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RÉSUMÉ

Avec l’essor de l’apprentissage profond, une quantité croissante de modèles sont développés
pour le domaine médical afin d’automatiser les tâches fastidieuses et de réduire les erreurs
médicales causées par l’homme. Cependant, en raison de leur impact potentiel sur la vie et la
santé humaine, des préoccupations éthiques grandissantes font jour concernant la fiabilité et
la transparence des modèles d’apprentissage profond. Une solution potentielle à ces problèmes
est d’entraîner des modèles générant des prédictions calibrées avec une représentation fidèle
de l’incertitude. De cette manière, les prédictions les plus susceptibles d’être incorrectes ou de
donner lieu à des désaccords entre les experts peuvent être isolées et corrigées. Cependant, les
réseaux neuronaux de segmentation modernes sont généralement trop confiants, c’est-à-dire
qu’ils expriment une grande certitude même pour les prédictions erronées, et ne tiennent pas
compte de considérations importantes en imagerie médicale telles que l’effet de volume partiel,
la variabilité inter-expert ou la représentation de l’incertitude en raison de la faible qualité
des images ou du manque de données. Ceci est dû à la nature binaire de la segmentation qui
est considérée comme une tâche de classification où chaque voxel se voit attribuer une valeur
de 0 ou 1.

Dans la première partie de ce travail, nous proposons une méthode appelée SoftSeg qui
traite la segmentation comme une tâche de régression afin d’encourager la représentation
des informations sur les volumes partiels, la variabilité inter-expert et la représentation de
l’incertitude. L’approche de segmentation non-binaire vise à réduire la confiance excessive du
modèle. Trois caractéristiques principales définissent SoftSeg par rapport aux modèles de seg-
mentation conventionnels : (i) la préservation du caractère non-binaire, i.e., entre 0 et 1, des
segmentations utilisées pour l’entraînement après le traitement et l’augmentation des don-
nées, (ii) une fonction d’activation finale linéaire normalisée pour éviter la perte d’information
contrairement aux fonctions sigmoïde ou softmax non linéaires, et (iii) l’utilisation d’une
fonction de perte de régression plutôt que de classification comme Dice ou d’entropie croisée.
Nous avons exploré ces nouvelles fonctionnalités et évalué l’impact de chacune d’entre elles
lors d’une étude d’ablation. La combinaison de ces trois nouvelles caractéristiques a permis
d’obtenir de meilleures performances de segmentation sur trois ensembles de données de seg-
mentation publiquement accessibles : matière grise de la moelle épinière, lésions de sclérose
en plaques du cerveau et tumeur du cerveau.

Dans un deuxième article, trois méthodes de fusion d’annotations d’expert, soit STAPLE,
moyennage et l’échantillonnage aléatoire (c’est-à-dire sans fusion), pairées à SoftSeg ou à
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un entraînement conventionnel, ont été comparées. Les approches ont été étudiées sur deux
ensembles de données avec respectivement quatre et sept annotations d’évaluateurs pour
chaque image : segmentation de la matière grise et blanche de la moelle épinière et lésions
de la sclérose en plaques du cerveau. La préservation de l’incertitude due au désaccord
entre les évaluateurs, la calibration des prédictions, la qualité visuelle et les performances
de segmentation ont été évaluées. Bien qu’il n’y ait pas eu de consensus entre les ensembles
de données en ce qui concerne la meilleure méthode de fusion des annotations d’expert,
les résultats étaient équivoques en ce qui concerne le type d’entraînement. Nos résultats
indiquent que SoftSeg a produit une prédiction avec une meilleure calibration ainsi qu’une
préservation de la variabilité inter-expert accrue, et ce, avec une performance de segmentation
améliorée, ou minimalement équivalente.

Toutes les approches étudiées dans ce travail ont été répétées 10 à 40 fois avec des séparations
aléatoires des données pour éviter un biais au niveau des données de test et garantir des
différences statistiques (valeur p < 0,05). Toutes les recherches effectuées dans ce projet ont
été réalisées et rendues accessibles via le projet en libre accès ivadomed (https://ivadomed.
org).

https://ivadomed.org
https://ivadomed.org
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ABSTRACT

With the rise of deep learning, an increasing amount of models are being developed and
researched for the medical field to automate tedious tasks and mitigate medical errors. How-
ever, due to the sensitive nature of medical tasks and their impact patient’s health, increasing
ethical concerns are arising regarding reliability and transparency of deep learning models. A
potential avenue to address these issues is to have calibrated predictions with truthful uncer-
tainty representation. Reliable uncertainty representation help identify predictions that are
prone to model failure or inter-rater disagreement. However, modern segmentation neural
networks are usually overconfident, i.e., express a high certainty even for incorrect predic-
tions, and disregard important considerations in medical imaging such as partial volume
effect, inter-rater variability, or uncertainty representation due to low image quality or lack
of data. This is partly due to the inherent binary nature of segmentation that is considered
a classification task where each voxel is attributed a value of 0 or 1.

In the first part of this work, we propose a method named SoftSeg that treats segmen-
tation as a regression task to encourage the representation of partial volume information,
inter-rater variability, and uncertainty. The soft segmentation approach aims at mitigating
overconfidence. Three main features characterize SoftSeg compared with the conventional
segmentation models: (i) preservation of soft input labels following data processing and aug-
mentation, (ii) a normalized linear final activation to avoid information loss instead of the
non-linear sigmoid or softmax, and (iii) the use of a regression loss function rather than the
classification Dice or cross-entropy loss. We explored these new features and evaluated the
impact of each feature through an ablation study. The combination of these three new fea-
tures resulted in better segmentation performance on three publicly available segmentation
datasets: spinal cord gray matter, brain multiple sclerosis lesions, and brain tumor.

In a second article, three label fusion methods, STAPLE, average, and random sampling
(no fusion), paired with SoftSeg or a conventional training framework, were compared. The
approaches were studied on two datasets with respectively four and seven rater annotations
for each image: spinal cord gray and white matter segmentation and brain multiple sclerosis
lesions. The uncertainty preservation due to inter-rater disagreement, the calibration of
predictions, the visual predictions, and the segmentation performance were evaluated. While
there was no consensus between datasets in terms of the best label fusion method, results
were equivocal regarding the training framework. Our results indicate that SoftSeg yielded
prediction with better calibration and inter-rater variability preservation with higher, or
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minimally equivalent, segmentation performance.

All the approaches studied in this work were repeated 10 to 40 times with varying random
seeds to avoid data splitting biases and ensure statistical differences (p-value < 0.05). All the
research done in this project was developed and made accessible via the open-source project
ivadomed (https://ivadomed.org).

https://ivadomed.org
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CHAPTER 1 INTRODUCTION

1.1 Problem statement

Deep learning (DL) in healthcare has witnessed unprecedented attention and progression in
the past years [1–3] suggesting its potential to automate tedious medical tasks or reduce
human-related errors [4, 5]. However, DL faces numerous ethical concerns due to, among
others, its bias and lack of transparency [6]. Indeed, DL is often criticized for being a black
box as it is hard to isolate the reasons motivating its final prediction the way humans would
do it. Moreover, DL models carry the characteristics of the labels, i.e., bias, it was trained
on, which is problematic as medical tasks are prone to inter-rater disagreement [7–9]. Using
multiple expert annotations is a common method to mitigate the models’ bias. However, there
is no clear consensus on the best way to combine expert labels to represent the inter-rater
variability. To ensure safe integration of DL models into clinical settings and gain the public’s
trust, these concerns must be addressed along ensuring state-of-the-art performance. Proper
uncertainty representation highlights predictions that are more likely to be misclassified or
challenging to experts. Flagging uncertain predictions limit the frequency of silent-failures
and makes the model more transparent since it indicates to the user which output are prone
to error.

Image segmentation, notably of pathological tissues, allows morphometric quantification of
structures of interest helping with longitudinal monitoring or treatment planning [10, 11].
While segmentation is mostly treated as a classification task where each voxel of an image
is assigned a binary value to highlight a given structure, this approach does not truthfully
reflect the complexity of the task. Conventional DL segmentation models overlook partial
volume effect, inter-rater variability, or ill-defined boundaries by outputting overconfident
predictions [12] that are mostly binary. Reliable DL models should yield calibrated output
truthfully characterizing these phenomena with proper uncertainty representation.

1.2 Research objectives and hypothesis

This work aims at:

1. Proposing a new approach to generate predictions reflecting partial volume effect, inter-
rater variability, and ill-defined boundaries through proper uncertainty representation.

2. Validating the output quality of this new method on medical datasets in terms of
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segmentation performance, calibration, and uncertainty representation.

3. Implementing and giving open access to the research tools and results.

Ultimately, these research objectives intend to propose and evaluate a method to have more
reliable and transparent models while yielding better, or minimally equivalent, segmenta-
tion performances to the conventional training framework. A secondary objective was to
implement and give open access to this new approach and the experiments to validate it.

We hypothesize that limiting information loss during training by modifying the data process-
ing, the final activation layer, and the loss function will improve segmentation performance
and uncertainty representation. Tackling segmentation as a regression task should help yield
valuable information for decision-making derived from partial volume effect, inter-rater vari-
ability, or limited image quality.

1.3 Thesis outline

This work starts with an overview of the background and related works to this Master’s
project in Chapter 2. The purpose of each article presented in this work and their role in ad-
dressing the research objectives are described in Chapter 3. Chapter 4 presents SoftSeg [13]
which fulfills the first research objective (see Section 1.2) of this Master’s project. SoftSeg
treats segmentation as a regression task and takes advantage of soft labels by (i) removing all
binarization steps during preprocessing or data augmentation, (ii) using a normalized ReLU
as final activation function, and (iii) training the model using a regression loss function. To
accomplish the second research objective (see Section 1.2), Chapter 5 focuses on assessing
inter-rater preservation and output calibration of SoftSeg while comparing label fusion meth-
ods [14]. A discussion on the results presented in the two articles and their clinical usefulness
is presented in Chapter 6. Finally, Chapter 7 concludes and gives recommendations based
on this research project.
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CHAPTER 2 LITERATURE REVIEW

2.1 Deep learning segmentation models

Medical image segmentation consists of the delineation of an anatomical structure and helps
with diagnosis, disease monitoring, and treatment planning [10]. Each voxel of an image is
associated with a class representing one or multiple structures of interest. Segmentation on 3D
medical images, often composed of hundreds of 2D slices, is tedious and time-consuming. DL
segmentation models have been increasingly studied [15–17] to help automate this laborious
process. Convolutional neural networks (CNN), especially U-Net [18], stand out as the most
popular DL approach to medical segmentation [19–21] due to its state-of-the-art performances
[22–24]. CNN extracts features from the image using convolution to identify shapes and
textures characterizing the objects of interest. U-Net (Figure 2.1) has an encoder generate,
from the extracted features, activation maps that are gradually losing spatial resolution to
the profit of high-level abstraction. The second part of the U-Net is the decoder block that
generates a high-resolution output based on the features extracted during the encoding phase.
U-Net has the particularity to simultaneously consider features at different scales, i.e., high-
resolution details and feature-rich semantics, because of its skip connections between the
encoder and decoder blocks.

2.1.1 Label processing

Most segmentation models are trained through supervised learning using binary expert an-
notations. Before training DL models, preprocessing, including resampling to a common
resolution, and data augmentation, including affine or elastic transformations to avoid over-
fitting [25], are applied to the training images and associated GT. These operations require
interpolation. To preserve the binary nature of segmentations, the interpolation chosen for
GT is often nearest neighbor [26–28] or another interpolation technique followed by a bina-
rization. Restricting values to 0 or 1, while it’s optimal when using Dice or cross-entropy
losses (see Section 2.1.2), can cause partial volume information loss at tissue boundary.

2.1.2 Loss function

Various loss functions to train segmentation models have been introduced, but the two of
the most commonly used in the literature are the cross-entropy [29–33] (Equation 2.1) and
soft Dice loss [11,17,30–32,34–39] (Equation 2.2). Both losses are designed for classification
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Figure 2.1 U-Net architecture.

An image is input in the neural network (left side) and passes through successive convolutional
blocks that extract image features at different scales (first half of the network). The extracted
features are then upsampled to restore the original resolution and output a high-resolution
segmentation (right side). The skip connections (gray arrows) allow the recovery of high-
resolution details during the feature decoding. This figure was extracted from [18].

with binary GT. However, they are not optimal for soft labels. For instance, a soft GT with
a value of 0.5 and a prediction of 0.5 will not lead to the maximal loss scores, i.e., 0 for
cross-entropy and -1 for Dice loss, even though both values are equal. However, a regression
loss such as mean squared error (MSE) would generate the minimal loss value of 0.

CEloss = −
C∑
c=0

N∑
i=0

yci log(ŷci ) (2.1)

Diceloss = − 2∑N
i=0 yiŷi∑N

i=0 yi +∑N
i=0 ŷi

(2.2)

where N is the total number of voxels in the image, yi is the ground truth (GT), ŷi is the
prediction, and C is the total number of classes.
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DL models trained with Dice loss yield predictions with sharp edges [30,40,41] hindering non-
binary predictions. These almost binary predictions were shown to lead to volumetric bias
due to overestimation of the structures volume [42]. Moreover, Dice loss predictions do not
reflect the model’s uncertainty and are overconfident, even for on misclassified regions [21].
While cross-entropy is associated with better-calibrated predictions [21], and softer edges [30],
it is sensitive to class imbalance, which can be mitigated by weighting under-represented
classes. However, Dice loss outperforms cross-entropy loss on many medical segmentation
tasks [21, 43,44] even when leveraging balancing strategies.

2.1.3 Final activation

After the model prediction for a segmentation task, a final activation function is applied to
the output to constrain the values between 0 and 1. For multi-class segmentation, a softmax
(Equation 2.3) is usually applied, while the sigmoid (Equation 2.4), is usually the choice for
a binary segmentation. Due to exponential functions, these activations are non-linear and
plateau to 0 or 1 for extreme values (see Figure 2.2), which can lead to information loss from
the raw output. Sigmoid and softmax were designed for classification as most raw outputs
will result in a value near 0 or 1. Other final activation function has been explored such a
ReLU [45] for classification [46] leading to value from 0 to infinity. However, few work suggest
or study other alternative to the popular sigmoid and softmax functions.

Softmax(xi) = exi∑
j e

xj
(2.3)

Sigmoid(x) = 1
1 + e−x

(2.4)

Figure 2.2 Sigmoid function.
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2.2 Partial volume effect

Medical imaging aims at capturing anatomical structures, but the imaging of these structures
is limited by the native spatial resolution of the acquisition. Small structures, such as MS
lesions, are susceptible to partial volume effect (PVE), but higher resolution mitigates this
effect. When multiple tissue types are present in a voxel, the resulting value will, propor-
tionally to their presence, represent the properties of the tissues composing the voxel of each
tissue [47]. Figure 2.3 illustrated the PVE. Ignoring the partial volume effect by using binary
segmentation values causes error in quantitative volumetric measurements [47]. The bina-
rization causes information loss at the object boundary and does not preserve the intensity
value sum of the image as seen on Figure 2.3. Few deep learning models take into account
PVE [48–50], however, to reach perfect classification quantifying the presence of overlapping
tissues in a voxel is necessary [49].

(a) Object to image.
Area: 125629 pixels.

(b) Imaged object with
coarse resolution.
Area: 125629 pixels.

(c) Binarized imaged object
with coarse resolution.

Area: 120000 pixels.

Figure 2.3 Partial volume effect.

(a) represents the object to image and the dashed lines indicates the resolution of the imaging.
(b) illustrates the partial volume effect when the spatial resolution is coarse relative to the
size of the object. (c) highlights the precision loss at the object boundary when using a
binarized representation. The area is measured by summing the pixels’ intensity. The area
of the binarized object (c) is different from the area from the original object (a).

2.3 Uncertainty and Calibration

With growing concerns about the lack of transparency of DL models, rising interest has been
given to uncertainty in artificial intelligence [9, 12, 51–53]. Reliable uncertainty highlights



7

predictions prone to model failure. Various factors cause uncertainty, such as lack of train-
ing data (epistemic uncertainty), poor image quality (aleatoric uncertainty), or inter-rater
variability. Uncertainty can be obtained via Bayesian methods, which generate a model like-
lihood or through approximates of Bayesian [51]. Examples of Bayesian approximation are
uncertainty derived from Monte Carlo iterations [54] or ensembles [55]. Multiple predictions
are generated and compared to determine the level of certainty of the model. However, these
methods are computationally expensive. While the raw predictions of a model is arguably
an indication of model uncertainty [52], numerous authors [9,56–58] consider it as a baseline
uncertainty metric. In this work, we focused on uncertainty directly generated by the model
as it is the easiest to obtain. The predictions encode the voxel-wise uncertainty while the
predictive entropy can represent the overall uncertainty of an image [9, 56].

Calibration can be used as a surrogate to uncertainty reliability [56,59]. A calibrated model
will yield predictions corresponding to the actual probability of this outcome. For instance, a
prediction of 0.8 should correspond to the class 80% of the time. Guo et al. [12] demonstrated
that modern neural networks are overconfident and showed that temperature scaling as a
post-processing step could improve the calibration. However, modifying the processing using
and yielding soft labels has the potential to make the model inherently more calibrated
without the need of extra processing [60–62] (see Section 2.5).

2.4 Inter-rater variability and label fusion

Medical imaging tasks such as segmentation or classification are prone to inter-rater vari-
ability. The causes of this disagreement arise from experts’ experience, and training, poor
image quality, or guideline clarity [7,63]. A common method to address expert disagreement
is to use labels from more than one expert to reduce the bias associated with a single rater.
Multiple strategies exist to combine multiple expert labels. Figure 2.4 summarizes the most
popular label fusion methods.

2.4.1 Hard fusion

The most common ones are the hard fusion methods and include STAPLE (simultaneous
truth and performance level estimation) [64], majority voting, intersection, and union [9].
STAPLE is an expectation-maximization algorithm that generates a consensus segmentation
based on all annotations. Majority voting looks at each voxel individually and associates a
label based on what most raters chose. Intersection generates labels that include all the voxels
segmented by the raters, while union includes only the voxels that all the raters annotated.
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Figure 2.4 Summary of hard and soft label fusion methods.

The first three columns represent segmentation from distinct raters while the last column
contains the consensus label. Rows 2 to 7 each illustrate one label fusion method. Red, blue,
and green repesent the false positive, false negative, and true positive voxels compared to
the consensus labels, respectively. Abbreviations: Seg.: Segmentation.
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2.4.2 Soft fusion

Soft fusion methods are less popular due to the binary nature of segmentation. Kats et al.
proposed a soft version of STAPLE, soft-STAPLE, as additional anatomical information can
be stored with intermediate values [65]. Kats et al. improved the segmentation performance
with soft-STAPLE as GT for MS brain segmentation. Averaging the expert labels is another
more straightforward soft fusion label method.

2.4.3 No fusion

Finally, multiple works focused on methods to leverage multiple expert labels without fusing
them [8, 9, 63]. Jungo et al. [9] and Jensen et al. [8] both studied random sampling and
reported advantages to this method compared with hard fusion methods. One annotation is
randomly selected at each epoch during training to expose the model to all the labels. Jungo
et al. observed that this method represented the more truthfully the inter-rater variability
for the synthetic data and brain tumor patients with high Dice scores [9]. Jensen et al.
noted better calibration when random sampling labels for a classification task [8]. Other
methods than random sampling exist, such as deep ensembles where each model is trained
with annotations from one rater [63].

2.5 Label softening

Previous work demonstrated the positive impacts of performing label smoothing on DL mod-
els [60–62]. Muller et al. [60] and Pham et al. [61] focus on label softening of classification
labels which reduced model overconfidence and improved generalization. Li et al. [62] propose
a smoothing method for segmentation labels to account for the uncertainty at the boundaries.
Their approach, which combines the original hard label and the softened label, improved the
Dice score on brain and optical coherence tomography segmentation tasks.
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CHAPTER 3 METHODOLOGY

This section will overview the role of each article presented in this work in achieving the
research objectives described in Section 1.2.

3.1 Objective 1: Proposition of a new non-binary approach

The first objective of this Master’s thesis was to propose a new method that would take into
account phenomena that are disregarded by the conventional binary training framework.
This approach should have a better uncertainty representation, reflect inter-rater variability,
and account for PVE and ill-defined boundaries due to poor image quality. Chapter 4 aims
at answering this objective. In the article "SoftSeg: Advantages of soft versus binary training
for image segmentation", we targeted and explored different features from the conventional
training pipeline that caused binary output and were responsible for the potential information
loss [13]. The features targeted were the label processing, the final activation, and the loss
function. The conventional approach is characterized by the use of binary labels, sigmoid as
final activation (or softmax for multiclass), and Dice loss function. In this study, we modified
these three parameters, which we called the SoftSeg approach, and compared the results to
a conventionally trained model. SoftSeg uses soft labels derived from the data processing
during resampling or augmentation, normalized ReLU as final activation, and Adaptive Wing
loss as regression loss function. Moreover, we did an ablation study starting from SoftSeg and
setting each of these three parameters, one at a time, to the conventional option to highlight
the effect of removing each SoftSeg characteristic.

3.1.1 Label processing

Since classification losses require a categorical GT, labels are usually binarized after the data
processing or data augmentation steps (see Section 2.1.1). However, resampling the data or
applying affine transformations such as rotation and scaling for data augmentation requires
an interpolation step. Using nearest neighbor interpolation or a higher order interpolation
followed by a binarization step suppresses valuable partial volume information [66, 67]. To
mitigate the information loss and encourage the output of soft labels, we propose to use
interpolation of order one or more during the label processing and augmentation, which
generates non-binary GT. Moreover, this opens the door to inherently soft GTs, e.g., derived
from the average of multiple expert labels.
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3.1.2 Final activation

Sigmoid and softmax are the most common activation function for the last layer on DL
models (see Section 2.1.3) and convert all extreme values to near 0 or 1 values. Very different
raw output values such as 10 and 100 will lead to a difference of only 5e-5 when a sigmoid
function is applied. To take into account the different values learned by the model, the final
activation was changed to a normalized version of ReLU to ensure the linearity of the positive
raw output values. The output is normalized to ensure values inclusively between 0 and 1.

3.1.3 Loss function

Classification losses such as cross-entropy or Dice cannot be paired with soft labels as they
hinder the prediction of ambivalent values (see Section 2.1.2). Training models with a re-
gression loss would enable the use of soft labels derived from data resampling, data augmen-
tation, or labels from multiple raters and would bolster the generation of values from 0 to 1.
Adaptive Wing loss was introduced by [68] to train regression heatmap for facial landmark
localization (see Equation 3.1). This regression loss function was chosen for SoftSeg due to
its state-of-the-art performance for this task and its robustness to class imbalance [68]. More
traditional regression loss such as mean squared error (MSE), the weight of foreground and
background voxels is the same. However, in many medical segmentation tasks, most voxels
are background. The Adaptive Wing loss gives more weight to foreground voxels to mitigate
issues related to class imbalance. Another strength of this loss is that the loss is continuous
and smooth around |y− ŷ| = θ. The parameter θ serves as threshold to switch between linear
and non-linear section of the loss. The exponential term α−y shapes the loss to y and insure
smoothness. The parameters ω and ε control the importance given to small errors. For more
details on optimal hyperparameters and their behavior, refer to the original work [68].

AdaptiveWingLoss =

ωln(1 + |y−ŷ
ε
|α−y), if |(y − ŷ)| < θ

A|y − ŷ| − C, else
(3.1)

where A = ω(α−y)( θ
ε

)α−y−1

ε(1+( θ
ε

)α−y) and C = θA− ωln(1 + ( θ
ε
)α−y).

3.2 Objective 2: Validate the output quality of SoftSeg

The second objective of this project was to assess the quality of the predictions generated by
SoftSeg models. This new approach was evaluated on three publicly-available datasets: spinal
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cord gray (and white) matter (SCGM) challenge [69], MS brain lesion challenge [70], and the
brain tumor segmentation challenge 2019 (BraTS 2019). While segmentation performance is
crucial, other considerations such as reliability and transparency through faithful uncertainty
representation are essential to integrating DL models in clinical settings. In the SCGM and
MS brain lesion datasets, four and seven expert annotations were available, respectively, for
each image, making this kind of analysis possible. In both articles presented in this work,
segmentation performance was evaluated through common classification metrics. In the
second article, "Label fusion and training methods for reliable representation of inter-rater
uncertainty", the preservation of the inter-rater variability and calibration were quantified
for SoftSeg models and different label fusion methods [14].

3.2.1 Segmentation performance

Most classification metrics require binary predictions. Hence, the segmentation performance
was separated into the evaluation of the soft predictions and the binarized predictions. The
soft predictions were compared to the GT using the Brier score, i.e., MSE of the prediction
maps. For the binarized predictions, the output quality was assessed with the Dice score,
precision, recall, absolute volume difference (AVD), and relative volume difference (RVD).
Moreover, for the MS lesions segmentation, the false detection rate (LFDR) and lesion true
positive rate (LTPR) were computed.

3.2.2 Inter-rater variability preservation

The inter-rater variability preservation was studied on the two datasets containing labels gen-
erated by multiple raters. The GT derived from the average of all annotations was considered
the gold standard for inter-rater disagreement representation. The image-wise uncertainty
was measured by computing the entropy of the predicted or GT average segmentation. We
expect that the entropy, i.e., uncertainty proxy, of the prediction and inter-rater disagree-
ment would match. We measured the uncertainty correspondence with the mean absolute
error. Since this metric does not consider spatial coherence of the GT average and predic-
tions, we also calculate the Brier score, which essentially computes the distance between both
probability maps.

3.2.3 Calibration

In the medical field, errors can have an impact on diagnosis or medical decisions. Identifying
model misclassification can help mitigate silent failures. Calibration is a reliability metric
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since it describes how truthful the prediction is in terms of classification error. With cali-
brated models, regions with low-probability voxels indicate structures or lesions that are likely
misclassified or prone to inter-rater disagreement. Calibration was assessed using reliability
diagrams and expected calibration error (see Section 5.3.3).

3.3 Objective 3: Implement and give open-source access to SoftSeg

The final objective was to document and make the research accessible. Alongside the re-
search, ivadomed [35], a medical image analysis framework powered by DL, was developed to
facilitate the reproducibility of the results. This library includes preprocessing, data loading,
training, post-processing, data augmentation, and data analysis tools to facilitate the use of
DL in medical image segmentation. I collaborated on this open-source project with other
members of the NeuroPoly lab. All the tools and code to reproduce and analyze the results
presented in this work are available at https://ivadomed.org.

https://ivadomed.org
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4.1 Abstract

Most image segmentation algorithms are trained on binary masks formulated as a classifica-
tion task per pixel. However, in applications such as medical imaging, this “black-and-white”
approach is too constraining because the contrast between two tissues is often ill-defined, i.e.,
the voxels located on objects’ edges contain a mixture of tissues (a partial volume effect).
Consequently, assigning a single “hard” label can result in a detrimental approximation. In-
stead, a soft prediction containing non-binary values would overcome that limitation. In this
study, we introduce SoftSeg, a deep learning training approach that takes advantage of soft
ground truth labels, and is not bound to binary predictions. SoftSeg aims at solving a regres-
sion instead of a classification problem. This is achieved by using (i) no binarization after
preprocessing and data augmentation, (ii) a normalized ReLU final activation layer (instead
of sigmoid), and (iii) a regression loss function (instead of the traditional Dice loss). We
assess the impact of these three features on three open-source MRI segmentation datasets
from the spinal cord gray matter, the multiple sclerosis brain lesion, and the multimodal
brain tumor segmentation challenges. Across multiple cross-validation iterations, SoftSeg
outperformed the conventional approach, leading to an increase in Dice score of 2.0% on the
gray matter dataset (p = 0.001), 3.3% for the brain lesions, and 6.5% for the brain tumors.
SoftSeg produces consistent soft predictions at a tissues’ interfaces and shows an increased
sensitivity for small objects (e.g., multiple sclerosis lesions). The richness of soft labels could
represent the inter-expert variability, the partial volume effect, and complement the model
uncertainty estimation, which is typically unclear with binary predictions. The developed
training pipeline can easily be incorporated into most of the existing deep learning archi-
tectures. It is already implemented in the freely-available deep learning toolbox ivadomed
(https://ivadomed.org).

Keywords Segmentation, Deep learning, Soft training, Partial volume effect, Label smooth-
ing, Soft mask

https://ivadomed.org
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4.2 Introduction

Medical image analysis is at a turning point as a growing number of clinical studies are
fully embracing automated processing, thanks to the recent ground-breaking performances of
deep learning [71–73]. A popular medical application of deep learning is image segmentation,
whereby voxels are assigned a label (e.g., 1 if pertaining to the tissue of interest, 0 otherwise).
This binary approach to tissue classification is limited in that it does not allow the model
to exploit the rich information present in the expert annotation or in the input image. This
richness could take the form of inter-expert representation (in case a ground truth is created
by several experts) [74], level of uncertainty (e.g., a ground truth could take the value 0.5
instead of 1, if the expert is unsure a voxel belongs to a lesion) [75], pathology severity
(e.g., the signal intensity in multiple sclerosis lesions is associated with tissue damage [76])
, or partial volume effect (PVE) [77]. PVE is characterized by the mixing of signals coming
from different tissue types, and usually happens at their interfaces. For example, if tissue A
has the intensity 50 on a MRI scan and tissue B the intensity 100, voxels at their interface
exhibit values between 50 and 100, depending on the volume fraction occupied by each
tissue. PVE is a well-known problem in computer vision, and it can notably be handled by
Gaussian mixture modeling to estimate the true fraction of underlying tissue signals [78,79]
or integrated into classical probabilistic Markov Random Fields [80, 81] or fuzzy sets based
[82] segmentation methods. However, PVE is rarely accounted for in conventional deep
learning segmentation methods [48–50]. Instead, most deep learning segmentation pipelines
are trained on binary data, with value 0 (outside the tissue) or 1 (inside the tissue), and
therefore produce uncalibrated output probabilities. Ideally, segmentation methods would
encode predictions as “50 shades of gray”, representing partial volume information of the
segmented tissue. Hence, there is a strong rationale for inputting/outputting “soft” labels in
a deep learning segmentation pipeline to better calibrate the model confidence.

4.2.1 Related works

Soft labels have led to a better generalization, faster learning speed, and mitigation of net-
work over-confidence [60]. Label smoothing was investigated in image classification [61, 83],
style transfer [84], speech recognition [85], and language translation [86]. To segment multi-
ple sclerosis lesions on MRI data, a recent study proposed to train a model using soft masks
to account for the high uncertainty in lesion borders’ delineation [65]. The soft masks were
generated from the binary masks using morphological dilations. For the loss function, the
authors used the soft version of the Dice loss [34]. This study reported an improved perfor-
mance (+1.8% of Dice on the ISBI 2015 dataset) when using soft vs. binary masks. Another
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study suggested proposed another ground truth softening method using over-segmentation
and smoothing based on the distance to an annotated boundary, and also reported better
performance over hard labels (+0.7% of Dice on the MRBrainS18 dataset) [62]. However,
according to the authors, the performance improvements were conditioned by optimizing
some hyper-parameters (e.g., number of super-pixels, beta), suggesting a potential limita-
tion to generalize to new datasets and tasks. In the studies of Li et al. and Kats. et al.,
alteration of ground truth was based on arbitrary modifications of the input mask (mathe-
matical morphology) and might not truly represent the underlying PVE. Moreover, even if
the network is fed with soft ground truths, this rich information somewhat vanishes down
the line in the training pipeline by the use of sharp activation functions (e.g., sigmoid) and
classification-based loss functions (e.g., Dice loss) [40,41].

4.2.2 Study outline

In this work, we explore training models using soft segmentations, both as input and output.
While manual soft ground-truth generation is costly and highly time-consuming, we obtain
soft inputs “for free” from binary ground truth data by skipping the binarization step that
typically follows preprocessing and data augmentation. We focus on three key features: (i)
training on soft (vs. hard) ground truth masks, (ii) the activation function used at the last
layer (normalized ReLU vs. sigmoid), (iii) the use of a regression loss (vs. Dice loss) to
favor soft predictions. We perform ablation studies for these three training features, whose
combination is called SoftSeg, against the conventional training scheme on three open-source
segmentation datasets: the spinal cord gray matter (SCGM) challenge [69], the multiple scle-
rosis (MS) brain lesion challenge [70], and the multimodal brain tumor segmentation (BraTS)
challenge 2019 (BraTS 2019). In the following sections, the differences between SoftSeg and
the conventional training pipeline will be detailed, along with the evaluation framework we
used to compare them. Second, the results of the comparison on the three datasets will be
presented from different perspectives: (i) the training process, (ii) the qualitative aspect of
the segmentation, and (iii) the quantitative performances. Finally, the key contributions of
SoftSeg and perspectives will be discussed.

4.3 Material and methods

4.3.1 Proposed method

The comparison between a conventional training pipeline and our proposed approach, Soft-
Seg, is illustrated in Figure 4.1. The key differences involve the binarization of the input
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ground truth, the activation function, and the loss function. These differences are detailed
in this section.

Figure 4.1 Training pipelines for segmentation.

1: Conventional training pipeline; 2: Our proposed approach (SoftSeg). The main differences
are: (A) No binarization of the ground truth after the preprocessing and data augmentation
operations; (B) A linear activation function is used instead of a sigmoid activation; (C) The
loss function aims at solving a regression problem instead of a classification task.

Hard vs. Soft ground truth masks

Ground truth masks received by the network are conventionally binary, i.e., zeros and ones
only, so-called “hard” ground truth. Although rarely specified, it is common to binarize the
ground truth after applying preprocessing and data augmentation operations before feeding
the network. Binarization is an approximation and a loss of information, especially for
voxels at the border between two tissue types. To prevent such approximations, we propose
to use soft (i.e., continuous values between 0 and 1) instead of hard masks, as illustrated
in Figure 4.1A which are the result of the preprocessing and data augmentation without
binarizing prior to the network. Soft masks used in this work notably aim at preserving
partial volume information throughout the learning process, without applying complex label
smoothing methods [62, 65] or resorting to costly soft ground-truths (e.g., from multiple
experts).
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Sigmoid vs. Linear activation function

The sigmoid activation function is popular in binary image segmentation models. Often
used as the final activation, this non-linear activation is appropriate for classification since
most values lie near 0 and 1, yielding a quasi-binary output. However, in the context of soft
prediction, the sigmoid function undesirably narrows the range of soft values that potentially
carry valuable PVE information. Although it can be partially addressed by increasing the
temperature to make the active region larger, the use of other final activation functions (e.g.,
ReLU) has been recently explored, see for instance the comparison between CNN-Softmax
and CNN-ReLU for classification tasks [46]. To avoid the polarizing effect in voxels observed
when using the sigmoid, we propose to change the final activation of the segmentation model
from the sigmoid function to a normalized rectified linear function (ReLU, see Figure 4.1B).
A ReLU activation is applied to the model’s output to set all negative values to 0 [45]. The
result is then normalized by the maximum value to have a final output between 0 and 1,
leading to a linear activation for the positive values and therefore highlighting the full range
of prediction values from the model:

NormReLU ≡


ReLU(X)

max{ReLU(X)} , if max{ReLU(X)} 6= 0

0, else
(4.1)

where X represents the matrix output of the model before the final activation.

Classification vs. regression loss function

Segmentation is often considered a classification task where each voxel is assigned to one
class. In that context, classification loss functions are commonly prioritized for segmentation
tasks, such as the binary cross-entropy or the Dice loss functions. Although widely used with
medical data [17, 37–39], the Dice loss yields sharp segmentation edges [40, 41], hindering
predictions of non-binary values and can lead to a volumetric bias [42]. In contrast, the
training approach we suggest is closer to a regression task in that the output prediction
represents the input with high fidelity (e.g., an input voxel composed of 70% of the class
of interest would produce an output prediction of 0.7). Consequently, we suggest using a
regression loss function to train our network instead of a classification loss function (see
Figure 4.1C). In this paper, we use the Adaptive Wing loss [68], which has shown fast
convergence and efficient mitigation against class imbalance [87].
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4.3.2 Datasets

To compare our approach with the conventional pipeline, we selected three publicly-available
datasets: the SCGM challenge [69], the MS brain lesion challenge [70], and the multimodal
BraTS challenge 2019 (BraTS 2019).

Spinal cord gray matter challenge

The SCGM dataset contains 80 MRI T2*-weighted 3D images of cervical spinal cord, evenly-
acquired in four centers with different MR protocols and 3T scanners (Philips Achieva,
Siemens Trio, Siemens Skyra). Demographics of the scanned subjects and acquisition pa-
rameters can be found in [69]. The gray matter was manually segmented on each 3D image
by four independent experts (inter-expert Dice score ranging from 89% to 93% when com-
pared to majority voting). The binary ground truth used in our experiments was generated
with voxel-wise majority voting across all four experts. The dataset totalizes 940 cross-
sectional 2D slices, whose resolution varies across centers: from 0.25x0.25 mm2 to 0.5x0.5
mm2.

MS brain lesion challenge

The MS brain lesion dataset was presented during the MICCAI 2016 challenge. It in-
cludes MRI scans of 15 subjects with five contrasts: T1-weighted, T1-weighted Gadolinium-
enhanced, T2-weighted, PD T2-weighted, and FLAIR. The data was evenly acquired from
three different centers and scanners: Philips Ingenia (3T), Siemens Aera (1.5T), and Siemens
Verio (3T). MS lesions were manually segmented by seven experts. A consensus segmenta-
tion obtained with the Logarithmic Opinion Pool Based STAPLE algorithm [88] is used as
ground truth in our experiments. The Dice score fluctuates between 69% and 77% when com-
paring each expert segmentation with the consensus ground truth. Moreover, the resolution
varies from one center to another: 1x0.5x0.5 mm3, 1.25x1x1 mm3, and 0.7x0.75x0.75 mm3

(right-to-left, posterior-to-anterior, inferior-to-superior). The provided dataset was already
preprocessed as follows: denoising with the non-local means algorithm [89], rigid registra-
tion [90] on the FLAIR contrast, brain extraction, and bias correction with N4 algorithm [91].

BraTS challenge 2019

The BraTS challenge 2019 includes 335 subjects with high grade or low grade gliomas ac-
quired from 19 different centers with varying acquisition protocols and 3T scanners (BraTS
2019). Four contrasts were provided: T1-weighted, T1-weighted Gadolinium-enhanced,
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T2-weighted, and FLAIR. The peritumoral edema, the Gadolinium-enhancing tumor, and
the necrotic and non-enhancing tumor core were manually segmented by one to four ex-
pert neuro-radiologists according to a common protocol. Rigid registration to a common
anatomical template, skull-stripping, and 1 mm isotropic resampling was performed on the
provided dataset. 20 subjects with high grade gliomas were randomly chosen from the
dataset to perform multiple trainings within a reasonable time, while allowing proper cross-
validation between them. The 20 subjects selected are listed in the ‘brats_subjects.txt’ file
(https://github.com/ivadomed/article-softseg). As our study focuses on the compar-
ison between soft and hard segmentation, we did not perform multi-class training. Hence, a
single label was retained for the experiments: the tumor core composed of the necrotic and
enhancing tumor.

4.3.3 Training protocol

Different training protocols were selected for each dataset based on initial hyperparameter
exploration (Table 4.1).

Training / validation / testing split

For the SCGM challenge dataset, the four centers with their associated data were randomly
split into groups of size two / one / one to compose the training, validation, and testing sets,
respectively. We split the SCGM dataset according to the acquisition center to assess the
approaches’ ability to generalize to new acquisition parameters. For the MS brain lesion and
BraTS segmentation tasks, we trained the networks on 60% of the patients, with 20% held
out for validation and 20% for testing. Center-wise splitting was not possible for the MS
brain or BraTS datasets as the origin of images was not directly available.

Preprocessing

All data were resampled to a common dataset-specific resolution (see Table 4.1), using spline
interpolation (2nd order) for the images and linear interpolation for the ground truths. The
2nd order interpolation was chosen to preserve higher spatial frequency content in the images,
while the 1st order for the labels was selected to avoid high frequency oscillations at the
interface of the binary segmentation. Cross-sectional slices were subsequently center-cropped
to a common size specific to each dataset (see Table 4.1).

https://github.com/ivadomed/article-softseg
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Table 4.1 Training parameters for each dataset.

For all training parameters, please see configuration files: https://github.com/ivadomed/
article-softseg/tree/main/config. Abbreviations: MS: multiple sclerosis; RPI: right-to-
left, posterior-to-anterior, inferior-to-superior orientation; SCGM: spinal cord gray matter.

Data augmentation

For data augmentation, affine transformations were randomly applied to all training samples
using linear interpolation (see Table 4.1 for details). Segmentation labels from the conven-
tional approach (i.e., hard training) were binarized after applying data augmentation, while
soft training candidates were untouched to preserve the softness of their augmented masks.
We assessed the impact of binarized augmented masks (i.e., hard ground truth) compared to

https://github.com/ivadomed/article-softseg/tree/main/config
https://github.com/ivadomed/article-softseg/tree/main/config
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non-binarized augmented masks (i.e., soft ground truth), see section 4.3.4 for more details.

Intensity normalization

The intensities of each image were standardized by mean centering and standard deviation
normalization. When several contrasts were available (MS brain, BraTS), this normalization
was done on each contrast separately.

Iterations

All models were trained with a patience of 50 epochs and a maximum epoch count of 200.
Batch sizes of 8, 24, and 24 were respectively used for the SCGM, brain MS, and BraTS
datasets

Optimization

The learning rate was modified throughout the training according to the cosine annealing
scheduler with an initial value of 0.001 for the SCGM dataset, 0.0005 for the MS dataset,
and 0.0001 for the BraTS dataset.

Network architecture

For all experiments, we used a U-Net architecture [18] with a depth (i.e., number of down-
sampling layers) of 3 for the SCGM challenge and of 4 for the brain MS lesion challenge and
BraTS data (see section 4.3.4 for details). The choice of depth was based on preliminary
hyperparameters optimization. Batch normalization [92], ReLU function, and dropout [93]
followed each convolution layer. Convolution layers had standard 3×3 2D convolutions filters
and a padding size of 1.

Activation function

Two different activation functions were tested on the model’s output: sigmoid or normalized
ReLU function (Figure 4.1B). Throughout the experiments, we assessed the characteristics
exhibited by the model’s predictions when using either sigmoid or normalized ReLU.

Loss function

We compared the use of a regression loss function to a standard classification loss function
for segmentation tasks (see Figure 4.1C), using the Adaptive Wing loss [68] vs. the Dice
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loss [34]. The Adaptive Wing loss, initially introduced for heatmap regression for labeling
facial key points, was chosen for its ability to propagate and predict soft values, but the
proposed approach could work with other regression losses. For the Adaptive Wing loss,
preliminary experiments led to the hyperparameters indicated in Table 4.1.

Implementation

Implementation and model training was done with ivadomed v2.2.1 [35]. ivadomed is a
Python-based open-source framework for deep learning applied to medical imaging (https:
//ivadomed.org/). To promote the reproducibility of our experiments, all configuration files
can be found at https://github.com/ivadomed/article-softseg.

4.3.4 Evaluation

Evaluation protocol

To isolate the specific impact of each explored feature (hard/soft mask, activation function,
loss), five candidates were compared (see Table 4.2). Hard-Sig-Dice represents the conven-
tional deep learning candidate using binarization with a sigmoid activation function and Dice
loss (Figure 4.1, panel 1). Our proposed hypothetically-best candidate is Soft-ReLU-Wing
(Figure 4.1, panel 2, SoftSeg). Hard-ReLU-Wing, Soft-ReLU-Dice, and Soft-Sig-Wing each
has only one feature changed from our proposed candidate.

Cross-validation was applied to each model candidate. For the SCGM datasets, each model
was trained 40 times, with an even split on the test centers (10 trainings with center 1 as test
set, 10 trainings with center 2 as test set, etc.). For the MS and BraTS datasets, each model
was trained 10 and 15 times respectively, with a different dataset split for each model. For
each of the evaluation metrics (see 4.3.4), a non-parametric 2-sided Wilcoxon signed-rank
test compared the Soft-ReLU-Wing candidate with every other candidate. A p-value inferior
or equal to 0.05 was considered significant.

Evaluation metrics

Before computing the evaluation metrics, the network predictions were resampled to the
native resolution (i.e., resolution of the native ground truth) and binarized. The threshold
used to binarize the predictions was determined by searching for the optimal value (between
0 and 1 with an increment of 0.05) in terms of Dice score when using the trained model on
the training and validation images. The metrics include: (i) Dice score, (ii) precision, (iii)

https://ivadomed.org/
https://ivadomed.org/
https://github.com/ivadomed/article-softseg
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Table 4.2 Candidates description.

Each row represents a candidate (i.e. a training approach), whose features are detailed in
the columns. Abbreviations: GT: ground truth.

recall, (iv) absolute volume difference (absolute volume difference between the ground truth
and prediction, divided by the ground truth volume), (v) relative volume difference, and
(vi) mean squared error (MSE). All metrics are expressed in percentages. For the MS lesion
segmentation task, we also included lesion detection metrics which are clinically relevant: the
lesion true positive rate (LTPR) and false detection rate (LFDR) as defined in [75]. These
detection metrics were not used for the other datasets (SCGM and BraTS), because in these
cases there was always only one 3D target object per MRI volume.

4.4 Results

In the following sections, we compare how the features illustrated in Figure 4.1 influence the
training process (section 4.4.1), the prediction values dynamic (section 4.4.2), and the overall
model performance on the testing dataset (section 4.4.3).

4.4.1 Training process

Figure 4.2 shows the evolution of the training process across different model configurations.
The conventional approach (Hard-Sig-Dice) yielded quasi-binary predictions from the very
early stages of the training. Conversely, the other candidates produced predictions with low
values on the gray matter surrounding at the early stages (see epoch #5 and 10), while at
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later stages the object is delineated with a soft segmentation (i.e., high prediction values
within the object core and lower values on the edges). Among the three proposed training
schemes (bottom rows), the candidate Soft-ReLU-Dice produced high prediction values (i.e.,
red voxels in Figure 4.2) earlier in the training process than the other two. Although the
conventional candidate yielded high prediction values earlier, it did not necessarily trigger
an “early-stopping” of the training earlier than the proposed candidates. The mean early
stopping epochs were 123 and 128 for the conventional and the proposed approach, respec-
tively. This means that training time was not importantly impacted when performing soft
training. Unlike the output of the conventional candidate, the edges of the segmented object
with soft training remained soft even at the final stages (see “Last epoch” in Figure 4.2).
This was particularly the case for the Soft-ReLU-Wing candidate. Results of the Soft-Sig-
Wing candidate are not depicted here because the model training did not converge during
this experiment (see Table 4.3 for overall quantitative results).

Figure 4.2 Learning progression through epochs for different training schemes on the SCGM
dataset.

Each row represents a training scheme, while each column shows the model prediction on a
validation slice at a particular training epoch. The last epoch (right column) varied across
approaches because of the early stopping feature. Predictions are overlaid on the anatomical
data and range from 0 (transparent) to 1 (Red). Soft-Sig-Wing predictions are not shown
here since the model training did not converge.
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4.4.2 Output softness

To compare the performance of the different model configurations, we binarized the model
predictions before computing the evaluation metrics. The binarization threshold was opti-
mized by finding the value (between 0.05 and 0.95, with an incremental step of 0.05) that
maximizes the Dice score when inferring on the training and validation dataset. Figure 4.3
shows the results of this optimization for each candidate (rows) and each iteration (purple
dots). One notable observation is the large min-max Dice range across threshold values (up
to 34% for Soft-ReLU-Wing), confirming the importance of this threshold optimization step.
Conversely, the Dice range is more modest for the conventional candidate (9% for Hard-Sig-
Dice), which is a direct consequence of the greater number of polarized values around 0 and
1. The loss function had the greatest impact on the min-max Dice range: it dropped from
34% to 13% when switching Adaptive Wing loss to Dice loss functions. This result highlights
the importance of threshold fine-tuning when using a regression loss.

Figure 4.4 represents the voxels intensity distribution across the tested candidates and
datasets. For the SCGM dataset (Figure 4.4A), all candidates yielded predictions with values
concentrated around 1. Soft-ReLU-Wing intensity distribution is more spread out compared
to other candidates and therefore its predictions could be considered being the least binarized.
On the brain MS dataset (Figure 4.4B) and the BraTS brain tumor dataset (Figure 4.4C),
two groups of candidates stand out: the “hard” group Hard-Sig-Dice, Soft-Sig-Wing and the
“soft” group Soft-ReLU-Dice, Hard-ReLU-Dice, Soft-ReLU-Wing. In the “hard” group both
candidates exhibit polarized predictions near 0 or 1. Conversely, the “soft” group values are
more spread out in the ]0, 1] range (for the MS dataset) and ]0, 0.5] range (for the BraTS
dataset). In the MS dataset, Soft-ReLU-Wing and Soft-ReLU-Dice are almost superimposed
and yielded more non-zero values than Hard-ReLU-Wing. Across the three datasets, the
“soft” group exhibits a higher number of non-zero predictions (higher area under curve).
Overall, Figure 4.4 shows that candidates using the ReLU activation function (vs. sigmoid)
are associated with softer predictions.

Figure 4.5 illustrates the performance of each training scheme for the SCGM dataset in one
representative subject per center. From this figure, one can appreciate the variability in
terms of image resolution, white-to-gray matter contrast, and signal-to-noise ratio. Image
heterogeneity had a notable impact on candidates’ performance across test centers. On
average, across all iterations, the candidates presented in Figure 4.5 obtained a Dice score of
86.2%, 81.2%, 88.6%, and 78.0% for centers 1, 2, 3, and 4, respectively. When compared with
the conventional candidate, Soft-ReLU-Wing showed the highest Dice score for all test centers
except for center #4 (77.4% for Soft-ReLU-Wing vs. 79.0% for Hard-Sig-Dice). Interestingly,
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Figure 4.3 Optimization of the binarization threshold for model prediction.

For each threshold value (between 0.05 and 0.95, with an incremental step of 0.05), the Dice
score was computed on the trained model predictions for the training and validation SCGM
data. The thick green line represents the average value while the green shaded area represents
the min/max range of values. Purple dots represent the threshold that maximizes the Dice
score, for each iteration. For the sake of comparison, the y-scale was kept the same across
the four candidates. The lowest value for the Soft-ReLU-Wing (which is not shown due to
cropping) is 56, and 70 for Hard-ReLU-Wing. Soft-Sig-Wing graph is not shown here since
the model training did not converge.
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Figure 4.4 Distribution of non-zero prediction voxels for each candidate on SCGM (A), MS
brain lesions (B), and BraTS (C) datasets.

Distributions are computed using the kernel density estimation method and normalized so
the area under the curve sums up to 1 for all curves. Training of the Soft-Sig-Wing model did
not converge and is therefore not shown. The Soft-ReLU-Dice (green) and Soft-ReLU-Wing
(purple) curves are almost perfectly superimposed on B. Because of the density estimation,
the curves slightly extend outside of the prediction values (below 0 and above 1). Abbrevia-
tions: MS: multiple sclerosis ; SCGM: spinal cord gray matter.
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in centers 1, 2, and 3 where images have the lowest resolution in the cross-sectional plane
(0.3, 0.5, and 0.5 mm isotropic for centers 1, 2, and 3 respectively vs. 0.25 mm isotropic for
center 4), the softer candidates segmented more truthfully the gray matter with an average
improvement of 3.2% Dice score. This observation is in line with the hypothesis that soft
training is well suited for mitigating PVE, i.e, the benefits are more considerable in images
with lower spatial resolution.

Figure 4.5 Example of segmentation result for the SCGM dataset, across the four centers
(columns) and the four candidates.

The first row shows the input 2D slice, the second row shows the manual ground truth.
Rows 3-6 correspond to specific training schemes (see Table 4.2 for details). Predictions were
binarized as described in section 4.3.4. Soft-Sig-Wing predictions are not shown here since
the model training did not converge.

Figure 4.6 depicts MS lesion predictions across the five candidates. MS lesion predictions
present two patterns of softness among approaches. Hard-Sig-Dice and Soft-Sig-Wing predict
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mostly values around 1 (“hard” group, as defined in Figure 4.4 description), whereas Soft-
ReLU-Dice, Hard-ReLU-Dice, and Soft-ReLU-Wing display a broader range of prediction
values (“soft” group, as defined in Figure 4.4 description). The final activation distinguishes
the two groups; the candidates displaying softer outputs had a normalized ReLU activation
function, while the other candidates predicting more binarized values used a sigmoid as final
activation. The candidates from the “hard” group, Hard-Sig-Dice and Soft-Sig-Wing, show
overall less true positives (and consequently less false positives). Conversely, the softer candi-
dates, Soft-ReLU-Dice, Hard-ReLU-Dice, and Soft-ReLU-Wing, are associated with a higher
true lesions positive rate. On the close-ups from Figure 4.6 (left column), the candidates
from the “hard” group show a single segmented lesion (two are missing), while all candidates
from the “soft” group exhibit three distinct true positives.

Figure 4.7 illustrates segmentation results for the BraTS dataset. As observed in Figure 4.4
and 4.6, the same two groups with differing softness patterns can be isolated: Hard-Sig-Dice
and Soft-Sig-Wing (“hard” group), and Soft-ReLU-Dice, Hard-ReLU-Dice, and Soft-ReLU-
Wing (“soft” group). The “hard” group presents over-segmentation of the tumor core. Even
on the false positive voxels, the raw prediction of the model yields a value of 1. Conversely, the
soft group exhibits a ranging value of confidence around the borders of the tumor cores. The
blue background on the Soft-Sig-Wing candidate is caused by most values being near 0 (not
exactly 0). This candidate showed instability during training and did not reach convergence
on every cross-validation. Like for the SCGM and MS lesion brain datasets, candidates from
the “soft group” produce soft edges, and consistent shapes.

4.4.3 Segmentation performance

SCGM

Table 4.3 summarizes the segmentation performance metrics for the five candidates on the
SCGM dataset. Soft-ReLU-Wing yielded the highest Dice, precision, recall, absolute volume
difference, and MSE scores compared to the conventional and other proposed approaches.
When considering only the Dice score, there is a statistical difference between Soft-ReLU-
Wing vs. Hard-Sig-Dice (p-value=0.0011), Hard-ReLU-Wing (p-value=0.0385), and Soft-
Sig-Wing (p-value=1.10e-7). Soft-Sig-Wing did not converge with the GM dataset on all
iterations which explains the low performances compared to the other candidates.
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Figure 4.6 Brain MS lesions segmentation for the five candidates.

The first row represents the input image and the consensus segmentation from the seven
experts. For the remaining rows, the second column presents the raw predictions and the
third column contains the binarized predictions. Predictions are overlaid on the anatomical
data and range from 0 (transparent) to 1 (Red)

Brain MS lesions

Table 4.4 presents the candidates performance metrics on the MS lesions dataset. As observed
on the SCGM dataset, Soft-ReLU-Wing, had the highest Dice score, recall, and LTPR. Soft-
Sig-Wing predicted less false positives compared to the other candidates illustrated by the
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Figure 4.7 Segmentation of brain tumor core for the five candidates.

The first row represents the input image and the ground truth with a close-up of the tumor
segmentation. For the remaining rows, the left image represents the raw core tumor seg-
mentation prediction from the model and the right the binarized prediction. Predictions are
overlaid on the anatomical data and range from 0 (transparent) to 1 (Red).

highest precision score and the lowest LFPR. No statistical differences were observed between
groups, probably due to large standard deviation between iterations on the MS dataset
(testing set: n=3).
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Table 4.3 Gray matter segmentation performance metrics for the five candidates.

The error represents the standard deviation from 40 trainings (MEAN ± STD). The
optimal score value is indicated under each metric name. Rows identify the five can-
didates (see Table 4.2 for candidates description). Columns represent the metrics.
** p − value < 0.05 for 2-sided Wilcoxon signed-rank test compared to the Soft-
ReLU-Wing candidate. Abbreviations: MSE: mean squared error ; Opt: optimal.

Brain tumors

Table 4.5 reports the segmentation performance metrics of the candidates on the BraTS
dataset. Soft-ReLU-Wing is associated with the highest Dice score, precision, relative vol-
ume difference, and MSE (Table 4.5). This candidate, when compared with the conven-
tional candidate, reached statistical differences for precision (p-value=0.039), and MSE (p-
value=0.024). The “soft” group, composed of Soft-ReLU-Wing, Hard-ReLU-Wing, and Soft-
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Table 4.4 Brain MS lesion segmentation performance metrics for the five candidates.

The error represents the standard deviation from 10 trainings (MEAN ± STD). The op-
timal score value is indicated under each metric name. Rows identify the five candidates
(see Table 4.2 for candidates description). Columns represent the metrics. Abbrevia-
tions: LFDR: lesion false detection rate ; LTPR: lesion true positive rate ; Opt: optimal.

ReLU-Dice, presented similar Dice, precision, recall, MSE scores. Soft-ReLU-Wing yielded
the highest recall score and Hard-ReLU-Wing the best absolute volume difference. As pre-
viously observed with the SCGM dataset, the candidate Soft-Sig-Wing did not converge
on every iteration leading to lower segmentation scores. The conventional approach largely
over-segmented tumor cores yielding an average relative volume difference of -29.9% and an
average absolute volume difference of 67.1%, as illustrated in Figure 4.7.
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Table 4.5 Brain tumor segmentation performance metrics for the five candidates.

The error represents the standard deviation from 15 trainings (MEAN ± STD) on 20
randomly-selected subjects from the 2019 BraTS dataset. The optimal score value is in-
dicated under each metric name. Rows identify the five candidates (see Table 4.2 for candi-
dates description). Columns represent the metrics. ** p− value < 0.05 for 2-sided Wilcoxon
signed-rank test compared to the Soft-ReLU-Wing candidate. Abbreviations: Opt: optimal.

4.5 Discussion

We introduced an alternative approach, SoftSeg, to train deep learning models for image
segmentation. We demonstrate the application of SoftSeg in three different and publicly-
available medical imaging datasets. The proposed training scheme is based on prediction
labels with continuous (“soft”) rather than binary values. The benefits of soft segmentation
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include: a better precision when computing segmentation-based morphometric measurements
(e.g., tumor size), the possibility to encode partial volume information, and other useful
information that are discussed in the perspectives section (4.5.5). These soft segmentations
are obtained for free as a side effect of not binarizing after data augmentation. To allow
soft label propagation through the network training process, we modified the conventional
training pipeline by using (i) soft ground truth masks, (ii) a normalized ReLU final activation
layer, and (iii) a regression loss function (Adaptive Wing loss). Overall, the combination of
these three features outperformed the conventional candidate on the three tested datasets
(see Tables 4.3 to 4.5). Besides, this candidate yields soft predictions, especially at object
boundaries or on small objects such as MS lesions. These soft predictions provide relevant
insights on the model’s confidence and allow meaningful automated post-processing. In
particular, the proposed approach has an increased sensitivity (e.g., identify a higher number
of lesions), which is desired by radiologists. The developed training pipeline is freely available
as part of ivadomed [35].

4.5.1 Impact of the soft features for training

The three soft features differing from the conventional approach are a soft input, the final
activation, and the loss function. These features had an overall positive impact on segmen-
tation performance. Taken separately or altogether, they yielded the highest Dice score and
best output softness for each of the three tested datasets. Removing one soft feature from
the fully soft candidate (Soft-ReLU-Wing) slightly lowered the Dice score for the candidates
that reached convergence. On the brain MS and BraTS datasets, the final activation had
the greatest impact on the predictions’ softness. Two different behaviors were clearly dis-
tinguishable when changing the final activation. The group associated with the normalized
ReLU activation function (“soft” group) yielded softer predictions that can be assessed quan-
titatively (Figure 4.4) and qualitatively (Figure 4.6), when compared to the group with a
sigmoid as final activation (“hard” group). In Table 4.4, the “soft” group can be associated
with higher true positive detection rates (better recall and LTPR) and the “hard” group with
less false positives (better precision and LFDR). This comparison cannot be made for the
SCGM dataset, since the candidate with the conventional final activation did not converge.
Similarly, the loss function and the use of hard vs. soft ground truths had overall a positive
impact on the segmentation performance. Both features had an average Dice score drop of
0.8% across datasets when using their hard versions compared to the fully soft candidate,
Soft-ReLU-Wing.

Future investigations could look at the potential benefits of other loss and last activation
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functions in combination with the SoftSeg framework. For instance, the recently proposed
“Log-Cosh-Dice loss” could be of interest since its log-cosh transformation has been success-
fully employed in regression tasks for smoothing purposes [31]. Regarding the last activation
function, one can consider “softplus”, which is a smooth version of the ReLU activation func-
tion [94]. A multiclass version of NormReLU could also be investigated since the current
version does not guarantee the classes to be mutually exclusive (e.g., normalize NormReLU
output by the sum of predictions along the class axis).

4.5.2 Non convergence of Soft-Sig-Wing

Soft-Sig-Wing performed poorly on SCGM and BraTS datasets (Tables 4.3 and 4.5). Some
training runs from this candidate did not reach convergence while others did. Since Soft-
ReLU-Wing always converged in our experiments, the instability of Soft-Sig-Wing may be
attributed to the use of the sigmoid with a soft training approach. Since the sigmoid function
tends to classify voxels (i.e., almost binary outputs), it may not be suitable to use in combina-
tion with a regression loss function which is not designed for polarized inputs. Consequently,
the association of these two features could hinder training convergence.

4.5.3 Thresholding the output prediction

Given that the ground truths used in this study are binary, we were bound to use evaluation
metrics that accommodate binary inputs (e.g., Dice score, prediction, recall). Moreover,
thresholding the prediction was necessary because these metrics penalize soft predictions.
For instance, a soft prediction of 0.51 leads to a Dice score of 0.675. The same prediction
undergoing binarization at a 0.5 threshold would produce a Dice of 1.0. Note that, when
considering a regression-type metric like MSE, SoftSeg still outperformed the conventional
approach without thresholding the output predictions. For example on the SCGM dataset,
MSE was 0.215 ± 0.070 for SoftSeg vs. 0.251 ± 0.064 for the conventional approach.

SoftSeg generates more distributed values between 0 and 1, hence this method is more sen-
sitive to the selected threshold. Nevertheless, SoftSeg proved to generalize well to new data.
It yielded the best performance on the SCGM cross-validation where testing data originated
from unseen centers with different acquisition parameters even though the threshold was
optimized on the training/validation sets.
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4.5.4 Repeatability and statistical differences

Although rarely employed in deep learning model evaluation, we performed a cross-validation
statistical analysis for each datasets. We used 40 folds on the SCGM dataset (10 per center),
10 folds on the brain MS dataset, and 15 folds on the BraTS dataset. For each dataset,
the number of iterations for the cross-validation was determined by the typical training time
while allowing us to run the different experiments in a reasonable time ( 12 hours/training
for the BraTS dataset on a single NVIDIA Tesla P100 GPU). Resorting to cross-validation
to evaluate our approaches is particularly relevant for the brain MS and brain tumor datasets
due to the small number of subjects. Also, the heterogeneity of lesion load and tumor core
size led to high variations in performance across iterations (mean Dice standard deviation:
13.2% on MS lesions and 25.9% for brain tumors). Statistical difference was not reached for
most metrics of MS and brain tumor dataset. The absence of statistical difference can be
explained by the large standard deviations due to a wide performance range from one subject
to another. The MS lesion and brain tumor datasets included 15 and 20 subjects leading
to only 3 and 4 testing subjects respectively. Also due to the size of the dataset, only 10
(MS lesions) and 15 iterations (brain tumors) were performed on these datasets. Datasets
with more patients leading to smaller standard deviations and more iterations would help in
getting statistical differences.

4.5.5 Perspectives

Partial volume effect accountability

Morphometric analyses in MRI aim at measuring shape and/or volumes from anatomical
(e.g., brain, spinal cord) or pathological structures (e.g., tumors, MS lesions). These mea-
sures are traditionally computed from binary segmentations produced manually or (semi-
)automatically. As a result, their precision is inherently limited by the native spatial res-
olution (set during image acquisition) relative to the size of the object [77, 95]. A strong
motivation for this work was to introduce a means to produce soft segmentations faithful
to the partial volume information. We show that SoftSeg does produce soft segmentations
(Figure 4.4) while maintaining good performances on traditional metrics (Tables 4.3-4.5).
The next step is to confirm/infirm that SoftSeg can produce accurate partial volume estima-
tions. In order to do so, one needs a ground truth that encodes such information, unlike the
datasets used in the present study where ground truths were binary. A possible approach
would be to synthesize a dataset at various resolutions from an analytical model of tissue dis-
tributions [96–98], train a model with SoftSeg and validate the estimated tissue class fraction
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voxel-wise.

Encoding expert confidence during training

Manual segmentation of medical image segmentation is highly challenging and is prone to
intra-expert variability. For instance, experts usually have a difficult time precisely delineat-
ing very small lesions [74]. This challenge is partly due to them being required to decide if a
voxel pertains to a lesion or not. The need for this binary decision has been driven by tradi-
tional training approaches, which require a binary ground truth as input for the model. With
the SoftSeg method proposed here, expert raters will have the possibility to modulate their
manual rating and assign values that reflect their level of confidence, e.g., 0.5, 1, and 2 would
be respectively associated with a low, medium, and high confidence about the presence of a
lesion. Although more time-consuming than binary manual segmentation, encoding expert
confidence in neural networks via the generation of soft ground truths would likely have a
positive impact on segmentation performance.

Preserving inter-expert variability

High inter-expert variability is a widespread challenge in medical image segmentation, result-
ing from factors such as image quality, expert training/experience [74,99,100]. Some datasets
provide the segmentation from multiple experts to account for this variability. However, these
manual segmentations are usually merged into a single binary mask using label fusion meth-
ods, e.g., majority voting, STAPLE [64]. Recent studies highlighted the negative effect of
label fusion methods to obtain reliable estimates of segmentation uncertainty as inter-expert
variability is ignored when models are trained on the resulting binary masks [8, 9]. The
SoftSeg method introduced here could elegantly account for the inter-expert variability and
calibrate the model confidence by inputting soft ground truths that incorporate information
about experts’ disagreement. It is however unclear how this initial soft segmentation should
be obtained, e.g., by averaging the expert segmentations, or using the recently-published
soft STAPLE approach [65]. Moreover, validating the specific benefits of encoding richer
inter-rater information into the ground truth masks would pose additional challenges since
intra-rater variability also exists. Future investigations should assess the relevance of soft
labels, both in terms of segmentation performance and uncertainty estimation.
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Combining soft segmentation with uncertainty estimation

Estimation of deep learning model uncertainty is an active field of research [101–103] in
medical image segmentation, following the seminal works from [52]. Whether they are based
on output probability calibration [21, 101], ensemble methods [101] or Bayesian models [75],
all these approaches provide a representation of how trustful a prediction is. A common
denominator of the recent investigations on uncertainty applied to segmentation tasks, is
that they have relied on the conventional “hard” training, which produces highly polarized
predictions, and as such might not be the most adequate for representing the rich spectrum
of uncertainty values on the prediction. The conventional segmentation pipeline tends to
yield overconfident predictions, even on misclassified voxels, leading to poor interpretation
of the model’s output [21], which is well illustrated in Figure 4.7. A more comprehensive
interpretation of deep learning model outputs would be achievable by estimating uncertainty
on soft segmentation instead. Soft segmentation could also alleviate issues encountered with
some uncertainty metrics which are sensitive to binary outputs [101]. Future investigations
could evaluate the benefits of soft training used in combination with uncertainty estimation.

4.6 Conclusion

We introduced SoftSeg, a deep learning training method that can produce soft segmentations
instead of the traditional binary segmentations. SoftSeg leads to informative and relevant
soft outputs well calibrated while demonstrating an increase of performance on three open-
source medical imaging segmentation tasks. Although used here with a simple 2D U-net
as a proof-of-concept, SoftSeg can easily be integrated within already-existing deep learning
architectures. Besides, SoftSeg could be leveraged to exploit a lossless combination of ground
truth from multiple expert raters or to incorporate uncertainty estimation into an end-to-end
soft framework.
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5.1 Abstract

Medical tasks are prone to inter-rater variability due to multiple factors such as image quality,
professional experience and training, or guideline clarity. Training deep learning networks
with annotations from multiple raters is a common practice that mitigates the model’s bias
towards a single expert. Reliable models generating calibrated outputs and reflecting the
inter-rater disagreement are key to the integration of artificial intelligence in clinical practice.
Various methods exist to take into account different expert labels. We focus on comparing
three label fusion methods: STAPLE, average of the rater’s segmentation, and random sam-
pling of each rater’s segmentation during training. Each label fusion method is studied using
both the conventional training framework and the recently published SoftSeg framework
that limits information loss by treating the segmentation task as a regression. Our results,
across 10 data splittings on two public datasets (spinal cord gray matter challenge, and
multiple sclerosis brain lesion segmentation), indicate that SoftSeg models, regardless of the
ground truth fusion method, had better calibration and preservation of the inter-rater rater
variability compared with their conventional counterparts without impacting the segmenta-
tion performance. Conventional models, i.e., trained with a Dice loss, with binary inputs,
and sigmoid/softmax final activate, were overconfident and underestimated the uncertainty
associated with inter-rater variability. Conversely, fusing labels by averaging with the Soft-
Seg framework led to underconfident outputs and overestimation of the rater disagreement.
In terms of segmentation performance, the best label fusion method was different for the
two datasets studied, indicating this parameter might be task-dependent. However, SoftSeg
had segmentation performance systematically superior or equal to the conventionally trained
models and had the best calibration and preservation of the inter-rater variability. Our code
is available at https://ivadomed.org.

Keywords Inter-rater variability, Calibration, Segmentation, Deep learning, Soft training,
Label fusion.

5.2 Introduction

Manual annotation of medical images is challenged by ill-defined boundaries between anatom-
ical regions, and hence prone to inter-expert variability. Inter-expert disagreement is widely
acknowledged as a key limitation in medical image analysis [7] as it hinders the definition of

https://ivadomed.org
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ground truth (GT) annotation [63, 99, 104]. For instance, the multiple sclerosis (MS) brain
dataset annotated by 7 experts reported an inter-expert agreement ranging between experts
from 0.66 to 0.76 of median Dice score with the consensus [105]. This variability can arise
from many factors, including image quality, expert experience, or guidelines clarity [7,63]. To
mitigate this issue along with speeding annotating time and enhancing reproducibility, a large
number of automatic annotation algorithms have been proposed [11, 23, 54, 106]. However,
the annotations provided by these automatic algorithms are likely to reflect the characteris-
tics of the data they are trained on, including the biases they carry such as different expert
experience or style [107]. Therefore, it is common practice to provide, for each image, anno-
tations from multiple experts [7,63,69,70]. It remains, however, unclear how to properly use
these multiple experts’ annotations, i.e., to combine them to generate a GT, to preserve the
inter-rater variability information while limiting the expert bias encoded in the model [63].

5.2.1 Study outline

This study compares different methods to aggregate multiple experts’ annotations as GT
in algorithm training. A common method to use multiple experts’ annotations is to fuse
them to create a single mask per image. The fusion method can lead to masks with either
categorical values (e.g., zeros or ones for a one-class segmentation task) or soft values (e.g.,
between 0 and 1), hereafter called “hard fusion” and “soft fusion”, respectively. Hard fusion
methods include “Simultaneous truth and performance level estimation” (STAPLE) [64],
majority voting, intersection, or union, and were widely used in the automatic segmentation
literature. On the other hand, soft fusion methods, e.g., averaging the experts’ annotations,
received a modest interest, probably because most segmentation algorithms assume GTs with
categorical values. A training pipeline, called SoftSeg, has been recently proposed to favor
the propagation of soft labels (i.e., non-categorical values) [13]. The comparison between soft
and hard fusion methods questions the tradeoff between the precision and the generalization
of a “gold standard” as a precise ground-truth (i.e., hard / binary) may not be reflective of
the underlying inter-expert uncertainty. Alternatively, one can choose not to fuse the experts’
annotations and, instead, to use them independently when training a segmentation method.
This approach is hereafter called random sampling method and aims to preserve the raw
multi-expert labeling while confronting the algorithm to contradictory annotations [8, 9, 63].

5.2.2 Related works

Some studies compared methods to generate GT labels when experts disagree. Jensen et al.
demonstrated that hard fusion, i.e., majority voting, led to over-confident models on skin
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disease predictions (i.e., uncalibrated model) [8]. They showed that a “no fusion” approach,
i.e., label random sampling, could mitigate this miscalibration in the model’s prediction.
Jungo et al. compared hard fusion (STAPLE, majority voting, intersection, and union)
methods with the random sampling approach in terms of segmentation performance and
uncertainty estimation [9]. The random sampling method yielded uncertainty that was able
to reflect the underlying expert disagreement on synthetic data and on subjects with a Dice
score superior to the median of a brain tumor dataset, but no positive impact was noticed for
subjects with a low segmentation performance. Conversely, the hard fusion methods led to an
under-estimation of uncertainty, suggesting that inter-expert variability needs to be explicitly
taken into consideration when training models in order to reliably estimate uncertainty. To
the best of our knowledge, there is currently no study that compares soft fusion methods
with hard fusion and random sampling approaches.

5.2.3 Our contribution

In this study, we compare the impact of hard fusion, soft fusion, and label random sampling
methods using SoftSeg or a conventional training framework. The inter-rater variability is
lost in hard fusion methods [104] and the conventional framework, which inputs binarized
GT and trains with categorical losses, limiting the learning of expert disagreement. Hence,
we hypothesize that soft or random sampling methods and the SoftSeg framework will better
reflect the inter-rater variability, will generate more calibrated predictions, and will yield
improved segmentation performances than hard fusion and conventional training methods.
The label generated by these methods is used to feed a U-Net [18], widely considered as the
state-of-the-art in automatic image segmentation. The training is performed using both a
conventional pipeline and the recently proposed alternative, SoftSeg. Each method, six in
total (two training pipelines, each using the three methods to generate the GT, see Table 5.1),
are compared on two MRI open-source datasets, the spinal cord gray matter (SCGM) chal-
lenge [69] and multiple sclerosis (MS) brain lesion challenge [70], in terms of (i) preservation
of the inter-rater variability, (ii) model calibration and, (iii) segmentation performance.
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5.3 Method and Material

5.3.1 Method

Label fusion

Three methods to exploit multiple rater labels were studied: STAPLE [64], average across
GTs, and random sampling of one annotation during training without fusion [9]. STA-
PLE is an expectation-maximization algorithm widely used for label fusion in medical imag-
ing [49,70,108]. This method produces binary GTs. The second label fusion strategy studied,
averaging across all annotations, aims to preserve all the inter-rater variability information
by outputting soft (i.e., values between 0 and 1) GTs. However, conventional segmentation
pipelines usually binarize the GTs which leads to a majority voting when averaging segmenta-
tions across raters. To fully exploit this label fusion method, a soft segmentation framework
such as SoftSeg [13] is required. The third method does not merge the labels. During each
training epoch, one rater segmentation is randomly chosen as GT, eventually exposing the
model to all the rater’s annotations. Therefore, the random sampling method uses binary
segmentations.

Training framework

In this work, we compare each label fusion method when trained with both SoftSeg and a
conventional segmentation training framework. SoftSeg has three differences when compared
with the conventional approach: no binarization during the preprocessing and data augmen-
tation, soft final activation function, and training using a regression loss function [13]. The
final activation and the regression loss function are normalized ReLU and Adaptive Wing
loss [68] respectively as defined in [13]. The final activation was adapted for multi-class pre-
dictions. When using the conventional approach, the GTs were binarized after preprocessing
and data augmentation, the models were trained with a Dice loss, and sigmoid and softmax
final activation functions were used for the single-class and multi-class models respectively.

An additional note about SofSeg: in the original work of SoftSeg, the final activation function
used was a normalized ReLU. The ReLU prediction was then normalized by the maximum
value to have a segmentation prediction corresponding to a level of confidence from 0 to 1.
However, this activation function is not directly applicable to multi-class predictions as the
different classes would not have probabilities summing up to 1. To generalize the normalized
ReLU, the output of the original normalized ReLU is divided by the sum across all classes
including the background class. This way, all predicted classes are mutually exclusive and
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have probabilities summing to 1.

Table 5.1 Candidates’ description.

The columns indicate the label fusion method while the rows present the training framework.

Training protocol

All candidates were trained on 2D U-Net models. Training parameters for this work were the
same as the one described in [13] for the SCGM and MS brain lesion datasets. The processing,
training and evaluation pipeline is based on the open-source framework ivadomed.org [35].

5.3.2 Datasets

Two publicly available datasets with multiple raters were used to study label fusion: the
SCGM challenge [69] and MS brain lesion challenge [70].

Gray and white matter challenge

The SCGM dataset contains 80 T2*-weighted MRI of the cervical spinal cord, evenly acquired
in four centers with different MR protocols and scanner vendors. Four raters segmented the
gray and white matter from the scans using different guidelines and segmentation software
which increases the inter-rater variability across centers. While the dataset includes 80
subjects, only 40 had all 4 raters publicly available, hence, this subdataset of 40 scans was
retained for this study. A detailed description of the dataset and demographics of the scanned
subjects and acquisition parameters can be found in [69].

MS brain lesion challenge

The MS brain lesion dataset containing MRI scans from 15 subjects was presented dur-
ing the MICCAI 2016 challenge. MS lesions of each subject were annotated by seven ex-
pert raters. The dataset includes MRI scans with five contrasts: T1-weighted, T1-weighted

ivadomed.org
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Gadolinium-enhanced, T2-weighted, PD T2-weighted, and FLAIR. For a detailed description
of the dataset see [70].

5.3.3 Evaluation

Evaluation protocol

Each model was trained with multiple random dataset splittings to limit splitting bias. For
the SCGM dataset, 40 models were trained with an even split on the test centers (10 trainings
with center 1 as test set, 10 trainings with center 2 as test set, etc.), while for the MS brain
lesion dataset, 20 random splittings were performed (60/20/20% for training/validation/test
sets). Before assessing the predictions, the outputs were resampled in the native resolution.
A non-parametric 2-sided Wilcoxon signed-rank test compared the most commonly used
approach, “Conv-STAPLE”, with every other approach. Statistical difference was assessed
by considering 0.05 as p-value threshold.

Uncertainty due to inter-rater variability

To evaluate the preservation of the inter-rater variability, we assessed the correspondence
between the uncertainty from the prediction and the uncertainty associated with the multiple
annotations. The patient uncertainty can be measured with the predictive entropy (Equation
5.1) [9] which can be directly compared with the entropy associated to the multiple rater
segmentation (GT average). A high entropy value indicates a high inter-rater variability.
For example, if the fused label across raters is close to 0 or 1 in a given voxel, the level of
agreement is high (i.e., low entropy), while values near 0.5 indicate high disagreement. A
reliable model would generate a prediction reflecting the expert disagreement similarly to
the GT average. Therefore, we plotted the entropy of the prediction against the entropy of
the GT average and we expect the values to match. The correspondence was assessed by
computing the mean absolute error (MAE) between both values for each patient data.

H = −
Nvox∑
i=0

pilog(pi) (5.1)

where pi is the model’s prediction for voxel i and Nvox is the total number of voxels in the
image.

In addition, we quantified the voxel-wise similarity of the uncertain regions with voxels asso-
ciated with high inter-rater variability. The Brier score (Equation 5.2) enables us to assess
the similarity of non-binary data, hence was used to evaluate the similarity between the
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model’s prediction and the average labels from the expert raters. The average label from
raters was selected as GT to quantify the performance of the soft prediction since information
on inter-rater variability is encoded in this label while it cannot be directly observed from
the STAPLE GT. The metric was computed for each segmentation class.

Brierscore = 1
Nvox

Nvox∑
i=0

(yi − ŷi)2 (5.2)

where y is the GT average, ŷ is the prediction, and Nvox is the total number of voxels in the
image.

Calibration

Reliable deep learning models should predict calibrated outputs to truthfully indicate regions
more prone to error or inter-expert disagreement. The model’s calibration quantifies how
much the predicted values of a model truly represents the probability of the outcome, hence
is an indicator of the quality of the model’s confidence. For instance, a perfectly calibrated
model predicting 0.9 is confident at 90% of its prediction and, therefore, should be correct
90% of the time. Reliability diagrams [109] and the expected calibration error (ECE) [110]
were computed with the code from google-research repository1 as used in [12] to assess the
calibration of the candidates.

Reliability diagram The reliability diagram helps to visualize the calibration of the model
and plots the prediction’s accuracy (Equation 5.3) in relation to the model’s confidence
(Equation 5.4). The identity function represents a perfectly calibrated model where the
accuracy and the model’s confidence are always equal. Any deviation from this line can
be translated into over- or underconfidence from the model. The model’s confidence was
discretized into K=10 bins of size 0.1 ( 1

K
). We define confidence as the maximal prediction

across classes for a given voxel. For a 3-class prediction problem, a model predicting [0.9,
0.06, 0.04] is associated with a confidence of 0.9. The minimum confidence for a 3-class
prediction problem is 0.33+ (i.e., [0.33−, 0.33−, 0.33+]), while for a binary prediction the
minimum confidence is 0.5+ (i.e., [0.5−, 0.5+]). The predicted values are compared to the
binarized GT, here, the STAPLE GT. The accuracy is the proportion of voxels from a given
bin, Bk, where the predicted class corresponds to the GT. The bin Bm includes all predictions
associated with a confidence of [ k

K
, k+1
K

) [12]. This accuracy is then compared to the average
1https://github.com/google-research/google-research/blob/master/uncertainties/sources/

postprocessing/metrics.py

https://github.com/google-research/google-research/blob/master/uncertainties/sources/postprocessing/metrics.py
https://github.com/google-research/google-research/blob/master/uncertainties/sources/postprocessing/metrics.py
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prediction in the bin. For instance, for the bin including voxels with values from [0.8 to 0.9),
we expect that 85% of the voxels in this bin, assuming uniform distribution of predicted
values, are well classified. If the accuracy is greater than the model’s confidence, the model
is underconfident, while a lower accuracy compared with the model’s confidence means the
model is overconfident.

Accuracy(Bk) =
∑
i∈Bk 1(yi = ŷi)

#Bk

(5.3)

Confidence(Bk) =
∑
i∈Bk ŷi
#Bk

(5.4)

where #Bk corresponds to the number of elements in the bin Bk.

Expected calibration error The reliability diagram does not display the information
about the quantity of voxels in each bin. The ECE (Equation 5.5) is a metric extracted from
the reliability diagram that takes into account the occurrence of voxels in each bin. The
ECE corresponds to the sum of the absolute difference between the confidence of the model
and the accuracy (i.e., the miscalibration) weighted by the number of voxels. The ECE was
measured on all predictions from a model and averaged across models with different random
splittings.

ECE =
K∑
k=0

#Bk

Nvox

∣∣∣Accuracy(Bk)− Confidence(Bk)
∣∣∣ (5.5)

where Nvox is the total number of voxels in the image.

Segmentation accuracy

Metrics for binarized predictions To evaluate the quality of the segmentation the fol-
lowing metrics were used: Dice score, precision, recall, relative volume difference between the
GT and prediction divided by the GT volume (RVD), and absolute volume difference (AVD)
which is the absolute value of RVD. Due to the binary nature of these metrics, the predictions
of the model were binarized. For example, a prediction of 0.5 with a GT of 0.5 obtained by
averaging labels results in a Dice score of 0.5 even though both values are the same and
should reach a maximal score. For this same reason, the STAPLE annotations were used as
GTs for these metrics. For the MS dataset which has two classes (i.e., lesion or background),
the binarization threshold was found by searching for the optimal value (between 0 and 1
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with an increment of 0.05) in terms of Dice score as done in [13]. For the SCGM dataset,
there are three classes: gray matter, white matter and background. The predicted class is
obtained by selecting the maximum prediction across the three classes.

Composite score To represent the overall segmentation accuracy performance, a compos-
ite score is computed by aggregating the above metrics. Firstly, z-scores for each metric are
derived by standardizing the results across candidates (i.e., zero mean and unit standard
deviation). Secondly, the z-scores are linearly aggregated to compute the composite score,
with equal absolute weights across metrics. A weight of 1 was used for the Dice, precision,
and recall (because they need to be maximized), and a weight of -1 was used for the AVD
(because it needs to be minimized).

5.4 Results

5.4.1 Inter-rater uncertainty

The predicted segmentation should ideally reflect the uncertainty associated with the dis-
agreement between experts. Figure 5.1 illustrates the agreement between the entropy gen-
erated from the multiple expert ratings and the predicted segmentation’s entropy. Similar
observations can be drawn for both SCGM and MS brain segmentation. The SoftSeg models
showed better correspondence between the predicted and true entropy which can be seen by
data points lying near the identity line (perfect agreement) and smaller MSE values. All
models trained with the conventional framework showed a tendency to generate less entropy
which can be interpreted as overconfidence and an underestimation of the uncertainty. Ran-
dom sampling and STAPLE have similar patterns with the SoftSeg framework and reflect
the more truthfully the entropy linked to multiple raters. “SoftSeg-Average” showed a slight
tendency to overestimate the uncertainty. Clusters can be observed in Figure 5.1a and are
associated with the different data centers of the SCGM dataset.
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(a) SCGM

(b) MS brain

Figure 5.1 Comparison of entropy generated by inter-rater variability and entropy from the
model’s prediction for the SCGM (a) and MS brain lesions (b) datasets.

Each red dot corresponds to a participant. The dashed line represents the identity line where
data points from an ideal model should lie.
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Table 5.2 summarizes the metrics associated with the preservation of the inter-rater vari-
ability. A general trend that can be observed is that SoftSeg candidates performed better
than their conventional counterparts. When performing pairwise comparisons of each candi-
date using SoftSeg vs. the conventional framework, SoftSeg systematically yielded the best
average metric. More precisely, for all metrics, “SoftSeg-RandomSampling” and “SoftSeg-
STAPLE” were always the top two performing candidates. For both dataset and on all
classes, “SoftSeg-RandomSampling” yielded the lowest Brier score indicating the greater re-
semblance with the segmentation from the averaged labels. “SoftSeg-STAPLE” obtained the
best correspondence, i.e., lowest MAE, between the predicted uncertainty and the inter-rater
variability. The MAE, which should be minimized, of conventional models was on average
220% and 34% higher compared with SoftSeg models for the SCGM and MS brain datasets
respectively.
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Table 5.2 Quantitative assessment of the inter-rater variability preservation on the SCGM
and MS brain datasets (MEAN ± STD).

Brier score is reported by segmentation class while the MAE is computed on the total
entropy of the entire image. Each row represents a candidate. The best averaged re-
sult for each metric and tissue is displayed in bold. Statistical differences are computed
between “Conv-STAPLE” (ref) and each other candidate (**: p < 0.05). Abbrevia-
tions: Opt.: optimal; MAE: mean absolute error; GM: gray matter; WM: white matter.

5.4.2 Visual assessment

Figure 5.2 and Figure 5.3 contain the segmentations from the STAPLE and GT average and
from the predictions of the six candidates. Regardless of the label fusion method and the
dataset, predictions using conventional models have sharp edges between tissue types (similar
to the GT STAPLE) and underestimated the inter-rater variability. All SoftSeg candidates
display smoother boundaries (similar to the GT average). When comparing the SoftSeg mod-
els, “SoftSeg-Average” presents the softest edges followed by “SoftSeg-RandomSampling”,
then “SoftSeg-STAPLE”. These differences are especially noticeable in Figure 5.2 at the
extremity of the dorsal horns and near the central canal (black arrows) and in Figure 5.3
on the lesion aggregate on the top-left (yellow arrows). An ideal prediction should reflect
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the inter-rater variability similarly to the GT average. Hence, predictions should not be too
sharp or too smooth compared to the GT average.

5.4.3 Calibration

Figure 5.4 presents the reliability diagrams generated from the predictions on SCGM and
on MS brain lesion datasets. The conventional approach is overconfident with most of its
predictions for all the datasets and label fusion methods. This overconfidence results in high
ECE: 16.2% for SCGM and 20.4% for MS lesions on average. In contrast, the SoftSeg is on
average better calibrated with an ECE of 2.9% for SCGM and 2.4% for MS lesions. SoftSeg
candidates mostly present slight underconfidence with the exception of “SoftSeg-STAPLE” on
MS lesions which is overall well calibrated with minimal overconfidence. “SoftSeg-STAPLE”
and “SoftSeg-RandomSampling” are the candidates presenting the best calibration. “SoftSeg-
Average” presents more underconfidence compared to the other SoftSeg candidates due to
the overly soft predictions encouraged by the non-binary GT.
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Figure 5.2 Visual assessment of STAPLE and average GTs and predictions from the six
candidates on spinal gray and white matter segmentation.

Abbreviations: GT: ground truth.
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Figure 5.3 Visual assessment of STAPLE and GT average and predictions from the six
candidates on MS brain segmentation.

Red: Gray matter. Green: White matter. Voxels at tissue boundaries represent values
between 0 and 1. Abbreviations: GT: ground truth.
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(a) SCGM

(b) MS brain

Figure 5.4 Reliability diagram for all candidates on SCGM (a) and MS brain lesions (b)
datasets.

The red identity line illustrates a perfect calibration. Orange bands represent overconfidence
while the purple ones indicate underconfidence.
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5.4.4 Segmentation accuracy

Table 5.3a presents the quantitative results of the segmentation accuracy assessment on the
SCGM dataset. When comparing the binarized predictions to the STAPLE GT, “SoftSeg-
STAPLE” yielded the best Dice, recall, AVD, and RVD score for both white and gray matter
segmentation and significantly outperformed the “Conv-STAPLE” method (p < 0.05). Figure
5.5a summarizes the metrics presented in Table 3a using a composite score. The averaged
composite score indicates that, regardless of the training pipeline (i.e., conventional and
SoftSeg), the best label fusion method is STAPLE (see Figure 5.5a). The composite score of
SoftSeg was consistently higher compared with the conventional framework for a given label
fusion method. All composite scores were statistically different from the “Conv-STAPLE”
candidate.

Table 5.3b introduces the MS brain segmentation performance metrics. Most metrics on the
binary prediction demonstrated no significant difference compared with the “Conv-STAPLE”
candidate. Only the “Conv-RandomSampling” candidate had a significantly lower Dice score
compared to the “Conv-STAPLE”. Figure 5.5b summarizes the metrics presented in Table
5.3b using a composite score. “SoftSeg-Average” provided the best composite score, fol-
lowed by “Conv-STAPLE”. When comparing the composite scores of the candidates with
“Conv-STAPLE”, no significant difference was found, except “Conv-RandomSampling” and
“SoftSeg-RandomSampling” which led to significantly lower results.

5.5 Discussion

Data labeling is prone to inter-rater variability, and it is still unclear how to best preserve
this valuable information when training a deep learning model. In this study, we compared
three label fusion methods, using both SoftSeg or a conventional training framework. Over-
all, SoftSeg models were shown to provide a more reliable representation of the inter-rater
variability than using the conventional approach, in terms of (i) correspondence between the
predicted and true uncertainty, (ii) visual assessment, (iii) calibration, and (iv) segmentation
accuracy. This study suggests that the conventional framework has a tendency to be over-
confident and to underestimate the uncertainty, regardless of the label fusion method used.
When using SoftSeg, random sampling and STAPLE label fusion methods showed a more
reliable inter-rater uncertainty and calibration than the average label fusion method. In this
section, we further discuss avenues to preserve information from all raters, via label fusion
and/or training pipeline, then we discuss the need to go beyond the Dice score for model
evaluations, particularly in the context of multiple raters and soft predictions. Finally, we
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(a) SCGM

(b) MS brain

Table 5.3 Quantitative assessment of the segmentation performance on the SCGM and brain
MS lesions datasets.

For SCGM, each value represents the average over 40 models and intervals are the standard
deviation over these. Mean and standard deviation are reported for both gray and white
matters. For brain MS lesions, each value represents the average and standard deviation
over 20 models and intervals are the standard deviation over these. Each row represents a
candidate. The best averaged result for each metric and tissue is displayed in bold. All metrics
are computed on binarized predictions against the “STAPLE GT”. Statistical differences
are computed between “Conv-STAPLE” (ref) and each other candidate (**: p < 0.05).
Abbreviations: Opt.: optimal; GM: gray matter; WM: white matter.
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(a) SCGM

(b) MS brain

Figure 5.5 Composite score across candidates on the SCGM (a) and MS brain (b) datasets.

The composite score aggregates the following segmentation metrics: Dice, Precision, Recall,
and AVD. For each candidate, each violin plot represents the distribution of composite scores
across testing patients and random spittings. They are sorted from the best to the worst
averaged composite score (black dot). Statistical differences are computed between “Conv-
STAPLE” (ref) and each other candidate (**: p < 0.05).
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discuss the importance of repeatability in medical deep learning research.

5.5.1 The preservation of the inter-rater variability

Encoding the inter-rater variability in the model training is important as it helps tailor models
that reflect the experts’ disagreement through the predictions. In this study, we investigated
two avenues to preserve the inter-rater variability when training a deep learning model: how
the raters’ labels are fused, and how the labels are processed by the training framework.
Overall, we found that the way the labels are used by the training framework is important to
preserve the inter-rater variability, while the results of the label fusion methods’ comparison
were less univocal.

When fusing the labels

Label fusion is a critical step in many image segmentation frameworks as it is often used to
condense a collection of labels from multiple raters into a single estimate of the underlying
segmentation. Although the GT generated by averaging the raters’ labels is intrinsically a
more truthful representation of the inter-rater disagreement than STAPLE (see Figure 2 and
Figure 3), training a deep learning model with GT average showed less promising results in
this study. The models trained using the averaged GT were underconfident and tended to
overestimate the uncertainty, which can be seen on the extended soft edges around the seg-
mented structures (Figure 5.2 and Figure 5.3), the larger underconfidence gaps on reliability
diagrams and the associated higher ECE (Figure 5.4), and uncertainty correspondence plots
(Figure 5.1). The models trained with labels from individual raters, i.e., random sampling,
were less overconfident than when using consensus labels, which is in line with previous
studies [8, 111]. The best calibration results were obtained when using STAPLE as label
fusion method, for the MS lesion dataset, and random sampling for SCGM dataset. How-
ever, both STAPLE and random sampling had similar reliability diagrams and ECE values
(Figure 5.4), suggesting only small differences between “SoftSeg-STAPLE” and “SoftSeg-
RandomSampling” candidates in terms of calibration. A similar trend can be observed for
the MAE on the uncertainty correspondence plots (Figure 5.1). For both datasets, the Brier
score between the GT average and predictions was the best when using random sampling,
which is in line with the results obtained by [9]. In terms of segmentation performance, no
clear consensus was reached between the two datasets. “SoftSeg-Average” achieved the best
performance for MS lesion segmentation, while “SoftSeg-STAPLE” was the best candidate
for SCGM. This could be explained by the fact that MS lesion segmentation is more subject
to inter-rater disagreement than spinal cord segmentation. MS lesion segmentation models
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might benefit more from being explicitly exposed to the rater inter-rater variability than the
spinal cord segmentation models. Unlike [8, 9, 63], no equivocal conclusion can be drawn in
terms of the best label fusion method. It would be interesting to extend the study to more
datasets to confirm our observations that the more appropriate label fusion method might
be dataset-specific. Future studies could also consider other label fusion methods, such as re-
cently proposed deep-learning approaches to explicitly model the consensus process [104,112].

When using the labels through the training pipeline

The way the labels are processed to train a model has important implications on the preser-
vation of the inter-rater variability in this study. SoftSeg training framework led to a more
reliable inter-rater uncertainty and models better calibrated than when using a more con-
ventional training approach. This increased ability to encode the inter-rater variability is
probably due to the fact that SoftSeg facilitates the propagation of soft labels throughout
the training scheme: (1) no binarization of the input labels, (2) a loss function which does not
penalize uncertain predictions, and (3) an activation function which does not enforce binary
outputs. Considered with equivalent expertise in this work, future studies could account for
the different expertise across raters, for instance by modulating the training scheme with
FiLM layers [36], or by the use of expertise-aware inferring module [111].

5.5.2 A multifaceted evaluation with model training repetitions

While it is common to select the best model solely based on segmentation accuracy consider-
ations [69, 70, 106], we argue that a more exhaustive evaluation is needed, e.g., by including
model calibration and uncertainty assessments. For instance, “Conv-STAPLE” is among the
best approaches in terms of segmentation accuracy on the MS dataset (see Figure 5.5), but is
not properly calibrated as it showed an important overconfident gap (see Figure 5.4). A mul-
tifaceted evaluation scheme has the potential to facilitate model acceptance and integration
in the clinical routine, which still remains limited [9]. Some avenues are discussed below.

The ongoing research around uncertainty and calibration estimation

In the same way that there are numerous segmentation accuracy metrics [113], there are
many ways to assess the model uncertainty and calibration. For instance, recent studies
suggested the voxel-wise aleatoric [114] and epistemic [115] uncertainties, or the structure-
wise uncertainty [116], just to name a few uncertainty evaluation methods. The medical
image analysis community has only recently started to report measures of model uncertainty
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and model calibration, and the best practices on how to estimate them are yet to be de-
termined [12, 51, 52]. We acknowledge the exhaustive comparison performed by [53] across
different uncertainty estimation methods. Their study showed the limits of voxel-wise uncer-
tainty measures in terms of subject-level calibration and recommended the use of subject-wise
uncertainty estimates. We followed their recommendations in the present study. Uncertainty
was computed directly from the model prediction, rather than from Monte Carlo iterations
or deep ensembles, which does not require more computational power and can be measured
during inference. Calibration was qualitatively assessed with reliability diagrams and quan-
titatively analyzed with the ECE as done by [12]. While multiple studies suggest post-hoc
strategies to improve calibration [12, 100, 117], we suggest a training strategy that directly
generates calibrated outputs without the need of extra computation or hyperparameters.

When using the labels through the training pipeline

With the increased number of evaluation criteria often comes the complexity to select a model
as the preferred one. The prioritization of one criterion over the others can be application-
or user- specific. Alternatively, in this study, we introduce the use of a composite score to
represent the overall segmentation accuracy performance by aggregating multiple scores. This
approach assumes equal weights for each evaluation criteria, which can be modified depending
on the model user’s needs. Another avenue would be to represent the performance across the
different criteria using a radar visualization, e.g., used by [118].

The importance of training repetitions

Common in studies using machine learning approaches, we observe that experience repetition
(e.g., cross-validation, random dataset splittings) is not often performed by studies using deep
learning approaches. This is likely due to the long training time required by deep learning
model training (often several days). However, our experiments showed that a large variability
can be observed across the dataset splittings, especially when data is limited which is often
the case in medical settings. For instance, the standard deviation of Dice across the 40
“Conv-STAPLE” models was 12.8%. In the present study, we performed 40 random dataset
splittings for the experiments on the SCGM dataset, and 10 on the MS brain dataset. We
encourage future deep learning studies to implement experience repetitions in their evaluation
scheme.
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5.6 Conclusion

In this study, we evaluated three methods to combine labels from multiple raters using a
conventional training framework and SoftSeg, aiming to preserve the inter-rater variabil-
ity. Our study highlights overconfidence and inter-rater variability underestimation of the
conventional framework while SoftSeg models with STAPLE or random sampling were well
calibrated and reflected more truthfully the variability due to multiple experts. While fusing
annotations using the average encodes the disagreement between experts, predictions were
underconfident and the rater uncertainty was overestimated. No consistent observation was
made throughout datasets to determine an overall best label fusion method. However, SoftSeg
was systematically superior or equal in terms of segmentation performance and had the best
calibration and preservation of the inter-rater variability. While these observations should
be confirmed on other datasets, using SoftSeg could potentially be an effective strategy to
capture inter-rater variability in segmentation tasks.
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CHAPTER 6 GENERAL DISCUSSION

Chapter 4 and 5 presented SoftSeg and analyzed its relevance for medical imaging segmen-
tation. The following chapter will highlight the clinical usefulness of this approach, some
limitations of the work, and finally, perspectives arising from this Master’s project.

6.1 Clinical usefulness

6.1.1 Inter-rater and uncertainty representation

Several aspects of SoftSeg make this approach clinically relevant compared with the conven-
tional training framework. First of all, when trained on labels derived from multiple raters,
the SoftSeg models’ segmentation will preserve the total and spatial inter-rater uncertainty
more truthfully. Even for labels with a single rater, SoftSeg models were better-calibrated,
indicating more truthfully uncertain areas. Highlighting structures or lesions with high un-
certainty, i.e., which corresponds to voxels with low values, enables clinicians to identify
cases where the model is likely wrong or prone to inter-rater disagreement. For instance, pre-
dicted MS lesions with uncertainty over a certain threshold should be isolated and verified
by experts.

6.1.2 Mitigation of volumetric bias for morphometric measures

Secondly, outputting soft predictions can reduce the volumetric bias for morphometric mea-
surements [42]. Voxels at the junction of different tissue types should be labeled 0 or 1,
but rather a value representing the tissue ratio. This feature can help having more precise
measurements for disease monitoring such as tumor growth or MS lesions spread.

6.1.3 Possibility of using soft labels encoding expert uncertainty

Thirdly, SoftSeg enables the use of soft labels, which can be optimally used for training due
to the regression loss, in which the experts’ confidence can be encoded. Examples of soft
GT could be the average of several expert labels as described in Chapter 5 or annotations
determined by the expert between 0 and 1. For instance, for MS lesions segmentation, the
radiologist could annotate a lesion with 0.5 to express the expert’s uncertainty.
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6.1.4 Segmentation performance

Finally, the results from Chapter 4 and 5 indicate improved segmentation performance for
raw and binarized predictions when looking at numerous metrics such as Dice, absolute and
relative volume differences, lesion false and positive detection rates, precision, and recall.
The calibration, volumetric and uncertainty representation advantages of SoftSeg come at no
cost of segmentation performance, often even increasing it.

6.2 Limitations

6.2.1 Small and limited datasets

The conclusions presented in the two articles were drawn from only three MRI datasets with
relatively few patients, i.e., from 15 to 80. Expanding the study to more datasets with more
patients from other medical modalities such as CT or non-medical tasks would confirm the
robustness of SoftSeg. This method could potentially improve segmentation performance in
non-medical segmentation tasks even though it was developed to address specific issues faced
in the medical field.

6.2.2 Analysis focused on Dice loss

In this work, the conventional framework was associated with the Dice loss. While this loss
function is widely used for segmentation models, cross-entropy, for instance, is also very
popular [29–33]. Dice loss is known for its very sharp edges, and its high segmentation
performance [30, 40, 41]. Comparing SoftSeg to the conventional approach with the cross-
entropy loss would be interesting. Other authors reported softer edges with cross-entropy [30].
The main reason motivating the Dice loss choice was superior segmentation performance for
the task studied. Uncertainty and calibration metrics might be better with cross-entropy
than with the Dice loss. However, even with cross-entropy loss, the use of soft labels is not
optimal due to the classification loss (see Section 2.1.2).

6.3 Perspectives

Due to time and resource limitations, some avenues were not explored but would be worth
studying.
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6.3.1 Volumetric analysis

As mentioned throughout this work, one motivation for introducing SoftSeg was account-
ability for PVE. However, volume preservation was merely studied. AVD and RVD, which
are metrics to compute volume differences, were calculated on binarized predictions in both
Chapter 4 and 5. However, no volumetric analysis was performed on soft labels. One hy-
pothesis is that soft labels could represent the partial volume information, but this research
avenue was not fully explored. To achieve this type of analysis, a dataset of structures with
known volumes, e.g., phantoms, [47] would be ideal. The true volume could be compared to
the predicted volume from SoftSeg or conventional models. Another approach would be to
estimate the PVE using statistical models [47,119] and then compare volumetric differences.
This analysis is less precise but does not require a dataset with known volumes.

6.3.2 Modification of the SoftSeg framework

In Chapter 5, training with soft labels from the average of expert labels, i.e., GT average, was
explored. However, results suggest visually too much softness compared to the GT average
and underconfidence from the model. The GT was processed with a first-order interpolation
which is known to create a blurring effect [66]. The SoftSeg pipeline could be improved by
choosing another interpolation algorithm, such as cubic spline or nearest neighbor, that would
reduce the smoothing effect for labels that are already soft. Moreover, only one regression
has been tested for the SoftSeg framework, the Adaptive Wing loss. The MSE, Wing, or
weighted loss map could be explored as alternatives to the Adaptive Wing loss chosen for
this work.
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CHAPTER 7 CONCLUSION

7.1 Summary of works

In this work, we proposed a new segmentation training framework named SoftSeg to improve
segmentation performance and uncertainty representation. Three main components of the
conventional training framework were modified (i) the use of soft labels for training, (ii) the
final activation to a normalized linear function, and (iii) the training of the model with a
regression loss. Combining these three modifications outperformed the conventional approach
in terms of segmentation performance. A second article presented in Chapter 5 compared
label fusion methods combined with SoftSeg or the conventional training framework. SoftSeg
models were systematically better-calibrated and preserved more truthfully the inter-rater
variability while having improved, or minimally equivalent, segmentation performances. No
label fusion method consistently obtained the best performance across datasets or metrics.
While SoftSeg has the potential to reduce volumetric bias by representing partial volume
effect, this avenue was not fully explored and should be the subject of future work. The
SoftSeg approach was implemented in the DL image analysis framework ivadomed (https:
//ivadomed.org) [35]. As part of the MICCAI MS new lesions challenge [120], Macar et
al. proposed segmentation models using SoftSeg features for detection of new MS lesions on
longitudinal images of the same patient [121].

The work done during my Master’s was not restricted to the articles presented in this thesis,
but due to space limitation, some research projects were not included. Here is a summary of
the publications or submitted work completed during my graduate studies:

Submitted with NeuroPoly

• A. Lemay, C. Gros, and J. Cohen-Adad, “Label fusion and training methods for reliable
representation of inter-rater uncertainty,” arXiv preprint arXiv:2202.07550, 2022.

• A. Lemay, C. Gros, O. Vincent, Y. Liu, J. Cohen, and J. Cohen-Adad, "Benefits of
Linear Conditioning for Segmentation using Metadata," in Medical Imaging with Deep
Learning (MIDL). PMLR, 2021, pp. 416-430.

• A. Lemay, C. Gros, Z. Zhuo, J. Zhang, Y. Duan, J. Cohen-Adad, and Y. Liu, “Au-
tomatic multiclass intramedullary spinal cord tumor segmentation on mri with deep
learning,” NeuroImage: Clinical, vol. 31, p. 102766, 2021.

https://ivadomed.org
https://ivadomed.org
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• . Gros, A. Lemay, O. Vincent, L. Rouhier, M.-H. Bourget, A. Bucquet, J. P. Cohen,
and J. Cohen-Adad, “ivadomed: A medical imaging deep learning toolbox,” Jour-
nal of Open Source Software, vol. 6, no. 58, p. 2868, 2021. [Online]. Available:
https://doi.org/10.21105/joss.02868

• C. Gros, A. Lemay, and J. Cohen-Adad, “Softseg: Advantages of soft versus binary
training for image segmentation,” Medical Image Analysis, vol. 71, p. 102038, 2021.

• U. Macar, E. N. Karthik, C. Gros, A. Lemay, and J. Cohen-Adad, “Team neuropoly:
Description of the pipelines for the miccai 2021 ms new lesions segmentation challenge,”
arXiv preprint arXiv:2109.05409, 2021.

Submitted with Harvard University

• A. Lemay, K. Hoebel, C. Bridge, B. Befano, S. De Sanjose, D. Egemen, A. Rodriguez,
M. Schiffman, J. Campbell, and J. Kalpathy-Cramer. "Improving the repeatability of
deep learning models with Monte Carlo dropout," arXiv preprint arXiv:2202. 07562,
2022.

• C. Lu, A. Lemay, K. Chang, K. Hoebel, and J. Kalpathy-Cramer. "Fair Conformal
Predictors for Applications in Medical Imaging," in AAAI Workshops, 2022.

• K. Hoebel, C. Bridge, A. Lemay, K. Chang, J. Patel, B. Rosen, and J. Kalpathy-
Cramer. "Do I know this? segmentation uncertainty under domain shift," in SPIE
Medical Imaging, 2022.

• A. Lemay, K. Hoebel, C. Bridge, D. Egemen, A. Rodriguez, M. Schiffman, J. Campbell,
and J. Kalpathy-Cramer. "Monte Carlo dropout increases model repeatability," in
Machine Learning for Health (ML4H) at NeurIPS, 2021.

• C. Lu, A. Lemay, K. Hoebel, and J. Kalpathy-Cramer. "Evaluating subgroup disparity
using epistemic uncertainty in mammography," in International Conference on Machine
Learning (ICML): Workshop on Interpretable Machine Learning in Healthcare, 2021.

7.2 Recommendations

In light of this work, we recommend testing SoftSeg for segmentation neural networks even
for applications requiring binarized output, as both articles suggest better performance for
binary masks. However, SoftSeg is more interesting on soft predictions as there is uncertainty,
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and potentially, partial volume information. A final recommendation would be to encour-
age experiment repetition, i.e., training a model multiple times with the same parameters,
to evaluate performance variation and ensure statistical differences since high variation in
metrics can arise, especially with small datasets.
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