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An approximation of the finite line source solution to model thermal 
interactions between geothermal boreholes 
Massimo Cimmino 
Department of Mechanical Engineering, Polytechnique Montréal, C.P. 6079, succ. Centre-ville, Montreal, Quebec H3C 3A7, Canada   
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A B S T R A C T   

This paper presents an approximation of the finite line source (FLS) solution for the simulation of geothermal 
systems. The FLS solution requires the evaluation of an integral involving a product of the error function which 
cannot be solved analytically. An approximate solution of the FLS solution can be obtained using an approxi-
mation of the Gaussian Q-function in the form of a weighted sum of exponentials. The new approximation of the 
FLS solution is shown to be adequately accurate for simulations. Substantial gains in computational speed are 
obtained, in one case decreasing the computational time for 1000 evaluations of the FLS solution from 3.52 s 
down to 20 milliseconds.   

1. Introduction 

The finite line source (FLS) is used to predict ground temperature 
variations in geothermal bore fields comprising vertical geothermal 
boreholes. It’s main usage is to evaluate thermal response factors, also 
called g-functions [1], that can later be used to design [2], simulate [3], 
and control [4] geothermal systems. It can also directly be superimposed 
in time and space to construct detailed models of geothermal systems 
[5–7]. 

The FLS solution was first proposed by Eskilson [1] to approximate 
the g-function of a single borehole. Zeng et al. [8] later used spatial 
superposition to obtain g-functions of bore fields comprising multiple 
boreholes. Their formulation required the evaluation of a double inte-
gral, which was later simplified to a single integral by Lamarche and 
Beauchamp [9] and by Claesson and Javed [10]. In both cases, the 
remaining integral has no analytical solution. Axial discretization along 
the boreholes is required to properly represent the evolution of tem-
peratures and heat extraction rates in geothermal bore fields. Cimmino 
and Bernier [11] extended the finite line source solution to cover 
borehole segments of unequal lengths and at different depths below the 
surface. An integral also remains in their formulation. 

Axial discretization of geothermal boreholes drastically increases the 
number of evaluations of the FLS solution required to model a 
geothermal bore field, which increases with the square of the number of 
segments (or boreholes). Various authors have introduced schemes to 
accelerate calculation times. Lazzarotto [12] developed a specialized 
quadrature scheme for the solution of the integral for discretized 

inclined boreholes. Lamarche [13] used a piecewise-linear profile for 
heat extraction along the length of boreholes to reduce the require 
number of segments along the axial discretization of boreholes. Cim-
mino [14] introduced the concept of similarities to reduce the number of 
required evaluations of the FLS solution for discretized boreholes. 
Dusseault et al. [15] used Chebyshev polynomials to approximate the 
integrand of the FLS solution in the case of non-discretized boreholes. 
Nguyen and Pasquier [16] interpolate between pre-calculated values of 
the FLS solution at different distances for non-discretized boreholes of 
equal lengths. In all aforementioned studies, the calculation of the FLS 
solution involves intricate numerical procedures. 

The objective of this paper is to develop an approximation of the FLS 
solution. The approximation makes use of a recent approximation of the 
Gaussian Q-function (a function related to the error function) by Tanash 
and Riihonen [17]. This approximation is used in the field of commu-
nications where integrals of the Q-function need to be evaluated. The 
present paper shows that their approximation can also be used in the 
thermal simulation of geothermal systems, and perhaps other heat 
transfer applications. 

2. Model 

2.1. Finite line source solution 

As shown on Fig. 1, the FLS solution gives the average temperature 
variation ΔTij(t) along a vertical line i of length Hi buried at a depth Di 
from an isothermal surface in a semi-infinite medium of thermal 
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conductivity ks and thermal diffusivity αs, due to a uniform heat 
extraction rate Qj′ along a vertical line j of length Hj buried at a depth Dj 
and at a distance rij from line i. The FLS solution is given by [10]: 

∆Tij(t) =
Q′
j

2πks
∙hij(t), (1)  

hij(t) =
1

2Hi

∫∞

1/
̅̅̅̅̅̅
4αs t
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s2
exp
(
− r2
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)
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(3)  

erfint(x) =
∫ x

0

erf (x’)dx’ = xerf (x) − 1̅̅̅
π

√
(
1 − exp

(
− x2

) )
, (4)  

where hij(t) is the finite line source solution, erf(x) is the error function 
and erfint(x) is the integral of the error function. 

Spatial and temporal superposition can be applied to obtain the total 
temperature variation due to variable heat extraction at multiple lines j: 

∆Ti(tk) =
∑

j

∑k

p=1

Q′
j

(
tp
)

2πks
hij
(
tk− tp−1

) (5)  

2.2. Approximation of the error function 

The integral in eq. (2) cannot be solved analytically due to the 
product of the form exp(−ux2) erf (vx)/x. However, an approximation of 
the FLS solution can be obtained by substituting the error function by a 
suitable approximation. Such an approximation was proposed by 
Tanash and Riihonen [17] for the Gaussian Q-function which is closely 
related to the error function. The Gaussian Q-function is defined by: 

Q(x) = 1̅̅̅̅̅
2π

√
∫

∞

x

exp

(
− 1

2
x2

)
dx. (6) 

Tanash and Riihonen [17] approximated the Gaussian Q-function by 
a weighted sum of exponentials globally minimizing the absolute or 
relative error: 

Q(x) ≅
∑N

n=1
aQ,nexp

(
− bQ,nx2

)
for x ≥ 0, (7)  

where aQ,n and bQ,n are real positive coefficients. In this paper, the sets of 
coefficients that minimize the absolute error (up to N = 25) are used to 
approximate the error function. The reader is referred to the original 
paper of Tanash and Riihonen [17] and their supplementary dataset for 
the values of coefficients. 

The error function is defined by: 

erf (x) = 2̅̅̅
π

√
∫ x

0

exp
(
− x2

)
dx = 1− 2⋅Q

( ̅̅̅
2

√
⋅x
)

(8) 

It is thus possible to approximate the error function using the co-
efficients of the Gaussian Q-function: 

erf (x) ≅
∑N

n=0
anexp

(
− bnx2

)
for x ≥ 0, (9)  

a0 = 1, an = − 2aQ,n, b0 = 0, bn = 2bQ,n. (10)  

2.3. Approximation of the finite line source solution 

The integral of the finite line source solution can be solved analyti-
cally using the approximation of the error function. A compact expres-
sion is introduced for the function Fij(s) in eq. (3): 

Fij(s) =
∑8

m=1

cmerfint(dms), (11)  
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,

(13) 
Substituting the integral of the error function by its definition in eq. 

(4): 

Fij(s) =
∑8

m=1

cm

[
dmserf (dms)− 1̅̅̅

π
√

(
1− exp

(
− d2

ms2
) ) ]

, (14)  

and then substituting the error function by its approximation in eq. (9): 

F̃ij(s) =
∑N
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[
an
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]
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(
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(15) 
In eq. (15), the absolute value of the coefficient dm is introduced since 

the approximation is only valid for positive arguments of the error 
function, Fij is an even function, and s is positive. 

An approximation of the FLS solution ̃hij(t) is then given by a sum of 
three integrals: 

h̃ij(t)=
1

2Hi
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1
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s2
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The three integrals, G1,mn(t), G2(t) and G3,m(t) have analytical 
solutions: 

G1,mn(t) =
1

2
E1

(
r2

ij + bnd2

m

4αst

)
, (20)  

Fig. 1. Finite line source.  
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Note that the function G2(t) does not need to be evaluated since the 
sum ∑8

m=1cm in eq. (16) is equal to zero. 

3. Results 

The approximation of the FLS solution is tested on three cases that 
arise in the simulation of geothermal bore fields. The geometrical pa-
rameters of the test cases are presented in Table 1. The thermal diffu-
sivity is αs = 10−6 m2/s. Case A corresponds to the temperature variation 
at the wall of a borehole of length H = 150 m and radius rb = 0.075 m 
buried at a depth D = 4 m from the ground surface due to heat extracted 
from the same borehole (in this case, rij = rb). Case B corresponds to the 
temperature variation at the wall of the bottom 10 m of the borehole due 
to heat extracted from the first 10 m of the borehole. Case C corresponds 
to the temperature variation at the top 10 m of a borehole due to heat 
extracted from the bottom 10 m of another borehole at a radial distance 
rij = 95.46 m (corresponding to the furthest positioned boreholes in a 
square grid of 10 × 10 boreholes with a spacing of 7.5 m between 
adjacent boreholes). 

Eqs. (2) and (16) are implemented into Python, using SciPy [18] for 
the evaluation of the integral in Eq. (2). The FLS solution is evaluated at 
1000 exponentially spaced time steps, ranging from t1 = 1 h to t1000 =
10,000 years. Figs. 2-4 present the FLS solution (as a function of the 
dimensionless time ln(t/tS), with ts = Hj2/9αs) for the three cases using 
the approximation with sets of coefficients corresponding to N = 2 and 
N = 10. It is shown that the approximation is accurate for sufficiently 
large N. As observed on Figs. 3 and 4 (and barely visible on Fig. 2), the 

approximation of the FLS presents an oscillatory behavior for low values 
of N. This is in line with the results of Tanash and Riihonen [17] that 
showed that the error on their approximation of the Gaussian Q-function 
presents an oscillatory behavior. 

Figs. 5-7 present the absolute error for the three cases. It is shown 
that the absolute error decreases with increasing values of N. The 
maximum errors are found at larger values of time, where the values of 
the FLS solution are also maximal. Fig. 8 shows the variation of the 
maximum absolute error for all three cases for all values of N. For 
reference, the maximum absolute errors using N = 10 are 1.495 × 10−5, 
2.842 × 10−5 and 2.842 × 10−5 for cases A, B and C, respectively. The 
maximum absolute errors using N = 25 are 3.544 × 10−8, 1.609 × 10−7 

and 1.609 × 10−7. In all cases, the calculation times for the evaluation of 
the approximation of the FLS at all 1000 time steps are 20 ms and 49 ms 
for N = 10 and N = 25, respectively. Meanwhile, the calculation times 
for the evaluation of Eq. (2) are 4.02 s, 3.66 s and 3.52 s, respectively. 

Table 1 
Geometry of test cases.  

Case Hi [m] Di [m] Hj [m] Dj [m] rij [m] 
A 150 4 150 4 0.075 
B 10 144 10 4 0.075 
C 10 4 10 144 95.46  

Fig. 2. Thermal response factor (Case A).  

Fig. 3. Thermal response factor (Case B).  

Fig. 4. Thermal response factor (Case C).  
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4. Conclusion 

An approximation of the finite line source (FLS) solution is pre-
sented, making use of the approximation of the Gaussian Q-function by 
Tanash and Riihonen [17] to simplify the integral and allow for an 
analytical solution. The approximation of the FLS is fast and accurate for 
a sufficiently large number of terms N. The approximation of the FLS 
solution could readily replace the integral formulation of the FLS for the 
simulation of geothermal systems and lead to substantial gains in 
computational speed. In the future, the approximation (or other similar 
approximations) of the error function should be considered in other FLS- 
type solutions arising in the simulation of geothermal boreholes, such as 
the moving finite line source and the inclined finite line source. 
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