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RÉSUMÉ

Avec l’utilisation croissante des composites thermoplastiques dans l’ingénierie, il est devenu
essentiel d’étudier les performances des matériaux dans diverses conditions de fonctionnement
complexes. La température et le vieillissement physique affectent considérablement les pro-
priétés mécaniques des thermoplastiques. Par conséquent, pour améliorer la précision de
prédiction de la simulation numérique de composants soumis à des conditions de service
réelles, la caractérisation des propriétés tridimensionnelles des thermoplastiques impliquant
la température et le vieillissement physique est nécessaire mais a rarement été abordée.

L’estimation des paramètres du modèle de la série de Prony, la loi du comportement viscoélas-
tique thermodynamique la plus utilisée en ingénierie, à partir de données expérimentales est
un problème mal posé. Cela signifie que les paramètres identifiés ne sont pas garantis d’être
uniques et que les erreurs expérimentales affectent les résultats de l’identification. Pour ré-
soudre ce problème, le nombre de paramètres est généralement fixé arbitrairement, ce qui
peut conduire à un déséquilibre entre la précision de la prédiction et le temps de calcul des
structures.

Cette thèse propose une méthode robuste et automatisée d’identification des paramètres
tridimensionnels pour les thermoplastiques impliquant l’effet de la température et du vieil-
lissement physique. La robustesse signifie que la méthode doit être capable de gérer différents
niveaux d’erreurs de mesure; l’automatisation signifie que la méthode ne doit pas nécessiter
d’entrée utilisateur pour chaque ensemble de données. Cette méthode pourrait être utilisée
comme un outil numérique prédictif pour guider les chercheurs et les ingénieurs à développer
efficacement de nouveaux matériaux thermoplastiques pour des composants soumis à des
conditions de service complexes.

Tout d’abord, une méthode basée sur un cadre bayésien a été proposée pour déterminer les
paramètres viscoélastiques tridimensionnels des thermoplastiques à température ambiante.
Cette méthode permet de calculer la distribution des paramètres du modèle à partir des
données expérimentales. Dans le cadre du paradigme bayésien, la distribution a posteriori
peut être calculée en multipliant la fonction de vraisemblance et la fonction antérieure des
paramètres. La fonction de vraisemblance a été construite sur la base de l’hypothèse selon
laquelle l’erreur expérimentale est distribuée indépendamment de manière gaussienne. La
loi a priori des paramètres a été imposée pour éviter les problèmes d’identifiabilité. La loi
a posteriori a été estimée par simulation de Monte Carlo à chaîne de Markov (MCMC), ce
qui a permis de surmonter le caractère mal posé du problème d’identification pour le modèle
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de série de Prony. Le résultat de l’identification était l’estimation du maximum a posteriori
(MAP) de la distribution a posteriori des paramètres. Le nombre optimal de paramètres a
été déterminé en fonction du critère d’information bayésien (BIC). La méthode a d’abord été
appliquée à des données artificielles, montrant que les paramètres peuvent être identifiés avec
succès à partir de données présentant différents niveaux d’erreur ajoutée. Ensuite, la méthode
a été appliquée à des données expérimentales sur deux thermoplastiques, le polypropylène et
le polyméthacrylate de méthyle. Les paramètres ont été identifiés à partir des données d’essais
mécaniques sur des spécimens de type-I de la norme ASTM et validés expérimentalement
en comparant les mesures de corrélation d’images numériques (DIC) et les simulations de
la méthode des éléments finis (FEM) avec les paramètres identifiés pour des spécimens à
géométrie complexe. Les résultats ont démontré la robustesse et l’adéquation de la méthode
proposée appliquée aux thermoplastiques à température ambiante.

Ensuite, une campagne d’essais de vieillissement physique non isotherme sur du polycarbon-
ate a été réalisée pour caractériser l’effet de la température et du vieillissement physique
sur les propriétés mécaniques. Les spécimens ont été fabriqués en moulage par injection.
Les essais séquentiels de fluage-récupération ont été réalisés à différentes températures selon
la méthodologie classique de Struik. Les essais mécaniques ont été réalisés avec un cadre
d’essai de traction équipé d’une chambre environnementale à température ambiante (20 °C),
40 °C, 60 °C, 80 °C, 100 °C and 120 °C. Les déformations axiales et transversales ont été
mesurées avec un extensomètre bi-axial. Il a été constaté que la température et le couteau
de l’extensomètre peuvent provoquer des dérives de mesure dans l’essai sur des thermoplas-
tiques à des températures élevées. Ainsi, une procédure robuste, simple et facile à suivre a
été proposée pour corriger les dérives des mesures de l’extensomètre dans cette étape. Les
résultats expérimentaux ont montré leur reproductibilité et leur fiabilité.

Enfin, la méthode bayésienne proposée a été étendue pour identifier simultanément les
paramètres du modèle tridimensionnel liés à la viscoélasticité, à la température et au vieil-
lissement physique. Le principe de superposition temps-température (TTS) a été utilisé pour
décrire les effets de la température et du vieillissement physique sur les propriétés mécaniques
par des facteurs de glissement. Les paramètres viscoélastiques et les facteurs de glissement
ont pu être identifiés simultanément à partir des données expérimentales avec la méthode
étendue. Le modèle KAHR-te a ensuite été utilisé pour évaluer les facteurs de glissement
pour les essais de vieillissement non isotherme à différentes températures. Cette méthode
étendue a été appliquée aux données expérimentales pour le polycarbonate. Les résultats
expérimentaux corroboraient les prédictions effectuées avec les paramètres déterminés.

Cette thèse propose un outil numérique pour prédire les propriétés mécaniques tridimen-
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sionnelles à long terme des thermoplastiques impliquant la température et le vieillissement
physique. Il pourrait être utilisé pour caractériser et développer des matériaux thermoplas-
tiques dans des conditions de service complexes de manière efficace et précise.
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ABSTRACT

With the increasing use of thermoplastic composites in engineering, like aerospace, it has
become critical to investigate the performance of materials under various complex operating
conditions. Temperature and physical aging significantly affect the mechanical properties of
thermoplastics. Therefore, to improve the prediction accuracy of the numerical simulation of
components subjected to real service conditions, characterizing the three-dimensional prop-
erties of thermoplastics involving temperature and physical aging is required but has rarely
been addressed.

Estimating parameters of the Prony series model, the most used thermodynamically based
viscoelastic constitutive model in engineering, from experimental data is an ill-posed prob-
lem, which means that the identified parameters are not guaranteed to be unique and the
experimental errors affect the identification results. To address this issue, the number of
parameters is usually required to be fixed artificially, which may lead to an imbalance be-
tween the prediction accuracy and the computational cost in the simulation of the response
of viscoelastic structures.

This thesis aimed at proposing a robust and automated method to identify the three-
dimensional parameters for thermoplastics involving the effect of temperature and physical
aging. Robustness means that the method should be able to handle different levels of mea-
surement errors; Automation means that the method should not need user input for each
data set. This method could be used as a predictive numerical tool to assist researchers and
engineers in efficiently developing novel thermoplastic materials for components subjected to
complex service conditions.

First, a Bayesian framework based method was proposed for determining the three-dimensional
viscoelastic parameters of thermoplastics at room temperature. This method aimed to com-
pute the posterior distribution of the model parameters from experimental data. Under
the Bayesian paradigm, the posterior distribution can be computed by multiplying the like-
lihood and prior function of parameters. The likelihood function was constructed based
on the assumption that the experimental error is independently Gaussian distributed. The
prior function was imposed to avoid identifiability issues. The posterior function was esti-
mated by Markov chain Monte Carlo (MCMC) simulation, which could overcome the ill-
posedness of the identification problem for Prony series model. The identification result was
the maximum a posteriori (MAP) estimate of the posterior distribution of the parameter.
The optimal number of parameters was determined according to the Bayesian Information
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Criterion (BIC). The method was initially applied to artificial data, showing that the pa-
rameters can be successfully identified from data with different levels of added error. Then,
the method was applied to experimental data on two thermoplastics, polypropylene and
polymethyl methacrylate. Parameters were identified from mechanical test data on ASTM
standard type-I specimens and experimentally validated by comparing Digital Image Correla-
tion (DIC) measurements and Finite Element Method (FEM) simulations with the identified
parameters for complex geometry specimens. The results demonstrated the robustness and
adequacy of the proposed method applied to thermoplastics at room temperature.

Then, a non-isothermal physical aging test campaign on polycarbonate was carried out to
characterize the effect of temperature and physical aging on mechanical properties. The
specimens were manufactured by injection molding. The sequential creep-recovery tests were
performed at various temperatures based on the classical Struik’s methodology. The me-
chanical tests were performed with a tensile testing frame equipped with an environmental
chamber at room temperature (20 °C), 40 °C, 60 °C, 80 °C, 100 °C and 120 °C. The axial
and transverse strains were measured with a bi-axial extensometer. It was found that the
temperature and knife edge of the extensometer can cause measurement drifts in the test of
thermoplastics at elevated temperatures. Thus, a robust, straightforward and easy-to-follow
procedure was proposed to correct drifts of extensometer measurements in this step. The
experimental results showed reproducibility and reliability.

Finally, the proposed Bayesian method was extended to simultaneously identify the vis-
coelastic, temperature and physical aging related three-dimensional model parameters. The
time-temperature superposition (TTS) principle was used to describe the effects of tempera-
ture and physical aging on mechanical properties by shift factors. The viscoelastic parameters
and shift factors could be simultaneously identified from experimental data with the extended
method. The KAHR-te model was then used to evaluate the shift factors for non-isothermal
aging tests at different temperatures. This extended method was applied to the experimental
data on polycarbonate. The experimental results were in good agreement with the predictions
of the determined parameters.

This thesis proposes a numerical tool to predict the long-term three-dimensional mechanical
properties of thermoplastics involving temperature and physical aging. It could be used to
characterize and develop thermoplastic materials under complex operating conditions effi-
ciently and accurately.
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CHAPTER 1 INTRODUCTION

Advanced composites are used in the aerospace industry due to their high strength to weight
ratio, as well as their fatigue and corrosion resistance. For example, composites account for
50% of Boeing 787 and Airbus A350 structural mass. Thermoset composites, especially those
relying on epoxy, are the mostly used composites. However, high raw material and fabrication
costs, restricted storage life, and lack of recyclability are major concerns that force aircraft
manufacturer to look for alternatives. Thermoplastic composites have lower constituents
costs, rapid and reversible processing, and longer shelf life without refrigeration. Nonetheless,
the processing of thermoplastic composites requires high temperature and pressure, which is
their most important shortcoming.

Thermoplastics exhibit complex properties due to their intricate microstructure, especially
when temperature and physical aging are involved. Thermoplastics are generally viscoelastic,
meaning that their response to mechanical loading is time-dependent. Temperature increases
the compliance and flexibility of polymers, while physical aging rigidifies and embrittles these
materials over time. At elevated temperatures, these effects can occur concurrently and
interact.

Therefore, investigating the mechanical properties of thermoplastics under various complex
working conditions is one of the essential steps in developing thermoplastic composites. The
majority of existing research has been concentrated on uni-dimensional mechanical proper-
ties of thermoplastics, assuming that the bulk behavior or Poisson’s ratio remain constant
throughout the test. This assumption, however, could be violated when investigating the
long-term behavior of materials or involving the effect of temperature and physical aging.
Therefore, to improve the predictions capabilities in demanding applications for components
submitted to actual service conditions, characterizing the long-term three-dimensional prop-
erties of thermoplastics is critical but rarely addressed.

The Prony series model is one of the most frequently used thermodynamically based vis-
coelastic constitutive models. Estimating parameters from experimental data for this model
is an ill-posed problem, which means that the results cannot be guaranteed uniquely and that
minor errors in the data can result in significant variations. Considering that the computa-
tional time involved in the simulation of the response of a viscoelastic material is proportional
to the number of viscoelastic parameters, it would be of considerable interest to develop iden-
tification strategies that yield a minimum number of parameters.

This thesis aims at developing a numerical tool to predict the long-term mechanical behavior
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of thermoplastics under complex operating conditions. The main objectives are: (1) to
propose a robust and automated method for identifying the three-dimensional viscoelastic
parameters from experimental data on thermoplastic specimens at room temperature and
determining the optimal number of parameters, (2) to generate experimental data for non-
isothermal physical aging tests of a thermoplastic at elevated temperatures and (3) to extend
the proposed method by combining temperature and physical aging effects.

This thesis is organized as follows. Chapter 2 presents a literature survey on viscoelastic
constitutive models, parameters identification methods and Bayesian theorem. The specific
objectives associated with the main objective are detailed in Chapter 3. The scientific ap-
proach to fulfill the specific objectives is presented in Chapter 4. The three articles resulting
from this work are presented in Chapters 5 to 7. Chapter 8 discusses the relationships be-
tween the articles. Finally, Chapter 9 concludes this work and recommends several topics for
future work.
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CHAPTER 2 LITERATURE AND REVIEW

Notations

In this thesis, unless otherwise specified, scalars and vectors are respectively denoted by
normal letters (e.g., a, T ) and boldfaced lower case Latin letters (e.g., x, y); second and
fourth order tensors are respectively represented by boldfaced Greek letters (e.g., σ, ε) and
boldfaced upper case Latin letters (e.g., S, C). In particular, under the statistical paradigm,
random variables and their realizations are respectively denoted by upper case letters (e.g.,
X, Y ) and lower case letters (e.g., x, y); statistical model parameters are represented by
Greek letters (e.g. α, σϵ).

2.1 Viscoelasticity of polymers

Polymers are very large molecules (macromolecules) whose structure is monomers linked
together by covalent bonds (Painter and Coleman, 1994). The monomers composition, as
well as their arrangement, drive the resulting properties. Various phases exist in polymers
depending on the configuration of the molecular chains. Linear molecular chains packed in a
regular three-dimensional pattern in polymers are considered crystalline phases; the phase for
which the molecules are random and entangled is referred to as amorphous. Semi-crystalline
polymers consist of both crystalline and amorphous phases.

In a polymer, the thermal energy yields the flexible molecular chain to wriggle and writhe,
resulting in a continual change in its contour shape. Therefore, temperature generally has
a remarkable effect on the mechanical properties of polymers. The glass transition tem-
perature, Tg, is an important characteristic for a polymer. Above this temperature, the
amorphous phase of a polymer changes from a solid-like state to a liquid-like state due to the
thermal motions of molecular chains increasing, leading to a severe decrease of the mechanical
properties.

2.1.1 Linearly viscoelastic constitutive theories

When a polymer is subjected to an external stress, the configuration of the molecular chains in
the amorphous phase is rearranged. The rearrangement on the local scale, e.g., the orientation
of bonds in the chain backbone, is terminated quickly, while the long-range scale, e.g., the
whole molecular chain, is slow. As a result, the polymers’ response to the external stress
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persists over a wide and continuous time scale (Ferry, 1980). Therefore, unlike pure elastic
materials response proportionally with the applied load, polymers exhibit a time-dependent
response, i.e., viscoelasticity, when submitted to a mechanical load due to amorphous phases
in the polymers.

Viscoelasticity manifests itself through strain creep or stress relaxation, as schematized in
Figure 2.1. In a creep-recovery test, the strain increases over time while the material is sub-
jected to a constant load. Once the stress is removed, the elastic strain recovers immediately,
whereas the viscous strain returns slowly to its initial state. In a relaxation test, when the
material is subjected to a constant strain, the stress slowly decreases over time until a steady
state is reached.

Thermodynamically based constitutive theories for viscoelasticity have been developed and
widely used in the last several decades to describe the mechanical behavior of viscoelastic
materials under varying loading and temperature histories (Biot, 1954; Caruthers et al., 2004;
Cunat, 2001; Drozdov, 2000; Lévesque et al., 2008; Schapery, 1964). These constitutive

(A) (B)

Figure 2.1 Viscoelastic behavior of a material during (A) a strain creep-recovery test; (B) a
stress relaxation test (Crochon, 2014).
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theories are developed based on the well-known Clausius-Duhem inequality:

σ : ε̇ − ρ
(
Ψ̇ + ηṪ

)
− q · ∇T

T
≥ 0, (2.1)

where ˙ stands for the time differentiation. σ and ε represent the stress and strain of the
material, respectively. ρ is the mass density, η is the entropy density and q is the heat flux.
Ψ denotes Helmholtz’s free energy, which is assumed to be a function of ε and the internal
variable χ characterizing the material’s thermodynamical state, i.e., Ψ = Ψ(ε, χ).

In linear viscoelasticity, the thermodynamical forces f and b are assumed as linear functions
of the time variation of the state variables (Lévesque et al., 2008; Schapery, 1964), i.e.,

f = F : ε̇, (2.2a)

b = B : χ̇, (2.2b)

with F and B being semi-positive tensors. Under an adiabatic and isothermal loading history,
i.e., Ṫ = 0 and q = 0, Equation (2.1) for the case of the linear viscoelasticity becomes:

(
σ − ∂Ψ

∂ε

)
: ε̇ − ∂Ψ

∂χ
: χ̇ = F : ε̇ + B : χ̇ ≥ 0. (2.3)

The free energy Ψ can be assumed as a second order Taylor expansion of the state variable
around an equilibrium state Ψ0 as:

Ψ(ε, χ) = Ψ0 + 1
2ε : L1 : ε + ε : L2 : χ + 1

2χ : L3 : χ, (2.4)

where Li are semi-definite positive fourth order tensors, which can be expressed as:

L1 = ∂Ψ
∂εi∂εj

; L2 = ∂Ψ
∂εi∂χr

; L3 = ∂Ψ
∂χr∂χs

. (2.5)

When combining Equations (2.3) and (2.4), the differential form of a three-dimensional lin-
early viscoelastic constitutive model at constant temperature can be expressed as:

σ(t) = L1 : ε(t) + L2 : χ (2.6a)

B : χ̇ + L3 : χ + L⊺
2 : ε = 0. (2.6b)
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Solving Equation (2.6) yields:

σ(t) =
∫ t

0
C(t − τ) : dε

dτ
dτ, (2.7)

with C(t) denoting the relaxation kernel that can be expressed as a Prony series as:

C(t) = C(0) +
M∑

m=1
C(m) exp[−ωmt], (2.8)

where the relaxation stiffnesses C(m) are positive semi-definite tensors, ωm are reciprocal
relaxation times associated to C(m). M is the total number of relaxation times.

The stress-based linearly viscoelastic constitutive model can be obtained through a similar
approach (Schapery, 1970) and be expressed as:

ε(t) =
∫ t

0
S(t − τ) : dσ

dτ
dτ, (2.9)

with
S(t) = S(0) +

M∑
m=1

S(m)(1 − exp[−λmt]), (2.10)

where S(t) denotes the retardation kernel. The creep compliances S(m) are positive semi-
definite tensors and the λm are reciprocal creep times associated with S(m).

To implement the viscoelastic constitutive theory in a finite element (FE) package, solutions
of differential or integral equations need to be computed, which can be accomplished through
two types of strategy. Taylor et al. (1970) has proposed the recursive scheme to compute
the solution of hereditary integrals, like that of Equation (2.10). The time derivation of load
history is assumed to be constant during each time increment; then, a recursive formula is
introduced to relate successive time steps. The differential scheme developed by Crochon
et al. (2010) solves the differential equations, as Equation (2.6), based on finite differen-
tial (FD) methodologies, e.g., Euler, Crank-Nicholson and Runge-Kutta. Both integral and
differential schemes can achieve the same level of accuracy and can be easily extended to
three-dimensional and non-linear models.

2.1.2 Time-temperature superposition principle

The time-temperature superposition (TTS) principle relates the material’s viscoelastic prop-
erties under service conditions to its properties in a reference state by a so-called shift factor
(Andrews and Tobolsky, 1951; Ferry, 1980).
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Temperature effect

According to the TTS principle, the creep compliance of a thermorheologically simple mate-
rial S(t) at temperature T can be derived by shifting the creep compliance Sref(t) at reference
temperature T ref as :

S(t; T ) = Sref
(

t

aT

; T ref
)

, (2.11)

where aT is horizontal temperature shift factors.

When the temperature is above Tg, the temperature shift factor aT is commonly mathemat-
ically described by the Williams-Landel-Ferry (WLF) model (Williams et al., 1955) which is
expressed as:

log aT = − C0(T − T ref)
C1 + (T − T ref) , (2.12)

where C0 and C1 denote universal constants. While below Tg, the Arrhenius equation
(Schapery, 1974) can be used, as:

log aT = −AT

( 1
T ref − 1

T

)
, (2.13)

where AT represents the material’s parameter.

Physical aging effect

Physical aging manifests itself through a variation of viscoelastic properties as a function
of time, for temperatures below Tg and under no influence from any other external stimuli
(Hutchinson, 1995; McKenna et al., 1995; Struik, 1977; White, 2006). A polymer remains in
its equilibrium thermodynamic state above its Tg. When it is quenched from a temperature
above its Tg to a temperature below its Tg, the molecular rearrangements that occur rapidly
when the sample’s temperature is above its Tg are significantly slowed down to a range
that the material cannot maintain an equilibrium with the cooling rate. The polymer stays
in non-equilibrium state and towards equilibrium. However, when the cooling stops, the
thermodynamic state of materials is moved towards equilibrium. A schematic illustration of
physical aging at a temperature below Tg is shown in Figure 2.2. Physical aging typically
increases thermoplastics brittleness and stiffness.

To evaluate the effect of physical aging on the mechanical properties of polymers, Struik
(1977) extended the TTS principle to the case of physical aging. The creep compliance S(t)
of a material aged for a time te at temperature T can be obtained by shifting the creep
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Figure 2.2 Illustration of physical aging for a polymer (adapted from Crochon (2014)). The
material is in thermodynamic equilibrium above Tg (A). When quenched, the volume of the
polymer decreases toward an out-of-equilibrium volume v0 (B). Then, while maintaining a
constant temperature, the volume gradually approaches equilibrium ve through the process
of physical aging (C).

compliance Sref(t) when aged for a reference time tref
e at reference temperature T ref by:

S(t; T, te) = av(T, te) Sref
(

t

a(T, te)
; T ref, tref

e

)
, (2.14)

where a(T, te) and av(T, te) respectively denote horizontal and vertical shift factors that
depend on temperature and physical aging. The shift factor av(T, te) is generally found to
have little effect, when compared to the horizontal shift factor, and can be considered to be
close to unity in most cases (Bradshaw and Brinson, 1999; Crochon et al., 2015; Sullivan et
al., 1993). The horizontal shift factor a(T, te) can be decomposed into the product of the
temperature shift factor aT and the aging shift factor ate (Bradshaw and Brinson, 1997b;
Struik, 1977), leading to:

a(T, te) = aT ate . (2.15)

For the case of isothermal physical aging, during which the physical aging occurs at a constant
temperature, the aging shift factor ate can be evaluated by (Struik, 1977):

ate(te, T ) =
(

te

tref
e

)µ(T )

, (2.16)
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where µ(T ) stands for the shift rate depending on temperature T and is assumed constant
during aging. However, for complex temperature histories, referred to as non-isothermal
physical aging, Equation (2.16) no longer holds because of the accumulation of physical
aging at different temperatures (Bradshaw and Brinson, 1997a).

Bradshaw and Brinson (1997a, 1997b) have proposed the continuous shift factor (CSF) to
evaluate the effect of physical aging on the mechanical properties during a non-isothermal
aging test. Based on the effective time theory (Brinson and Gates, 1995; Knauss and Emri,
1981), the viscoelastic constitutive model becomes

ε(t) =
∫ t

0
S
(
ϕ(t) − ϕ(τ)

)
: dσ

dτ
dτ, (2.17)

where the effective time ϕ is utilized in this method to record the accumulative effects of
temperature and physical aging throughout the complex thermal history, i.e.,

ϕ(t) =
∫ t

0
aT ate(ξ)dξ. (2.18)

Because of the absence of an analytical form for ϕ(t), a reasonable function with unknown
parameters must be chosen to model the effective time. The parameters of ϕ(t) are then
determined by fitting Equation (2.17) to experimental data. This method is able to accurately
simulate and predict the long-term mechanical behavior of polymers. However, the choice of
fitting function for the effective time is arbitrary and artificial.

Guo and Bradshaw (2009); Guo et al. (2009) developed the KAHR-ate method to predict
the mechanical response of polymers during long-term non-isothermal physical aging. In this
method, based on experimental observations (McKenna et al., 1995; Struik, 1977, 1988), the
relationship between the aging shift factor ate and the structural shift factor aδ has been
assumed as:

ate(aδ)
∣∣∣∣
T

=
(

c0

aδ

)c1

; c0, c1 > 0, (2.19)

where T is the temperature at which the mechanical load is applied, c0 and c1 are temper-
ature dependent constants. According to the KAHR model (Kovacs et al., 1979), aδ can be
expressed as:

aδ = exp[−ζδ], (2.20)

where ζ is a material parameter. δ denotes the specific volume recovery response, which is
defined as:

δ(t, T ) = v(t, T ) − v∞(T )
v∞(T ) , (2.21)
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where v and v∞ represent the instantaneous and equilibrium specific volume, respectively. δ

is determined by:
δ(z) = −∆α

∫ z

0
R(z − ς)dT

dς
dς, (2.22)

with
R(z) = exp

[
−
(

z

τα

)βα
]

, (2.23)

and
z(t) =

∫ t

0

dξ

aT aδ

, (2.24)

where ∆α = αl − αg represents the difference in the coefficient of thermal expansion (CTE)
between the liquid and glassy states of the polymer. R is the normalized retardation function
of the reduced time z with the material parameters τα and βα. The temperature shift factor
is given by (Kovacs et al., 1979):

aT = exp[−∆αζeb(T − Tr)], (2.25)

where Tr is a reference temperature and b is a material constant. Thus, six parameters (ζ,
b, c0, c1, τα, βα) are required in this model that must be determined through non-isothermal
aging tests.

2.1.3 Three-dimensional viscoelastic properties experimental characterization

When modeling or characterizing the three-dimensional mechanical properties of polymers,
it is commonly assumed that the bulk modulus or Poisson’s ratio of the material is constant.
Therefore, the three-dimensional problem can be reduced to a uni-dimensional problem in
most cases (Courtois, Marcin, et al., 2019; Crochon et al., 2015). However, this assumption
may be violated, especially if the test duration is sufficiently long, or when investigating the
effect of temperature on mechanical properties of polymers across glass transition tempera-
ture (Emri and Prodan, 2006; Lu et al., 1997; Qvale and Ravi-Chandar, 2004; Sanahuja and
Toulemonde, 2011; Tscharnuter et al., 2011b; Tschoegl et al., 2002).

In the context of linear viscoelasticity, the use of any two of four material functions (the
elastic modulus, the shear modulus, the bulk modulus and Poisson’s ratio) is sufficient to
model the mechanical properties of an isotropic material (Lu et al., 1997). These two material
functions must be determined simultaneously (Tschoegl et al., 2002), and several methods
have been proposed.

To determine the bulk behavior of Poly(methyl methacrylate) (PMMA), Lu et al. (1997)
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measured the Young’s modulus and Poisson’s ratio of planar specimens, and the Young’s and
shear functions of cylindrical specimens. The bulk function of PMMA was then computed
using the material functions measured from the two tests, respectively. It was found that the
bulk function requires a high level of measurement accuracy; consequently, the bulk function
cannot be robustly derived from the other material functions and must be determined directly
from the experiments.

Several special experimental configurations have been developed to measure the bulk prop-
erties of polymers. For example, an atmospheric pressure chamber was used to measure the
dynamic bulk compliance of PMMA and polyvinyl acetate (PVAc) (Sane and Knauss, 2001),
and a confined compression set-up was used to determine the bulk and shear relaxation re-
sponse of PMMA and polycarbonate (PC) (Qvale and Ravi-Chandar, 2004). However, the
measurement accuracy of the bulk behavior of polymers is susceptible to errors caused by
experimental set-up. For example, it was found that a gap of 1.27 × 10−2 mm between the
specimen and the equipment could introduce errors up to 30% in the bulk properties mea-
surement (Qvale and Ravi-Chandar, 2004). In addition, the accessibility of these devices
limits their widespread use in engineering.

Temperature and physical aging effects characterization

Aging effects can be measured through Struik’s methodology (Struik, 1977), which can be
divided in three types:

Figure 2.3 Temperature and loading histories of isothermal physical aging tests (Struik, 1977)
(A) isothermal long-term aging test; (B) isothermal short-term aging test.
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Figure 2.4 Schematic of the single up-jump non-isothermal aging test (adapted from Guo et
al. (2009)). The specimen is firstly rejuvenated at a temperature above Tg, then quenched to
a desired temperature T0 below Tg and held for a duration te0 . After that, the temperature
is increased ("up-jump") to and maintained at the aging temperature T1. The aging time te

is counted after this up-jump. Then the sequential creep tests are performed.

• Isothermal long-term aging test. This test begins with an annealing period during
which the polymer is submitted to a temperature 10◦C to 15◦C above its Tg for 10 to 20
minutes. This period is used to erase their previous thermal or aging histories. Next,
the sample is quenched to a temperature Te below its Tg and kept at this temperature.
Then a creep test (see Section 2.1 for more details on creep tests) is started once a
time te has elapsed since the quench. The effect of aging can therefore be determined
by repeating this test for various te. Figure 2.3(A) shows the procedure of long-term
aging testing for an aging time te at a temperature Te.

• Isothermal short-term aging test. This methodology starts with the same anneal-
ing procedures as that of the long-term test. Instead of only one creep test, a sequence
of creep and recovery tests is performed on the material. Each creep duration should
never exceed 10% of the total aging time in order to ignore the aging effect during
testing. Otherwise, a correction is needed. The temperature and loading histories for
a typical short-term aging test is illustrated in Figure 2.3(B). tei

denotes the aging
time of material before starting the ith creep-recovery test. ∆tei

represents the creep
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period which should satisfy that ∆tei
< 10% tei

. In practice, since the amount of time
is required for the temperature “up-jump”, it is necessary to wait enough time before
creep testing to ensure that the specimen reaches its thermal equilibrium state.

• Non-isothermal aging test. This methodology is similar to the short-term aging test.
After being quenched directly to the aging temperature, the material was submitted to
a complex initial temperature history before performing sequential creep-recovery tests.
Figure 2.4 schematizes a single temperature variation non-isothermal aging experiment.

The isothermal long-term aging test is easy to be performed, which can be used for polymers
submitted to any stress level. However, it consumes more time than a short-term test. The
short-term test can be used to investigate the aging effect of a material at a temperature for
different aging times in just one experiment. However, this methodology is only valid when
the material can be considered as linearly viscoelastic. The non-isothermal aging test takes
into account the influence of temperature which exists in the real engineering application,
which can be used to investigate if the previous temperature histories have an effect on the
aging of the material.

Equipment and strain measurement techniques

Most existing investigations into the mechanical properties of polymers involving temperature
and physical aging effects rely mainly on Dynamic Mechanical Analysis (DMA) measurements
(Courtois, Hirsekorn, et al., 2019; Guo and Bradshaw, 2009; Kovacs et al., 1963; Meyer et
al., 1965; O’connell and McKenna, 1997; O’Connell and McKenna, 2002). The technique,
however, features limitations when it comes to measuring the mechanical properties of ma-
terials, including the specimen size limitation, the difficulty of aligning the specimen due
to the relatively small size of mounts and the fact that only uni-dimensional properties can
be investigated during these tests. This last feature limits the application of DMA in char-
acterizing the three-dimensional properties of polymers. When compared to DMA, tensile
testing frames allow various experimental set-ups and thus can be used to characterize the
three-dimensional properties of materials at elevated temperatures when equipped with an
environmental chamber and strain measurement equipment.

Three types of equipment are mostly used to measure strains in mechanical testing. The strain
gauge is an analog electrical sensor bonded to the specimen surface that is used to measure the
strains of solid materials (Knauss et al., 2008). It is well suited for accurately determining
specimen strains under various loading conditions and temperatures. However, the high
cost, the difficulty of selecting an appropriate bonding agent and the stringent requirements
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of the bonding technology make using a strain gauge relatively tedious and expensive. The
extensometer is a device fixed on the specimen by its knife edge, and the average strain of
the gauge section of the specimen during the experiment is computed from the displacement
of the knife edge. This measurement method provides the most convenient and cost-efficient
way for accurately measuring strains (Knauss et al., 2008). However, measurements with
an extensometer are subject to errors caused by its characteristics (Knauss et al., 2008;
Womack, 2020b, 2020c), such as temperature sensitivity, the penetration of the knife edge,
especially in high-temperature tests. Digital Image Correlation (DIC) yields strain fields
through analyzing pictures of specimens covered with a speckle pattern. However, the use
of DIC with an environmental chamber requires special care and equipment to account for
refraction from the chamber’s window (Rataj et al., 2015), the image distortions due to
the heated air (Valeri et al., 2017), and the black-body radiation of the specimen (Grant
et al., 2009). Among the three above-mentioned techniques, the extensometer seems the
most convenient, accurate, and easy to use when performing strain measurement at elevated
temperature.

However, strain measurements are subject to environmental influences that result in drift,
which arises from two primary sources.

Temperature sensitivity Alike most electronic sensors, the transducer in the extensome-
ter is susceptible to temperature, which causes the extensometer’s measurement results to
drift when the temperature changes. When the extensometer is powered, heat is generated
by the current flow, causing a temperature change, and the resulting drift is known as the
warm-up drift (Womack, 2020c). This drift generally stabilizes after the device has been
plugged in for a few minutes. When the ambient temperature changes, the extensometer
experiences a thermal drift (Womack, 2020b). This drift includes not only the response of
the sensor to the temperature change but also records the deformation of the load cell, test
machine, or other device subjected to the temperature change. Distinguishing the different
factors that cause thermal drift remains a challenge (Womack, 2020b).

Knife edges To hold the extensometer on the specimen, the knife edges are usually rather
sharp. Therefore, the knife edge will penetrate into the specimen when the extensometer
is mounted and cause the penetration drift (Knauss et al., 2008). This drift is particularly
noticeable when testing thermoplastic polymers. Since the extensometer is manually mounted
on the specimen, the knife-edge position and the contact force (Knauss et al., 2008), i.e., the
force applied to attach the knife-edge, may differ between tests, introducing measurement
error.
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2.2 Viscoelastic parameters identification

Obtaining constitutive theory parameters from experimental data can be cast as a non-linear
optimization problem as (Grédiac and Hild, 2012):

θ̂LS ∈ arg min
θ∈Θ

J (θ), J (θ) = ∥g(θ, x) − y∥2, (2.26)

where θ̂LS stands for the least squares estimate of the viscoelastic parameters vector θ,
x = (xi : i = 1, . . . , T ) is the applied excitation vector given T discrete times i, y = (yi :
i = 1, . . . , T ) are the corresponding observed discrete time responses and g(θ, x) represents
the response predicted by a physical model using the parameters vector θ submitted to an
excitation x. ∥ · ∥2 denotes the l2−norm. J (θ) stands for the objective function. For the
constitutive theory to meet thermodynamics principles, the parameters space Θ should be
defined as Θ ∈ R+. In particular, for the three-dimensional constitutive model, the stiffness
and compliance matrices should be positive semi-definite.

2.2.1 Ill-posedness of the problem

Estimating Prony series viscoelastic parameters from static or dynamic mechanical testing
data is a well-known ill-posed problem, which means that the model parameters identification
from testing data is not uniquely assured and small perturbations in the data could induce
significant variations in the identified parameters. To the knowledge of the authors, the
ill-posedness of this problem comes from two aspects.

First, due to experimental constraints, the measurement of the full compliances or modulus
over the whole time domain for the polymer cannot be performed. The mechanical testing
is always carried out over a given time window. There may exist infinite numbers of kernel
functions that represent experimental data in this experimental time window. As a result,
parameters identified from testing data are generally not unique. Therefore, the existence of
limited experimental time windows renders the ill-posedness of the identification problem.

Second, the numerical solution of Equation (2.26) for Prony series model is not unique.
The Prony series model parameters identification is actually refers to a classical positive
exponential sums fitting problem which has been discussed over the past several decades
(Holmström and Petersson, 2002; Istratov and Vyvenko, 1999). The ill-posedness of this
problem was firstly reported by Lanczos (1988). Lanczos generated data series using three
exponentials and fitted them equally well by several different exponentials. Similarly, Ruhe
(1980) showed that an arbitrary exponential can be well approximated by a sum of others.
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Liu (2001) demonstrated this feature.

2.2.2 Existing identification problem

To overcome the ill-posedness of viscoelastic parameters identification, scores of methods
have been proposed since 1960s. Existing viscoelastic parameters identification methods rely
on the least square norm and can be divided into three categories.

Fixing a priori characteristic times This is the most used method in which the number
and values of characteristics times (ωm or λm) are fixed a priori and the associated moduli
or compliances need to be estimated.

The most common method is the collocation method proposed by Schapery (1962), by as-
suming logarithmic equidistant retardation times. However, this method does not enforce
thermodynamics restrictions. Lévesque et al. (2008) improved this method by introducing
an optimization variable to ensure the non-negativeness of parameters. For example, let the
unknown stiffness value be c = α2 and α be the parameters to identify. This variable changes
the constrained optimization problem to an unconstrained one, which decreases the difficul-
ties of solving. The iterative multi-data method proposed by Kaschta and Schwarzl (1994a,
1994b) is an extension of the classical collocation method (no thermodynamics restrictions
imposed). Instead of fixing the retardation times a priori, this method assumes that the re-
tardation times are logarithmically equidistant with a prescribed spacing and starts with the
first retardation time. The parameters to be optimized are therefore the first retardation time
and compliances. If one or more parameters are negative, the value of the first retardation
time is slightly varied until all obtained parameters are positive. Emri and Tschoegl (1993,
1994, 1995) proposed a recursive identification scheme, using the characteristic properties
of the exponential in the kernel . This method is based on the fact that, the contributions
of the compliances associated with the retardation times located two decades after a given
λi can be neglected. With pre-selected relaxation times, this method starts calculating the
compliance associated to the largest relaxation time and then calculates other compliances.
The obtained negative values are set to zero and computation is restarted. The iteration
continues until the difference between the previously found and newly computed parameters
is smaller than a preset error. Some others methods can also be found in the literature
(Gerlach and Matzenmiller, 2005).

These techniques can tremendously reduce the difficulties of solving Equation (2.26). How-
ever, the pre-selection of number and values of relaxation or retardation times might not be
optimal and the resulting parameter sets might be unnecessarily large. Defining the most
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efficient number of retardation times, and their values, is still an open question.

Iteration free methods These methods can simultaneously obtain the tensorial values
as well as the characteristic times by defining dedicated mathematical structures. Yeramian
reported a method combining Padé approximation and the Laplace transformation of Prony
series, which enables the exact identification of characteristic times (Claverie et al., 1989;
Yeramian and Claverie, 1987). Jalocha et al. (2015) had constructed a specific mathematical
structure based on the Fourier transformation of Prony series and computed characteristic
times using the Krein-Nudelman theorem (Krein and Nudelman, 1998) from complex analysis.

However, the accuracy of these methods is strongly influenced by the experimental data
uncertainties. Halvorson (1992) reported that these methods could amplify the effect of
experimental noise on the identified parameters in an unpredictable way.

Stochastic strategies Stochastic approaches have also been proposed to estimate Prony
series model parameters, such as the Simulated Annealing (SA) algorithm (Jensen, 2002;
Tscharnuter et al., 2011a) or the Bayesian framework with Markov Chain Monte Carlo
(MCMC) (Haario et al., 2014; Hansen, 2008; Hernández et al., 2017). Rather than pre-
setting characteristic times, these approaches provide a quantitative means to estimate the
optimal number of series. Haario et al. (2014) introduced an indicator, called indeterminacy,
to characterize the parameters identification non-uniqueness. Similarly, Freund and Ewoldt
(2015) proposed the evidence to determine the most adequate model based on user input
model errors parameters.

It should be noted that some stochastic methods are not adequate for solving the Prony
series identification problem. For example, the SA algorithm solves the optimization prob-
lem directly by the Metropolis algorithm. However, the ill-posedness of the Prony series
problem may result in discrepancies with an inappropriate choice of the control values of the
SA algorithm, which make it difficult to implement it in an automated way. The existing
Bayesian methods used to identify Prony series viscoelastic parameters also still require some
clarifications and are non-automated. For instance, the error analysis still depends on the
knowledge of user, which can not be realized in a robust way.
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2.3 Bayesian framework

2.3.1 Bayes’ theorem

Given a set of experimental observation y = {yi : i = 1, . . . , n} associated to a multi-
dimensional parameter vector θ, which is considered as a random vector under the Bayesian
paradigm, the inference on θ can be archived through Bayes’ theorem as (Bishop, 2006):

f(θ|Y =y)(θ) = f(Y |θ)(y) × fθ(θ)
fY (y) , (2.27)

where f(θ|Y =y)(θ) is the posterior distribution of θ after observing the data y, f(Y |θ)(y) is
the likelihood, fθ(θ) is the prior distribution of θ and fY (y) is the normalization constant.
The prior distribution represents the knowledge on the model parameters before performing
the experimentation and the posterior distribution consists in the updated knowledge when
accounting for experimentally observed data. Information from the data is introduced via the
likelihood. Non-informative prior distribution can be used when no information is available
on θ before the experimentation. Otherwise, an informative prior on θ can be used. The
normalization constant ensures that the posterior integral to be unity, which can be expressed
as:

fY (y) =
∫

f(Y |θ)(y)fθ(θ)dθ. (2.28)

2.3.2 Markov Chain Monte Carlo

The posterior distribution f(θ|Y =y)(θ) is often unavailable under a closed analytical form.
Therefore, numerical methods are needed to perform statistical inference. The Markov Chain
Monte Carlo (MCMC) simulations are frequently used to generate samples from the posterior
distribution (Andrieu et al., 2003).

The core of MCMC simulations is to generate a random sample for the posterior distribution
of the parameter and then use this sample for the inference purpose (Gelman et al., 2013).
A Markov chain, a model in which the future predictions are assumed independent of all but
recent observations, is first constructed; then, a random walk is performed on the Markov
chain’s state space. The fraction of time spent in each state is proportional to the posterior
distribution during this process (Murphy, 2012). The schematic procedure of MCMC is
illustrated in Figure 2.5. Several sampling algorithms have been developed based on the
MCMC procedure (Gelman et al., 2013; Geman and Geman, 1984; Hastings, 1970; Metropolis
et al., 1953; Murphy, 2012).
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Figure 2.5 Illustration of the MCMC procedure adapted from An et al. (2015). A random
walk is performed on the state space where a Markov chain is constructed. The fraction of
time spent in each state is proportional to the posterior distribution.

Metropolis-Hastings sampling

The basic Metropolis-Hastings algorithm is an iterative sampling method, which starts from
an initial state of parameters θ0. Thus, at step s, the state of the parameters is independently
determined by the state of the previous step s − 1. The movement from θs−1 to θs is drawn
from a proposal distribution J(θs|θs−1), which must be constructed so that the Markov
chain can reach its unique stationary distribution, which corresponds to the target posterior
distribution f(θ|Y =y)(θ). A common choice for the proposal distribution is to use a symmetric
distribution, satisfying the condition (Gelman et al., 2013):

J(θs|θs−1) = J(θs−1|θs). (2.29)

If the target distribution evaluated with the proposed parameter θs is not less than the current
parameter θs, this proposed parameter is accepted. Otherwise, the proposed parameter is
accepted with a probability

α = f(θ|Y =y)(θs)
f(θ|Y =y)(θs−1) . (2.30)

The acceptation rate is defined as r = min{1, α}. If the proposed parameter is rejected, the
parameter remains the state, i.e., θs = θs−1. This process is repeated for totally S iterations.
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Releasing the symmetric requirement of proposal distribution improves the acceptation rate
and accelerate the speed of convergence (Gelman et al., 2013; Hastings, 1970), leading the
acceptance rate to:

α = min
{

1,
f(θ;Y =y)(θs)J(θs−1|θs)

f(θ;Y =y)(θs−1)J(θs|θs−1)

}
. (2.31)

The specific choice of proposal distribution J(θ) remarkably affects the performance of the
algorithm (Bishop, 2006). A common choice is that a Gaussian distribution centered on the
previous state. The Metropolis-Hastings sampling is summarized in Algorithm 1.

Gibbs sampling

The existence of an acceptance rate r is responsible for the Metropolis-Hastings algorithms’
inefficiency in high-dimensional problems, as r is always less than unity. The Gibbs algo-
rithm is a special case of Metropolis-Hastings sampling, which always yields a probability
of acceptance of 100 %. The Gibbs algorithm is based on the principle of sampling each
component of the parameter in turn, conditional on the values of all other variables in the
distribution (Murphy, 2012). Algorithm 2 summarizes the Gibbs sampling algorithm.

Several sample methods have been developped based on Metropolis-Hastings and Gibbs sam-
pling methods, such as Adaptive Metropolis within Gibbs (AMWG) (Roberts and Rosenthal,
2009), Hamiltonian Monte Carlo (HMC) (Duane et al., 1987), etc.

2.3.3 Application to parameter identification

The parameter identification problem defined in Equation (2.26) can be solved through the
Bayesian framework (Kaipio and Somersalo, 2006). Under the Bayesian paradigm, the con-
stitutive model parameters θ are considered as random variables, and the parameter identi-
fication are derived from the posterior distribution which includes the information provided
by the experimental data and the prior information of parameters.

In a mechanical experiment, the relation between experimental measurements Y and model
predictions g(θ, x) can be drawn by an observation model with an additive error ϵ as

Yi = g(θ; xi) + ϵi, i = 1, . . . , T, (2.32a)

ϵi ∼ N (0, σ2
ϵ ), (2.32b)

where N denotes the Gaussian distribution. The error ϵi of yi is modeled as a zero mean
Gaussian variable with variance σ2

ϵ , and it is assumed that the errors are independent, i.e., ϵi is
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Algorithm 1 Metropolis-Hastings sampling algorithm for MCMC simulation.
1: Initialize θ0

2: for s = 0, 1, 2, . . . , S do
3: Define θ = θs

4: Generate θ′ ∼ J(θ′|θ)

5: Compute r = min
{

1,
f(θ|Y =y)(θ′)J(θ|θ′)
f(θ|Y =y)(θ)J(θ′|θ)

}
6: Sample u ∼ U(0, 1)
7: if u < r then
8: θs+1 = θ′

9: else
10: θs+1 = θs

11: end if
12: end for

Algorithm 2 Gibbs sampling algorithm for MCMC simulation.
1: Initialize θ0 = {θ0

i : i = 1, 2, . . . , N}
2: for s = 1, 2, . . . , S do
3: sample θs+1

1 ∼ f(θ1|θs
2,θs

3,...,θs
N ,y)(θ1)

4: sample θs+1
2 ∼ f(θ2|θs+1

1 ,θs
3,...,θs

N ,y)(θ2)
5: . . .
6: sample θs+1

j ∼ f(θj |θs+1
1 ,...,θs+1

j−1,θs
j+1,...,θs

N ,y)(θj)
7: . . .
8: sample θs+1

N ∼ f(θN |θs+1
1 ,θs+1

2 ,...,θs+1
N−1,y)(θN)

9: end for

independent of ϵj, for i ̸= j. The likelihood function can be constructed from Equation (2.32)
(Freund and Ewoldt, 2015; Haario et al., 2014; Hansen, 2008; Hernández et al., 2017), which
can be written as:

Yi − g(θ; xi) ∼ N (0, σ2
ϵ ), (2.33)

then
Yi ∼ N

{
g(θ; xi), σ2

ϵ

}
. (2.34)

Therefore, the likelihood function, i.e., the joint density of Y given θ, becomes

f(Y |θ)(y) ∝ exp
{

− 1
2σ2

ϵ

∣∣∣∣∣∣ y − g(θ; x)
∣∣∣∣∣∣

2

}
. (2.35)

It is interesting to note that the maximum likelihood function (5.27) is formally equivalent
to the non-linear least-square optimization problem as Equation (5.16).

Due to the lack of the prior information of the parameter, the non-informative prior are
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usually used (Haario et al., 2014; Hernández et al., 2017). Finally, the posterior function of
the constitutive model parameters can be computed by:

f(θ|Y =y)(θ) ∝ f(Y |θ)(y) × fθ(θ). (2.36)

A random sample from this distribution can be obtained with MCMC. Once the posterior
distribution of the unknown parameters have been obtained, point estimates could also be
defined under the Bayesian paradigm. A common Bayesian point estimate corresponds to
the mode of the posterior distribution:

θ̂MAP = arg max
θ∈Θ

f(θ|Y =y)(θ), (2.37)

referred to as the maximum a posteriori (MAP) estimate.

2.3.4 Model selection

When fitting a statistical model to the experimental observations, the fit of the model can
be improved by increasing the number of parameters. However, the large number of param-
eters may lead to overfitting and raising the required computation cost and also reduce the
prediction accuracy. To balance the model fit and the model complexity, several information
criteria for model selection have been proposed in Bayesian analysis (Bishop, 2006).

One of mostly used criterion is the Bayesian Information Criterion (BIC), which is expressed
as:

BIC(M) = ln f(Y |θ̂MAP)(y) − M

2 ln T, (2.38)

where M stands for the number of parameters of the model, and T is the total number of
data points. The first term of this criterion measures the model fit and the second term
penalizes for complexity. A model with a higher BIC is preferable compared to the one with
a lower BIC.

Another common model selection criterion also exists, which is the so-called Akaike Infor-
mation Criterion (AIC), having a similar expression to BIC:

AIC(M) = ln f(Y |θ̂MAP)(y) − M. (2.39)

AIC tends to pick more complex models than BIC, resulting in better predictive accuracy.
However, AIC is derived from a frequentist framework and cannot be interpreted as an
approximation to the marginal likelihood (Murphy, 2012). As with the BIC, a model a
higher AIC is better.
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CHAPTER 3 OBJECTIVES AND RATIONALE

3.1 Problem definition

The general objective of this research is to develop a robust and automated numerical tool
for predicting the three-dimensional viscoelastic properties of thermoplastic materials under
complex loading and temperature histories. In that regard, the literature survey revealed
that:

• Obtaining viscoelastic parameters from experiments is still an ill-posed problem. Some
methods have been proposed to eliminate the ill-posedness of this problem. However, all
the classical methods found in the literature have limitations (e.g., sensitivity to noise,
etc.). Statistical methods have an important potential to deliver improved identification
methodologies. For example, they can help select the most appropriate models based
on experimental and model errors. This overcomes the sensitivity to experimental
errors problems encountered in classical methods. However, statistical methodologies
have been scarcely applied to viscoelastic properties identification and the proposed
methods thus far are still not sufficiently robust and depend on user input.

• Considering that the computational time involved in the simulation of the response of
viscoelastic structures scales with the number of viscoelastic coefficients, it would be of
considerable interest to devise identification strategies yielding the minimum number
of parameters. Several statistical methods have advanced concepts for model selection.
However, the optimal parameter count for the Prony series model remains unclear and
lacks reliable theory.

• Physical aging influences the long-term mechanical properties of thermoplastic. Most
studies concerning this behavior assume that the bulk properties or Poisson’s ratio are
constant and conducted in a uni-dimensional mode. This assumption, however, can
be violated if the testing period is sufficiently long or if high temperatures is involved,
resulting in inaccurate predictions of three-dimensional properties.

• The bi-axial extensometer can measure three-dimensional strains in thermo-mechanical
tests. However, the extensometer suffers drifts caused by several factors for thermo-
plastic at elevated temperatures. There is no standard procedure to account for these
drifts, and researchers have rarely detailed their approach to address this.
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• Most of the works in determining the viscoelastic and aging parameters of polymers
have been done in two separate steps, i.e., obtaining the shift factors by constructing the
master curve from the experimental data and then fitting the viscoelastic parameters to
the constructed master curve. However, this process introduces artificial errors in the
master curve, resulting in the inaccuracy in the viscoelastic parameter identification.

3.2 Research objectives

Based on the points raised in the critical evaluation of the scientific literature, three specific
objectives have been defined to accomplish the main objective, namely:

1. Propose a robust and automated method for identifying the three-
dimensional viscoelastic constitutive theories for thermoplastic at room tem-
perature

A Bayesian framework-based three-dimensional constitutive theory identification
method for linearly viscoelastic solids will be proposed to overcome the ill-posedness
of the Prony series model identification problem by MCMC simulations. The optimal
number of features of the Prony series will be determined according to the information-
theoretical criterion. The proposed method will be experimentally validated on differ-
ent specimens. Poly(methyl methacrylate) (PMMA) and polypropylene (PP) will be
investigated.

2. Generate non-isothermal physical aging experimental data for thermoplastic
at different temperatures

Non-isothermal physical aging tests at different temperatures will be performed on
polycarbonate (PC) specimens. A bi-axial extensometer will measure the axial and
transverse strains in specimens. The sources of measurement errors with an exten-
someter in thermo-mechanical testing will be analyzed. An experimental procedure for
three-dimensional mechanical testing at high temperatures will be proposed to account
for the drifts of the extensometer at elevated temperature.

3. Extend the proposed method to simultaneously identify the viscoelastic,
temperature and physical aging related model parameters

The proposed three-dimensional viscoelastic identification method based on the
Bayesian framework will be extended by incorporating temperature and physical aging
effects. The viscoelastic parameters and the shift factors will be identified simultane-
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ously. The effects of temperature and physical aging on the three-dimensional mechan-
ical properties of PC specimens, i.e., shear and bulk properties, will be investigated.
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CHAPTER 4 SCIENTIFIC APPROACH

The specific objectives defined in Chapter 3 are addressed through one published and two
submitted journal articles.

4.1 ARTICLE 1: On the tri-dimensional constitutive theory identification of
linearly viscoelastic solids based on Bayesian framework

This article proposes a framework based on Bayesian inference to identify the three-
dimensional constitutive model parameters for viscoelastic solids. A first contribution of
this method is that it overcomes the ill-posedness of the identification problem. A second
contribution of the method is that it allows for determining the minimum number of material
parameters yielding an optimized accuracy. Finally, this method can be automated and pack-
aged into codes that could be used by other researchers. This article fulfills the first specific
objectives, which is to develop a robust and automated way to identify the three-dimensional
viscoelastic parameters.

This article was published in the International Journal of Solids and Structures, Volumes
230–231, 111157 on July 14, 2021. DOI: 10.1016/j.ijsolstr.2021.111157. This journal pub-
lishes original research on mechanics of solids and structures. This article was written almost
entirely by the author of this thesis.

4.2 ARTICLE 2: On the strain measurement for thermoplastics with bi-axial
extensometer in thermo-mechanical testing: A case of characterizing tem-
perature and physical aging effects on polycarbonate

This article analyzes the source of measurement errors with a bi-axial extensometer in thermo-
mechanical testing and proposes a robust, straightforward and easy-to-follow experimental
procedure to measure the axial and transverse strains at elevated temperature and to correct
for drifts of the extensometer. Furthermore, the methodology proposed in this work can
serve as a protocol to guide other types of three-dimensional thermo-mechanical testing with
a bi-axial extensometer.

This article was submitted to the journal Experimental Mechanics on February 14, 2022.
This journal publishes original research and brief technical notes on experimental mechanics.
This article was written almost entirely by the author of this thesis.

https://doi.org/10.1016/j.ijsolstr.2021.111157


27

4.3 ARTICLE 3: On the parameters identification of three-dimensional aging-
temperature dependent viscoelastic solids through a Bayesian approach

This article extends the previously proposed Bayesian framework based method to simulta-
neously identify the viscoelastic, temperature, and physical aging related three-dimensional
model parameters. The first contribution of this work is that it demonstrates the extensi-
bility of the Bayesian framework method of parameter identification in complex constitutive
models. The second contribution of this work is that the temperature and physical aging
effects on the three-dimensional mechanical properties of viscoelastic solids are investigated
concurrently, which is critical for the development of composites but rarely addressed.

This article was submitted to the journal Mechanics of Time-Dependent Materials on March
1, 2022. This journal publishes original research on the time-dependent behavior of materials
and structures. This article was written almost entirely by the author of this thesis.
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CHAPTER 5 ARTICLE 1: ON THE TRI-DIMENSIONAL
CONSTITUTIVE THEORY IDENTIFICATION OF LINEARLY

VISCOELASTIC SOLIDS BASED ON BAYESIAN FRAMEWORK

L. Yue, M. C. Heuzey, J. Jalbert and M. Lévesque (2021). International Journal of Solids
and Structures, 230, 111157. Published on July 14, 2021. Minor changes were made following
the jury’s comments when compared to the published version.

5.1 Abstract

Linearly viscoelastic constitutive theories are usually expressed as a Prony series involving
fourth order tensors and retardation times. Obtaining the numerical values of the terms
involved in such constitutive models from experiments is an ill-posed problem in the sense
that many parameter sets can adequately fit experimental data. Considering that the com-
putational time involved in the simulation of the response of viscoelastic structures scales
with the number of viscoelastic coefficients, it would be of considerable interest to devise
identification strategies yielding the minimum number of parameters. We propose in this
work a framework based on the Bayesian inference to reach this objective. We have applied
our methodology to three-dimensional experimental data and validated the obtained consti-
tutive theory on an independent data set, for two different viscoelastic materials. Our results
demonstrated the robustness and adequacy of our method.

5.2 Introduction

Several methods have been proposed to estimate the linearly viscoelastic constitutive the-
ories parameters whose kernels are Prony series. For example, the improved collocation
method (Lévesque et al., 2008), the iterative multi-data method (Kaschta and Schwarzl,
1994a, 1994b), the Padé-Laplace method (Claverie et al., 1989; Yeramian and Claverie, 1987),
etc., have been proposed to that end.

The computational cost for numerically implementing viscoelastic constitutive theories scales
linearly with the number of terms in the Prony series. There is therefore an interest in
determining the smallest number of relaxation terms that reproduces experimental results as
accurately as possible.

The purpose of this work consists in proposing an automated and robust tri-dimensional pa-
rameters identification method for the linearly viscoelastic constitutive theories under the
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Bayesian paradigm and experimentally validating it on two different viscoelastic materials.
Automation means that the method should not need user input for each data set; Robustness
means that the method should be able to handle different levels of measurement errors. The
proposed method can not only identify viscoelastic parameters in the context of an ill-posed
problem, but also is able to determine the smallest number of parameter numbers. Sec-
tion 5.3 recalls the Prony series viscoelastic constitutive model, discusses existing parameters
identification methods and Bayesian inference. The experimental details and methodologies
are listed in Section 5.4. Section 5.5 details the proposed Bayesian inference based identifi-
cation method and its implementation. Section 5.6 applies the proposed method to artificial
data, polypropylene and polymethyl methacrylate specimens and compares its performance
against the conventional method proposed by Lévesque et al. (2008). Section 6 concludes
this work.

5.3 Background

5.3.1 Linear viscoelasticity

Thermodynamically based constitutive models

Thermodynamically based linearly viscoelastic constitutive theories were generalized by Biot
(1954) and Bouleau (1991, 1999), and were recalled by Lévesque et al. (2008). For an adi-
abatic and isothermal loading history, the Clausius-Duhem inequality classically becomes
(Lévesque et al., 2008)

(
σi − ∂Ψ

∂εi

)
ε̇i − ∂Ψ

∂χr

χ̇r = fiε̇i + brχ̇r ≥ 0, (5.1)

where χr are internal variables characterizing the material’s thermodynamical state. fi and
br are thermodynamic forces and are assumed as linear functions of the time variation of the
state variables, i.e. fi = Fij ε̇j and br = Brsχ̇s, with F and B being constant semi-positive
tensors. Ψ = Ψ(ε, χ) denotes Helmholtz’s free energy. In linear viscoelasticity, Ψ, assumed
as a second order Taylor expansion of the state variables around a equilibrium state Ψ0,
becomes

Ψ(ε, χ) = Ψ0 + 1
2ε : L1 : ε + ε : L2 : χ + 1

2χ : L3 : χ, (5.2)

where Li forms a semi-definite positive fourth order tensor, which can be expressed as:

L1 = ∂Ψ
∂εi∂εj

; L2 = ∂Ψ
∂εi∂χr

; L3 = ∂Ψ
∂χr∂χs

. (5.3)
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When combining Equations (5.1) and (5.2), a three-dimensional linearly viscoelastic consti-
tutive theory can be expressed as:

σ(t) = L1 : ε(t) + L2 : χ (5.4a)

B : χ̇ + L3 : χ + L⊺
2 : ε = 0, (5.4b)

where B is the fourth order identity tensor.

Solving differential Equation (5.4) yields

σ(t) =
∫ t

0
C(t − τ) : dε

dτ
dτ, (5.5)

with C(t) denoting the relaxation kernel that can be expressed as a Prony series as:

C(t) = C(0) +
M∑

m=1
C(m) exp[−ωmt], (5.6)

where the relaxation stiffnesses C(m) are positive semi-definite tensors, ωm are reciprocal
relaxation times associated to the stiffnesses C(m). M is the total number of relaxation
times. It should be noted that Equation (5.5) is a tridimensional form which is quite general.
In one dimension, this constitutive law is typically referred to as the generalized Maxwell
model, where parameter M represents the number of elements in the model.

Equation (5.4) can also yield the strain history as a function of the stress history as (Luk-Cyr
et al., 2013):

ε(t) = A1 : σ(t) − A2 : ξ (5.7a)

B : ξ̇ + A3 : χ + A⊺
2 : σ = 0, (5.7b)

where ξ are internal variables when stresses are applied. Ai forms a semi-definite positive
fourth order tensor. Similarly, the hereditary integral form of Equation (5.7) reads:

ε(t) =
∫ t

0
S(t − τ) : dσ

dτ
dτ, (5.8)

with
S(t) = S(0) +

M∑
m=1

S(m)(1 − exp[−λmt]), (5.9)

where S(t) denotes the retardation kernel. The creep compliances S(m) are positive semidef-
inite tensors and the λm are reciprocal creep times associated with the compliances S(m).
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For an isotropic material, the viscoelastic kernel functions have two independent components
and can be decomposed as:

C(t) = 3κ(t)J + 2µ(t)K (5.10a)

S(t) = 1
3 κ̃(t)J + 1

2 µ̃(t)K (5.10b)

with

Jijkl = 1
3δijδkl (5.11a)

Kijkl = 1
2

(
δikδjl + δilδjk − 2

3δijδkl

)
, (5.11b)

where δij is the Kronecker-delta function. κ(t) and µ(t) stand for the bulk and shear relax-
ation functions while κ̃(t) and µ̃(t) represent the bulk and shear creep compliances. These
functions can also be expressed as Prony series as

c(t) = c0 +
M∑

m=1
cm exp[−ωc

mt], with c = κ or µ, (5.12a)

s(t) = s̃0 +
M∑

m=1
s̃m(1 − exp[−λs

mt]), with s̃ = κ̃ or µ̃, (5.12b)

Note that ωκ
m and ωµ

m (or λκ
m and λµ

m) do not need to be identical to yield thermodynamically
consistent constitutive theories (Lévesque et al., 2007). Consequently, we did not force the
equality between ωκ

m and ωµ
m , or λκ

m and λµ
m.

Numerical implementation

In order to implement viscoelastic constitutive equations to Finite Element (FE) packages,
the solution of differential or integral equations, e.g. Equations (5.4), (5.5) and (5.8), need
to be computed. The recursive scheme proposed by Taylor et al. (1970) is one of mostly used
algorithm to compute the solution of hereditary integrals, like that of Equation (5.8). Taylor
et al. (1970) assumed that the time derivative of load history was constant during each time
increment and introduced a recursion formula to establish a relationship between successive
time steps. Equation (5.8) becomes

ε(tn+1) = εn+1 = S(0)σn+1 +
M∑

m=1
S(m)

(
σn+1 − σ0 − gn+1

m

)
. (5.13)
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The recursion formula gn+1
m can be reduced to

gn+1
m = gn

m exp[−λm∆tn+1] + (σn+1 − σn)hh+1
m , (5.14)

and
hn+1

m = 1 − exp[−λm∆tn+1]
λm∆tn+1 with ∆tn+1 = tn+1 − tn. (5.15)

5.3.2 Linearly viscoelastic constitutive theories parameters identification

Obtaining constitutive theory parameters from experimental data can be cast as a non-linear
optimization problem as (Grédiac and Hild, 2012):

θ̂LS ∈ arg min
θ∈Θ

J (θ), J (θ) = ∥g(θ, x) − y∥2, (5.16)

where θ stands for the viscoelastic parameters vector, for example, θ =
(c0, c1, . . . , cM , ω1, . . . , ωM), x = (xi : i = 1, . . . , T ) is the applied excitation vector
given T discrete times i, y = (yi : i = 1, . . . , T ) are the corresponding observed discrete
times responses and g(θ, x) represents the response predicted by a physical model using the
parameters vector θ submitted to an excitation x. ∥ · ∥2 denotes the l2−norm. J (θ) stands
for the objective function. For the constitutive theory to meet thermodynamics principles,
the parameters space Θ should be defined as Θ ∈ R+. In particular, for the tri-dimensional
constitutive model, the stiffness and compliance matrices should be positive semi-definite.

Ill-posed nature of the identification problem

Estimating Prony series viscoelastic parameters from static or dynamic mechanical testing
data is a well-known ill-posed problem, which means that the model parameters identification
from testing data is not uniquely assured and small perturbations in the data could induce
significant variations in the identified parameters. To the knowledge of the authors, the
ill-posedness of this problem comes from two aspects.

First, due to experimental constraints, the measurement of the full compliances or modulus
over the whole time domain for the polymer cannot be performed. The mechanical testing
is always carried out over a given time window. There may exist infinite numbers of kernel
functions that represent experimental data in this experimental time window. As a result,
parameters identified from testing data are generally not unique. Figure 5.1 shows an ex-
ample where three different compliance functions can be very close over the experimental
time window, but different outside. Each function can be approximated by a Prony series
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model. Therefore, the existence of experimental time windows renders the ill-posedness of
the identification problem. Moreover, Davies et al. reported that the relaxation spectra are
determinable on a shorter interval than the experimental time window by the concept of
sampling localization (Davies and Anderssen, 1997), expressed as:

eπ/2

ωmax
< ω <

e−π/2

ωmin
, (5.17)

where ωmin and ωmax corresponds to the smallest and the longest observations.

Second, the numerical solution of Equation (5.16) for Prony series is not unique. Considering
a simple uni-dimensional case where the applied strain history is constant and is set to ε0,
Equation (5.5) becomes

σ(t) =
M∑

m=0
c⋆

m exp[−ωmt], (5.18)

with
c⋆

i = ε0ci and ω0 = 0. (5.19)

Figure 5.1 Three different compliance in the experimental time window. S(t) represents
the true compliance function for a given material. Functions S ′(t) and S ′′(t) exhibit very
close values only over the experimental time window. Three different functions results in the
identical materials behavior in this range.
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The associated parameter identification problem of Equation (5.16) is reduced to

arg min
c,ω∈R+

J (c, ω) =
∑

i

(
yi −

M∑
m=0

c⋆
m exp[−ωmti]

)2

≡
∑

i

r2
i , (5.20)

where yi = σ̂i denotes the measured stress data at time ti. Equation (5.20) refers to a
classical positive exponential sums fitting problem which has been discussed over the past
several decades (Holmström and Petersson, 2002; Istratov and Vyvenko, 1999). The ill-
posedness of this problem was firstly reported by Lanczos (1988). Lanczos generated data
series using three exponentials and fitted them equally well by several different exponentials.
Similarly, Ruhe (1980) showed that an arbitrary exponential can be well approximated by a
sum of others. Liu (2001) demonstrated this feature.

Furthermore, solving Equation (5.20) is difficult, especially when the number of exponential
terms M becomes large. Gaussian-Newton or Levenberg-Marquardt algorithms (Gill et al.,
2019; Levenberg, 1944; Marquardt, 1963) are conventionally used to solve this nonlinear least-
square problem. The Jacobian matrix D and Hessian matrix H of the objective function J
are expressed as

Dij = ∂ri/∂θj, θ = (c0, . . . , cm, ω1, . . . , ωm) , (5.21a)

Hij = 1
2

∂2J
∂θk∂θj

=
∑

i

(
∂ri

∂θk

)(
∂ri

∂θj

)
+
∑

i

ri
∂2ri

∂θk∂θj

, (5.21b)

with

∂ri

∂cm

= − exp(−ωmti), (5.22a)

∂ri

∂ωm

= −cmti exp(−ωmti). (5.22b)

Jacobian and Hessian matrices are usually needed to be computed in these algorithms and
are sensitive to the variation of parameters ωm (Ruhe, 1980). Tiny variance in parameters
could lead to large perturbations in exponentials. The Hessian matrix may be easily “stuck”
within the ill-condition caused by some specific parameters during the optimization process
or the empirical data noise (Varah, 1985). Therefore, Equation (5.20) is usually ill-posed,
even for a simple problem with small number of exponentials M .
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Analysis of existing works on the linearly viscoelastic parameters identification

To overcome the ill-posedness of viscoelastic parameters identification, scores of methods
have been proposed since 1960s. Existing viscoelastic parameters identification methods rely
on the least square norm and can be divided into three categories.

Fixing a priori characteristic times This is the most used method in which the number
and values of characteristics times (ωm or λm) are fixed a priori and the associated moduli
or compliances need to be estimated. Schapery (1962) proposed the collocation method by
assuming logarithmic equidistant retardation times. However, this method does not enforce
thermodynamics restrictions. Lévesque et al. (2008) improved this method by introducing
an optimization variable to ensure the non-negativeness of parameters. For example, let
the unknown stiffness value be c = α2 and α be the parameters to identify. This variable
changes the constrained optimization problem to an unconstrained one, which decreases the
difficulties of solving. The iterative multi-data method of Kaschta and Schwarzl (1994a,
1994b) is an extension of the classical collocation method (no thermodynamics restrictions
imposed). Instead of fixing the retardation times a priori, this method assumes that the
retardation times are logarithmically equidistant with a prescribed spacing and starts with the
first retardation time. The parameters to be optimized are therefore the first retardation time
and compliances. If one or more parameters are negative, the value of the first retardation
time is slightly varied until all obtained parameters are positive. Some others methods can
also be found in the literature (Gerlach and Matzenmiller, 2005).

These techniques can tremendously reduce the difficulties of solving Equation (5.16). How-
ever, the pre-selection of number and values of relaxation or retardation times might not be
optimal and the resulting parameter sets might be unnecessarily large. Defining the most
efficient number of retardation times, and their values, is still an open question.

Iteration free methods These methods can simultaneously obtain the tensorial values
as well as the characteristic times by defining dedicated mathematical structures. Yeramian
reported a method combining Padé approximation and the Laplace transformation of Prony
series, which enables the exact identification of characteristic times (Claverie et al., 1989;
Yeramian and Claverie, 1987). Jalocha et al. have constructed a specific mathematical
structure based on the Fourier transformation of Prony series and computed characteristic
times using the Krein-Nudelman theorem (Krein and Nudelman, 1998) from complex analysis
(Jalocha et al., 2015).

However, the accuracy of these methods is strongly influenced by the experimental data
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uncertainties. Halvorson (1992) reported that these methods could amplify the effect of
experimental noise on the identified parameters in an unpredictable way.

Stochastic strategies Stochastic approaches have also been proposed to estimate Prony
series model parameters, such as the Simulated Annealing (SA) algorithm (Jensen, 2002;
Tscharnuter et al., 2011a) or the Bayesian framework with Markov Chain Monte Carlo
(MCMC) (Haario et al., 2014; Hansen, 2008; Hernández et al., 2017). Rather than pre-
setting characteristic times, these approaches provide a quantitative means to estimate the
optimal number of series. Haario et al. (2014) introduced an indicator, called indeterminacy,
to characterize the parameters identification non-uniqueness. Similarly, Freund and Ewoldt
(2015) proposed the evidence to determine the most adequate model based on user input
model errors parameters.

It should be noted that some stochastic methods are not adequate for solving the Prony
series identification problem. For example, the SA algorithm solves the optimization problem
directly by the Metropolis algorithm. However, the ill-posedness of the Prony series problem
may result in discrepancies with an inappropriate choice of the control values of the SA
algorithm, which make it difficult to implement it in an automated way. The Maximum
Likelihood Estimation (MLE) method constructs a probability distribution based on the
cost function, then finds the parameter to maximize the likelihood. Solving the MLE requires
the computation of the Hessain matrix, which is the essential difficulty for the Prony series
identification problem.

The existing Bayesian methods used to identify Prony series viscoelastic parameters also
still require some clarifications and are non-automated. For instance, the error analysis still
depends on the artificial choice of user in a arbitrary way. Nevertheless, the Bayesian frame-
work is highly attractive because of its advantages in Prony series parameters identification,
when compared to other methods.

First, using a Bayesian framework to estimate parameters does not need computing the
derivatives of the objective function, so that the ill-posedness from the ill-conditioned Jaco-
bian and Hessian matrices can be avoided. Second, the MCMC can explore several modes
of the model, making the procedure more robust on the non-identifiability issue. Third, the
estimation of the experimental errors can be embedded under the Bayesian paradigm, per-
mitting an automated choice of the weighting of the distances in Equation (5.16) based on
the data. Fourth, rich information can be drawn from the resulting posterior probabilities
of parameters, which allows the uncertainty qualification for the identified model. Moreover,
some information criteria can be performed to determine the optimal number of characteristic
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times M of the Prony series model.

Therefore, in this work we chose the Bayesian framework to investigate the identification of
tri-dimensional Prony series viscoelastic parameter and develop a numerical tool based on it
which is robust and automated.

5.3.3 Bayesian framework

For solving the identification problems expressed in Equation (5.16) under the Bayesian
paradigm, the constitutive model parameters are modeled as random variables. The ran-
domness characterizes the degree of information concerning the unknown parameters and is
modeled with probability distributions. The solution consists in a posterior distribution of
the parameters which includes the information provided by the data and the prior information
of parameters (Kaipio and Somersalo, 2006).

In a mechanical experiment, the relation between experimental measurements Y and model
predictions g(θ, x) can be drawn by an observation model with an additive error ϵ as

Yi = g(θ; xi) + ϵi, i = 1, . . . , T, (5.23a)

ϵi ∼ N (0, σ2
ϵ ), (5.23b)

where N denotes the Gaussian distribution, ϵ is modeled as a zero mean Gaussian variable
with variance σ2

ϵ . This model has been used in applications like the relaxation spectrum
estimation (Hansen, 2008) or the viscoelastic parameters identification (Haario et al., 2014;
Hernández et al., 2017).

Bayesian inference

Bayes’ theorem can be expressed as:

f(θ|Y =y)(θ) = f(Y |θ)(y) × fθ(θ)
fY (y) , (5.24)

where f(θ|Y =y)(θ) is the posterior distribution of θ after observing the data y, f(Y |θ)(y) is
the likelihood, fθ(θ) is the prior distribution of θ and fY (y) is the normalization constant.
The prior distribution represents the knowledge on the model parameters before performing
the experimentation and the posterior distribution consists in the updated knowledge when
accounting for experimentally observed data. Non-informative prior distribution can be used
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when no information is available on θ before the experimentation. Otherwise, an informative
prior on θ can be used.

The likelihood function can be constructed from Equation (5.23), which can be written as:

Yi − g(θ; xi) ∼ N (0, σ2
ϵ ), (5.25)

then
Yi ∼ N (g(θ; xi), σ2

ϵ ). (5.26)

Therefore, the likelihood function, i.e. the probability distribution of Y for given value of
unknown parameters θ, becomes

f(Y |θ)(y) ∝ exp
{

− 1
2σ2

ϵ

∣∣∣∣∣∣ y − g(θ; x)
∣∣∣∣∣∣

2

}
(5.27)

It is interesting to note that the maximum likelihood function (5.27) is formally equivalent
to the non-linear least-square optimization problem as Equation (5.16).

Once the posterior distribution of unknown parameters have been obtained, point estimates
could also be defined under the Bayesian paradigm. A common Bayesian point estimate
corresponds to the mode of the posterior distribution:

θ̂MAP = arg max
θ∈Θ

f(θ|Y =y)(θ), (5.28)

referred to as the maximum a posteriori (MAP) estimate.

Markov Chain Monte Carlo algorithm

The posterior probability function for viscoelastic parameters identification is unavailable
under a closed analytical form. Therefore, numerical methods are needed to perform statis-
tical inference. The Markov Chain Monte Carlo simulations are frequently used to generate
samples from the posterior distribution (Andrieu et al., 2003).

The core of MCMC simulations is to obtain a random sample of the parameter posterior dis-
tribution. Various sampling algorithms have been developed, including the Gibbs algorithm
and Metropolis-Hastings algorithm which are commonly used (Gelman et al., 2013).
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Gaussian variance estimation

The variance σ2
ϵ in Equation (5.27) is generally unknown and it could be estimated with the

data by incorporating this parameter in the statistical model. Its complement conditional
distribution can be estimated through the inverse Gamma distribution (Gelman et al., 2013),
as:

f(σ2
ϵ |Y =y)(σ2

ϵ ) ∼ InvGamma
{

T

2 ,
1
2

T∑
i=1

(yi − g(θ; xi))2
}

. (5.29)

Updating its value within the MCMC algorithm is straightforward.

Model selection

Increasing the number of relaxation times M in the Prony series model can improve the
model fit of the model prediction. However, a large number of terms may lead to overfitting,
reducing the prediction accuracy and rising the required computation cost in the numerical
simulation of viscoelastic structures.

To balance the model fit and the model complexity, several information criteria for model se-
lection have been proposed in Bayesian analysis (Bishop, 2006). One of mostly used criterion
is the Bayesian Information Criterion (BIC), which is expressed as:

BIC(M) = ln f(Y |θ̂MAP)(y) − 1
2(2M + 1) ln T, (5.30)

where M stands for the number of parameters of the model, and T is the total number of data
points. The first term of this criterion measures the model fit and the second term penalizes
for complexity. Therefore, the optimal number of terms in Prony series can be obtained by
maximizing the BIC.

Interval estimation

The prediction interval provides an interval for the future predictions based on the previous
observations and the estimated model. The (1 − α)% prediction interval of the prediction ŷh

at the point xh is given by

ŷh ± t(1−α/2,n−m) ×

√√√√MSE ×
(

1 + 1
n

+ (xh − x̄)2∑(xi − x̄)2

)
, (5.31)

where {(xi, yi), i = 1, . . . , n} are observations, t(1−α/2,n−m) is the t-multiplier which has n−m

degrees of freedom and m is the number of model parameters. MSE stands for the mean
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square error with n − m degrees of freedom, i.e.,

MSE =
∑(yi − ŷi)2

n − m
. (5.32)

The credible interval is the interval based on the Bayesian inference that can describe the
probability of an unknown parameter from the posterior probability. The (1 − α)% credible
interval is defined as: ∫

f(θ|Y =y)(θ)dθ = 1 − α. (5.33)

The computation of the credible interval is straightforward using the random sample of the
posterior distribution obtained with the MCMC procedure.

5.4 Materials and methods

5.4.1 Materials

Poly(methyl methacrylate) (PMMA) and polypropylene (PP) were mechanically tested. Both
materials were obtained from McMaster-Carr® (product numbers 8560K257 and 8742K233,
respectively). PMMA specimens were cut by laser cutting from a rectangular sheet fabricated
by casting. PP specimens were water jet cut from a rectangular sheet fabricated by extrusion.
The sheet thickness was 4.23 mm.

Two different specimen geometries were investigated. ASTM D638 standard type-I specimens
were used to identify material parameters and to validate uni-dimensional model predic-
tions, while the complex geometry specimen shown in Figure 5.2 was used to validate tri-
dimensional model predictions. These two types of geometries are noted as simple and
complex in the following.

5.4.2 Equipment

Tensile creep testing was performed with a MTS Insight® machine equipped with a 1 000 N
load cell, at room temperature.

Axial and transverse strains were measured simultaneously with Digital Image Correlation
(DIC) during each test. The investigation area in DIC analysis for simple and complex
specimens and the paths used to quantitatively compare the experimental response and
numerically predicted response are showed in Figure 5.3.

The DIC analysis was performed with a VIC-3D setup from Correlated Solutions (Correlated,
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Figure 5.2 Dimensions of the complex geometry specimen (in mm).

2010). The technique relies on two parameters. The subset is defined as the number of pixels
in the area used to track displacement between images. The step size is the spacing of the
points that are analyzed during correlation (Tabiai et al., 2019). These two parameters were
set to the values automatically suggested by VIC-3D. The strain filter is also needed to
smooth calculated strains. Table 5.1 lists the VIC-3D parameters used in this work.

5.4.3 Experiments

Determination of the linearly viscoelastic regime

The first step to identify the viscoelastic theory parameters of a polymer material is to
determine its domain of linearity. Let g(σ) = ε be the constitutive model, where it is

Table 5.1: Parameters used in VIC-3D analysis.

Geometry Subset Step Strain filter
Simple 43 7 15

Complex 43 7 27
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Figure 5.3 Illustration of specimens used in tensile creep tests. The arrows show the applied
loading direction. The colored zones indicate the DIC investigation areas. Crossed lines on
the right subfigure show the paths used to quantitatively compare between DIC measurements
and FEM strain computations.

implied that σ and ε are functions of time. A linearly viscoelastic constitutive model should
satisfy:

1. g(λσ) = λg(σ) where λ ∈ R, ∀t,

2. g(σ1 + σ2) = g(σ1) + g(σ2) = ε1 + ε2, ∀t.

Let σ0 be a sufficiently small stress for which it is assumed that the material remains in its
linearity range. The stress history σa = λaσ0 can be assumed linear if:

Rij (σa(t)) ≡
εa

ij(t)/λa

ε0
ij(t)

=
g(σa

ij(t))/λa

g(σ0
ij(t))

=
λag(σ0

ij(t))/λa

g(σ0
ij(t))

= 1,

∀t, and no sum on ij,

(5.34)

where Rij is called herein normalized ratio of component ij.
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In this work, for both polymers, the σ0 was set to 3 MPa. Creep tests with applied creep
stresses were of 4 MPa, 5 MPa, 6 MPa, . . . were sequentially performed until the ratio R was
no longer constant.

It should be noted that it is impossible to perform an ideal creep experiment, during which
a constant stress is applied at t = 0+. There is always a ramp before the desired load is
attained in practice. A constant displacement rate 2 mm/min was imposed during the ramp
phase. The ramp duration varied with the applied load level, which led to loading histories
that were not identical for each load level. Therefore, the ratio R was slightly larger than 1
and had a difference at the beginning caused by the ramp effect.This effect can be ignored for
the latter part of experiments. Therefore, the criterion used to determine the linear regime
of viscoelasticity is that the normalized ratio R remains constant in the latter phase of the
creep experiment. The variance of R was used to evaluate this criterion, which is defined as:

Var(Rij(σa)) =
∑T

i=1

(
Rij(σa(ti)) − R̄ij

)2

T − 1 (5.35)

where R̄ij is the mean of Rij(σa). It was assumed that the material remained in its linear
regime when the variance of Rij was lower than 1 × 10−6.

Choice of loading histories

The loading histories used to identify and validate the viscoelastic constitutive theory could
be selected once the linearly viscoelastic domain was determined, for each material. Figure 5.4
illustrates the typical loading history used. The applied loading initially increases to σ1 and
dwells for a period ∆t1, then the applied stress decreases to σ2 and dwells for a period of time
∆t2. This procedure continued until the loading value reached the linearly viscoelastic limit
of the material. Figure 5.5 plots the loading histories chosen for parameters identification
and for the uni-dimensional validation for PMMA and PP.

Validation of identified Prony series model

The tri-dimensional viscoelastic parameters can be identified by the proposed Bayesian based
method. This method is detailed in Section 5.5. The identified Prony series model was
validated in two ways. The first one used the simple geometry specimens submitted to a load
history which was different from that used to identify the parameters. The second method
consists in mechanically testing a complex geometry specimen. The strains measured by DIC
and predicted by Finite Element Method (FEM) simulation were compared to validate the
identified tri-dimensional constitutive theory.
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Figure 5.4 Stress histories used to identify and validate viscoelastic material constitutive
theories.

Figure 5.6 illustrates the loading history used to validate the identified model on the complex
specimens. The measured and predicted full strain fields were investigated at three different
time steps ta, tb and tc. The applied loads Fa, Fb and Fc varied from one material to the
next and depended on their linearly viscoelastic regime. To ensure the specimens remained
in the linearly viscoelastic regime, a preliminary FEM analysis was performed to determine
if the obtained maximum von Mises stress σ′

max exceeded the linear viscoelasticity limit σLV

for the material. If so, the applied loads were decreased to ensure that σ′
max ⩽ σLV .

5.5 Parameters identification

5.5.1 Simultaneous identification of bulk and shear creep compliances from me-
chanical testing

The stress tensor σ in the gauge section of a standardized uniaxial tensile testing specimen
submitted to a uniaxial load reads

σ11 = σI, others σij = 0, (5.36)

where σI is the applied stress.
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Figure 5.5 Load histories used to identify and to validate the linearly viscoelastic parameters
on simple geometry specimens for PMMA and PP. (A) PMMA identification load history;
(B) PMMA validation load history; (C) PP identification load history; (D) PP validation
load history.

The resulting strain tensor ε reads

ε11 = εI, ε22 = ε33 = εII, others εij = 0. (5.37)

Let’s define

ε† = εI − εII, (5.38a)

ε‡ = εI + 2εII. (5.38b)
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Figure 5.6 Load history used to validate the identified parameters on complex geometry
specimens.

Combining Equations (5.8, 5.10, 5.12) yields,

2ε†(t) = µ̃0σI(t) +
∫ t

0

M∑
m=1

µ̃m(1 − exp[−λµ
m(t − τ)])dσI

dτ
dτ, (5.39a)

3ε‡(t) = κ̃0σI(t) +
∫ t

0

M∑
m=1

κ̃m(1 − exp[−λκ
m(t − τ)])dσI

dτ
dτ. (5.39b)

Equation (5.39) shows that the bulk creep compliance κ̃(t) and the shear creep compliance
µ̃(t) can be identified independently of each other and that the three-dimensional optimization
problem reduces to two uni-dimensional problems.

Consider an experimental creep-recovery test where the axial load σ̂I is applied and measured
by a load cell and the resulting strains ε̂I and ε̂II are measured. ε̂† and ε̂‡ can be computed
from Equation (5.38) with σ̂I. Inputting σ̂I into Equation (5.39) yields predicted ε̌† and ε̌‡

as

ε̌† = gµ (θµ; σ̂I) , (5.40a)

ε̌‡ = gκ (θκ; σ̂I) , (5.40b)
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with

θµ = {µ̃0, µ̃1, , . . . , µ̃M , λµ
1 , . . . , λµ

M} , (5.41a)

θκ = {κ̃0, κ̃1, , . . . , κ̃M , λκ
1 , . . . , λκ

M} , (5.41b)

where gµ and gκ represent the linearly viscoelastic constitutive theory of Equation (5.39).
The identification problem therefore reduces to:

θµ = arg min
θµ∈R+

N∑
i=1

∥∥∥gµ

(
θµ; σ̂

(i)
I

)
− ε̂†(i)

∥∥∥
2

, (5.42a)

θκ = arg min
θκ∈R+

N∑
i=1

∥∥∥gκ

(
θκ; σ̂

(i)
I

)
− ε̂‡(i)

∥∥∥
2

, (5.42b)

where {σ̂
(i)
I , ε̂

(i)
I , ε̂

(i)
II }, i = 1, . . . , N, are experimental data sets, N denoting the number of

experiments.

5.5.2 Viscoelastic model prediction computation

The model predictions g(θ; x) need to be computed through Equation (5.8) for identifying
the Prony series parameters from tensile creep test featuring arbitrary applied load histories.
In this study, the numerical solution was computed using real input loading data through the
recursive scheme. The time step sizes ∆t corresponded to the strain measurement acquisition
frequency, which was of 1 Hz.

5.5.3 Additive error assumption

In the Bayesian framework, the additive error ϵ is assumed as a zero mean Gaussian. The
applicability of this assumption in the Prony series viscoelastic parameter identification needs
to be justified. In the current problem, the errors principally come from three sources.

Experimental error The experimental error consists in the measurement error, which is
introduced by the DIC measurements and analysis. This measurement error is noted as ϵe

and can be considered as a Gaussian distribution (He et al., 2018; Reu et al., 2009). The
variance DIC measurement error ϵe depends on the subset size and its order of magnitude is
1 × 10−5 when the subset size is 43 (He et al., 2018).
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Model error Helmholtz’s free energy Ψ is approximated by a second order Taylor ex-
pansion. This approximation introduces a model error. This error is noted as ϵm and is a
systematic error which is proportional to O(ε3)+O(χ3). The linearly viscoelastic strain limit
for most polymer materials is approximately 0.5%, thereby the model error has the order of
1 × 10−9.

Numerical error The numerical error refers to the truncation error which is introduced
when numerically computing the integral in Equations (5.8) using a recursive scheme. This
error is noted as ϵn and is also a systematic error which depends on the time step size ∆t

and the numerical implementation scheme (Crochon et al., 2010; Sorvari and Hämäläinen,
2010). The numerical error ϵn has the order of magnitude of 1 × 10−8 when the time step
size is of 1 s using the recursive scheme (Crochon et al., 2010).

The total error in the identification problem reads

ϵ = ϵe + ϵm + ϵn. (5.43)

Note that ϵm and ϵn are comparably smaller than ϵe. The total error can be approximated
as:

ϵ ≈ ϵe, (5.44)

which is quantified as random variable with a zero mean Gaussian distribution. Therefore,
the assumption of the Gaussian additive error can be used in the Bayesian framework for
Prony series parameter identification.

The axial and transverse strains measurement errors, ϵI and ϵII, are assumed to be two
independent Gaussian distributed random variables with a zero mean. As the transformation
(5.38) is performed, the errors of ε† and ε‡ are the linear combinations of ϵI and ϵII, which
implies that they are Gaussian random variables as well, i.e.

ϵ† ∼ N (0, σ2
ϵ†), (5.45a)

ϵ‡ ∼ N (0, σ2
ϵ‡). (5.45b)
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5.5.4 Tri-dimensional viscoelastic parameters identification under the Bayesian
paradigm

To identify the shear creep compliance µ̃(t) by solving Equation (5.42a) based on the Bayesian
framework, the posterior function should be computed by

f(θµ|Y =ε̂†)(θµ) ∝ f(Y |θµ)(ε̂†) × fθµ(θµ), (5.46)

where the likelihood function is constructed based on the assumption that ϵ† is a Gaussian
random variable as

f(Y |θµ)(ε̂†) ∝ exp
{

− 1
2σ2

ϵ†

∣∣∣∣∣∣ ε̂† − gµ(θµ; σ̂I)
∣∣∣∣∣∣

2

}
, (5.47)

and an ordered relation in the prior function is imposed to avoid identifiability issues, as

fθµ(θµ) ∝


1

λµ
1

× . . . × 1
λµ

M
if 0 < λµ

1 < . . . < λµ
M ,

0 otherwise.
(5.48)

The MAP estimate can be obtained by

θ̂µ
MAP = arg max

µ̃m∈R+, λµ
m∈R∗

+

f(θµ|Y =ε̂†)(θµ). (5.49)

The bulk creep compliance κ̃(t) can can be identified independently and in parallel through
the same procedure.

5.5.5 Algorithm summary

The pseudo code of our proposed method to identify tri-dimensional viscoelastic parameters
based on Bayesian framework is presented in Algorithm 3. The first step is to compute ε̂†

and ε̂‡ through Equation (5.38) from mechanical testing data. A parameter transform should
be performed, i.e. φ = ln θ, to solve Equation (5.42) with thermodynamic constraints.
The maximum number of retardation times was arbitrarily bounded to twice the number
of decades of experimental data. In our study, the non-informative prior function was used
and, consequently, the posterior distribution is that of Equation (5.27). This distribution was
sampled using a MCMC method. The Adaptive Metropolis within Gibbs (AMWG) algorithm
(Roberts and Rosenthal, 2009; Tierney, 1994) was applied in our work. Once the posterior
distribution was obtained, the BIC was computed with Equation (5.30). This procedure was
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repeated for M = 1 to M = Mmax. Then, the optimal number of retardation times Mopt is
that which maximizes the BIC. Finally, the MAP estimates of parameters can be computed
from Equation (5.28).

This method has been implemented under the Julia Programming Language with Mamba
package (Deonovic and J Smith, 2018) and is openly available on the Github repository
ViscoBayes (Yue, 2020).

5.6 Results and discussion

5.6.1 Application to pseudo experiments

The first application of the proposed method was performed to identify the parameters from
a numerical relaxation experiment with the loading consisting of a constant strain of 1. The
pseudo experimental data was generated using a Prony series having 9 relaxation times with
the known parameters which are given in Table 5.2. The resulting stress can be expressed
as:

σI(t) = c0 +
9∑

m=1
cm exp[−ωmt], t ∈

[
10−3, 103

]
. (5.50)

A Gaussian noise, which corresponds to the error in Equation (5.23), was added to the data.
There numerical test cases, noted as case 1, 2, 3 and 4, with different added error variances,
σ̂2

ϵ = 100, 500, 1000, 10000, were performed to show the robustness of the proposed method.

The proposed method was applied to this generated pseudo data set. The maximum number
of relaxation times was set to Mmax = 12. The variance of the added noise is also a random
variable and could be estimated by our method.

Figure 5.7 shows the BIC for the different models as a function of the number of relaxation
times for four cases. The figure shows that, for all test cases, the BIC increases initially with
the model complexity. Then, adding complexity to the model no longer increases the quality
of the fit. The optimal number of series for representing the pseudo experimental data of
each case thus can be determined. It was found that for cases 1, 2 and 3 the optimal number
of series is 5 while it is 4 for test case 4. The BIC values globally decreased when a larger
error variance was added, which can be explained as the precision of results was weakened

Table 5.2: Prony series model parameters used to generate pseudo experimental data.

m 0 1 2 3 4 5 6 7 8 9
ωm - 1 × 10−2 10−1.5 1 × 10−1 10−0.5 1 100.5 1 × 101 101.5 1 × 102

cm 100 350 100 400 250 300 450 200 50 150
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Figure 5.7 Evolution of Bayesian information criterion (BIC) with respect to number of
relaxation times for pseudo experimental data of four numerical test cases.

by the experimental error.

Figure 5.8 plots the nominal stress curves generated by MAP estimates for different numbers
of relaxation times M and the true parameters for the numerical test case 1. The figure
shows that the adequacy between the true response and that predicted by models featuring 1
to 4 relaxation times increases with the number of relaxation times. However, the agreement
between the true response and that predicted by models featuring more than 4 relaxation
times does not improve when the number of relaxation times increases.

Using the MAP estimate of the posterior distribution as a point estimate, the θMAP for
Prony series model, the mean estimate of error variance σ̌2

ϵ and the nominal stress curves
plotted using the true parameters, the corresponding estimates and the generated noised
data for four numerical cases are shown in Figures 5.9, 5.10, 5.11 and 5.12. The figures show
that the five-relaxation times model is a very good approximation of the nine-relaxation
times model for the first three cases. The salient conclusion to be drawn is that, as indicated
previously, the viscoelastic kernel function can be approximated within the tolerance limits by
different parameters sets, over the given experimental window. The local difference between
true data and prediction for test case 4 was remarkable and the stress curve generated by
the identified parameters yielded oscillations that were caused by the comparatively small
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Figure 5.8 Comparison between the stress function using true parameters and MAP estimates
for different number of Prony series M for the numerical test case 1 (σ̂2

ϵ = 100).

number of relaxation times. The method was no longer working in this test with σ̂2
ϵ = 10000.

It should be noted that the added error in test case 4 is very large, when compared to that
encountered in actual laboratory experiments.

The identified variances of each test case had an excellent agreement with its true value
(within 10%), even for case 4. Therefore, the method used to estimate experimental errors
can be validated by this result.

5.6.2 Application to mechanical experiments of polymer materials

Determination of the linearly viscoelastic regime

The normalized ratio Rij(σ) has three non-zero components for an isotropic viscoelastic
material submitted to a uniaxial load history σ, i.e.

R11, R22 = R33, others Rij = 0. (5.51)
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Figure 5.9 Comparison between the generated noised data and the stress function constructed
using true and identified parameters for the numerical test case 1 (σ̂2

ϵ = 100). The table lists
the mean estimate variance σ̌2

ϵ and the MAP estimates for the identified parameters.

Their corresponding strains ε11 and ε22 can be expressed, according to Equation (5.38), as

ε11 = 1
3
(
2ε† + ε‡

)
, (5.52a)

ε22 = 1
3
(
ε‡ − ε†

)
, (5.52b)

where ε† and ε‡ are associated with µ̃(t) and κ̃(t), respectively.

Note that if the viscoelastic constitutive model S(t) is linear, its two independent components
µ̃(t) and κ̃(t) must also be linear. Therefore, if any of ε11 and ε22 is linear, then µ̃(t) and
κ̃(t) are linear, then S(t) is linear. Therefore, for a given isotropic viscoelastic material, any
of component ij of R can be used to determine its linear regime. In this study, R11, i.e. the
axial strains, was used.

The linearly viscoelastic regime of PMMA and PP have been determined by sequential creep
tests. Figures 5.13 and 5.14 plot R11 and its variance for PMMA and PP. It was found
that the ratio is no longer constant after 18 MPa for PMMA and 7 MPa for PP. Therefore,
it is assumed that PMMA and PP are approximated by a linearly viscoelastic model up to
15 MPa and 6 MPa, respectively.
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Figure 5.10 Comparison between the generated noised data and the stress function con-
structed using true and identified parameters for the numerical test case 2 (σ̂2

ϵ = 500). The
table lists the mean estimate variance σ̌2

ϵ and the MAP estimates for the identified parame-
ters.

Determination of the materials parameters

The proposed method was applied to the obtained experimental data to identify the three-
dimensional viscoelastic constitutive model parameters. The optimal number of series of bulk
and shear compliances were determined by comparing the BIC value of each model estimated
by MCMC simulations. The evaluation of BIC with respect to number of series of PMMA
and PP is shown in Figure 5.15. Three retardation times were required to model the shear
compliance behavior of PMMA while only one retardation time was necessary to model its
bulk creep compliance. Four retardation times were required to model the shear compliance
behavior of PP while one retardation time was needed to model its bulk creep compliance.

Table 5.3: Maximum a posterior i (MAP) estimates of the Prony series parameters for PMMA.

m λµ
m (s−1) µ̃m (MPa−1) λκ

m (s−1) κ̃m (MPa−1)
- - 6.15 × 10−4 - 2.47 × 10−4

1 5.99 × 10−5 2.35 × 10−5 2.87 × 10−9 4.01
2 7.96 × 10−3 7.62 × 10−5

3 4.32 × 10−1 2.07 × 10−4
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Figure 5.11 Comparison between the generated noised data and the stress function con-
structed using true and identified parameters for numerical test case 3 (σ̂2

ϵ = 1000). The
table lists the mean estimate variance σ̌2

ϵ and the MAP estimates for the identified parame-
ters.

Table 5.4: Maximum a posterior i (MAP) estimates of the Prony series parameters for PP.

m λµ
m (s−1) µ̃m (MPa−1) λκ

m (s−1) κ̃m (MPa−1)
- - 1.12 × 10−3 - 1.12 × 10−3

1 9.13 × 10−5 9.11 × 10−4 2.13 × 10−6 2.68 × 10−2

2 4.99 × 10−3 2.15 × 10−4

3 5.86 × 10−2 1.48 × 10−4

4 1.17 2.64 × 10−4

The estimated optimal viscoelastic parameters values for PMMA and PP are listed in Ta-
bles 5.3 and 5.3. Figures 5.16 and 5.17 plot the comparison between the experimental data
and the predicted response of the identified constitutive theories for the identification load
histories shown in Figure 5.5, as well the stochastic envelope of the mean value of the model
response and the model predictions.
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Figure 5.12 Comparison between the generated noised data and the stress function con-
structed using true and identified parameters for numerical test case 4 (σ̂2

ϵ = 10000). The
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ϵ and the MAP estimates for the identified parame-
ters.

Validation on simple geometry specimens

Figures 5.18 and 5.19 plot the comparison between the experimental data and the predicted
response for the validation load histories shown in Figure 5.5 for PMMA and PP, as well the
stochastic envelope of the mean value of the model response and the model predictions. All
the figures show that the identified models reproduce the data quite well.

Note that the transverse strain values are smaller, in absolute value, than the axial strains.
Consequently, the measurement errors in the transverse direction are relatively large. There-
fore, the prediction intervals of the model predictions for transverse trains are generally wider
than that for axial strains. The credible intervals are fairly narrow, which indicates that the
identified parameters have a low level of uncertainty.

Validation on complex geometry specimens

The applied loads and investigation time steps are listed in Table 5.5. The predicted strain
field in the specimen geometry depicted in Figure 5.2 was obtained by finite element simula-
tions with ANSYS Mechanical APDL 16.1. The geometry was meshed with SHELL 281 and
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Figure 5.13 The normalized ratio R11 for simple specimens of (A) PMMA; (B) PP.

the linearly viscoelastic simulations were carried out with the PRONY options. The exper-
imentally measured full strain field was obtained from DIC. For comparison purposes, both
simulated and experimentally measured strain fields were interpolated with a triangulation-
based linear method, which was realized by means of MATLAB® built-in function griddata.

Figures 5.20 and Figure 5.21 plot the interpolated strains in the Y -direction and the X-
direction at time step tc for PMMA and PP, respectively. Considering the noise in the DIC
measurements, both X and Y direction strain results show good agreement between DIC
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Figure 5.14 The variance of R for simple specimens of PMMA and PP. The dash-dotted lines
represent the approximate limits of their linearly viscoelastic regime. The limit is between
15 MPa and 18 MPa for PMMA, while it is between 6 MPa and 7 MPa for PP.

Table 5.5: Loading parameters used in validation experiments of complex specimens.

Force (N) Time step(s)
Materials Fa Fb Fc ta tb tc

PMMA 100 200 300 619.7 1220.1 1826.5
PP 50 100 150 604.0 1208.0 1810.4

and FEM.

Several paths were chosen to quantitatively compare the predicted and experimentally mea-
sured strains, as illustrated in Figure 5.3. The comparison between the strain along these
paths are represented in Figures 5.22 and 5.23 for PMMA and PP, respectively. The figures
show that the predicted εY and εX along three paths are in excellent agreement with the
experimentally measured values for both materials. Except for a few strains, e.g. εX along
path II for PMMA and εY along path III for PP, all the other strain components are rela-
tively well predicted. This discrepancy might be due to experimental error and edge effects
encountered in DIC.



59

0 1 2 3 4 5 6 7 8 9 10
Number of retardation times

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

B
IC

×104

µ̃ - PMMA

κ̃ - PMMA

µ̃ - PP

κ̃ - PP

Figure 5.15 Evolution of the BIC with respect to the number of retardation times for PMMA
and PP. Three retardation times were required to model the shear compliance behavior of
PMMA while only one retardation time was necessary to model its bulk creep compliance.
Four retardation times were required to model the shear compliance behavior of PP while
one retardation time was needed to model its bulk creep compliance.

5.6.3 Discussion

Figure 5.24 plots the bulk and the shear compliance functions, κ(t) and µ(t), generated by
the identified parameters for PMMA and PP. The 99% stochastic envelope for each function
were computed by 10 000 realizations from the MCMC procedure. Also shown is the relative
width of the stochastic envelope for each function. The relative width is defined as the width
of the interval divided by the value of the function predicted by the MAP estimate. A large
relative width implies a high uncertainty of the parameters.

The shear compliance of PMMA exhibits a significant time-dependence, which increases from
7.15 × 10−4 MPa−1 to 9.41 × 10−4 MPa−1 within the experimental time window for times
ranging from 1 s to 103.5 s. Its relative width of the stochastic envelope has a tiny value of
0.002 in the range of 100.7 s to 103.1 s. The relative width of the shear compliance has an
undulation between 10−1.5 s and 100.7 s with a peak value of 0.035, and is a constant of 0.011
for times ranging from 10−2.5 s to 10−1.5 s. The bulk compliance of PMMA is nearly a constant
of 2.5 × 10−4 MPa−1 from 10−2.5 s to 1 × 102 s. The relative width is a constant of 0.015 in
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Figure 5.16 Comparison between the experimental data, the MAP estimate prediction with
the identified parameters and the stochastic envelopes for identification load histories for the
tensile specimens made of PMMA. (A) Axial strain; (B) Transverse strain.
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Figure 5.17 Comparison between the experimental data, the MAP estimate prediction with
the identified parameters and the stochastic envelopes for identification load histories for the
tensile specimens made of PP. (A) Axial strain; (B) Transverse strain.
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Figure 5.18 Comparison between the experimental data, the MAP estimate prediction with
the identified parameters and the stochastic envelopes for validation load histories for the
tensile specimens made of PMMA. (A) Axial strain; (B) Transverse strain.
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Figure 5.19 Comparison between the experimental data, the MAP estimate prediction with
the identified parameters and the stochastic envelopes for validation load histories for the
tensile specimens made of PP. (A) Axial strain; (B) Transverse strain.
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Figure 5.20 Full strain fields obtained by DIC and FEM for PMMA at time step tc. (A) εY;
(B) εX.

the same range, and decreases to 0.007 at 103.1 s. When time exceeds the experimental
time window, both the compliance function and the relative width increase rapidly. Similar
observations can be made for PP.

The low relative width range of the shear and the bulk compliance functions, from 100.7 s to
103.1 s for both polymers, implies that the mechanical behavior of the materials during the
experimental time window is determined by the kernel functions within this range. Note that
the lower limit of this range corresponds to the sampling localization range, while the upper
limit lies between the limit of the experiment time window and the sampling localization
range. The relative width of the shear and the bulk compliance functions increases outside
this range, since it relies on fewer information. However, the instantaneous properties for the
shear and the bulk properties for both polymers can be well captured from the mechanical
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Figure 5.21 Full strain fields obtained by DIC and FEM for PP at time step tc. (A) εY; (B)
εX.

tests. This observation is supported by the fact that the relative width of compliance func-
tions decreases to a constant in the range of 10−2.5 s to 10−1.5 s. Consequently, there is an
undulation in the shear compliance function for times ranging from 10−1.5 s to 100.5 s, indicat-
ing that the information during this period affects lightly the shear properties of the material.
No undulation was observed in the bulk function since the bulk compliance is nearly a con-
stant in the range of 10−2.5 s to 1 × 102 s. This observation agrees with a generally accepted
behavior for polymers that the time-dependence of the bulk property is noticeably small,
when compared to the shear property (Qvale and Ravi-Chandar, 2004; Sane and Knauss,
2001). However, few experimental data on the three-dimensional viscoelasticity of PMMA
and PP at room temperature are reported in the literature, limiting the comparison between
the measured results in this work and the literature data.
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(A)

(B)

Figure 5.22 Strains obtained by DIC and FEM along three paths for complex specimens of
(A) PMMA ; (B) PP. Solid lines represent FEM results. Dashed lines represent DIC results.
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(A)

(B)

Figure 5.23 Strain εY obtained by DIC and FEM along path I at different time steps for
complex specimens of (A) PMMA; (B) PP. Dashed lines represent DIC results.
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(A) (B)

Figure 5.24 The bulk and the shear compliance functions generated with the identified pa-
rameters and their 99% stochastic envelopes for (A) PMMA; (B) PP, as well the relative
width of the stochastic envelope for each function. The solid line represent the shear com-
pliance and the dash line stands for the bulk compliance.

When compared to other existing methods, the main advantage of our proposed method is
that it delivers the smallest number of retardation times for the maximum accuracy. We
compared our identification procedure results to the improved collocation methods proposed
by Lévesque et al. (2008). The shear compliances µ̃(t) identification (corresponding ε†) was
compared.

The sum of squared estimate of errors (SSE) is considered as the variable valuating the
precision of each method, which is defined as follow:

SSE =
T∑

t=1

(
ε̂†

t − ε̌†
t

)2
, (5.53)

where T denotes the number of experimental data points, ε̂† and ε̌† represents the experi-
mental measurements and the predictions from the used identified parameters, respectively.

Figure 5.25 plots the evolution of the SSE with respect to the number of series identified by
our proposed method and the conventional method. The Prony series model can be cut down
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Figure 5.25 Evolution of the residual of experimental data and predictions with respect to
number of retardation times identified by the proposed method and the conventional method
for (A) PMMA; (B) PP. Using the proposed method, the SEE stays stable after M = 3,
which means that using only three retardation times can predict viscoelastic behavior for
PMMA. However, for the conventional method, the SSE converged after M = 6 and led to
same value of the proposed method. While the number of retardation times was reduced
from 5 to 4 for PP.
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to 3 series using our proposed method to replace the conventional method with 6 series to
reach the same accuracy for PMMA, while the number of series can be reduced from 5 to 4 for
PP. It should be noted that the experimental time windows in this study was from 1 × 10−1 s
to 1 × 103 s which is quite short. For a longer experimental time window, e.g. the problem of
time-temperature superposition problem of viscoelastic materials, large number of series are
generally required by using conventional method. In this application, our method is reduced
the number of retardation times, which is a desirable feature to reduce the computational
cost in finite element simulation involving viscoelastic materials.

Using our proposed method, all viscoelastic parameters are free to explore the whole parame-
ters space. Therefore, the optimal number of series identified by our method is the minimum
for representing the given experimental data. However, there may exist different parameters
values with same number of series according to the nature of Prony series.

Our proposed method requires a significant computational cost, when compared to the con-
ventional method. For example, for the comparison example, our method required 30 minutes
of computation while it required 5 minutes for the conventional method. However, if the con-
stitutive theory is subsequently used in lengthy finite element simulations, the initial time
invested should remain marginal.

5.7 Conclusion

The main contribution of this work lies in the proposed Bayesian inference based method to
identify three-dimensional Prony series viscoelastic constitutive theory. The results obtained
using the Bayesian framework show an excellent agreement with the experimental data for
either standard specimen and complex geometry specimen under different loads. Moreover,
it can reduce the number of relaxation times in the constitutive model.

The proposed Bayesian based identification method was applied only to the linearly vis-
coelastic behavior in this study. However, this method could be extended to identify other
behaviors of polymer solid, such as non-linearities with respect to stress or temperature
effects.
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Appendix: Numerical implementation

Algorithm 3 Tri-dimensional viscoelastic parameters identification.
1: Read N groups experimental data {σ̂

(n)
I , ε̂

(n)
I , ε̂

(n)
II }, n = 1, . . . , N .

2: Compute {ε̂†(n), ε̂‡(n)}, n = 1, . . . , N using Equation (5.38)
3: Input maximal number of characteristic times Mmax
4: Let x = ⋃

1≤n≤N
{σ̂

(n)
I }, yκ = ⋃

1≤n≤N
{ε̂‡(n)}, yµ = ⋃

1≤n≤N
{ε̂†(n)}

5: for M = 1, 2, . . . , Mmax do
6: Compute posterior distribution f(θµ|Y =yµ)(θµ) and f(θκ|Y =yκ)(θκ) by MCMC algorithm

7: Compute MAP estimates θ̂κ
MAP and θ̂µ

MAP by Equation (5.28)
8: Compute BIC(Mκ) and BIC(Mµ) using Equation (5.30)
9: end for

10: Obtain Mκ
opt and Mµ

opt
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CHAPTER 6 ARTICLE 2: ON THE STRAIN MEASUREMENT FOR
THERMOPLASTICS WITH BI-AXIAL EXTENSOMETER IN

THERMO-MECHANICAL TESTING: A CASE OF CHARACTERIZING
TEMPERATURE AND PHYSICAL AGING EFFECTS ON

POLYCARBONATE

L. Yue, J. Jalbert, M. C. Heuzey and M. Lévesque . Submitted to Experimental Mechanics on
February 14, 2022. Minor changes were made following the jury’s comments when compared
to the submitted version.

6.1 Abstract

Characterizing the mechanical behavior of materials at elevated temperatures is critical for
the design and development of polymer systems for use in complex operating conditions.
The commonly used Dynamic Mechanical Analysis (DMA) does not apply to the investiga-
tion of the three-dimensional properties of materials. A combination of a mechanical testing
system and an environmental chamber with extensometer measurements is more suitable for
this purpose. However, the bi-axial extensometer suffers errors in measuring strains in ther-
moplastic specimens at elevated temperatures due to its characteristics. This brief technical
note analyzes the sources of measurement errors with an extensometer and proposes a robust,
straightforward and easy-to-follow experimental procedure for three-dimensional mechanical
testing at high temperatures, using temperature and physical aging effects characterization
experiments of polycarbonate as a case study. The experimental results show reproducibility
and reliability. The methodology described in this work can serve as a protocol to guide
other types of three-dimensional thermo-mechanical testing with a bi-axial extensometer.

6.2 Introduction

Characterizing the mechanical behavior of polymers at elevated temperatures is required in
industries like aerospace where composites parts made of thermoplastics are used. Most ex-
isting investigations into the mechanical properties of polymers involving temperature and
physical aging effects rely mainly on Dynamic Mechanical Analysis (DMA) measurements
(Courtois, Hirsekorn, et al., 2019; Guo and Bradshaw, 2009; Kovacs et al., 1963; Meyer et
al., 1965; O’connell and McKenna, 1997; O’Connell and McKenna, 2002). The technique,
however, features limitations of that only uni-dimensional properties can be investigated dur-
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ing these tests. Besides that, several specialized experimental setups have been developed to
determine the three-dimensional properties of polymers Emri and Prodan (2006); Qvale and
Ravi-Chandar (2004); Sane and Knauss (2001). However, these devices are not widely used
in engineering due to their accessibility. Tensile testing frames allow various experimental
set-ups and, thus, can be easily used to characterize the three-dimensional properties of ma-
terials at elevated temperatures, when equipped with an environmental chamber and strain
measurement equipment.

To measure three-dimensional strains at elevated temperatures, the bi-axial extensometer
is the most convenient and cost-efficient method (Knauss et al., 2008), when compared to
other techniques such as strain gauges and Digital Image Correlation (DIC). However, due
to the nature of the extensometer, particularly when measuring strains in a thermoplastic
specimen, the knife edges of the extensometer penetrate into the specimen, resulting in
measurement errors. A common solution is to wait long enough for this penetration to
cease, as manufacturers recommend. This approach, however, is not feasible at elevated
temperatures because physical aging continues to affect the specimen’s mechanical properties.
Therefore, measuring strains in thermoplastic specimens at elevated temperatures with a bi-
axial extensometer is delicate and challenging. To the best of our knowledge, there is no
standard procedure to account for the drifts of the extensometer at elevated temperature,
and researchers have rarely detailed their approach to addressing this issue.

This brief technical note aims to analyze errors in measuring three-dimensional strains in
a thermoplastic specimen with a bi-axial extensometer in thermo-mechanical testing and
propose a relatively easy-to-follow and straightforward procedure for eliminating these errors.
The methodology is applied to the characterization of the temperature and physical aging
effects on the mechanical properties of polycarbonate as a case study. This paper is organized
as follows: Section 6.3 analyzes the sources of measurement errors with an extensometer;
Section 6.4 details the methodology for characterizing the temperature and physical aging
effects for polycarbonate; Experimental results are presented in Section 6.5; Section 6.6
concludes this work.

6.3 Sources of measurement errors with an extensometer

A bi-axial extensometer can simultaneously measure the axial and transverse strains of a
specimen during mechanical testing. This type of extensometer can yield an accuracy of at
least 0.5% of the readings, meeting ASTM E83 or ISO 9513 standards (Knauss et al., 2008).
However, strain measurements are subject to environmental influences that result in drift,
which arises from two primary sources.
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Temperature sensitivity Alike most electronic sensors, the transducer in the extensome-
ter is susceptible to temperature, which causes the extensometer’s measurement results to
drift when the temperature changes. When the extensometer is powered, heat is generated
by the current flow, causing a temperature change, and the resulting drift is known as the
warm-up drift (Womack, 2020c). This drift generally stabilizes after the device has been
plugged in for a few minutes. When the ambient temperature changes, the extensometer
experiences a thermal drift (Womack, 2020b). This drift includes not only the response of
the sensor to the temperature change but also records the deformation of the load cell, test
machine, or other device subjected to the temperature change. Distinguishing the different
factors that cause thermal drift remains a challenge (Womack, 2020b).

Knife edges To hold the extensometer on the specimen, the knife edges are usually rather
sharp. Therefore, the knife edge penetrates into the specimen when the extensometer is
mounted and cause the penetration drift (Knauss et al., 2008). This drift is particularly
noticeable when testing thermoplastic polymers. Since the extensometer is manually mounted
on the specimen, the knife-edge position and the contact force (Knauss et al., 2008), i.e., the
force applied to attach the knife-edge, may differ between tests, introducing measurement
error.

6.4 Experimental methodology

6.4.1 Materials and equipment

A polycarbonate (PC) (#PE-1220R-MP from Lavergne, Inc) was investigated in this work.
ASTM D638 standard type-I specimens were manufactured by injection molding. The me-
chanical testing was conducted on a MTS® Insight electromechanical machine equipped with
a 1 000 N load cell. A LBO-series environmental chamber from Thermcraft Inc was installed
on the Insight machine. The axial and transverse strains were measured simultaneously
using a bi-axial extensometer (Model 3560) from Epsilon Technology, Corp. An external
type T thermocouple was used to measure the specimen temperature during tests. National
Instruments (NI) devices were used for data acquisition (see below).

The MTS Insight machine was controlled by the software TestSuite TW. The resulting force
and displacement signals were transmitted to the software LabVIEW through the module
NI-9239. Thermocouple and extensometer measurements were acquired by the modules NI-
9211 and NI-9237, respectively, and transmitted to LabVIEW. The temperature of the envi-
ronmental chamber was controlled by a temperature controller that also communicated with
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Figure 6.1 Illustration of the experimental set-up used to characterize the temperature and
physical aging effect on PC. The solid and dashed-dot arrows indicate the data acquisition and
the control signals, respectively. Thermocouple #1 represents the external thermocouple that
was attached to the specimen, while thermocouple #2 stands for the built-in thermocouple
of the environmental chamber which was placed close to the specimen.

LabVIEW. Figure 6.1 illustrates the experimental set-up and indicates the communication
between equipment.

6.4.2 Temperature sensitivity test of the extensometer

The temperature sensitivity test was performed to investigate the response of the extensome-
ter to a change in temperature. The pined extensometer was placed in the environmental
chamber to record the axial and transverse readings subjected to a temperature history. In
this test, the specimen was not installed and the extensometer was placed directly on the bot-
tom grip. The built-in pin of the extensometer is used to lock the position of its knife edges;
therefore, with the pin fixed, the readings represent only the response of the extensometer to
changes in the surrounding temperature.

The temperature sensitivity of the extensometer is nearly constant with respect to temper-
ature (Womack, 2020a). Furthermore, the accumulation of drift introduced by temperature
will be subtracted in the results (see Section 6.4.4 for details). Thus, we are more concerned
with how the extensometer readings change qualitatively with temperature than a quanti-
tative sensitivity analysis in this temperature sensitivity test. Therefore, any temperature



76

above room temperature can be chosen in the temperature sensitivity tests. In this work,
three temperature sensitivity tests were performed, two at 40 °C and one at 80 °C. The tem-
perature was set to increase from room temperature to test temperature in 10 minutes for
all three tests. A thermocouple was placed near the center of the extensometer to record the
temperature.

6.4.3 Mechanical testing

The specimen was first mounted on the grips using a level to ensure it was parallel to the
machine’s axial direction (see Figure 6.1 for a representation of the axial axis). The environ-
mental chamber’s built-in thermocouple was placed very close to the external thermocouple
that was attached to the gauge section of the specimen. Then, the bi-axial extensometer was
installed on the specimen, and the axial and transverse readings were zeroed after removing
the pins of the extensometer. The door of the environmental chamber was then closed to
start heating up. Synchronously, the Insight machine began executing the program with
the specified load history. The ventilation, air conditioning, and electrical systems of the
laboratory were kept operational during each mechanical test to maintain stable ambient
conditions throughout the experiment.

Sequential creep-recovery tests were performed at elevated temperature based on Struik’s
methodology (Struik, 1977). The time for heating the furnace from room temperature to
the characterization temperature was fixed at 20 minutes. It was then maintained at the
characterization temperature for 1 hour to ensure that the specimen reached its thermal
equilibrium, considering heat transfer. A creep test (#0) of 10 minutes was first conducted
to align the grips of the tensile test machine 2 hours after the specimen achieved thermal
equilibrium. Then, three creep-recovery tests (#1, #2 and #3) were successively performed 4,
8, and 16 hours after achieving thermal equilibrium to characterize temperature and physical
aging effects on the mechanical properties of PC. Each creep test lasted 20 minutes, ensuring
that, during each creep-recovery test, the duration of the recovery phase was at least ten
times longer than the creep to allow the material to recover fully. Meanwhile, the duration of
each creep test was less than 10% of the aging time to ignore aging effects during the current
load step, as required in Struik (1977). The applied stress σ0 was set to 10 MPa in all creep
tests to ensure that the specimens were in their linear range.

The mechanical test, which includes four creep-recovery tests, is noted as characterization test
in this work. In comparison, a correction test was performed following each characterization
test, in which the temperature history was identical to the characterization test, but only
the creep test #0 was conducted, and the load was then held at zero until the test was
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Figure 6.2 Illustration of the loading and temperature histories of the thermo-mechanical
test and the resulting axial and transverse strains during a creep test. (A) Loading and tem-
perature history used to characterize the temperature and physical aging effect of polymers
based on Struik’s methodology. σ0 stands for the applied load. T0 and T1 are the room and
investigation temperature, respectively. Creep test #0 indicates the first creep test used to
align grips. Creep tests #1, #2 and #3 are creep tests performed at te = 4 h, 8 h and
16 h, respectively. te represents the aging time. Schematic illustration for the correction of
extensometer measurements during creep test #i, from t

(i)
d to t

(i)
f , for (B) axial strains εI; (C)

transverse strains εII. The warm-up and thermal drifts of axial and transverse strain mea-
surements can be removed by subtracting the strain reading ε

(i)
0 before the load is applied.

The penetration drift for transverse strains during the creep test in a characterization test
can be eliminated by subtracting the change in transverse reading during the corresponding
correction test, i.e., D(i)(t).
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completed. The temperature and loading histories for the characterization and correction
tests are illustrated in Figure 6.2(A).

In this work, thermo-mechanical tests were carried out on two specimens at 120 °C. The
two characterization tests were performed 14 and 42 days after the specimens were manu-
factured, respectively. Each corresponding correction test was performed immediately after
the characterization test was completed. The coefficient of thermal expansion (CTE) of PC
specimens is assumed to be constant when there is no temperature gradient (Van Krevelen
and Te Nijenhuis, 2009).

6.4.4 Strain measurement correction

Axial and transverse strains are required to characterize the three-dimensional effects of
temperature and physical aging on the mechanical response. The axial strain is computed
by dividing the axial measurement by the gauge length of 50 mm, while the transverse strain
is computed by dividing the transverse measurement by the width of the specimen.

For axial measurements εI, the effect of penetration drift is negligible; therefore, only the
warm-up and thermal drifts need to be addressed. These temperature-induced drifts occur
instantaneously, thus they are constant with respect to time when the temperature is stable.
Therefore, if the temperature of the extensometer remains constant, the warm-up and thermal
drift in axial readings during each creep test can be corrected directly by subtracting the
reading before the load is applied from the reading during the creep test. For the sake of
illustration, consider creep test #i in a characterization test, i.e., the time during which the
load is applied is from t

(i)
d to t

(i)
f . Then, the axial strain measurement during the creep test

#i can be corrected by:

εI
corrected(t) = εI(t) − ε

I(i)
0 , for t ∈

[
t
(i)
d , t

(i)
f

]
, (6.1)

where ε
I(i)
0 represents the axial strain reading before the load is applied. Figure 6.2(B)

illustrates the correction for the axial strain measurement of the extensometer. Since a load
of 0 N is applied before each creep test, the strain due to thermal expansion of the material
and the shrinkage of the specimen due to the previous physical aging are also removed,
resulting in a measurement curve representing the material’s mechanical axial strain at the
specified temperature and physical aging conditions.

The warm-up and thermal drifts of transverse measurements εII can be eliminated by the
same procedure as that used for the axial measurements. Furthermore, since penetration drift
significantly affects transverse strain measurements, it must also be compensated for. Note
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that the associated correction test has the same temperature history as the characterization
test, except that the axial load is zero from t

(i)
d to t

(i)
f . The transverse reading D(t) change

during this period is due to the extensometer’s penetration drift and the effect of physical
aging on the transverse strain. Assuming that the effect of physical aging occurred during
the creep test is ignored (Guo and Bradshaw, 2007), the negative increment in D(t) repre-
sents the penetration drift. Unlike temperature-induced drift, which occurs instantaneously,
penetration drift increases over time as the knife edges continuously pierce into the specimen.
Therefore, the penetration drift during the creep test #i can be corrected by subtracting the
change of transverse reading in the correction test, i.e., D(t)−D

(i)
d , from the characterization

test results from t
(i)
d to t

(i)
f . The full correction of transverse measurement can be obtained

by:
εII

corrected(t) = εII(t) − ε
II(i)
0 −

(
D(t) − D

(i)
d

)
, for t ∈

[
t
(i)
d , t

(i)
f

]
, (6.2)

where ε
II(i)
0 represents the transverse strain reading before the load is applied. D

(i)
d is the

transverse reading in the correction test at t
(i)
d . Figure 6.2(C) illustrates the correction

for the transverse strain measurement of the extensometer. Note that the correction test
was performed immediately after the associated characterization test, so the physical aging
effect that occurred at room temperature between the correction and characterization test is
considered negligible.

6.5 Results and discussion

The response of the extensometer itself to changes in temperature was first investigated,
which allows a qualitative look at the features of the temperature-introduced drifts of the
extensometer. Figure 6.3(A) presents the axial and transverse readings of the pined ex-
tensometer during temperature sensitivity tests. As the temperature in the environmental
chamber increased, the axial readings initially increased and then decreased until they stabi-
lized after one hour. The figure shows that the thermal drift is more significant at 80 °C than
at 40 °C. Moreover, two 40 °C tests have different values for the final stable readings, even
though their temperature histories are identical, which shows that the warm-up and thermal
drifts of the extensometer are somewhat random. The axial reading and the temperature
at the beginning of the test at 80 °C are detailed in Figure 6.3(B). The temperature raised
with a constant gradient to 65 °C until 280 s, and the axial reading of the extensometer also
increased continuously. Thereafter, the temperature continued to increase, but the gradient
gradually decreased due to the automatic temperature control, resulting in a decrease in the
axial reading. This indicates that the thermal drift in the axial reading is related to both the
temperature and the temperature change gradient. In comparison, the transverse readings
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Figure 6.3 Extensometer’s readings and temperature during three temperature sensitivity
tests of the pined extensometer. (A) Axial and transverse readings during three tests; (B)
Axial reading and temperature at the beginning of the test at 80 °C (the framed zone in (A)).
The thermal drift of the axial measurement of the extensometer is related to both temperature
and temperature gradient, and it takes an hour for the axial reading to stabilize. Transverse
readings are affected by temperature changes and are not sensitive to temperature gradients,
and it takes longer to stabilize when compared to axial readings.

were unaffected by the temperature gradient and continued to decrease as the temperature
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increased. However, the time required to achieve stability is slightly longer than for the axial
direction, taking approximately two hours. Therefore, the temperature-introduced drifts in
both axial and transverse readings were stabilized before creep test #1 was run and can be
corrected through the procedure detailed in Section 6.4.4. Note that these drifts were all
subtracted and the creep tests were conducted under isothermal conditions. Thus the quan-
titative investigation of the response of the extensometer to the temperature is not required
in the current work.

Figure 6.4 depicts the axial measurements with the extensometer and the axial strains for
each creep test during two thermo-mechanical tests conducted at 120 °C. At the beginning of
each thermo-mechanical test, axial measurements significantly increased due to the thermal
expansion of the specimen and the warm-up and thermal drifts of the extensometer, followed
immediately by a decrease caused by thermal drift. This decrease continued until the load
of creep test #0 was applied, caused by the effect of physical aging at high temperatures.
This continuous physical aging made the specimen stiffer, resulting in the strain readings
decreasing while the load dwelled at 0 N. Likewise, the strain decrease during each recovery
phase can also be explained by the effect of continuous physical aging, which is consistent
with previous research findings (Grassia and D’Amore, 2009; Grassia and D’Amore, 2006).
Once the warm-up and thermal drifts are corrected, the axial strains during each creep test
are essentially identical, except for a minimal vertical offset with the order of magnitude of
1 × 10−6 mm/mm.

The transverse measurements, as well as the corrected transverse strains in two thermo-
mechanical tests conducted at 120 °C, are shown in Figure 6.5. As for the axial measurements,
there is a difference between the transverse measurements for the two tests, which is due to the
random warm-up drift of the extensometer and the clamping force that is not the same from
test to test. It can be found that the extensometer’s transverse readings began to decrease
immediately after the test began, and this trend continued for the next 20 hours. This
process involves the material’s thermal expansion, the effect of physical aging, the warm-up
and thermal drifts, and the penetration drift caused by the extensometer knife edge piercing
into the specimen, which consistently increased over time until the end of the test. Once
temperature-introduced drifts are compensated for, the corrected transverse strains during
each creep test are nearly identical for two tests, with a slight offset of 3×10−5 mm/mm. It can
also be found that the continuously increasing penetration drift slightly affects the transverse
readings, especially for the latter part of the creep test. After correcting the penetration
drift, the transverse strain readings at the end of two tests changed from −2.61 × 10−3 to
−2.56 × 10−3 (↑ 1.92%) and from −2.56 × 10−3 to −2.51 × 10−3 (↑ 1.95%), respectively.
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Figure 6.4 Measured and corrected axial strains during two thermo-mechanical tests con-
ducted at 120 °C. (A) The full axial strain measurements with the bi-axial extensometer ;
(B) The corrected axial strain during creep tests #1 and #2. For each thermo-mechanical
test, the time is set to zero at the moment the load is applied. Although slight differences
can be found in the axial measurements through the extensometer between the two tests due
to the drift of the extensometer, the corrected axial strain is almost the same, except for an
offset of the order of 1 × 10−6 mm/mm. The axial results show reproducibility.
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Figure 6.5 Measured and corrected transverse strain results during two thermo-mechanical
tests at 120 °C. (A) The full transverse strain measurements with the bi-axial extensometer;
(B) The corrected transverse strain during creep tests #1 for each thermal-mechanical test.
The raw data represents the transverse strains corrected for the warm-up and thermal drifts,
while the corrected data stands for those subtracting all drifts. The difference between these
two data represents the continuously increasing penetration drift during each test, which
slightly affects the transverse results, resulting an error of 1.9% at the end of creep test #1
for both two tests. The corrected transverse strains for two tests have a relatively slight offset
of 3 × 10−5 mm/mm, which demonstrate reproducibility of results.
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The volumetric strain ε‡ can be computed from the axial and transverse strains to identify
the bulk behavior of materials (Yue et al., 2021), which is expressed as:

ε‡ = εI + 2εII. (6.3)

To yield thermodynamic consistency, the time-dependent bulk compliance of the viscoelastic
material must be monotonic (Bouleau, 1991). Therefore, the monotonicity of the strain ε‡

can demonstrate the reliability of the experimental results.

Figure 6.6 presents corrected strains ε‡ for two tests (creep #1) at 120 °C. It can be found
that there was a pronounced drop in the strain ε‡ at the end of both tests, which lacks
physical meaning. This indicates that although the penetration drifts slightly influenced
the transverse measurements (approximately 1.9%), it significantly affected the results for
the characterization of polymers, especially for the bulk property. After correction, the
strain increased monotonically, implying that the corrected results were thermodynamically
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Figure 6.6 Comparison of strains ε‡ with and without the removal of the penetration drift
during creep test #1 in two thermal-mechanical tests at 120 °C. The raw data were computed
by subtracting only the warm-up and thermal drifts from the axial and transverse strains,
whereas the corrected data were obtained from raw data by subtracting the penetration
drift. After removing the penetration drift in the transverse strain, strains ε‡ increased
monotonically over time, which were thermodynamically consistent.
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consistent. Moreover, strains ε‡ are nearly identical for both experiments, except for a few
minimal offsets of the order of 1 × 10−5 mm/mm.

The reproducibility of experimental results in this work can be proved by the slight vertical
offsets between the corrected results for two characterization tests. Consider that the physical
aging effect of PC at room temperature for 28 days is much smaller than that of aging for 4
hours at 120 °C, these offsets may be caused by the error introduced by the manual installation
of the extensometer. While these offsets are small, they can still affect the results in some
tests. For example, when characterizing the bulk properties of the polymer at different
temperatures, these offsets of measurement are likely to override the amount of change in
bulk modulus at different temperatures because the bulk modulus itself does not change much
with temperature (Qvale and Ravi-Chandar, 2004). Therefore, if more prominent precision
is required, it is necessary to use a non-contact technique, such as DIC, to measure strains
during thermo-mechanical testing.

6.6 Conclusion

The main contribution of this work was to analyze the errors of strain measurements with
a bi-axial extensometer in thermo-mechanical testing and propose solutions for eliminating
these errors. Two experiments at 120 °C demonstrated the reproducibility of the experimental
results, thereby attesting the reliability of the proposed experimental procedure.

The methodology presented in this work can be used to characterize the temperature and
physical aging effects on viscoelasticity of polymer materials and provide guidance for other
mechanical testing, such as the characterization of elastic modulus and Poisson’s ratio, in-
volving polymer materials at high temperatures. Moreover, this experimental procedure can
serve as a protocol for future research involving the characterization of the three-dimensional
properties of polymers or polymer composites within a bi-axial extensometer in thermo-
mechanical testing.
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CHAPTER 7 ARTICLE 3: ON THE PARAMETERS IDENTIFICATION
OF THREE-DIMENSIONAL AGING-TEMPERATURE DEPENDENT

VISCOELASTIC SOLIDS THROUGH A BAYESIAN APPROACH

L. Yue, M. C. Heuzey, J. Jalbert and M. Lévesque. Submitted to Mechanics of Time-
Dependent Materials on March 1, 2022. Minor changes were made following the jury’s com-
ments when compared to the submitted version.

7.1 Abstract

Temperature and physical aging effects are present in the long-term mechanical properties
of solid polymers under complex working conditions. In addition, these effects on the three-
dimensional behavior of polymer solids, such as shear and bulk properties, are critical for
developing polymer composite systems but are rarely addressed. We extend the previously
proposed Bayesian framework method in this work to simultaneously identify the viscoelas-
tic, temperature, and physical aging related model parameters. We apply this methodology
to three-dimensional experimental data from non-isothermal physical aging tests on polycar-
bonate. The experimental results are in excellent agreement with the predictions with the
identified parameters.

7.2 Introduction

With the increasing use of polymer composites in engineering, it has become critical to in-
vestigate the performance of materials under a variety of complex working conditions. The
mechanical property changes of polymers due to temperature and physical aging have gar-
nered considerable attention to improve prediction accuracy (Bradshaw and Brinson, 1997a;
Courtois, Marcin, et al., 2019; Crochon et al., 2015; McKenna et al., 1995; Struik, 1977). The
majority of research has, however, been concentrated on uni-dimensional mechanical prop-
erties of polymer solids, which limits the predictions capabilities in demanding applications,
like aerospace, for components submitted to real service conditions.

A Bayesian framework based method for automatically and robustly identifying three-
dimensional viscoelastic parameters from experimental data has been proposed in our pre-
vious work (Yue et al., 2021). This method is capable of not only accurately identifying
viscoelastic parameters but also of determining the optimal number of required parameters.
However, it is limited to viscoelastic solids at room temperature. The purpose of this work



88

consists in extending the previously proposed method for three-dimensional viscoelasticity
by incorporating temperature and physical aging effects. The viscoelastic parameters with
the optimal number of Prony series, along with the temperature and physical aging model
parameters, can be derived simultaneously.

This paper is organized as follows. Section 7.3 recalls notions of physical aging and the
time-temperature superposition (TTS) principle for viscoelasticity. The experimental details
and methodologies are listed in Section 7.4. Section 7.5 describes the identification method
for viscoelastic, temperature and physical aging model parameters. Section 7.6 applies the
identification method to polycarbonate specimens and compares the experimental data and
the predictions with the identified parameters. Section 7.7 concludes this work.

7.3 Background

7.3.1 Physical aging of polymers

Physical aging manifests itself through a variation of viscoelastic properties as a function of
time, for temperatures below the glass transition temperature (Tg) and under no influence
from any other external stimuli (Hutchinson, 1995; White, 2006). A polymer remains in its
thermodynamic equilibrium state above its Tg. However, when it is quenched from a temper-
ature above its Tg to a temperature below its Tg, the molecular rearrangements that occur
rapidly at the equilibrium state are significantly slowed down to a range that the material
cannot maintain an equilibrium with the cooling rate. As a result, the polymer remains in
the non-equilibrium state and towards equilibrium through a process called physical aging.
Physical aging typically increases the brittleness and the stiffness of the polymer (Struik,
1977).

Physical aging effects on the mechanical properties of polymers can be measured by the clas-
sical methodology proposed by Struik (1977). The aging test usually starts with an annealing
period, named “rejuvenation” (McKenna, 2003), during which the polymer is submitted to
a temperature above its Tg for a while to erase its previous thermal or aging histories. Next,
the specimen is quenched to the specified temperature below its glass transition temperature
and kept at this temperature. Then, a sequence of creep and recovery tests is performed
on the material. The aging test can be classified as isothermal or non-isothermal depending
on whether the temperature reaches the target temperature directly or undergoes a complex
temperature history before arriving to the test temperature.

The effects of temperature and aging on mechanical properties have received a great deal
of attention (Bradshaw and Brinson, 1997a; Courtois, Marcin, et al., 2019; Crochon et al.,
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2015; Guo and Bradshaw, 2007; Hernández et al., 2017; McKenna et al., 1995; Struik, 1977).
Especially, Brinson, Bradshaw, and Guo have done a remarkable series of studies on non-
isothermal physical aging (Bradshaw and Brinson, 1997a, 1997b; Guo and Bradshaw, 2009;
Guo et al., 2009). They have proposed several models for characterizing the effects of physical
aging and accurately predicting the long-term mechanical properties of polymers to within a
10% error.

However, most works found in the literature have focused on studying the changes for uni-
dimensional mechanical properties of polymers or polymer composites in the long term. The
related three-dimensional issues have rarely been addressed. Therefore, this work focuses on
the changes of three-dimensional mechanical properties of polymers submitted to different
temperatures and aging conditions.

7.3.2 Linear viscoelasticity and temperature-time effect

The three-dimensional linearly viscoelastic constitutive theory can be represented using a
hereditary integral form (Biot, 1954; Lévesque et al., 2008) as:

ε(t) =
∫ t

0
S(t − τ) : dσ

dτ
dτ, (7.1)

where σ stands for the applied stress tensor and ε represents the resulting strain tensor. S(t)
refers to the so-called retardation kernel function, which must be positive and monotonic
to yield the thermodynamic consistency (Bouleau, 1991). Different viscoelastic constitutive
theories can be adopted by altering the expression of S(t). The Prony series model is widely
used in engineering to simulate linear viscoelasticity by describing the retardation kernel as:

S(t) = S(0) +
M∑

m=1
S(m)(1 − exp[−λmt]), (7.2)

where S(0) is the instantaneous creep compliance, S(m) denote creep compliances which are
positive semidefinite tensors and λm are reciprocal retardation times associated with the
compliances S(m). M stands for the total number of retardation times.

To evaluate the viscoelastic properties of polymers at different temperatures, the time-
temperature superposition (TTS) principle is generally utilized, which relates the material
properties under a service condition to its properties in a reference state by a so-called shift
factor (Christensen, 2012). The creep compliance S(t) of a material aged for a time te at
temperature T can be obtained by shifting the creep compliance Sref(t) when aged for a
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reference time tref
e at reference temperature T ref by:

S(t; T, te) = av(T, te) Sref
(

t

a(T, te)
; T ref, tref

e

)
, (7.3)

where a(T, te) and av(T, te) respectively denote horizontal and vertical shift factors that
depend on temperature and physical aging. The shift factor av(T, te) is generally found to
have little effect, when compared to the horizontal shift factor, and can be considered to be
close to unity in most cases (Bradshaw and Brinson, 1999; Crochon et al., 2015; Sullivan et
al., 1993). The horizontal shift factor a(T, te) can be decomposed into the product of the
temperature shift factor aT and the aging shift factor ate (Bradshaw and Brinson, 1997b;
Struik, 1977), leading to:

a(T, te) = aT ate . (7.4)

The temperature shift factor aT is commonly mathematically described by the Arrhenius
equation (Christensen, 2012) and the Williams-Landel-Ferry (WLF) model (Williams et al.,
1955) which is expressed as:

log aT = − C0(T − T ref)
C1 + (T − T ref) , (7.5)

where C0 and C1 denote universal constants. The aging shift factor ate for an isothermal
aging test can be evaluated by Struik (1977)

ate(te, T ) =
(

te

tref
e

)µ(T )

, (7.6)

where µ stands for the shift rate depending on the temperature and is assumed constant
during aging. The aging time te is defined as the time elapsed since the specimen was
quenched to the aging test temperature T . However, Equation (7.6) is no longer valid for
non-isothermal aging tests undergoing complex thermal histories due to the memory effects
(Bradshaw and Brinson, 1997a).

Bradshaw and Brinson proposed the continuous shift factor (CSF) method to compute the
mechanical properties of polymers during a non-isothermal aging test (Bradshaw and Brinson,
1997a, 1997b). Based on the effective time theory (Brinson and Gates, 1995; Knauss and
Emri, 1981), Equation (7.1) becomes

ε(t) =
∫ t

0
S(ϕ(t) − ϕ(τ)) : dσ

dτ
dτ, (7.7)
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where the effective time ϕ is utilized in this method to record the accumulative effects of tem-
perature and physical aging throughout the complex thermal history, i.e. dϕ = aT ate(ξ)dξ.
Due to the absence of an analytical form for ϕ, a reasonable function must be chosen to fit
Equation (7.7) to experimental data; shift factors can then be evaluated. This method is able
to accurately simulate and predict the long-term mechanical behavior of polymers. However,
the choice of fitting function for the effective time is arbitrary and artificial.

Guo and Bradshaw developed the KAHR-ate method to predict the mechanical response of
polymers during long-term non-isothermal physical aging (Guo and Bradshaw, 2009; Guo et
al., 2009). In this method, based on experimental observations (McKenna et al., 1995; Struik,
1977, 1988), the relationship between the aging shift factor ate and the structural shift factor
aδ has been assumed as:

ate(aδ)
∣∣∣∣
T

=
(

c0

aδ

)c1

; c0, c1 > 0, (7.8)

where T is the temperature at which the mechanical load is applied, c0 and c1 are temper-
ature dependent constants. According to the KAHR model (Kovacs et al., 1979), aδ can be
expressed as:

aδ = exp[−ζδ], (7.9)

where ζ is a material parameter. δ denotes the specific volume recovery response, defined as
the normalized departure from the equilibrium state of the polymers during physical aging,
and can be determined by:

δ(z) = −∆α
∫ z

0
R(z − ς)dT

dς
dς, (7.10)

with
R(z) = exp

[
−
(

z

τα

)βα
]

, (7.11)

and
z(t) =

∫ t

0

dξ

aT aδ

, (7.12)

where ∆α = αl − αg represents the difference in the coefficient thermal expansion (CTE)
between the liquid and glassy states of the polymer. R is the normalized retardation function
of the reduced time z with the material parameters τα and βα. The temperature shift factor
is given by (Kovacs et al., 1979):

aT = exp[−∆αζeb(T − Tr)], (7.13)

where Tr is a reference temperature and b is a material constant. Thus, six parameters (ζ,
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b, c0, c1 τα, βα) are required in this model that must be determined through non-isothermal
aging tests.

The KAHR-ate model can be also extended to incorporate the temperature effect on the
material response (Guo and Bradshaw, 2009). To do this, a shift factor aT,δ is defined to scale
aδ of the reference aging time tref

e from the test temperature T to the reference temperature
T ref as:

aT,δ = aδ,iso
(
T ref, tref

e

)/
aδ,iso

(
T, tref

e

)
, (7.14)

where aδ,iso is the isothermal structural shift factor that can be evaluated by Equation (7.9)
at different temperatures and aging times. Finally, the shift factor that combines the non-
isothermal physical aging and the temperature effect becomes:

ate(aδ)
∣∣∣∣
T

=
(

c0

aδaT,δ

)c1

. (7.15)

When compared to the CSF method, the KAHR-ate model combines the physical aging spe-
cific volume model (KAHR model) and experimental observations. Therefore, the KAHR-ate

model is used in this work to model mechanical properties evolution during a non-isothermal
physical aging test.

Note that there is no closed-form analytical expression for ate(aδ)|T in the KAHR-ate model.
Therefore ate must be numerically evaluated for the given experimental condition (Guo et
al., 2009). The temperature history during a non-isothermal aging test can be expressed by:

T (t) = Tg +
M∑

m=0
H(t − τm)∆Tm, (7.16)

where τm and ∆Tm denote the time and the temperature change at the mth temperature
jump, respectively. H(t) is the Heaviside function. Differentiating Equation (7.12) and
substituting Equations (7.9, 7.10, 7.11, 7.13) leads to

dz

dt
(z) = exp

[
∆αζ

{
eb (T (z) − Tr) −

∫ z

0
R(z − ς)dT

dς
dς

}]
. (7.17)

When substituting Equation (7.16) into the integral term in Equation (7.17), the derivative
of z becomes

dz

dt
(z) = exp

[
∆αζ

{
eb (Tp − Tr) −

p∑
m=0

∆TmR (z − τ̃m)
}]

, for t ∈ [τp, τp+1], (7.18)

where τ̃m = z(τm). Equation (7.18) is an ordinary differential equation (ODE) of z with the
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initial condition z(0) = 0. Once this ODE is solved, it is straightforward to compute all
required variables in the KAHR-ate model.

7.3.3 Three-dimensional viscoelastic properties of polymers

When modeling or characterizing the three-dimensional viscoelastic properties of polymers,
it is often assumed that the bulk modulus or Poisson’s ratio of the material is constant. Thus,
the three-dimensional problem can be reduced to a uni-dimensional problem in most cases
(Courtois, Marcin, et al., 2019; Crochon et al., 2015). However, this assumption may be
violated, especially if the test duration is sufficiently long, or when investigating the effect of
temperature on mechanical properties of polymers (Lu et al., 1997; Qvale and Ravi-Chandar,
2004).

In the context of linear viscoelasticity, the use of any two of the four material functions (the
Young’s modulus, the shear modulus, the bulk modulus, and Poisson’s ratio) is sufficient
to model the three-dimensional properties of isotropic materials (Lu et al., 1997). These
two material functions must be determined simultaneously (Tschoegl et al., 2002). Several
methods have been proposed to determine the bulk modulus and other material functions
simultaneously.

To determine the bulk behavior of polymethylmethrylate (PMMA), Lu et al. (1997) measured
the Young’s modulus and Poisson’s ratio of planar specimens, and the Young’s and shear
functions of cylindrical specimens. The bulk function of PMMA was then computed using
the material functions measured from the two tests, respectively. It was found that the
bulk function requires a high level of measurement accuracy; consequently, the bulk function
cannot be robustly derived from the other material functions and must be determined directly
from the experiments.

Several special experimental configurations have been developed to measure the bulk prop-
erties of polymers. For example, an atmospheric pressure chamber was used to measure the
dynamic bulk compliance of PMMA and polyvinyl acetate (PVAc) (Sane and Knauss, 2001),
and a confined compression set-up was used to determine the bulk and shear relaxation re-
sponse of PMMA and polycarbonate (PC) (Qvale and Ravi-Chandar, 2004). However, the
measurement accuracy of the bulk behavior of polymers is susceptible to errors caused by
experimental set-up. For example, it was found that a gap of 1.27 × 10−2 mm between the
specimen and the equipment could introduce errors up to 30% in the bulk properties mea-
surement (Qvale and Ravi-Chandar, 2004). In addition, the accessibility of these devices
limits their widespread use in engineering.
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In our previous work (Yue et al., 2021), a relatively simple method was used to simulta-
neously determine the bulk and shear functions of polymers by measuring the axial and
transverse strains of a tensile specimen. In a tensile test with an applied uni-axial load, a
strain transformation can be defined as:

ε† = εI − εII, (7.19a)

ε‡ = εI + 2εII, (7.19b)

where εI and εII denote the axial and transverse strain measurements, respectively. Then,
2ε† and 3ε‡ are the deviatoric and the volumetric strain and can therefore be used to directly
determine the shear and bulk properties of the material, respectively. It should be noted that
the accuracy of this method depends on the accuracy of the transverse strain measurements,
particularly for characterizing the bulk behavior.

7.3.4 Viscoelastic parameters identification

Identifying viscoelastic parameters from experimental data is an ill-posed problem, which
means that the parameters identified might not be unique, and small perturbations in exper-
iments can have a relatively significant effect on the identification process. To overcome this
ill-posedness and obtain the optimal number of Prony series, a Bayesian framework based
identification method has previously been proposed (Yue et al., 2021).

In a mechanical experiment, the relationship between experimental measurements y, e.g. the
measured strains in creep tests, and model predictions g(θ; x) with the submitted excitation
x, e.g. the applied stress in creep tests, can be drawn using an observation model with an
additive error ϵ as

yi = g(θ; xi) + ϵi, i = 1, . . . , T, (7.20a)

ϵi ∼ N (0, σ2
ϵ ), (7.20b)

where ϵ is assumed as a zero mean Gaussian variable with variance σ2
ϵ . θ stands for the vector

of constitutive model parameters, e.g. θ = {µ̃0, µ̃1, . . . , µ̃M , λµ
1 , . . . , λµ

M} for a viscoelastic
shear compliance constitutive model.

The parameter identification problem can be turned equivalently into the problem of de-
termining the posterior distribution of unknown parameters with known experimental data
(Kaipio and Somersalo, 2006). According to the Bayesian paradigm, the posterior function
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can be calculated by:
f(θ|Y =y)(θ) ∝ f(Y |θ)(y) × fθ(θ), (7.21)

where the likelihood function f(Y |θ) is computed based on the assumption that the additive
error is a Gaussian random variable as:

f(Y |θ,σ2
ϵ )(y) ∝ exp

{
− 1

2σ2
ϵ

∣∣∣∣∣∣ y − g(θ; x)
∣∣∣∣∣∣

2

}
, (7.22)

where σϵ can be evaluated by

f(σ2
ϵ |Y =y,θ)(σ2

ϵ ) ∼ InvGamma
{

T

2 ,
1
2

T∑
i=1

(yi − g(θ; xi))2
}

. (7.23)

An ordered relation in the prior function is imposed to avoid identifiability issues as

fθ(θ) ∝


1

λ1
× . . . × 1

λM
if 0 < λ1 < . . . < λM ,

0 otherwise.
(7.24)

The numerical evaluation of Equation (7.21) can be conducted by the Markov Chain Monte
Carlo (MCMC) simulation (Gelman et al., 2013). Then, the point estimates for parameters
is obtained from the maximum a posteriori (MAP) estimate as

θ̂MAP = arg max
θ∈R+

f(θ|Y =y)(θ). (7.25)

Finally, the optimal number of Prony series M can be obtained by maximizing the Bayesian
Information Criterion (BIC) (Schwarz, 1978), which is expressed as

BIC(M) = ln f(Y |θ̂MAP)(y) − 1
2(2M + 1) ln T. (7.26)

7.4 Material and methods

7.4.1 Materials

The material investigated in this work was polycarbonate (PC) with a glass transition tem-
perature of 150 °C. The virgin PC pellet (Product number PE-1220R-MP) was provided by
Lavergne, Inc. The pellets were dried at 120 °C for 24 h, afterward, ASTM D638 standard
type-I specimens were manufactured at 300 °C by injection molding with a Sumitomo SE-50S
machine. The specimens were conserved in a desiccator to avoid moisture degradation effects
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after the manufacture until mechanical testing.

7.4.2 Equipment

Tensile creep testing was conducted with a MTS® Insight electromechanical machine
equipped with a 1 000 N load cell, whose precision is ±0.1 N. The Insight machine was
controlled by the software TestSuite TW Elite. A LBO-series environmental chamber from
Thermcraft, Inc was installed on the Insight machine. The temperature was controlled in the
air surrounding the specimen with the thermal controller while monitoring the temperature
of the specimen was achieved with a thermocouple set in its gauge section.

Axial and transverse strains were measured by a bi-axial extensometer (Model 3560) from
Epsilon Technology, Corp. Axial strains were measured by averaging two gauges in axial
direction with a gauge length of 50 mm. Transverse strains were obtained by only one gauge
in the lateral direction.

7.4.3 Experiments

In this work, sequential creep-recovery tests were performed at various temperatures based
on the classical methodology proposed by Struik for evaluating non-isothermal physical aging
effect (Struik, 1977). However, several modifications were made in the mechanical testing.

The physical aging was considered to begin directly from the time the specimen had been
manufactured. Therefore, no further rejuvenation was required to remove the previous tem-
perature history at the beginning of the test. The specimens then underwent two stages
of physical aging. One was the period during which the specimens were conserved in the
desiccator at room temperature (around 20 °C). The other stage was the sequential creep-
recovery tests performed on the specimens at elevated temperatures. For the sake of clarity
and convenience, the time elapsed at the room temperature is referred to as aged time and
at elevated temperature as aging time.

In the second physical aging stage, four creep-recovery tests were performed for each spec-
imen. The first creep test was used to adjust the position of grips of the Insight machine
and was ignored for the aging properties investigation. Then, three creep tests were per-
formed after the temperature up-jump, i.e., aging times of 4 h, 8 h, and 16 h, respectively.
The duration of each creep test was set to 20 minutes. Thus, the aging time was at least ten
times greater than the creep phase to ignore aging effects during creep testing, as required
in Struik’s methodology (Struik, 1977).

Figure 7.1 illustrates the loading and temperature histories used to identify the linearly
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Figure 7.1 Illustration of the loading and temperature histories during the non-isothermal
aging tests. Tf is the manufacture temperature, T0 represents the room temperature and
T1 denotes the investigation temperature. τ0 and τ1 stand for the time of the temperature
jumps. Aging time te starts from the specimen heated to T1. Creep test #0 indicates the
first creep test was used to adjust the position of grips. Creep tests #1, #2 and #3 are the
creep tests at te = 4 h, 8 h and 16 h, respectively.

viscoelastic properties combined with the temperature and the physical aging effects. In all
creep tests, the applied stress was set to 10 MPa, resulting in a strain of approximately 0.5% to
ensure that the specimens were in their linear range since the PC exhibits linear viscoelasticity
when the stress does not exceed 24 MPa or the strain is less than 1.0% (Qaiser and Price,
2011). The non-isothermal aging test with the four creep tests is noted as characterization
test in the following.

It should be noted that the experimental measurement of transverse strain has a compar-
atively large error when compared to axial strain. This error is primarily caused by the
penetration drift of the bi-axial extensometer. Because the knife edge of the extensometer is
significantly stiffer than the specimen, the knife edge penetrates the specimen continuously
throughout the experiment, which is especially important for long-term or elevated temper-
ature tests. Therefore, a correction test was performed immediately after each mechanical
test to eliminate this drift. Only the creep test #0 was conducted during the correction test,
then the load was maintained at zero until the end of the test. Thus, the variation of trans-
verse measurements during the correction test is due to the penetration drift. The transverse
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measurement can be corrected by subtracting this variation value from the characterization
test. Details of the mechanical testing are presented in our technical note (Yue et al., 2022).

The temperatures investigated in this work were 40 °C, 60 °C, 80 °C, 100 °C, and 120 °C.
Two tests were performed at each temperature with an interval of approximately one month
between tests to evaluate the physical aging effect at room temperature. Two additional
tests were performed at room temperature (20 °C) to set as the reference data. The detailed
experimental conditions of characterization tests, including temperature, aged time, and
aging time, are shown in Table 7.1.

7.5 Parameters identification

7.5.1 Shear and bulk properties estimation

The three-dimensional parameters identification problem can be reduced to two independent
uni-dimensional problems, i.e., bulk and shear properties, by performing the strain trans-
formation of Equation (7.19). The experimentally measured momentary shear compliance

̂µ̃ = (̂µ̃i : i = 1, . . . , T ) and bulk compliance ̂κ̃ = (̂κ̃i : i = 1, . . . , T ) for each creep load step

Table 7.1: The detailed experimental conditions for characterization tests. Investigation tem-
perature indicates the temperature at which the specimens were tested during four sequential
creep-recovery tests. Aged time denotes the duration the specimen was aged at room tem-
perature. Aging time represents the time elapsed at the investigated temperature. 4 h, 8 h
and 16 h correspond to creep tests #1, #2 and #3, respectively. ⋆The specimen was broken
before the creep test #3 was conducted; thus, only two creep tests were performed.

Test index Investigation temperature (°C) Aged time (h) Aging time (h)
1 20 569 4, 8, 16
2 20 665 4, 8, 16
3 40 89 4, 8, 16
4 40 787 4, 8, 16
5 60 114 4, 8, 16
6 60 810 4, 8, 16
7 80 139 4, 8, 16
8 80 738 4, 8, 16
9 100 307 4, 8, 16
10 100 952 4, 8, 16
11 120 356 4, 8⋆

12 120 1024 4, 8, 16
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can be computed as:

̂µ̃ ≡ ̂µ̃(t) = ε†(t) − ε†(0)
2σI

, (7.27a)

̂κ̃ ≡ ̂κ̃(t) = ε‡(t) − ε‡(0)
3σI

, (7.27b)

where t is defined as the time elapsed since the load is applied in each creep test. σI represents
the submitted uni-axial load during creep tests.

The shear creep compliance µ̃(t) at the reference state was modeled by a Prony series type
linearly viscoelastic constitutive model as

µ̃ref(t) = µ̃0 +
M∑

m=1
µ̃m(1 − exp[−λµ

mt]). (7.28)

The shear creep compliance at the state (T, te) can be computed by the TTS principle as

µ̃(t; T, te) = µ̃ref(t/ate|T ; T ref, tref
e ), (7.29)

where ate|T is the shift factor related to the state (T, te) and can be evaluated by the KAHR-ate

model as per Equation (7.15).

In summary, to model the shear properties of the material for a given temperature and aging
history, the viscoelastic parameters (µ̃0, µ̃m, λµ

m) and the KAHR-ate model parameters (ζ, b,
τα, βα, c0, c1) of the material need to be identified. It should be noted that the parameters c0

and c1 are temperature-dependent. Therefore, the relationship between these two parameters
and the test temperature should also be determined. The parameter identification can be
achieved in two steps. First, the viscoelastic parameters of the material in the reference state
and the corresponding shift factors for the data under different test conditions are estimated.
Then, the parameters of the KAHR-ate model are identified from the obtained shift factors.
The bulk properties of the material can be identified independently and in parallel through
the same procedure.

7.5.2 Viscoelastic parameters identification

The reference state in this work was chosen as the first creep data in the first test, i.e. T ref =
20 °C and tref

e = 569 h + 4 h. The parameters identification problem of the shear behavior
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can be expressed as:

θµ = arg min
θµ∈R+

K∑
k=1

∥∥∥∥∥µ̃(k)
(
µ̃0, µ̃m, λµ

m/aµ,k
te|T

)
− ̂µ̃(k)

∥∥∥∥∥
2

(7.30)

with
θµ =

{
µ̃0, µ̃1, , . . . , µ̃M , λµ

1 , . . . , λµ
M , aµ,1

te|T , . . . , aµ,K
te|T

}
, (7.31)

where µ̃(k) and ̂µ̃(k) denote the predicted and experimentally measured shear creep compliance
during creep test #k, respectively. (µ̃0, µ̃m, λµ

m) are the viscoelastic parameters of the shear
behavior at the reference state, aµ,k

te|T is the shift factor that shifts the viscoelastic mechanical
property in the #k creep test to the reference state. Equation (7.30) can be solved based on
the Bayesian method proposed in our previous work (Yue et al., 2021).

To construct the posterior function to solve Equation (7.30), the likelihood function is com-
puted by

f(Y |θµ)(̂µ̃) ∝
K∏

k=1
exp

{
− 1

2σ2
µ̃

∣∣∣∣∣∣ ̂µ̃(k) − µ̃(k)
(
µ̃0, µ̃m, λµ

m/aµ,k
te|T

) ∣∣∣∣∣∣
2

}
, (7.32)

and the prior function is imposed using Equation (7.24). The MAP estimates of viscoelastic
parameters and shift factors can be obtained with the MCMC simulation by

θ̂µ
MAP = arg max

θµ∈R+
f(θµ|Y =̂µ̃)(θµ). (7.33)

7.5.3 KAHR-ate model parameters identification

Once the shift factors are obtained through Equation (7.33), the KAHR-ate model parameters
θte can be identified through:

θte = arg min
θte ∈R+

∥∥∥ate|T
(
θte ; T (t), te

)
− âte|T

∥∥∥
2

, (7.34)

where âte|T =
(
aµ,1

te|T , . . . , aµ,K
te|T

)
denotes the shift factors estimated from Equation (7.33). The

shift factor ate|T is computed using Equation (7.15) with the parameters θte and the specified
experimental circumstances (T (t), te).

The numerical evaluation of ate|T can be accomplished following the procedure proposed by
Guo et al. (2009) and is detailed in Algorithm 4. The difference of the thermal expansion
coefficients in the liquid and glassy state ∆α can be experimentally measured. Lomellini
(1992) obtained ∆α = 4.2 × 10−4 K−1 for PC by dilatometric measurements, which is consis-
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tent with other reported data that range from 2.3×10−4 K−1 to 4.2×10−4 K−1 (Van Krevelen
and Te Nijenhuis, 2009). Therefore, the value of 4.2 × 10−4 K−1 is used in this work. The
other parameters in the KAHR-ate model parameters (ζ, b, τα, βα, c0, c1) were identified
by solving Equation (7.34) using the Levenberg-Marquardt algorithm by a Matlab build-in
function lsqnonlin. Equation (7.18) needs to be solved in each optimization iteration, which
was performed by the function ode113 in Matlab.

7.6 Results and discussion

Figure 7.2 plots the full axial and transverse measurements during a non-isothermal aging test
at 100 °C, i.e., characterization test #9, and the subsequent correction test. At the beginning
of the characterization and correction tests, the axial measurements were nearly identical, as
they were subjected to the same loading history. Likewise, the transverse measurements in
both tests were also basically comparable, except for a 5×10−3 mm offset due to measurement
errors. These results demonstrate the repeatability of experimental data. The experimental
measurements and error analysis is not the objective of this work and is therefore detailed in
our technical note (Yue et al., 2022).

Figure 7.3 depicts the strains ε† and ε‡ for different temperatures and physical aging condi-
tions, which were computed using Equation (7.19) from the measured axial and transverse
strains. For clarity, only one test result at each temperature is presented here. The results
chosen being the second test at each temperature, i.e., tests #2, #4 . . . #12. Different col-

Algorithm 4 Numerical evaluation of ate in the KAHR-ate model
1: Determine τm and ∆Tm from temperature history of the non-isothermal physical aging

test at characterization temperature T
2: Set the initial value of z(0) = 0 and τ̃0 = 0
3: for p = 0, 1 do
4: Set t ∈ [τp, τp+1]
5: for m = 0, p do
6: Solve Equation (7.18) using ode113
7: Compute τ̃m = z(τm)
8: end for
9: end for

10: Compute R(z) using Equation (7.11)
11: Obtain δ(z) using Equation (7.10)
12: Calculate aδ using Equation (7.9)
13: Compute aT,δ using Equation (7.14) with temperatures T and T ref

14: Evaluate ate(aδ)
∣∣∣∣
T

using Equation (7.15)
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Figure 7.2 Full axial and transverse strains measured by the biaxial extensometer during test
#9 and the subsequent correction test. The solid and dashed lines indicate the measurements
during the characteristic and correction tests, respectively. The axial measurements were
almost identical in both tests, while only slight offset differences were found in the transverse
measurements. These results show the reproducibility of the experimental data.

ors are used to differentiate the temperatures and various markers are used to indicate the
different aging times respectively.

The shear behavior of PC varies significantly at different temperatures and physical aging
conditions. The strain ε† at 20 °C with an aging time of 4 hours changed from 5.58 × 10−3 to
5.85×10−3 (↑ 5.4%) in 20 minutes, from 6.23×10−3 to 6.92×10−3 (↑ 11.3%) at 80 °C under the
same aging conditions, and from 6.70 × 10−3 to 8.96 × 10−3 (↑ 34.3%) at 120 °C. Meanwhile,
as the aging time increased, ε† varied from 6.62 × 10−3 to 8.44 × 10−3 (↑ 27.5%) after 8 hours
of aging and from 6.49 × 10−3 to 7.91 × 10−3 (↑ 21.9%) over 16 hours at 120 °C. At 20 °C,
the results for the three aging time conditions were nearly comparable. The strain changed
from 5.58 × 10−3 to 5.87 × 10−3 (↑ 5.1%) with an aging time of 4 hours, from 5.58 × 10−3

to 5.86 × 10−3 (↑ 5.0%) over 8 hours and from 5.58 × 10−3 to 5.85 × 10−3 (↑ 4.8%) after 16
hours of aging. The aging effect was not substantial at room temperature. The magnitude of
strain during the creep test is directly proportional to the material’s compliance. The greater
the strain produced under the same loading conditions, the more compliant the material is.
The change in strain during the creep test represents the viscoelasticity of the material.
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Figure 7.3 Experimentally measured strains ε† and ε‡ during the creep tests with aging times
of 4, 8 and 16 hours in characterization tests at 20 °C, 40 °C, 60 °C, 80 °C, 100 °C and 120 °C
for PC; (A) Strain ε†, (B) Strain ε‡. The shear behavior of PC is remarkably temperature-
and aging-dependent in terms of mechanical properties. In contrast, the bulk behavior shows
only temperature dependence, and aging dependence is not apparent.
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Similarly, the more significant the strain changes, the more viscoelastic the material is. The
experimental observations demonstrate that both compliance and viscoelasticity of the shear
behavior of PC specimens increase significantly with increasing temperature, but decrease as
the aging time increases. The changes become more apparent as the temperature increases.
Therefore, the effect of temperature and physical aging on the shear properties should be
addressed simultaneously.

The bulk properties of PC are not as significantly affected by physical aging. The test results
for three different aging times at each temperature are nearly identical, so the aging effect
on the bulk property of PC can be ignored. And the effect of temperature on bulk behavior
is small, when compared to that of shear. The strain ε‡ at 20 °C increased from 1.19 × 10−3

to 1.23 × 10−3 (↑ 3.4%) in 20 minutes, from 1.26 × 10−3 to 1.31 × 10−3 (↑ 3.9%) at 80 °C,
and from 1.35 × 10−3 to 1.45 × 10−3 (↑ 7.4%) at 120 °C. It shows that compliance and
viscoelasticity of the bulk behavior of PC specimens increase with increasing temperature;
therefore, the temperature effect on the bulk behavior of PC needs to be evaluated. In
addition, the magnitude of ε‡ did not appear to be directly related to the test temperature in
tests from 40 °C to 100 °C. However, considering the order of magnitude of the strains ε‡ is
of 10−3 mm/mm, which is relatively small, and the difference in the magnitude of the strains
at different temperatures are around 5%. These offsets are most likely due to the errors in
installing the extensometer during the test.

7.6.1 Viscoelastic parameters

The three-dimensional viscoelastic constitutive model parameters and the shift factors of PC
specimens were identified from the data by the Bayesian framework method. The optimal
number of series of shear and bulk compliances were obtained by comparing the BIC value
of each model estimated by MCMC simulations. The evaluation of BIC with respect to the
number of Prony series of the shear and bulk properties of PC is shown in Figure 7.4. Nine
Prony series were required to model the shear compliance of PC while only two retardation
times were necessary to evaluate its bulk compliance.

The coefficient of determination R2 was used to evaluate the precision of prediction of shear
and bulk results, which is computed as follow:

R2 = 1 −

∑
i(si − ̂si)2

∑
i

(
̂si − 1

n

∑
i ̂si

)2 , for s = µ̃ or κ̃, (7.35)

where n denotes the total number of experimental data points, ̂s and s represent the experi-
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Figure 7.4 Evolution of the BIC with respect to the number of retardation times for shear and
bulk properties of PC. Nine retardation times were required to model the shear compliance
behavior of PC while only two Prony series were necessary to model its bulk creep compliance.

Table 7.2: Maximum a posteriori (MAP) estimates of the Prony series shear and bulk pa-
rameters for PC at the reference state, i.e., T ref = 20 °C and tref

e = 573 h.

m λµ
m (s−1) µ̃m (MPa−1) λκ

m (s−1) κ̃m (MPa−1)
- - 2.60 × 10−4 - 3.85 × 10−5

1 1.31 × 10−9 1.86 × 10−4 1.08 × 10−4 2.71 × 10−6

2 2.21 × 10−8 2.26 × 10−5 7.74 × 10−3 1.30 × 10−6

3 2.12 × 10−7 1.41 × 10−5

4 2.29 × 10−6 1.33 × 10−5

5 3.11 × 10−5 1.10 × 10−5

6 3.07 × 10−4 9.07 × 10−6

7 4.20 × 10−3 6.99 × 10−6

8 5.79 × 10−2 6.01 × 10−6

9 7.61 × 10−1 1.61 × 10−5

mental measurements and the predictions with identified parameters, respectively.

The estimated optimal viscoelastic parameters values for PC are listed in Table 7.2. Figure 7.5
plots the comparison between the experimental data and predicted response of shear and
bulk compliances. The master curves were constructed from the identified parameters and
the corresponding shift factors. The shear compliance result shows a remarkable agreement
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Figure 7.5 The master curve constructed by experimental data with the estimated shift
factors and the prediction using the identified parameters; (A) Shear compliance, (B) Bulk
compliance. The coefficient of determination R2 was computed to evaluate the prediction
accuracy, which are 0.9988 and 0.7263 for the shear and bulk compliance, respectively.
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between experimental data and the prediction, with the R2 value of 0.9988. The shear
viscoelastic behavior exhibits a significant time-dependence, with shear compliance increasing
from 2.76×10−4 MPa−1 at 3.16×10−1 s to 4.51×10−4 MPa−1 at 5.29×108 s (↑ 63.4%). Bulk
compliance results also demonstrate concordance between experimental data and predictions,
with the R2 value of 0.7263, which is acceptable considering the order of magnitude difference
between bulk and shear compliance (approximately one tenth) and the effect of experimental
error on the measurements. It should be noted that the bulk compliance increased marginally
with time, increasing from 3.77 × 10−5 MPa−1 to 4.34 × 10−5 MPa−1 (↑ 15.1%) in the period
10 s to 3.06 × 104 s. These observations are consistent with other experimental results in the
literature (Qvale and Ravi-Chandar, 2004).

7.6.2 Shift factors model parameters

The KAHR-te model was used to evaluate the obtained shift factors for the shear behavior
of PC. Table 7.3 lists the identified model parameters, where ζ, b, τα and βα are material
constants and c0 and c1 are temperature-dependent. Two exponential functions were chosen
to represent the temperature-dependence of parameters c0 and c1 which are expressed as

c0(T ) = γ0 + γ1 exp[γ2(T − T ref)], (7.36a)

c1(T ) = η0 + η1 exp[η2(T − T ref)]. (7.36b)

The obtained parameters c0 and c1 at each temperature and the prediction by Equation (7.36)
are plotted in Figure 7.6.

The comparison between the obtained shift factors and the model prediction using the esti-
mated parameters is represented in Figure 7.7. It demonstrates that the predictions agree
very well with the experimental data, except for the results of the second test at 40 °C (Test
#4). This discrepancy could result from errors in the estimation of shift factors based on
experimental data. It is noteworthy that the variation in results between the two tests at
each temperature accounts for the accumulated physical aging effect at room temperature.
Note that the interval between two characterization tests at each elevated temperature is
approximately 661 ± 36 h, which is relatively small. Therefore, the room temperature effect

Table 7.3: Estimated KAHR-te model parameters. All parameters are unitless.

ζ b τα βα
c0 c1

γ0 γ1 γ2 η0 η1 η2
0.956 2.31 158 0.517 0.538 0.159 −2.19 × 10−2 -220 234 −4.40 × 10−4
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Figure 7.6 Estimated KAHR-te model temperature-dependent parameters with respect to
temperatures for shear behavior and the prediction by Equation 7.36; (A) c0, (B) c1. The
parameter c0 shows an exponential relationship with temperature, while c1 is approximately
linear.
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Figure 7.7 Comparison between the shift factors estimated from experiments and the pre-
diction using KAHR-te model. ◦ denotes the shift factors of the first test performed at each
temperature (Test #1, #3, . . . , #11), while □ stands for the results of second tests (Test
#2, #4, . . . , #12). The solid and the dash-dotted lines are the estimated shift factor by
HAHR-te model using the identified parameters for the first and second tests, respectively.
The predicted shift factors with identified KAHR-te model agree well with estimated values
from experiments. The aging effect of PC at room temperature becomes less significant as
the characterization test temperature increases.

between two tests at each elevated temperature is assumed to be identical. For relatively
low temperatures, e.g., 40 °C and 60 °C, the accumulated effect of physical aging at room
temperature has a significant effect on the material’s properties at the investigation temper-
ature. In comparison, the accumulated physical aging effects were less pronounced at higher
temperatures. At 120 °C, the shift factors were nearly identical in both tests, measuring of
4.03 × 105 and 2.44 × 105 after aging 4 hours and 8 hours in the first test, and 4.04 × 105 and
2.43 × 105 in the second one.

The shift factors for bulk compliance were modeled by the WLF equation. The obtained
shift factors and the WLF equation prediction are plotted in Figure 7.8. Due to the fact that
the shift factor of bulk compliance is comparatively small, the simulation using the WLF
equation is approximately linear and contains some error. Additionally, this result indicates
that the bulk behavior of PC is temperature dependent, which is consistent with previous
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Figure 7.8 Comparison between the estimated shift factors from experiments and the pre-
diction with identified WLF equation of the bulk compliance of PC. The shift factors have
small values, and their logarithmic values are approximately linear with temperature over
the temperature range examined.

research findings (Qvale and Ravi-Chandar, 2004). However, the exact shift factors data for
bulk behavior of PC was not reported, limiting the comparison between the results in our
work and the literature data.

7.6.3 Discussion

It is interesting to note that temperature and physical aging time have a competitive effect on
the mechanical properties of PC. In general, increasing the temperature makes the material
more compliant, while increasing the physical aging time makes it stiffer. Additionally,
elevated temperatures accelerate the physical aging process. As illustrated in Figure 7.3,
after 16 hours of aging at 100 °C, the material will be stiffer than after 4 hours of aging at
80 °C. Thus, when investigating the effect of temperature on the mechanical properties of
PC, it is necessary to consider the effect of physical aging. Additionally, in the development
of polymers or polymer composites that are capable of operating at elevated temperatures,
the effects of temperature and physical aging must be considered concurrently to accurately
predict the mechanical properties of materials subjected to a complex thermal history.

Temperature and physical aging have a variety of effects on the properties of polymer mate-
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rials. In comparison to the shear property, the bulk behavior is less affected by temperature
and physical aging. The effect of physical aging on the bulk behavior is comparatively small
and could neglected whereas the effect of temperature is readily apparent over longer time
scales. As a result, certain assumptions about the bulk modulus or Poisson’s ratio of polymers
remaining constant at elevated temperatures are inappropriate for applications requiring a
high degree of prediction accuracy. However, the investigation in this paper is based on PC;
for other materials, additional tests must be conducted to verify this conclusion. Addition-
ally, because of the order of magnitude of the variation in bulk modulus between different
test conditions is quite small, the errors introduced by the measurements in the test may
have a significant effect on the results, such as those introduced by the equipment size and
strain gauges used in Qvale and Ravi-Chandar (2004), as well as the offset introduced by
the installation of extensometer in this work. Therefore, it is strongly recommended that in
thermo-mechanical studies of polymer materials, non-contact measurement methods such as
Digital Image Correlation (DIC) be used to minimize measurement errors.

7.7 Conclusion

The main contribution of this work was the successful application of a previously proposed
Bayesian inference method for determining the viscoelastic parameters in combination with
temperature and physical aging effects. The identified viscoelastic constitutive models and
related shift factors agree well with experimental data at a variety of temperatures and aging
times for PC. Additionally, this work investigated and discussed various effects on the shear
and bulk behavior of PC. The shear properties are affected by both temperature and physical
aging, whereas the bulk behavior is only affected by temperature and is relatively insignificant
in comparison to the shear properties.

While this work focuses on the properties of PC, the approach presented in this work can be
applied to other materials to derive more general conclusions about the effects of temperature
and aging time on three-dimensional behavior of polymer solids.
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CHAPTER 8 GENERAL DISCUSSION

8.1 Characteristic times of viscoelasticity

8.1.1 Number of characteristic times

This thesis investigated the characteristic times λm related to the creep compliances of three
different thermoplastics, i.e., PMMA, PP and PC, based on experimental results. Note that
the viscoelasticity of the bulk properties is much smaller than that of the shear properties.
For the sake of illustration, only the shear compliance characteristic times are discussed here.
Table 8.1 lists the experimental time window and the optimal number of characteristic times
M for three thermoplastics. Figure 8.1 plots their optimal characteristic times and associated
relative compliances. It can be found that the optimal M is nearly identical to the decades of
experimental time window, but the distance (in logarithm) between characteristic times is not
identical for all three materials. Therefore, the Prony series model with one characteristic
time per decade during the experimental time window is the simplest model to precisely
represent test data.

In most works of applying classical methods to determine viscoelastic parameters, the char-
acteristic time has been a priori fixed as logarithm equidistant and one per decade (Courtois,
Hirsekorn, et al., 2019; Crochon, 2014). It should be noted that this choice is inappropriate
according to the previous conclusions. When the characteristic time is freely distributed, one
characteristic time per decade is the optimal choice. However, a fixed logarithmic equidistant
per decade may fall short of the required precision. Therefore, if a classical approach is re-
quired in some special cases, 1.5 or 2 characteristic times per decade is suggested to balance

Table 8.1: Comparison between experimental time windows and optimal characteristic times
for three thermoplastic. tmin and tmax represent the lower and upper limits of the experimental
time window, respectively. The experimental time window for PMMA and PP is directly
determined from experiments, while the experimental time window for PC is determined using
the structured master curve for 573 hours physical aging at 20 °C. The optimal characteristic
times M is nearly identical to the elapsed decades of experimental time window for three
thermoplastics.

Material tmin (s) tmax (s) Elapsed decades Optimal M
PMMA 1 3.4 × 103 3.5 3

PP 1 3.4 × 103 3.5 4
PC 3.2 × 10−1 5.3 × 108 9.2 9
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Figure 8.1 Optimal characteristic times identified from experimental data for PMMA, PP and
PC. The relative compliance is defined as the ratio of the compliance µ̃m corresponding to
each characteristic time λm to the elastic compliance µ̃0. Characteristic times are distributed
nearly one per decade; the distance between each characteristic time is not the same.

the model complexity and prediction accuracy.

8.1.2 Nature of characteristic times

The determination of the characteristic times for viscoelastic solids in most works, including
this thesis, is based on an approximation theory viewpoint, where identifying the parameters
of the Prony series model approximates the kernel function C(t) or S(t) of the material using
non-negative exponential sum functions. Thus, the characteristic time represents the base of
the exponential and the function.

However, from a physicochemical point of view, the characteristic times of the polymer
have a clear physical meaning. Viscoelasticity manifests itself as a delayed response of the
molecular chain structure to external stresses (Ferry, 1980). Therefore, the characteristic
time of a polymer should be determined by the physicochemical properties of the polymer,
including type of molecule, the molecular weight, the configuration of the molecular chain,
etc.
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Likhtman and McLeish (2002) have proposed a quantitative model at the molecular chain
scale to estimate the viscoelasticity of entangled polymer melts. In this model, the structure
and dynamics of single molecular chains are modeled based on the classical reptation theory
(De Gennes, 1971), yielding a quantitative model with a clear physical meaning, without any
non-physical adjustable parameters. The characteristic times are computed from the number
of monomers in each molecular chain, molecular weight, temperature, etc. This model agrees
well with experimental data on polystyrene.

However, no clear physical model for glassy polymers has been established. Because the
molecular chains lack sufficient thermal energy to move freely in a glassy state, they face
more significant restrictions than in the molten state (Ferry, 1980). As a result, the classical
reptation theory is invalid. Therefore, developing a physical model of viscoelasticity for glassy
polymers based on molecular dynamics continues to be an open and challenging problem.
Furthermore, establishing a quantitative correlation between the characteristic times and the
physicochemical properties of polymer solids is of considerable interest.

8.2 Bayesian framework based identification method

8.2.1 Assumption

An essential assumption in the Bayesian framework based approach proposed in this thesis is
that the experimental error is independent during a test. In practice, the error ϵi is probably
not independent of ϵi+1. However, it should be noted that the point estimates, e.g., the MAP
estimate used in this thesis, are quite robust to the dependence of errors (Varin et al., 2011).
Therefore, the method proposed in this thesis is applicable to the actual situation.

However, if it is desired to generalize more information about the viscoelastic parameters via
their posterior distribution from experimental results, the assumption of independent errors
should be taken into account. Therefore, the proposed Bayesian method can also be improved
by releasing this assumption for future exploring the Bayesian analysis on parameters.

8.2.2 Limitation

The proposed Bayesian framework based method is a robust and automated method for
determining the optimal number of three-dimensional viscoelastic parameters. However,
when compared to classical identification methods, this approach features the limitation
of high computational cost. The classical approach here refers to fixing the characteristic
time a priori and solving the identification problem for Equation (2.26) using a derivative
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optimization method, such as the one proposed by Lévesque et al. (2008).

The relatively high computational cost of the Bayesian approach is mainly due to the fact that
it is solved differently than the classical approach. In the classical method, the parameters are
solved iteratively by calculating the residual between the experimental data and the model
prediction. The calculation stops when a stopping criterion is met. Usually, the stopping
criterion chosen is the number of iterations, the tolerance between the experimental data and
the model prediction, or the change in the parameter between two iterations. However, the
idea of the Bayesian approach is to estimate the posterior distribution of the parameters by
MCMC simulations, which is more computationally demanding than finding point estimate.
After the sampling convergence, statistical analysis and point estimation are then performed
using the posterior distribution. Thus, the sampling convergence criterion, i.e., the stopping
rule, is critical for the Bayesian method’s efficiency. Several MCMC sampling convergence
criteria have been proposed to address this (Brooks and Gelman, 1998; Gelman and Rubin,
1992; Gelman et al., 2013).

This thesis chooses the number of iterations as the convergence criterion for MCMC sampling.
This choice has limitations. When using Bayesian methods to determine the optimal number
of parameters for a Prony series model, models with different parameter numbers (from 1
to M) need to be computed in sequence. The number of sampling iterations required varies
according to the complexity of the model, but it is impossible to preview the required number
before the simulation. Therefore, a constant iteration number is chosen for all models during
the identification. To ensure that the sampling converges for the model with a large number
of parameters, a relatively large iteration number, e.g., 10 000, was conservatively used in
this research, resulting in a high cost of time required for the entire parameter identification.

Therefore, selecting suitable convergence criteria and investigating more advanced sampling
methods to accelerate convergence are of considerable interest for the future research about
improving the Bayesian framework method in viscoelastic constitutive theory identification.

8.2.3 Extensibility

One of the advantages of the Bayesian framework based parameter identification method is
that it can easily be extended to handle more complex constitutive models and to incorporate
prior knowledge about the parameters. For example, in this thesis, the method for determin-
ing the viscoelastic parameters was initially developed for the material at room temperature.
Within the same framework and only changing the likelihood function, the method can be
extended to identify parameters for a more complex model that includes viscoelasticity and
the effect of temperature and physical aging.
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Moreover, the Bayesian method can also be extended by altering the prior function. Exten-
sions can be implemented in a variety of aspects, such as:

1. Updating the knowledge of material. Once the viscoelastic parameters of a material
is identified with the Bayesian method, the distribution of its parameters or the point
estimate of the distribution can be obtained. This information can be used as a prior
function for identifying similar materials, accelerating the identification process.

2. Incorporating the physicochemical properties of the material. If a physicochemical
model can be developed for polymer solids, it could be used as a prior function to
provide more physical meaning to the identified parameters.

Therefore, while the Bayesian approach has limitations such as a high computational cost,
it also has significant advantages and the potential to be a potent numerical tool for other
researchers or engineers interested in developing and characterizing novel viscoelastic solids.
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CHAPTER 9 CONCLUSION AND RECOMMENDATIONS

This thesis developed a numerical predictive tool for the long-term mechanical properties
of thermoplastics. A robust and automated method based on the Bayesian framework was
proposed to identify the three-dimensional viscoelastic parameters of thermoplastic solids
under different temperature and physical aging conditions. Mechanical tests experimentally
validated the proposed method on three thermoplastics under varying conditions.

A Bayesian framework-based method was initially proposed to identify the three-dimensional
viscoelastic parameters of thermoplastics at room temperature. The ill-posedness of the
Prony series model identification problem was addressed through MCMC simulations. With
the proposed method, identifying the viscoelastic parameters does not require a priori fixing
of the characterization time. Moreover, the optimal number of parameters for the Prony
series can be derived by this method. The viscoelastic parameters are identified from three-
dimensional experimental data and experimentally validated on independent data for two
different thermoplastics, PMMA and PP. The excellent agreement between the DIC measure-
ments and the FEM simulations performed through the identified parameters demonstrated
the robustness and adequacy of the method at room temperature.

Then, three-dimensional non-isothermal physical aging tests on PC specimens were conducted
at room temperature (20 °C), 40 °C, 60 °C, 80 °C, 100 °C, and 120 °C, respectively. Axial and
transverse strains were measured with a biaxial extensometer during these tests. The sources
of measurement errors of the extensometer were analyzed. A robust and straightforward
procedure was proposed to eliminate the temperature-induced and penetration drifts of axial
and transverse measurements with the biaxial extensometer during the thermo-mechanical
testing. Experimental results at 120 °C demonstrated the reproducibility and reliability of
the proposed experimental methodology.

Finally, the previously proposed method was successfully extended to simultaneously identify
viscoelastic, temperature, and physical aging-related 3D model parameters from generated
non-isothermal physical aging test data on PC specimens. The identified viscoelastic con-
stitutive models and related shift factors agree well with experimental data under various
temperatures and physical aging conditions for PC. The effects of temperature and physical
aging on the bulk and shear behavior of PC were investigated. Temperature and physical
aging both affect shear properties, whereas bulk behavior is only affected by temperature
and is relatively insignificant when compared to shear properties.

In overall, the developed Bayesian framework-based method is capable of predicting the
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long-term mechanical properties of thermoplastics under a variety of test conditions. Other
researchers and engineers can use this numerical tool to develop and characterize novel vis-
coelastic materials, as well as to investigate the effects of temperature and physical aging on
the mechanical properties of the materials.

Recommendations for future studies

The previous conclusions result in the following recommendations.

• Improve the performance of MCMC simulations

The computational cost of MCMC simulations limits the efficiency of the proposed
Bayesian based identification method. Therefore, it is of interest to improve the perfor-
mance of MCMC simulations by selecting the advanced sampling methods to accelerate
the convergence or altering the convergence criterion to a more appropriate one.

• Investigate other types of viscoelastic constitutive model

The Prony series model was used in this thesis. Other types of thermodynamically
consistent viscoelastic constitutive models exist, e.g., fractional order models (Lion,
1997). The proposed identification method can be applied to these models by altering
the function in the likelihood function. Comparing different viscoelastic models in
studying viscoelastic materials and structures is interesting.

• Measure strains with DIC at elevated temperatures

When using an extensometer to measure strain in a specimen, there are errors caused
by installing the extensometer that is difficult to eliminate. Therefore, it is necessary
to use DIC for measurement at high temperatures if high accuracy is required. In
addition, comparing the results of DIC and extensometer measurements in a test in
the environmental chamber can be used to validate the correction of the extensometer
drifts in this work.

• Generate a database for viscoelastic solids

An essential feature of the Bayesian approach is its ability to incorporate new informa-
tion from test results after each experimental test. This feature enables the establish-
ment of a database for collecting and analyzing the information about the viscoelastic
parameters of polymers to aid in the development of novel polymers.

• Extend the predictive numerical tool to composites
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This thesis focused on neat thermoplastics. However, the proposed method can be
extended to predict the long-term mechanical properties of composites, when a homog-
enization model is included. The development of such a predictive numerical tool to
assist in developing and designing novel composites is of considerable interest.
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