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ABSTRACT

A new method is presented to evaluate thermal interactions between vertical geother-
mal boreholes. The finite line source (FLS) solution is extended to consider thermal
interactions between groups of boreholes. Groups of boreholes that share similar
temperatures and heat extraction rates are identified using hierarchical agglomer-
ative clustering, and each group is represented in the model as a single equivalent
borehole. Each equivalent borehole is split into segments, and temporal and spatial
superposition of the FLS solution are employed to calculate the total temperature
change along the length of the equivalent boreholes. The new method is shown to
provide an accurate calculation of the g-function, with a mean absolute percentage
error below 0.612 % on the g-functions of regular borefields of up to 144 boreholes
using only 3 to 5 equivalent boreholes. Calculation times are significantly reduced :
the g-function of a borefield of 1024 randomly positioned boreholes is calculated in
3.65 seconds.

KEYWORDS

ground-coupled heat pumps; geothermal boreholes; g-functions; finite line source;
thermal interactions; hierarchical agglomerative clustering

1. Introduction

Ground-coupled heat pump (GCHP) systems use the ground as a heat source (or
sink) to supply heating (or cooling) to buildings. GCHP systems are composed of
one or multiple heat pumps coupled to a set of geothermal boreholes (i.e. a borefield)
that allow the exchange of thermal energy with the ground. A geothermal borehole
consists in a drilled hole, typically of a diameter ranging from 100 mm to 150 mm
and of a length ranging from 15 m to 180 m (ASHRAE, 2019). One or several U-
tubes (or alternatively coaxial pipes) are inserted into the borehole and the borehole
is subsequently back-filled with grouting material. In some cases, no grouting material
is used and the borehole is filled with groundwater. The heat carrier fluid from the heat
pump(s) is circulated through the boreholes to exchange heat with the surrounding
ground and then fed back to the heat pump(s). Heat extraction and rejection in the
borefield cause fluid and ground temperature variations which may compound over
the GCHP system’s life cycle and impact on its performance and operability.
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Mathematical models of heat transfer are used in all phases of GCHP system plan-
ning, design and operation. These mathematical models allow to predict temperature
changes in the fluid and the ground due to fluctuations in the heat extraction and
rejection into the borefield. In site characterization applications, physical parameters
(e.g. soil thermal conductivity, borehole thermal resistance) can be inferred by fitting
mathematical models to measurements from a thermal response test (Spitler & Gehlin,
2015). In the design phase of the system, mathematical models can be used to estimate
the required borehole size to satisfy the operation parameters of the equipment, for
example lower and upper fluid temperature limits for the operation of the heat pump
(Ahmadfard & Bernier, 2019). Heat pump and borefield heat transfer mathematical
models can be coupled to predict the energy consumption of the system. Also, these
models could allow successfully posing an optimization strategy for the system design
and the development of model-based control strategies (Cupeiro Figueroa et al., 2020).
Accurate predictions of fluid and ground temperatures require the modeling of both
of the long-term and short-term heat transfer effects in geothermal boreholes (Li &
Lai, 2015). Long-term heat transfer effects are characterized by the three-dimensional
heat transfer in the soil and the thermal interactions between boreholes. Short-term
heat transfer effects are characterized by the transit of the fluid through the boreholes
and the thermal capacitance of the borehole materials.

Long-term temperature predictions in geothermal borefields can be obtained by
temporal superposition of thermal response factors, or g-functions. g-Functions are
unit step-response functions of the effective borehole wall temperature change due to
a unit heat extraction rate from the borefield. They can be superimposed in time to
achieve simulations of geothermal systems (Mitchell & Spitler, 2019). Eskilson (1987)
calculated the g-functions of geothermal borefields from the spatial superposition of
temperature fields around individual boreholes. The individual temperature fields were
calculated using a finite difference method. The inside and outside of the boreholes,
delimited by the borehole wall, were uncoupled by considering a uniform borehole wall
temperature along the length of the boreholes and equal for all boreholes. In recent
work, g-functions are calculated by superimposing suitable analytical heat source so-
lutions to model various physical phenomena, for example the finite line source (FLS)
solution to model purely conductive heat transfer in isotropic and homogeneous ground
(Eskilson, 1987), the moving finite line source to model the effects of groundwater ad-
vection (Molina-Giraldo et al., 2011), and the multilayer finite line source to model
layered ground physical properties (Abdelaziz et al., 2014). For pure conduction, the
FLS solution was spatially superposed by Zeng et al. (2002) to calculate thermal
response factors of geothermal borefields. Lamarche & Beauchamp (2007a) and later
Claesson & Javed (2011) obtained simplified expressions for the FLS solution involving
a single integral, down from a computationally expensive double integral.

The simple spatial superposition of the FLS solution fails to accurately evaluate
g-functions, due to the different boundary conditions at the borehole wall : the FLS
solution considers a uniform heat extraction rate and Eskilson’s g-functions consider
a uniform borehole wall temperature. Cimmino et al. (2013) and Cimmino & Bernier
(2014) were able to evaluate the g-functions for a uniform temperature boundary con-
dition by first considering the time variation of the heat extraction rates of individual
boreholes, and then by considering the distribution of heat extraction rates along bore-
holes using a segmented FLS solution. This method was also applied to inclined bore-
holes by Lazzarotto (2016). Cimmino (2015) coupled the segmented FLS solution to a
thermal circuit representation of the inside of geothermal boreholes and showed that
the distribution of temperatures and heat extraction rates along boreholes are needed
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for accurate predictions of temperature variations. The spatial and temporal superpo-
sition of the FLS solution can also be used to assemble so-called network-based models
of geothermal systems that account for the hydraulic configuration of the geothermal
borefield, where the full distribution of borehole wall temperatures are evaluated every
time step of simulations (Cimmino, 2018a; Lamarche, 2017a; Lazzarotto, 2014).

A drawback of analytical models for thermal interactions between boreholes, such
as the FLS solution, is the computational effort required to evaluate the solution (due
to the integral) and to solve the system of equations. The number of evaluations of
the FLS solution scales with the square of the number of line source segments (i.e. the
number of segment pairs). Cimmino (2018b) considered similarities between pairs of
line sources to reduce the number of evaluations of the FLS solution. Dusseault et al.
(2018) approximated the integrand of the FLS solution using Chebyshev polynomials,
thereby reducing the time taken for numerical integration. Nguyen & Pasquier (2021)
make use of interpolations of a priori calculated FLS values at different distances,
thereby reducing the time in the calculation of the borefield thermal response. These
last two techniques, however, do not consider the distribution of heat extraction rates
over the length of the boreholes. In all cases, the size of the system of equations is un-
affected. The size of the system of equations is particularly damaging in network-based
methods where it needs to be solved at each time step of the simulation. Lamarche
(2017b) proposed a new FLS solution for piecewise linear distributions of heat ex-
traction rates along the boreholes that achieves the same accuracy as the piecewise
constant solution using fewer borehole segments and thereby reducing the size of the
system of equations.

Short-term effects, caused by the transit of the fluid through the boreholes and
the thermal capacitance of the borehole materials, dampen the variations of fluid and
ground temperatures during the first few hours of heat extraction and injection. The
lower bound of validity of long-term models that neglect short-term effects is estimated
to be tb = 5r2b/αs, with rb the borehole radius and αs the ground thermal diffusiv-
ity (Eskilson, 1987). Neglecting short-term effects leads to an overestimation of the
fluid and ground temperature changes, and possibly to an underestimation of the heat
pump efficiency in simulations and an overestimation of the required borehole length
in design (Ahmadfard & Bernier, 2018; Bernier & Shirazi, 2013). There are several
modeling approaches that include short-term effects, some of them are: equivalent
pipe models (Brussieux & Bernier, 2019; Gu & O’Neal, 1995; Javed & Claesson, 2011;
Lamarche & Beauchamp, 2007b; Xu & Spitler, 2006), thermal resistance and capac-
itance methods (TRCMs) (Bauer et al., 2011; Minaei & Maerefat, 2017; Pasquier &
Marcotte, 2014; Zarella et al., 2011) and other models based on numerical methods
(BniLam & Al-Khouri., 2016; Yang & Li, 2014; Yavuzturk, 1999). Recently, tran-
sient multipole solutions have been developed in the time domain (Prieto & Cimmino,
2021) and spectral domain (Rivero & Hermanns, 2021) for 2D transient heat conduc-
tion. These solutions, that in their mathematical formalism approach exact solutions,
have yet to be extended to include end-effects (i.e. axial heat transfer) in the bore-
holes and include fluid capacity in inside the pipes. There are works in which some of
the mentioned methods are used to simulate both short- and long-term effects, such
as Claesson & Javed (2011); Laferrière et al. (2020); Li et al. (2014). In these appli-
cations, the short- and long-term models are loosely coupled : only one borehole is
used in the short-term model to represent the entire borefield, and the distribution
of temperatures and heat extraction rates along the length of the borehole from the
short-term model is not taken into account for long-term predictions. This approach
is justifiable since modeling hundreds boreholes individually, both in the short- and
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long-term, would make the computational requirements for simulation impractical. As
a result, the impact of short-term effects on the long-term temperature changes is
unknown. New computationally-efficient and scalable (with regards to the number of
boreholes) approaches to model long-term heat transfer in geothermal borefields are
thereby needed to achieve detailed axially-discretized models of geothermal borefields
that can be used in multi-annual simulations of GCHP systems.

This paper introduces a new equivalent borehole concept to model thermal inter-
actions in geothermal borefields and to reduce the size of the system of equations
in thermal models, and enable the efficient modelling of thermal interactions in large
geothermal borefields comprised of hundreds of boreholes. A hierarchical agglomerative
clustering is applied to identify groups of boreholes that share similar temperatures
and heat extraction rates, and the FLS solution is adapted to evaluate thermal inter-
actions between groups of boreholes each represented by a single equivalent borehole.
The new approach is validated by calculating the g-function of borefields against a
reference method from the literature (Cimmino, 2018b,c).

2. Methodology

2.1. Thermal interaction between boreholes

Figure 1 shows a field of Nb = 2 vertical boreholes of equal dimensions. All boreholes
have the same length L and radius rb, and are buried at the same distance D from
the ground surface. Each borehole i is located at coordinates (xi, yi). The ground has
a uniform and isotropic thermal conductivity ks and thermal diffusivity αs, and is
initially at a uniform temperature T (x, y, z, t = 0) = T0 (i.e. the undisturbed ground
temperature).

Figure 1.: Field of 2 vertical boreholes of equal dimensions

Following the methodology of Cimmino & Bernier (2014), each borehole is divided
into nq segments, and each borehole segment is modeled as a line segment located
along its axis with a uniform heat extraction rate. The temperature drop at the wall
of a segment u of a borehole i at time tk can then be evaluated from the spatial and
temporal superposition of the analytical FLS solution :
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∆Tb,i,u,k = T0 − Tb,i,u,k =
1

2πks

Nb
∑

j=1

nq
∑

v=1

k
∑

p=1

Q′
j,v,p (hij,uv(tk − tp−1)− hij,uv(tk − tp))

(1)
where ∆Tb,i,u,k is the temperature drop at the wall of segment u of borehole i at time tk,
T0 is the initial ground temperature, Tb,i,u,k is the temperature at the wall of segment
u of borehole i at time tk, Q

′
j,v,p is the heat extraction rate per unit length of segment

v of borehole j from time tp−1 to tp, and hij,uv is the segment-to-segment thermal
response factor for the borehole wall temperature change over segment u of borehole
i caused by heat extraction from segment v of borehole j. The segment-to-segment
response factor is given by the FLS solution:

hij,uv(t) =
1

2Lu

∫ ∞

1√
4αst

1

s2
exp

(

−r2ijs
2
)

IFLS(s) ds (2a)

IFLS(s) = erfint ((Du −Dv + Lu)s)− erfint ((Du −Dv)s)

+ erfint ((Du −Dv − Lv)s)− erfint ((Du −Dv + Lu − Lv)s)

+ erfint ((Du +Dv + Lu)s)− erfint ((Du +Dv)s)

+ erfint ((Du +Dv + Lv)s)− erfint ((Du +Dv + Lu + Lv)s) (2b)

erfint(x) =

∫ x

0
erf(x′) dx′ = x erf(x)− 1√

π

(

1− exp(−x2)
)

(2c)

where rij is the radial distance between boreholes i and j (with rii = rb), erf(x) is the
error function and erfint(x) is the integral of the error function.

In non-dimensional form:

θb,i,u,k =

Nb
∑

j=1

nq
∑

v=1

k
∑

p=1

φ′
j,v,p (hij,uv(τk − τp−1)− hij,uv(τk − τp)) (3)

where θb,i,u,k = T0−Tb,i,u,k

Q′∗/2πks
is the dimensionless temperature at the wall of segment u of

borehole i at a dimensionless time τk = 9αstk
L2 = tk

ts
with ts the borefield characteristic

time, φ′
j,v,p =

Q′
j,v,p

Q′∗ is the normalized heat extraction rate per unit length of segment

v of borehole j from time τp−1 to τp, and Q′∗ is an arbitrary heat extraction rate per
unit length.
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Equation (3) can be simplified by introducing matrix notation:

Θb,k =

k
∑

p=1

(H(τk − τp−1)−H(τk − τp))Φ
′
p (4)

=

k−1
∑

p=1

(H(τk − τp−1)−H(τk − τp))Φ
′
p +H(τk − τk−1)Φ

′
k (5)

= Θ0
b,k +H(τk − τk−1)Φ

′
k (6)

where Θb,k =
[

θb,1,1,k, θb,1,2,k, · · · , θb,Nb,nq,k

]T
is a vector of dimensionless bore-

hole wall temperatures along all segments of all boreholes at time τk and Φ′
k =

[

φ′
1,1,k, φ

′
1,2,k, · · · , φ′

Nb,nq,k

]T
is a vector of dimensionless heat extraction rates per unit

length along all segments of all boreholes at time tk. H is a Nbnq × Nbnq matrix of
segment-to-segment response factors:

H(τk) =











h11,11(τk) h11,12(τk) · · · h1Nb,1nq
(τk)

h11,21(τk) h11,22(τk) · · · h1Nb,2nq
(τk)

...
...

. . .
...

hNb1,nq1(τk) hNb1,nq2(τk) · · · hNbNb,nqnq
(τk)











(7)

2.2. Thermal interaction between groups of boreholes

The size of the system of equations presented in Equation (4) increases with the
square of the total number of segments in the borefield (N2

b n
2
q). The calculation time

for the simulation of borefields using network-based methods (e.g. Cimmino (2018a);
Lamarche (2017a); Lazzarotto (2014)) or for the evaluation of g-functions (e.g. Cim-
mino (2018b); Dusseault et al. (2018)) thereby increases substantially when the number
of boreholes increases. This makes the simulation of geothermal borefields increasingly
impractical as the number of boreholes increase. One method for decreasing the size
of the system of equations is to consider symmetries in the borefield layout, as done
by Cimmino et al. (2013). This method is however only applicable to regular borefield
geometries where symmetrical groups of boreholes, which share the same borehole wall
temperatures and heat extraction rates, can be easily identified. This section extends
the concept of borehole groups to consider groups of non-symmetrically positioned
boreholes. Boreholes in the same group are assumed to have similar borehole wall
temperature profiles and heat extraction rate profiles, such that all boreholes in a
group can be replaced with a single equivalent borehole representative of that group.

There exists a fundamental group composed with all the boreholes in the borefield
defined as G = {1, 2, 3, . . . , i, . . . , j, . . . , Nb}, which is a non-empty finite set where
every element in the group corresponds to a borehole index. Since G is non-empty
and finite, it is possible to decompose this group as a set of G(≤ Nb) non-empty

groups such that G =
⋃G

I=1GI (i.e. all boreholes are in a group), GI ∩ GJ = ∅ for

I 6= J (i.e. a borehole is an element of only one group), and consequently
⋂G

I=1GI =

∅. The cardinality of the borefield group is #G =
∑G

I=1#GI =
∑G

I=1Nb,I = Nb,
where Nb,I(≥ 1) corresponds to the number of boreholes belonging to group GI . The
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formation of borehole groups is described in section 2.3.
The dimensionless borehole wall temperature at the wall of equivalent borehole

segments is calculated from the spatial and temporal superposition of the FLS solution:

θ̄b,I,u,k =

G
∑

n=1

nq
∑

v=1

k
∑

p=1

φ̄′
J ,v,p

(

h̄IJ ,uv(τk − τp−1)− h̄IJ ,uv(τk − τp)
)

(8)

where θ̄b,I,u,k is the dimensionless temperature at the wall of segment u of equivalent
borehole I at time τk, φ̄

′
J ,v,p is the normalized heat extraction rate per unit length of

segment v of equivalent borehole J from time τp−1 to τp, and h̄IJ ,uv is the equivalent
segment-to-segment response factor for the borehole wall temperature change over
segment u of equivalent borehole I caused by heat extraction from segment v of
equivalent borehole J .

The equivalent segment-to-segment response factor is given by the average segment-
to-segment response factors for the borehole wall temperature change along segments
u of all boreholes in group GI due to the heat extraction at all segments v of all
boreholes in group GJ :

h̄IJ ,uv(t) =
1

2Lu

1

Nb,I

∫ ∞

1√
4αst

∑

i∈GI

∑

j∈GJ

1

s2
exp

(

−r2ijs
2
)

IFLS(s) ds (9)

h̄JI,vu(t) =
Nb,I

Nb,J

Lu

Lv
h̄IJ ,uv(t) (10)

In matrix notation:

Θ̄b,k =

k
∑

p=1

(

H̄(τk − τp−1)− H̄(τk − τp)
)

Φ̄′
p (11)

=

k−1
∑

p=1

(

H̄(τk − τp−1)− H̄(τk − τp)
)

Φ̄′
p + H̄(τk − τk−1)Φ̄

′
k (12)

= Θ̄0
b,k + H̄(τk − τk−1)Φ̄

′
k (13)

where Θ̄b,k =
[

θ̄b,1,1,k, θ̄b,1,2,k, · · · , θ̄b,G,nq,k

]T
is a vector of dimensionless borehole wall

temperatures along all segments of all equivalent boreholes at time τk and Φ̄′
k =

[

φ̄′
1,1,k, φ̄

′
1,2,k, · · · , φ̄′

G,nq,k

]T
is a vector of dimensionless heat extraction rates per unit

length along all segments of all boreholes at time τk. H̄ is a Gnq × Gnq matrix of
equivalent segment-to-segment response factors:

H̄(τk) =











h̄11,11(τk) h̄11,12(τk) · · · h̄1G,1nq
(τk)

h̄11,21(τk) h̄11,22(τk) · · · h̄1G,2nq
(τk)

...
...

. . .
...

h̄G1,nq1(τk) h̄G1,nq2(τk) · · · h̄GG,nqnq
(τk)











(14)

Comparing Equations (3) and (8), it can be seen that the size of the system of
equations using equivalent boreholes is reduced by a factor N2

b /G2.
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2.3. Equivalent boreholes

This section introduces a systematic way to compute the finite set of groups for the
borefield group G =

⋃G

I=1GI . A hierarchical clustering approach is introduced to
define the groups. Then, an optimal number of groups is defined based on the maximum
dissimilarity between the identified groups.

2.3.1. Hierarchical agglomerative clustering

A hierarchical agglomerative clustering method is applied to form groups of bore-
holes that share similar borehole wall temperatures. Agglomerative clustering methods
present advantages compared to other clustering methods (e.g. k-means, k-medoids),
as they do not require the number of groups to be known prior to clustering. In hi-
erarchical agglomerative clustering, each element (i.e. borehole) is initialized as their
own cluster (i.e. group). At each iteration of the algorithm, the two closest clusters
are merged according to a linkage criterion evaluated from a distance metric based on
the distance between elements of the two clusters. The product of the hierarchical ag-
glomerative clustering can be visualized on a dendrogram tree from which the clusters
can be identified for a known number of clusters or based on a criterion to identify the
optimal number of groups (as will be presented in section 2.3.2).

Recalling from section 2.2 that boreholes in the same group should have similar
borehole wall temperatures and heat transfer rate, the absolute temperature differ-
ence between boreholes is used as the distance metric. A complete linkage is proposed,
meaning the distance between two groups of boreholes is given by the maximum ab-
solute temperature difference between boreholes of the two groups:

L(I,J ) = max
i∈GI ,j∈GJ

M(i, j) (15)

M(i, j) = |θi − θj | (16)

where L(I,J ) is the complete linkage criterion between groups I and J (i.e. the
distance between the groups), M(i, j) is the distance metric between two boreholes,
and θi is the dimensionless temperature at the wall of borehole i.

Dimensionless borehole wall temperatures are calculated considering a unit normal-
ized heat extraction rate equal for all boreholes (i.e. φ′ = 1). For the purpose of the
hierarchical agglomerative clustering, the single segment steady-state finite line source
(FLS) is used to evaluate the dimensionless borehole wall temperatures, rather than
the FLS solution used in sections 2.1 and 2.2. It was found that the single segment
steady-state FLS solution provides sufficient accuracy for clustering with the advan-
tage of being much less computationally intensive to evaluate than Equation (2) since
there exists a formulation free of integrals. The average dimensionless temperature
change at the location of a borehole i due to a unit normalized heat extraction rate
per unit length at a borehole j is given by:

wl = {Di −Dj + Li, Di −Dj , Di −Dj − Lj , Di −Dj + Li − Lj ,

Di +Dj + Li, Di +Dj , Di +Dj + Lj , Di +Dj + Li + Lj}
(17a)
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θij =
1

2Li

8
∑

l=1

(−1)l+1
{

wl ln
[(

wl +
√

w2
l + r2ij

)

/rij

]

−
√

w2
l + r2ij

}

(17b)

where θij is the steady-state dimensionless temperature change at the location of a
borehole i, located at a distance rij from a borehole j (with rii = rb), caused by a unit
normalized heat extraction rate per unit length.

The dimensionless borehole wall temperature change is given by the spatial super-
position of the temperature changes caused by all boreholes:

θi =

Nb
∑

j=1

θij (18)

2.3.2. Optimal number of groups

The result of the hierarchical agglomerative clustering can be visualized on a den-
drogram. Figure 2 shows an example dendrogram generated from the clustering of a
field of 16 boreholes. The dendrogram shows the complete clustering process, starting
with all boreholes in separate groups until all groups are merged into a single group.
The leaf nodes at the bottom of the dendrogram represent the initial groups. At each
iteration, the two closest groups (according to Equations (15) and (16)) are merged.
The created group is represented as an internal node, with branches connecting the
node to the two merged groups, and its height represents the distance between the
two groups. The root node, at the top of the dendrogram, contains all boreholes.

Figure 2.: Dendrogram Example

A minimum number of groups, expressed as Gmin, can be identified from a cut-off
threshold on the dendrogram. A simple technique to identify the minimum number
of groups is to cut the dendrogram at the half-height with an horizontal line at the
longest distance between two consecutive nodes on the tree, as shown on Figure 2. The
number of branches crossed by the cut-off line corresponds to the minimum number of
groups. In the example, Gmin = 2. The optimal number of groups is greater than the
minimum. However, it is not possible to identify the optimal number of groups on rig-
orous formalism (not based on nonlinear programming) but particular techniques have
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been studied (Jung et al., 2003; Patil & Baidari, 2019; Zhou et al., 2017). Therefore,
the number of groups can be chosen by increasing the minimum number of groups:

G = Gmin +K (19)

where K is a precision increment from which the number of groups can be increased
from the minimum. It will be shown later that the proposed method achieves accept-
able accuracy for K = 1.

2.4. g-function calculation

The proposed method is validated by calculating the g-function. The g-function rep-
resents the effective borehole wall temperature variation in a field of thermally in-
teracting boreholes for a constant total heat extraction rate. Temporal superposition
can later be applied to the g-function to simulate borefields with varying heat ex-
traction rates. As shown by Cimmino & Bernier (2014), the accurate evaluation of
the g-function requires detailed modeling of the borefield where the variation of heat
extraction rates along the boreholes is considered.

In the proposed method, each group of boreholes is modeled using a single equivalent
borehole and the variation of the heat extraction rate along its length is applied to all
boreholes of the same group, thereby limiting the degrees of freedom of the borefield.
If the equivalent boreholes are indeed representative of their respective groups and
the number of groups is sufficient, the proposed method should produce the same g-
function as if all boreholes are modeled individually. The proposed method will thus be
validated by evaluating the g-function and comparing the variation of heat extraction
rates in the borefield.

For a field of boreholes connected in parallel, the g-function is typically evaluated
by imposing a uniform borehole wall temperature equal for all boreholes (Eskilson,
1987), based on the assumptions that the fluid temperature variation inside boreholes
is small and that fluid and borehole wall temperatures are sufficiently close. At each
time step, a system of equations is built and solved to identify the required borehole
wall temperature to achieve the desired constant total heat extraction rate:

[

H̄(τk − τk−1) 1

L̄ 0

] [

Φ̄′
k

θ̄b,k

]

=

[

−Θ̄0
b,k

1

]

(20a)

L̄ =
[

Nb,1

Nbnq

Nb,1

Nbnq
· · · Nb,2

Nbnq

Nb,2

Nbnq
· · · Nb,G

Nbnq

Nb,G
Nbnq

]

(20b)

where θ̄b,k is the uniform dimensionless borehole wall temperature at time τk, corre-
sponding to the g-function, and L̄ is a vector of length ratios that imposes a con-
stant total unit normalized heat extraction rate per unit length. A similar system of
equations can be built from the relations in section 2.1 to evaluate the g-function
considering each borehole individually. The method is not limited to the calculation
of g-functions using a uniform temperature boundary condition. The same hierarchi-
cal agglomerative clustering approach can be considered to evaluate g-functions using
an equal inlet fluid temperature boundary condition by extending Equation (20) to
include the interaction between the fluid and the borehole walls (Cimmino, 2015).
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Boreholes of unequal lengths can also be considered by applying the clustering ap-
proach to each subset of boreholes of equal lengths in the borefield.

3. Results

The proposed method is implemented in Python, using the SciPy library (Virtanen et
al., 2020) for the implementation of the hierarchical agglomerative clustering, the eval-
uation of integrals and the evaluation of special functions (e.g. the error function), and
the NumPy library (Van Der Walt et al., 2011) to handle matrix and vector manipula-
tions. The reference g-functions, evaluated with all boreholes modeled individually as
presented in section 2.1, are calculated using the pygfunction (version 2.0.0) library
(Cimmino, 2018c) which implements the similarities method of Cimmino (2018b) to
accelerate calculations. The pygfunction library was extended to accommodate the
proposed method.

The proposed method is first applied to the calculation of the g-function of a field
of 20 boreholes in a rectangular configuration and compared to the reference method
with regards to the g-function values and the predicted heat extraction rates. Then,
the accuracy and computational time of the proposed method is assessed on various
regular borefield configurations with up to 144 boreholes. Finally, the robustness and
scalability of the method, in terms of accuracy and calculation time, is tested on
borefields of randomly positioned boreholes with up to 1024 boreholes. Simulation
parameters are presented in Table 1, where the borehole spacing B only applies to
regular borefield configurations.

Table 1.: Borehole and ground parameters

Parameter Value

Borehole buried depth D = 4 m
Borehole length L = 150 m
Borehole spacing B = 7.5 m
Borehole radius rb = 0.075 m
Ground thermal diffusivity αs = 1.0× 10−6 m2/s

In all cases, the number of equivalent boreholes is chosen according to the criterion
of section 2.3.2 with K = 1, the number of segments per borehole is nq = 12 as per
the recommendation of Cimmino & Bernier (2014), and the g-functions are calculated
at Nt = 25 time values in geometrically expanding time-steps in the range −10 ≤
ln(t/ts) ≤ 5. All calculations were done on a personal computer with 16 GB of RAM
and a 6-core processor (12 threads) running at normal speed of 2.60 GHz and maximum
speed of 4.80 GHz.

The accuracy of the proposed method is quantified using the mean absolute per-
centage error:

MAPE =
100

Nt

Nt
∑

k=1

∣

∣

∣

∣

greference(τk)− g(τk)

greference(τk)

∣

∣

∣

∣

(21)

11



where MAPE is the mean absolute percentage error and greference is the g-function
evaluated using the reference method.

3.1. Rectangular borefield of 20 boreholes

Figure 3 shows the results of the hierarchical agglomerative clustering method applied
to a borefield of 20 boreholes in a Nx×Ny = 5×4 rectangular configuration. Figure 3a
shows the borefield layout, with markers representing the positions of the boreholes and
different marker colors representing the identified borehole groups. Figure 3b shows the
dendrogram resulting from the clustering method. It can be seen that the minimum
number of groups is Gmin = 2 since the cut-off line, at half-height of maximum L(I,J )
between two consecutive nodes, crosses two branches of the dendrogram, and therefore
the number of groups is G = 3 for a precision increment K = 1. For simplicity, groups
will be referred to using roman numerals (e.g. group III refers to G3). In this example,
group I contains 6 boreholes, group II contains 10 boreholes, and group III contains
the remaining 4 boreholes. It should be noted that, due to symmetries in the borefield
layout, the borefield could be modeled with no error (compared to the reference)
using only 6 groups. Figure 3a shows that the clustering approach successfully places
symmetrically positioned boreholes in the same group.

(a) Hierarchical clustering (b) Dendrogram

Figure 3.: Hierarchical agglomerative clustering method for a 5×4 borefield

Figure 4a compares the g-function of the 5×4 borefield evaluated using the proposed
method to the reference method of Cimmino (2018b) for a K = 1. Figure 4b shows
the MAPE and the maximum relative error as a function of the number of groups G
used for the calculation of the g-function (with Gmin + 1 = 3). It is shown that the
errors are maximum when only one group is considered, with a MAPE (left y-axis)
of 1.2% and a maximum relative error (right y-axis) of -0.05. A negative sign on the
maximum relative error means that the g-function calculated by the proposed method
overestimates the value given by the reference method. As expected, the errors reach
0 when G = 6. According to these results, a precision increment K = 1 is sufficient
to estimate the g-function. For a precision increment K = 1 (G = 3), the MAPE is
equal to 0.017 % and the maximum relative error is equal to −3.75 × 10−4 and is
found at the last time step ln(t/ts) = 5. It is thus found that thermal interactions in
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a 5×4 borefield totaling 20 boreholes can be accurately represented by 3 equivalent
boreholes.

(a) g-function of a 5×4 borefield (b) Errors on the g-function

Figure 4.: g-function comparison for a 5×4 borefield

The heat extraction rates of the equivalent boreholes are compared to the heat
transfer rates of the individual boreholes calculated using the reference method to
verify that equivalent boreholes are representative of their respective group. Figure 5a
presents the time-variation of the average over-the-length heat extraction rate profile
and Figure 5b presents the vertical steady-state heat extraction rate profile along for
the same 5× 4 borefield evaluated at ln(t/ts) = 5. Colored markers correspond to the
heat transfer rates calculated by the reference method and their colors correspond to
the groups identified in Figure 3a. Solid black lines correspond to the heat transfer
rates of the equivalent boreholes calculated using the proposed method while the red
crosses correspond to the average of the heat transfer rates calculated by the reference
method for each group. It is shown that core boreholes in group I experiment lower heat
transfer rates than perimeter boreholes in group III. The good agreement between
the heat transfer rates of equivalent boreholes and the group averages shows that the
proposed hierarchical agglomerative clustering method is able to identify equivalent
boreholes which are representative of their group. The maximum relative error on
the average over-the-length heat extraction rates of equivalent boreholes is less than
−7 × 10−4 for all groups when compared to the group average evaluated using the
reference method. The maximum relative error on the steady-state heat extraction
rate profiles is −5× 10−4 for group III.

3.2. Regular borefield configurations

The accuracy and calculation time of the method is assessed for various regular bore-
field configurations with up to 144 boreholes. Figure 6 presents schematic representa-
tions of rectangular, L-, Box- and U-shaped borefields. For each of the configurations,
the method is applied to borefields in all possible combinations of 2×1 up to 12×12
boreholes on the horizontal and vertical directions, respectively. For these simulations,
the number of groups varies between 2 and 4 for K = 1 and between 2 and 5 for
K = 2. A number of groups G = 2 is only found in the case of the 2×1 configurations.
Figure 7 compares the MAPE for K = 1 and K = 2 for regular borefield configurations
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(a) Average borehole heat transfer rate (b) Steady-state borehole heat transfer rate profiles

Figure 5.: Heat extraction rates of a 5×4 borefield

from 2×1 up to 12×12 boreholes. MAPE values lower than 10−4 are shown on a linear
scale. Markers are colored according to the number of equivalent boreholes used for
the calculation of the g-function. The largest MAPE is equal to 0.612 % and found
for the 12×9 rectangular borefield totaling 108 boreholes for K = 1 (G = 4), and is
equal to 0.490% for a 12 × 7 rectangular borefield totaling 84 boreholes with K = 2
(G = 5). For the largest borefield, totaling 144 boreholes in a 12 × 12 rectangular
configuration, the MAPE is equal to 0.493 and 0.254 % with 3 (K = 1) and 4 groups
(K = 2), respectively. It is thus observed that the precision increment K has a positive
but not significant impact on the MAPE when increasing its value by one. A value
of K = 1 is found to provide sufficient accuracy across all regular configurations. The
borefield configuration was not found to have any significant impact on the MAPE .
It should be noted that the MAPE reaches zero when the number of groups is equal
to the number of boreholes in the borefield, or earlier if there are any symmetries in
the borefield layout.

The method presents substantial improvements in calculation time due to the de-
crease in the number of modeled boreholes for large borefields. Figure 8 presents
the calculation times of the reference method (using pygfunction) and the proposed
method. As can be seen, the calculation time starts increasing rapidly in the reference
method once the number of boreholes reaches approximately 100 boreholes. Compar-
atively, the calculation time in the proposed method increases very slowly with the
number of boreholes. As an example, for the 12×12 rectangular borefield with 144
boreholes, the calculation time is 7.4 sec and 0.9 sec for the reference method and the
proposed method, respectively.

3.3. Irregular borefield configurations

The proposed methodology is not limited to regular configurations such as those pre-
sented in the previous section but also to non-conventional configurations. The appli-
cability of the method to irregular configurations is tested in this section by evaluating
the g-functions of 100 randomly positioned boreholes in different borefield shapes. Two
series of cases are presented: (i) four configurations with boreholes randomly positioned
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B
B

(a) Rectangular-shape

B

B

(b) L-shape

B

B

(c) Box-shape

B

B

(d) U-shape

Figure 6.: Regular borefield configurations

(a) K = 1 (b) K = 2

Figure 7.: Mean absolute percentage error on the g-functions

in a rectangular domain with different form factors (ii) four configurations with the
same overall rectangular domain but with a geometric constraint in the center of it
(e.g. a building). The scalability of the method to very large borefields is then tested
in section 3.3.2.

3.3.1. Mean absolute percentage error

The accuracy of the proposed method is now evaluated by calculating g-functions of
borefields of randomly positioned boreholes. 100 boreholes are randomly positioned
in rectangular and hollow-rectangular domains as shown on figure 9. In all cases,
the overall domain area is 40,000 m2 and the minimum spacing between boreholes is
7.5 m. Configurations A, B, C and D have varying shape factors Ly/Lx of 1, 2, 4 and
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(a) Reference method (b) Proposed method

Figure 8.: Calculation time for the evaluation of g-functions of regular borefields

8, respectively. Configurations E, F, G and H have the same overall dimensions as
configuration A but boreholes cannot be placed in a rectangular area at the center of
the field (which could represent a building in practical cases). The physical dimensions
of the borefield domains are presented in table 2.

Lx

Ly

(a) Rectangular domains:
configurations A to D

Lx

Ly

L′
x

L′
y

(b) Hollow-rectangular domains:
configurations E to H

Figure 9.: Shapes of the irregular borefield domains

Figure 10 shows the MAPE and maximum relative error for 20 random borefields
in each of the 8 configurations. The number of groups identified from the clustering
method varies from G = 3 and G = 5 depending on the positions of the boreholes in the
randomly generated borefields. The proposed method maintains aMAPE below 0.72 %
in all cases, and below 0.62% when considering the MAPE under the third quartile.
The maximum relative error (in magnitude) is -0.0168 and found in configuration D
at ln(t/ts) = 5. Again, the negative sign means the proposed method overpredicts the
reference value. An overestimation of the g-function is consistent with results obtained
when decreasing the axial discretization of boreholes, i.e. using fewer segments per
borehole to evaluate the g-function (Cimmino & Bernier, 2014). As the number of
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Table 2.: Dimensions of the irregular borefield domains

Parameter Configuration
A B C D E F G H

Lx [m] 200 141 100 71 200 200 200 200
Ly [m] 200 238 400 566 200 200 200 200
L′
x [m] - - - - 160 128 102 82

L′
y [m] - - - - 160 128 102 82

segments decreases, the temperature at the borehole walls moves away from an equal
and uniform temperature and the g-function is overpredicted. In the same way, when
using fewer equivalent boreholes, the borehole wall temperatures of the boreholes (as
opposed to the equivalent boreholes) move away from an equal and uniform value and
the g-function should likewise be overpredicted.

(a) g-function MAPE on random field
configurations

(b) g-function maximum relative error on random field
configurations

Figure 10.: MAPE on the g-function and number of groups for the irregular
borefields

Sample results for a borefield of 100 boreholes on a hollow-rectangular domain in
configuration F are shown on Figure 11. The g-function, calculated using only 3 equiv-
alent boreholes and shown on Figure 11b, is evaluated with a MAPE = 0.334 % and
with a maximum relative error of -0.006 (at ln(t/ts) = 5). The numbers of boreholes
per group are 54, 33 and 13 (I , II and III ), respectively. Despite the large number
of boreholes and the irregular configuration, Figures 11c and 11d show that the heat
extractions rates of equivalent boreholes are in good agreement with the average heat
extraction rates calculated with the reference method. The maximum relative error on
the heat extraction rate profiles at ln(t/ts) = 5 is -0.002 for group I .

3.3.2. Scalability of the proposed method

Figure 12 shows the g-function computation based on the proposed and reference
methods for different random borefields with numbers of boreholes in increments of
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(a) Hierarchical clustering (b) g-function

(c) Average borehole heat extraction rates (d) Steady-state borehole heat extraction rate
profiles

Figure 11.: Sample results for configuration F
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powers of 2, starting from 8 up to 1024 in a limited region with dimensions Lx ×
Ly = 500 × 500 m2. Table 3 presents the MAPE , the maximum relative error and
the calculation time for each of the cases. The results show good agreement with
the reference method. In general, the maximum relative error is found at ln(t/ts) =
5. The calculation time was significantly reduced for large borefields. For instance,
the calculation time of the reference method for 1024 boreholes is 5125 sec. For the
calculation of the g-function of the field of 1024 boreholes, pygfunction had to be
configured to use single precision (float32) instead of double precision (float64) so that
the available memory was sufficient to do the computation.

Figure 12.: g-function for different random borefield configurations

Table 3.: Scalability of the proposed method

Nb 8 16 32 64 128 256 512 1024

MAPE (%) 0.002 0.007 0.092 0.115 0.224 0.405 0.540 0.690
Maximum relative error 6.95× 10−5 2.69× 10−4 -0.003 -0.003 -0.005 -0.009 -0.011 -0.015
Calculation time [s] 0.79 0.84 0.86 0.87 0.93 1.24 1.86 3.65

4. Conclusions

A new method is proposed to evaluate thermal interactions between geothermal bore-
holes. The finite line source (FLS) solution is extended to consider thermal interactions
between groups of boreholes rather than between individual boreholes. It is shown
that a small number of representative groups of boreholes, each modeled using a sin-
gle equivalent borehole, can accurately represent the heat transfer process in a bore
field. Hierarchical agglomerative clustering allows the identification of representative
groups using a simplified heat transfer model, based on the steady-state finite line
source (FLS) solution. A cut-off line is drawn on the borefield dendrogram to estimate
the minimum number of groups and incremented by a precision increment (K = 1).
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The accuracy of the proposed method is assessed by calculating g-functions of
geothermal borefields and comparing the results to the reference method (Cimmino,
2018b) implemented in pygfunction (Cimmino, 2018c). A comparison of regular bore-
field configurations with up to 144 boreholes shows that the proposed method achieves
a mean absolute percentage error (MAPE ) of less than 0.612 % using 4 or fewer equiv-
alent boreholes. A marginal increase of the precision increment (i.e. from K = 1 to
K = 2) is shown not to have a significant impact on the clustering method and the
accuracy of the heat transfer model, however the error approaches 0 as the number of
equivalent boreholes increases. The proposed method also presents important savings
in calculation time : for a rectangular borefield of 12 × 12 boreholes, the calculation
time is decreased from 7.4 sec to 0.9 sec.

The proposed method maintains accuracy even when considering irregular borefield
configurations. Comparisons of g-functions of borefields of 100 randomly positioned
boreholes shows a third-quartile MAPE below 0.62% and a third-quartile maximum
relative error below -0.015 in the worst configuration studied (configuration D). For a
borefield of 1024 randomly positioned boreholes, the new method presents a MAPE

of 0.69 %, a maximum relative error of -0.015 and a calculation time of 3.65 sec. In
comparison, the reference method has a calculation time of 5125 sec. The method
thereby demonstrates efficient scaling properties and makes it possible to model ther-
mal interactions in very large borefields comprising hundreds of boreholes, which was
previously impractical due to the large computational requirements.

Using suitable analytical solutions, the new method could also be extended to con-
sider more complex borefield geometries (e.g. inclined boreholes (Lazzarotto, 2016)),
groundwater flow (Diao et al., 2004; Molina-Giraldo et al., 2011), or layered ground
physical properties (Abdelaziz et al., 2014). Fields of mixed series and parallel con-
nections between boreholes (Cimmino, 2019) could be considered but require a new
distance metric to substitute Equation (16) and extend the equivalent borehole concept
to an equivalent loop (or branch) concept. The presented method is only applicable to
parrallel-connected boreholes but is not only limited to the calculation of g-functions
using a uniform borehole wall temperature condition. The same clustering approach
can be applied to the calculation of g-functions using an equal inlet fluid temperature
boundary condition (Cimmino, 2015). Most importantly, it has been shown that ther-
mal interactions between geothermal boreholes can be represented using a small num-
ber of equivalent boreholes. This approach can thereby be applied to network-based
methods (Cimmino, 2018a; Lamarche, 2017a; Lazzarotto, 2014) for parallel-connected
boreholes and coupled to accurate short-term borehole models (Prieto & Cimmino,
2021; Rivero & Hermanns, 2021) to obtain detailed axially discretized borefield mod-
els that are valid at all time scales.
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