ 𝐿 = 𝜀0𝜒
(1) ∙ 𝐸⃗ ,  

𝑃⃗ 𝑁𝐿 = 𝜀0𝜒
(3) ∙ 𝐸⃗ ∙ 𝐸⃗ ∙ 𝐸⃗  

4.6 

where 𝜀0 denotes the free-space permittivity. Let us assume the case of a material irradiated by a 

single, monochromatic, linearly polarized wave on the x axis. Neglecting harmonic generation and 

accounting for Equation 4.6, the induced nonlinear polarization is reduced to scalar representation, 

written (conveniently) in the frequency domain  

𝑃̂𝑁𝐿 = 3𝜀0𝜒
(3)(𝜔)|𝐸̂|

2
𝐸̂ 4.7 
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 where 𝜒(3)(𝜔) now denotes the complex tensor component 𝜒𝑥𝑥𝑥𝑥
(3) (𝜔;𝜔,𝜔,−𝜔).  

Due to bound charges (for example plasmon modes of metallic nano-inclusions) for both linear and 

nonlinear parts of polarization densities, an additional polarization density current should be 

accounted for 𝐽  𝑏 =
𝜕

𝜕𝑡
𝑃⃗  . Hence, without loss of generality, this term is added in the right hand of 

Equation 4.5 to account for the imaginary parts of the linear and nonlinear susceptibilities. If 

ionization occurs in the host, additional free charges 𝐽𝑓 should be considered [63]. 

We can drop the tensor notation for the complex susceptibility under the assumption of medium 

isotropy and write 𝜀(𝜔) = 1 + 𝜒(1)(𝜔) = 𝑛2(𝜔), where 𝜀(𝜔) expresses the relative permittivity 

of the medium and 𝑛(𝜔) the refractive index. Equation 4.5 is rewritten in the form 

𝛻2𝐸̂ − 𝛻(𝛻 ∙ 𝐸̂) +
𝜔2

𝑐2
𝜀(𝜔)𝐸̂ = −𝜇0(𝜔

2𝑃̂𝑁𝐿 + 𝑖𝜔𝐽) 4.8 

where 𝐽 = 𝐽𝑏 + 𝐽𝑓. Assuming paraxiality and propagation within the slowing varying envelope 

approximation (SVEA), so that 𝛻(𝛻 ∙ 𝐸̂) ≈ 0 and 𝛻2𝐸̂ ≈ 2𝑖𝑘(𝜔)
𝜕

𝜕𝑧
𝐸̂ + 𝛻𝑇

2𝐸̂ (𝛻𝑇
2 stands for the 

transverse Laplace operator), Equation 4.8 becomes 

2𝑖𝑘(𝜔)
𝜕

𝜕𝑧
𝐸̂ + 𝑘2(𝜔)𝛦̂ + 𝛻𝑇

2𝐸̂ = −
𝜔2

𝑐2

𝑃̂𝑁𝐿

𝜀0
− 𝑖

𝜔

𝑐

𝐽

𝜀0𝑐
 4.9 

known as the Forward Maxwell Equation (FME) [103]. Steady state is assumed when 𝑃⃗  depends 

weakly on time; this is a good approximation for continuous wave (cw) irradiation where chromatic 

dispersion becomes negligible [104]. FME is a carrier resolving paraxial equation, being accurate 

in the cw regime since there is no significant angular spectrum extent from the central frequency. 

4.3.2.2 Kerr nonlinearity in absorbing media 

Light propagating through plasmonic nanocomposites undergoes both refractive and absorptive 

nonlinearities. In this section we will first examine each one of these nonlinearities and then discuss 

their role in Equation 4.8. The effective linear refractive index 𝑛0,𝑒𝑓𝑓 = √𝜀𝑒𝑓𝑓 of the material may 

undergo shift 𝛿𝑛(𝐼) depending on the intensity of the input optical field leading to modulation [53] 
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𝑛(𝐼) = 𝑛0,𝑒𝑓𝑓 + 𝛿𝑛(𝐼) 4.10 

In many occasions the intensity dependent shift 𝛿𝑛(𝐼) is associated with the nonlinear polarization 

induced by bound electrons, described by 𝑅𝑒𝜒𝑒𝑓𝑓
(3)

. This is the case of the optical Kerr effect. 

However, modulation 𝛿𝑛(𝐼) is also associated with diffusive nonlinearities, e.g. thermal (quasi-

Kerr effect) [53]. Equation 4.10 is the master equation of the intensity dependent refractive index, 

implicating the induction of a self-induced lens effect (self-focusing and self-phase modulation) of 

a laser beam propagating through a nonlinear medium (see for example Figure 4.3a). 

 

Figure 4.3 (a) Simplified illustration of the effect of a positive Kerr-type nonlinearity (self-

focusing). The illustration is shown for a transparent medium for simplicity. The incident 

wavefront is distorted as the beam propagates through the nonlinear medium due to the intensity 

dependent phase 𝜑 modulation across the Gaussian profile distribution. (b) Optical transmittance 

of a collimated optical beam propagating through a medium that exhibits nonlinear absorption. A 

typical curve of the optical transmittance versus the input intensity (red dotted curve) is shown on 

the bottom figure. The two nonlinearities just described may act concurrently in a plasmonic 

nanocomposite. Notably, the one influences the other since both effects are intensity dependent. 

We shall examine the case of Kerr-type nonlinearities and for convenience, let us assume a 

monochromatic wave treatment. We first define the electric field 𝐸⃗ (𝑟 , 𝑡) of a monochromatic beam 

propagating along z axis in cylindrical coordinates (𝑟  is the radial distance from z), the induced 

nonlinear polarization 𝑃⃗ 𝑁𝐿(𝑟 , 𝑡) and the induced polarization current 𝐽 (𝑟 , 𝑡) in the vector form 

{𝐸⃗ (𝑟 , 𝑡), 𝑃⃗ 𝑁𝐿(𝑟 , 𝑡), 𝐽 (𝑟 , 𝑡)} =
1

2
({ℰ, 𝒫𝑁𝐿 , 𝒥}𝑒𝑖[𝑘(ω0)𝑧−𝜔0𝑡] + 𝑐. 𝑐. )𝑥̂ 4.11 
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Where 𝑘(ω0) is the wavenumber, carrying information of the optical properties of the propagation 

medium, ω0 is the optical frequency of the beam and ℰ represents the complex amplitude envelope 

of the field, 𝒫NL is the complex nonlinear polarization envelope and 𝒥 denotes the complex 

polarization current envelope. 

Let us consider only the axial component of Equation 4.8 (𝛻𝑇
2𝐸 = 0) so that 𝛻2𝐸 →

𝑑2

𝑑𝑧2 𝐸, and 

𝛻(𝛻 ∙ 𝐸̂) ≈ 0. According to the Equation 4.11, Equation 4.8 can be written in the SVEA [65] 

𝑑

𝑑𝑧
ℰ𝑒𝑖[𝑘𝑧−𝜔0𝑡] = 𝑖

𝜔0
2

2𝑘𝑐2
{
3

4
𝑅𝑒𝜒(3)|ℰ|2 − 𝑖 (𝐼𝑚𝜒(1) +

3

4
𝐼𝑚𝜒(3)|ℰ|2)} ℰ𝑒𝑖{(𝑘−𝑘+𝑘)𝑧−𝜔0𝑡} 4.12 

where we have assumed that all optical properties are considered effective medium properties, 𝑘 =

𝜔0√𝜀 𝑐⁄ = 𝜔0√(1 + 𝑅𝑒𝜒(1)) 𝑐⁄  is a real quantity  and we have included the imaginary part of 𝜀 in 

𝒥 for convenience. Since ℰ is complex, it can be written in the form ℰ = |ℰ|𝑒𝑖𝜑, where 𝜑 denotes 

the phase (argument) of ℰ . Therefore Equation 4.12 reads 

𝑑

𝑑𝑧
|ℰ| + 𝑖|ℰ|

𝑑

𝑑𝑧
𝜑 = 𝑖

𝜔0
2

2𝑘𝑐2
{
3

4
𝑅𝑒𝜒(3)|ℰ|2 − 𝑖 (𝐼𝑚𝜒(1) +

3

4
𝐼𝑚𝜒(3)|ℰ|2)} |ℰ| 4.13 

Equation 4.13 can be solved by separating real and imaginary parts, so first we find that the phase 

𝜑 of the complex amplitude after a propagation length z becomes (Figure 4.3a): 

𝜑 =
𝜔0

𝑐
(𝑛0 +

3

8𝑛0
𝑅𝑒𝜒(3)|ℰ|2) 𝑧 =

𝜔0

𝑐
(𝑛0 +

3

4𝑛0
2𝜀0𝑐

𝑅𝑒𝜒(3)𝐼) 𝑧 4.14 

where the substitution 𝐼 = 𝑛0𝜀0𝑐|ℰ|2 2⁄  was performed. In accordance with Equation 4.10, we find 

the common definition of the nonlinear refractive index due to bound charges 

𝑛2 = 𝛿𝑛 𝐼⁄ =
3

4𝑛0
2𝜀0𝑐

𝑅𝑒𝜒(3) 4.15 

By taking the derivative of the time-averaged intensity 𝑑|ℰ| 𝑑𝑧⁄ = 𝑑𝐼 𝑑𝑧⁄ ∙ (|ℰ| 2𝐼⁄ ), the real part 

of Equation 4.13 gives 
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𝑑𝐼

𝑑𝑧
= −

𝜔0

𝑛0𝑐
(𝐼𝑚𝜒(1) +

3𝐼𝑚𝜒(3)𝐼

2𝑛0𝜀0𝑐
) 𝐼 = −(𝑎0 + 𝛽𝐼)𝐼 4.16 

 It follows that the linear absorption coefficient 𝑎0 and the nonlinear absorption coefficient 𝛽 read 

𝑎0 =
𝜔0

𝑛0𝑐
𝐼𝑚𝜒(1),   𝛽 =

3𝜔0

2𝑛0
2𝜀0𝑐2

𝐼𝑚𝜒(3) 4.17 

Thus, we derived the common expressions of Kerr-type nonlinearities 𝑛(𝐼) = 𝑛0 + 𝑛2𝐼 and 𝑎(𝐼) =

𝑎0 + 𝛽𝐼, where 𝑛0 and 𝑎0 denote linear refractive index and absorption coefficients, respectively.  

 

Figure 4.4 Ratio of the exact result of Equation 4.18 over the extensively used Equation 4.15 versus 

the ratio between linear extinction coefficient over refractive index. Each curve corresponds to 

varying Imχ(3) / Reχ(3) ratios. In the case of plasmonic nanocomposites, at optical frequencies in the 

visible range and low filling factors (low extinction coefficient), it typically holds κ0 ≪ n0, so that 

the examined n2 ratio becomes 1, i.e., Equation 4.15 is exact. Produced according to analytical 

formulas introduced by del Coso and Solis (Ref. [105]).  

The simplification that 𝑘 is a real quantity in an absorptive medium may lead to incorrect 

description of the wave-propagation equation. Del Coso and Solis have demonstrated that each of 

the exact expressions of 𝑛2 and 𝛽, depend on both 𝑅𝑒𝜒(3) and 𝐼𝑚𝜒(3) [105]. Nonetheless, at optical 

frequencies and for low concentration of metallic inclusions, they can be decoupled with 

satisfactory accuracy as shown by Equation 4.18. Thus, in the context of wave propagation in 

plasmonic nanocomposites in the visible-near infrared portion of the electromagnetic spectrum, the 

nonlinear polarization and density current can be expressed as 𝒫𝑁𝐿 = 2𝜀0𝑛0𝑛2𝐼ℰ, and 𝒥 =
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𝜀0𝑐𝑛0𝑎(𝐼)ℰ respectively, where 𝑛2 is here the nonlinear index of refraction of the effective 

medium, and 𝑎(𝐼) is the absorption coefficient of the effective medium. The exact coupling 

between 𝑅𝑒𝜒(3) and 𝐼𝑚𝜒(3) at a wide range of optical frequencies, with the nonlinear index of 

refraction 𝑛2 and the nonlinear absorption coefficient 𝛽 reads 

𝑛2 =
3

4𝜀0𝑐(𝑛0
2 + 𝜅0

2)
[𝑅𝑒𝜒(3) +

𝜅0

𝑛0
𝐼𝑚𝜒(3)] 

𝛽 =
3𝜋

𝜆𝜀0𝑐(𝑛0
2 + 𝜅0

2)
[𝐼𝑚𝜒(3) −

𝜅0

𝑛0
𝑅𝑒𝜒(3)] 

4.18 

Where 𝜅0 the linear extinction coefficient. Indeed, if 𝐼𝑚 𝜒(3) 𝑅𝑒𝜒(3)⁄ ~1 then for 𝑓 < 10−4 and at 

optical frequencies (𝜅0 ≪ 𝑛0) it holds 𝜅0𝛽𝜆 (𝜋𝑛0𝑛2)⁄ ≈ 𝜅0𝐼𝑚𝜒(3) (𝑛0𝑅𝑒𝜒(3))⁄ ≪ 1 (Figure 4.4). 

Hence, under these conditions, one can use Equations 4.15-4.17. 

4.4 Nonlinear response of plasmonic nanocomposites 

In this section, we will present an overview of recent results on the origins and formulation of the 

nonlinear response of plasmonic nanocomposites, within the effective medium approximation. 

Besides the evident influence of field-intensity, we focus on the temporal pulsewidth of the laser 

source. This is because of the large influence of the laser pulsewidth on the nonlinear response of 

metallic composites (see Figure 4.5a). In practice, understanding of that influence, is related to the 

increasing technological interest on the development of photonic devices of ultrafast response. 

Section 4.4 is organized as follows: Plasmon dephasing and electron kinetics is discussed in Section 

4.4.1. Sections 4.4.2, 4.4.3, deal with the formulation of the electronic nonlinear response of metals, 

and Section 4.4.4 with the one of the effective medium. In Section 4.4.5, we discuss nonlinear 

absorption of plasmonic nanocomposites. Section 4.4.6 focuses on the influence of high-order 

nonlinearities in the effective medium approximation. Finally, Section 4.4.7 is devoted on the 

formulation of diffusive nonlinear response, of either thermal or mass transport origin. 
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4.4.1 Interaction timescale considerations and electron kinetics 

4.4.1.1 Plasmon dephasing 

Under an over-simplified description of a particle-plasmon excitation in the context of a closed 

two-level atomic approximation, phenomenological non-radiative relaxation lifetimes 𝑇1 and 𝑇2 

have been used to express the population relaxation and the coherence dephasing time of the 

induced polarization, respectively [106]. Following ultrafast laser excitation, localized surface 

 

Figure 4.5 (a) Onset of nonlinear contributions depending on the employed laser type interaction 

with a plasmonic nanocomposite (b) Diagram of the plasmon decay pathways. (c) Representative 

timescales of excited electron dynamics in a metal or metallic nanoparticle system under ultrashort 

pulsed excitation. 

plasmons typically decay via predominantly non-radiative processes very fast 𝑇2 = 𝛤−1~𝑡𝛮𝑅<20 

fs [106] (Figure 4.5b). The latter is associated with (i) size-independent and inelastic electron-

phonon scattering or Umklapp electron-electron scattering, involving intraband transitions within 

the volume (bulk) of the particle at a rate 𝛾0 [11], close to the Fermi level, (ii) frequency-dependent, 

interband electronic transitions within the volume (bulk) of the particle at a rate 𝛾𝑖𝑏, close to the 

Fermi level [10-12] and (iii) additional scattering at the surfaces 𝛾𝑆 (see next paragraph). 

Accordingly, it holds 𝛤 = 𝛾 + 𝛾𝑖𝑏, where 𝛾 = 𝛾0 + 𝛾𝑠 was introduced in Drude’s model [Equation 

4.1]. Additional relaxation processes occur via radiative decay, having an efficiency that decreases 

as the particles become smaller [88], in a much longer timescale 𝑡𝑅 (~0.1-1 ps), so that 𝛵2
−1 =
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𝑡𝑁𝑅
−1 + 𝑡𝑅

−1 ≈ 𝑡𝑁𝑅
−1. For potential enhancement of ultrafast coherent nonlinear processes in plasmonic 

systems, the longest possible coherence dephasing time 𝑇2 of the plasmon is a requirement to 

benefit from the amplified induced polarization discussed earlier. 

An open system has been proposed to extend the two-level particle-plasmon decay, via additional 

non-radiative interactions with the surface of the particle (size-dependent) at a rate 𝛾𝑠 (Figure 4.5b). 

In other words, in addition to the size-independent processes described in the previous paragraph 

the plasmon decays and loses its temporal coherence also via collisional interactions with surface 

defects and impurities into a reservoir of free electron kinetic energy modes and phonon 

excitations, which slow down relaxation in a much larger timescale [10-12, 88] (Figure 4.5b, c). 

Plasmon decoherence timescales may vary dependent on the electronic structure of the metal, and 

the geometry and chemical environment of a metallic nano-object. Shorter lifetimes occur when 

the SPR is above the threshold for interband transitions [9]. For this reason, Ag constitutes 

physically a superior plasmonic material in comparison to Au [13], however, in a Ag cluster (<100 

atoms) interband transitions are still possible [107]. In Au nanorods interband transitions are 

typically far from the energy of the SPR [9] yielding longer phase decoherence [106, 108, 109]. A 

similar effect has been observed in dendrites [110] and is applicable on the tips of the branches of 

nanostar geometries, where propagating surface plasmon-polaritons decay. In nanocages or 

nanoboxes (typically larger than 40 nm) size effects (increased surface scattering) become 

dominant, resulting in very short decoherence times [88, 111]. Contrarily, in particles smaller than 

the characteristic length 
𝑣𝐹

𝜔
 (typically < 3nm), where 𝑣𝐹 is the Fermi velocity, plasmon decays 

faster into electron-hole pairs and the plasmon quasiparticle becomes indistinguishable from single 

particle interactions (nonlocality) [13]. In ab initio calculations performed in metallic nanoclusters, 

Ma et al. [107] demonstrated that the two can be distinguished observing that for the plasmon, the 

amplitudes of the relevant transition coefficients oscillate at the plasmon frequency, whereas for 

single particle excitation the involved transition coefficient amplitudes vary in frequency. Blocking 

interband transitions in such systems (for example by alloying with other metals) plasmon 

decoherence can be temporally extended, ultimately leading (in the ideal case of complete s-p 

blocking) to Rabi oscillations between plasmon and single particle excitations. The chemical 

interface also plays an important role on the plasmon decay. Recently, Foerster et al. [112] have 
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proposed that addition of surface adsorbates induce dipoles inside the metal acting as scattering 

centers. Further, several studies have shown that in semiconductor-metal interfaces, plasmons may 

decay directly into interfacial states [113, 114] below the Schottky barrier, yielding generally faster 

decay times for smaller band-gap interfacial semiconductors [115].  

 

Figure 4.6 Experimentally measured plasmonic decoherence of various aggregations of silver 

nanoparticles with corresponding SEM images (inset) (a – d). Adapted with permission from [116]. 

Copyright 2015, American Chemical Society. Theoretical calculations of Fano-type (e) and Rabi-

type (f) dimer dynamic decoherence. Adapted under terms of the CC-BY license [117]. Copyright 

2020, De Gruyter. Notably, images (a-b) correspond to a system of Ag particles described by a 

Fano-type interaction, whereas, images (c-d) correspond to a system of Ag particles, which can be 

described by a Rabi-type interaction. 

Recent studies have shown that longer timescales of plasmon decoherence are possible in systems 

of nanoparticles, such as small agglomerations or dimers. In gold bowtie configuration, Xu et al. 

[118] have shown dephasing time variations from 7-17 fs depending on the laser polarization. 

Experiments in small clusters of silver particles have also shown varying plasmon decay rates 

where the decoherence signal exhibits beatings between two or more frequencies [116] (Figure 

4.6a-d). Another recent theoretical study [117] has demonstrated that in dimers decoherence 

beatings can be observed characterized by a Fano-resonance type (for dimers that consist of two 

uneven absorption linewidth oscillators) or Rabi-oscillation effects (for dimers that consist of 

equally narrow absorption lines), as shown in Figure 4.6e-f. 
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4.4.1.2 Non-thermal (hot) electrons 

A photo-excited localized surface plasmon is comprised of two types of electronic excitations: low-

energy free carriers (Drude electrons and interband transitions) and high-energy free carriers, due 

to single-particle electronic excitations (hot electrons) as shown in Figure 4.7a, b [10, 12]. We 

discussed in the previous paragraphs that the first type is assigned to intraband or interband (if 

photon energy exceeds the interband threshold) transitions not far above the Fermi level. These 

carriers are thermalized and their coherent motion in the bulk of the metal decays due to phonon 

or defect scattering [10, 12]. If interband transitions are present, plasmon decay will be 

accompanied by excitation of a hot hole population [119, 120] (Figure 4.5b, Figure 4.7b).  

The second type of free carriers arises entirely due to surface-assisted optical intraband transitions, 

which otherwise are forbidden by linear momentum conservation [10, 12, 121]. These transitions 

are comprised of a significant number of high-energy electrons above the Fermi level, spatially 

located near the boundaries of a nanoparticle (Figure 4.7a, b). These free carriers are excited 

concurrently with plasmon decoherence, they are not thermalized and they seek relaxation at 

somewhat longer timescales [10, 12]. Thermalization occurs principally by electron-electron 

scattering processes at a rate 𝛾𝑒−𝑒~𝑡𝑒−𝑒
−1  (or Auger decay in the presence of hot holes [122]) without 

significant interaction with the phonons for 𝑡~𝑡𝑒−𝑒 < 100 fs [9, 11, 12, 122].  

The early dynamics of the non-thermalized distribution function of conduction electrons are 

described by Boltzmann’s transport equation [8, 9, 11, 26, 123]. A source term usually accounts 

for the laser energy deposition as absorbed by the plasmon, while two collision terms are introduced 

to represent electron-electron scattering and electron-phonon interaction, the latter being weak for 

t < 100 fs. Other practical models include (i) an extended two-temperature model [12, 124, 125], 

which considers the energy stored on the non-thermalized electrons and assigns separately 

temperatures to the thermalized population of conduction electron and phonon sub-systems, and 

(ii) a revised version of it, a quantum two-temperature model, as presented in reference [12]. First 

principles calculations have also been recently used [120, 126, 127] to reproduce successfully 

ultrafast pump-probe measurements [128] of plasmonic nanostructures. An important consequence 

described by all above models is the ultrafast modulation of the permittivity of metals, which 

strongly affects the nonlinear response, within timescales as early as < 100 fs. 
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Figure 4.7 (a) Localized non-thermal electron generation near the surfaces of a metallic 

nanostructure and interactions with a molecule or semiconductor material (host) at the interfaces. 

Reproduced with permission [10]. Copyright 2019, Elsevier. (b) Electron generation rate at a 

metallic nanostructure as a function of energy, following a laser pulse interaction. A small yet 

significant distribution of high energy electrons is produced, by intraband transitions near the Fermi 

level. Reproduced with permission [12]. Copyright 2017, American Chemical Society. (c) Energy 

diagram of dynamics of non-thermalized electronic distribution obtained by solution of 

Boltzmann’s transport equation (as described in the text) for the case of irradiation of a gold 

nanorod by a fs pulse tuned at its longitudinal plasmon resonance. Reproduced with permission 

[123]. Copyright 2016, American Physical Society. (d) Fitting of theoretical solution of the 

extended two-temperature model and its fitting to optical transmittance transients obtained by fs 

pump-probe experiments in Au nanofilms. Reproduced with permission [124]. Copyright 2012, 

American Physical Society. (e) Ab-initio calculations and their fitting to experimental transients of 

absorption cross-section obtained by fs pump-probe experiments in colloidal gold nanoparticles. 

Reproduced with permission by [128]. Copyright 2016, American Physical Society. 

Conclusively, the ultrafast generation of surface-induced hot electrons is a deleterious process for 

plasmon-enhanced coherent nonlinear processes. Thus, there is an interplay between pronounced 

plasmon response and generation of hot electrons as the size of the particles becomes smaller and 

energy is confined within the boundaries of a single metallic nanoparticle. Even so, assemblies of 
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larger particles typically yield higher plasmon quality factors yet facilitate massive hot electron 

generation within engineered hot spots [119]. Finally, even if plasmon decoherence occurs rapidly, 

the foresaid ultrafast modulation of the dielectric permittivity of the metal [8, 9, 11, 26, 123, 128], 

enables engineering of incoherent nonlinear processes, such as Kerr type [3, 8]. 

4.4.1.3 Electron-lattice coupling 

Following electron thermalization into a Fermi-Dirac distribution, energy is transferred to the 

lattice of the metallic object. The coupling is characterized by a time constant 𝑡𝑒−𝑝ℎ (also by the 

coupling parameter 𝐺𝑒−𝑝ℎ ∝ 𝛾𝑒−𝑝ℎ~𝑡𝑒−𝑝ℎ
−1 ), evaluated by pump-probe techniques [8, 9, 88]. For 

instance, for bulk Au and Ag it has been evaluated ~1.15 and 0.85 ps, respectively [8, 9]. For 

various metals, the dependency of 𝑡𝑒−𝑝ℎ on several factors has been the subject of extensive 

research over the past decades. The electronic structure of the metallic material itself and the 

electronic temperature has shown to exhibit the most important roles. The dependence of the 

coupling has been investigated theoretically for the case of various metals, based on first principle 

calculations [127, 129-131].  

In fact, for the case of nanoparticles, spatial confinement is expected to influence 𝑡𝑒−𝑝ℎ, due to 

coupling of electrons with surface phonon modes [88]. Even though this effect has been confirmed 

in Sb and Cu, in Au and Ag particles, experiments demonstrate constant 𝑡𝑒−𝑝ℎ, down to sizes of 

10 nm [88], which only exhibit sensitivity to the interband energy threshold in a binary fashion 

(Figure 4.8b) [132]. Reduction of 𝑡𝑒−𝑝ℎ in Au and Ag particles of size below 10 nm (Figure 4.8a) 

has been assigned to electron spill-out at the surfaces [88] and recently to strong surface dielectric 

screening [133]. The main reason that 𝑡𝑒−𝑝ℎ was observed to be size-independent in Au and Ag 

was attributed lately to the influence of lattice crystallinity. Indeed, a strong size-dependency in 

monocrystalline Au nanostructures as opposed to polycrystalline was demonstrated in Ref. [134] 

(Figure 4.8c). The effect was also demonstrated in earlier studies of epitaxially grown Cu films 

[135] but also in recent transient absorption studies in Al nanocrystals (Figure 4.8d) [136]. Nano-

porosity in Au thin films also highlights the influence of crystal structure in the electron-phonon 

coupling [137]. Another factor that influences thermal transport dynamics is the environment of 

the particles, which can be altered by oxidized interfaces [138, 139], surface ligands [133] or even 

due to solvent’s thermal conductivity in soft matter systems [140]. 



38 

 

 

 

Figure 4.8 Size dependency of electron phonon coupling characteristic time, or constant (𝐺𝑒−𝑝ℎ), 

in Au and Ag nanoparticles. (a) Reduction of the characteristic time is observed only below a 

typical size of ~10 nm. Reproduced with permission [141]. Copyright 2003, American Physical 

Society. (b) Only a binary, size-independent shift is reported in [132] for the case of Au, depending 

on whether excitation is below or above the interband transition threshold of Au for particles larger 

than 10 nm. Reproduced with permission. Copyright 2017, American Chemical Society. (c) 

Electron-phonon coupling is largely influenced by the crystallinity of a Au nanoparticle in 

conjunction with its size. Reproduced with permission [134]. Copyright 2021, American Chemical 

Society. (d) The effect of crystallinity in the detection of coherent phononic vibrations and related 

quality factor in colloidal Al nanocrystals (AlNC) and lithographically fabricated Al nanodisks 

(AlND) of similar size (~180 nm diameter). Reproduced with permission [136]. Copyright 2020, 

American Chemical Society. 

4.4.1.4 Phonon relaxation and thermal diffusion to the environment 

Thermalization of electrons with the phonon sub-system throughout the volume of a nanoparticle 

occurs typically in several picoseconds [8, 9, 12]. Within this timeframe, the lattice temperature 

increases to an equilibrium temperature and the particle itself expands. Expansion causes coherent 

mechanical oscillations of the particles, which can be detected in optical pump-probe 

measurements because of resulting change of the permittivity of the metal (and therefore, the 

plasmon resonance) at a certain frequency (corresponding to a vibrational mode) [12, 88, 142]. In 

turn, such measurements have contributed to the understanding of the mechanical properties of 

such particles [88] and the development of various applications [143].  
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Figure 4.9 (a) Dependency of phonon relaxation and thermal diffusion to the surrounding substrate 

(glass) on the thickness of thin gold nanoparticle films of varying thicknesses (6-120 nm). Adapted 

with permission [133]. Copyright 2020, American Chemical Society. (b) Spatial localization of 

temperature increase in the vicinity of a gold nanoparticle induced by pulsed illumination as 

opposed to cw. Reproduced with permission [48]. Copyright 2011, American Physical Society. (c). 

Normalized thermal capacitance KT dependence on the shape of various geometries of gold 

nanostructures. Adapted with permission [144]. Copyright 2010, American Chemical Society. 

Typically, relaxation of the particle lattice and energy transport to the environment (dielectric 

matrix) takes place through the particle interface [8, 9]. For very small particles (<10 nm), energy 

transport may occur directly from interaction of non-thermal electrons with the phonons of the 

external dielectric matrix itself [8, 9]. For larger nanoparticles (>10 nm) energy exchange between 

nanoparticle lattice and external dielectric matrix is governed by the thermal resistance of the 

interface and the diffusion of heat in the surrounding matrix [8, 9]. The timescale of this interaction 

may vary largely (from 1 ps to 100 ns) because of the multiple interfaces involved (Figure 4.9a) 

[8, 9, 133] but also due to the dependence of heat flow on the geometry of the particle (Figure 4.9c) 

[144]. Further, the spatial temperature increase envelope profile, surrounding a nanostructure, is 

significantly influenced by the timescale of the interaction (Figure 4.9b) [48]. This is because under 
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very short pulse interaction (up to several ps) energy is deposited and exponentially decays within 

the nanoparticle before transported to the surrounding matrix. As a result, temperature increase is 

spatially confined around the irradiated nanostructure compared to a nanosecond pulsed case or 

continuous wave illumination. 

4.4.2 Electronic, coherent nonlinear response of metallic nanoparticles 

Although practically not applicable within the framework of modelling of nonlinear propagation 

and related applications presented in this work (Sections 4.6 and 4.7), the theory presented in this 

section provides insights on the origins of the coherent nonlinear (third order) response of 

plasmonic nanoparticles and introduces a clear distinction from the Kerr-type electronic response 

presented in Section 4.4.3. Notably, there are only a few theoretical works (building on a single, 

unified quantum theory) relevant to the coherent nonlinear response of metallic nanoparticles, 

which additionally subject to constraints of spherical geometry and small particle sizes and are 

based on the perturbative treatment of equation of motion (i.e., weak pump field regimes). 

The foundations were introduced by Hache et al. [145] (HRF model) and later, Rautian [146] 

(HRFR model) further developed the main ideas of the theory by using the correct Hamiltonian. 

Briefly, the nanoparticle system was treated quantum-mechanically, as a gas of N noninteracting 

electrons within the “particle in a box” model of spherical symmetry. The equation of motion was 

subsequently solved assuming Fermi statistics for the unperturbed system, expressing the first and 

third order susceptibilities by nested summation over states. By use of the two-level approximation 

and assuming that the susceptibilities consist of two contributions (off resonant and resonant), 

summations could be replaced by integrations leading to the following analytical approximation: 

𝜒𝑚
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𝑔3)] 4.19 

where, 𝛤1 and 𝛤2 represent the phenomenological relaxation rate of each level and the coherence 

rate between two consecutive levels, 𝑙 is the characteristic atomic scale (𝑙 = 𝑉 𝑁⁄  where 𝑉 is the 

volume of the nanoparticle and 𝑁 is the sum of all the equilibrium-state populations in the particle), 

𝑎𝑆 is Sommerfeld’s constant, 𝜆𝑝 is the wavelength that corresponds to the plasma frequency 𝜔𝑝, 
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𝐹3 and 𝑔3 is a set of dimensionless functions of the order of unity, ℏ is the reduced Planck constant, 

and 𝐸𝐹 and 𝐸𝑔 stand for the Fermi energy and the ground state energy respectively.  

 

Figure 4.10 Modelling of the intrinsic third order susceptibility of small spherical metallic 

nanoparticles. (a) Comparison of analytical Equation 4.19 (deduced originally by Rautian) with 

numerical simulations for two different sizes (here denoted by d) of Ag nanoparticles. Adapted 

with permission [147]. Copyright 2011, American Physical Society. (b) Application of the 

corrected model of Rautian (HRFR, solid black curve) for small metallic Ag spheres, fitted on 

experimental data on the effective medium. The dotted lines correspond to the originally proposed 

formulation developed by Hache et al. [145] (HRF model), which is inversely proportional to 

nanoparticle size. Adapted with permission [148]. Copyright 2004, American Chemical Society. 

Govyadinov et al. [147] expressed the theory in an equivalent form that can be better administrated 

by numerical calculations, which would be otherwise a rather formidable task in its complex (exact) 

analytical form. The authors revealed a surprising accuracy and range of applicability of the 

approximated formulas of HRFR model (see for example Figure 4.10a). They further pointed out 

several constraints related to its applicability, which include the absence of a clear “bulk” limit and 

the use of the specific case of 𝜒(3)(𝜔;−𝜔,𝜔,𝜔). Interestingly, in another note, Drachev et al. [148] 

applied HRFR model to investigate its applicability in a silver nanoparticle nanocomposite’s 

effective 𝜒𝑒𝑓𝑓
(3)

, finding a remarkable accordance between the dependence of 𝜒𝑒𝑓𝑓
(3)

/𝑑 and 

experimental results found in [149] (Figure 4.10b). Within the same formalism, Drachev et al. 

[150] interpreted spectra of photoluminescence induced by two-photon transitions in Ag aggregates 

as a quantum size effect. Numerical calculations for particles with radii up to 30 nm, interpreted 
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the discrete energy peaks (corresponding to sets of one-photon, two-photon or double (both) 

resonances), retrieved from experiments [151].  

4.4.3 Electronic, incoherent response (Kerr-type) 

4.4.3.1 Non-thermal electron contribution 

As discussed earlier, the plasmon mode decays very fast (< 20 fs), rendering Equation 4.19 not 

meaningful beyond the decoherence timescale and within the strong field interaction regime. In 

fact, the susceptibility of the metal undergoes strong modulation because of the generation of non-

thermal free carriers near the surfaces of a particle in a timescale between 10-100 fs. If the incident 

photon energy does not suffice for the allowance of interband transitions, the foresaid ultrafast 

modification arises predominantly from electron-electron scattering processes, which results in a 

broadening of the related rate  𝛾𝑒−𝑒  that reads [8, 9, 11, 125, 152, 153] 

𝛿𝛾𝑒−𝑒 𝛾𝑒−𝑒⁄ ≈ 𝛿𝛵𝑒 𝑇0⁄  4.20 

where 𝛿𝛵𝑒 stands for the electron temperature rise and 𝑇0 is their initial temperature. The Drude 

dielectric function incurs accordingly a modification, (in a timescale < 100fs): 

𝛿𝜀𝑚
𝐷 ≈ 𝑖𝛿(𝐼𝑚𝜀𝑚

𝐷 ) ≈ 𝑖
𝜔𝑝

2

𝜔3
𝛿𝛾 ≈ 𝑖

𝜔𝑝
2

𝜔3
𝛿𝛾𝑒−𝑒 4.21 

To account for interband transitions a contribution 𝛿𝜀𝑚
𝑖𝑏 should be computed. In fact, this 

contribution dominates at lower pump intensities over the intraband (Drude), however the latter 

becomes important at higher electronic temperatures [8, 9, 11]. Away from the interband transition 

threshold, typically 𝛿𝜀𝑚
𝑖𝑏 is weakly dispersed and its real part prevails over the imaginary part [8, 

9] (for example, in Ag or Au nanorods [152, 154]). The interband contribution can be obtained by 

solution of Boltzmann’s transport equation described in Section 4.4.1.2, which yields the 

distribution function of conduction electrons. Accordingly, the latter is directly associated with 

modelling of the probability of interband transitions used to evaluate the term 𝜀𝑚
𝑖𝑏 so that the 

ultrafast modulation 𝛿𝜀𝑚
𝑖𝑏 contributes (in tandem with 𝛿𝜀𝑚

𝐷 ) to the nonlinearity in timescales prior 

to electron thermalization (< 100 fs). 
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4.4.3.2 Thermalized, “hot” electron contribution (also known as lattice contribution) 

Following electron thermalization (> 100 fs), electron-phonon scattering prevails over electron-

electron scattering, as energy is transferred to the lattice. The increase of lattice temperature 𝛿𝛵𝐿 

leads to a modification on the related scattering rate 𝛾𝑒−𝑝ℎ, which in turn affects Equation 4.21 in 

a longer than 100 fs timescale (while 𝛾𝑒−𝑝ℎ ≫ 𝛾𝑒−𝑒) [8, 9, 11, 125]. Another mechanism that is 

related to 𝛿𝛵𝐿 is the modulation of the electronic density affecting mainly the real part of the Drude 

dielectric permittivity of the metal as [8, 9, 11, 125] 

𝛿(𝑅𝑒𝜀𝑚
𝐷 ) ≈

𝛿𝜔𝑝
2

𝜔
=

𝜔𝑝
2

𝜔
3𝛼𝑉𝛿𝛵𝐿 4.22 

Where 𝛼𝑉 stands for the thermal expansion coefficient of the metal. These mechanisms are 

typically dominant at higher intensity pumping or away from the interband transition threshold. 

At the same time, because of lattice heating at 𝛿𝛵𝐿, the volume of the metal expands so that the 

Fermi energy undergoes a shift along with the electronic band structures. This modification affects 

the interband transition threshold ℏ𝜔𝑖𝑏 and consequently the imaginary part permittivity due to 

interband transitions according to [8, 9, 11] 

𝛿(𝐼𝑚𝜀𝑚
𝑖𝑏) ≅ −(

𝜕𝜀𝑚
𝑖𝑏

𝜕𝜔
) (

𝜕𝜔𝑖𝑏

𝜕𝑇𝐿
) 𝛿𝛵𝐿 4.23 

4.4.4 Electronic third order susceptibility of the effective medium 

In a plasmonic nanocomposite material the two different constituents possess their own nonlinear 

susceptibilities. Moreover, the third order susceptibility of metallic nano-inclusions is different 

compared to the one of the bulk metal, because of their nano-metric dimensions. Essentially, due 

to finite size effects, the intrinsic 𝜒𝑚
(3)

 will be affected by electronic confinement. 

An approach, that has been widely used to describe the effective third order nonlinear susceptibility 

𝜒𝑒𝑓𝑓
(3)

 in a homogeneous nanocomposite material with inversion symmetry at finite frequencies, was 

proposed by Stroud and Hui [4]. Under the hypothesis that the applied field frequency is near the 
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SPR of the nano inclusions, considering a local field factor 𝐿(𝑟 ), and a volume fraction 𝑓 of the 

metallic nano inclusions, the effective third order susceptibility reads 

 𝜒𝑒𝑓𝑓
(3)

= 𝑓〈|𝐿(𝑟 )|2〉〈𝐿2(𝑟 )〉𝜒𝑚
(3)

 4.24 

where, the brackets denote average value in the volume of the composite material. In fact, one can 

exactly evaluate 𝜒𝑒𝑓𝑓
(3)

 near the SPR of the metallic nano inclusions for the special case that they 

have spherical shape, and their concentration is low.  

The discussion presented in Section 4.4.3 suggests that the dielectric function of the metal 𝜀𝑚(𝛪) 

depends strongly on the input intensity 𝐼, especially for the case of (ultra)short, pulsed illumination. 

For the case of femtosecond pulses (<500 fs), the dominant contribution is the one ascribed to the 

generation of nonthermal electrons. For pulses longer than ~500 fs, the lattice contribution becomes 

dominant. If we account that the absorbed power per unit volume by a single pulse is 𝑝𝑎𝑏𝑠 =

𝜔𝐼𝑚 𝜀𝑚𝛪1(𝑡) (𝑛𝑚 
𝑐)⁄ , where 𝑛𝑚 denotes the refractive index of the metal, 𝛪1(𝑡) is the field 

intensity in the particles, then we can write for spherical nanoparticles 

𝑝𝑎𝑏𝑠 =
𝜔

𝑛𝑚𝑐
𝛪𝑚𝜀𝑚|𝐿|2𝐼; 𝐿(𝐼) =

3𝜀𝑑

𝜀𝑚(𝐼) + 2𝜀𝑑
 4.25 

Accounting for interaction timescale dictated by 𝑡𝑒−𝑒, an estimate of the electronic temperature 

increase after thermalization can be acquired by accounting that 𝛿𝛵𝑒 ≈ 𝑝𝑎𝑏𝑠𝑡𝑒−𝑒/𝐶𝑒, where 𝐶𝑒 

denotes the electronic heat capacity. Furthermore, the metal dielectric function modulation is 

related to the nonlinear polarization induced by bound electrons via 𝛿𝜀𝑚 ≡ 3𝜒𝑚
(3)|𝐸|2 (see 

Equation 4.7), so that locally 

𝜒𝑚
(3)

=
2𝛿𝜀𝑚𝑛𝑚𝜀0𝑐

3|𝐿[𝐼(𝑡)]|2𝐼(𝑡)
 4.26 

Ultimately, according to the discussion of Section 4.4.3.1 of 𝛿𝜀𝑚 dependency on 𝛿𝛵𝑒 and Equation 

4.26, it holds for the metal nonlinear susceptibility [124] 

𝜒𝑚
(3)

∝ (𝜕𝛿𝜀𝑚 𝜕𝑇𝑒⁄ )𝜔𝜀0𝛪𝑚𝜀𝑚𝑡𝑒−𝑒/𝐶𝑒 4.27 
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It is noteworthy that Equation 4.24 (combined with Equations 4.25, 4.27) is meaningful only under 

pulsed illumination, well before heat diffuses in the surrounding matrix (i.e., in a timescale shorter 

than 1 ns).  In the latter case, temperature increase of the dielectric matrix dominates the nonlinear 

response of the composite material as it will be discussed in Section 4.4.7.1. 

4.4.5 Nonlinear absorption of the effective medium 

In Section 4.3.2.2, the intensity dependent nonlinear absorption was expressed by Equation 4.16 

for Kerr media. Accordingly, dissipative media with nonlinear response are classified in two 

categories. In the first belong materials with 𝛽 < 0, a condition that leads to nonlinear response of 

a saturable absorber, under the condition 𝑎(𝐼) 𝑎0 ≪ 1⁄  [97, 155]. The second category is 

characterized by 𝛽 > 0 such that 𝑎(𝐼) 𝑎0 ≫ 1⁄ , classifying such media as optical limiters [97, 155].  

4.4.5.1 Saturation of absorption ( 𝜷 < 𝟎 ) 

Saturation of absorption in a nonlinear medium is a phenomenon during which the transmittance 

of light, through an absorbing medium, increases with increasing input intensity. The effect can be 

described in the framework of population redistribution in the ideal case of a two-level atomic 

system under weak pump excitation [53, 61]. If the population of the ground state is initially 𝑁1 

and the one of the excited state is 𝑁2, the system reaches the steady state constant population 

difference in time with 𝛿𝛮𝑒𝑞 = 𝑁2 − 𝑁1. The induced dipole moment of the transition is 

characterized by |𝜇21| and a lifetime 𝑇2 so that the unsaturated linear absorption coefficient 𝑎0 is 

written as a function of these parameters. Accordingly, solution of the equation of motion (within 

the perturbative regime) shows that the susceptibility is intensity dependent (saturable) and at the 

center 𝜔21 of the homogeneously broadened linewidth of the transition is written: 

𝐼𝑚𝜒(1) = (
𝑎0

𝜔21
𝑐)

1

1 +
𝐼
𝐼𝑆

 
4.28 

where 𝐼𝑠 is termed saturation intensity and can be expressed in terms of the lifetime of the transition 

and the induced dipole moment.  

A plasmon mode, sustained for instance by a small spherical nanoparticle, can be envisaged as an 

induced dipole moment comprised by a collective of single photon transitions of similar frequency. 
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Notwithstanding the resemblance to the simple two-level system described by Equation 4.28, the 

physical picture of transient absorption by a metallic nanocomposite is more complex (accounting 

for local fields) especially under intense optical pumping. Interestingly, one still encounters the 

case where transient absorption of the metallic constituents is saturated near the SPR [8, 9, 11]. 

The effect, however, is a direct consequence of the change in the metal dielectric function and its 

electronic band structure since the occupation of the electronic states is shifted while a non-thermal 

free-electron distribution well above the Fermi level is generated. Even after electronic 

thermalization, electron-phonon collisions or lattice expansion modulate the absorption cross 

section of the illuminated metallic nanostructures, leading in a transient increase of the effective 

medium transmittance (as shown for example in Figure 4.11c, e). In other words, under the foresaid 

regimes, the plasmonic effective medium behaves as a saturable absorber (β < 0), a property that 

has attracted increased attention toward the development of optical modulation and laser mode-

locking technologies. 

4.4.5.2 Nonlinear absorption (𝜷 > 𝟎) 

The picture just described is mainly observed for optical pumping located near the SPR. Ultrafast 

pump-probe experiments over a wide range of optical frequencies have shown that the transient 

absorption of various plasmonic nanostructures can increase at frequencies away from the SPR 

(i.e., β > 0) [21, 156-161]. Nonetheless, even near the SPR, there are conditions where saturable 

absorption is reversible under intense pumping (typically 10-100 GW/cm2, 1-10 GW/cm2 and >1 

GW/cm2 for fs, ps and ns pulses, respectively, depending on the proximity to the SPR among other 

parameters, see Table A.1, Appendix A). The latter mechanism has been labeled as reverse 

saturation of absorption (RSA) [32, 33, 162-164]. It is considered to originate from multi-photon 

processes, photo-injection of electrons, free-carrier absorption (Figure 4.11a), nonlinear scattering 

or (for colloids) cavitation [32, 97]. It is noteworthy that the opposite effect has been observed in 

ultrafast (fs) transient transmittance measurements at the wings of the SPR, i.e. it changes sign 

from negative to positive, at increasing pumping intensities (as shown in Figure 4.11d, f), an effect 

that has been understood as a broadening of the SPR damping over adjacent optical frequencies as 

the pumping intensity becomes larger, however, only for intensities <10 GW/cm2 [21, 158]. 
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Figure 4.11 (a) Reverse saturation of absorption (RSA) pathways in plasmonic (Ag) hollow 

nanocubes. (b) As the pumping intensity increases, either multiphoton absorption, free-carrier 

generation or photoejection of electrons becomes possible, reversing the plasmon bleaching and 

increasing absorbance (reducing transmittance) due to thermo-modulation of the electronic band 

structure of the metal. Adapted with permission [32]. Copyright 2020, American Chemical Society. 

The plasmon band transients and their intensity dependence is shown in (c-f) for Ag nanoparticle 

(c, d) and Au nanorod (e, f) colloids. It is noteworthy that there are circumstances where the 

transient transmittance shown in (d) and (f) increases at adjacent frequencies to the plasmon band 

for increasing pumping intensity due to broadening, which is the inverse picture of the one observed 

in the RSA case. (c, d) were adapted with permission [158]. Copyright 2015, American Institute of 

Physics. (e, f) were adapted with permission [21]. Copyright 2019, The Optical Society.  

4.4.5.3 Origin of nonlinear absorption 

In the case of ultrashort pulse photoexcitation (< 500 fs), the phenomenon of increased transient 

absorption (β > 0) has been described as a sequential two-photon absorption. Specifically, in 

experiments of two-photon induced photoluminescence in Au nanorods, Imura et al. [165] have 

retrieved spectra indicating two characteristic peaks that correspond to emission stemming from 

recombination of electrons from the sp bands (near the Fermi level) with holes in the d bands. 

During photoexcitation, intraband, one-photon transitions near the X and L symmetry points occur 

in the sp bands, exciting electrons to energies above the Fermi level, leaving back holes in the same 

band. Subsequently, the initial polarization of electric field having been absorbed, a second, 
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insensitive to field’s polarization transition occurs; a photon is absorbed exciting an electron from 

the d band to the sp band leaving behind a hole [165] (Figure 4.12a, b). The incoherent nature of 

two-photon absorption excited photoluminescence in gold nanoparticles has been later confirmed 

by Jiang et al. [166], and later, dependency of the effect on the shape and crystallinity of the 

particles rather than the electronic structure of gold was discussed [167, 168] (Figure 4.12c, d, e).  

 

Figure 4.12 Origins of nonlinear absorption in metallic nanoparticles. (a) The first Brillouin zone 

of Au and the corresponding symmetry points and axes and (b) sequential two-photon absorption 

initiated by intraband transitions near the X, L symmetry points. Adapted with permission [165]. 

Copyright 2005, American Physical Society. (c-e) Effect of lattice crystallinity on 

photoluminescence spectra from gold nanorods. Adapted with permission [168]. Copyright 2014, 

American Chemical Society. (c) Schematic of how sequential interband transitions result into 

multiphoton luminescence (filling of hole by interband transition and relaxation of excited state). 

During third harmonic generation there is no energy exchange with the material, thus, excitation in 

a real state is not required. (d) SEM images of poly- and monocrystalline gold nanorods and (e) 

corresponding multiphoton photoluminescence spectra, showing dependency on the crystallinity 

of the structure for the same material (Au). (f-g) Interpretation of photoluminescence in gold 

nanorod as radiation from relaxation of the heated electron gas. Adapted with permission [169]. 

Copyright 2017, American Chemical Society. (f) Mechanisms involved in detection of 

photoluminescence. (g) Power exponent law fittings of experimental data. Best fitting acquired for 

intraband luminescence, an indication of relaxation of the thermal electron gas. 
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The theory just described contradicts with observations by Drachev et al. [148, 150, 151] on the 

nature of nonlinear absorption, however, the controversy has been reconciled in recent studies. 

Specifically, coherent two-photon absorption is possible, depending on whether the polarization of 

the excitation pulse is aligned to the dominant plasmon mode [170], the incident intensity is low 

[169] and the pulsewidth shorter than plasmon decoherence [171]. Otherwise, broadband emission, 

typically reported in two-photon absorption photoluminescence experiments, has been assigned to 

arise from radiative relaxation of the photo-excited hot electron gas (consisting mainly of intraband 

transitions), observed at high pumping intensities, thus is of thermal nature [169, 172] (see Figure 

4.12f, g).  

4.4.6 High-order nonlinearities 

To account for intrinsic high-order nonlinearities in plasmonic nanocomposites, Reyna et al. 

introduced a generalized Maxwell Garnett’s approximation (quasi-static) for the induced 

polarization in the effective medium in the presence of an applied field E0, written in the form 𝑃 =

𝑃ℎ +
1

𝑉𝑚
∑ 𝑝𝑖

𝑀
𝑖=1  [173-175], where 𝑃ℎ is the induced polarization in the host, 𝑉𝑚 is the material 

volume that contains 𝑀 nanoparticles, and 𝑝𝑖 is the induced dipole moment at each one of the 

nanoparticles. Following that, they expanded the susceptibilities of the particle up to the 7th order 

with respect to the local field, keeping the nonlinearity of the host up to the 3rd order with respect 

to the applied field. Later, they performed two separate series expansions in terms of the two 

different fields to obtain expressions of the susceptibility of the effective medium, due to intrinsic 

high-order susceptibilities of the inclusions, that finally read 

𝜒𝑒𝑓𝑓
(3)

= 𝑓𝐿2|𝐿|2𝜒𝑚
(3)

+ 𝜒ℎ
(3)

 

𝜒𝑒𝑓𝑓
(5)

= 𝑓𝐿2|𝐿|4𝜒𝑚
(5)

−
6

10
𝑓𝐿3|𝐿|4[𝜒𝑚

(3)
]
2

−
3

10
𝑓𝐿|𝐿|6|𝜒𝑚

(3)
|
2

 

𝜒𝑒𝑓𝑓
(7)

= 𝑓𝐿2|𝐿|6𝜒𝑚
(7)

+
12

35
𝑓𝐿4|𝐿|6[𝜒𝑚

(3)
]
3

+
3

35
𝑓|𝐿|8 [4|𝐿|2𝜒𝑚

(3)
+ |𝐿|2(𝜒𝑚

(3)
)
∗

] |𝜒𝑚
(3)

|
2

 

4.29 
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The principal physical consequence of these expressions is that 𝜒𝑒𝑓𝑓
(3)

 can be cancelled out by 

adjusting the filling factor 𝑓. Such a process has been named nonlinearity management and its 

applicability will be discussed in Sections 4.6.2 and 4.7.1.3. 

4.4.7 Diffusive nonlinearities 

4.4.7.1 Thermal nonlinearity in a plasmonic nanocomposite due to heating of the host 

For the cases of cw or long pulsed (~ns) illumination, one ends up heating up the host matrix due 

to absorption by the nanoparticles. Localized temperature increases and subsequent heat diffusion 

through interfaces with the host matrix, gives rise to a homogenized temperature 𝛿𝛵 in the host, 

during the course of laser illumination. Consequently, the laser beam itself undergoes phase 

modulation as it propagates in the medium due to the nonlinear index shift [39, 176] 

𝛿𝑛 = (
𝑑𝑛

𝑑𝑇
)𝛿𝑇(1 − 𝑓) 4.30 

 

Figure 4.13 Predicted nanoparticle temperature increase versus the input intensity (shown by black 

solid curves) under cw illumination if thermal conductivity dependence on temperature is 

considered. The usually employed linear relation (blue dots) is plotted for comparison. Adapted 

with permission [177]. Copyright 2020, American Physical Society. 

where (
𝑑𝑛

𝑑𝑇
) denotes the thermo-optic coefficient of the surrounding medium and 𝑓 the volumetric 

filling fraction of the nano-inclusions. Interestingly, the same result is observed in quasi-cw 

illumination induced by accumulation of high repetition rate ultrashort pulses (either fs or ps) [178-

180]. The problem of nanoparticle absorption and temperature increase profile has been treated 

theoretically in references [48, 181]. Recently in references [177, 182], analytical expressions have 
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been derived related to the temperature increase at the interfaces of plasmonic nanoparticles under 

cw illumination with emphasis on the temperature dependence of the thermal conductivity of the 

host (Figure 4.13) and dielectric permittivity of the nanostructure.  

4.4.7.2 Nonlinearities induced by mass transport 

 

Figure 4.14 (i) Conceptual schematic of mass transport induced nonlinearity and soliton formation 

in plasmonic colloidal suspensions. Adapted with permission [39]. Copyright 2014, American 

Chemical Society. In cases (a), (b) nanoparticles of positive or negative polarizability, respectively, 

are suspended in the solution at the wavelength of the laser beam. As a result, nanoparticles are 

either attracted toward the beam or repelled away from it, inducing an artificial nonlinear response 

within the medium due to local modulation of the effective refractive index. (ii) (Top) Conceptual 

schematic of orientation ordering of suspended nanorods in a colloid along the polarization of a 

propagating soliton beam when the beam is propagating in the medium. (Bottom) Induced 

birefringence probed by a coupled beam with the one that orients the particles (see Section 4.7.1.2). 

Adapted with permission [55]. Copyright 2017, The Optical Society. (iii) Self-confinement and 

guiding of optical beams due to combined thermal (positive) nonlinearity (absorption of energy by 

particles and heating of solvent) and concurrent motion of particles due to radiation pressure. 

Adapted with permission [58]. Copyright 2018, The Optical Society. 
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In plasmonic soft-matter systems (i.e., colloids), optical forces are exerted on plasmonic nano-

inclusions by a cw laser beam, which effectively induces translational or rotational motion of the 

particles. The exerted forces depend on the sign of the polarizability of the particles, leading to 

local particle concentration control in the colloid. Such modulation gives always rise to a positive 

intensity dependent 𝛿𝑛 of the host. Subcritical or supercritical self-trapping has been shown to be 

possible for negative or positive particle polarizabilities, respectively [39, 176] (Figure 4.14). The 

effect becomes appreciable if optical forces are dominant over radiation pressure, or absorption 

[56]. However, tight focusing conditions are required to limit the foresaid effects [180]. In fact, 

thermal heating of the nanoparticles may have major influence against mass transport effects, 

leading to significant modulation of the refractive index of the host and to parasitic convective 

currents. 

4.5 Nonlinear characterization 

Several reviews have been published recently with respect to experimental values of nonlinear 

properties of nanocomposite materials [97, 183-186], mainly involving the three most usual noble 

metals of choice for plasmonics, namely gold, silver and copper. In this section, we will first briefly 

discuss the presented results in references [97, 183], which refer to the intrinsic susceptibility of 

metallic inclusions, to review the influence of the interaction timescale (governed by the radiation 

pulsewidth) on the nonlinearity. In addition, we will provide a synthesis on recent experimental 

results with respect to the nonlinear absorption in plasmonic nanocomposites (effective medium) 

and discuss separately results in the case of high repetition rate femtosecond excitation in 

conjunction with figures of merit for optical switching. 

4.5.1 The intrinsic third-order susceptibility of metallic nanoparticles 

Palpant [97] compiled in 2006 a comprehensive review on the third-order nonlinear optical 

properties of metal nanoparticles near the SPR. In his work, Palpant presented a comparative table 

of the experimentally obtained intrinsic third-order nonlinear susceptibility 𝜒𝑚
(3)

 of Au, Ag, and Cu 

nanoparticles. The values of the susceptibilities were extracted from the cited therein, measured 

effective medium susceptibility 𝜒𝑒𝑓𝑓
(3)

, by accounting for the particle volumetric concentration and 
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local field factors, which implicates appropriate physical assumptions for the examined effective 

medium. A major impact on the pulsewidth was illustrated in the presented analysis. The same 

effect was demonstrated in another recent critical analysis by Boyd et al. [183] on the 𝜒𝑚
(3)

 value 

of Au, based on a collection of experimental results. Both analyses showed that the utilization of 

the experimental technique and laser pulsewidth influence largely the value of 𝜒𝑚
(3)

 of noble metals 

(both bulk and nanoparticle), as shown in Figure 4.15. Importantly, it was illustrated that for 

experimental measurements performed with pulses < 500 fs, the evaluated 𝜒𝑚
(3)

 is in the order of 

10-10 esu, with pulses 500 fs < tp < 1 ns, increases in the order of 10-9 – 10-8, whereas for pulses > 1 

ns, 𝜒𝑚
(3)

 can attain values as high as ~ 10-6 esu. Recent broadband pump-probe experiments confirm 

the ultrafast (< 500 fs) 𝜒𝑚
(3)

 order-of-magnitude (originating from the non-thermal electron 

contribution) along with the fact of the significantly different dispersion of 𝜒𝑚
(3)

 in the case of 

nanoparticles as compared to bulk, due to the localized surface plasmon resonance [156, 159]. 

 

Figure 4.15 Experimental measurements of the dependence of the intrinsic nonlinear susceptibility 

of metals and metallic nanocomposites on the employed laser pulsewidth. (i) Real and imaginary 

evaluation of the third order susceptibility of Au. Reproduced with permission [183]. Copyright 

2012, Elsevier. (ii) Modulus of the third order susceptibility of Au, Ag and Cu nanoparticles, 

obtained by experimental measurements in various host materials (matrices), i.e., water, acetone, 

glass, SiO2 and Al2O3 (not shown in the figure). Produced by data found in Table 1 of Ref. [97] 

and references therein. 

4.5.2 Practical considerations in nonlinear optical characterization 

The principal factor affecting the strength of the third-order susceptibility described in the previous 

paragraph is the temporal dependence of the onset of the various contributing mechanisms of 
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nonlinearities in metallic composites, i.e., non-thermal electrons, lattice and thermal diffusion in 

the host contributions, that were discussed in section 4.4 (see also for example Figure 5.6 in ref. 

[8]). The largest contribution originates from thermal heating of the host induced by short pulses 

(ns or higher), cw illumination or even high-repetition rate (MHz) ultrashort pulses (fs or ps), 

during which, heating of electron and phonon subsystems of nanoparticle and host are in thermal 

equilibrium. Accordingly, since the response of each contribution has a temporal onset, the 

evaluation of nonlinear properties of metal nanocomposites by techniques such as the z-scan, 

optical limiting, optical phase conjugation, self-diffraction and others is governed by the laser 

pulsewidth. Techniques related to nonlinear induced birefringence, e.g., optical Kerr gate or ellipse 

rotation are not influenced by heating of the host material presumably because they depend on the 

nonlinear polarization induced along various components of 𝜒𝑒𝑓𝑓
(3)

; contrarily, temperature gradients 

are developed uniformly within the irradiated volume of thermally isotropic media. This is a typical 

situation of differences observed for instance between z-scan and optical Kerr gate measurements 

when MHz ultrashort pulses are employed [187, 188]. Finally, sensitive techniques that are based 

on coherent nonlinear effects (e.g., harmonic generation or wave-mixing [86, 87, 189]) typically 

yield smaller values since they originate from ultrafast electronic polarization effects, which in turn 

are related to plasmon decoherence in metallic nanoparticle composites. 

4.5.3 Experimental results from selected studies 

In this section, we present an analysis of selected recent experimental results on the nonlinear 

optical properties of plasmonic nanocomposites, oriented on properties of the effective medium. 

The summarized results are obtained from studies where the z-scan and optical limiting techniques 

were employed and are categorized into three groups presented in Table A.1, Table A.2 and Table 

A.3 (Appendix  A). The first group involves the effect of reverse saturation of absorption (RSA), 

the second group touches the effect of optical limiting (OL) and the third one focuses on saturable 

absorption (SA). 

For femtosecond and picosecond pulses, RSA or OL is typically governed by competition of free-

carrier absorption or multiphoton (two-step) absorption against plasmon saturation at high pump 

intensities (higher than ~ 10 GW/cm2), since photoexcited conduction electrons relax at a timescale 

as large as ~ 100 ps [190, 191]. The field-enhancement of the particles and scattering properties 
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are expected to be affected accordingly. In the nanosecond scale, an onset of nonlinear scattering 

due to thermodynamic phase transition of the host medium at the interface with the particle has 

been observed to occur within ~ 0.5 ns [192], which adds an additional nonlinear extinction 

contribution for the observation of RSA and OL effects. Cavitation bubbles (colloids) or 

vaporization are likely to occur at elevated fluencies depending on the SPR position, the size and 

morphology of particles, and the nature of the host. The onset fluence for the observation of 

cavitation bubbles, is significantly higher for particles smaller than 30 nm (≳ 1000 mJ/cm2) 

compared to larger particles (e.g., for 100 nm particles ~ 10 - 100 mJ/cm2 may suffice) [192, 193]. 

Notably, several recent studies presented in Table A.1, Table A.2, Table A.3 have demonstrated 

switching from OL behaviour to enhanced RSA behaviour or enhanced OL by addition of metallic 

nanoparticles to functionalized graphene dispersions [90, 91, 194-197]. Briefly, in the interface 

between graphene and metal particles Fermi level is equated between the two materials. Graphene 

provides thus free carriers to the conduction band of the metal so that relaxation obtains longer 

lifetimes, resulting to enhanced nonlinear absorption properties of the composite material. 

Even though it is a common practice to deduce the value of nonlinear absorption coefficient 𝛽 of 

the material, the figure of merit 𝛽 𝛼0⁄  is more meaningful for comparison of the effects of RSA 

and OL at different timescales. Table A.1 and Table A.2 show that for fs pulses,  𝛽 𝛼0⁄  is in the 

order of 10-2 - 10-3 cm2/GW, for ps pulses it increases in the order of 1 cm2/GW and for ns pulses 

it takes values of tens of cm2/GW. This result illustrates the influence of the underlying temporal 

onset of all the described participating mechanisms of RSA and OL. In the case of SA, Table A.1 

and Table A.3 show that the saturation intensity for fs pulses is in the order of 10 GW/cm2, for ps 

pulses is typically a few GW/cm2 and for ns pulses below 1 GW/cm2. 

For optical modulation and switching devices based on self-phase modulation effect, the figure of 

merit 𝑊 = 𝑛2𝐼𝑠 (𝑎0𝜆)⁄  is of particular interest. In saturable media, where 𝛽 ≅ −𝑎0 𝐼𝑠⁄ , 𝑊 > 1 

ensures 180o phase change of the field over a distance smaller than the absorption length, a 

desirable property for optical switching devices [14]. Table A.1 shows that there are only a few 

occasions where W approaches values close or above 1, typically for ns pulses. In fact, relatively 

high intensities were applied since the z-scan technique was employed. Nonetheless, in recent 

studies based on the nonlinearity management procedure, conditions of 𝑊 > 1 have been 
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demonstrated by concentration adjustments in Ag colloids [175]. Moreover, large W values have 

been reported in studies of high-repetition rate ultrafast laser excitation [187, 188, 198-200]. The 

involved time response for optical switching in these measurements is however typically larger 

than thermal diffusion characteristic times and therefore cannot be considered as ultrafast. Finally, 

in the case of optical switching devices based on SA, plasmonic nanocomposites are still 

particularly attractive for ultrafast switching in view of the electronic origin of the effect. 

4.6 Modelling of nonlinear wave propagation in plasmonic 

nanocomposites 

Equations 4.8-4.9 are the master equations to describe nonlinear wave propagation through an 

optical medium. In accordance with appropriate and well-justified physical considerations, they 

can serve as a template for the study of nonlinear phenomena arising in plasmonic nanocomposites. 

We examine below several recently studied cases of technological interest. 

4.6.1 Self-trapping and guiding in soft matter systems due to particle diffusion 

In the steady state (cw illumination), the influence of chromatic dispersion on beam propagation is 

negligible. However, the dispersion term in Equation 4.9, related to the refractive index of the 

medium, may depend on other parameters [39, 176]. In a nanoparticle suspension, radiation-

induced local changes of particle concentration or temperature give rise to intensity dependent 

refractive index. The first case involves a nonlinearity that depends implicitly on the intensity; 

electric field gradients exert forces on the particles due to their high polarizabilities 𝑎𝑅. Such forces 

can be either attracting or repelling, changing locally particle concentration and effective refractive 

index. The implicit dependency of filling factor 𝑓 on the intensity was introduced via solution of 

Smoluchowski equation in the steady state in [176]. Starting from Equation 4.9, a propagation 

equation for the complex amplitude ℰ can be written in the time domain [39, 176] 

𝑖
𝜕

𝜕𝑧
ℰ + 𝑘0(𝑛𝑚 − 𝑛𝑑)𝑉𝜌(𝛪)ℰ +

1

2𝑘0𝑛0
𝛻𝑇

2ℰ = −𝑖
𝜎𝜌(𝐼)ℰ 

2
 

𝜌(𝐼) = 𝜌0𝑒
𝑎𝑅𝐼 (4𝑘𝐵𝑇)⁄  

4.31 
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Where 𝑛𝑚 and 𝑛𝑑 denote the refractive index of the particles and the surrounding medium, 

respectively, 𝑉 is the particle volume, 𝜌0 is the unperturbed uniform particle density, 𝜎 is the 

particle absorption cross section, 𝑎𝑅 is the particle polarizability and 𝑘𝐵𝑇 is the thermal energy. 

4.6.2 Nonlinear processes due to management of high-order nonlinearities 

Reyna et al. [173, 174] have demonstrated that plasmonic nanocomposites accommodate a 

nonlinearity management procedure, which means that their nonlinear response can be altered upon 

concentration adjustments of the volume of nano-inclusions within the volume of the composite 

material. Their work was focused on the impact of nonlinearity management of high-order 

nonlinearities in silver nanocolloids on several nonlinear processes, including spatial self-phase or 

cross-phase modulation [173, 174, 201], optical switching [175], soliton formation and 

waveguiding [89] and nonlinear birefringence [202]. Equation 4.29 was employed to model 

nonlinear processes of self-phase or cross-phase spatial modulation in silver nanocolloids that 

exhibit high-order nonlinear polarization described by the effective susceptibility of Equation 4.29. 

Chromatic dispersion effects have been ignored in view of picosecond pulsed illumination. Further, 

both real and imaginary parts of the effective susceptibility can be included in the nonlinear 

polarization term of Equation 4.8 to account for the nonlinear response of silver nanocolloids 

described by Equation 4.29. In addition, Reyna et al. [202] have modelled the induced nonlinear 

birefringence, when a laser field of varying linear polarization, was propagated in a capillary of 

linear birefringence that was filled with a carbon disulfide suspension of silver nanoparticles. 

Nonlinear birefringence can be understood as a cross-phase modulation process between two 

orthogonal components of a laser field in a birefringent fiber optic. In their model Reyna et al. have 

adopted the formulation of nonlinear birefringence induction presented in [203]. The model ignores 

diffraction and considers dispersion of second order, and nonlinear polarization (up to fifth order) 

response of the silver nanocolloids of varying concentration. 

4.6.3 Phenomenological self-trapping due to thermal lensing 

The effect of nonlinear thermal lensing has been observed since the early days of self-focusing. A 

nonlinear self-collimation effect has been reported by Askaryan [204], in experiments of nonlinear 

defocusing of an externally focused beam in a nonlinear medium due to thermal lensing. A similar 
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effect has been reported in recent studies in plasmonic nanocolloids [37, 38, 58, 180] at very low 

input powers (tens of mW) under nearly resonant illumination with the SPR. Agiotis and Meunier 

[180] recently used in this context a steady-state nonlinear propagation equation model to formulate 

and describe thermal lensing in plasmonic nano-colloids, which reads:  

 

Figure 4.16 Numerical example of the effect of external focusing on the thermal lensing effect. The 

σ2 beam width has been evaluated by solution of Equation 3.4.32, considering propagation in a 

plasmonic aqueous (water) suspension of nanoparticles (e.g., Au nanospheres of d ~ 10 - 50 nm) 

of absorption coefficient a0 = 2 cm-1 (depending on size and concentration), thermo-optic 

coefficient dn/dT = 10-4 K-1, thermal conductivity KT = 0.6 W/(Km) and linear refractive index n0 

= 1.33. The illumination wavelength has been assumed to be λ = 800 nm. The input power is shown 

over each solid-line curve in Watts. Dashed lines indicate the linear regime in all cases. (a) No 

external focusing. (b, c) The radius of curvature is calculated assuming that the geometrical focus 

is located at (b) 30 mm and (c) 15 mm in the medium. At all cases the input beam width is w0 = 

180 μm. It is noteworthy that there are conditions where a power-dependent self-collimation effect 

is observed in cases (b, c) due to thermal lensing. 

 

𝑖
𝜕

𝜕𝑧
ℰ + 𝑘0𝑛0

𝑑𝑛

𝑑𝑇
𝛿𝑇ℰ +

1

2𝑘0𝑛0
𝛻𝑇

2ℰ = −𝑖
𝑎0ℰ 

2
 

−𝐾𝑇𝛻𝑇
2(𝛿𝛵) = 𝑎0𝛪 

3.4.32 

where 𝐾𝑇 is the thermal conductivity of the solvent. Importantly, the initial condition of the 

amplitude of the electric field should be defined to account for external focusing, e.g., for a 

Gaussian beam profile according to the relation 

ℰ(𝑟, 0) = √
2𝑃𝑖𝑛

𝜋𝑤0
2 𝑒𝑥𝑝 (−

𝑟2

𝑤0
2 − 𝑖

𝑘0𝑟
2

2𝑅
) 4.33 
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where 𝑃𝑖𝑛 is the input power, 𝑤0 the input 1/e2 beam radius and −𝑖
𝑘0𝑟

2

2𝑅
 denotes the phase of the 

input wavefront, with 𝑅 denoting the radius of curvature of the beam (Figure 4.16).  

4.6.4 Reverse saturable absorption and optical limiting 

Characterization of nonlinear absorptive properties of plasmonic nanocomposites (e.g., in the 

context of OL) has been extensively studied by use of a simple nonlinear propagation equation, 

direct extension of Beer-Lambert’s Law [32, 91, 191, 205-207], which reads: 

𝑑𝐼

𝑑𝑧
= −𝑎(𝐼)𝐼 4.34 

Evidently, Equation 4.34 constitutes a specific case of the axial propagation Equation 4.16, which 

was derived in Section 4.3.2.2. The use of Beer-Lambert law is limited in the thin sample 

approximation, where the beam is considered nearly collimated [several authors however adopted 

the paraxial relation 𝐼(𝑧) = 𝐼0(1 + 𝑧2 𝑧𝑅
2⁄ )−1, where 𝑧𝑅 is the Rayleigh length, to account for 

diffraction [91]]. Absorption depends on the incident intensity (nonlinear): in the case of RSA, in 

accordance with definitions presented in Section 4.4.5, it reads 𝑎(𝐼) = 𝑎0 (1 + 𝐼 𝐼𝑠⁄ )⁄ + 𝛽. 

4.6.5 Laser mode-locking 

A model for the passive mode-locking of solid-state lasers that use plasmonic nanocomposites as 

a slow saturable absorber has been proposed in ref. [208]. The laser cavity is characterized by a 

group velocity dispersion 𝑘0
(2)

, gain ℊ(𝐼) and losses ℓ of the cavity, a Kerr nonlinearity 𝑛2,𝑔 in the 

gain medium (and not of the plasmonic nanocomposite), the optical response of the plasmonic 

nanocomposite 𝑞(𝐼), and dispersion of the spectral filter and the gain medium 𝐷𝑔,𝑓. The model 

accounts for the wave propagation in a laser cavity of length 𝑙𝑐. and reads 

𝑙𝑐
𝜕

𝜕𝑧
ℰ = −𝑖(𝑙𝑐𝑘0

(2)
)

𝜕2

𝜕𝑡2
ℰ + 𝑖𝑙𝑐

𝜔0

𝑐
𝑛2,𝑔𝐼ℰ + 𝐺(𝐼)ℰ 4.35 

where 𝐺(𝐼) = ℊ(𝐼) − ℓ + 𝐷𝑔,𝑓
𝜕2

𝜕𝑡2
− 𝑞(𝐼) is a function describing the net gain of the cavity per 

round trip. Equation 4.35 comprises a typical propagation equation model for the studies of laser 
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mode-locking in slow saturable absorbers (see for example [209] and references therein), however, 

most interestingly in the context of this review, it incorporates a response function of the plasmonic 

nanocomposite 𝑞(𝐼) = −𝑖
𝜔0ℎ

𝑐2 √𝜀𝑒𝑓𝑓(𝐼), where ℎ and 𝜀𝑒𝑓𝑓(𝐼) denote the thickness and the 

effective medium dielectric medium of the plasmonic nanocomposite, respectively. The latter has 

been described in ref. [208] as a function of time in the context of the extended two-temperature 

model described in Section 4.4.1.2. 

4.6.6 Femtosecond filamentation and continuum generation 

In this regime, nonlinear wave propagation, in a semi-transparent medium, results in the 

manifestation of femtosecond filamentation. Chromatic dispersion cannot be neglected to describe 

nonlinear wave propagation arising from self-focusing. Rewriting Equation 4.8 in the pulse’s local 

frame, facilitates greatly the problem of the description of the evolution of a propagating pulse over 

long distances and its interaction with the propagating medium. To do this, the following 

transformations should be introduced; 𝑧 → 𝑧, 𝑡 → 𝑡 − 𝑧/𝑢𝑔, 𝑑𝑡 → 𝑑𝑡, 𝜕𝑧 → 𝜕𝑧 + 𝜔/𝑢𝑔, where 

𝑢𝑔 = (𝜕𝑘(𝜔) 𝜕𝜔⁄ )−1 denotes the group velocity of the pulse. In addition, {𝐸, 𝑃𝑁𝐿 , 𝐽} will be 

oscillating in the local pulse frame as ∝  {ℰ, 𝒫𝑁𝐿 , 𝒥}𝑒𝑥𝑝 [−𝑖𝜔0𝑡 + 𝑖 [𝜅(𝜔) −
𝜔

𝑢𝑔
] 𝑧], where 

𝜅(𝜔) = 𝑘0 + (𝜔 − 𝜔0) 𝑢𝑔⁄ . Under these transformations the envelope equation reads [63] 

𝜕2

𝜕𝑧2
ℰ̂ + 2𝑖𝜅(𝜔)

𝜕

𝜕𝑧
ℰ̂ + (𝑘2(𝜔) − 𝜅2(𝜔))ℰ̂ + 𝛻𝑇

2ℰ̂ = −
𝜔2

𝑐2

𝒫̂𝑁𝐿

𝜀0
− 𝑖

𝜔

𝑐

𝒥̂

𝜀0𝑐
 4.36 

in which the only simplification made compared to Equation 4.8 is 𝛻(𝛻 ∙ 𝐸) ≈ 0. Neglecting the 

𝜕𝑧
2 term, Equation 4.36 yields (depending on various chromatic dispersion approximations) several 

nonlinear envelope equations for the description and modelling of femtosecond filamentation in 

transparent media [210-212]. Starting from Equation 4.8, the nonparaxial version of the 

unidirectional pulse propagation equation can be derived (a carrier-resolving pulse propagation 

model). Nonparaxiality provides advantage under tight external focusing conditions. For a detailed 

description of this model, we recommend the specialized on the topic ref. [63]. 

For transparent media, the term of nonlinear polarization in Equation 4.36 is substituted by 𝒫̂𝑁𝐿 =

2𝜀0𝑛0𝑛2𝐼ℰ̂, which is a direct consequence of Equation 4.7 and Equation 4.15. A polarization 
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current density term 𝐽 𝑓 arises from free charges generated by highly nonlinear ionization processes 

[40, 60, 63, 213]. The 𝐽 𝑓 term is comprised of currents due to direct photoionization 𝐽 𝑃 and currents 

related to the dynamic formation of an absorbing electronic density 𝐽 𝐸 . The first term is calculated 

by 

𝐽 𝑃
𝜀0𝑐

= 𝑛0𝛽𝐾𝐼𝐾−1𝐸⃗  4.37 

Where 𝛽𝛫 is the cross-section of the multiphoton absorption and 𝐾 denotes the number of 

simultaneously absorbed photons. The second term obeys the plasma dynamics relation 

𝜕𝐽 𝐸
𝜕𝑡

+
𝐽 𝐸
𝜏𝑐

=
𝑒2𝑛𝑒

𝑚𝑒
𝐸⃗  4.38 

Here, 𝜏𝑐 denotes the electron collision time, 𝑛𝑒 the electron density, 𝑒 the elementary electric 

charge and 𝑚𝑒 the electron’s mass. Thus, the solution of this equation can be added as a source 

term in Equation 4.36 that reads 

𝐽 𝐸
𝜀0𝑐

=
𝜎𝑓(𝜔)

𝑛0(𝜔)
𝑛𝑒𝐸⃗  4.39 

Where 𝜎𝑓(𝜔) stands for the complex frequency dependent cross-section for the collision of free 

carriers. The electron density that appears in this equation can be accordingly calculated by a rate 

equation of the form 

𝜕𝑛𝑒

𝜕𝑡
= 𝑤𝑚(𝐼)(𝑛𝑛 − 𝑛𝑒) + 𝑤𝐼(𝛪)𝑛𝑒 4.40 

Where 𝑤𝑚(𝐼) represents the multiphoton ionization rate, 𝑛𝑛 denotes the neutral species density 

and the 𝑤𝐼(𝐼) stands for the impact ionization rate. Details on femtosecond pulse propagation 

modelling can be found in other excellent reviews for the interested reader [40, 60, 63].  

In the case of an absorptive nonlinear medium (case of plasmonic nanocomposites), losses can be 

accounted for by the utilization of an additional contribution to 𝐽  that describes the induced 
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polarization density current due to charges bound in the nanoparticles, which reads (in its envelope 

form)  𝒥𝑏 = 𝜀0𝑐𝑛0𝑎(𝐼)ℰ, in accordance with what described in Section 4.3.2.2. 

Features of the model of laser filamentation have been adapted by a few authors [45, 46, 50] for 

the description of nonlinear propagation of ultrashort pulses in plasmonic nanocomposites (Figure 

4.17). In references [45, 46], the FME has been implemented in the pulse’s reference to describe 

off-resonance propagation of fs pulses of optical wavelength of 800 nm in a medium of silver 

nanoparticles, which reads 

𝜕

𝜕𝑧
𝐸̂ = 𝑖 [𝑘𝑒𝑓𝑓(𝜔) −

𝜔

𝑢𝑔
] 𝛦̂ = −

𝜔2

2𝑘𝑒𝑓𝑓(𝜔)

𝑃̂𝑁𝐿

𝜀0𝑐
2
;  𝑃̂𝑁𝐿 = 𝜀0𝜒𝑒𝑓𝑓

(3)
|𝐸̂|

2
𝐸̂ 4.41 

where 𝑘𝑒𝑓𝑓(𝜔) is the calculated dispersion of the nanoparticle suspension and 𝜒𝑒𝑓𝑓
(3)

 was described 

by Equation 4.24 (Figure 4.17A). The authors illustrated an expected ultrabroadband 

supercontinuum generation from such structures after propagation of 8.3 μm, which is mainly 

attributed to the enhanced real part of the nonlinear susceptibility of the samples. Later, the same 

group presented a theoretical study on-low threshold supercontinuum generation from silica glasses 

doped with Ag nanoparticles [45]. For input 20 fs long pulses, the authors observed broadband 

supercontinuum could be achieved even for low filling factor (10−5) for propagation over about 5 

μm. Similar results were obtained for longer input pulse wavelengths (1300 nm and 1550 nm), 

whereas the authors finally addressed implications of strong pulse compression in such media. 

Their model however ignored ultrafast modulation (due to non-thermal electrons) of 𝜒𝑒𝑓𝑓
(3)

, which 

was calculated by Equation 4.41 for unpertubed values of 𝜒𝑒𝑓𝑓
(3)

.  

In ref. [50], a unidirectional pulse propagation equation was employed (a paraxial equivalent of 

Equation 4.36) to describe propagation and supercontinuum generation of fs pulses of 800 nm 

focused in a gold nanosphere colloidal solution. To reproduce experimental observations on 

supercontinuum generation, nonlinearities were attributed to pure water properties (Figure 4.17B-

E), while the suspended nanoparticles were considered to act only as centers of linear extinction 

expressed in the 𝐽 term and calculated by the effective medium dielectric permittivity of Equation 

4.4. In other words, enhancement on the nonlinear response of the nanoparticles was ignored in 
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view of the non-resonant interaction and all contributions on the nonlinear ionization terms were 

attributed to the solvent (water).  

 

Figure 4.17 Numerical modelling results of supercontinuum generation in plasmonic 

nanocomposites. (A) Spectral broadening of a 20 fs pulse in a fused silica medium doped with 

silver nanoparticles of filling factor 10-3, obtained by solution of Equation 4.41. Reproduced with 

permission [45]. Copyright 2009, The Optical Society. (B-E) Numerical results of filamentation 

and supercontinuum generation in an aqueous suspension of Au nanoparticles. (B) Transverse 

fluence profiles. (C) axial profiles of the peak intensity in pure water along propagation for various 

input pulse powers (D) Spectral broadening comparison between pure water and colloidal gold. 

Attenuation rather than amplification of supercontinuum is observed. (E) Absorbed power by two 

colloids of two different concentrations as a function of the incident pulse power. Reproduced with 

permission [50]. Copyright 2019, The Optical Society.  

4.7 Processes and applications 

In this section, recent experimental studies on processes and applications related to nonlinear 

propagation of light in plasmonic nanocomposites are reviewed. The presented studies are 

categorized into two regimes, due to large differences in the time response of induced 

nonlinearities.  The first, refers to the nonlinear propagation in the CW/short pulse regime, whereas 

the second category refers to the ultrashort pulse regime.  
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4.7.1 CW and short pulse regime 

4.7.1.1 Plasmonic resonant solitons (self-channeling) 

Farfad et al. [39] demonstrated experimentally phenomenological soliton formation in plasmonic 

nanocolloids for the first time, based on the mechanisms discussed in Sections 4.4.7.2 and 4.6.1. 

They employed samples containing nanoparticles of either negative or positive polarizabilities at 

the irradiation wavelength. The authors described how both cases could lead to soliton formation 

governed by Equation 4.31. Particularly, in the supercritical case of positive polarizability, they 

proposed that absorption was the key in stabilizing soliton formation. In fact, they indicated that 

thermal heating of the surrounding medium leads to defocusing of the beam, thus balancing the 

positive nonlinearity induced by increasing particle concentration. The same group proposed in 

another study that the coupling of two laser beams at optical frequencies corresponding to opposite 

polarizability of the nano-inclusions lead to formation of coupled stable solitons for both beams, 

meaning that their decoupling leads to diffraction limiting propagation of one or the other, 

depending which beam induces a stronger nonlinearity in the medium [54] (Figure 4.18a-g).  

The effect of plasmonic resonant soliton formation was further studied by Shvedov et al. [58] in 

the case of spherical Au particles of positive polarizability with respect to the applied wavelength. 

By performing order-of-magnitude calculations they showed that the induced gradient forces in the 

presence of low intensity laser field are too weak to play a critical role in particle’s translation 

against Brownian motion or radiation pressure. However, radiation forces strongly depend on the 

size of the particles and they rapidly decrease as the particle’s size increases [214]. Shvedov et al. 

concluded that the highest in value nonlinearity is induced by SPR absorption-mediated thermal 

heating of the surrounding liquid in agreement with recent observations by Agiotis and Meunier 

[180], who further compared CW and high-repetition rate fs pulsed illumination in nano-colloids 

of varying plasmon peaks . The same mechanism was exploited by Ortega et al. [37] to induce self-

collimated propagation of CW irradiation (532 nm) in biosynthesized Au nanoparticle colloids (3-

5 nm in diameter). The resulted low-divergent beam was further shown that it can be used as a 

waveguide of beams of a different wavelength. The principle was also recently demonstrated by 

the same group in ref. [38] (Figure 4.18h). Finally, a conclusion drawn in [180] suggests that 

thermal lensing can possibly be mitigated by use of high-repetition rate fs pulsed illumination in 
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conjunction with tight focusing conditions (focused 1/e2 radius < 5 μm). Further, soliton formation 

induced by gradient forces seems more likely if particles of d > 100 nm (decrease Brownian 

motion) and longest possible illumination wavelength (reduce radiation pressure) are employed. 

 

Figure 4.18 Induced waveguiding in plasmonic nanocolloids. (a-g) Demonstration attributed to 

soliton formation induced by mass transport of particles. (a) The experimental setup. (b) The 

nanoparticle inclusions of the suspension in which the waveguiding demonstration takes place. (c) 

Soliton beam (532 nm) (d-e) side and output of the IR probe beam when the soliton beam is absent. 

(f-g) Same as (d-e), however, with soliton beam present. Adapted with permission [54]. Copyright 

2016, The Optical Society. (h) Demonstration attributed to thermal lensing and self-collimation. 

On the left, shown in red, is a side view of a probe beam steered in a gold aqueous nanosuspension 

(3-5 nm Au nanoparticles) by a pump beam. Output view of the pump and steered probed beams 

are shown on the right, in green and red, respectively), which is steered accordingly. Reproduced 

with permission [38]. Copyright 2021, American Institute of Physics. A demonstration of steering 

due to thermal lensing in the same context is also shown in [37].  

4.7.1.2 Orientation ordering 

Considering the conclusions drawn by Farfad et al. [39], an off-resonant laser beam (the SPR of 

the nanorods does not coincide with the irradiation wavelength) may exert forces on Au nanorods 

inducing rotational torque on the particles due to their anisotropic polarizability. A soliton beam 



66 

 

 

induced by optical forces, may potentially align a large ensemble on a specific direction with 

 

Figure 4.19 Orientation ordering of gold nanorods in a aqueous suspension by an external electric 

field, and nonlinearity control. (a) Experimental setup. (b) Calculated spectra of polarizability 

depending on nanorod orientation. (c) Measured absorption spectra when the polarization of the 

input white light is parallel (red curve) or perpendicular (blue curve) to the applied field. Black 

curve indicates the absorption spectrum in the absence of the external field. (d-e) Output beam 

profile of a probe beam for two different input powers. For 40 mW the beam is phenomenologically 

self-trapped.  (f-g) The normalized transmission and output beam size for two different input 

polarizations of the probe beam of 790 nm wavelength as a function of the applied external field 

strength. (e-f) Same as (c-d), however for a probe beam of 930 nm wavelength. Adapted under 

terms of the CC-BY license [57]. Copyright 2021, John Wiley and Sons/Wiley-VCH. 

respect to the polarization of the incident field (as shown in Figure 4.14ii). Ultimately, this may 

lead to artificial, soliton-mediated birefringence. The idea just discussed was developed by Ren et 



67 

 

 

al. [55] by coupling collinearly to a “soliton beam” formed in a Au nanorod colloid, a weak probe 

beam (Figure 4.14ii). The polarization of the latter was shifted resulting in optical transmission 

modulation, implying the orientation ordering of the nanorods along the optical soliton. Such a 

result has remarkable implications in controlling the nonlinear properties of soft-matter media, 

being conceptually similar to hyperbolic metamaterials [102, 215, 216]. Nonetheless, as noted by 

the same group in a more recent study, various mechanisms may hinder orientation ordering, for 

example, Brownian motion, absorption, or radiation forces [56]. The findings of ref. [56] 

presumably indicate the manifestation of thermal lensing as in ref. [37, 58, 180]. A possible way 

to address the problem of orientation alignment of gold nanorods colloids has been recently 

proposed by means of application of an external electric-field [57] (Figure 4.19). 

4.7.1.3 Nonlinearity management 

According to what already discussed in Sections 4.4.6, 4.6.2, and the implications of Equation 4.29, 

Reyna and Araújo [173] demonstrated experimentally a high-order nonlinearity management 

procedure during which, the filling factor of silver nanocolloids is adjusted toward modification of 

the refractive and absorptive nonlinear response of the (effective) composite material. The authors 

have recently presented a comprehensive review of their work, which we refer to for the interested 

reader [35]. Therein, applications and prospects of the nonlinearity management procedure in 

plasmonic nanocomposites are illustrated, among others, engineering of spatial-phase modulation 

[173, 174], nonlinear birefringence [202], soliton formation [201],  and all-optical switching [175]. 

Interestingly, all demonstrations have been performed under picosecond laser excitation regime, 

where the nonlinearity of the nanoparticles originates from lattice coupling. 

4.7.1.4 Optical vortices 

An optical vortex is generated when an optical beam’s spatial intensity distribution is twisted 

around its propagation axis. Such an effect is understood in terms of an angular momentum that 

any Laguerre-Gaussian beam mode carries. The amplitude of these beams carries an azimuthal 

angular dependence which readily implies the existence of angular momentum modes in analogy 

with the quantum mechanical angular momentum operator [217]. Indeed, if one attempts to 

calculate the angular momentum density per unit volume of a Laguerre-Gaussian distribution, one 

can arrive with an expression that suggests that the Poynting vector is spiralling around its 
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propagation axis, due to an angular component. Optical vortices are then said to carry a topological 

charge 𝓂 which characterizes the number of spiraling per one wavelength, which can also be 

expressed as the carried orbital angular momentum 𝓂ℏ per photon of the light field. Optical 

vortices can be produced by various techniques including spiral phase plates, metasurfaces, 

computer generated holograms and many others, and they have found numerous applications in the 

fields of optical trapping, optical communications, quantum optics, nonlinear optics, microscopy 

and others [218, 219]. The stability of vortex solitons in propagating medium has been thus a major 

subject of investigation over the past decades [218].  

 

Figure 4.20 Waveguiding with structured light beams in plasmonic nanocolloids. (a-d) 

Demonstration of a CW vortex pump beam-waveguide, attributed to thermal lensing. (a) The 

experimental setup. (b-d) Images of the beam profiles at the output face of the cell. Waveguiding 

of a probe beam (red light) by (b) a simple vortex pump beam (c) a Bessel vortex pump beam and 

(d) a cosine Bessel vortex beam. Adapted with permission [38]. Copyright 2021, American Institute 

of Physics. (e-h) Demonstration of a 80 ps pulsed vortex beam-waveguide (soliton beam) attributed 

to nonlinearity management. (f) Low pump power – soliton beam “off” at the input of an optical 

cell and after 3, 5 and 10 mm of propagation. (g) Same as (f), however at higher input power, i.e., 

soliton beam is “on”. (h) Coupled probe beam output profile when the soliton beam is “on”. 

Adapted with permission [89]. Copyright 2016, The Optical Society. 
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Shvedov et al. [58], in their study discussed in Section 4.7.1.1, performed experiments of cw optical 

vortices propagation in plasmonic nanosuspensions of gold nanospheres and gold nanorods. Their 

study provided experimental evidence of structural optical stability of vortex solitons in plasmonic 

nanocolloids in view of the thermally induced nonlinearity. Furthermore, recently, Ortega et al. 

[38, 59] demonstrated that structured vortex beams can be used to induce stable waveguides in 

plasmonic nanocomposites due to the thermal lensing effect (Figure 4.20a-d). In a different 

approach, Reyna and Araújo [89] showed stable, pulsed laser (80 ps pulsewidth, 10 Hz repetition 

rate, 532 nm wavelength) soliton vortex formation in Ag nanocolloids within the framework of the 

nonlinearity management procedure (Figure 4.20e-h). Therein, they demonstrated coupling and 

guiding of a probe cw beam of low intensity with a wavelength of 1064 nm, of which the beam 

radius matched the dark width of the vortex soliton.  

4.7.1.5 Laser Q-switching and mode-locking 

Passive laser mode locking by use of plasmonics was first demonstrated by Ganeev et al. in a 

Nd:glass oscillator at a wavelength of 1054 nm by the utilization of a suspension of platinum 

nanoparticles acting as a SA in the cavity [34]. In this setup the authors managed to achieve stable 

5 ps pulses that exhibit better stability compared to conventional dye films. Later, researchers 

managed to exploit the saturable absorption properties of gold nanostructures for designing SA 

elements. In a first demonstration gold nanocrystals were used as a SA for Q-switched pulse 

generation in an erbium - doped fiber laser [220]. The authors obtained 3.2 μs pulses at 1560 nm 

with a repetition rate of 24.2 kHz above a threshold pumping power of 30 mW. Furthermore, Wu 

et al. used a solution of Au nanoparticles into polyvinyl alcohol to form a film which was inserted 

into a praseodymium doped fiber laser cavity [221]. The authors demonstrated generation of pulses 

as narrow as 235 ns at a visible frequency with 546.4 kHz repetition rate and maximum output 

power of 11.1 mW. The geometrically tunable properties of the SPR of metallic nanoparticles has 

given also further attention to other geometries of nanoparticles, like nanorods. Indeed, gold 

nanorods exhibited stable performance as SA elements in fiber lasers to produce mode locked 

pulses [27, 222].  

More recently, the ion implantation of Au in a Nd:YAG crystal has been reported to have improved 

the optical nonlinearity of the latter by 5 orders of magnitude and provided better saturable 
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absorption properties [223]. Moreover, Pang et al. [28] reported the fabrication of a novel SA in 

which Au nanoparticles were embedded in a LiNbO3 crystal and demonstrated superior 

performance compared to previous nanoparticle based SAs due to the combination of the 

multifunctionality of the LiNbO3 with the SPR of the plasmonic nanoparticles. Further 

advancements have been reported in the field of plasmonic SA for laser Q-switching by the same 

group by the ion implantation technique, including Cu embedded in LiNbO3 [30] and LiTaO3 [224] 

and Ag implanted in LiNbO3 [225] and Nd:YAG [29]. Xian et al. [226] proposed the utilization of 

refractory titanium nitride nanoparticles as SA and demonstrated mode-locking and generation of 

minimum pulse duration down to 763 fs (Figure 4.21a-c). Finally, it is noteworthy that utilization 

of plasmonic metasurfaces with ultrahigh modulation depth have recently exemplified the 

remarkable potential of plasmonic nanocomposites in laser mode-locking technology [31] (Figure 

4.21d-g).  

 

Figure 4.21 (a-c) Q-swithed pulse generation by use of a plasmonic TiN/PVA film as a saturable 

absorber. (a) The nonlinear transmittance modulation curve. (b) Autocorrelation trace of the 

generated pulses. (c) The output power curve as a function of the pump power. Adapted with 

permission [226]. Copyright 2019, John Wiley and Sons. (d-g) Mode-locking in a fiber laser cavity 

by use of plasmonic nanorod array as a saturable absorber. (d) SEM image of the array. (e) 

Polarization dependent transmittance through the array. (f) Autocorrelation trace of the mode-

locked pulses. (g) The output power of the cavity as a function of the pump power. The shaded 

regions demarcate single-soliton, single-soliton with cw and soliton molecule regimes with green, 

red, and blue color, respectively. Adapted under terms of the CC-BY license  [31]. Copyright 2020, 

Springer Nature. 
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4.7.2 Ultrashort pulse regime 

4.7.2.1 Filamentation and supercontinuum generation 

Femtosecond filamentation and supercontinuum generation in a plasmonic nanocomposite was 

first reported in 2007 by Wang and coworkers [44]. The authors employed an amplified 

femtosecond laser source (50 fs pulsewidth, 1kHz repetition rate, 800 nm wavelength) to observe 

the nonlinear propagation of pulses in a sample of Ag nanocolloid (10 nm average particle size). 

Pumping conditions were reported under which the supercontinuum exhibited amplitude 

enhancement in the Ag-doped water as opposed to neat water, however, without clear insights on 

the involved mechanisms. Side views of the beam propagation through the samples showed 

expansion of the spectral broadening towards “bluer” frequencies for increasing input power, by 

consecutive scattering of orange, yellow, green, and finally bright blue color light off Ag particles 

in the region of the formed filament’s core. Similar results were reported by Cui et al. [227] along 

with direct observations on the conical emission governed by the characteristics of the SPR of the 

nanocolloids. Later, Vasa et al. [228] reported on experimental results of supercontinuum 

generation from water doped with Au nanostructures of varying SPR. Their conclusions focused 

on observed conditions of increased spectral extent and flat supercontinuum spectra from examined 

Au colloids, which they attributed to contribution of plasmonic field enhancement on the third 

order susceptibility of the host.  

The latter group further studied experimentally supercontinuum generation in the anomalous 

dispersion regime of water [229]. Octave spanning supercontinuum expansion was observed 

despite the stronger absorption of water for wavelengths greater than 1300 μm, which was 

explained in terms of a phenomenological self-phase modulation model. It was demonstrated that 

for water doped with gold nanorods (SPR at 626 nm), the supercontinua were significantly 

modulated in the case of pumping wavelength of 1200 nm, whereas when pumping of 1300 nm 

was employed, the modulation was less pronounced (Figure 4.22D-E). Thus, the observations 

implicated resonant interaction with two-photon transitions at the SPR of the samples, possibly 

affecting the nonlinearity. Notably, in another note, Zhavoronkov et al. [230] reported on 

supercontinuum generation from a heavy-glass matrix Ag nanocomposite, under a two-photon 

resonant interaction regime. The authors observed a significant asymmetric broadening of the 
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pulses in the case of the doped glass as opposed to undoped glass at the same input powers, an 

effect that they attributed to temporal delay by stimulated Raman scattering, which they considered 

into numerical simulations of a nonlinear wave propagation equation (Figure 4.22A-C).  

 

Figure 4.22 Supercontinuum generation in plasmonic nanocomposites under conditions of two-

photon resonance with the localized plasmon mode. (A) Size distribution and TEM image of Ag 

nanoparticles synthesized in a 2 mm WO3 glass matrix. (B) Absorbance spectra after 4 hours of 

thermal annealing (red curve). (C) Measured supercontinua (spectral broadening) after propagation 

through the doped (solid red curve) and undoped (dashed black curve) matrix. The orange dotted 

and blue dotted curves correspond to numerical calculations accounting for or ignoring a stimulated 

Raman scattering contribution term, respectively. Adapted with permission [230]. Copyright 2011, 

Institute of Physics. (D) Absorbance spectra of an aqueous Au nanorod colloidal solution. (E) 

Measured supercontinua after propagation through a water sample (dashed curves) and the Au 

nanorod suspension sample (colored curves) in the anomalous dispersion regime of water [pump 

at 1300 (top figure) and 1200 nm (bottom figure)]. Adapted with permission [229]. Copyright 2013, 

American Physical Society. 

4.7.2.2 Spectroscopy 

Kudryashov et al. [50] performed studies of supercontinuum generation from nonlinear 

propagation of light in Au nanocolloids in the ultrashort pulse regime (femtosecond filamentation) 

with a different perspective. The authors reported for the first time that in fact, an overall 

attenuation of supercontinuum generation occurs during femtosecond filamentation in Au 
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nanocolloids compared to water, owing to strong optical extinction in the former. Nonetheless, 

they noted that femtosecond filamentation and supercontinuum generation in Au nanocolloids can 

be utilized for fundamental investigation of their nonlinear response by means of ultrafast 

broadband nonlinear spectroscopy (Figure 4.23A-C), which reveals features of out-of-equilibrium 

properties of metallic nanoparticle dielectric function at high pump intensities (SPR quenching, 

interband threshold red-shift), as observed in their later studies [51, 52, 231] and in ref. [232, 233].  

 

Figure 4.23 Spectroscopic studies in aqueous suspensions of plasmonic nanoparticles. (A-D) 

Observation of plasmon peak modulation under intense pumping and filamentary propagation. (A) 

Experimental setup. (B) Linear transmittance of suspensions of different concentrations. (C) 

Supercontinua obtained for pure water and Au nanocolloid. (D) Optical density spectra obtained 

by filamentary propagation through Au colloid and normalized over the spectrum of plain water at 

various pumping intensities (colored curves) and linear optical density (black curve). Adapted with 

permission [51]. Copyright 2019, American Institute of Physics. (E-G) Spectroscopic 

measurements at 3 different locations across the propagation axis of a formed filament in Au 

nanocolloid. Adapted under terms of the CC-BY license [49]. Copyright 2018, Springer Nature. 

(H) Utilization of Au nanoparticles as contrast agents for imaging filamentary plasma grating in 

experiments of crossing filament THz generation through a water sample. Reproduced with 

permission [234]. Copyright 2018, American Institute of Physics.  
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In another recent note, highly extended filamentation was reported in Au nanocolloids compared 

to water [49]. However, the observation was related to the fact that the water filament channel is 

 

Figure 4.24 Filamentation in a AuAg alloy (25:75) aqueous suspension. The sample preparation is 

described in  [235]. (a) The experimental setup: a 10 cm optical cuvette is filled with the sample. 

A 1/e2 beam radius ~2.4 mm is focused approximately at the middle of the cuvette by a 150 mm 

positive lens. Side views were collected by a digital camera and far-field output profiles projected 

on a screen. (b) Calculations of the absorption, scattering and extinction cross sections of the 

examined nanoparticles. The transmitted and scattered colors are shown in the right top and bottom 

figures. (c) Side views of filamentation when the cuvette was filled with the plasmonic nano-colloid 

(top) or water (bottom). Strong phase modulation gives rise to Anti-Stokes wing broadening of the 

laser spectrum at the incident power (~35 times the critical power of water). Generated frequencies 

near the plasmon resonance are heavily scattered or absorbed, filtering out the involved frequencies 

of the laser spectrum at the output as observed in far-field profiles in (d). Scattering of “redder” 

frequencies is observed near the output face of the cuvette, either due to complete filtering of 

spectral broadening below 500 nm or due to strong modulation of the dielectric function of the 

particles (hence, the SPR). Still, the first scenario appears more possible considering reported blue 

shifting of the SPR under similar conditions of very intense pumping in Au aqueous nano-

suspensions [51]. Note that the filament channel observed in the case of water is 

phenomenologically comparable in length to the one in the case of the plasmonic nanoparticle in 

contrast to recent reported observations [49]. 
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not visually observable because of its transparency at optical frequencies, whereas highly scattering 

Au nanoparticles visually enhance the filament’s core, making it easily observable to naked eye 

(Figure 4.24). Yet, experiments presented in [49, 236] provided spectroscopic evaluation of the 

attenuation by the SPR of the nanoparticles at the spectral shoulder near the SPR region, which 

typically coincides to the anti-Stokes wing of supercontinuum in water (Figure 4.23E-G). The 

nonlinear scattering properties of plasmonic nanoparticles were further exploited to achieve 

imaging of gratings formed in nanoparticle-doped water when interacting filaments cross each 

other [234, 237, 238] (Figure 4.23H).  

 

Figure 4.25 Evaluation of the threshold power for self-focusing in Au nanorod colloids by the 

power limiting method. (a) The experimental setup. Reproduced under terms of the CC-BY license 

[239]. Copyright 2021, Springer Nature. (b) The examined samples of varying concentration. (c) 

Typical measurements obtained by the power limiting method in the samples shown in (b) for two 

different positions of the optical cuvette along the propagation axis. Note that saturation of 

absorption and partial particle deformation is observed near the threshold power. (d) The 

experimentally evaluated threshold power for self-focusing versus the absorption of the nanorod 

colloids. The solid and dotted curves correspond to numerical simulations by solution of a 

nonlinear propagation equation of Schrodinger type, which accounts for saturation of absorption. 

Adapted under terms of the CC-BY license [240]. Copyright 2021, The Optical Society. 

More recently, Agiotis and Meunier [239] have used an optical power limiting device introduced 

by Soileau et al. [241-243], originally employed for pulses higher than ~20 ps, to evaluate optical 
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nonlinearities in transparent media in the filamentation regime, governed by Equation 4.36. They 

have shown that the technique can be applied in the case of gold nanorod colloids (or any absorbing 

medium), for the evaluation of their strongly saturable nonlinearity (Figure 4.25). In fact, the 

authors showed that the self-focusing nonlinearity of the samples increases monotonically, yet only 

marginally, as the concentration of the nanorods increases. The result has been understood in the 

context of a synergistic effect of the ultrafast saturable permittivity (thus saturable local-field 

enhancement) and particle deformation near the threshold of filamentation [240]. 

4.8 Summary and outlook 

The development of plasmonic nanocomposites has allowed fabrication of novel metamaterials 

with unique effective medium nonlinear properties. Extensive systematic studies on ultrafast 

electron dynamics in metals and metallic nanoparticles has greatly aided our understanding on the 

origin of their electronic nonlinear responses and the one of plasmonic composite materials. In this 

work, we have provided an overview of the most significant and latest advances in the field of 

ultrafast electron dynamics in metals and plasmonic nanocomposites, and most important 

approaches to formulate the resulting free electron nonlinearities at various timescales and pumping 

intensity regimes. Further, we presented a summary of resulting phenomena relevant to absorptive 

and higher-order responses in these materials. We have moreover referred to latest observations in 

typically stronger diffusive nonlinearities of slower (or cumulative) response, either due to heat 

diffusion in the host matrix or mass transport phenomena in soft-matter systems. A quantitative 

synthesis of measured nonlinearities under various laser excitation regimes has also been presented 

along with figures of merit, illustrating the importance of fundamental understanding of the origin 

of the observed nonlinearities. Finally, we provided a compendium on the influence of nonlinear 

response of plasmonic nanocomposites toward recent advancements in modelling, processes and 

applications related to nonlinear propagation of laser light in these metamaterials. We note that the 

presented overview is only relevant to advances within the effective medium approximation and 

long-range, diffraction-limited nonlinear wave propagation and it did not touch nonlinear processes 

in nanostructured geometries, for example, harmonic generation in the nanoscale, nonlinear surface 

waves on interfaces or surface plasmon-polariton solitons. 
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Overall, enhancement of coherent nonlinear processes related to the collective surface plasmon 

oscillation are accessible typically only under low-light intensity and ultrafast (< 10-20 fs) regime 

in nano-scaled geometries. Contrarily, within the effective medium approximation, an important 

conclusion drawn on the electronic nonlinear response of plasmonic nanocomposites is its 

predominantly thermal nature, even in the fs timescale. The nonlinear response of metallic 

nanoparticles, directly related to electronic and lattice temperatures, becomes stronger by 

increasing the temporal interaction with the incident field. The strongest response is observed by 

thermal heating of the whole material governed by the thermo-optic properties of the host material 

during longer pulsed (< 100 ps) or cw illumination. 

In the context of fs filamentary propagation, it is unlikely that significant enhancement of Kerr self-

focusing, and self-phase modulation processes can be achieved toward the modulation or 

amplification of supercontinuum generation. Indeed, photo-excited plasmon modes undergo 

inelastic decoherence and concurrently scatter at the particle interfaces within a timescale < 100 fs 

to a bath of high-energy kinetic modes, out of thermal equilibrium. Consequently, high intensity fs 

laser excitation in the resonance of SPR results in strongly saturable nonlinearities. However, it is 

noteworthy that in this regime scattering and absorptive properties of nanoparticles have been 

exploited to tailor the spectral extent of generated supercontinua, analyze spectroscopic signatures 

of the strongly perturbed electronic structure of metallic nanoparticles upon filamentary 

propagation in colloidal systems, or even for imaging. 

Furthermore, studies in the propagation of short pulsed (> 10 ps) and cw irradiation in plasmonic 

disordered systems has recently revealed a variety of novel nonlinear effects. Judicious adjustments 

of nonlinear response based on metallic concentration, soft-matter reconfigurable manipulation of 

nanoparticles, ultrahigh-modulation depth saturable absorbers for laser mode-locking or thermally 

induced waveguiding optical vortices are several examples. Questions remain open-ended such as 

the competition of thermal effects against mass transport in soft-matter systems under certain 

external focusing conditions and size of particles or the stability of spatial solitons in view of high-

order nonlinearities. Nonetheless, these sub-fields of nonlinear optics are still relatively young and 

await new advancements towards the development of plasmonic devices, optical switches, sensors, 

limiters, waveguides, and others. 
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CHAPTER 5  ARTICLE 2: OPTICAL POWER LIMITER IN THE 

FEMTOSECOND FILAMENTATION REGIME 

Research article published in Scientific Reports in 20213 

5.1 Authors and author contributions 

Leonidas Agiotis and Michel Meunier. L.A. designed the research, conducted the experiments, 

analysed the data, performed theoretical and numerical analysis, and wrote the main manuscript. 

M.M. supervised and discussed the work and reviewed the main manuscript. 

5.2 Abstract 

We present the use of a power limiting apparatus to evaluate ultrafast optical nonlinearities of 

transparent liquids (water and ethanol) in the femtosecond filamentation regime.  The setup has 

been previously employed for the same purpose, however, in a longer pulsewidth (>20 ps) regime, 

which leads to an ambiguous evaluation of the critical power for self-focusing. The uncertainty 

originates from the existence of a threshold power for optical breakdown well below the critical 

power for self-focusing within this timeframe. Contrarily, using the proposed apparatus in the 

femtosecond regime, we observe for the first time a unique optical response, which features the 

underlying physics of laser filamentation.  Importantly, we demonstrate a dependence of the optical 

transmission of the power limiter on its geometrical, imaging characteristics and the conditions 

under which a distinct demarcation for the critical power for self-focusing can be determined. The 

result is supported by numerical simulations, which indicate that the features of the observed 

power-dependent optical response of the power limiting setup are physically related to the 

spontaneous transformation of the laser pulses into nonlinear conical waves. 

 

3 Agiotis, L., Meunier, M. Optical power limiter in the femtosecond filamentation regime. Sci Rep 11, 14270 (2021). 

https://doi.org/10.1038/s41598-021-93683-x 
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5.3 Introduction 

Prior to the z-scan first demonstration [244], Soileau et al. introduced a passive optical power 

limiting device that relies on the self-focusing property of liquids [241]. The main idea of passive 

operation was based on the concept that a focused beam passing through a nonlinear medium will 

undergo strong phase change on its wavefront at increasing input powers, due to combined laser-

induced breakdown and self-focusing inside the nonlinear medium. Thus, by placing an imaging 

lens after the nonlinear medium, one can observe limited transmission through a pinhole placed at 

the focus of that lens at high input powers. 

In their original paper, the authors have employed their setup using nanosecond and picosecond 

pulses at an optical wavelength of 1.06 μm to study the nonlinear response of CS2. Indeed, the 

device has been tested to exhibit a “step-function”-like transmission for increasing input powers, 

of which the demarcation was identified as the critical power for self-focusing. The latter is 

generally defined as the required input peak power of the pulse above which self-focusing 

overcomes diffraction [40, 64]. Effectively, the beam collapses so that its intensity increases and 

ionizes the medium. Nonetheless, for a pulse regime typically longer than 1 ps, optical breakdown 

is reached at a significantly lower power than the critical power for self-focusing within this 

timeframe due to the comparable times between energetic electron collisions and laser pulsewidth 

[40, 41]. By contrast, for pulses in the femtosecond regime, self-focusing typically occurs rapidly, 

before optical breakdown is attained in the medium [41]. Hence, the use of the technique with laser 

pulses longer than 1 ps, can typically lead to an underestimation of the critical power for self-

focusing. 

In this work, we employ the foresaid optical power limiter in the femtosecond filamentation regime, 

and we measure ultrafast optical nonlinearities in deionized water and ethanol. In our proposed 

approach we introduce to the system a pinhole (~15 μm in diameter), much smaller than the imaged 

beam waist at this location (~32 μm in diameter), which ensures a significant variation on the 

recorded output transmittance, related to spatial transformation of the beam profile after the beam 

collapses into a filament. Thereby, we observe unique features on the optical response of the setup 

when the pinhole is placed at various positions with respect to the focal plane of the imaging lens 

and we demonstrate that the critical power for self-focusing, among with other nonlinearities, can 
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be reliably evaluated by this technique in the femtosecond regime. Further, we discuss a 

comparison between experimental observations and numerical simulations related to the beam size 

in the far-field and its transformation into a nonlinear conical wave [245-247] for the well-

established case of water. 

5.4 Results and Discussion 

 

Figure 5.1 Typical experimental measurements in deionized water (black solid lines) and ethanol 

(red solid lines) by the optical power limiter in the filamentation regime. The top figures (a, b, c) 

present the output signal averaged over 10 shots and the bottom figures (d, e, f) show the standard 

deviation of these measurements. Top and bottom figures (presented in column pairs) correspond 

to different locations of the pinhole: (a, d) z = zi, (b, e) z = zi – 1.5 × zR,i and (c, f) z = zi + 1.5 × 

zR,i. Distinct features related to collapse of the beam become evident for case (b). In all three cases, 

a decrease in optical transmission and sudden increase in the standard deviation of the measurement 

is observed for ethanol at an input power ~7.2 MW, which is identified as an optical breakdown 

threshold. 

We follow a heuristic approach in the experimental procedure, by obtaining measurements for 

various locations of the pinhole with respect to the imaging plane of the system (Methods). The 

reasoning lies in the highly dynamic nature of laser filamentation [40], which depends strongly on 

the beam propagation axis-z. Indeed, near the critical power, a nonlinear focus is initiated in the 

medium, moving backwards in z as the power increases and the beam collapses into a filament. 
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Accordingly, the backwards nonlinear focus displacement inside the medium is expected to affect 

the position of the imaged beam waist in the far-field. In what follows, we present results collected 

at three different locations of the pinhole: (a) exactly at the imaging plane (the plane that 

corresponds to the formed focus after lens L2 ), i.e at 𝑧 = 𝑧𝑖, (b) at 1.5 Rayleigh lengths 𝑧𝑅,𝑖 before 

the imaging plane, i.e. at 𝑧 = 𝑧𝑖 − 1.5 × 𝑧𝑅,𝑖 and (c) at 1.5 Rayleigh lengths after the imaging plane, 

i.e. at  𝑧 = 𝑧𝑖 + 1.5 × 𝑧𝑅,𝑖. The factor 1.5 is ~|𝑀𝐴|−1, where 𝑀𝐴 denotes the effective 

magnification of the system. The latter is noticeably affected by the focal waist position inside the 

sample, due to linear refraction (Methods/Experimental). Effectively, cases (b) and (c) correspond 

to the limits of field of focus at the focal plane of lens L1 (Methods/Theoretical). 

Figure 5.1 shows typical measurements in the examined liquids (water, ethanol). Case (a) is 

conceptually the same as the one of the original design of the device [241], however, in the 

filamentation regime, it appears to bear different features. One cannot distinguish a “step-

function”-like transmission, instead, a gradual, monotonic decrease of the latter is observed as the 

input optical power 𝑃𝑖𝑛 approaches the critical power for self-focusing 𝑃𝑐𝑟. In addition, the response 

of the two liquids appears to be almost identical for both samples for 𝑃𝑖𝑛 < 7.2𝑀𝑊 ≡ 𝑃𝑂𝐵
𝑒𝑡ℎ, where 

𝑃𝑂𝐵
𝑒𝑡ℎ stands for the optical breakdown threshold power for ethanol, which is discussed in the next 

section. Note that this threshold is evident in the signals of cases (b) and (c). 

Contrarily to case (a), in case (b) features related to the collapse of the beam are observed. For both 

liquids, the optical transmission reaches a plateau (at around ~5.3 and ~4.2 𝑀𝑊 for water and 

ethanol respectively), which phenomenologically coincides with a strong phase modulation of the 

beam. The latter was apparent by visually inspecting the spatial profile of the beam when 

intercepted by a white card, as it acquires a redder color. After the foresaid plateau is reached, the 

optical transmission remains almost steady over a small 𝑃𝑖𝑛 interval. Above a critical input power, 

optical transmission increases monotonically again. It is that power that we identify as the critical 

power for self-focusing 𝑃𝑐𝑟, since, as it will be shown later, it coincides with a beam width 

transformation and supercontinuum generation threshold 𝑃𝑆𝐶  in water. The same conclusion can 

be generalized for the case of ethanol, owing to the similarity of the observed features on the power 

limiter response and of the qualitative observations on the beam width transformation into white 

light when intercepted by a white card for both liquids. Indeed, experiments have shown [43] that 
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the 𝑃𝑆𝐶  is approximately equal to 𝑃𝑐𝑟 with ±10% precision for a variety of optically transparent 

media, which is attributed to the universality of the physics of laser filamentation [41]. Importantly, 

our analysis, presented in the next paragraphs for the case of water, aims to demonstrate that 𝑃𝑐𝑟 

can be reliably determined by a standalone measurement by the power limiting method operated in 

case (b) geometry, presumably for a variety of transparent optical media. Finally, note that, despite 

the common signal features of both examined liquids in case (b), there is a clear difference in the 

value of 𝑃𝑖𝑛 that these features occur in each one of the samples, indicating the sensitivity of the 

measurement.  

Case (c) exhibited a behaviour more like case (a), nonetheless, the transmitted signals exhibited a 

smaller slope as a function of 𝑃𝑖𝑛. In addition, ethanol measurement yielded a slightly weaker 

optical transmission compared to water at a 𝑃𝑖𝑛 interval before the total collapse of the beam into 

a filament, however, it was still difficult to identify the features discussed in case (b) for both 

samples. 

Further, we note that the foresaid observed features are not affected significantly by losses related 

to nonlinear absorption at increasing input powers, which was confirmed in open-apertured optical 

transmission measurements through the cuvette when filled with the two liquids. Indeed, the optical 

transmission reduced only by ~1-2% at 6.8 MW for water and at 5.2 MW for ethanol, and by ~5% 

at 8 MW for water and at 6 MW for ethanol, respectively. Therefore, significant nonlinear losses 

occur only after the beam collapses into a filament, most likely due to increased plasma generation 

and direct multiphoton absorption in the liquids. 

5.4.1 Evaluation of nonlinearities 

5.4.1.1 Optical breakdown 

The criterion for the determination of 𝑃𝑐𝑟 as described by Soileau et al. [241] in their original work, 

was established by monitoring the standard deviation of normalized transmission measurements 

through the pinhole (calculated over 5 shots at each input power). The authors observed that the 

value of the foresaid standard deviation increases by an order of magnitude at 𝑃𝑐𝑟 and subsequently 

suddenly drops. A similar behaviour was observed in our experiments solely for the case of ethanol. 

The event was recorded only after an input pulse power of  ~7.2 MW, which was accompanied by 
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a sudden drop on the optical transmission and a spark ignition inside the sample, as visually 

inspected to have been developed near the geometrical focus, implying the manifestation of optical 

breakdown.  

As was demonstrated for example in [72], typically electron densities of the order of 10-18 cm-3 are 

reached during filamentation by pulses of ~50 fs FWHM, via multiphoton ionization in a 

transparent medium, which is well below the critical plasma density of ~10-21 cm-3 for optical 

breakdown. The latter can be reached only by subsequent avalanche ionization, which depends 

implicitly on the focusing geometry (and explicitly on the developed intensity), on the optical 

properties of the medium, the ionization potential and the related cross section for cascade 

ionization [41, 72]. Therefore, we attribute the observed spark ignition to favorable conditions for 

optical breakdown via avalanching in the case of ethanol at ~7.2 MW. Notably, simultaneous 

manifestation of both optical breakdown and filamentation is possible under certain focusing 

conditions inside a given sample, which is characterized by a decrease of the repetition rate of the 

pulse (here transformed in white light at the specified input power for ethanol), which was observed 

in our experiments and also reported in Figure 6c of reference [72]. 

 

Figure 5.2 Imaged (far-field) beam size dependence on the input pulse power for deionized water 

at the three examined z-coordinates. In the far-field, a maximum divergence should correspond to 

a minimum beam size near the focal plane inside the sample. There is a strong implication of beam-

width transformation due to the collapse, therefore, the local maximum at 6.7 MW is identified as 

the critical power for self-focusing Pcr. 
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5.4.1.2 Critical power for self-focusing 

Further, we evaluated experimentally the power dependence of the far-field beam size (1/e2) near 

the imaging plane that is formed after L2 (see schematic in Methods section) when the cuvette is 

filled with water. The results (Figure 5.2) show how the imaged beam size undergoes a 

transformation while 𝑃𝑖𝑛 approaches 𝑃𝑐𝑟. Initially, it remains almost the same at 𝑧𝑖, it marginally 

increases at 𝑧𝑖 + 1.5 × 𝑧𝑅,𝑖, while it reduces at 𝑧𝑖 − 1.5 × 𝑧𝑅,𝑖 up to an input pulse of ~5.3 𝑀𝑊, 

which coincides with the strong phase modulation observed experimentally. After that point, it 

increases for all three examined planes, presumably due to a shift in the angular divergence of the 

beam’s wavefront in the presence of strong self-phase modulation. The behaviour persists up to a 

critical power, (which we identify as 𝑃𝑐𝑟) above which it drops for all planes. The initially opposing 

trend of beam size versus 𝑃𝑖𝑛 for 𝑧 = 𝑧𝑖 − 1.5 × 𝑧𝑅,𝑖 compared to the rest two examined z, clarifies 

the signal behaviour in case (b) of Figure 5.1. The beam size undergoes a sharper shift (reaching a 

local minimum) for 𝑃𝑖𝑛~5.3𝑀𝑊, i.e., around the experimentally observed onset power for strong 

phase modulation of the pulse. Accordingly, such a sharp shift influences the recorded signal on 

the apertured detector since a larger beam size typically results in a decrease on the axial fluence 

of the beam. Finally, we note that the experimental 1/e2 beam size evaluation is approximate near 

𝑃𝑐𝑟 since the beam is known to be gradually transformed into a nonlinear, Bessel-like conical wave 

upon collapse into a filament [246-248]. 

 
Figure 5.3 (a) Relative spectral broadening of the pulse as a function of the input power in deionized 

water. The estimation has been performed as in [249]. Note that the authors of [249] have chosen 

Δω/ω0(Pin=PSC) ≈ 0.5, so here, PSC is close to 6.7 MW. (b) Experimentally obtained 

supercontinuum spectra for water as a function of the input power. 
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5.4.1.3 Supercontinuum generation 

Importantly, 𝑃𝑐𝑟 seems to be very close to 𝑃𝑆𝐶 , defined as the dramatic increase on the pulse 

spectrum, an assessment that has also been drawn, for example, in references [43, 72, 249]. We 

illustrate this result by a measurement of the relative spectral broadening of the pulse as a function 

of the input pulse power in water (as performed in [249]). Based on the above analysis shown in 

Figure 5.3, we conclude that 𝑃𝑐𝑟
𝑤𝑎𝑡𝑒𝑟 ≅ 𝑃𝑆𝐶

𝑤𝑎𝑡𝑒𝑟 ≈ 6.7 𝑀𝑊 and we evaluate 𝑃𝑐𝑟
𝑒𝑡ℎ𝑎𝑛𝑜𝑙 ≅ 𝑃𝑆𝐶

𝑒𝑡ℎ𝑎𝑛𝑜𝑙 ≈

5.2 𝑀𝑊 from the optical limiter measurement [case (b) of Figure 5.1]. 

5.4.1.4 Nonlinear refractive index 

Having marked the onset for 𝑃𝑐𝑟 we derive the nonlinear index of refraction n2 of the examined 

liquids from our measurements, accounting for the following: First, as it has been demonstrated by 

Fibich et al. [64], we assume that the threshold for filamentation, must coincide with the critical 

power for self-focusing. The same author has demonstrated that for a Gaussian input spatial beam 

profile the critical power for self-focusing is inversely proportional to the nonlinear index of 

refraction, according to [64, 68] 

𝑃𝑐𝑟,0 =
3.79𝜆2

8𝜋𝑛0𝑛2
 5.1 

Another factor considered, which significantly affects the critical power for self-focusing, is the 

beam propagation factor M2. We use a relation determined by Porras et al. [250], which has been 

derived through a generalized ABCD propagation law and it reads 

𝑃𝑐𝑟 = 𝑃𝑐𝑟,0𝑀
4/𝜓 5.2 

where 𝜓 is a dimensionless factor related to the beam profile distribution and is equal to 1 for 

Gaussian profiles. Using Equation 5.1 and 5.2 and , 𝑀2 = 1.4 (Methods/Experimental) and the 

values of the linear refractive index 𝑛0 = 1.33 and 1.36 for water and ethanol respectively [251], 

we have calculated 𝑛2 for the examined liquids. The results are shown in Table 5.1 along with 

values cited in the literature, obtained by different techniques, for comparison. 
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Table 5.1 Evaluation of the Kerr nonlinear index of refraction of deionized water and ethanol: A 

comparison between values in the literature and our measurement. a Only the electronic n2 obtained 

in [252] is considered. b Larger pulsewidths are examined in [253], however, only the smallest 

value is considered here, to exclude slower contributions on the value of n2. 
c The value of n2 in 

[254, 255] is given in 10-13 esu, thus we have calculated χ(3)
xxxx(esu) = n0n2(esu)/(8π) and converted 

in m2/W2 by applying the relation n2(m
2/W2) = (3.95×10-6)/[n0

2χ(3)
xxxx(esu)] [61]. (NA = Non 

available) 

Reference Method 
n2(× 10−20m

2
W⁄ ) Wavelength 

(nm) 

Pulsewidth 

(FWHM) 
Repetition rate 

water ethanol 

[252] Beam deflection a 2.5 ± 20% 3.2 ± 20% 800 150 fs 1kHz 

[253] Ellipse Rotation b 3.4 ± 20% 4.5 ± 20% 790 60 fs NA 

[256] 
Spectral 

Interferometry 
1.9 ± 10%  815 90 fs 1kHz 

[255] 
Optical Kerr 

Effect c 1.9 ± NA 2.4 ± NA 820 130 fs 
76 MHz (chopped at 

NA frequency) 

[72] 
Supercontinuum 

onset 
2.0 ± NA  810 45 fs 1kHz 

[257] z-scan 3.5 ± 1.9  1150 90 fs 10 Hz 

[254] 
Optical Kerr 

Effect c 1.5 ± NA 2.9 ± NA 1024 10 ps 
150 MHz (100 

shots) 

Our work Power limiting 2.1 ± 20% 2.7 ± 20% 800 55 fs 50 Hz 

In Table 5.1, the ultrafast (isotropic) nonlinear response of the two liquids, as evaluated by the 

power limiting method herein, is in fair agreement with measurements presented in the literature 

by various techniques at a wavelength around ~800 nm. For the case of water, at a longer 

wavelength of 1150 nm, the nonlinear refractive index is expected to increase as demonstrated 

experimentally in [257], an observation that holds for increasing wavelengths up to 1250 nm. 

Further, we account that for data at a wavelength of 1024 nm [254], a fair comparison of 𝑛2 can 

still be performed with our measurements. In terms of pulsewidth excitation, Miguez et al. [253] 

have demonstrated that for pulsewidth excitation shorter than 200 fs the ultrafast component of the 

nonlinearity remains almost unchanged for the two liquids. Although that according to that 

observation one would not expect a significant influence of the pulsewidth on n2 value within the 

range of <200 fs, the value of 𝑃𝑐𝑟 might still be affected due to group velocity dispersion, while 

Equation 5.1, which is a steady-state result [64],  is usually applied as a reference in the case of 

ultrafast pulses [40, 64]. Further, results presented in [253] imply that for pulses of 10 ps, 𝑛2 can 

increase up to 40 %  (30% increase is discussed for ethanol in [252]) due to contributions from 

molecular reorientation. However this is not observed when comparing the values of 𝑛2 reported 
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by [254] with the rest of the reported values shown in Table 5.1. The relative magnitude of the 

measured nonlinearities between water and ethanol is yet demonstrated. Finally, we should note 

that direct methods such as the z-scan technique, beam deflection, supercontinuum onset and the 

power limiting method typically require low repetition rate laser sources (<1 kHz) to ensure that 

thermal effects are not affecting the evaluated nonlinearities. 

5.4.2 Theoretical interpretation 

In what follows, we examine theoretically the experimental observations of the imaged (in the far-

field) beam size dependency on 𝑃𝑖𝑛 in water. Let us first note that all three examined far-field beam 

profile distributions near the focal plane of imaging lens L2 are compressed by the same ratio 

𝑑𝑖/𝑑𝑜 ≡ |𝑀𝐴|, where 𝑑𝑖 is the distance from L2 to the imaging far-field plane at 𝑧𝑖, 𝑑𝑜 is the 

distance of lens L2 from the focal plane of lens L1, located at 𝑧𝑓, and 𝑀𝐴 denotes the linear 

magnification of the system. The latter remark imposes that, upon lens transformation, the planes 

near the focal plane of L1 at 𝑧𝑓 ± 𝑧𝑅,𝑓 correspond to the imaging (far-field) planes at 𝑧𝑖 ∓

𝑧𝑅,𝑖 × |𝑀𝐴|−1 (Methods). 

The power dependence of the calculated beam waist size 𝑤𝑓 (at the focal plane of L1) inside the 

propagation medium (Figure 5.4d) exhibits a behaviour different than the one measured at the 

imaging (far-field) planes, as expected. The imaged far-field beam size 𝑤𝑖 versus 𝑃𝑖𝑛 should be 

calculated instead and compared with the experiment. We first calculated the far-field electric field 

amplitude distribution 𝑆(𝑡, 𝑘⊥) at an arbitrary distance 𝑑𝑓 ≫ 𝑤𝑓 from the examined z coordinates. 

We integrated in time (since the experimental measurements are time-integrated) to find the radiant 

energy angular spread distribution (shown in Figure 5.4a,b,c) over a time-averaged instantaneous 

transverse wavenumber, i.e., 〈𝑘⊥〉 ≡
1

𝒯
∫ 𝑑𝑡𝑘⊥

𝒯

0
. From the resulting distributions we have calculated 

the second moments (twice the standard deviation 𝜎〈𝑘⊥〉) of the power dependent 〈𝑘⊥〉. Assuming 

that the pulse undergoes only small spectral modulation before the critical power, we use the 

relation 𝜃 ≈ 𝑘⊥𝑐/(𝜔0𝑛0) [248], so that 2𝜎〈𝜃〉 ≈ 2𝜎〈𝑘⊥〉𝑐/(𝜔0𝑛0), to calculate the standard 

deviation of the divergence 〈𝜃〉 at the fundamental frequency 𝜔0 as a function of 𝑃𝑖𝑛. Apparently, 

this is an oversimplification when 𝑃𝑖𝑛 approaches 𝑃𝑐𝑟, in view of strong dispersion while the 

spectrum of the pulse increases (Figure 5.3). Thus, as shown in Figure 5.4e, the divergence 
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increases versus 𝑃𝑖𝑛, however, with expected deviations as 𝑃𝑖𝑛 approaches 𝑃𝑐𝑟. Even so, as is, 𝑤𝑓 

and 2𝜎〈𝜃〉 versus 𝑃𝑖𝑛 allow for a first order approximation of the imaged far-field beam size 𝑤𝑖 (see 

Methods), shown in Figure 5.4f. 

 

Figure 5.4 Numerical calculations based on Equations 5.3-5.4 (Methods) in water. (a), (b) and (c) 

show the time-integrated and normalized far-field spectra S(t, k⊥) versus the time-averaged 

instantaneous transverse wavenumber 〈k⊥〉, calculated by the Hankel transformation of the solution 

of Equations 5.3-5.4 at (a) z = zf – zR,f, (b) z = zf and (c) z = zf + zR,f respectively. The distributions 

are identified as the radiant energy angular spread, understood as the far-field counterpart of the 

pulse fluence (radiant energy exposure). (d) Beam size inside the propagation medium (near the 

focal plane of L1) versus input pulse power. (e) The standard deviation of 〈k⊥〉 taken from (a), (b) 

and (c) has been used to calculate the standard deviation of divergence 〈θ〉 of the beam as a function 

of the input power at a distance d from reference z = zf = 0 (first-order approximation). (f) 

Calculated imaged beam size in the far-field versus the input pulse power (first-order 

approximation). 

A good agreement is observed between experiment (Figure 5.2) and simulations (Figure 5.4f) up 

to ~4.5 𝑀𝑊. The agreement gradually breaks down beyond that point, which is a result of the 

simplification 〈𝜃〉 ≈ 〈𝑘⊥〉𝑐/(𝜔0𝑛0). In fact, 〈𝑘⊥〉 can be related to the instantaneous frequency of 

the pulse in a self-phase modulation process, leading to the better approximation 〈k⊥〉~ 

𝜔0𝑛0

𝑐
〈𝜃(𝑡) [1 −

𝑙𝑝

𝑐
𝜕𝑡𝑛(𝑡)]〉, where 𝑛(𝑡) and 𝜃(𝑡) are respectively the intensity (and implicitly time) 

dependent refractive index and divergence, and 𝑙𝑝 denotes the propagation distance of the pulse. 

Thus, it becomes evident that the former simplified relation between 𝜃 and k⊥does not hold as 𝑃𝑖𝑛 

approaches 𝑃𝑐𝑟 in view of the strong modulation of the pulse spectrum 𝛥𝜔 ∝
𝑙

𝑐
𝜕𝑡𝑛(𝑡) (see Figure 
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5.3). Dependency of phase modulation on 𝑙𝑝 also implies in practice that the observed signal 

features of the apparatus (Figure 5.1) are dependent on the location of the focal plane inside the 

cuvette, which in turn is related to the effective magnification of the system due to linear refraction 

(see Methods).  

In effect, upon collapse the beam transforms into a nonlinear conical (Bessel-like) wave and as a 

result the radiant energy angular spread varies at the generated wavelengths of the expanded 

spectrum surrounding the fundamental, according to the Fourier-space relation 𝑘⊥(𝜔) =

𝑘(𝜔) 𝑠𝑖𝑛 𝜃(𝜔) [40, 245-248]. Consequently, the radiant energy angular spread of the fundamental 

wavelength will be limited upon this transformation beyond the critical point, as energy is 

transferred at other wavelengths and flows at high angles (X-wave formation for normal 

dispersion), forming a rim that surrounds the central spot of the generated white light. 

5.5 Conclusion 

An optical power limiter has been employed to determine ultrafast optical nonlinearities of two 

transparent liquids (deionized water and ethanol) in the femtosecond filamentation regime. The 

technique has been utilized in the past only in longer pulse regimes (>1 ps) leading to optical 

breakdown inside the samples, which typically occurs at optical pulse powers lower than the critical 

power for self-focusing. In contrast, in the femtosecond regime, the optical response of transparent 

liquids is governed by distinct features in the context of the studied technique. Particularly, we find 

that the threshold for self-focusing can be distinguished in the output signal when the apertured 

detection is located behind the conjugate focal plane of the imaging system, at a distance governed 

by the field of focus of the first focusing lens and the effective magnification. A presented 

theoretical analysis indicated how the effect is related to the spontaneous transformation of the 

beam into a nonlinear conical wave at the onset of filamentation. 

Importantly, in this work, we demonstrated that the use of the power limiting setup in the 

femtosecond filamentation regime can be reliably utilized for future studies of ultrafast optical 

nonlinearities of various transparent materials, of which the evaluation is a challenging task even 

with the z-scan technique. Finally, the power limiting setup is anticipated to be a useful tool both 
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for fundamental studies (e.g., competition between filamentation and optical breakdown) and the 

development of novel femtosecond laser filamentation based applications. 

5.6 Methods 

5.6.1 Experimental 

Our setup is shown in Figure 5.5. We employed transform-limited pulses of 55 fs pulsewidth 

(defined by the full width at half maximum FWHM) produced by a Ti:Sapphire amplifier, 

operating at a repetition rate of 50 Hz. The laser beam, which had a Gaussian spatial profile and 

initial 1/e2 size of ~2.9±1.5% mm, was collected by a lens L1 with a focal length of 200 mm. The 

beam waist of the focused beam in air was formed at approximately the same position with the 

focal plane of L1 and was estimated with a knife edge technique to be 𝑤𝑓~24.5 ± 3% 𝜇𝑚 (1/e2), 

with a Rayleigh length ~1.680 mm. A second lens L2 with a focal length of 100 mm was positioned 

at a distance  𝑑𝑜~300 𝑚𝑚 apart from the focal plane of L1. Thus, L2 imaged the focused beam 

spot after 𝑑𝑖~150 𝑚𝑚 from its center with a magnification 𝑀𝐴0~ − 0.5 (Figure 5.6a). Indeed, the 

focused beam waist after L2 was estimated to be ~12.4±5% μm with a knife edge technique in air. 

The beam propagation factor M2 of the beam was measured to be ~1.4 after both L1 and L2 in air.  

A 10 mm thick optical cuvette was positioned so as its center (5 mm from its entrance window 

along the beam propagation direction) coincided with the focal plane of L1. When filled with the 

examined liquids, the beam waist was estimated to be formed at ~𝑛0 × 5 mm from the entrance 

window, due to the refractive index difference between the propagation mediums and air in the 

linear regime. Accordingly, the Rayleigh length at the focal plane of L1 is estimated 

𝑧𝑅,𝑓~𝑛0 × 1.680 𝑚𝑚. These effects were confirmed experimentally by measuring the beam radius 

after the cuvette, when filled with water. Further, the addition of water in the optical cuvette, 

resulted in a change of the size of the beam collected by L2, a shift of the imaged spot position 

after L2, and also a change of the dimension of the imaged focal spot (𝑤𝑖~16.2 ± 5% 𝜇𝑚) and 

Rayleigh length at the imaging plane (𝑧𝑅,𝑖~0.745 𝑚𝑚), which were re-estimated by a knife edge 

technique in the linear regime. Accordingly, a shift of the effective linear magnification 𝑀𝐴~ −

0.67 is observed (compared to 𝑀𝐴0~ − 0.5). Notably, 𝑤𝑖, 𝑧𝑅,𝑖  and |𝑀𝐴| increase when the focal 

plane is located closer to the output window of the cuvette in comparison to locations near the input 
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window, because linear refraction affects the radius of curvature of the beam inside the examined 

medium [258]. 

A pinhole (15 μm in diameter) was positioned approximately at the imaged focal plane formed 

after L2, when the cuvette was filled with water. The pinhole was placed at a motorized translation 

stage, which allowed fine adjustments over the beam propagation direction. The portion of beam 

that passes through the pinhole was collected by a photodetector. A neutral density filter was placed 

before the pinhole to attenuate the light intensity. The size of the pinhole allowed only a very low 

signal to pass through. On that account, the photodetector was connected to a lock-in amplifier for 

sensitive measurement of the generated output signal voltage. A variable attenuation of the beam 

was set by a combination of a half-waveplate and a polarizer.  A motorised rotational stage allowed 

controlling of the waveplate by a personal computer, which was used to automate the 

measurements collected by the lock-in amplifier.  Data were collected for each input power value 

and averaged over 10 laser shots. For each mean value of the data points, the standard deviation 

was calculated to estimate the statistical error. The measurement uncertainties presented in Table 

3.1 are conservatively estimated to 20%, which include absolute uncertainties in 𝑃𝑖𝑛, due to laser 

energy fluctuations, pulsewidth, 𝑀2 and ψ value uncertainties, and relative uncertainties in the 

determination of 𝑃𝑐𝑟. 

 

Figure 5.5 The optical power limiter experimental setup. A combination of a half-waveplate and a 

polarizer are used to control the power of the laser pulses. Two positive lenses are used to focus 

the beam on the sample and image onto the apertured (by a 15 μm pinhole) photodetector. The 

setup has been modified by placing a pinhole on a motor stage to allow translation towards z 

coordinate. 
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For the measurements of the 1/e2 beam width in the far-field as a function of input pulse power, a 

knife edge technique was used. For the measurements of the relative spectral broadening 𝛥𝜔/𝜔0 

presented in Figure 5.3, we have replaced the pinhole and the detector shown in Figure 5.5 with a 

fiber spectrometer and appropriate neutral density filters to collect the far-field spectrum of the 

pulse after propagation in water. We followed the methodology reported in [249] so that 𝛥𝜔 =

𝜔𝑏 − 𝜔𝑟, where 𝜔𝑏 and 𝜔𝑟 stand for the maximum broadening towards bluer and redder 

frequencies respectively. The latter are recorded at the frequencies where the signal drops below 

the detection threshold, which we identify as 10% of the average baseline fluctuations (each 

measurement has been averaged over 10 shots). As reported in [43], the selected signal level shall 

not change the result since the signal drops abruptly at the anti-Stokes wing. We further note that 

the apparatus cut-off on the red side (Stokes broadening) was at ~890 nm, possibly leading to an 

underestimation of the relative spectral broadening at high input powers (e.g., in Figure 5.3, for 

𝑃𝑖𝑛 > 8 MW). Nonetheless, we note that beyond that power, no significant further broadening 

occurs at the anti-Stokes wing for water. Besides, the idea of this approach was to quantify (with 

some uncertainty) the abstract definition of supercontinuum generation as the dramatic increase of 

the pulse spectrum when transmitted through the medium [249].   

5.6.2 Theoretical 

5.6.2.1 Numerical model 

We used a theoretical model for the propagation of femtosecond laser pulses inside water (the most 

studied liquid medium of the above two) [63]. For a pulse propagating along the z axis, whose 

reference time frame moves at the group velocity 𝑢𝑔, the coupled system of differential equations 

that give the complex scalar envelope of the electric field ℰ̂(𝑟, 𝜔, 𝑧) = ℱ{ℰ(𝑟, 𝑡, 𝑧)} (written in 

Fourier space, where ℱ{ } stands for the Fourier transform, r is the radial coordinate, ω is the radial 

carrier frequency, 𝑡 is the retarded time) and the electron density 𝑛𝑒(𝑟, 𝑡, 𝑧), reads 

𝜕ℰ̂

𝜕𝑧
=

𝑖

2𝜅(𝜔)
∇𝑇

2 ℰ̂ +
[𝑘2(𝜔) − 𝜅2(𝜔)]

2𝜅(𝜔)
ℰ̂

+
𝑘0

𝜅(𝜔)
[𝑖𝑇̂2 (

𝜔0

𝑐
𝑛2) |ℰ̂|

2
ℰ̂ − 𝑇̂

𝛽𝐾

2
|ℰ̂|

2𝐾−2
ℰ̂ −

𝑖

2𝑛0𝑛𝑒,𝑐
(𝑛𝑒ℰ̂)] 

5.3 
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𝜕𝑛𝑒

𝜕𝑡
=

𝛽𝐾

𝐾ℏ𝜔0
(1 −

𝑛𝑒

𝑛𝑛
) |ℰ|2𝛫 

5.4 

Where 𝜔0, 𝑘0 is the pulse central frequency and central wavenumber respectively, 𝑘(𝜔) =
𝜔

𝑐
𝑛(𝜔), 

𝑛(𝜔) is the linear refractive index of water [259], ∇𝑇
2  is the transverse Laplacian, 𝜅(𝜔) = 𝑘0 −

𝜔/𝑢𝑔, 𝑛2 = 2.1 × 10−20𝑚2/𝑊 is the experimentally evaluated nonlinear refractive index,  𝛽𝐾 =

1 × 10−47𝑐𝑚7𝑊−4  is the multiphoton absorption cross section of water, 𝐾 = 5 is the required 

number of simultaneously absorbed photons of energy ℏ𝜔0 (ℏ is the reduced Planck’s constant) to 

exceed the ionization potential of water 𝑈𝑖 = 6.5𝑒𝑉, 𝑇̂ = 1 +
𝑖

𝜔

𝜕

𝜕𝑡
 is the self-steepening operator, 

𝑛𝑒,𝑐 = 𝜀0𝑚𝑒𝜔0
2/𝑒2 is the critical plasma density (𝜀0 is vacuum’s dielectric permittivity, 𝑚𝑒 is the 

electron’s mass and e is the elementary electric charge) and 𝑛𝑛 = 6.68 × 1022𝑐𝑚−3 is the density 

of neutrals in the medium. 

The initial conditions that are given to start propagation and match the experimental conditions, 

correspond to a Gaussian envelope distribution 

ℰ(𝑟, 𝑡, 0) = √
2𝑃𝑖𝑛

𝜋𝑤0
2 𝑒𝑥𝑝 (−

𝑟2

𝑤0
2 − 𝑖

𝑘0𝑟
2

2𝑅
−

𝑡2

𝑡𝑝2
) 

5.5 

In this relation, 𝑤0 = 77 𝜇𝑚 (experimentally evaluated) denotes the input beam radius at the 

entrance of the cuvette, 𝑃𝑖𝑛 is the input peak power of the pulse, 𝑡𝑝 is the pulsewidth (related to the 

FWHM pulsewidth via 𝑡𝐹𝑊𝐻𝑀 = 𝑡𝑝√2𝑙𝑜𝑔(2)), 𝑅 = 𝒹 −
𝑧𝑅,𝑓
2

𝒹
 is the radius of curvature, 𝒹 =

𝑛0 × 5𝑚𝑚 is the axial distance that the beam waist is formed in the cuvette with respect to the 

entrance window and 𝑧𝑅,𝑓 = 𝑛0 × 1.68 𝑚𝑚 is the experimentally evaluated Rayleigh distance, 

where n0 is the refractive index of the medium at the central frequency (taken as 1 for air and 1.33 

for water). To account for the effect of imperfect beam quality, we have multiplied the range of 

wavelengths 𝜆 with the experimentally evaluated factor 𝑀2 = 1.4, a transformation that can be 

used within the paraxial approximation to estimate time integrated quantities, where phase effects 

are of no consequence [260]. 
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5.6.2.2 Beam size at the focal and at the imaging (far-field) planes 

We evaluated the input power dependence of the beam size at the examined z coordinates near the 

focal plane of L1 inside the propagation medium. To do so, we solved Equations 5.3 - 5.4 and we 

integrated the solutions in time, to determine the fluence of the pulse at a given z, and subsequently 

we calculated the beam size according to the second moments definition. Next, we evaluated the 

far-field distribution of the electric field amplitude 𝑆(𝑡, 𝑘⊥) by performing a Hankel transform at 

the examined z-coordinates. The latter is a good approximation of the Fresnel-Kirchhoff integral, 

accounting for a plane of observation at a distance 𝑑𝑓 ≫ 𝑤𝑓, where wf denotes the beam waist at 

the focal plane of L1. 

 

Figure 5.6 Conceptual diagrams used for calculation of the beam size at the imaging (far-field) 

planes. (a) Τhe correspondence of focal and imaging planes so that the linear magnification of the 

system MA remains invariant. (b) A diagram that shows how the beam size wi,0 at a distance d in 

the far-field shifts to wi when accounting for the power dependence of the divergence θ. 

5.6.2.3 Observation planes near the focal and imaging planes 

The observation planes at 𝑧𝑓 ± 𝑧𝑅,𝑓 (around the focal plane of L1) are located 𝑑0 ∓ 𝑧𝑅,𝑓 away from 

L2, where 𝑑𝑜 is the distance from the focal plane of lens L1 to lens L2 itself (Figure 5.6a). 

Therefore, since 𝑧𝑅,𝑓 = 𝑧𝑅,𝑖/(𝑀𝐴)2, the corresponding imaging (far-field) planes should be located 

at a distance 𝑑𝑖 ∓ 𝑧𝑅,𝑖 × |𝑀𝐴|−1 apart from L2, so that the linear magnification of the system 𝑀𝐴 =
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−𝑑𝑖 𝑑0⁄  remains consistent. In other words, the observed electric field amplitude distributions at 

planes 𝑧 = 𝑧𝑖 ∓ 𝑧𝑅,𝑖 × |𝑀𝐴|−1 (i.e., at 𝑑𝑖 ∓ 𝑧𝑅,𝑖 × |𝑀𝐴|−1 away from L2) are equivalent to the 

ones calculated by the Hankel transform of the electric field amplitude distributions at planes 𝑧 =

𝑧𝑓 ± 𝑧𝑅,𝑓 (i.e., at 𝑑0 ∓ 𝑧𝑅,𝑓 behind L2). 

5.6.2.4 Imaged (far-field) beam size calculations 

The power-dependent divergence 𝜃 over the divergence 𝜃0 in the linear regime, quantifies the 

imaged far-field beam size change with respect to the linear regime, because 
𝑤𝑖

𝑤𝑖,0
≅

𝜃

𝜃0
, where 𝑤𝑖,0 

is the imaged far field beam size if 𝜃 = 𝜃0 (Figure 5.6b). Considering the magnification of the 

optical system 𝑀𝐴 in the linear regime, it holds 𝑤𝑖,0 = 𝑀𝐴 × 𝑤𝑓. Thus, the imaged spot size can 

be estimated as 

𝑤𝑖(𝑧𝑖) ≅ (𝑀𝐴) ×
𝜃

𝜃0
𝑤𝑓(𝑧𝑓) 

5.6 

Finally, we estimated the beam size at planes 𝑧𝑖 ± 𝑧𝑅,𝑖 × |𝑀𝐴|−1 starting from 

𝑤𝑖(𝑧𝑖 ± 𝑧𝑅,𝑖 × |𝑀𝐴|−1) ≅ (𝑀𝐴) ×
𝜃

𝜃0
𝑤𝑓(𝑧𝑓 ± 𝑧𝑅,𝑓 × |𝑀𝐴|−1) 

5.7 

 Applying the paraxial equation 𝑤(𝑧) = √1 + (𝑧/𝑧𝑅)2 for 𝑧𝑓 ± 𝑧𝑅,𝑓 × |𝑀𝐴|−1 and for 𝑧𝑓 ± 𝑧𝑅,𝑓, 

we find: 

𝑤𝑖(𝑧𝑖 ± 𝑧𝑅,𝑖 × |𝑀𝐴|−1) ≅ (𝑀𝐴) ×
𝜃

𝜃0

√
1

2
+

1

2(𝑀𝐴)2
𝑤𝑓(𝑧𝑓 ± 𝑧𝑅,𝑓) 

5.8 

We used Equations 5.6-5.8 to plot Figure 5.4f, where we have used data shown in Figure 5.4e so 

that 𝜎〈𝜃〉 → 𝜃. 
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CHAPTER 6 ARTICLE 3: FEMTOSECOND NEARLY RESONANT 

SELF-FOCUSING IN GOLD NANOROD COLLOIDS 

Research article published in Optics Express in 20214. The supporting information for this article 

is reprinted in Appendix B of this thesis. 

6.1 Authors and author contributions 

Leonidas Agiotis and Michel Meunier. L.A. designed the research, conducted the experiments, 

analysed the data, performed theoretical and numerical analysis, and wrote the main manuscript. 

M.M. supervised and discussed the work and reviewed the main manuscript. 

6.2 Abstract 

We evaluate the threshold power for self-focusing in gold nanorod colloids of varying 

concentration by a power limiting method in the femtosecond filamentation regime. The pulses are 

tuned near the longitudinal plasmon peak of the nanorods, leading to saturation of linear absorption 

and reshaping of the particles. We evaluated the last two effects by optical transmission 

measurements and spectroscopic analysis and estimated that considerable particle deformation 

does not occur before the collapse of the beam. We performed numerical simulations based on the 

experimental results, and evaluated only a subtle, monotonically increasing enhancement of the 

nonlinear refractive index of the host material (water) as the nanoparticles concentration increases. 

The role of higher-order contributions is discussed. Our work provides an alternative 

characterization approach of ultrafast nonlinearities in absorbing media. It further emphasizes that 

self-focusing of intense femtosecond pulses in gold nanocomposites is hampered by the ultrafast 

modulation of the susceptibility of the metal. 

 

4 Femtosecond nearly resonant self-focusing in gold nanorod colloids," Optics Express 29, 39536-39548 (2021). 

https://doi.org/10.1364/OE.441117 
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6.3 Introduction 

In several recent publications on artificial high-order self-phase modulation in plasmonic 

nanocolloids under picosecond pulse excitation [35, 89, 173, 174, 261, 262], authors have 

suggested that these studies can be extended in the femtosecond regime depending on the origin 

and strength of the nonlinearity. The observation of artificial nonlinear response has been attributed 

to a judicious management of high-order nonlinearities by varying the concentration of the particles 

in the suspension. Interestingly, the reported theoretical formulation of the susceptibility of the 

effective medium is identical to the one that corresponds to instantaneous electronic polarization. 

However, in the femtosecond timescale the contribution of the metallic nano-inclusions to the 

effective nonlinear polarization is significantly weaker compared to the picosecond timescale [183, 

263], where non-instantaneous effects (i.e., electron-phonon coupling after electron thermalization) 

give rise to stronger contributions [8, 9, 124, 264, 265]. In addition, possible particle deformation 

due to energy absorption by the plasmon modes should be considered [22-26, 266-271]. Such 

limitations hinder major difficulties in the characterization of weak refractive nonlinearities of 

colloidal gold in the femtosecond timescale by direct methods, such as the z-scan technique. For 

instance, analytical treatment of z-scan requires thin sample approximation, hence, limitations are 

introduced by the comparable nonlinearity of the optical cuvette. Further, the latter is usually 

slightly wedged, which, in conjunction with the requirement of a long translation stage, introduces 

problems due to beam walk off. 

A possible approach to mitigate the problem of optical characterization with a direct method would 

be to investigate the threshold for self-focusing in thick samples, which alleviates difficulties 

related to a moving sample and restrictions due to the requirement of thin sample utilization. The 

theory predicts that an enhancement of the instantaneous Kerr-type nonlinearity of the host material 

in the presence of nano-inclusions should in principle appear only near the resonance of the latter 

[4, 5]. Nonetheless, losses due to absorption by the particles (linear or nonlinear) should be 

accounted for, in the determination of the threshold for self-focusing [64, 272-274]. Effectively, 

the concentration of particles is a key parameter to explore the possibility of nonlinearity 

enhancement during self-focusing of femtosecond pulses under nearly resonant interaction with 

the surface plasmon modes. 



98 

In this work, we investigate the threshold for self-focusing in gold nanorod colloidal solutions of 

varying concentrations under femtosecond laser irradiation, by means of an alternative approach, 

namely the power-limiting method [239, 272]. We aim to evaluate possible nonlinear refraction 

enhancement of the host material (water) by considering nonlinear losses (absorption saturation) 

and particle deformation effects as the particles’ concentration increases. The latter has been 

demonstrated experimentally and theoretically to be a key parameter on the nonlinear response of 

plasmonic nanocomposite materials since it allows management of higher-order nonlinear 

contributions to the effective susceptibility, however, only for pulses longer than tens of 

picoseconds [89, 173, 174]. Here, we discuss in detail this possibility in the femtosecond regime. 

6.4 Materials and methods 

6.4.1 Sample preparation 

We have studied self-focusing in Au nanorod aqueous (water) suspensions (Nanopartz) of 10-nm 

diameter and 38-nm length with a longitudinal plasmon peak around 770 nm. We have prepared 

samples of varying concentrations, starting from a sample of concentration 𝐶1 = 6.73 ×

1011𝑚𝑙−1, given by specifications obtained from the company. Solutions of 𝐶1 were concentrated

approximately 3, 5, 9, 13 and 19 times through centrifugation to produce samples of varying 

concentrations labelled as 𝐶3, 𝐶5, 𝐶9, 𝐶13, 𝐶19 respectively. A sample of concentration labelled 

𝐶0.5 was prepared by diluting a sample of 𝐶1 approximately 2 times. All solutions were filtered 

Figure 6.1 Initial optical density spectra of the prepared samples of varying concentration. The 

dashed lines indicate the FWHM bandwidth of the excitation laser. The inset figure is used for 

clarity to demonstrate the initial optical density spectra of the diluted sample C0.5, relative to 

samples C1 and C3. The optical path length of the examined samples is 2 mm. 
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before and after concentration to remove any possible aggregated samples. Absorbance spectra 

were measured by a UV/Vis/NIR photo-spectrometer (Epoch Microplate Spectrophotometer, 

BioTek Instruments, Inc., VT, USA) from 500 nm to 900 nm (Figure 6.1). 

6.4.2 Nonlinear optical measurements 

We aim for the evaluation of the threshold power for self-focusing in gold nanorod colloids. The 

threshold was determined experimentally, by the power limiting method, described in detail in 

reference [239]. A Ti:Sapphire laser, FWHM pulsewidth of 55 fs, repetition rate of 50 Hz, central 

wavelength of 800 nm was employed in all experiments. The studied material is known to exhibit 

strong saturation of absorption under nearly resonant ultrafast pulsed laser excitation [15, 17-21] 

which we evaluated by optical transmission measurements. 

Following Mohebi et al. [272], we examined the threshold power for self-focusing by the power 

limiting method at two different positions of the cuvette (optical path of 10 mm) with respect to 

the + 200 mm focusing lens, as shown in Figure 6.2(a): focal plane located at (I) 5 mm and (II) 1 

mm in front of the input window of the empty cuvette. In case I the initial conditions are identical 

to the ones described in [239] (~77 μm 1/e2 beam radius at the input face of the cuvette). In case 

II, the 1/e2 beam radius at the entrance of the cuvette was determined to be ~30 μm. The apertured 

detection was placed before the imaging plane by 1.5 times the field of focus [239]. The cuvette 

was filled with 300 μl of each sample, characterized prior to the measurements (Figure 6.1). 

Experimental trial scans were repeated several times for each sample by gently stirring the cuvette 

before each experiment so that large number of particles was exposed to the treatment. Each scan 

of gradually increasing input power deposition lasted ~10 min., while the general behaviour was 

nearly reproducible after each trial. For the analysis, we only consider the results of the last set of 

measurements. Following the treatment, the samples were re-examined spectroscopically for the 

evaluation of particle deformation effects [268]. Indeed, following Link and El Sayed [267], we 

used standalone spectroscopic analysis since it has been proposed as a convenient and “time-

saving” alternative to TEM for photothermal nanoparticle reshaping analysis. Nonetheless, we note 

that despite the efforts of exposing a large amount of particles to the power limiting treatment, the 

exposed volume of samples examined spectroscopically is typically large as opposed to the 
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irradiated one (at each trial). Accordingly, a detailed discussion is provided in section 6.6.1 on 

deformation analysis implications. 

 

Figure 6.2 (a) The setup of the power limiting method. Two different positions of the optical cuvette 

with respect to the focus of the +200 mm lens were examined: case I corresponds to the position 

of the focus at the center of the cuvette (5 mm from the entrance) and case II corresponds to the 

position of the focus 1 mm in front of the entrance of the cuvette. (b) Optical transmittance setup: 

For high intensity measurements, the setup of power limiting method was used by removing the 

pinhole at the imaging plane. For low intensity measurements, a flip mirror was employed to send 

the beam through a ×0.45 telescope to an identical setup as the one used for high intensity 

measurements and power limiting. 

 

Subsequently, we conducted optical transmission measurements, which were set up as two 

independent experiments of high and low input intensity [Figure 6.2(b)]. For high intensity 

measurements, we have used the configuration of the power limiting method by removing the 

pinhole placed in front of the photodetector. The thick cuvette was replaced by a cuvette of 

thickness ℎ = 2 mm, of which the center was positioned at the focal plane of the +200 mm lens. 

The beam was estimated to have a 1/e2 radius ~30 μm at the entrance of the cuvette. The cuvette 

was filled with 300 μl volume of each of the previously examined samples. For low intensity 
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measurements, the beam was directed with two mirrors to a telescope resulting in a 1/e2 beam 

radius ~1.4 mm. The beam was focused by a +200 nm focal length lens, resulting in a focused 

beam radius ~55 μm and a Rayleigh length ~8.5 mm (with measured 𝑀2 = 1.4). The beam was

collected by a photodetector placed in the far field, as in the high intensity configuration.  In both 

cases, for the resulted Rayleigh ranges (in a medium having the refractive index of water ~1.33) it 

holds 𝑧𝑅 > ℎ, so that the beam can be considered nearly collimated within the samples. For the 

optical transmittance measurements, we have used the same samples that were examined by the 

power limiting method experiments. 

6.5 Results 

6.5.1 Power limiting measurements 

We follow the definitions found in references [272-274] for the threshold power for self-focusing 

𝑃𝑡ℎ and the critical power for self focusing 𝑃𝑐𝑟 in the case of a medium that exhibits absorption, so 

that in the absence of absorption (transparent material) it should hold that 𝑃𝑡ℎ is equal to 𝑃𝑐𝑟, and 

here, for water, the host material (denoted with the superscript “h”), it holds 𝑃𝑡ℎ
ℎ = 𝑃𝑐𝑟

ℎ . For an

absorptive medium, in principle, 𝑃𝑡ℎ ≥ 𝑃𝑐𝑟 due to absorptive losses. Accordingly, we define 𝑃𝑡ℎ
𝑒

the observed threshold power for self-focusing of the nanorod effective medium, and 𝑃𝑐𝑟
𝑒  is defined

as the critical power for self-focusing of the nanorod effective medium in the absence of absorption, 

so that 𝑃𝑡ℎ
𝑒 ≥ 𝑃𝑐𝑟

𝑒 . It is convenient to do so for our analysis on the enhancement of the self-focusing

nonlinearity of the nanorod effective medium 𝑛2
𝑒 in comparison to the one of the host material 

(water) 𝑛2
ℎ, because 𝑃𝑐𝑟

𝑒  does not depend on absorption but only on 𝑛2
𝑒 according to 𝑃𝑐𝑟

𝑒 ∝ 1 𝑛2
𝑒⁄

[64, 273, 274]. 

In both cases I and II, the critical power for self-focusing 𝑃𝑐𝑟
ℎ  of the host material (water) was

identified to be at 6.8 MW [239] (Figure 6.3). In case I (Figure 6.3a), at low input power 𝑃𝑖𝑛 (below 

5 MW), the colloids 𝐶0.5 and 𝐶1 were seen to behave almost as linear absorbers, while the slope 

of the linear region of the output signal versus 𝑃𝑖𝑛 curve, gradually decreased as the nanorods 

concentration increases from water (𝐶0) to 𝐶0.5 and 𝐶1. For samples of higher concentrations, 

strong saturation of absorption was observed, while the slope of the signal tended to approach the 

corresponding slope of the signal of the neat material (water). The threshold power 𝑃𝑡ℎ
𝑒  was
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observed to occur at increasing values of 𝑃𝑖𝑛 as a function of concentration. Effectively, we will 

show in our following analysis (presented in section 6.6.2) that in these experiments the composite 

material seemingly exhibited saturable absorption with a Kerr lens coefficient 𝑛2 governed almost 

entirely by the host (water). 

Figure 6.3 (a) Results obtained by using the power limiting setup in the case I configuration. (b) 

Results from the power limiting setup in the case II configuration. The black arrows indicate the 

evaluated threshold power for self-focusing Pth
e
 of the nanorod effective medium, as explained in 

detail in Ref. [239]. The inset of (b) is a rescaled figure to show more clearly the obtained signals 

for C13 and C19. 

In case II (Figure 6.3b), 𝑃𝑡ℎ
𝑒  was confined near 𝑃𝑐𝑟

ℎ  for all samples, as it has also been observed by

Mohebi et al. [272]. A large valley was observed at high concentration samples 𝐶9, 𝐶13, 𝐶19 in 

the output signal as a function of 𝑃𝑖𝑛, right after the onset of phase modulation of the beam and 

before the collapse. As demonstrated in [239], the valley is related to the strength of phase 

modulation, increasing the wavefront divergence on the fundamental frequency. In addition, the 

optical power arriving at the detection device was significantly reduced, presumably due to the 

increasing optical path with respect to case I and the various defocusing mechanisms after or prior 

to the collapse (i.e., multiphoton absorption in the host, dispersion, absorption by the nano-
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inclusions and diffraction). In the following paragraphs we shall examine the recorded values of 

𝑃𝑡ℎ
𝑒 with respect to 𝑃𝑐𝑟

ℎ  in both cases I and II to assess the strength of the nonlinearity in the studied

media. 

6.5.2 Spectroscopic evaluation of nanorod deformation 

We examined possible structural changes of the nanorods in the colloidal suspensions 

spectroscopically [268] by comparing linear absorption spectra before and after the power limiting 

measurements (Figure 6.4). The results are similar to the ones  reported by Link et al. on nanorod 

reshaping when moderate femtosecond laser pulse energy excitation was applied with a 20 nm 

detuning from the resonance (Fig. 2b,c in Ref. [268]). Here, an indicative decrease of the optical 

density 𝛿𝑂𝐷~9 − 17% of the samples was observed at the longitudinal plasmon peak, while the 

transverse plasmon peak slightly increased. The highest decrease was observed for the highest 

concentration sample 𝐶19. Further, the samples exhibited a blue shift of the maximum of the 

longitudinal plasmon peak of about 9 nm (except for 𝐶0.5, where blue shift was ~2 nm). 

Accordingly, the mean aspect ratio of the nanorods that form the longitudinal plasmon peak is 

expected to have been reduced to an average value of ~3.6 - 3.7, as evaluated by the blue shift of 

the peak of the plasmon resonance. Finally, the relative broadening of the spectral linewidth was 

seen to be significantly lower solely for sample 𝐶1. For the rest of the samples, it was only 

marginally different. The latter observation does not provide a clear tendency of the relative 

spectral bandwidth after reshaping of the nanorods. Nonetheless, there is evidence of a structural 

deformation of nanorods after the power limiting treatment. 
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Figure 6.4 (a) Spectroscopic evaluation of nanorod reshaping. The optical density is reduced for 

all samples after the power limiting treatment. The longitudinal and transverse plasmon mode peaks 

show a blueshift and an increase of the absorption peak, respectively. The results are indicative of 

partial, surface melting of a distribution of nanorods, which results in reshaping into shorter 

nanorods or melting into spherical particles. (b) The average observed blueshift of ~9 nm of the 

longitudinal plasmon band is consistent with implications of reshaping. (c) Relative spectral 

broadening of the reshaped longitudinal plasmon band. 

6.5.3 Optical transmission measurements 

The results of low and high intensity optical transmittance 𝑇𝜆 ≡ 𝐼 𝐼0⁄   (𝐼 denotes the transmitted

intensity and 𝐼0 is the input intensity) are shown in Figure 6.5. The observed behaviour was 

reproducible after each experiment of irradiation at different locations (volumes) of the samples. 

The low intensity measurements allowed the experimental estimation of linear transmittance 𝑇𝜆,0, 

the calculation of the linear absorption coefficient 𝑎0, according to 𝑎0 = − 𝑙𝑛(𝑇0) 𝑙⁄  (section B.1

of the Appendix B/Supplemental document, Table B.1), and the evaluation of the detuned 

saturation intensity 𝐼𝑠
𝛿 (see Equation 6.3). At higher intensities, the optical transmittance was

strongly modulated and reached asymptotically values above 90% for all samples. Accordingly, 

we determined experimentally the non-saturated transmittance 𝛵𝜆,𝑛𝑠 (as the foresaid asymptotic 

value of 𝑇𝜆 for each sample) and we evaluated the corresponding non-saturated absorption 

coefficient 𝑎𝑛𝑠  according to the relation 𝑎𝑛𝑠 = − 𝑙𝑛(𝑇𝜆,𝑛𝑠) ℎ⁄  data shown in section B.1 of the

Appendix B/Supplemental document, Table B.1). 
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The applied pulsewidth is adequately short (55 fs FWHM) so that the saturable optical absorption 

of the nanoparticles can be described in a context similar to a simple two-level system. 

Conceptually, the absorbed energy of the longitudinal plasmon mode results in a nearly bleaching 

of the distribution of participating one-photon electronic transitions, from a given ground state to 

an excited state [275]. The effect has been better understood as a strong damping of the coherent 

plasmon oscillation as the “driving force” is increasing [15]. The exact mechanism behind that 

observation has been interpreted in the context of confinement effects (generation of high-energy 

“hot” electrons at the surfaces) and activation of nonlinear damping mechanisms of the plasmon 

mode [9, 12, 26, 123, 276]. One would expect that under such conditions of high pump intensity, 

energy absorption by the plasmon mode gradually becomes less efficient [123, 269]. Finally, even 

though saturation appears to be detrimental for the enhancement of coherent third-order processes 

(e.g., third harmonic generation) at high laser intensities, higher-order contributions cannot be ruled 

out [148, 276]. 

 

Figure 6.5 (a) Low intensity optical transmittance measurements. At low input pulse power, the 

absorption is linear. The saturation intensity is observed around 25 GW/cm2, which corresponds to 

an input pulse power of ~1 MW (at a 55 μm beam spot size). (b) High intensity optical 

transmittance measurements. A strong modulation on the optical transmittance is observed, which 

reaches an almost constant value at high input intensities. We use this constant value to define the 

non-saturated absorption ans. In both (a) and (b) the red lines are theoretical fittings of Equation 6.3 

to the data of both graphs. 

 

In the case of the examined nanorods, the transverse plasmon mode is seen to be adequately far 

from 760 nm and the broadening of the absorption spectrum behaves as nearly homogeneous, 
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which has been seen in time-resolved pump-probe experiments of resonantly pumped gold 

nanorods at ~800 nm [18]. The intensity 𝐼-dependent absorption coefficient 𝑎(𝐼) of the 

nanocomposite can accordingly be written as [18, 277] 

𝑎(𝐼) =
𝑎0

1 +
𝐼

𝐼𝑠
𝛿

6.1 

 The transmittance 𝑇𝜆 through the cuvette can be calculated starting from Beer’s law by [53] 

𝑇𝜆

𝑇𝜆,0
= 𝑒𝑥𝑝 [

𝐼0

𝐼𝑠
𝛿
(1 − 𝑇𝜆)]. 6.2 

After some algebra, the relation can be expressed more conveniently in terms of 𝑇𝜆 by use of 

Lambert’s function 𝒲 (defined as 𝒲(𝓍)𝑒𝑥𝑝[𝒲(𝓍)] = 𝓍) as 

𝑇𝜆 =

𝒲 [
𝐼0
𝐼𝑠
𝛿 𝑇𝜆,0𝑒𝑥𝑝 (

𝐼0
𝐼𝑠
𝛿)]

𝐼0
𝐼𝑠
𝛿

6.3 

Equation 6.3 is well-fitted (with ~95% confidence interval) to the experimental measurements in 

Figure 6.5a and b, giving an estimation of 𝐼𝑠
𝛿 ≈ 25 𝐺𝑊 𝑐𝑚2⁄  (see section B.1 of the Appendix

B/Supplemental document for a discussion on the fitting of Equation 6.3). Implications of nonlinear 

absorption at very high intensities are noted only for the sample 𝐶19 (since the predicted 

transmittance of the fitted curve appears to be slightly higher compared to the experimental data), 

however, we consider that the occurrence of this deviation of the data values from the fitted curve 

was not significant, since it does not exceed the applied margin of error (5%). 

6.6 Discussion 

6.6.1 Saturation of absorption or nanorod reshaping? 

We further evaluated the absorbed energy by a single nanorod in the optical transmission 

measurements and compared with the observations reported by Link and El-Sayed [268] on the 
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required absorbed energy for total melting of nanorods (average size 11×44 nm) by a single 

femtosecond pulse. The authors of Ref. [268] have determined a required absorbed energy of ~65 

fJ per nanorod (or ~800 J/g), so that the nanorods will be completely melted and ~12 fJ per nanorod 

(or ~150 J/g), so that they will be reshaped under femtosecond excitation. A more recent 

experimental evaluation, reported by Taylor et al. [23], accounts for ~340 J/g required absorbed 

energy for complete reshaping of nanorods of ~3.7 aspect ratio (~15.5 mm wide), when irradiated 

by a 150 fs pulse at a wavelength of 830 nm. For comparison, we also note that in larger particles 

(average size of 92×32 nm), Zijlstra et al. [270] have determined an energy onset for reshaping of 

~150 fJ per nanorod (or ~105 J/g) and a melting energy threshold of ~260 fJ (or ~180 J/g), by light 

scattering spectroscopy and electron microscopy experiments on a single nanorod after application 

of 100 fs pulses tuned at the peak of plasmon resonance. Finally, Hou et al. [26] , by performing 

optical transmittance measurements with 800 nm wavelength, 100 fs pulses coupled with cw 

irradiation of 808 nm wavelength in a colloidal solution of smaller nanorods (~12.5 nm diameter 

and ~4 aspect ratio), have estimated a reshaping onset energy threshold of ~12 fJ per nanorod (or 

~100 J/g). 

A linear absorption coefficient 𝑎0 has been determined by our low intensity transmittance 

measurements. Based on the reduction of the plasmon peak intensity shown in the results of Figure 

6.4(a), we estimate that after completing the power limiting measurements the concentration of 

nanorods for sample 𝐶1 was ~10 % lower than the specification value. Accordingly, we evaluated 

the concentration for the rest of the samples as a linear function of absorption 𝑎0 (section B.1 of 

the Appendix B/Supplemental document, Table B.1). Following the methodology of Link and El-

Sayed [268], we estimated the absorbed energy by a single nanorod (section B.1 of the Appendix 

B/Supplemental document, Table B.1). We found that at the saturation intensity, the absorbed 

energy values ranged from 0.1-1.0 fJ per nanorod (or ~7-18 J/g) (section B.1 of the Appendix 

B/Supplemental document, Table B.2). These values are quite lower than the reported value by 

Link and El-Sayed [268] of ~12 fJ per nanorod (or ~150 J/g) required for the onset of reshaping of 

nanorods. 

Notably, in their experiments, Link and El-Sayed [268] have observed reshaping of particles at 

applied pulse energies >0.5 μJ with 100 fs defined at FWHM (or 𝑡𝑝 = 𝑡𝐹𝑊𝐻𝑀 √2𝑙𝑜𝑔(2)⁄ ≈

130 𝑓𝑠 for Gaussian pulses), which means that the peak power of the pulses (expressed by 𝑃𝑖𝑛 =
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𝐸𝑖𝑛 (𝑡𝑝√𝜋 2⁄ )⁄  reached ~3 MW. Further, this power was focused at a diameter of ~250 μm, which 

yields peak intensity ~13 GW/cm2, i.e., half the value of saturation intensity that we estimate here. 

It is unknown what was the saturation intensity for the samples and conditions applied in [268], 

however, the authors reported therein a 45% absorbance at the peak intensity of ~13 GW/cm2 that 

implies that most likely saturation was not reached at their examined input energy deposition, 

which emphasizes the importance of laser pulsewidth. Presumably longer pulsewidth (100 fs 

FWHM in [268]) results in more efficient energy absorption, since damping effects of the plasmon 

modes, depending on the peak intensity of the pulse (see also [26, 269] on the role of saturation 

and laser pulsewidth), are expected to be weaker compared to same energy pulses of smaller 

pulsewidth (55 fs FWHM in our experiments). 

At our high intensity measurements, absorption was fully bleached at the highest applied 12 MW 

input power [Figure 6.5(b)]. By following the foresaid methodology and accounting that the 

absorption of the samples is characterized by 𝑎𝑛𝑠, the calculated absorbed energy per nanorod 

varied between ~1.4-2.6 fJ (or ~24-46 J/g) (section B.1 of the Appendix B/Supplemental document, 

Table B.2). Nonetheless, if we consider in these calculations the initial absorption 𝑎0 of the sample 

and assume that no absorption saturation occurs at the maximum applied power (12 MW), the 

calculated absorbed energy per nanorod ranges from ~16-41 fJ (or ~280-710 J/g), which exceeds 

several of the foresaid reshaping/melting thresholds. Moreover, various absorption saturation 

models have been cited in the literature; under the assumption of inhomogeneously broadened 

linewidth, 𝑎(𝐼) ∝ (1 + 𝐼 𝐼𝑠
𝛿⁄ )

−1/2
 [19].  The semi-empirical relation 𝑎(𝐼) ∝ (1 + √𝐼 𝐼𝑠

𝛿⁄ )

−1

 has 

also been proposed for the interpretation of z-scan technique results [17, 278].  For these models, 

lower modulation on the optical transmittance is expected at high intensities in comparison to the 

𝑎(𝐼) ∝ (1 + 𝐼 𝐼𝑠
𝛿⁄ )

−1
 [18, 277] dependence (Εq. 6.1). Consequently, for the interpretation of the 

strong transmittance (and absorption/losses) modulation observed in the experiments of the high 

intensity regime [Figure 6.5(b)], besides the saturable behaviour of the samples due to plasmon 

damping, one should also consider effects related to partial reshaping of nanorods within the 

irradiation volume [267], ultrafast modification of the absorption cross section due to photo-
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excited, high energy non-thermal electrons [26, 123] in the ensemble of randomly oriented 

particles, and free carrier screening [266]. 

Importantly, our optical transmission experiments demonstrate that, whether particle deformation 

occurred or not within the samples, the intensity dependent losses follow in good agreement the 

model of Equation 6.1, which allows for the theoretical formulation of the pulse propagation and 

the nonlinear interaction with the medium (Appendix B/Supplemental document, section B.2). 

Furthermore, in our view the structural deformation and melting of particles recorded right after 

the power limiting treatment, is not associated with the saturation behavior prior to the collapse of 

the beam observed in those experiments. It is seen that the longitudinal plasmon mode is nearly 

saturated just before the collapse and the absorbed energy by the nanorods is not very different 

compared to the energy absorbed at the saturation intensity. A similar effect was observed in 

reference [269] for the case of gold nanoparticles, where saturation of absorption at high pump 

intensities has been reported to prohibit the nanoparticle system to reach temperatures higher than 

the melting point. Considering all above calculations and experimental results, we conclude that 

significant particle deformation rather occurred only for 𝑃𝑖𝑛~𝑃𝑡ℎ
𝑒 , where the beam collapses into a

filament, in the presence of rapidly increasing intensities of the order ~1 TW/cm2 and the formation 

of low-density plasma channels ~10-18 cm-3 within the samples [245]. 

6.6.2 Evaluation of nonlinearities 

On Figure 6.6, we plot 𝑃𝑡ℎ
𝑒 , experimentally determined from Figure 6.3, as a function of the linear

absorption coefficient 𝑎0 in case I and as a function of the non-saturated absorption 𝑎𝑛𝑠 in case II. 

The reason that in case II 𝑃𝑡ℎ
𝑒  is plotted versus 𝑎𝑛𝑠 is that the latter can be considered a constant

(since 𝑎 is asymptotic to 𝑎𝑛𝑠 at the applied intensities near 𝑃𝑡ℎ
𝑒 ), which simplifies the beam

propagation and collapse analysis. Furthermore, the beam width at the entrance of the cuvette is 

nearly the same as at the focus and the beam collapses at a distance much smaller than the Rayleigh 

range. Therefore, in case II, the problem can be adequately described by self-focusing of a 

collimated beam in a cubic nonlinear medium with linear damping equal to 𝑎𝑛𝑠. 

We performed a theoretical analysis to interpret the results presented in Figure 6.6 (the theoretical 

model is described in the Appendix B/Supplemental document, section B.2). We note that the 

observations drawn by Mohebi et al. [272], imply that the collapse occurs if the critical power is 
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delivered at the focus after accounting for all absorption losses. In other works, the problem of self-

focusing with linear absorption has also been treated in the steady state [64] or within the 

aberration-free approximation [273, 274]. Here, we consider the effect of saturable absorption 

observed in our experiments (described by Equation 6.1) and we examine by numerical calculations 

the beam collapse conditions (threshold power) to assess whether enhancement of the refractive 

nonlinearity of water is observed.  

Figure 6.6 . Experimentally evaluated threshold power for self-focusing of the effective medium 

Pth
e. The data of case I (red circles) are plotted against the linear absorption coefficient a0, whereas 

the data of case II (black circles) are plotted against the non-saturated absorption ans. The solid 

lines correspond to numerical evaluation of Pth
e accounting for the enhancement of the nonlinear 

refractive index as the concentration of particles (absorption) increases obtained by our numerical 

treatment for each case respectively. The dashed lines correspond to numerical evaluation of Pth
e  

accounting for the nonlinear refractive index values extracted by case I treatment and applied for 

case II theoretical solution and vice versa (details of the calculations are presented in Appendix 

B/Supplemental document, section B.3). 

The solution of the numerical model (based on all experimental conditions) indicated that a subtle, 

monotonically increasing enhancement of the nonlinear refractive index 𝑛2
𝑒 (real part) as the 
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concentration of particles (absorption) increases, should be considered to acquire the fitting to our 

experimental results as demonstrated in Figure 6.6. We have evaluated the real part of the complex 

nonlinear refractive index 𝑛2
𝑒 based on these calculations (the details are shown in the Appendix 

B/Supplemental document, section B.3) and for the calculation of the imaginary part, we use the 

relation 𝑎2
𝑒 ≅ −𝑎0 𝐼𝑠

𝛿⁄ . The results are shown in Figure 6.7 as a function of the particle

concentration of the examined samples. 

With respect to the origin of the refractive (self-focusing) nonlinearity, we rule out the lattice 

contribution (due to electron-phonon coupling after thermalization of the photo-excited electrons 

[8, 9, 124, 183, 263-265]), which is a non-instantaneous process. Moreover, ultrafast excitation of 

non-thermal electrons has seemingly a detrimental influence on the coherently enhanced, plasmon-

induced nonlinear polarization of the particles, resulting in ultrafast damping of the plasmon and 

modulation of the dielectric permittivity of the metal. Nonetheless, the foresaid mechanism still 

contributes to incoherent (e.g. Kerr type) nonlinear processes [3, 8]. 

Figure 6.7 Evaluation of the effective nonlinear refraction and absorption of the examined gold 

nanorod colloids as a function of the concentration. Only the values of n2
e obtained from the case 

I treatment are presented on the grounds of the better fitting of the theoretical model solution on 

the experimental data of both case I and II, as shown in Figure 6.6. The values of n2
e obtained by 

the case II treatment are presented in Table B.4 of the Supplemental document for completeness. 

In our view, the refractive nonlinearity of water is marginally enhanced in the presence of 

(saturable) plasmonic amplification of the electric field in the vicinity of the particles, which in 
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turn affects the laser-induced distorted position of non-resonant electrons in water. The effect is 

expected to increase monotonically with the increase of nanorod concentration, as it is also implied 

in the result of Figure 6.7. The time response of this effect is nearly instantaneous so that it can 

follow the laser pulse amplitude rise time; same for the absorptive properties of the composite, for 

which ultrafast saturation is observed. Accordingly, the field enhancement is expected to be also 

saturable [123, 148], with possibility of contributions from higher-order nonlinearities on the 

susceptibility of the metal, as has been noted by Drachev et al. [148]. This possibility is further 

supported by observations on the response of the power limiting method signal (case II). Indeed, 

the deep valleys recorded near the critical power (Figure 6.3b) at higher concentrations of particles, 

are associated with stronger wavefront (and phase) modulation of the pulse. 

Lastly we note that in theory, the behaviour of nonlinear refraction and linear absorption saturation 

can be equivalently formulated as a higher order cubic-quintic nonlinearity [64]. Experiments in 

colloidal solutions for picosecond irradiation have shown that if septimal nonlinearities are also 

considered at high intensities, the saturation of the absorptive behaviour persists (saturable), 

whereas nonlinear refraction benefits from a small focusing septimal contribution [173, 174]. This 

generates implications of high-order contributions that might explain the gradual enhancement of 

self-focusing in our experiments as the concentration of particles increases, which we quantified 

by a single effective third-order term 𝑛2
𝑒 and can be mathematically expressed up to the seventh-

order as 𝑛2
𝑒(𝐼) = 𝑛2,0

𝑒 + 𝑛4
𝑒𝐼 + 𝑛6

𝑒𝐼2, with 𝑛2,0
𝑒 , 𝑛6

𝑒 > 0 and 𝑛4
𝑒 < 0 for modelling saturable cubic

and focusing septimal nonlinearities. Finally, note that in picosecond regime experimental 

demonstrations [173, 174], the signs of the high-order refraction coefficients are opposite to the 

ones just mentioned, implicating stronger non-instantaneous contributions (electron-phonon 

coupling) to the effective susceptibility. 

6.7 Conclusion 

We have used for the first time to our knowledge an alternative method (power limiting) to evaluate 

the enhancement of nonlinear refraction in gold nanorod colloids under near-resonant excitation in 

the femtosecond filamentation regime. Spectroscopic evaluation showed that considerable particle 

deformation occurred after the collapse of the beam into a filament, in view of high peak intensities 

and plasma channel formation. Below the critical power, particle deformation is seemingly small 
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due to low energy-induced saturation of the linear absorption of the nanorods. By modelling the 

experimentally observed saturable absorption of the samples, we performed numerical simulations 

to evaluate the threshold for self-focusing. The results showed that the nanorods subtly enhance 

the nonlinearity of water as their concentration increases. We attribute the enhancement to the 

saturable (due to ultrafast generation of “hot” electrons at the surfaces), near field amplification in 

the vicinity of the nanorods and we determine the complex refractive index of the composites. Our 

findings reconcile, in the regime of ultrafast excitation <100 fs, with the theory of control over the 

effective higher-order susceptibility of plasmonic nanocomposites by concentration adjustments. 

In our view self-focusing of femtosecond pulses below ~100 fs in gold nanorod colloids is 

undermined by the ultrafast modification of the permittivity of gold, due to excitation of non-

thermal electrons and plasmon damping, and not affected by (stronger) non-instantaneous 

contributions typically observed following the thermalization of the photo-excited free electron 

kinetic energy modes in the nanoparticle system. 
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CHAPTER 7 ARTICLE 4: NONLINEAR THERMAL LENSING OF 

HIGH REPETITION RATE ULTRAFAST LASER LIGHT IN 

PLASMONIC NANO-COLLOIDS 

Research article published in Nanophotonics journal in 20225. The supporting information for this 

article is reprinted in Appendix C of this thesis. 
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7.2 Abstract 

We report on experimental observations of phenomenological self trapping in plasmonic colloids 

of varying plasmon peaks in the visible/near infrared. A femtosecond (fs) oscillator is used in both 

pulsed (35 fs, 76 MHz) and continuous wave (cw) operation for comparison. We show that for both 

modes and for all examined colloids (and under typically applied external focusing conditions in 

self-trapping studies in colloidal media) nonlinear propagation is governed by thermal defocusing 

of the focused beam, which precedes the steady-state regime reached by particle diffusion, even 

far from the plasmon resonance (or equivalently for non-plasmonic colloids, even for low 

absorption coefficients). A strategy for the utilization of high repetition fs pulses to mitigate 

thermal lensing and promote gradient force-induced self-trapping is discussed. Notably, nonlinear 

thermal lensing is further accompanied by natural convection due to the horizontal configuration 

of the setup. Under resonant illumination, for both fs and cw cases, we observe mode break-up of 

the beam profile, most likely due to azimuthal modulation instability. Importantly, time-resolved 

observations of the break-up indicate that in the fs case, thermal convection heat transfer is reduced 

5 Agiotis, Leonidas and Meunier, Michel. "Nonlinear thermal lensing of high repetition rate ultrafast laser light in 

plasmonic nano-colloids" Nanophotonics 11, (2022). https://doi.org/10.1515/nanoph-2021-0775 

https://doi.org/10.1515/nanoph-2021-0775
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in magnitude and significantly decoupled in time from thermal conduction, presumably due to 

temperature increase confinement near the particles. We anticipate that our findings will trigger 

interest toward the use of high repetition fs pulses for self-channeling applications in nano-colloids. 

7.3 Introduction 

Nonlinear self-trapping of laser light in soft-matter systems, such as dielectric [279-283] or 

plasmonic colloids [37-39, 54-58, 89, 284] as well as biological media [285-289], has attracted 

increased attention over the past decade. The effect is described as diffraction-less propagation of 

laser light, trapped over many diffraction lengths by virtue of the intensity-dependent nonlinear 

refractive index of the medium. Indeed, the possibility has been noted of tuning the nonlinear 

response of soft-matter systems via laser-induced local refractive index modulation, leading to the 

observation of novel self-action effects. Consequently, soft-matter systems provide a unique 

platform for the fundamental investigation of nonlinear effects and for prototypical applications 

based on self-focusing and instability beam break-up [36, 286]. 

In the case of plasmonic nanocolloids, several studies have reported that self-trapping of laser light 

is possible by virtue of particle concentration gradients arising from the enhanced particle 

polarizabilities and exerted on them optical forces [39, 54-57]. Others have demonstrated in the 

same context that the beam is not self-trapped; in fact, a self-channeling effect (a phenomenological 

self-trapping) is observed because of nonlinear thermal lensing, giving the impression of a self-

trapped beam, particularly when the laser field is tuned near the plasmon resonance [37, 38, 58]. 

In this case, the medium acts as a laser-induced (due to optical absorption by the particles) thermal 

lens, which tends to collimate the externally focused beam, much like an optical telescope. Thus, 

the conditions that demarcate the dominance of either thermal or particle diffusion (due to optical 

forces) effects, especially far from the plasmon resonance, in the context of self-channeling in 

plasmonic colloids remain unclear. 

Further, most studies of self-trapping of optical beams have been conducted by use of cw laser 

sources. Interestingly, under certain focusing conditions, fs laser pulses of high repetition rate can 

be used to generate quasi-continuous wave interactions due to cumulative effects [290-294]. 

Additionally, in the case of plasmonic systems, fs pulses lead to higher localization of thermal 

effects [48]. Therefore, the use of high repetition fs pulses in plasmonic nano-colloids in this 
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context and how it compares to cw interaction is particularly interesting and has not been explored 

yet. 

The objectives of this work are the following: 

1) Study the phenomenological self-trapping (self-channeling) of high repetition rate fs laser pulses 

in plasmonic nanocolloids of varying plasmon peaks with respect to the incident field wavelength, 

by applying commonly reported focusing conditions. We show that the effect exhibits 

characteristics of thermal self-defocusing of a focused beam (for both cw and fs operation) even 

far from the plasmon resonance and is generalized for any absorbing medium of given thermal 

properties. We discuss conditions under which optical force-induced self-trapping can be achieved 

as opposed to nonlinear thermal lensing by means of high repetition rate fs pulses. 

2) Explore the features of the observed nonlinear thermal lensing induced by high repetition fs 

pulses as opposed to cw laser light, under plasmon-resonant interaction. We specifically aim to 

explore if thermal effects are alleviated under fs illumination. To this end, we analyzed distinct 

features in the dynamics of a beam spatial mode break-up and thermal distortion (blooming) at 

high input powers, when resonant samples are excited by either cw or fs illumination, and their 

association to the thermal response of the nanoparticles. 

7.4 Results 

7.4.1 Nonlinear thermal lensing (fs pulses) 

A series of experiments were performed to understand the origin of the self-channeling effect under 

fs illumination in plasmonic nanocolloids. We evaluated the power-dependent full width half 

maximum (FWHM) far-field beam width and divergence of an externally focused beam as it 

emerged from a 20 mm optical cuvette that contained each of four examined plasmonic nano-

colloids (samples S1, S2, S3, S4 as shown in Table 7.1). Images of the FWHM far-field beam width 

were collected by a CMOS camera placed at two different positions in the far-field (Figure 7.1a). 

A Ti:Sapphire laser in fs operation (wavelength 800 nm, pulsewidth 35 fs, repetition rate 76 MHz) 

was used. The laser oscillator could run in both fs and cw modes. The focused beam 1/e2 radius 

was elliptical, evaluated 𝑤0,𝑌~2.8 mm along Y axis (vertical) and 𝑤0,𝑋~2.4 mm along X axis 
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(horizontal). We defined the distance 𝒹 between the entrance of the cuvette and the beam waist in 

the medium (Figure 7.1b). Additionally, we performed optical transmittance and z-scan 

measurements on the examined samples under fs illumination. All samples exhibited linear 

absorption in the range of the applied input powers (1-280 mW) for all examined positions 𝒹. The 

z-scan showed negative refractive nonlinearity, presumably due to thermal lensing, governed by 

the thermo-optical coefficient 
𝑑𝑛

𝑑𝑇
 of the solvent (water) for all colloids. All methods are described 

in detail in the Appendix C/Supplemental Material (sections C.1.1 and C.1.2). Table 7.1 

summarizes the results of optical characterization. 

Table 7.1 Linear absorption and thermo-optic coefficients of the examined plasmonic nanocolloids, 

characterized by optical transmittance and z-scan measurements by fs irradiation at 800 nm. a 

Width × length. b Diameter. c Longitudinal, d Transverse. 

Sample 
Average 
Size (nm) 

Surface Plasmon Resonance 
Wavelength (nm) 

𝑎0(𝜆0 = 800 𝑛𝑚) (𝑐𝑚−1) 
𝑑𝑛

𝑑𝑇
 (

10−5

 𝑜𝐶
) 

S1 (Au Nanorods) 10 × 38 a 780c, 510d 2.10 ± 0.10 −3.2 ± 0.4 

S2 (Au Nanorods) 10 × 50 a 900c, 510d 0.84 ± 0.09 −2.7 ± 0.4 

S3 (Au Nanospheres) 50 b 525 0.24 ± 0.05 −2.8 ± 0.3 

S4 (Au-Ag Alloy:15-85 
Nanospheres) 

40 b 450 0.06 ± 0.02 −2.9 ± 0.3 

 

First, we examined the influence of the position parameter 𝒹 in the case of the resonant sample S1. 

Three values of 𝒹 were examined, summarized in Figure 7.2. Initially, at low power and for all 

cuvette positions, the FWHM beam width was ~1.9 mm at the Y direction and ~1.6 mm at the X 

direction at a distance ~10.5 cm (Position 1) away from the focus, and ~1.6 mm at the Y direction 

and ~1.4 mm at the X direction at a distance ~8.5 cm (Position 2) away from the focus, which 

yields a divergence ~15 mrad. 

The following qualitative observations can be made: As the input power increased, the beam width 

gradually decreased for all cuvette positions, retaining a nearly Gaussian profile. The behaviour 

continued up to a critical power value where a diffraction ring was formed on the background, 

presumably because of strong thermal aberration (phase-front spatial interference of Airy function-

type). The onset of this transition was recorded and is shown in Figure 7.2 marked by a shaded, 

light-blue area.  
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Figure 7.1 The experimental setup (detailed in Appendix C/Supplemental Material). (b) The figures 

on the left show the three examined cuvette positionings with respect to the geometrical focus of 

lens L in air, as defined by the parameter 𝒹. The figures on the right indicate quantitatively the shift 

of the actual beam waist position inside the 20 mm long cuvette, when filled with the examined 

colloids (linear regime). This is because of the difference between the refractive index of air (n0 ≈ 

1) and colloids (n0 ≈ 1.33). The values in air (dashed curves) correspond to experimentally 

measured beam width along X-axis (shown in Figure C.1b, Appendix C/Supplemental Material). 

The values in the colloids (solid curves) have been evaluated by Equation C.1b (Appendix 

C/Supplemental Material) for n0 = 1.33. 

 

Figure 7.2 Experimental measurements of the far-field FWHM beam width and divergence θ for 

sample S1 as a function of power for three different values of 𝒹 (15, 10 and 5 mm). The beam 

width was determined at two different positions in the far field (shown in Figure 7.1a and in Figure 

C.1a of the Appendix C/Supplemental Material) to evaluate θ. Results over both Y and X axis are 

presented. The shaded, light-blue areas indicate the observed power onset of Airy function-type 

diffraction interference on the beam profile. 
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The FWHM of only the central Airy disk was evaluated at higher powers than the onset of the 

foresaid transition. The central Airy disk was seen to gradually shrink and decay at increased input 

powers (> 40 mW for 𝒹 = 5 𝑚𝑚, >80 mW for 𝒹 = 10 𝑚𝑚 and >110 mW for 𝒹 = 15 𝑚𝑚) while 

outer rings gained higher radiation densities. Thus, estimation of its FWHM was not performed 

beyond these powers. In addition, convection currents arose as the liquid was heated, resulting in 

a downward beam deflection, which became more pronounced as the input power increased.  

We make the following quantitative evaluations on the beam width and the divergence of the beam 

as a function of input power (<100 mW) for all three examined 𝑑 values (shown in Figure 7.2): For 

𝒹 = 5 𝑚𝑚 the FWHM beam size obtained values >1 mm at the far-field. When the focus was 

positioned deeper inside the cuvette, a smaller minimum beam width was obtained (down to ~350 

μm for 𝒹 = 10 𝑚𝑚 and ~250 μm for 𝒹 = 15 𝑚𝑚). 

The divergence of the beam for 𝒹 = 15 𝑚𝑚 exhibited rapid three-fold decrease, from ~15 mrad 

to ~5 mrad within ~1-10 mW. At higher powers, it decreased on average down to ~8 mrad when 

𝒹 = 5 𝑚𝑚 and to ~2-4 mrad when the focus was positioned deeper in the cuvette. Beyond the 

onset power of Airy-type interference, the divergence was seen to monotonically decrease for all 

positions. Specifically, for 𝒹 = 15 𝑚𝑚, both divergence and spot size attained overall minimum 

values (~1 mrad and ~280 μm respectively). Conclusively, the minimum values of divergence and 

beam size were higher as the focus was located closer to the input of the cuvette. 

 

Figure 7.3 Same as Figure 7.2, for the samples S2, S3 and S4 and for 𝒹 = 15 mm. 
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For the rest of the samples, we performed experiments for 𝒹 = 15 𝑚𝑚. The choice was based on 

the observed minimization of the divergence and beam width for sample S1. The results are shown 

in Figure 7.3. Similar features of the nonlinear thermal lens were observed for each sample. For 

comparison, the onset for observation of thermal aberration Airy-type interference (diffraction 

rings) for sample S2, required ~1.5 × higher power compared to S1, while for sample S3 a ~3.5 × 

power increase relative to S1 was needed. Notably, the minimum values of far-field beam width 

and divergence are evaluated to be smaller as the excitation wavelength is closer to the resonance 

of the samples (i.e., for higher absorption coefficient).  

 

Figure 7.4 Far-field beam width profiles under fs excitation of samples S1, S2, S3 and S4 for 

various optical input powers recorded at Position 1 and 𝒹 = 15 mm. The figure demonstrates 

similar behaviour for all samples: The first column shows the initial profile, the second column 

shows the required power for shrinking of the beamwidth to approximately half of the initial, the 

third column shows the appearance of Airy-type diffraction interference, and the fourth column 

shows further shrinkage of the central Airy disk and downward displacement δy of the beam profile 

due to convection currents. The horizontal line shows the initial position of the beam center on the 

Y direction. The inset scale and axes apply for all figures. The x axis is horizontal, and the y axis 

is vertical and pointing downwards to define the positive direction of δy. 

For sample S4, it was not possible to determine the onset of Airy function-type interference since 

not enough power was available by our laser source (<280 mW). However, we observed the 
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characteristic reduction (as described for all other samples) of the far-field beam profile and 

divergence above ~220 𝑚𝑊. The power dependencies of the far-field beam width for each sample 

are qualitatively depicted in Figure 7.4. 

7.4.2 Comparison of resonant nonlinear thermal lensing between fs and cw 

operation 

7.4.2.1 Nonlinear defocusing 

In cw operation, the resonant sample S1 exhibited increased absorption (15% higher than fs 

excitation). This is presumably due to the monochromatic excitation of the plasmon mode, as 

opposed to the spreading of energy over the optical frequencies of the fs spectrum. Indeed, the 

latter is expected to result in less efficient mode-matching with the surface plasmons. We have 

performed comparison of the two cases (fs and cw) when 𝒹 = 15 𝑚𝑚 (Figure 7.5). 

 

Figure 7.5 Comparison between use of cw and fs excitation on the experimental measurements of 

the far-field FWHM beam width and divergence θ for sample S1, as a function of power for 𝒹 = 

15 mm. 

 

In cw mode, the FWHM beam width obtained lower values at the same input power compared to 

the fs case up to ~30 mW. For higher powers, this trend continued only on the Y axis, while in the 

X axis, no significant difference was observed between cw and fs operation beam widths. On the 

other hand, in the power interval between 3 - 40 mW, the divergence of the beam obtained smaller 

values in cw operation down to about 1.5-3.0 mrad. Formation of Airy function-type interference 
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was observed above ~40 mW. At optical power ~70 mW, the beam divergence increased for cw 

operation, which opposes the observations of fs operation.  

7.4.2.2 Convection and thermal blooming.  

Figure 7.6 shows images of the profiles at various powers for fs and cw excitation. Evidently, 

induced convection currents caused a downward deflection of the beam along the y axis. 

Similar features on a beam profile break-up under cw operation preceded in optical power the ones 

acquired under fs operation. Specifically, break-up of the first outer ring was observed, at an onset 

of ~100 mW and ~120 mW for cw and fs operation, respectively. The first outer ring clearly breaks 

up into four bright spots, at ~120 mW input power for both cases. As the power increased in cw 

operation, the thermal blooming effect [295] manifested itself (at ~160 mW). Contrarily, in fs 

operation the profile retained its axial symmetry along x and y axes obtaining yet a complex 

structure, while it was elongated along the x axis up to ~200 mW. 

 

Figure 7.6 Far-field beam width profile under fs and cw excitation of sample S1 for high input 

powers recorded at Position 1 and 𝒹 = 15 mm. Beam profile break-up effects are observed beyond 

120 mW for both cases. Pronounced beam break-up is observed under cw excitation at lower input 

power and strong thermal blooming beyond 160 mW with a characteristic highly asymmetric lower 

half-portion. In the case of fs operation, a less asymmetric, yet complex profile is observed. The 

downward displacement can be compared in the two cases with respect to the low-input-power 

position of the center of the beam (white horizontal line). 

 

We have obtained time-resolved images of the far-field beam profile (see Methods, section C.1,  

Appendix C/Supplemental Material) for the specific cases of input power of 120 mW and 140 mW 
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input power in cw and fs pulsed operations, respectively. The images were used to analyze the 

difference in the dynamics of the mode break-up. Results of images taken for both cases are shown 

in Figure 7.7. 

 

Figure 7.7 Time-resolved far-field beam width profile under fs and cw excitation of sample S1 for 

input powers of ~140 mW and ~120 mW, respectively, recorded at Position 1 and 𝒹 = 15 mm. The 

selection of the foresaid input power leads to a fair comparison between the two profiles due to the 

15% higher absorption coefficient calculated in the case of cw operation. Note the subtle downward 

displacement of the beam core and onset of beam break-up just after 200 ms for the case of cw 

operation. Contrarily, for fs operation, downward displacement is observed only after ~466 ms and 

the onset of beam break-up is observed after ~821 ms. Finally, a drastic beam profile break-up is 

observed for the fs case between the time interval of 1000 and 1890 ms (Supplemental Video). 

For the fs case, observable growth of the break-up of the first outer ring surrounding the decaying 

core occurred only after ~1 s as opposed to the cw case for which the same effect was observed 

after ~200 ms from the opening of the shutter. Further, the beam profile break-up in the fs case 

became pronounced after the beam acquired its final position, under convection-induced 

displacement. In the cw case, the onset of profile displacement subtly preceded in time the one in 

the fs case (compare for example the central core displacement in the two cases after ~200 ms and 

~244 ms from the opening of the shutter). Finally, the break-up was observed to be typically 

accompanied with stochastic, small-scale motion of the profile around the center of the beam 
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(Supplemental Video). For the case of cw excitation, such stochastic motion was observed as early 

as ~200 ms, and was generally more pronounced, whereas, in the fs case it became observable only 

after ~1 s from the opening of the shutter. 

7.5 Discussion 

7.5.1 Nonlinear thermal lensing (fs pulses) 

The phenomenological self-trapping observed experimentally was compared theoretically to a 

model based on the stationary nonlinear Schrödinger equation with thermal nonlinearity (Equations 

C.3a-C.3b, Appendix C/Supplemental Material). We first evaluated 𝜎2 near-field beam width for 

𝒹 = 15 mm as a function of 𝑃𝑖𝑛 after ℎ = 30 𝑚𝑚 of propagation in media characterized by 

absorption coefficient 𝑎0, thermal conductivity 𝐾𝑇 and thermo-optic coefficient 𝑑𝑛/𝑑𝑇 (Appendix 

C/Supplemental Material, Section C.1.3). The results are shown in Figure 7.8a for the four different 

values of 𝑎 that correspond to the nano-colloids examined experimentally and for 𝐾𝑇, 𝑑𝑛/𝑑𝑇 of  

water. The 𝜎2 near-field beam width at the output 𝑤(𝑧 = ℎ), exhibits a parabolic behaviour as a 

function of 𝑃𝑖𝑛, quantitatively different for each 𝑎0. An inflexion point is formed at an optimum 

power 𝑃𝑜(𝑎0) that demarcates thermal aberration in the far-field. The inflexion point has a simple 

physical interpretation. The initial phase-front curvature of the focused beam, which reads 𝛿𝜑𝑖 =

𝜋

𝜆𝑅
𝑤0

2 (𝑅 , 𝑤0, denote the radius of curvature and beam width at the input, respectively), is 

compensated by the thermal self-induced phase. The latter is estimated as 𝛿𝜑𝑇(𝑟) =

𝜋

𝜆
∫

𝛿𝑛(𝑟,𝑧)

𝑛0
𝑑𝑧

𝑧𝑁𝐿

0
, where 𝑧𝑁𝐿(𝑃𝑖𝑛) is the distance between the entrance of the cuvette and the 

nonlinear beam waist, and 𝛿𝑛(𝑟, 𝑧) =
𝑑𝑛

𝑑𝑇
𝛿𝑇(𝑟, 𝑧) (where 𝛿𝑇(𝑟, 𝑧) denotes local temperature 

increase), so that the inflexion point appears when 𝛿𝜑𝑖 ≈ 𝛿𝜑𝑇,𝑚𝑎𝑥. Evidently, in the linear regime, 

the beam waist is located at 𝑧𝑓 = 𝑛0 × 𝒹 (𝑛0 is the refractive index of water), and for 𝑃𝑖𝑛 → 𝑃0, in 

the nonlinear regime, the beam waist is moving (increasing) monotonically at 𝑧𝑁𝐿(𝑃𝑖𝑛) > 𝑧𝑓. We 

observed that, at the inflexion point (𝑃𝑖𝑛 = 𝑃0), the 𝜎2 nonlinear beam waist 𝑤(𝑧𝑁𝐿) was expanded 

compared to the 𝜎2 linear beam waist 𝑤𝑓 in each medium by the same factor 𝓂, independently of 

𝑎0, which was estimated 𝓂 ≡ 𝑤(𝑧𝑁𝐿) 𝑤𝑓⁄ ~1.75 . For 𝑃𝑖𝑛 > 𝑃0(𝑎0), it holds 𝛿𝜑𝑇,𝑚𝑎𝑥 > 𝛿𝜑𝑖. The 

beam begins to defocus and as a result the 𝜎2 beam width at the output 𝑤(𝑧 = ℎ) increases (Figure 
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7.8a). The position 𝑧𝑁𝐿 moves further towards the output of the cuvette for increasing 𝑃𝑖𝑛 so the 

curve of the 𝑤(𝑧𝑁𝐿) gradually approaches 𝑤(𝑧 = ℎ) (Figure 7.8a). Figure 7.8b summarises the 

behaviour of  𝑃0(𝑎0). We repeated the process for 𝒹 = 10 mm with similar observations and 

determined the corresponding 𝑃0(𝑎0) (Appendix C/Supplemental Material, Section C.2). We 

further found that in this case 𝓂 ~ 1.5 which shows that 𝓂 depends on 𝛿𝜑𝑖, i.e., the initial focusing 

condition, but not on 𝑎0. 

Importantly, 𝑃0, for which it holds 𝛿𝜑𝑖 ≈ 𝛿𝜑𝑇,𝑚𝑎𝑥, can be estimated experimentally by recording 

the value of 𝑃𝑖𝑛 that coincides with the appearance of Airy function type diffraction rings in the 

far-field. A fair agreement is observed between simulations and experimental values, where 𝑃0 was 

further determined numerically for three more 𝑎0 values (1.40, 0.54 and 0.12 𝑐𝑚−1) in Figure 

7.8b. 

 

Figure 7.8 Results of numerical simulations based on the nonlinear Schrödinger equation with a 

thermal nonlinearity (Equations C.3a-C.3b, Supplemental Material) and comparison with 

experimental observations for 𝒹 = 15 mm. (a) Numerical evaluation of the σ2 beam width at the 

output w(z = h) (solid curves) and of the σ2 nonlinear beam waist w(zNL) (dashed curves) as a 

function of Pin. The calculations correspond to the values of absorption coefficient a0 of the 

examined samples (in cm-1, shown close to each curve). Dotted lines indicate that at the inflexion 

points of w(z = h) (i.e., at Pin = P0) the nonlinear beam waist w(zNL) is stretched by the same factor 

𝓂 ~ 1.75 compared to the linear beam waist wf = 21 μm. (b) Comparison of P0(a0) by numerical 

simulation (squares), fitting of analytical expression (2) for 𝓂 = 1.75 (solid line) and experimental 

values (circles). (c) Comparison of θ(a0) between numerical simulations (squares) and 

experimental measurements (circles). 
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The behaviour of 𝑃0(𝑎0) can be interpreted in accordance to the theoretical analysis of reference 

[296] addressing the problem of thermal self-focusing within the aberration-free approximation. 

The analysis showed that for input power 𝑃𝑖𝑛, beam compression 𝑛 is obtained due to positive 

thermal self-focusing that depends on a critical power 𝑝𝑐𝑟, the diffraction length 𝐿𝑑 ≡ 𝑧𝑅 and 𝑎0 

of the medium. The foresaid relation reads 

𝑃𝑖𝑛 ≈ 𝑝𝑐𝑟 (
𝑛2 − 1

𝑎0𝐿𝑑𝑙𝑛(𝑛2)
+ √𝑛2 − 1) 

7.1 

While the problem was solved implying positive nonlinearity, the reduced propagation equation 

(e.g., Equation 21 in [296]) is identical for negative nonlinearity if also an external focusing initial 

condition is considered (𝜕𝑧𝑤|𝑧=0 = −𝑤0/𝑅) , so that 𝑛 expresses beam waist stretching instead of 

compression for a given 𝑃𝑖𝑛. Accordingly, at 𝑃0, the beam waist stretches by the factor 𝓂 defined 

above. By numerical simulations, we used the ansanz of Equation 7.1 for the examined problem, 

and found that 𝑃0 can be determined, accounting for a fitting dimensionless parameter 𝒜, by 

𝑃0 ≈
𝐾𝑇𝑘0𝜆

2

𝑛0 |
𝑑𝑛
𝑑𝑇

|
(
𝒜(𝓂2 − 1)

𝑎0𝐿𝑑𝑙𝑛(𝓂2)
+ √𝒜(𝓂2 − 1)) 

7.2 

where, we have assumed 𝑝𝑐𝑟[𝑖𝑛 𝑊] = 𝐾𝑇𝑘0𝜆
2/(𝑛0 |

𝑑𝑛

𝑑𝑇
|) and 𝐿𝑑 = 𝑘0𝑤𝑓

2/2 (𝑘0 is the free-space 

wavenumber). The fitting is plotted in Figure 7.8 for 𝓂 = 1.75 (𝒹 = 15 𝑚𝑚) and for 𝒜 = 1/100, 

which shows a good agreement between simulations and experiments. We consider parameter 𝒜, 

as a correction factor under the applied approximations (aberration-free approximation, initial 

external focusing condition, 𝐿𝑑 taken at the linear waist). The 𝑝𝑐𝑟 is a reduced critical power since, 

in a thermal self-action process, the usual relation of critical power 𝑃𝑐𝑟 ∝
𝜆2

𝑛0|𝑛2|
 (with 𝑛2 ∝

𝑑𝑛

𝑑𝑇
𝑎0𝐿𝑑 (𝐾𝑇𝑘0)⁄  [61]) depends on geometrical characteristics of the beam.  For strong absorption 

(𝑎0𝐿𝑑 ≫ 1), 𝑃0 is independent of 𝑎0, however 𝓂 clearly depends on the initial focusing condition, 

so that 𝑃0 ≈ 𝑝𝑐𝑟√𝒜(𝓂2 − 1). As discussed in [296], this can be understood by the fact that a 

limited “thin thermal lens” developed at the entrance of a strongly absorbing medium determines 

balancing of the initial wavefront phase. 
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Further, we evaluated numerically the divergence of the beam at 𝑃0 versus various values of 𝑎0. The 

divergence was then calculated according to [𝑤𝜎2(ℎ) − 𝑤𝜎2(𝑧𝑁𝐿)]/(ℎ − 𝑧𝑁𝐿). A comparison with 

the experimental results is shown in Figure 7.8. Overall, there is good agreement between the model 

described by Equations C.3-C.4 and our experimental observations. Accordingly, we conclude that 

the phenomenological self-trapping by both high repetition rate fs pulses and cw illumination is 

mainly attributed to steady-state nonlinear thermal self-defocusing of the externally focused beam. 

The latter effect is caused by optical absorption by a given colloidal solution and governed by the 

thermal properties of the solvent (here water). Consequently, if the wavelength of the propagating 

light exactly matches the plasmon resonance of a given nano-colloid, the thermal lensing effect is 

expected to be further enhanced due to higher absorption cross section of the suspended particles. 

 

Figure 7.9 Numerical simulation results at Pin = P0 for (S1) a0 = 2.10, (S2) a0 = 0.84, (S3) a0 = 

0.24 and (S4) a0 = 0.06 cm-1 First column shows the σ2  beam width as a function of z for 𝒹 = 15 

mm (black lines) and 10 mm (blue lines). The dashed lines correspond to the linear case (low input 

power ~0.1 mW). The second and third column show the calculated spatial temperature profiles at 

Pin = P0 for 𝒹 = 15 mm and 10 mm, respectively. 

In Figure 7.9, the characteristic-needle like propagation is simulated as a function of propagation 

z. A nonlinear focus is formed due to temperature-induced refractive index changes in the medium 

that creates the self-channeling effect, reducing 𝜃 at the output. In addition, the 𝛿𝑇 profiles of all 
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four cases of 𝑎0 varies significantly. Transverse temperature gradients are extended at larger radius 

near the input when 𝑎 is larger. For small values of 𝑎0, increased 𝛿𝑇 is confined in the vicinity of 

the focus, where |ℰ|2 gets higher. This effect has possibly an impact on the development of 

convective fluid flow due to temperature gradients. 

Notably, we have performed an order-of-magnitude comparison between the characteristic times 

of mass diffusion 𝑡𝑑
𝑚 and heat diffusion 𝑡𝑑

𝑡ℎ (Appendix C/Supplemental Material, Section C.3). We 

have considered reportedly applied focusing conditions of self-channeling experiments in 

plasmonic nanocolloids. The calculations showed that, in this context, mass diffusion due to optical 

forces is a much slower process compared to heat diffusion, so that the latter typically becomes 

dominant.  Nonetheless, the use of high repetition fs pulses exhibits a potential advantage toward 

mitigation of thermal effects; for instance, if one focuses a beam at a waist of ~1 μm (to overcome 

Brownian motion) and applies a repetition rate of ~1 MHz, 𝑡𝑑
𝑡ℎ becomes comparable to the time 

between each pulse 𝛿𝑡𝑝. In this case, heat accumulation can be alleviated. Contrarily, 𝑡𝑑
𝑚 remains 

much larger than 𝛿𝑡𝑝 so that cumulative optical forces are still expected to trap or repulse particles. 

In other words, it is possible to engineer an interaction where 𝑡𝑑
𝑡ℎ~𝛿𝑡𝑝 ≪ 𝑡𝑑

𝑚 to facilitate gradient 

force-induced self-trapping in plasmonic nanocolloids by use of fs pulses. However, that would 

still require considerably high concentrations of particulate material in case of tightly applied 

focusing [281]. 

7.5.2 Comparison of resonant nonlinear thermal lensing between fs and cw 

operation 

Experiments on resonant sample S1 demonstrated small differences in the far-field FWHM beam 

width and divergence between cw and fs operations. The differences may be attributed to the 15% 

higher absorption coefficient in the case of cw excitation since both the far-field FWHM beam size 

width and divergence acquire slightly smaller values at the same input power. Nonetheless, at input 

power of ~80 mW (well above 𝑃0), an increase of the divergence of the central Airy disk was 

observed in cw operation. This fact, in conjunction with the distinct features in the dynamics of the 

beam profile for the two laser operation modes (Figure 7.7) indicate an additional contribution to 

thermal aberration of the beam, presumably due to convective heat transfer. 
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The breakup of the first diffraction ring, observed in fs and cw operation at 𝑃~140 and ~120 mW 

respectively, exhibits small yet important differences in its dynamics and features. The effect itself 

bears similarities with the break-up of optical vortices propagating in colloidal media [297]. In the 

latter case, break-up has been attributed to azimuthal modulation instability due to the exponential 

grown of a perturbation with an orbital angular momentum of specific charge [297, 298]. Here, we 

used an elliptical, astigmatic Gaussian beam, which is known to possess orbital angular momentum 

[299]. Additionally, it is possible that transverse convective currents (see for example in Fig. 3, 

horizontal setup, of ref. [300]) contribute to wavefront twisting (in addition to downwards 

translation). Accordingly, we consider that here, an azimuthal modulation instability led to the first 

diffraction ring breakup much like for the case of an optical vortex. 

We analyzed time-resolved images of the beam profile for both fs and cw operation as a function 

of the input power. Figure 7.10a shows the recorded vertical displacement 𝛿𝑦 of the core of the 

beam after the opening of the shutter. We recorded the value of 𝛿𝑦 as a function of the input power 

for both cases after 𝑡1 ≈ 0.2 𝑠, when the beam is marginally displaced, and after a time delay 𝑡2 ≈

1.1 s, when the beam appears to decelerate at its final position. The results clearly indicate 

consistently smaller 𝛿𝑦 at early times (𝑡1 ≈ 0.2 𝑠) in the case of fs operation as compared to cw 

operation. In addition, 𝛿𝑦 after 𝑡2 is higher for fs operation, suggesting that the beam was displaced 

with a higher average velocity 〈𝑢〉 under the induced convective flow within 𝑡2. 

Balancing the forces of buoyancy and viscous drag force, leads to an estimation of the average 

downward velocity of the induced flow [295] 

〈𝑢〉 =
𝑎𝑉𝑔𝜋𝑤0

2𝛿𝛵

16𝜇
 

7.3 

where 𝑎𝑣 ≈ 2.1 × 10−4  𝑜𝐶−1 is the thermal expansion coefficient of the solvent (water), 𝑔 is the 

gravity acceleration, 𝑤0 is the input beam width and 𝜇 ≈ 0.8 × 10−6𝑚2/𝑠 denotes the kinematic 

viscosity of the solvent (water). Assuming that at the entrance of the medium 𝛿𝛵~8𝜊𝐶, as seen in 

the simulations for 𝑃0~40 𝑚𝑊 as seen in Figure 7.9, we find 〈𝑢〉 ≈ 130 𝜇𝑚/𝑠, in fair agreement 

with our observations (Figure 7.10a). Noting that 𝛿𝛵 ≈
𝑎0𝛪𝑤0

2

𝐾𝑇
= 2

𝑎0𝑃𝑖𝑛

𝜋𝐾𝑇
 the flow velocity can be 

written in the form 
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〈𝑢〉 =
𝑎0𝑎𝑉𝑔𝑤0

2

8𝜇𝐾𝑇
𝑃𝑖𝑛 

7.4 

Equation 7.4 shows that the relation between 〈𝑢〉 and 𝑃𝑖𝑛 is linear. In addition, the slope of this 

relation depends linearly on 𝑎0. Noting that every parameter besides 𝑎0 remains the same for the 

two laser operation modes, one expects higher 〈𝑢〉 under cw operation, which is not the case. The 

effect implicates a difference in the combined thermal conduction and convection heat transfer 

between the two operation modes, which can be expressed by a 𝛿𝑇-dependent, overall heat transfer 

coefficient 𝑈(𝛿𝛵). Accounting that heat conduction and convection act in series along y axis, the 

overall heat transfer coefficient 𝑈 reads 

1

𝑈(𝛿𝛵)𝑆
=

1

𝒽(𝛿𝛵)𝒮
+

𝑤0

𝐾𝑇𝒮
 

7.5 

 

 

Figure 7.10 Comparison of (a) the displacement δy, and (b) the average velocity 〈u〉 of the beam 

profile due to convection under fs and cw operation on sample 𝑆1 and d = 15 mm as a function of 

input power. The δy values are shown for two different times t1 and t2 after the opening of the 

shutter. The solid lines are linear fittings and the dashed lines in (a) show the average value of data 

taken for t1 at each case. The 〈u〉 values are calculated for time t2 after the opening of the shutter. 

 

where 𝒽(𝛿𝛵) denotes the convection heat transfer coefficient. We also scale the characteristic area 

𝒮~
𝑤0

𝑎0
, so that 

1

𝑈𝑤0
=

1

𝒽𝑤0
+

1

𝐾𝑇
. Equation 7.4 is rewritten as 
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〈𝑢〉 ≈
𝑎0𝑎𝑉𝑔𝑤0

8𝜇𝑈
𝑃𝑖𝑛 7.6 

Equation 7.6 shows that for (
𝑈

𝑎0
)
𝑐𝑤

> (
𝑈

𝑎0
)
𝑓𝑠

 the value of 〈𝑢〉 is reduced for the cw case as seen 

experimentally. Under an oversimplified approach of constant 𝑈 for both modes, we estimate 

1.14〈𝑢〉𝑐𝑤~〈𝑢〉𝑓𝑠 (linear fit data of Figure 7.10b). Accounting also for (𝑎0)𝑐𝑤~1.15(𝑎0)𝑓𝑠, we 

find through Equation 7.6 that (𝑈)𝑐𝑤~1.31(𝑈)𝑓𝑠, showing that the overall heat transfer coefficient 

in the fs case is significantly lower. Notably, for 𝑃𝑖𝑛 ≥ 80 𝑚𝑊, the 𝒽 convection coefficient in 

principle increases due to its dependence on local 𝛿𝛵 [301] , however, at a different rate between 

the two modes as shown in Figure 7.10. For 𝑃𝑖𝑛 < 80 𝑚𝑊, it is almost zero, so that 〈𝑢〉𝑐𝑤 ≈ 〈𝑢〉𝑓𝑠. 

Overall, strong thermal aberrations at increased powers, appear to be limited in the case of fs 

illumination, which is evident on (i) the analysis just described, (ii) the thermal blooming features 

shown in Figure 7.6, and (iii) the weaker stochastic motion of the beam (Supplemental Video). A 

possible explanation can be given by the fact that, under excitation by fs pulses, temperature rise 

is highly confined in the vicinity of the nanoparticles [48]. The temperature increase profile 

decreases rapidly in space away from the surface of the particle as ∝ 𝑟−3 (ideal case of point 

source), as opposed to the ∝ 𝑟−1 dependency for cw operation [48]. This is because in the fs case 

the deposited energy, absorbed by the plasmon mode after each pulse, decays exponentially in time 

during thermalization of the electrons with the phonon subsystem of the particle before it is 

transferred through the particle interface to the surrounding solvent. Accordingly, under cw 

excitation and at short time delays, temperature increase in the medium by heat conduction is less 

localized compared to the case of fs operation. Homogeneous temperature increase is established 

faster in the medium so that the effect induces convective currents and beam deflection at slightly 

shorter time delays (𝑡1) compared to fs operation at a wide range of powers (Figure 7.10a), which 

confirms that the effect cannot be attributed to linear absorption difference. Effectively, in the fs 

case, overall thermal resistance due to convective heat transfer is higher at increasing 𝑃𝑖𝑛, which 

affects the vertical deflection of the beam, break-up dynamics and thermal distortion (blooming). 
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7.6 Conclusion 

We have studied phenomenological self-trapping of high repetition rate fs laser pulses in plasmonic 

nanocolloids of varying plasmon resonance under typically reported external focusing conditions. 

The excitation regime resulted in cumulative effects, exhibiting a quasi-cw behaviour. 

Experimental observations of the far-field beam width and divergence indicated similarity for all 

samples up to a critical power. They further implied phenomenological self-trapping due to 

stationary, photo-absorption thermal defocusing of an externally focused beam, confirmed for both 

cw and fs excitation. A good agreement between numerical experiments and the experimental 

observations supported the foresaid model suggesting that the effect can be generally observed in 

any absorbing medium. 

An important element of the studied effect in a soft-matter system is the induction of convective 

currents that causes beam downward deflection in a horizontal illumination configuration. Under 

resonant fs and cw excitation of plasmonic colloids we observed that beam deflection was further 

accompanied by beam spatial mode break-up at increasing input powers, most likely due to the 

ellipticity of the beam. By analyzing the dynamics of the effect for both cases, we conclude that 

under fs excitation, convective heat transfer appears to be, relatively to the cw excitation, reduced 

in magnitude and decoupled in time from conductive heat transfer. This is presumably because fs 

illumination as opposed to cw, results typically in spatial temperature increase confinement near 

the particles. Effectively, delayed beam break-up and reduced beam axial asymmetry due to 

thermal blooming at increased power are observed. 

Finally, according to our analysis, we conclude that the (high) repetition rate of fs pulses in 

conjunction with tight focusing (high numerical aperture) constitute dominant parameters for 

alleviating thermal effects and promoting observation of nonlinear self-trapping induced by 

gradient optical forces in plasmonic nanocolloids. 
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CHAPTER 8 GENERAL DISCUSSION 

8.1 Some aspects of the critical power for self-focusing in the case of 

ultrashort pulses 

8.1.1 Chromatic dispersion 

In Chapter 5, the threshold power for self-focusing and filamentation was evaluated experimentally 

using the power limiting method in the case of optical transparency. Following that, an estimation 

of the nonlinear index of refraction 𝑛2 was deduced by use of Equation 5.1, which in fact is a 

steady-state regime result of the solution of the 2-D NLSE, meaning that the influence of chromatic 

dispersion is ignored in Equation 5.1. Therefore, it should be clarified that the estimation of 𝑛2 of 

a transparent material by the determination of the critical power in the filamentation regime (case 

of ultrashort pulses) requires caution.  

In Chapter 5, I have further used a result derived from the ABCD formalism that accounts for the 

influence of 𝑀2 propagation factor on the threshold power for self-focusing. Despite having been 

formulated within the aberration-free approximation, the latter result is presented as a simple 

factorization of the threshold power [250]. This is directly related to the fact that the influence of 

𝑀2 on the estimation of time-integrated quantities, such as the optical power of the beam, is 

accurately accounted for when 𝑀2 is multiplied with the optical wavelength in the propagation 

equation [260]. Thus, the 𝑀2 correction is applied without changing the physical meaning and 

mathematical derivation of the threshold power 𝑃𝑡ℎ
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 . Still, chromatic (normal) dispersion, is 

expected to further increase 𝑃𝑡ℎ
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (or 𝑃𝑡ℎ of any profile) in the case of ultrashort pulses.  

In practice, our experimental evaluation provides what Fibich refers to as an “upper bound” for 

optical collapse in the case of a Gaussian pulse considering a correction due to the 𝑀2 propagation 

factor, but also under the influence of chromatic dispersion. Let us define it as 𝑃𝑡ℎ,𝑒𝑥𝑝
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛. The 

relation between the threshold power and 𝑛2 through Equation 5.1 sets equivalently a lower bound 

for the evaluation of 𝑛2 since it appears that the steady state 𝑃𝑡ℎ
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 is somewhat overappreciated 

by equating it to what was measured, i.e., to 𝑃𝑡ℎ,𝑒𝑥𝑝
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛. This is because it should hold 𝑃𝑡ℎ

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 ≤

𝑃𝑡ℎ,𝑒𝑥𝑝
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, accounting for the influence of normal chromatic dispersion discussed earlier. To better 
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evaluate this experimental overestimation, one should in practice examine the influence of 

chromatic dispersion in conjunction with the applying external focusing conditions. The former 

can be examined briefly by comparison of the characteristic diffraction length 𝐿𝑑 and dispersion 

length 𝐿𝐷𝑆 (see Appendix B, Section B.2 and Table B.3 for definitions) by the parameter 𝛿 ≡

𝐿𝑑 𝐿𝐷𝑆⁄ . 

Based on numerical results presented by Luther et al. [302] and as stated in [40], when 𝛿 ≪ 1, 

Equation 5.1 provides a fair estimation of the critical power, even for the case of ultrashort pulses. 

To test further this hypothesis, I benchmarked the solution of Equation B.2 (Appendix B) for 𝐴 =

0 with the analytical approximation introduced by Luther et al. [302], assuming a collimated beam 

at the input (Figure 8.1). As a numerical experiment, the same model was also solved accounting 

for the initial focusing condition of the physical experiment (𝐹 =  0.36). The result (Figure 8.1) 

shows that the effect of dispersion is significantly weaker against combined diffraction and 

nonlinearity when the beam is focused by a lens at the input. Most likely this occurs because in the 

case of small normal dispersion, the various temporal cross sections of the beam collapse in 

singularity points 𝑍𝑐 that vary as a function of time 𝑡, forming a singularity curve 𝑍𝑐(𝑡) [64]. 

Therefore, under the influence of a lens, all singularity points of the same 𝑡 transform into a new 

singularity function 𝑍𝑐
(𝐹)

(𝑡) (for instance, within the aberration-free approximation, it should hold 

that 𝑍𝑐
(𝐹)

(𝑡)~𝑍𝑐(𝑡)𝐹 [𝑍𝑐(𝑡) + 𝐹]⁄  [64]) so that the singularity curve 𝑍𝑐(𝑡) changes substantially 

(becomes confined in space) and so do the collapse dynamics. Similar conclusions were drawn in 

[303] on the effects of external focusing and chromatic dispersion in the case of the critical power 

for optical collapse in the case of ultrashort pulses. Most importantly, Figure 8.1 shows that for the 

parameters used in the experiments of Chapter 5 (2δ~0.4), the value of the threshold power is at 

most 10% higher than the one evaluated by Equation 5.1, which remains well within the limits of 

the margin of error of 𝑛2 presented in Table 5.1. 
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Figure 8.1 Results of numerical simulations by solution of Equation B.2 (A = 0), (Appendix B). 

The black solid line shows the analytical approximation by Luther et al. [302]. Notably, the latter 

underestimates the threshold calculated numerically for a collimated beam (open and closed 

circles) as δ becomes large, which is also demonstrated by Luther et al. [302]. A linear correction 

by 3/4 (black dashed line) shows however a remarkable agreement with the numerical solution. 

Importantly, chromatic dispersion has a significantly weaker influence on the threshold power 

when external focusing is applied (open and closed diamonds), (F = 0.36), matching the 

experiment, as discussed in Appendix B). 

8.1.2 Absorption 

Chapter 6 dealt with the case of self-focusing in an absorbing medium (Au nanorod colloids). The 

examined plasmonic material constitutes a particular case; it exhibits saturation of linear absorption 

under intense pumping conditions accompanied by deformation effects near the optical power 

collapse region. Bypassing the physical picture of what is happening to the material itself and for 

the shake of simplifying the optical collapse condition (threshold power for self-focusing), I shall 

examine in this section what is happening to the propagating field. I focus on the case 2 of the 

experiments described in Chapter 6 (i.e., the case that the geometrical focus is located near the 

input face of the cell containing the samples), where the general problem of optical collapse of an 

externally focused beam can be reduced to that of a collimated beam and linear absorption (non-

saturable) with satisfactory accuracy. If additionally chromatic dispersion is ignored by virtue of 
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the focusing conditions discussed in the previous section, solution of the steady-state Schrodinger 

equation with linear damping can provide a fair approximation of the optical collapse threshold. 

An interesting approach has been introduced by Butylkin et al. [274], within the aberration-free 

approximation, to determine an analytical expression of the threshold intensity for self-focusing in 

the case of linear absorption. The reduced equations of the NLSE that represent the evolution of 

dimensionless beam width ℒ as a function of propagation z read 

ℒ𝑧𝑧 = (
1

𝐿𝑑
2 −

1

𝐿𝑆𝐹
2 𝑒−𝑧𝑎0)

1

ℒ3
. 8.1 

where 𝐿𝑆𝐹 is the characteristic self-focusing distance. The problem has been divided and studied 

into two regions, that of weak and strong absorption (𝐴 ≪ 1 and 𝐴 ≫ 1, respectively, 𝐴 as defined 

in Appendix B). In fact, in our case the weak absorption solution proves to be sufficient. A derived 

analytical expression provides an estimate of the threshold power for self-focusing in the presence 

of linear absorption and has been normalized over the critical power for self-focusing as 

(𝑃𝑡ℎ)
𝑎𝑏𝑠

𝑃𝑐𝑟
≈ 1 +

2𝐴2

3𝑙𝑛 [1 +
2
3 (

4
5
𝐴2)

2
3
]

. 
8.2 

Even though the aberration-free approximation typically leads to significant overestimation of the 

critical power for self-focusing, Equation 8.2 is written in a normalized form over some 𝑃𝑐𝑟. The 

failure of the aberration-free approximation to calculate exactly 𝑃𝑐𝑟 is that it considers the quantity 

𝑏 = (𝐿𝑑
−2 − 𝐿𝑆𝐹

−2) to be a constant, while in reality it decays as a function of 𝑧 because of power 

transfer during re-organization of the beam profile to the Townes functional [64]. Considering 

Equation 8.1 in the weak absorption regime, it holds that ℒ𝑧𝑧 ≈ [𝐿𝑑
−2 − 𝐿𝑆𝐹

−2(1 − 𝛼𝑧)]ℒ−3 =

−𝑏′(𝑧)𝐿−3, so the dynamics of optical collapse are governed by 𝑏𝑧
′ = −𝑎𝐿𝑆𝐹

−2 = −𝑄𝑎, where 𝑄 =

𝐿𝑆𝐹
−2 > 0 is constant. Asymptotic analysis of the reduced equations in the case of linear damping 

presented in [64] show that the dynamics of collapse are governed in fact by the ansatz 𝑏𝑧
′ =

−𝑄(𝑧)𝑎, where the 𝑄(𝑧) > 0 function reduces as 𝑧 → 𝑍𝑐, amounting for the power transfer from 

the collapsing core to the outer tail of the beam. The latter is not considered in the aberration-free 
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approximation employed by Butylkin et al. [274]. However, 𝑄 is independent of linear absorption 

𝑎 in 𝑏𝑧
′  for both cases. Thus, one could apply the threshold power determined experimentally in the 

absence of absorption (or the theoretical 𝑃𝑡ℎ
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 in the absence of absorption if chromatic 

dispersion is negligible) as the normalization parameter 𝑃𝑐𝑟 (which is in principle different than the 

theoretical overestimated expression of 𝑃𝑐𝑟 within the aberration-free approximation) expecting 

that this “correction” on Equation 8.2 to yield a fairly accurate evaluation of (𝑃𝑡ℎ)
𝑎𝑏𝑠.  

A comparison between the result of the numerical simulations and the “corrected” use of Equation 

8.2 is shown in Figure 8.2, which demonstrates a fair agreement between the two. Conclusively, 

the presented analysis suggests that Equation 8.2 can be used with appropriate caution as an 

analytical expression for a fair estimation of the threshold power for self-focusing by the power 

limiting method in the presence of “weak” absorption, provided that the critical power in the 

absence of absorption has first been evaluated experimentally and chromatic dispersion effects are 

subtle as imposed by the examined medium and the applied focusing conditions. 

 

Figure 8.2 The results of numerical simulations of Equation B.2 compared with the analytical 

approximation proposed by Butylkin et al. [274] (Equation 8.2). 

8.2 Considerations on steady-state self-channeling in plasmonic 

nano-colloids 

A major question raised in Chapter 7 is how, in a soft-matter system, self-channeling of laser light 

due to mass transport (scattering) can be experimentally realised as opposed to nonlinear thermal 

lensing in the presence of absorption. Generally, demonstrations of self-channeling (either due to 
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scattering or absorption) in the literature are based on the following experimental techniques: (i) 

imaging the side view of the scattered radiation by the particles along the formed, diffraction-free 

channeling effect, (ii) monitoring the output beam profile transformation at the output face of the 

cuvette or the far-field and (iii) monitoring the output power versus the input power.  

It is rather surprising that, in the literature, the dynamics of self-channeling are scarcely examined 

experimentally. In fact, according to the analysis presented in Appendix C the temporal evolution 

of the beam profile transformation should, in principle, differ significantly when governed by either 

mass transport or thermal effects (much slower in the first case). For instance, in reference [300], 

mass transport effects due to thermophoresis have been distinguished from thermal conduction 

with an all-optical method as a delayed response. A similar approach can be adopted for the case 

of the self-channeling problem described above.  

For instance, in the proposed model of Equation 4.31, it is suggested that supercritical self-focusing 

due to local concentration modulation occurs provided that particles have positive polarizability 

(in the case of negative polarizability, self-focusing nonlinearity becomes subcritical). Since 

positive polarizability results in trapping particles along the high-intensity core of the beam, it is 

accordingly thought that optical collapse will be prevented and balanced eventually by increasing 

local absorption, which in turn shall result in heating up the medium and establishing a negative 

thermal lens that defocuses the beam. Accordingly, this hypothesis can be verified by analyzing 

the dynamics of the output beam profile transformation, first, at early stages of self-action, i.e., for 

low input power and second, at increasing input power, i.e., when thermal distortion or 

displacement of the beam due to convective currents become observable. However, to my 

knowledge, the approach I just described has not been performed experimentally in the context of 

self-channeling in colloidal matter. 

Another aspect that appears to be problematic, is the way Equation 4.31 is implemented in the 

literature, and specifically, the applied initial conditions of the input field. Reportedly, most 

experimental demonstrations of self-guiding attributed to optical gradient forces in colloidal 

suspensions have been performed under conditions of external focusing by a positive lens (one 

exception is ref. [304], where an optical fiber was employed). A positive lens introduces an initial 

phase-front curvature of ~
𝜋

𝜆𝑅
𝑤0

2, which must be considered in the numerical model supporting the 
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experiment. The initial conditions imposed in numerical experiments for instance in  [176, 280, 

285, 287] suggest that the beam was initially collimated. Such assumption may lead to substantial 

misrepresentation of the physical picture; thus, one cannot expect that the experiment is accurately 

reproduced. For instance, modelling of the nonlinear self-collimation of laser beams due to the 

thermal lensing effect described in Section 4.6.3 necessitates application of appropriate external 

focusing condition. 

Having that much out of the way, and as a continuation of what has been discussed in Chapter 7, 

let us examine strategies toward realisation of self-channeling of laser light in a plasmonic nano-

colloid induced by optical forces. It is common practice in reported self-channeling experiments to 

use an applied 1/e2 beam waist larger than 10 μm.  In this context, a major obstacle against metallic 

nanoparticle trapping is beam bending away from the irradiation volume due to thermal heating 

effects, prohibiting the formation of sufficiently steep intensity gradients near the beam waist. 

Temperature gradients are developed because of optical absorption by the particles, locally heating 

the surrounding solvent within a much shorter timescale compared to the characteristic time 

required for mass transport. Hence, in practice, one might first consider that the SPR should be 

located adequately far from the applied optical wavelength to reduce the absorption cross-section 

of each particle. Nonetheless, as shown in Figure 7.9, even a local temperature increase by 3 K 

may have a significant impact on beam bending, as demonstrated also experimentally in Chapter 6 

by use of AuAg alloy nanoparticles of 20 nm radius and volumetric filling factor <10-5 

(concentration 𝜌 ≈ 3 × 1017𝑚3). 

A way that the physical picture can change rather drastically is the application of a more powerful 

lens to reduce the effective length of thermal diffusion and the corresponding characteristic time 

near the beam waist, so that, in the steady state, power dissipation as heat toward the heat bath of 

the surrounding solvent becomes comparable or higher than the energy storage in the irradiated 

volume and local temperature remains unchanged. However, accounting for a mean distance 

between particles 𝑝 ≈ 𝜌−
1

3 ≈  1.5 𝜇𝑚 (as applied in the previous example), such choice comes at 

the expense of the requirement of a higher particle concentration since the modulation of refractive 

index of the colloid exhibits saturation when the beam width approaches 𝑝 [304] . For instance, a 
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×10 concentration increase of the above value shall reduce 𝑝 close to the diffraction limit (at ~0.7 

μm) when 800 nm wavelength and NA = 0.6 are applied.  

In Chapter 7 I discussed how the choice of a high-repetition ultrashort pulsed laser source may also 

contribute to alleviating thermal effects by temporal confinement of energy deposition. Taking the 

idea presented in Figure C.5 of Appendix C a step further, let us ignore absorption-related effects 

and consider how mass transport compares to limitations imposed by Brownian motion of the 

particles and radiation pressure. In the Rayleigh regime 𝜆 ≫ 𝑟𝑝 and based on the same arguments 

and parameters presented in Appendix C, it can be shown that the velocities developed due to 

scattering force and gradient force scale as 𝑢𝑠𝑐𝑎𝑡 = 𝐷𝑚𝐹𝑠𝑐𝑎𝑡 𝑘𝐵𝑇⁄ =

14.2𝜋3𝑃𝑖𝑛𝜀𝑚𝑟𝑝
5 (𝑣𝑐𝜆4𝑤𝑓

2)⁄  (as presented in [58, 214]) and 𝑢𝑑
𝑚 = 𝑤𝑓 𝑡𝑑

𝑚⁄ = 𝑟𝑝
2𝑃𝑖𝑛 (3𝜋𝑣𝑐𝑤𝑓

3)⁄  

(from the analysis presented in Appendix C), respectively. Furthermore, in a stationary fluid 

medium, a strict criterion considers that displacement 𝑟 due to Brownian diffusion scales as 𝑡𝐵 =

𝑟𝑝
2 𝐷𝑚⁄  [305] so that the time averaged velocity due to Brownian motion scales as 𝑢𝐵 = 𝐷𝑚 𝑟𝑝⁄ . 

For instance, we can estimate the maximum beam waist above which velocity due to Brownian 

motion overcomes gradient forces, as 𝑤𝑓 ≲ √2𝑟𝑝
4𝑃𝑖𝑛 (𝑐𝑘𝐵𝑇)⁄

3
. According to this relation, if 

optical power of 1 W is delivered at the focus, one is hardly expected to trap a particle of 2𝑟𝑝  =

 40 𝑛𝑚 with a beam waist higher than 𝑤𝑓 ≈ 0.65 𝜇𝑚, a value much lower than what is usually 

employed in “self-trapping induced by gradient-forces” experiments. In truth, for the same optical 

power and by employing a beam width no more than 𝑤𝑓 ≈ 5.5 𝜇𝑚, nanoparticles of at least 2𝑟𝑝  =

 200 𝑛𝑚 are likely to respond to gradient forces, however, such particle sizes lie in the limits of 

the Rayleigh regime, so in this case the presented calculations are only applicable for wavelengths 

higher than 800 nm. 

Additionally, equating 𝑢𝑠𝑐𝑎𝑡 and 𝑢𝑑
𝑚 provides an estimate of the maximum beam waist 𝑤𝑓 ≲

𝒢 𝜆4 𝑟𝑝
3⁄  (where 𝒢 = (42.7𝜋4𝜀𝑚)−1), which can be applied to ensure that gradient forces dominate 

over scattering. Evidently, this condition necessitates the highest possible 𝜆 (scattering reduction) 

and the smallest possible particle size 𝑟𝑝 to maximize the applied beam waist, which contradicts 

the previous criterion related to Brownian motion and shifts the diffraction limit at larger values. 

One can easily verify for instance that for delivered optical power of 1 W at the focus and optical 
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wavelength of 1000 nm, nanoparticles of size 2𝑟𝑝 =  140 𝑛𝑚 are not likely to be trapped with a 

beam waist higher than 3.5 μm. Conclusively, considering all above estimations, the longest 

wavelength possible (as limited by increasing optical absorption in the solvent) in conjunction with 

a small beam waist (< 3-4 μm) and adequate particle concentration (𝜌 ≫ 𝑤𝑓
−3) of nanoparticles of 

diameter ~100-200 nm are prescribed for observation of self-trapping in plasmonic nanocolloids. 

Employing smaller nanoparticles, would typically require stronger external focusing, which might 

even approach the diffraction limit. In any case, the negative polarizability regime [176] seems 

accordingly preferable (as opposed to the positive one) since it leads to subcritical self-focusing, 

thus it is inherently stable. At such proximity to diffraction limits, realization of the proposed by 

Fardad et al. [39] positive polarizability scenario seems highly unlikely due to its supercritical 

nature. 

Another aspect I did not touch in Chapter 7 is the fact that the refractive index of water (the solvent 

of the colloid) exhibits a temperature dependence that changes its monotonicity below 0 K. In fact, 

the slope of the thermo-optic coefficient 𝑑𝑛 𝑑𝑇⁄  of water is almost 0 [306, 307] (local maximum 

of n(T)) for a range of temperatures between 3-5 K, i.e., within its liquid phase. Even within the 

range of 5-10 K, the absolute value of 𝑑𝑛 𝑑𝑇⁄  of water, despite being negative, is typically ~5-6 

times lower than the absolute value at the room temperature [306-308], which means that ~5-6 

times larger input power must be applied in experiments similar to those that correspond to Figure 

7.2, Figure 7.3 and Figure 7.4 to obtain the same effects. Thus, this observation provides possibly 

an interesting way to mitigate temperature rise-mediated refractive index modulation in aqueous 

plasmonic colloids when kept at low temperatures. 
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CHAPTER 9 CONCLUSION 

9.1 Review 

This thesis focused on the understanding of nonlinear propagation of femtosecond laser pulses in 

metallic nanoparticle colloids and its association in the development of related applications. An 

important first step toward this goal, was to organize existing knowledge on the origin of 

nonlinearities in plasmonic nanocomposites to clarify their temporal response, strength, and 

potential practical capabilities. Within the formalism of the effective medium approximation, and 

particularly in the femtosecond regime, metallic nanocomposites possess an ultrafast nonlinearity 

arising from the gained kinetic energy of a large and out-of-equilibrium electronic distribution 

generated near the surfaces of the nano-inclusions ~10 fs after pulse-medium interaction. This 

means that excited plasmons lose their coherence during the foresaid process. Effectively, observed 

nonlinearities under the inherently intense pumping conditions of femtosecond pulses lead to 

saturation effects due to the drastic modulation of the metal’s dielectric permittivity, undermining 

local-field enhancement effects. It is important to point out that the physical picture just described 

refers to a composite medium of effective properties formulated by homogenization theories and 

thus, is applicable to macroscopic electromagnetic field propagation. In mesoscopic or nanoscopic 

systems (below the diffraction limit), the potential of coherent nonlinear responses has been 

explored in the context of non-perturbative (low-intensity field) quantum-mechanical formalism. 

Returning to the effective-medium picture, under longer laser field-medium temporal interaction 

𝑡, another two important regimes can be distinguished: (i) 500 fs ≲  ≲ 10 ps: in this regime, 

nonlinearities are related to the thermalization of electrons with the lattice of the metallic nano-

inclusions (intrinsic) and (ii) 𝑡 ≳ 10 ps: diffusive nonlinearities (typically stronger) arise in the 

dielectric matrix (extrinsic) of the composite. 

The research presented in this thesis was divided into two distinct directions, based on the running 

operation of modern ultrafast laser systems: (i) the propagation of pure femtosecond, single pulse 

of high-energy (by use of a femtosecond amplifier) leading to the effect of femtosecond 

filamentation, and (ii) a quasi-static propagation regime due to accumulation of low energy, high-

repetition rate femtosecond laser pulses (by use of a mode-locked femtosecond oscillator). Within 
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the overall scope presented in Chapter 1 and the two distinct directions just mentioned, the 

following contributions were reported: 

(i) In Chapter 5, an optical power limiting technique was employed, for the first time, in the 

femtosecond filamentation regime, for the purpose of evaluating optical nonlinearities in 

transparent liquids. Comprehensive experimental demonstration of the technique in water and 

ethanol indicated the importance of the location of far-field apertured detection of the setup in the 

case of ultrashort laser pulses so that a standalone measurement can reliably yield quantitative 

information on the self-focusing nonlinearity and weigh the interplay between possible optical 

breakdown against filamentary propagation through a transparent material. A theoretical 

background was developed to interpret the response of the technique within the context of the 

theory of transformation of the ultrafast beam into a nonlinear conical wave upon optical collapse 

into a filament of light. 

In Chapter 6, the use of the power limiter apparatus in the femtosecond filamentation regime was 

further demonstrated in the more complex case of Au nanorod colloids (i.e., an optical medium 

that exhibits saturable nonlinearities as discussed through Chapter 1). Accordingly, the 

measurements were combined with optical transmittance characterization for the evaluation of the 

imaginary part of the nonlinearity, but also particle deformation effects were carefully examined. 

Detailed nonlinear propagation analysis in conjunction with all previous experimental evidence 

showed that the Kerr nonlinearity of gold nanorod colloids is strongly saturated near the power of 

optical collapse, while also particle deformation effects are observed. The measurements presented 

therein clearly indicate that the plasmon-mediated local fields are undermined by the ultrafast 

generation of non-thermal electrons, thus contributing to an insignificant increase of the Kerr 

nonlinearity of the host dielectric upon filamentation. Lastly, the combined work presented in 

Chapter 5 and Chapter 6 show that the power limiting method can be employed as an alternative 

direct characterization technique of ultrafast nonlinearities in a variety of transparent and 

absorptive media. It is therefore anticipated that these studies will generate interest for researchers 

working on the development of novel applications based on femtosecond filamentation or in 

general, on ultrafast, Kerr-type nonlinearities. 

(ii)  In Chapter 7, the use of high-repetition rate femtosecond laser pulses for the observation of 

self-channeling in various metallic nano-colloids was compared against cw illumination. This was 
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done by providing a detailed and broad description of the observed phenomenon, ranging from 

nonlinear sample characterization and nonlinear propagation analysis to theoretical analysis of both 

self-focusing and thermal conduction and convection effects. The findings indicated that (a) self-

channeling in plasmonic nanocolloids (under either cw or high-repetition rate fs operation) 

manifests itself principally due to absorption-induced nonlinear thermal lensing and self-

collimation of the externally focused beam into the examined media, and (b) the use of fs pulses 

appear to alleviate thermal distortion effects at high input powers.  

The findings presented in Chapter 7 lead to the following important implications: First, since it was 

demonstrated that nonlinear thermal lensing takes place even far from the plasmon resonance and 

for low absorption coefficients, the self-channeling effect reported often in the literature as an 

optical gradient-force-mediated nonlinear effect must be carefully examined experimentally, 

particularly in dynamic experiments, not only in the case of plasmonic nanocolloids but also for 

any colloidal system. Most likely, the beam waist, being reportedly >10 μm in diameter in relevant 

experiments, appears to undermine the possibility of spatial thermal confinement, thus hampering 

mass transport effects induced by gradient forces. Second, as shown in Chapter 7, the differences 

observed in the thermally distorted output profiles between the two operation modes point out 

significant temporal thermal confinement in the case of fs pulses as opposed to cw illumination. 

Although not having been demonstrated experimentally, this observation prompts to strong 

implications that the repetition rate of fs pulses is a powerful parameter toward alleviation of 

thermal effects and promotion of laser-induced mass transport in plasmonic nanocolloids, since the 

latter is physically a much slower process.  

9.2 Directions for future research 

The nonlinear propagation equation has been employed extensively throughout this thesis (solved 

in water and metallic nanocolloids), thus gaining insights on experimental observations within two 

main propagation regimes: single pulse or high-repetition rate pulses.  

In the first regime and in the case of aqueous colloidal gold nanorods, nonlinear propagation was 

mainly studied near the threshold of optical collapse, while the accompanied effects of femtosecond 

filamentation and supercontinuum generation were not covered in detail. Nonetheless, a synthesis 

of results found in the literature, observations made by practical experimentation (e.g., as shown 
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in Figure 4.24 and in ref. [309]) and measurements of the Kerr nonlinearity obtained by the power 

limiting method have led the author to draw several conclusions and recommendations with respect 

to filamentary propagation and supercontinuum generation in plasmonic nanocolloids, as follows:  

- No significant enhancement of the self-focusing nonlinearity has been measured or 

observed when metallic nanoparticles are dispersed in water at an optical wavelength of 

800 nm and pulsewidth of > 55 fs. The effect has been quantitatively evaluated for nearly 

resonant nanorods by the power limiting method. For non-resonant Au nanospheres and 

AuAg alloy nanospheres, the threshold power was evaluated qualitatively to be consistently 

above the one of the solvent (water). The corresponding generated supercontinua at the 

anti-Stokes wing do not differ substantially in spectral extend from the one of pure water 

and are principally attenuated in amplitude due to (modulated) scattering or absorption by 

the particles near the SPR frequencies.  These observations can be spectroscopically 

evaluated quantitatively by a similar approach to the one proposed in [51] for a variety of 

plasmonic nanoparticles and excitation regimes, for the purpose of studying SPR quenching 

and interband threshold shift effects [57, 233]. Systematic spectroscopic investigation of 

generated supercontinua both in the normal and anomalous dispersion regions of a host 

dielectric in conjunction with power limiting method measurements are recommended.  

- Laser filamentation in plasmonic nanocomposites by employing ultrashort pulses of 

pulsewidth shorter than plasmon decoherence and excitation of non-thermal electrons (< 

10 fs) has yet to be explored. Not only few-cycle fs pulses are faster than the reported 

response for thermo-modulation of the nanoparticle’s permittivity and saturation of field 

amplification, but also the threshold power for self-focusing in the host dielectric shall be 

substantially lower energetically in view of increased pulse peak power. Thus, the deposited 

energy on the system near the threshold power for self-focusing shall further reduce below 

thermodynamic transitions observed in the particles, favoring their integrity, as discussed 

in  Chapter 6. Nonetheless, one should be mindful of the applied field intensities driving 

the plasmon oscillation, likely exceeding the perturbative theoretical regime presented by 

the theory of nonlinear coherent response of small metallic nanospheres (Section 4.4.2).  

- The strongest in magnitude nonlinearities in plasmonic nanocomposites are slow and 

extrinsic, mainly arising from heating of the dielectric host. It would be interesting to 
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exploit this response and demonstrate “active” control of femtosecond filamentation in 

plasmonic nanoparticle-doped transparent materials. For instance, light-induced 

waveguides (refractive index gradients) can be generated by cw or short pulse illumination 

in plasmonic nanocomposites near the plasmon resonance. Coupling femtosecond filaments 

through these “waveguides” is expected to yield a powerful tool of supercontinuum control 

in bulk media. It would be further interesting to experiment with host dielectrics of low 

thermal expansion coefficients, thus of positive thermo-optic response (e.g., silica or water 

at low temperatures).  

Conclusively, such advances in supercontinuum control through femtosecond filamentation in bulk 

or colloidal media are highly desirable and expected to bring about advances in the fields of 

transient pump-probe spectroscopy [42], ultra-resolution microscopy and optical communications 

[310], and biophotonics [311]. 

In the second regime, that of high-repetition rate femtosecond pulses, strategies for the realisation 

of self-channeling induced by optical gradient forces have been thoroughly discussed in Chapter 7 

and Chapter 8. These effects hold potential for low-intensity remote communication, controlling 

light with light technologies and formation of optical waveguides in biological or plasmonic soft-

matter. Another possibility to be explored is that of self-channeling through thermophoresis, as for 

example discussed in [281]. Toward this objective, it is required that plasmonic nanostructures of 

negative Soret coefficient are engineered (i.e., by surface functionalization or by shell-structured 

fabrication in a dielectric coating) and tested. Importantly, self-trapping through thermophoresis is 

most likely to occur in a vertical illumination setup since parasitic induction of convective currents 

in a soft matter system is otherwise unavoidable. 
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APPENDIX A   MEASURED NONLINEAR PROPERTIES OF PLASMONIC NANOCOMPOSITES 

(LITERATURE DATA) 

Table A.1 Measured nonlinear optical properties of plasmonic nanocomposites that exhibit reverse saturable absorption. 

Symbols/Abbreviations; tp: pulsewidth, 𝜆 : wavelength, a0 : linear absorption coefficient, w0 : beam waist, Fin : input fluence, Ein : input 

pulse energy, I : input intensity, Is :saturation intensity, β: nonlinear absorption coefficient, NC: nanocubes, NO: nanooctahedra, NP: 

nanoparticles, rGO: reduced graphene oxide, NR: nanorods, fG: functionalized graphene. a Length × Width, bAspect ratio. 

Ref. 

Laser characteristics Sample characteristics Reverse saturable absorption onset conditions Nonlinear properties 

tp Rep. rate λ Material Type Avg. NP size SPR Thick-ness 𝑎0 (cm-1) 𝑤0 (μm) Fin (mJ/cm2) Ein (μJ) I (GW/cm2) Is (GW/cm2) β (cm/GW) 

β/αο 

(cm2

/GW

) 

[312] 
60 fs 1 KHz 800 nm Au NC Colloid 65 nm 530 nm 1 mm 35 40 9.9 0.05 33 12.8 0.161 

0.04

6 

60 fs 1 KHz 800 nm Au NO Colloid 49 nm 550 nm  10 40 9.9 0.05 33 25.3 0.244 
0.02

4 

[91] 100 fs 1 kHz 800 nm Au-NP/rGO 2h Thin Film 17.7 nm 530 nm 100 nm 6600 35 1.3 0.05 26 8.6 0.0057 0.86 

[17] 
130 fs 1 kHz 725 nm AuNRs Colloid (36.1×10.7) nma 845 nm 1 mm 3.57 35 8.1 0.31 124 50 0.0012 

0.00

3 

[32] 
150 fs 1 kHz 808 nm Hollow AgNC Colloid 33 nm 510 nm  0.62   0.5 63 30 0.0045 

0.00

7 

 
150 fs 1 kHz 808 nm Hollow AgNC Colloid 45 nm 550 nm  1.79   1.0 126 70 0.0065 

0.00

4 

 
150 fs 1 kHz 808 nm Hollow AgNC Colloid 70 nm 590 nm  1.84   1.5 189 80 0.0075 

0.00

4 

 
150 fs 1 kHz 808 nm Hollow AgNC Colloid 100 nm 630 nm  2.07   2.0 252 90 0.0053 

0.00

3 

[164] 220 fs 1kHz 800 nm AuNRs Colloid 3.8b 800 nm 1 mm 3.57 10 0.76 0.003 7 0.5   

[163] 25 ps 250 Hz 532 nm AgNP Thin Film 17 nm 430 nm 47 nm 5000 40 35 1.75 2.8 0.375   

[33] 40 ps  1060 nm AgNP-NaCMC/Quartz Thin Film 13 nm 525 nm 200 nm 1250 47 389 27.1 19.44 2 2600 2.1 

[197] 40 ps 10 Hz 532 nm AgNP/fG Colloid 5 nm 450 nm 1 mm  24 260 4.7 13 3.7 812  

40 ps 10 Hz 1064 nm AgNP/fG Colloid 5 nm 450 nm 1 mm  46 480 32 24 2.3 600  

[313] 4 ns 2 Hz 532 nm PdNPs Colloid 2-6 nm 440 nm  5.60    0.08 0.033 10 1.79 

[207] 4 ns 1-10 Hz 532 nm Au0.6Ag0.4 Colloid 15-20 nm 475 nm 1 mm 2.10  650 6.5 0.08 0.061   

 4 ns 1-10 Hz 532 nm Au0.2Ag0.8 Colloid 15-20 nm 420 nm 1 mm 0.4  1750 18 0.22 0.16   

[205] 5 ns 1-10 Hz 532 nm AuNP Colloid 4 nm 525 nm 1 mm 7.5 13 1000 5.3 0.4 0.2 15 2 

[191] 6 ns 10 Hz 550 nm AuTNP Colloid (120 × 10) nma 530 nm/700 nm 2 mm 2.5 30 21600 600 7.2 0.62 2.30 0.92 

 6 ns 10 Hz 600 nm AuTNP Colloid (120 × 10) nma 530 nm/700 nm 2 mm 1.4 30 21600 600 7.2 0.71 2.60 1.86 

 6 ns 10 Hz 650 nm AuTNP Colloid (120 × 10) nma 530 nm/700 nm 2 mm 2.5 30 21600 600 7.2 0.65 1.60 0.64 

 6 ns 10 Hz 700 nm AuTNP Colloid (120 × 10) nma 530 nm/700 nm 2 mm 3.1 30 21600 600 7.2 0.7 1.50 0.48 

[314] 7 ns  532 nm AuAgPVA Thin film 10 nm 450 nm 100 um 39.1   30  0.08 7000 179 

[190] 8 ns 10 Hz 532 nm AuNPs Thin film 5-20 nm 534 nm 24 um 203.3 40 800 40 0.19 0.0063   

[162] 8 ns 1 Hz 532 nm Pt-PVP Colloid 2 nm Flat  1.43 55 96 9.2 0.024 0.011 32 22.4 

[206] 8 ns  480 nm AgNP Colloid 2.4 nm 450 nm  5.8 18 540 5.5 0.14 0.001 600 103 

8 ns  480 nm AgNP Colloid 2.8 nm 475 nm  8.9 18 120 1.2 0.029 0.007 150 16.9 
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Table A.2 Measured nonlinear optical properties of plasmonic nanocomposites that exhibit optical limiting behaviour. 

Symbols/Abbreviations; tp: pulsewidth, 𝜆 : wavelength, a0 : linear absorption coefficient, w0 : beam waist, Fin : input fluence, Ein : input 

pulse energy, IOL :optical limiting intensity, β: nonlinear absorption coefficient, NShells: nanoshells, NP: nanoparticles, rGO: reduced 

graphene, BGO: Bismuth Germanate, ND: decorated nanodiamonds, GO: graphene oxide, DMSO: dimethyl sulphoxide. 

Ref. 

Laser Characteristics Material Characteristics Optical limiting threshold conditions Nonlinear properties 

tp Rep. rate λ Material Type Avg. NP size SPR Thick-ness 
𝑎0  

(cm-1) 
𝑤0 (μm) Fin (mJ/cm2) Ein (μJ) IOL (GW/cm2) β (cm/GW) 

β/αο 

(cm2/GW) 

[18] 
90 fs 1 kHz 796 nm AuNShells Colloid 120 nm SiO2 + 15 nm Au shell 785 nm 1 mm 6 42 2.7 0.15 60 0.048 0.008 

[196] 150 fs 1 kHz 800 nm AgNPs/rGO Colloid 2.5 nm 420 nm 1 mm 3.57  3.4   0.2 0.06 

[315] 340 fs 100 Hz 515 nm Ag in BGO Thin Film 10.7 nm 466 nm 100 nm 5000 15 7.1 0.05 42 3.1 0.001 

[316] 6 ps 1 Hz 527 nm Au3Ag6A Thin film 14.3 nm 475 nm 2.7 um 26000 20 4.8 0.06 1.6 13000 0.5 

[317] 35 ps  532 nm ND/Au(10%) 0.51 mg/ml Colloid 8-25 nm  1 mm 2.50 18 658 6.7  4.2 1.7 

[205] 5 ns  532 nm Au25 Cluster Colloid <1 nm  1 mm 7.50 13 1000 5.3 0.4 20 2.7 

 5 ns  532 nm Au38 Cluster Colloid <1 nm  1 mm 7.50 13 1000 5.3 0.4 35 4.7 

 5 ns  532 nm Au144 Cluster Colloid 1 nm  1 mm 7.50 13 1000 5.3 0.4 75 10 

[90] 5 ns 10 Hz 532 nm AuNP-GO Colloid 25 nm 231 nm 1 mm 3.00 17 400 3.6 0.16 100 33.3 

 5 ns 10 Hz 532 nm AuNP-rGO(400) Colloid 25 nm  1 mm 3.00 17 400 3.6 0.16 122 40.7 

 5 ns 10 Hz 532 nm AuNP-GO(1000) Colloid 25 nm  1 mm 3.00 17 400 3.6 0.16 64 21.3 

 5 ns 10 Hz 1064 nm AuNP-GO Colloid 25 nm 231 nm 1 mm 1.50 32 875 28 0.35 59 39.3 

 5 ns 10 Hz 1064 nm AuNP-rGO(400) Colloid 25 nm  1 mm 1.50 32 875 28 0.35 40 26.7 

 5 ns 10 Hz 1064 nm AuNP-GO(1000) Colloid 25 nm  1 mm 1.50 32 875 28 0.35 34 22.7 

[318] 6 ns 10 Hz 532 nm AlNP Colloid (C6H5Cl) 23 nm 238 nm 1 mm 3.57 25 410 8 0.14 80.7 22.6 

 6 ns 10 Hz 532 nm AlNP Colloid (CHCl3) 12 nm 244 nm 1 mm 3.57 25 460 9 0.15 82.9 23.2 

 6 ns 10 Hz 532 nm AlNP Colloid (C6H5CH3) 31 nm 285 nm 1 mm 3.57 25 680 13 0.23 38.9 10.9 

 6 ns 10 Hz 532 nm AlNP Colloid (C6H6) 59 nm 279 nm 1 mm 3.57 25 1090 21 0.36 119.7 33.5 

 6 ns 10 Hz 532 nm AlNP Colloid (CCl4) 62 nm 261 nm 1 mm 3.57 25 1380 27 0.46 0.82 0.23 

[319] 7 ns 10 Hz 532 nm Au Colloid (Phenothiazine) 27.8 nm 530 nm 1 mm 2.23 18 2870 28 0.82 17.4 7.8 

[320] 8 ns 10 Hz 460 nm Ag In Glass Host 3 nm 460 nm  4.00 16 6400 5.2 0.16 180 45 

 8 ns 10 Hz 560 nm Ag In Glass Host 3 nm 460 nm  2.70 16 6400 5.2 0.16 140 51.9 

 8 ns 10 Hz 660 nm Ag In Glass Host 3 nm 460 nm  2.00 16 6400 5.2 0.16 110 55 

[206] 8 ns  480 nm Ag Colloid 1.2 nm  1 mm 3.20 18 540 5.5 0.14 50 15.6 

[321] 10 ns  532 nm Ag3Au1 in DMSO Colloid 50 nm 450 nm  3.47  310   214 61.7 

 10 ns  532 nm Ag1Au3 in DMSO Colloid 50 nm 500 nm 2 mm 3.47  280   260 74.9 
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Table A.3 Measured nonlinear optical properties of plasmonic nanocomposites that exhibit saturable absorption. Symbols/Abbreviations; 

tp: pulsewidth, 𝜆 : wavelength, a0 : linear absorption coefficient, w0 : beam waist, Fin : input fluence, Ein : input pulse energy, Is :saturation 

intensity, β: nonlinear absorption coefficient. n2: nonlinear refractive index, NR: nanorods, NStars: nanostars, fG: functionalized 

graphene, NTP: nanotriangle prisms. a Length × Width 

Ref 

Laser characteristics Sample characteristics Saturated absorption onset conditions Nonlinear properties 

tp Rep. rate λ Material Type Avg. NP size SPR Thick-ness 
𝑎0  

(cm-1) 
𝑤0 (μm) Fin (mJ/cm2) Ein (μJ) Is (GW/cm2) β (cm/GW) n2 (cm2/GW) |

𝑛2𝐼𝑠

𝑎0𝜆
| 

[18] 90 fs 1 kHz 796 nm AuNR Colloid 41 × 10 nma 800 nm 1 mm 6.45 42 1.0 0.05 21 -0.307   

 90 fs 1 kHz 796 nm AuNStars Colloid 50 nm 800 nm 1 mm 5.53 42 1.8 0.10 40 -0.14   

[17] 130 fs 1 kHz 850 nm AuNR Colloid 36.1x10.7 nma 845 nm 1 mm 3.60 35 0.5 0.02 8 -0.023   

[322] 340 fs 100 Hz 515 nm Ag Thin film  505 nm 150 nm  15 <1.4 <0.01 <8.3 -360 0.002  

[223] 340 fs 100 Hz 515 nm Au Thin film 2.7 nm 561 nm 70 nm  15 <4.2 <0.03 <25 -190   

[194]  340 fs 100 Hz 1030 nm Ag2S@Ag-fG Thin film 35-55 nm    30 0.2 0.006 1.3 -100000   

[323] 20 ps 1 kHz 532 nm Ag Thin film 2.18 nm 500 nm 65 nm 1000 22.5 151 0.24 1.5 -69000 -0.71 0.20 

 20 ps 1 kHz 532 nm Zn-Ag Thin film 5,25 nm 500 nm 35 nm 234000 22.5 207 0.33 2.1 -11000 -0.7 0.11 

[324] 20 ps 10kHz 532 nm Zn-Au Thin film 7.27 nm 600 nm 35 nm 231000 22.5 673 1.07 6.7 -360   

[325] 26 ps 1-10 Hz 532 nm Au:Al2O3 Thin film 5.1 nm 564 nm 140 nm 957 32 13 0.042 0.1 -8750 0.11 0.21 

 26 ps 1-10 Hz 532 nm Au:Al2O3 Thin film 13.4 nm 564 nm 140 nm 1284 32 26 0.084 0.2 -22300 0.11 0.40 

 26 ps 1-10 Hz 532 nm Au:Al2O3 Thin film 14.2 nm 564 nm 140 nm 1291 32 26 0.084 0.2 -23400 0.10 0.38 

[197] 40 ps 10 Hz 532 nm AgNP/fG Colloid 5 nm 450 nm 1 mm 3.04 24 740 1.34 3.7    

 40 ps 10 Hz 1024 nm AgNP/fG Colloid 5 nm 450 nm 1 mm 1.74 46 460 3.06 2.3    

[207] 4 ns 1-10 Hz 532 nm Au Colloid 15-20 nm 520 nm 1 mm 1.8  1800 18.5 0.23 -17.6 -3.0×10-4 0.72 

 4 ns 1-10 Hz 532 nm Au0.5Ag0.5 Colloid 15-20 nm 460 nm 1 mm 0.9  800 8 0.1 -3.4 -1.4×10-4 0.29 

 4 ns 1-10 Hz 532 nm Ag Colloid 30-40 nm 420 nm 1 mm 0.04  1450 15 0.17 -2 -2.6×10-5 3.30 

[191] 6 ns 10 Hz 550 nm AuNTP Colloid 120 × 10 nma 530&700 nm 2 mm 2.50 30 4500 12.7 0.15    

 6 ns 10 Hz 600 nm AuNTP Colloid 120 × 10 nma 530&700 nm 2 mm 1.40 30 4200 11.9 0.14    

 6 ns 10 Hz 650 nm AuNTP Colloid 120 × 10 nma 530&700 nm 2 mm 2.50 30 5700 16.1 0.19    

 6 ns 10 Hz 700 nm AuNTP Colloid 120 × 10 nma 530&700 nm 2 mm 3.10 30 7200 20.4 0.24    

[326] 7 ns 10 Hz 532 nm Ag at Al2O3 Thin film 3.1 nm  117 nm 80000    0.16 -1300000 7.6 0.29 

 7 ns 10 Hz 532 nm Ag at ZnO Thin film 2.6 nm  141 nm 80000    1.5 -120000 3.0 1.06 

[327] 10 ns 300 Hz 532 nm AuAg Colloid  400&490 nm 1 mm 3 65 900 119 0.18 26.5 -8.1×10-4 0.92 
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APPENDIX B   FEMTOSECOND NEARLY RESONANT SELF-FOCUSING 

IN GOLD NANOROD COLLOIDS-SUPLEMENTAL DOCUMENT 

B.1 Analysis of optical transmittance measurements and evaluation of 

nanorod reshaping.  

Table B.1 Analysis of the results obtained by theoretical fitting of Equation 6.1 to the optical 

transmittance measurements. 

Sample 𝑇𝜆,0𝑇0   O.D. 𝑎0 (m-1) Concentration (L-1) 𝑇𝜆,𝑛𝑠  (𝑂. 𝐷. )𝑛𝑠  𝑎𝑛𝑠 (m-1) 

C1 0.87  0.14 70 6.0×1014 0.992 0.008 4.2 
C3 0.69  0.37 186 1.6×1015 0.988 0.012 6.0 
C5 0.48  0.73 367 3.2×1015 0.970 0.030 15.1 
C9 0.30  1.20 602 5.2×1015 0.962 0.039 19.4 

C13 0.19  1.66 830 7.2×1015 0.944 0.057 28.7 
C19 0.08  2.53 1260 1.1×1016 0.903 0.103 51.3 

 

Table B.2 Calculated values of energy absorbed per nanorod during the experiments of low and 

high intensity optical transmittance. a Estimated at input pulse power of ~1MW, i.e. approximately 

at the onset of saturation. b Estimated at input pulse power of ~12 MW, i.e., at the maximum applied 

input power in these experiments. c Calculated by accounting that the absorption of the samples is 

fully saturated, and it is governed by the value ans. 
d Calculated by considering that no saturation 

occurs in the samples and that the absorption is governed by the initial (linear) absorption 

coefficient a0. 

Low intensity measurements 
Beam radius (μm) Optical length (mm) Irradiation volume (L) Energy deposition a (nJ) 

55 2 1.9×10-8 89 

Sample Number of NR in Ir. 
volume 

Energy absorbed (nJ) Energy absorbed/NR (fJ) 

C1 1.2×107 12 1.0 
C3 3.1×107 28 0.9 
C5 6.0×107 46 0.8 
C9 9.9×107 62 0.6 

C13 1.4×108 72 0.5 
C19 2.1×108 82 0.4 

High intensity measurements 

Beam radius (μm) Optical length (mm) Irradiation volume (L) Energy deposition b (μJ) 
30 2 5.7×10-9 1.1 

Sample Number of NR 
in Ir. volume 

Energy 
absorbed c (nJ) 

Energy 
absorbed/NR c 

(fJ) 

Energy 
absorbed d (nJ) 

Energy  
absorbed/ NR d 

(fJ) 

C1 3.4×106 9 2.6 138 41 
C3 9.1×106 13 1.4 330 36 
C5 1.8×107 32 1.8 554 31 
C9 3.0×107 41 1.4 746 25 

C13 4.1×107 59 1.5 863 21 
C19 6.2×107 104 1.7 980 16 
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Figure B.1 Goodness of fit evaluation of saturable absorption models a(I) ∝ (1 + I/Isδ)-1 (red solid 

lines), a(I) ∝ (1 + I/Isδ)-1/2 (green dashed lines) and a(I) ∝ [1 + (I/Isδ)1/2]-1 (blue solid lines) (a) 

low intensity measurements and (b) high intensity measurements data, as presented in Figure 6.5 

of the Chapter 6/main manuscript. 

 

We have performed an analysis on the goodness of fit of Equation 6.2 to the results of Figure 6.5 

presented in section 6.5.3 of the Chapter 6/main text. Two additional models of saturable 

absorption 𝑎(𝐼) cited in the literature were tested, namely, 𝑎(𝐼) ∝ (1 + 𝐼 𝐼𝑠
𝛿⁄ )

−1/2
[19] and 𝑎(𝐼) ∝

(1 + √𝐼 𝐼𝑠
𝛿⁄ )

−1

[17, 278] . Each of the tested models was plugged in the propagation equation 
𝑑𝐼

𝑑𝑧
=

−𝑎(𝐼)𝐼 and solved numerically to produce the fits presented in Figure B.1 by using values of Table 

B.1. In the low intensity results [Figure B.1(a)], sum of squares estimations for the value 𝐼𝑠
𝛿 =

25 𝐺𝑊 𝑐𝑚2⁄  indicated a better goodness of fit (minimum sum of squares) for the model of 

Equation 6.1 compared to the other two models for the samples C1, C3 and C5, and comparable 

goodness of fit between Equation 6.1 model and the model 𝑎(𝐼) ∝ (1 + 𝐼 𝐼𝑠
𝛿⁄ )

−1/2
 for the rest of 

the samples. Importantly, in the high intensity measurements, the tested models 𝑎(𝐼) ∝

(1 + 𝐼 𝐼𝑠
𝛿⁄ )

−1/2
 and 𝑎(𝐼) ∝ (1 + √𝐼 𝐼𝑠

𝛿⁄ )

−1

 deviated significantly from the experimental data and 

only the model of Equation 6.1 provided a satisfactory fit. Despite the implications of a synergistic 
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effect between saturation of absorption and particle deformation within the irradiation volume (see 

discussion in section 6.6.1 of the Chapter 6/main text), the model of Equation 6.1 still provides a 

satisfactory fit to model nonlinear losses and allow numerical evaluation of the threshold for self-

focusing, as presented in the following section. 

B.2 Theoretical model description 

To determine the threshold power for self-focusing in a medium that exhibits saturable absorption 

(in our case the gold nanorod colloids), it suffices to restrict ourselves to the damped nonlinear 

Schrodinger equation (NLSE) [64] within the Slowly Varying Envelope Approximation (SVEA) 

[63], which considers dispersion at the lowest order (second). It has been illustrated in [245] that 

chromatic dispersion is not the mechanism that arrests the collapse in most Kerr media of small 

dispersion, it rather introduces a shift on the steady-state critical power [303]. The model does not 

include terms relevant to the arrest of the collapse (multiphoton nonlinear absorption and plasma 

formation) and to post-collapse dynamics (shock terms), and it reads: 

2𝑖𝑘
𝜕ℰ

𝜕𝑧
+ ∇𝑇

2ℰ − 𝑘𝑘0
(2) 𝜕

2ℰ

𝜕𝑡2
+ 2𝑘2

𝑛2

𝑛0

|ℰ|2ℰ − 𝑖𝑘𝑎(𝐼)ℰ = 0 B.1 

where ℰ is the complex amplitude of the electric field, 𝑛0 is the refractive index of the medium, 

𝑘 = 𝑘0𝜆0 = 2𝜋𝑛0/𝜆0 is the medium wavenumber, where 𝜆0 is the central laser wavelength, 𝑧 

defines the propagation coordinate, 𝑎(𝐼) is the nonlinear absorption described by Equation 6.1, 

𝑘0
(2)

 is the second order dispersion of the medium and ∇𝑇
2  is the transverse Laplacian in cylindrical 

coordinates. Assuming a Gaussian beam, the initial ℰ profile reads 

 ℰ(𝑟, 0) = √
2𝑃𝑖𝑛

𝜋𝑤0
2 𝑒𝑥𝑝 (−

𝑟2

𝑤0
2 −

𝑡2

𝑡𝑝
2
− 𝑖

𝑘0𝑟
2

2𝑅
)  

where 𝑃𝑖𝑛  is the optical pulse power at the entrance of the cuvette, 𝑤0 is the beam radius, 𝑅 =

𝒹 − 𝑧𝑓
2 𝒹⁄  is the radius of curvature of the focused beam, of which the beam waist is formed at 

distance 𝒹 from the entrance window of the cuvette and 𝑧𝑓 is the experimentally evaluated Rayleigh 

length of the focused beam. 
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It is convenient to write Equation B.1 in a dimensionless form, in pursuance of a numerical 

determination of 𝑃𝑡ℎ 𝑃𝑐𝑟⁄ . We make the following substitutions: 

𝜏 →
𝑡

𝑡𝑝
, 𝓇 →

𝑟

𝑤0
, 𝜁 →

𝑧

4𝑧0
, 𝛿 →

2𝑧0𝑘0
(2)

𝑡𝑝
2 , ℯ →

ℰ

√
2𝑃𝑖𝑛

𝜋𝑤0
2

, 𝑠 →
𝐼𝑆
𝛿

(
2𝑃𝑐𝑟

𝜋𝑤0
2)

,

𝓅 → 7.58
𝑃𝑖𝑛

𝑃𝑐𝑟
, 𝐴 →

2𝑧0𝑎0

1 +
𝐼

𝐼𝑆
𝛿

=
𝐴0

1 +
|ℯ|2

𝑠/𝑃𝑖𝑛

 

Where 𝑤0 denotes the input beam radius, 𝑧0 = (𝑘0𝑛0𝑤0
2) 2⁄  is the corresponding Rayleigh length 

and 𝑃𝑐𝑟 =
3.79𝜆2

8𝜋𝑛0𝑛2
 is the steady-state critical power for self-focusing. The transformation results in  

𝑖𝜕𝜁𝑒 + ∇𝑇
2𝑒 − 𝛿𝜕𝜏𝜏𝑒 − 𝑖𝐴(|ℯ|2)ℯ + 𝓅|ℯ|2ℯ = 0 B.2 

Defining the dimensionless parameter 𝐹 ≡
𝑅

𝑧0
𝑛0, the initial beam profile is then given by 

ℯ(𝓇, 𝜏, 0) = exp (−𝓇2 − 𝜏2 − 𝑖
𝓇2

𝐹
) B.3 

Accounting for the values 𝐹 ≈ 0.36 and 𝑠 ≈ 0.34, which correspond to our experimental setup and 

observations in case I, we conducted extensive numerical simulations of Equation B.2 with the 𝑛2 

of water determined experimentally (Table B.3) [239]. These numerical experiments show that, as 

the peak input power is increased, a 𝑃𝑡ℎ is reached where self-focusing dominates diffraction, 

chromatic dispersion and absorption, and the solution blows up (we follow the criterion described 

in [68]). Accordingly, we can determine the ratio 𝑃𝑡ℎ/𝑃𝑐𝑟 as a function of the normalized linear 

absorption 𝛢0 ≡ 2𝑧0𝑎0 for a direct comparison with the experimental results in case I. 

As discussed earlier, in case II, we follow a slightly different approach. The beam is considered 

nearly collimated so that we can drop the third (phase) term in the exponential of Equation B.3. 

Further, in Equation B.2 we define the substitution 𝐴 → 𝐴𝑛𝑠 ≡ 2𝑧0𝑎𝑛𝑠 and we conduct numerical 

experiments to determine 𝑃𝑡ℎ/𝑃𝑐𝑟 as a function of the normalized non-saturated absorption 𝐴𝑛𝑠 

much like in case (a). The parameters used for the numerical simulations are summarized in Table 

B.3. 
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Table B.3 Parameters used for the simulations, which match the experimental conditions. 

Parameter Symbol – Equation Value 

Central laser wavelength 𝜆0 = 800 nm 

Pulsewidth (FWHM) 𝑡𝐹𝑊𝐻𝑀 = 55 fs 

Pulsewidth (1/e2) 𝑡𝑝 = 𝑡𝐹𝑊𝐻𝑀 √2 𝑙𝑜𝑔(2)⁄  = 71 fs 

Second order dispersion (water) 𝑘0
(2)

 = 248 fs2/cm 

Dispersion length 𝐿𝐷𝑆 = 𝑡𝑝
2 𝑘0

(2)⁄  = 203 mm 

Beam propagation factor 𝑀2 = 1.4 

Linear refractive index (water) 𝑛0 = 1.33 

Nonlinear refractive index (water) 𝑛2 = 2.1×10-16 W/cm2 

Critical power (water) 𝑃𝑐𝑟 = 3.79 (𝑀2𝜆0)
2 (8𝜋𝑛0𝑛2)⁄  =6.8 MW 

Case I 

Input beam size 𝑤0 = 77 μm 

Rayleigh length of input beam 𝑧0 = 𝜋𝑛0𝑤0
2 (𝑀2𝜆0)⁄  = 22.1 mm 

Diffraction length 𝐿𝑑 = 2𝑧0 = 44.2 mm 

Parameter δ 𝛿 = 𝐿𝑑 𝐿𝐷𝑆⁄  = 0.22 

Beam waist distance 𝑓 = 6.65 mm 

Rayleigh length of focused beam 𝑧𝑓 = 2.23 mm 

Radius of curvature 𝑅 = 𝒹 −
𝑧𝑓

2

𝒹
 = 5.9 mm 

Parameter F 𝐹 = 𝑅𝑛0 𝑧0⁄  = 0.36 

Saturation intensity 𝐼𝑠
𝛿 = 25 GW/cm2 

Critical intensity 𝐼𝑐𝑟 = 2𝑃𝑐𝑟 (𝜋𝑤0
2)⁄  =73 GW/cm2 

Parameter s 𝑠 = 𝐼𝑠
𝛿 𝐼𝑐𝑟⁄  = 0.34 

Case II 

Input beam size 𝑤0 = 30 μm 

Rayleigh length of input beam 𝑧0 = 𝜋𝑛0𝑤0
2 (𝑀2𝜆0)⁄  =3.36 mm 

Diffraction length 𝐿𝑑 = 2𝑧0 = 6.72 mm 

Parameter δ 𝛿 = 𝐿𝑑 𝐿𝐷𝑆⁄  = 0.033 

 

Let us now discuss the effect of chromatic dispersion in Equation B.2, which is known to play a 

decisive role in 𝑃𝑐𝑟 of transparent materials within the regime of femtosecond filamentation [302, 

303]. We can calculate the dispersion length, defined as 𝐿𝐷𝑆 = 𝑡𝑝
2/𝑘0

(2)
, where 𝑘0

(2)
=

𝜕2𝑘

𝜕𝜔2 ≈

248 𝑓𝑠2/𝑐𝑚  for water at 𝜆0 = 800 𝑛𝑚 [245], and compare it with the diffraction length 𝐿𝑑 ≡

2𝑧0. Thus, for case I it holds that 𝐿𝑑/𝐿𝐷𝑆~10−1 and for case II 𝐿𝑑/𝐿𝐷𝑆~10−2, which shows that 

in both cases, 𝐿𝐷𝑆 is at least an order of magnitude larger than 𝐿𝑑. Even so, it is known that small 

chromatic dispersion does not have a negligible effect near the collapse region, as it enforces power 

transfer from the collapsing core to the outer tail of the beam at comparable rate with the spatial 

collapse (non-adiabatic self-focusing [64]). However, here we examine the relative ratio 𝑃𝑡ℎ/𝑃𝑐𝑟 

rather than the absolute value of 𝑃𝑡ℎ, thus, one should rather compare how chromatic dispersion of 

water is affected by the addition of the nano-inclusions as their concentration increases. The largest 

filling factor of nano-inclusions in our samples is ~10−5, therefore, chromatic dispersion increases 

only marginally compared to neat water for blue-shifted detuning from the plasmon resonance 

[328]. Besides, one would expect that in the normal dispersion regime, enhancement of chromatic 

dispersion would increase the absolute values of 𝑃𝑡ℎ relative to 𝑃𝑐𝑟, acting as an opposing 
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mechanism towards the collapse [303]. In effect, since we do not consider in our analysis the 

foresaid, marginal group velocity rise as the concentration of particles increases, the evaluation of 

possible enhancement of the nonlinear refraction becomes further conservative.  

B.3 Quantification of nonlinear enhancement 

The experimental results (with 10% relative uncertainty in 𝑃𝑐𝑟) were normalized over the critical 

power for self-focusing of the host material (water) 𝑃𝑐𝑟
ℎ ≈ 6.8 𝑀𝑊 and plotted in Figure B.2 versus 

the normalized (over the diffraction length 𝐿𝑑) linear and non-saturated absorbance 𝐴0 and 𝐴𝑛𝑠, 

corresponding to case I and II (Figure B.2a and Figure B.2b respectively). Along with the 

experimental results, we have also plotted the corresponding theoretical results of 𝑃𝑡ℎ 𝑃𝑐𝑟⁄  for each 

case. According to our definitions of 𝑃𝑐𝑟
ℎ , 𝑃𝑐𝑟

𝑒  and 𝑃𝑡ℎ
𝑒  it is expected that in the case that 𝑛2

𝑒 is 

enhanced compared to 𝑛2
ℎ, and by accounting that 𝑛2

ℎ 𝑛2
𝑒⁄ = 𝑃𝑐𝑟

𝑒 𝑃𝑐𝑟
ℎ⁄ , it should hold 𝑃𝑐𝑟

𝑒 < 𝑃𝑐𝑟
ℎ  and 

𝑃𝑡ℎ 𝑃𝑐𝑟 ≡⁄ 𝑃𝑡ℎ
𝑒 𝑃𝑐𝑟

𝑒⁄ > 𝑃𝑡ℎ
𝑒 𝑃𝑐

ℎ⁄ .  

The behaviour of the experimental 𝑃𝑡ℎ
𝑒 𝑃𝑐𝑟

ℎ⁄  as compared to the solution of our numerical model is 

similar for both cases I and II; the numerical results exhibit agreement with the three first 

experimental values of 𝑃𝑡ℎ
𝑒 𝑃𝑐𝑟

ℎ⁄  (low concentration samples), with a gradual monotonic discrepancy 

between the theoretical  𝑃𝑡ℎ 𝑃𝑐𝑟⁄  and the experimental 𝑃𝑡ℎ
𝑒 𝑃𝑐𝑟

ℎ⁄  for the rest of the samples as the 

concentration of nanorods increases, indicating that the critical power of the nanorod-effective 

medium 𝑃𝑐𝑟
𝑒  is reduced and the corresponding real part of the nonlinear refractive index 𝑛2

𝑒 is 

enhanced. 

We provide an evaluation of the complex, effective-medium nonlinear refractive index of the 

nanorod colloids 𝑛̃2
𝑒 = 𝑛2

𝑒 + 𝑖𝑎2
𝑒 (Table B.4 and Figure 6.7 of Chapter 6/main text). For the real 

part we use data presented in Figure B.2. Since it holds that 𝑃𝑡ℎ
𝑒 /𝑃𝑐𝑟

𝑒  is equal to the numerical 

prediction 𝑃𝑡ℎ 𝑃𝑐𝑟⁄ , we can evaluate the ratio 𝑃𝑐𝑟
𝑒 𝑃𝑐𝑟

ℎ⁄  by the mean experimental values of 𝑃𝑡ℎ
𝑒 𝑃𝑐𝑟

ℎ⁄  

as shown in Figure B.2. Accordingly, the enhanced 𝑛2
𝑒, reads 

𝑛2
𝑒 = 𝑛2

ℎ
𝑃𝑡ℎ 𝑃𝑐𝑟⁄

𝑃𝑡ℎ
𝑒 𝑃𝑐𝑟

ℎ⁄
 

For the imaginary part, we have used the relation 𝑎2
𝑒 ≅ −𝑎0 𝐼𝑠

𝛿⁄  [18]. 
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Figure B.2 Evaluation of the enhancement of the self-focusing nonlinearity of the gold nanorod 

colloids as their concentration (and absorption coefficient) increases. The normalized experimental 

results of Pth
e/Pcr

h are plotted for (a) case I and (b) case II, as a function of (a) the normalized linear 

absorption A0 and (b) the normalized non-saturated absorption Ans, which corresponds to the 

experimental conditions of the power limiting experiments for cases I and II, respectively. The 

corresponding numerical evaluations of Pth/Pcr are also plotted in each figure. The ratio Pcr
e/Pcr

h 

(blue circles), was estimated so that the ratio Pth
e/Pcr

e coincides with the theoretical curves of 

Pth/Pcr. The monotonic decrease of Pcr
e/Pcr

h as a function of increasing normalized absorption 

(higher nanorod concentration) is indicative of the enhancement of the self-focusing nonlinearity. 

 

Based on the values of 𝑃𝑐𝑟
𝑒 𝑃𝑐𝑟

ℎ⁄  shown in Figure B.2 and the experimentally determined value of 

𝑃𝑐𝑟
ℎ , we have calculated the absolute numerical fitting of 𝑃𝑡ℎ

𝑒 (=
𝑃𝑡ℎ

𝑃𝑐𝑟
𝑃𝑐𝑟

𝑒 ), shown in Figure 6.6 of 

the Chapter 6/main text, which now accounts for the gradual enhancement of 𝑛2
𝑒 as the 

concentration of particles (absorption) increases for Cases I and II, respectively (shown in Table 

B.4).  

More analytically, we have calculated (𝑃𝑐𝑟
𝑒 )𝐶𝑎𝑠𝑒 𝐼 = (

𝑃𝑐𝑟
𝑒

𝑃𝑐𝑟
ℎ )

𝐶𝑎𝑠𝑒 𝐼
× 𝑃𝑐𝑟

ℎ  and then estimated 

(𝑃𝑡ℎ
𝑒 )𝐶𝑎𝑠𝑒 𝐼 = (

𝑃𝑡ℎ

𝑃𝑐𝑟
)
𝐶𝑎𝑠𝑒 𝐼

× (𝑃𝑐𝑟
𝑒 )𝐶𝑎𝑠𝑒 𝐼. Subsequently, we have performed a least square 

polynomial regression on the data and plotted the result against the experimental data of case I as 

shown in Figure 6.6 (solid red line). We have followed the same procedure for case II to produce 

the solid black line shown in Figure 6.6. 

Finally, due to the observed differences in the values of 𝑛2
𝑒 between cases I and II (Table B.4), we 

have plotted in Figure 6.6 (dashed lines) the numerical fitting of 𝑃𝑡ℎ
𝑒  by solution of Equation B.1 
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for case I and case II, however, this time for accounting the 𝑛2
𝑒 obtained by case II and case I 

treatments, respectively.  

More analytically, instead of using the calculated value (𝑃𝑐𝑟
𝑒 )𝐶𝑎𝑠𝑒 𝐼 to estimate (𝑃𝑡ℎ

𝑒 )𝐶𝑎𝑠𝑒 𝐼, we used 

(𝑃𝑐𝑟
𝑒 )𝐶𝑎𝑠𝑒 𝐼 to estimate (𝑃𝑡ℎ

𝑒 )𝐶𝑎𝑠𝑒 𝐼𝐼 according to the following relation (𝑃𝑡ℎ
𝑒 )𝐶𝑎𝑠𝑒 𝐼𝐼 = (

𝑃𝑡ℎ

𝑃𝑐𝑟
)
𝐶𝑎𝑠𝑒 𝐼𝐼

×

(𝑃𝑐𝑟
𝑒 )𝐶𝑎𝑠𝑒 𝐼. Subsequently, we have performed, (as described above) a least square polynomial 

regression on the data and plotted the result against the experimental data of case II (instead of case 

I) as shown in Figure 6.6 (dashed red line). To produce the numerical fitting to the experimental 

results of case I in Figure 6.6 (dashed black line), we have calculated (𝑃𝑐𝑟
𝑒 )𝐶𝑎𝑠𝑒 𝐼𝐼 =

(
𝑃𝑐𝑟

𝑒

𝑃𝑐𝑟
ℎ )

𝐶𝑎𝑠𝑒 𝐼𝐼
× 𝑃𝑐𝑟

ℎ  and then estimated (𝑃𝑡ℎ
𝑒 )𝐶𝑎𝑠𝑒 𝐼 = (

𝑃𝑡ℎ

𝑃𝑐𝑟
)
𝐶𝑎𝑠𝑒 𝐼

× (𝑃𝑐𝑟
𝑒 )𝐶𝑎𝑠𝑒 𝐼𝐼, and we have finally 

performed a least square polynomial regression on the data and plotted the result against the 

experimental data of case I. 

Table B.4 Evaluation of the effective nonlinear refraction n2
e and absorption a2

e coefficients of the 

examined nanorod colloids of varying concentration. The table also shows the nonlinear refraction 

coefficient n2
h of the host material (water) evaluated by the power limiting method, the evaluated 

saturation intensity Is
δ evaluated by optical transmittance measurements, and the nonlinear 

absorption coefficient a2
e. 

Sample 𝑛2
ℎ  (×10-16 cm2/W) 

𝑛2
𝑒 (×10-16 cm2/W) 

𝐼𝑠
𝛿 (GW/ cm2) 𝑎2

𝑒 (×10-2 cm/GW) 
Case I Case II 

C0.5 

2.1±0.2 

2.1±0.2 2.1±0.2 

25±5 

-1.4±0.2 

C1 2.1±0.2 2.2±0.2 -2.8±0.4 

C3 2.2±0.2 2.1±0.2 -7.4±1.1 
C5 2.6±0.3 2.3±0.2 -14.7±1.8 

C9 2.9±0.3 2.4±0.2 -24.1±2.9 

C13 3.1±0.3 2.7±0.3 -33.2±4.1 
C19 3.5±0.4 3.1±0.3 -50.5±5.3 

Notably, a fair agreement is observed when the data of 𝑛2
𝑒 for case I are used for the numerical 

fitting to the experimental data of both case I and II, while when the data of 𝑛2
𝑒 for case II are used, 

a less fair agreement is observed when the numerical fitting is plotted against the experimental data 

of case I. For this reason, we have plotted the results of 𝑛2
𝑒 obtained from case I treatment in Figure 

6.7 of the Chapter 6/main text. 
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APPENDIX C   NONLINEAR THERMAL LENSING OF HIGH REPETITION 

RATE ULTRAFAST LASER LIGHT IN PLASMONIC NANO-COLLOIDS – 

SUPPLEMENTAL MATERIAL 

C.1 Methods 

C.1.1 Far-field beam width and divergence 

In this section, we describe the experimental setup for the evaluation of the far-field FWHM beam 

size and divergence due to phenomenological self-trapping in plasmonic nano-colloids, shown in 

Figure C.1(a). 

We used a Ti:Sapphire femtosecond oscillator, running at 76 MHz repetition rate. The system 

initially delivers >35 fs pulses at wavelength 𝜆 = 800 𝑛𝑚 (measured FWHM bandwidth of ~35 

nm). The maximum average output power is ~300 mW. The system can operate as a cw laser by 

adjustment of a pair of prisms that control the net group delay dispersion of the cavity, so that the 

phase will not be locked at an emission bandwidth around 800 nm. The transition of fs to cw 

operation was monitored on a spectrometer and a fast photodiode. At cw operation the system 

delivers approximately the same average power. 

 

Figure C.1 (a) The experimental setup for the evaluation of far-field beam size and divergence 

variation as a function of input power in plasmonic nanocolloids. (b) Beam width characterization 

in air near the geometrical focus of lens L for the setup shown in (a). (c) z-scan characterization 

setup for the examined plasmonic nanocolloids. (d) Beam width characterization in air near the 

geometrical focus of the z-scan setup shown in (c). 
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The input laser beam had an elliptical profile of Gaussian shape along the vertical Y and horizontal 

X axis that define a plane normal to the propagation direction Z. The initial 1/e2 beam radius along 

the Y axis was 𝑤0,𝑌~2.8 mm and along the X axis was 𝑤0,𝑋~2.4 mm, which yields a beam ellipticity 

𝑒𝑓 ≡
𝑤0,𝑌

𝑤0,𝑋
≈ 1.2. The beam passes through a variable attenuator and a shutter (the latter is used only 

for time-resolved experiments) and is focused by a positive lens L of focal distance 200 mm. The 

Rayleigh range 𝑧𝑅,𝑌, 𝑧𝑅,𝑋 of the focused beam in air was determined by a knife edge method, along 

Y and X axes [Figure C.1(b)]. We evaluated 𝑧𝑅,𝑌~1.4 mm, 𝑧𝑅,𝑋~1.8 mm. The propagation factor 

𝑀𝑌
2 ≈ 𝑀𝑋

2~1.08 was evaluated by fitting equations 

𝑤𝑌(𝑧) = 𝑤𝑓,𝑌
𝑖𝑑𝑒𝑎𝑙√𝑀𝑌

2 + 𝑀𝑌
2 (

𝑧 − 𝑧𝑓,𝑌

𝑛0𝑧𝑅,𝑌
)

2

 C.1a 

𝑤𝑋(𝑧) = 𝑤𝑓,𝑋
𝑖𝑑𝑒𝑎𝑙√𝑀𝑋

2 + 𝑀𝑋
2 (

𝑧 − 𝑧𝑓,𝑋

𝑛0𝑧𝑅,𝑋
)

2

 C.1b 

on the experimental data, where 𝑤𝑓,𝑌
𝑖𝑑𝑒𝑎𝑙 = √𝜆𝑧𝑅,𝑌/𝜋, 𝑤𝑓,𝛸

𝑖𝑑𝑒𝑎𝑙 = √𝜆𝑧𝑅,𝛸/𝜋 denote the ideal beam 

waist size, 𝑧𝑓,𝑌, 𝑧𝑓,𝑋 denote the Z coordinates that the beam waist is formed, and 𝑛0 is the refractive 

index of the medium. The fitting also provides the 1/e2 beam waist radii, 𝑤𝑓,𝑌~19 𝜇𝑚 and 

𝑤𝑓,𝑋~22 𝜇𝑚. Further, we evaluated the distance 𝒟 ≡ 𝑧𝑓,𝑋 − 𝑧𝑓,𝑌~0.7 𝑚𝑚. The geometrical focus 

is approximately at the same location as the beam waists (uncertainty of ~1𝑚𝑚). 

A 20 mm long cuvette was positioned on a motorized translation stage near the geometrical focus. 

The distance between the geometrical focus in air and the entrance window of the cuvette 𝒹 varied 

(between 5, 10 and 15 mm). The cuvette contained each of the four examined samples (described 

below). The emerged beam was imaged, as a function of input power, on a CMOS camera, 

positioned at a motorized stage and translated at two different positions, ~85 mm and ~105 mm 

apart from the geometrical focus. Neutral density filters, placed before the camera, were used to 

adjust the power density below saturation. The FWHM size of the beam profile 𝑤𝐹𝑊𝐻𝑀 in the far-

field was evaluated by processing the collected images. The divergence of the beam in the far-field 

was calculated as 𝜃(𝑟𝑎𝑑) = [𝑤𝐹𝑊𝐻𝑀(105𝑚𝑚) − 𝑤𝐹𝑊𝐻𝑀(85𝑚𝑚)]/[√2𝑙𝑛2 × 20𝑚𝑚], 

accounting for 𝑤𝐹𝑊𝐻𝑀 = 𝑤(1/𝑒2)√2𝑙𝑛2. In dynamic experiments, videos were recorded by the 
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camera at a framerate of ~45.06 𝑠−1 upon opening of a mechanical shutter (~1 ms) placed before 

lens L. 

C.1.2 Sample preparation and optical characterization 

We prepared four samples of different plasmonic nanocolloids: (S1) Au nanorods (purchased by 

Nanopartz) of 10 nm diameter and 38 nm length with a longitudinal peak around 770 nm. (S2) Au 

nanorods (purchased by Nanopartz) of 10 nm diameter and 50 nm length with a longitudinal peak 

around 900 nm. (S3) Au nanospheres (purchased by Nanopartz) of 50 nm diameter with a plasmon 

peak around 525 nm. (S4) AuAg alloy (15:85) (fabricated in our laboratory [235]) of 40 nm 

diameter with a plasmon peak around 450 nm. The concentration of samples S1, S2 and S3 were 

(according to specifications) 𝜌𝑆1 = 6.73 × 1011 𝑚𝑙−1, 𝜌𝑆2 = 4.93 × 1011 𝑚𝑙−1 and 𝜌𝑆3 =

3.97 × 1011 𝑚𝑙−1 respectively. The concentration of sample S4 was evaluated 𝜌𝑆4  ≈

3 × 1011 𝑚𝑙−1. 

We performed optical transmittance 𝑇𝜆 measurements for all samples, tested on the setup of Figure 

C.1(a), under fs operation. We have measured the input and output power after the ℎ = 20 𝑚𝑚 

long cuvette by subtracting the influence of the cuvette. The samples were positioned in the three 

foresaid examined 𝒹 positions so that the transmittance was evaluated each time as a function of 

power for each sample and 𝒹. No significant difference was observed at every 𝒹 for a specific 

sample, while the transmittance exhibited linear behaviour in the examined power range since the 

beam was always focused deep into the cuvette (>4 mm). The absorption coefficient 𝑎 of all 

samples was evaluated according to 𝑇𝜆 = −ln(𝑎0ℎ). 

Further, we implemented a standard z-scan setup to evaluate the thermo-optical coefficient 
𝑑𝑛

𝑑𝑇
 of 

the examined samples, under fs operation [Figure C.1(c)]. A 0.64 × telescope was used to reduce 

the beam size to 𝑤0,𝑌~1.8 mm and 𝑤0,𝑋~1.5 mm. A mechanical chopper set at a frequency of 20 

Hz and a duty cycle 𝑑𝑐~16% was placed on the focus of the telescope, resulting in laser excitation 

of 8 𝑚𝑠 every 50 𝑚𝑠 (sufficient time for heat conduction, see for example references [329, 330]). 

Right after the telescope, a 50:50 beam-splitter directed half of the beam’s energy onto a reference 

photodetector and half on a 200 mm focal length lens. We performed a knife edge characterization 

of the focused beam in air [the results are shown in Figure C.1(d)]. We evaluated (according to 

definitions shown above), 𝑧𝑅,𝑌~3.5 mm, 𝑧𝑅,𝑋~5.1 mm, 𝑤𝑓,𝑌~30 𝜇𝑚 and 𝑤𝑓,𝑋~36 𝜇𝑚 and 𝐷 +
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𝒟~0.7 𝑚𝑚. The samples were contained in an optical cuvette of length ℎ = 2 𝑚𝑚 so that ℎ <

𝑧𝑅,𝑌, 𝑧𝑅,𝑋. The latter was positioned in a motorized stage and scanned over a length of ~70 mm. An 

apertured photodetector was placed ~700 mm apart from the focal plane, yielding transmittance 

𝑇𝜆~0.01 of the central portion of the impinged beam profile. To better read the weak signal, the 

photodetector was connected to a lock-in amplifier, which was triggered by the chopper’s 

frequency. Accordingly, to determine 
𝑑𝑛

𝑑𝑇
 we have used the relations (for 1-photon absorption) [244, 

291]: 

𝛿𝛵𝜆,𝑝−𝑣 = 0.405|𝛿𝛷| C.2a 

𝑑𝑛

𝑑𝑇
=

𝜆𝛫𝛵

𝑎0𝑃𝑖𝑛𝑑𝑐ℎ𝑒𝑓𝑓
𝛿𝛷 C.2b 

 

Figure C.2 (a) Optical transmittance measurements on the examined plasmonic nanocolloids as a 

function of Pin and 𝒹 = 15 mm. The measurements were performed on the setup shown in Figure 

C.1(a). (b) z-scan signals on the examined plasmonic nanocolloids. Both optical transmittance and 

z-scan measurements shown here were performed by fs pulsed irradiation. 

 

where 𝛿𝛵𝜆,𝑝−𝑣 is the normalized recorded peak to valley transmittance difference, 𝛿𝛷 is the 

deduced nonlinear phase shift from Equation C.2a, 𝐾𝑇 is the thermal conductivity of water, 𝑎0 is 

the absorption coefficient of the samples, 𝑃𝑖𝑛 is the average optical power of the fs laser after the 

mechanical chopper and the effective length reads ℎ𝑒𝑓𝑓 = (1 − 𝑒−𝑎0ℎ)/𝑎0. Our measurements 
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confirm a negative thermal nonlinearity for all samples (even far from the resonance) and the value 

of 
𝑑𝑛

𝑑𝑇
 does not vary significantly since it is an intrinsic property. The volumetric filling factor 𝑓 of 

all samples is ≪ 1 so that 
𝑑𝑛

𝑑𝑇
 is governed by the solvent (water). All values are reported in Table 

7.1.  

C.1.3 Numerical simulations 

We compare our experimental observations with a thermal lensing model. We performed numerical 

simulations of the steady-state (with respect to heat conduction) nonlinear Schrodinger equation 

with a thermal nonlinearity and linear absorption. The model reads: 

2𝑖𝑘0𝑛0𝜕𝑧ℰ + 𝛻𝑇
2ℰ + 2𝑘0

2𝑛0
2
𝑑𝑛

𝑑𝑇
𝛿𝑇ℰ − 𝑖𝑘0𝑛0𝑎0ℰ = 0 C.3a 

−𝜅𝛻𝑇
2(𝛿𝑇) = 𝑎0|ℰ|2 C.3b 

Where 𝑧 is the propagation coordinate, 𝑘0 = 2𝜋 𝜆⁄  is the wavenumber of the central laser 

wavelength 𝜆 and 𝛻𝑇
2 is the transverse Laplacian in cylindrical coordinates (for radial coordinate 

𝑟). The initial beam profile was defined to match the experimental setup of the focused beam at the 

entrance of the cuvette as 

ℰ(𝑟, 0) = √
2𝑃𝑖𝑛

𝜋𝑤0
2 exp (−

𝑟2

𝑤0
2 − 𝑖

𝑘0𝑟
2

2𝑅
) C.4 

where 𝑃𝑖𝑛 is the input power, 𝑤0 is the initial 1/e2 beam radius, 𝑅 = 𝑛0𝒹 − 𝑧𝑅
2/(𝑛0𝒹) is the radius 

of curvature. We choose 𝑧𝑅 = 𝑛0𝑧𝑅,𝑋 to be the Rayleigh length, (experimental 𝑧𝑅,𝑋) and we 

performed simulations according to the measured values of the beam width along the X axis for 

simplicity (all simulations can be extended by accounting experimental measurements over Y axis). 

We examined two cases of 𝒹 (10 and 15 mm), where phenomenological self-trapping is more 

pronounced as opposed to 𝒹 = 5𝑚𝑚, for the values of 𝑎 of each sample shown in Table 7.1. The 

waist is formed at a position 𝑛0 × 𝒹 from the entrance of the cuvette due to the difference in the 

index of refraction. Since this value is approximately equal to the length of the cuvette for the case 

𝒹 = 15 mm, we have solved Equations C.3a-C.3b assuming a 3 cm medium length instead of 2 

cm (the latter is the actual length of the cuvette) for convenience in comparing the nonlinear focus 
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position and beam profile at the output with the ones of 𝒹 = 10 mm case. The physical picture is 

not affected since temperature gradients developed for z < 2cm determine self-action for both cases 

(see for example Figure 7.9). After integration of Equation C.3a, we evaluated the 𝜎2 beam radius, 

which is equal to the 1/e2 definition for a Gaussian spatial profile, yet more meaningful when the 

beam profile undergoes thermal lens distortion. A comparison of the experimental fit along X axis 

and the numerical simulations at very low 𝑃𝑖𝑛 < 0.1 𝑚𝑊 (linear regime) in a medium of refractive 

index 𝑛0 = 1.33 is shown in Figure C.3 for two values of 𝒹 (10 and 15 mm). The parameters that 

were used for the solution of Equations C.3a-C.3b) are shown in Table C.1. 

 

Figure C.3 Comparison of analytical Equation C.1b and the σ2 beam width determined by solution 

of Equation C.3a-C.3b. Equation C.1b of the wX(z) is plotted for z0,X  = n0 × 𝒹 = 13.3 mm (𝒹 = 10 

mm) (solid blue line) and z0,X = 20.0 mm (𝒹 = 15 mm) (solid black line) for the experimentally 

determined MX
2, wf,X

ideal, zR,X and for n0 = 1.33. The solution of Equation C.3a-C.3b was determined 

for n0 × 𝒹 = 13.3 mm (dashed blue line) and n0 × 𝒹 = 20.0 mm (dashed black line), for very low 

powers and for the corresponding parameters shown in Table C.1. The solid vertical line shows the 

output window of the cuvette.  
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Table C.1 Parameters used for the solution of Equations C.3a-C.3b, which describes stationary 

photo-absorption thermal defocusing of a focused beam for the examined colloids and the 

experimental conditions applied in this study. 

 

C.2 Simulation results for the case 𝒹 = 10 mm and comparison with 

experiments. 

 

Figure C.4 Results of numerical simulations based on the nonlinear Schrödinger equation with a 

thermal nonlinearity (Equations C.3a-C.3b) and comparison with experimental observations for 𝒹 

= 10 mm. (a) Comparison of P0(a0) by numerical simulation (squares), fitting of analytical 

expression (2) for 𝓂 = 1.5 (solid line) and experiments (circles). (b) Comparison of θ(α0) between 

numerical simulations (squares) and experimental measurements (circles). 

Parameter Symbol – Equation Value 

Central laser wavelength 𝜆0 = 800 𝑛𝑚 

Linear refractive index of water 𝑛0 = 1.33 

Absorption coefficient of S1 

𝑎0 

= 2.10 𝑐𝑚−1 

Absorption coefficient of S2 = 0.84 𝑐𝑚−1 

Absorption coefficient of S3 = 0.24 𝑐𝑚−1 

Absorption coefficient of S4 = 0.06 𝑐𝑚−1 

Rayleigh length of focused beam 𝑧𝑅 = 𝑛0 × 𝑧𝑅,𝑋  = 1.86 𝑚𝑚 

Thermo-optic coefficient 𝑑𝑛/𝑑𝑇 = 3 × 10−5  1/𝑜𝐶 

Thermal conductivity of water 𝐾𝑇  = 0.6 𝑊/(𝑚 ∙ 𝐾) 

Distance between geometrical focus in air and cuvette entrance 𝒹 = 𝟏𝟎 𝒎𝒎 

Input beam size 𝑤0 = 123 𝜇𝑚 

Beam waist distance 𝑛0 × 𝒹 = 13.3 𝑚𝑚 

Radius of curvature 𝑅 = 𝑛0𝒹 − 𝑧𝑅
2/(𝑛0𝒹) = 13.6 𝑚𝑚 

Distance between geometrical focus in air and cuvette entrance 𝒹 = 𝟏𝟓 𝒎𝒎 

Input beam size 𝑤0 = 185 𝜇𝑚 

Beam waist distance 𝑛0 × 𝒹 = 20.0 𝑚𝑚 

Radius of curvature 𝑅 = 𝑛0𝒹 − 𝑧𝑅
2/(𝑛0𝒹) = 20.1 𝑚𝑚 
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C.3 Characteristic times of mass diffusion and nonlinear thermal 

lensing 

In most reports on self-trapping in colloidal solutions (plasmonic or not), the experimental setup is 

rather similar: a cw laser beam is focused on a beam width (FWHM) of ~5-25 μm, typically several 

millimeters from the entrance of an optical cuvette (2-10 cm long) that contains the samples. 

Several studies have attributed the effect to phase modulation due to a gradient-force-induced, local 

concentration change of suspended particles. The supporting theoretical formalism imposes that a 

steady state is reached, governed by the mass diffusion equation [176]: 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑣 𝑑

𝑚 − 𝐷𝑚∇𝜌) = 0 C.5 

Where 𝜌 denotes the particle concentration, 𝐷𝑚 the mass diffusion coefficient and 𝑣 𝑑
𝑚 the particle 

convective velocity. 

One can perform an order-of-magnitude estimate of the characteristic time of this process, by 

replacing ∇2→ 1/𝑤𝑓
2 and 𝜕𝜌 𝜕𝑡⁄ → 𝜌/𝑡𝑑

𝑚, where 𝑤𝑓 is a characteristic length (usually the beam 

spot) and 𝑡𝑑
𝑚 is the characteristic time of mass diffusion. Equation C.5 leads accordingly to the 

approximation (after appropriate treatment of the term ∇ ∙ 𝜌𝑣 𝑑
𝑚 presented in [176]): 

𝑡𝑑
𝑚 ≥

𝑤𝑓
2

|𝐷𝑚 − 𝐷𝑚
𝑎𝑅ℰℰ∗

4𝑘𝐵𝑇
|
 C.6 

Where 𝑎𝑅 is the particle polarizability ℰ is the complex amplitude of the applied electric field, 𝑘𝐵 

is Boltzmann’s constant and 𝑇 denotes the local temperature. From Equation C.6 we observe that 

a short value of 𝑡𝑑
𝑚 is managed by the polarizability term 𝐷𝑚

𝑎𝑅ℰℰ∗

4𝑘𝐵𝑇
, since the mass diffusion 

coefficient of nanoparticles of radius ~25-250 nm is relatively small (10-1 𝜇𝑚2/𝑠 respectively), if 

we account for Stokes-Einstein’s relation 𝐷𝑚 = 𝑘𝐵𝑇/(6𝜋𝜂𝑟𝑝), where 𝜂 is the dynamic viscosity 

of the solvent and 𝑟𝑝 is the radius of the particle. Thus, for a particle of polarizability 𝑎𝑅~3𝑉𝜀0, 

where 𝑉 denotes the volume of the particle and 𝜀0 is the vacuum permittivity, and 

ℰℰ∗~2𝑃𝑖𝑛/(𝜋𝑤𝑓
2𝜀0𝑐), where 𝑃𝑖𝑛 is the optical power and 𝑐 the speed of light, we find that 



188 

 

𝑡𝑑
𝑚 ≳

𝑤𝑓
4

𝑟𝑝2

3𝜋𝜂𝑐

𝑃𝑖𝑛
 C.7 

Assuming that 𝑃𝑖𝑛 of 1 W is delivered at a focused spot of 1/e2 radius 𝑤𝑓 of 5 μm (or ~5.9 μm 

FWHM width), without losses, inside an aqueous solution (𝜂 ≈ 9 × 10−4𝑃𝑎 ∙ 𝑠) of 25 nm radius 

plasmonic particles, we find 𝑡𝑑
𝑚 ≳ 2.5 𝑠, which significantly exceeds theoretical characteristic 

times of thermal diffusion. Indeed, if we assume an irradiation volume characterized by two axis, 

a short axis ~R and a long axis equal to the Rayleigh length 𝑛0𝜋𝑤𝑓
2/𝜆 (assume n0 = 1.33 of water, 

λ = 800 nm) we can define the thermal diffusion length 𝐿𝑓 = 𝑉𝑓 𝑆𝑓⁄ ~𝑤𝑓, where 𝑉𝑓 and 𝑆𝑓 are the 

volume and surface area of the ellipsoid. Then a characteristic thermal diffusion time is defined as 

[331] 

𝑡𝑑
𝑡ℎ~

𝐿𝑓
2

4𝓀
 C.8 

Where 𝓀 is the thermal diffusivity of the medium (=1.46×10-7 m2/s for water). Applying 𝑤𝑓 of 5 

μm, we find that 𝑡𝑑
𝑡ℎ ≳ 7.9 𝜇𝑠. Note that the value of 𝑡𝑑

𝑚 is increasing dramatically as 𝑤𝑓 increases, 

limited by the characteristic time of Brownian motion. While this problem can potentially be 

balanced by using larger particles, it comes at the expense of significant increase in absorption and 

scattering cross-sections for the case of plasmonic particles, which further enhances thermal or 

radiation pressure effects.  

Nonetheless, high repetition fs illumination offers a potential advantage toward the mitigation of 

thermal effects. If tighter focusing conditions (𝑤𝑓 ≲ 2𝜇𝑚, high numerical apertures, limit 

aberrations) are applied, it is possible that thermal effects are alleviated while maintaining the 

possibility of mass transport via gradient forces. This is because the time between two pulses 𝛿𝑡𝑝 

becomes comparable to 𝑡𝑑
𝑡ℎ so that temperature increase in the medium will be negligible on the 

next pulse. Contrarily, 𝑡𝑑
𝑚 remains much larger than 𝛿𝑡𝑝, ensuring a cumulative effect of exerted 

optical force. For a smaller repetition rate of ~1 MHz, the time between pulses further approaches 

𝑡𝑑
𝑡ℎ so that such a scenario becomes plausible. Figure C.5 summarizes the conclusions of the 

foregoing example. 
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Figure C.5 Characteristic times for heat diffusion (red curve) and mass diffusion (black curves) 

described by Equations C.7 and C.8 respectively as a function of beam waist radius in the case of 

aqueous suspension of spherical nanoparticles and an input power of 1 W. The black horizontal 

dashed lines indicate δtp for illumination by use of high repetition rate fs pulses at two different 

repetition rates.  
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