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RÉSUMÉ

Face à la demande croissante d’énergie et aux préoccupations liées au réchauffement clima-
tique, les réseaux électriques, en particulier les réseaux intelligents, s’orientent depuis peu
vers l’utilisation de micro-réseaux (MG) intégrant des ressources énergétiques renouvelables
(RESs). Le réseau de micro-réseaux (N-MGs) est un concept nouvellement développé qui
vise à contribuer au programme de réponse à la demande et à réduire les coûts d’exploitation
des MGs tout en répondant à la demande énergétique. La gestion de l’énergie en présence
du caractère intermittent des sources d’énergie renouvelable des sources d’énergie renouve-
lables, la préservation de la confidentialité des MGs données et la fiabilité du réseau sont
quelques-uns des défis auxquels les N-MGs sont confrontés.

Compte tenu des défis cités ci-dessus, cette thèse aborde ces aspects dans un contexte hiérar-
chique et pair-à- pair, tout en l’appliquant à différents secteurs.. En raison de leur économies
d’énergies et de leur contribution aux programmes de réponse à la demande, ce travail se
concentre principalement sur les réseaux de bâtiment intelligents et des serres agricoles inté-
grés avec des des microréseaux. Cependant, les méthodes proposées peuvent être généralisées
à tous les types des MGs.

Dans la première contribution (Chapitre 4), cette thèse aborde le problème de la gestion de
l’énergie dans les bâtiments résidentiels intégrant des ressources énergétiques distribuées et
des véhicules électriques. Ce chapitre modélise d’abord un bâtiment résidentiel à logements
multiples combinant des panneaux photovoltaïques installés sur le toit et des véhicules élec-
triques. Ensuite, il reformule le problème de gestion de l’énergie en un problème d’optimisation
du contrôle prédictif, en tenant compte des contraintes du bâtiment et des véhicules élec-
triques et du confort des occupants.

La seconde contribution (Chapitre 5) aborde le comportement stochastique des sources
d’énergie renouvelables dans les réseaux à micro-réseaux selon une architecture pair-en-
pair et hiérarchique. Ce chapitre propose d’abord une approche distribuée pour résoudre
l’optimisation stochastique avec une distribution connue. Il formule ensuite le problème de
gestion de l’énergie du réseau sous la forme d’une optimisation stochastique en deux étapes.
Dans la première étape, l’objectif est de trouver les valeurs optimales des températures in-
térieures. Dans la deuxième étape, le but est de minimiser la puissance achetée sur le réseau
principal en présence de comportements stochastiques des ressources énergétiques renouve-
lables.

La troisième contribution (Chapitre 6), on considère le problème du contrôle énergétique
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distribué dans un réseau hiérarchique de serres agricoles. Chaque serre possède plusieurs sous-
systèmes qui contrôlent les conditions climatiques intérieures pour la croissance des plantes,
ce qui rend le contrôle des serres plus complexe que celui des bâtiments. Pour contribuer
aux programmes effacement de la demande, la coordination des serres est essentielle. Ce
chapitre présente une méthode distribuée dans laquelle l’agrégateur, entité représentant ce
réseau sur le marché, coordonne les serres agricoles et gère des ressources partagées. Dans
cette méthode, différentes stratégies d’économie d’énergie linéaires et non linéaires telles que
l’écrêtage et le déplacement de la charge sont utilisées pour améliorer les performances du
réseau.

Enfin, les simulations réalisées dans chapitres valident, les performances des approches pro-
posées, qui, en raison de leur vitesse de convergence et de leurs réponses rapides, peuvent
être utilisées dans des applications pratiques en temps réel.
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ABSTRACT

Facing the growing demand for energy and global warming concerns, power system grids,
especially smart grids, are recently moving toward using microgrids (MGs) integrated with
renewable energy resources (RESs). Network of microgrids (N-MGs) is a newly developed
concept that aims to contribute to the demand response program and reduce MGs’ operat-
ing costs while meeting their loads’ needs. Managing energy in the presence of stochastic
behaviors of RESs, preserving the privacy of MGs, and having a reliable network are some
of the challenges these N-MGs face.

Given the above challenges, this dissertation addresses them in various hierarchical and peer-
to-peer network topologies with MGs with different applications. Due to their potential to
save energy and contribute to the demand response programs, this work mainly focuses on
networks of buildings and greenhouses integrated with RESs. However, the proposed methods
and frameworks can be generalized to all types of MGs.

In the first contribution (Chapter 4), this dissertation discusses the energy management
problem in residential buildings integrated with RES and electric vehicles (EVs). This chapter
first models a multi-unit residential apartment combined with roof-installed photovoltaic
panels and EVs. Afterward, it reformulates the building energy management problem to a
model predictive control optimization problem, considering the building and electric vehicles
constraints and occupants’ comforts.

The second contribution (Chapter 5) tackles the RES stochastic behaviors in peer-to-peer and
hierarchical network topologies. This chapter first proposes a distributed method for solving
two-stage stochastic optimization with known distribution and proves its convergence. It then
formulates the network energy management problem as a two-stage stochastic optimization
and decomposes it to the level of each MG by using the proposed method. In this framework,
there are several coordinators for the coordination of MGs depending on the network topology.

The third contribution (Chapter 6) addresses the distributed energy control in a hierarchical
network of greenhouses. Each greenhouse has several subsystems that control the indoor
climatic conditions for plant growth, making controlling greenhouses more complex than the
buildings. To contribute to the demand response programs, the coordination of greenhouses
is essential. This chapter presents a distributed method in which the aggregator, an entity
representing this network in the market, coordinates the greenhouses and manages the shared
resources. In this method, different linear and nonlinear energy-saving strategies such as load
shaving and shifting are used to enhance the network’s performance.
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Finally, the simulations in each chapter validate, in theory, the performance of proposed
approaches, which due to their fast convergence rate and responses, can be used in real-time
applications.
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CHAPTER 1 INTRODUCTION

1.1 Context: Microgrids and Network of Microgrids

During past decades, the demand for electricity has increased significantly to meet the grow-
ing usage of electricity in commercial and residential buildings, electric vehicles (EVs), in-
ternet of things (IoT). The traditional electrical power plants, mostly fossil or nuclear fuel-
powered, are no longer considered a sustainable solution due to their disadvantages, such
as CO2 emissions, air pollution, hazardous waste, and even operational cost. For these rea-
sons, moving towards renewable energy-based resources such as solar and wind plants with
lower environmental impacts, cleaner energy, and more economical operating costs is un-
avoidable [1–3]. In response to these benefits, the number of renewable power plants has
considerably increased in the last two decades [4].

According to [5], a microgrid (MG) is a group of sources and loads connected to each other
and the main grid. It can operate in grid-connected or island mode. Providing backup for the
grid and reducing costs are some advantages of MGs. Due to their clean energy and environ-
mentally friendly aspects, MGs integrated with renewable energy-based distributed resources
are of interest. Each renewable-based MG is a set of loads, RESs, and (not necessarily) an
electrical storage system (ESS), such as electric batteries [6] or EVs.

Due to the intermittent behaviour of RES, such as insufficient solar radiation for PV power
generation, the grid-connected mode is more favourable for MG to maintain the reliability
and increase the resilience. At each time step, MG can exchange power with the grid or use
its local energy storage system to supply the power to the load.

MG’s primary objective is supplying the local loads. However, depending on its application
and configuration, MG can support the grid by providing energy and ancillary services, such
as frequency and voltage control support, improvement of power quality, and congestion
management [7, 8]. Also, MGs can make the markets more competitive by offering energy
and power at a reasonable price. On the other hand, MGs can protect their appliances and
users by disconnecting from the grid and working in island mode during a power outage in
the main grid [9].

Due to the uncertainties and unpredictability of renewable sources, the energy produced
at each time step is uncertain and difficult to control. In addition, most renewable-based
energy is available only in specific periods. For example, a photovoltaic(PV)-based MG can
not generate any power at nighttime. Although using storage systems such as batteries can
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help the MG supply the load during energy shortage periods. However, relying only on ESS is
not a viable solution due to its high investment costs and physical limitations. A reasonable
solution to this problem is a hybrid grid-connected MG with ESS, in which the stochastic
behaviours of MG’s RES can be handled.

In the Network of Microgrids (N-MGs), microgrids are physically connected following a spe-
cific topology and structure. This network can be connected or disconnected from the main
grid. In this context, each MG can buy (sell) energy from (to) the main grid or its neighbours,
the MGs it is connected to. According to [10], N-MGs are of interest to the main grid due
to the robustness improvement they can bring for the main grid. The grid robustness can be
mainly damaged by renewable generation uncertainties and loads’ stochastic behaviours. To
withstand these disturbances and uncertainties, N-MGs can enhance the transient stability
performance and enlarge the stability margin by using advanced control and coordination
strategies [11–13]. N-MGs can also help to improve grid efficiency in different ways, such as
providing distribution system state estimation [14], managing optimal power flow and dis-
tributed energy resources (DER) [15–17], and volt and var optimization [18, 19]. Therefore,
N-MGs are very serviceable during peak-demand periods in on-peak times, when the demand
for electrical energy is higher.

On the other hand, N-MGs can provide a secure, reliable and safe network for MGs they
participate in, especially during power outages [11, 17,20]. Also, a network of MGs provides
the most efficient way of DERs utilization, and it can reduce the overall costs of MGs by
integrating considerable capacity of DERs power generation [21]. For these reasons, N-MGs
are an attractive option for MGs.

1.2 Challenges of N-MGs

Although N-MGs can serve various benefits to both MGs and the main grid, they come with
many operational challenges, such as [21,22]:

1. Individual MGs privacy: three different ownership models are possible for a N-MGs:

• Utility-owned N-MGs, owned and controlled by a utility company,

• Privately-owned N-MGs, where different owners control each MG, and

• Utility–private mixed-owned N-MGs.

In the private- and mixed-owned N-MGs, maintaining the privacy of MGs is challenging
since owners wish to share only the power exchange details.
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2. Control and stability issues: high penetration of DERs with intermittent behaviours can
result in stability issues for N-MGs. In addition, the management and control of energy
exchange in the presence of stochastic behaviours of DERs needs more investigation.

3. Protection coordination: frequent changes of network topology due to different operat-
ing modes and optimal flow paths can cause protection coordination problems because
fault currents in different topologies are different in size and direction.

4. Efficient communication network: sharing information among MGs and the main grid
needs a secure yet fast communication network. Owing to the cyber-attacks, providing
a reliable communication network is another challenge in N-MGs.

Three different structures for N-MGs are introduced in the literature to answer these chal-
lenges: Centralized, hierarchical, and peer-to-peer (P2P). In the centralized structure, all
information of MGs, such as their setpoints, loads and RES generation profiles, should be
shared with a central control entity. Then this central controller makes decisions on how
energy and power should be distributed in the network [23]. As it sounds, this structure can
only work for utility-owned N-MGs or the N-MGs in which MGs’ owners are willing to share
all of their information. For this reason, hierarchical and P2P have been received attention
during the past few years.

Before defining the other two structures, we need to define a new entity known as aggregator.
In the context of N-MGs, an aggregator can represent a group of MGs which behave as one
entity in the market operations [24]. Aggregators are new entities in electric markets, which
can improve the flexibility of power systems by moderating their network power consumption
and increasing the demand response market players. In this context, the aggregators can
participate in energy markets on behalf of MGs and sell their surplus energy to the main
grid or other entities. As a result, by providing flexibility to both demand and supply sides,
an aggregator helps better integrate its MGs’ renewable energy sources.

In a hierarchical structure, all MGs of the network are connected to an N-MGs coordinator
(such as an aggregator). This latter plays an interface role with the main grid or distribution
network operator. The aggregator’s tasks are coordinating the MGs, collecting their power,
selling it in the market, and dividing its financial benefits fairly [25, 26]. In addition, in
a network with shared resources, it is responsible for how MGs use them. This structure
can handle the DERs uncertainties and work in different operation modes of the network.
Depending on the optimization method (which we will explain shortly), it also can provide
an efficient communication network. For these reasons, this structure is suitable for private-
and mixed-owned N-MGs [27,28].
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Though the hierarchical structure can improve the performance of N-MGs in different terms,
it suffers from the problem of aggregator failures. In other words, if the aggregator fails due
to any reason, such as cyber-attacks, the whole network fails. The P2P structures have been
developed to meet this challenge, in which each MG can directly demand its required energy
from other resources without the need to share information with any third party [28]. Like
hierarchical ones, P2P structures are suitable for both private- and mixed-owned networks
and yet do not suffer from aggregator failure problems; however, finding an optimal solution
for these structures is more challenging due to their complex structures [28,29].

As discussed earlier, due to the ownership, sharing information, in either P2P or hierarchical,
should not risk the safety of MGs. In other words, to solve the optimization problem of
the network, privacy of MGs has to be considered. Also, the network should be reliable,
meaning in the case of single/multiple entity failure, the network should continue to operate.
The computational load is another important factor in N-MGs concept. Solving a time-
consuming optimization problem when the network has to work in a real-time environment
is not practical. Privacy, reliability and computational load are the factors that can be used
to determine the efficiency of a network [30].

In the literature, the existing approaches to solve the optimization problem of the network
are categorized into three main groups: centralized, decentralized and distributed methods.
In centralized methods, MGs information, including their power consumption, loads models
and RES productions, must be shared with a third party, a central controller. The central
controller then solves a centralized optimization problem to find the optimal operating point
for the whole network and sends back the control signals to MGs [23, 31–33]. On the other
hand, decentralized methods focus on individual MGs, where each MG solves its optimization
problem without sharing information with other MGs or any third party such as aggregator
[34–37].

Distributed approaches are a trade-off between centralized and decentralized approaches.
In these methods, MGs share a limited version of their information and, in exchange, a
global optimal solution and stability of the network can be guaranteed [38–48]. Compared
to the centralized methods, distributed ones offer more reliability, better privacy and less
computational load. On the other hand, the main grid does not desire selfish behaviours and
coordinations similar to decentralized approaches. Therefore, distributed methods are more
attractive to the main grid. Despite that, finding the optimal solution in both decentralized
and distributed approaches, especially with RES uncertainties, is the main challenge these
methods face.

Fig. 1.1 presents a graphical comparison between different optimization approaches from the
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Figure 1.1 Different control methodologies used in N-MGs.

perspective of privacy, reliability and computational load. As seen in this figure, distributed
techniques have an acceptable level of reliability and privacy, and since the optimization
problem can be solved in parallel at the level of MGs, their computational power is reasonably
low. However, these methods are mathematically expensive and complex.

We should mention that, unlike the centralized and decentralized approaches, the distributed
methods have the flexibility to work, manage and control power and energy in both structures.
For their advantages, these approaches are the main focus of this work.

1.3 Objectives

Buildings integrated RES (especially with roof-installed PV panels) are a new type of MGs
developed recently. The building-integrated microgrid (BIMG) refers to a building that
uses micro-sources, namely, ESS and RES such as PV panels and batteries, to supply the
energy it needs for its load [49]. Due to their potential in influencing the electrical network,
these buildings, along with EVs, are good candidates for demand response (DR) programs.
Modelling the building’s loads, occupants’ stochastic behaviours, intermittent behaviours of
RES, and managing resources to maximize the building’s benefits are some of the challenges
that need to be addressed adequately.

In a building, subsystems responsible for comfort parameters consume most of the building’s
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energy consumption. In residential buildings, a significant part of this energy goes toward
controlling occupants’ thermal comfort. Hence, from the BIMG perspective, finding an effi-
cient way to model the thermal dynamics of the building is the first challenge.. For instance,
considering the occupants’ comforts, the nonlinear thermal cross-effects of building’s zones,
the limitations of heating, ventilation, and air conditioning (HVAC) systems, the integration
of local batteries and electric vehicles into the energy management system are challenging
tasks that should be adequately addressed.

On the other hand, the second problem is the efficient coordination of MGs hierarchically
distributed while limiting total power consumption for the DR program. The control of
various and heterogeneous demand response actions while considering occupants’ comforts
is challenging. Moreover, the control of the shared resources, such as shared batteries in a
network of residential buildings or water reservoirs in a network of greenhouses, should be
appropriately addressed.

In all structures, the RES stochastic behaviour is another obstacle in finding the optimal
solution for the N-MGs. This stochastic behaviour makes it difficult to find the optimal
solution, affecting the network’s performance. Handling these uncertainties in the distributed
and decentralized methods is more complicated than the centralized ones, and thus they need
to be studied more.

Given the above problems, the main goal of this dissertation is to solve the problem of energy
control and management in a network of buildings integrated with DERs, considering the
dynamics of buildings’ subsystems and stochastic behaviours of RES for the DR program.
To reach this goal, we divide the problem into three specific objectives corresponding to three
main contributions:

1. Propose an energy management system for a residential BIMG, where the building
participates in the DR program by controlling its thermal dynamic, battery and EVs
without violating the occupants’ comfort.

2. Construct a stochastic distributed framework to limit peak loads on N-MGs by consid-
ering intermittent RES behaviour, in which buildings participate in the DR program
using their thermal dynamic and battery.

3. Develop a hierarchical distributed control method for the network of greenhouses with
various subsystems for participating in the DR program with different linear and non-
linear strategies such as load shaving and load shifting.
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1.4 Plan of the dissertation

This thesis is organized in the following order. Chapter 2 presents the main definitions and
related literature. Chapter 3 presents the synthesis of this work as a whole. In Chapter 4, res-
idential buildings integrated with RES and EVs are modelled, their constraints and objective
are discussed, and a model predictive control (MPC) approach for controlling the thermal
dynamics of the building is proposed. Through simulation, it is shown that the proposed
method can reduce the power consumption of buildings without violating the comforts and
related technical constraints. In Chapter 5, a stochastic distributed MPC-based framework is
presented for both hierarchical and P2P structures, while it considers stochastic behaviours
of RES. In this framework, the optimization problem of the network is formulated as a two-
stage stochastic optimization problem (SOP), where energies exchanged are second-stage
variables. An ADMM-based stochastic decomposition method is then introduced, which can
break down the general two-stage SOP to sub-SOPs at the level of each MG. The conver-
gence of the proposed method is proved, and through the simulation, its fast convergence
rate is shown. In Chapter 6, a distributed MPC-based control approach is presented for a
hierarchical network of greenhouses integrated with PV panels. In this approach, the aggre-
gator is responsible for peak limiting and controlling the shared resources (water reservoir).
Therefore, MGs negotiate with the aggregator for the energy exchanged with the main grid
and the use of shared resources (water). The proposed approach considers different energy
management strategies such as load shaving and shifting, resulting in a nonlinear objective
function. Using ADMM, the network can solve this optimization problem distributively in a
reasonable time at the level of each greenhouse. As an extension to the previous chapters,
Appendix A shows with a simulation how the proposed framework in Chapter 5 can work in
a P2P network of greenhouses. Finally, Chapter 7 provides a general discussion, and Chapter
8 discusses the limitations and future works.
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CHAPTER 2 LITERATURE REVIEW

This chapter presents an overview of the most relevant literature. It will cover the following
topics: 1) Smart buildings and demand response programs, 2) energy management systems
(EMS), 3) smart agriculture and greenhouses, and 4) optimization methods used in N-MGs.

2.1 Buildings

Around the world, approximately 40% of global energy consumption goes towards buildings
where around 75% of this energy is used to control buildings’ comfort parameters such as
indoor temperature, or ventilation [50]. For this reason, building operators are starting to
consider the impacts of their consumption on their carbon footprints and the electrical grid.
Therefore, managing the energy consumption of the building while considering the comforts
of occupants is a high priority for operators. To this end, buildings are recently evolving
toward a new concept called smart buildings.

2.1.1 Smart Buildings

Smart buildings are the ones that can efficiently and economically optimize, manage and
control their local resources by using various technologies such as Internet of Things (IoT),
smart sensors, AI (Artificial Intelligence) and energy management system (EMS).

Some real case studies demonstrate that using appropriate control strategies, especially the
predictive ones (e.g., MPC), can remarkably reduce smart buildings’ power consumption.
Sturzenegger et al. in [51] show that applying a model predictive control (MPC) algorithm
to an office building located in Swiss can save up to 20% energy while meeting indoor comfort
conditions. In [52], authors model a building in Hasselt, Belgium, using identification meth-
ods. The application of MPC leads to an energy consumption economy of up to 17%. From
recent works, Carli et al. propose an MPC-IoT-based architecture for controlling heating,
ventilation, and air conditioning (HVAC) systems in smart buildings [53]. Their proposed
architecture demonstrates the reduction of building energy consumption by 18%, while in-
creasing occupants’ comforts by 20%. Authors in [54] propose a reinforcement learning (RL)
approach to control building HVAC systems. Their approach could save energy up to 16.7%
while maintaining occupants’ comfort.

Although some other works in the literature investigate the performance of different control
strategies in buildings [55–58], all of these studies assume that buildings are consumers,
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and reducing power consumption without violating occupants’ comforts is, therefore, their
primary goal. By combining with distributed energy sources, the building’s role can be
changed from energy consumer to producer, increasing its effectiveness in the main network.

2.1.2 Integration of Distributed Energy Resources in Buildings

Considering smart pricing mechanisms, smart buildings can shift their role from passive con-
sumers to active prosumers. Thanks to recent rapid advances in RES and ESS technologies,
buildings can now integrate with distributed energy resources (DER) and generate energy in-
stead of only consuming energy. Buildings can integrate various distributed energy resources
such as PV panels, batteries, and EVs. In the following, we discuss each of them.

PV Energy Resources

The integration of PV panels to buildings can change their paradigm. Although PV panels
are traditionally installed on the buildings’ rooftops, with recent developments, they can
be installed on the surface of building facades [59]. Hybrid photovoltaic-thermal panels
are also an efficient solution for the use of both solar thermal energy and electricity ( [60–
64]), although in this work, we only focus on photovoltaic panels and their integration into
buildings.

Some feasibility studies in the literature demonstrate the advantages of integrating PV panels
to reduce the operation cost of buildings [65–67]. Authors in [68] show that installing PV
panels for two different offices could provide annual billing savings up to 58%. Syafii et al.
in [69] design a rooftop PV system for an office building. Their study shows that the designed
system can reduce the energy purchased from the main grid during on-peak times.

The case studies above are institutional and commercial buildings, whose peak load demand
time is daytime when PV panels generate the highest PV power. Using PV panels for
residential buildings is a challenging task since their peak load demand occurs often at night
and in early morning. Using energy storage systems and EVs to store this generated power
and use it at peak times is a reasonable solution.

Energy Storage Systems

Energy storage systems (ESS) refer to systems that can store electrical energy in another
energy form and convert it back into electricity when needed [70]. One of the most common
types of ESS is batteries. Their high initial investment and maintenance costs are their main
limitations for the use in large sizes. Therefore, using small to medium-sized batteries in
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buildings is more appropriate. Some studies address the sizing problem of ESS and intend to
find the best size integrating PV and batteries, given the cost of operation and investment
[71–76]. Batteries can store either the excess PV energy or the energy purchased from the
main grid at off-peak times [77]. However, the sizing problem is in the design phase and is
beyond this thesis’s scope. Managing and controlling behaviours of ESS is the task of the
energy management system (EMS), which will be discussed later.

Though buildings themselves are not ESS, they can also be used to store energy. According
to [78], [79] and [80], to feel comfortable in a typical room, the temperature (depending on the
season) should be between 19° and 26° of Celsius when occupied and can be between 5° and
40° when unoccupied. It means that the building can behave like a thermal storage system by
changing its temperature. Need to mention here that, given the occupants’ comforts, these
changes are limited [78]. For example, authors in [81] present the results from a pilot test
where the potential of buildings to store thermal energy was tested for residential buildings.
The results show that with small changes in the temperature of buildings (≤ ±0.5°C), a
suitable amount of energy (up to 10% depending on different parameters) can be stored.

Although using ESS to store energy seems reasonable, it is not as easy as it sounds. In
practice, determining its dis/charging time and amount are challenging. Furthermore, choos-
ing the right strategy to dis/charge ESS is another problem that needs to be appropriately
addressed. For example, buildings can store their excess generating power inside the ESS
as a strategy. However, if the main grid, especially at peak times, pays a reasonable price
for this excess power, the selling strategy to the main grid can be more economical than the
storing one. The problem in the N-MGs and in the presence of RES stochastic behaviours
becomes even more complicated.

Electric Vehicles

Given the daily growth of electric vehicles (EVs), the grid and the buildings should consider
their influences on their power demand. In terms of modelling, the EV can be considered as
an electric battery, only available for a certain period and must be charged before departure
time. Recently some studies have investigated the effects of EVs in the grid. For example,
Sengor et al. in [82] propose a new linear programming strategy for maximizing the load
factor of an EVs parking lot in the on-peak situation. They model EVs’ arrival time and state-
of-energy as random variables and then predict and manage them. As a result, significant
changes in the load factor are achievable.

In [27], the authors propose a vehicle-to-microgrid framework where EVs can be used to meet
the load demand of commercial buildings. In [83], the problem of distributed coordination
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of EVs charging with a wind power plant is formulated as a Markov decision process that
considers the random characteristics of EVs. The authors then propose a distributed-based
policy improvement algorithm to solve the Markov process. Li et al. [84], use a similar
idea to reformulate the problem as a constrained Markov decision process. They propose a
deep neural network-based reinforcement learning method to solve the EVs charge scheduling
problem. Although other works studied the effects of EVs in the grid [85–88], but examining
the integration of EVs and their benefits for residential buildings has not received enough
attention.

Building-Integrated Microgrid

The Building-integrated microgrid (BIMG) refers to a building that uses DERs, such as
PV panels or diesel generators, to supply the energy it needs for its load. Among BIMGs,
nearly/net-zero energy buildings (NZEBs) are the ones using renewable energy resources to
meet almost all of their loads, such as building-integrated photovoltaics (BIPVs). BIPVs can
use their stored ESS energy or RES generation capacity to reduce the electricity purchased
at peak times. For this reason, they can play an influential role in the power grids while
minimizing the environmental impacts.

A significant portion of the building power consumption goes toward HVAC systems for
occupants’ thermal comfort in residential and commercial sectors. Many studies in the liter-
ature investigate the performance of HVAC systems in BIMGs and BIPVs. Yunas and et al.
in [89] propose a centralized optimization framework for dis/charging of plug-in vehicles in
commercial BIMGs. An MPC-based optimization BEMS for controlling indoor temperature
and scheduling of building’s subsystems is introduced in [90]. Authors in [91] propose an
optimal energy management strategy for commercial buildings integrated with DC micro-
grid. However, according to [92], the complexity of thermal modelling of buildings and their
occupants’ behaviour alongside uncertainties of RESs are the current challenges of BIMGs,
which need to be addressed adequately. Compared to the previously mentioned studies, the
methods presented in this dissertation tackle the problems of residential building thermal
modelling complexity and the stochastic behaviours of RESs simultaneously.

2.1.3 Demand Response

As previously discussed, loads in MGs can take many forms, such as EVs, buildings and
appliances. Traditionally from the grid viewpoint, loads are considered passive, meaning
that they are uncontrollable consumers. However, loads can be controllable to some extent
and can affect the grid. Demand response (DR) programs aim to use these controllable loads
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for controlling the demand in the network.

Demand response in the smart grid is defined as: "Changes in electric usage by end-use
customers from their normal consumption patterns in response to changes in the price of
electricity over time, or to incentive payments designed to induce lower electricity use at
times of high wholesale market prices or when system reliability is jeopardized" [93]. Demand
response programs provide the opportunity for consumers to influence the grid by shaving or
shifting their power consumption in return for financial benefits. For example, a parking lot
with EVs can store energy during the off-peak time and can sell it to the main grid or the
neighbouring buildings during the on-peak time [82,94].

In the context of buildings, loads are categorized as controllable and uncontrollable loads.
HVAC or lighting systems in a residential building are examples of controllable loads, while
fire alarms or surveillance systems are categorized as uncontrollable loads. As previously
mentioned, small changes in buildings temperature can end up saving a considerable amount
of energy. For this reason, some studies investigate the performance of buildings thermal sys-
tems for DR program, such as HVAC [95–98], air handling unit (AHU) [99–101], and heating
boilers and pumps [102–104]. These studies show that buildings can support the electrical
grid at peak times by participating in the DR programs and reducing their temperature
without disturbing occupants’ comforts.

Due to uncertainties, the energy management in a building integrated with DER and par-
ticipating in DR programs is challenging. Authors in [105] formulate the problem of HVAC
control in the presence of uncertainties related to solar power and energy prices into a two-
stage SOP. Kim et al. in [106] present a robust two-stage SOP to achieve the optimal energy
management for microgrid. They apply a multi-scenario tree method to generate scenarios.
The proposed robust SOP then uses these scenarios to find the optimal values of DER gen-
erating power and power purchased from the main grid to minimize the operational cost.
Thomas et al. in [107] propose a mixed-integer linear programming model which can handle
solar uncertainty and stochastic behaviour of EV. They then compare the results of their
algorithms with the deterministic approach and show that neglecting the uncertainties re-
lated to PV generation can increase the daily cost estimation. Although these works consider
buildings with RES, few investigate the effects of RES uncertainties in a network of buildings
or N-MGs participating in the demand response program.

2.1.4 Building Energy Management Systems

Buildings need a centralized regulatory control system known as the building energy manage-
ment system (BEMS) to control and manage buildings subsystems such as heating, lighting



13

Figure 2.1 Model predictive control (MPC) methodology

and ventilation systems and their participation to DR programs. According to [108], BEMS
approaches can be classified into four management strategies: model predictive control, de-
mand side management (DSM), optimization, diagnosis. We need to mention here that in
practice, BEMS might adopt one or more approaches simultaneously, e.g., MPC, DSM and
optimization.

Model predictive control or MPC is an iterative control methodology aiming to optimize an
objective function of a process based on the predictions of the process’s future states by using
its model [109]. Figure 2.1 illustrates this control methodology in general. At the current
time-step k, the controller measures the process outputs, models the future of the process’s
outputs and states using its model for the next p time-steps. Using this information, MPC
then solves an optimization problem with a specific objective function (e.g., the tracking
error between prediction outputs and setpoints) to find optimal values of the following p

time-steps control inputs. Eventually, the first element of the optimal control inputs applies
to the process, moving it to its next state.

Due to its foresight ability, using MPC approaches can enhance building performance in terms
of energy consumption and comfort levels. In the literature, three modeling methods have
been used for MPC: white-box, black-box and gray-box. White-box MPC approaches refer to
the MPC approaches that use physics-based modelling methods to explain the energy perfor-
mance of buildings [110–113]. Data-driven or black-box MPC approaches are using historical
collected data of buildings to estimate and manage buildings’ energy consumption [114–117].
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It is worth mentioning that despite the accuracy of white-box MPC approaches, they are
time-consuming due to the integration of many model parameters. Black-box approaches
suffer from data shortages, lengthy training processes and lack of interpretability. Merg-
ing the advantages of white-box and black-box methods leads to Grey-box methods. These
methods are more interpretable than black-box methods, while simpler and more computa-
tionally efficient than white-box ones [118–121]. In general, according to [122], the grey-box
modelling methods are helpful in the following cases. First, when detailed information about
the building is not available for modelling with white-box methods. Secondly, in cases where
there is uncertainty in the building’s occupants’ behaviours that neither white-box nor black-
box methods can capture. Finally, grey-box methods are more practical and efficient than
black-box ones in cases where the computational power or training datasets are limited.
Resistance-capacitance (RC) thermal modelling is a grey-box method, which is of interest in
this dissertation for its advantages; we will elaborate more in the next chapters.

DSM refers to a set of actions encouraging consumers to modify their energy use at peak
times. Demand response (DR) and energy efficiency (EE) are the two main approaches
of DSM programs. Despite DR programs (described earlier in Chapter 1), EE programs
focus on applying different technologies to achieve energy-efficient buildings. Utilizing smart
meters [123], estimating thermal load [124,125], using thermal mass [126] and aggregation of
users with a common distribution system [127] are examples of EE programs.

Dealing with different uncertainties such as PV-generated power or real-time prices, the
BEMS needs more advanced optimization techniques to enhance buildings performance. The
optimization methods used in the literature can be classified into two main groups: Stochastic
optimization (SO) and robust optimization (RO). Works that study SO methods in the BEMS
assume the possible future information of uncertainties are known or at least can be evaluated
[105, 128–130]. The assumption of RO methods, on the other hand, is that uncertainties
are coming from unpredictable sets and by considering a conservative approach, the BEMS
applies the same control strategy for all possible cases [106,131–133].

These studies are mainly focused on non-residential buildings, and the performance of BEMSs
in residential buildings needs to be further investigated [108]. Our final approach for the
residential BEMS is a stochastic gray-box MPC approach for DR programs, where we assume
the RES power generation is stochastic. Therefore, we assume that predictions of RES power
generation or its distribution are known beforehand [134–136]. This BEMS is then used in
N-MGs where MGs are controlled distributively.
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2.2 Smart Greenhouses

As the population grows, the need for more food resources is inevitable, which puts pressure
on limited water resources and arable lands [137]. According to the Canadian minister of
environment and climate change [138], agricultural activities are responsible for 8.1% of total
greenhouse gas emissions in Canada. At the same pace, one-third of global greenhouse gas
emissions are due to the food production system [139]. In addition, the COVID-19 pandemic
demonstrates that the need for a sustainable, self-reliant food economy is essential. For these
reasons, we need to move towards modernized smart agriculture. According to FAO (The
Food and Agriculture Organization), climate-smart agriculture (CSA) " is an approach that
helps to guide actions needed to transform and reorient agricultural systems to effectively
support the development and ensure food security in a changing climate" [140]. Increasing
agricultural performance, creating flexible agriculture in the face of climate change, and
reducing greenhouse gas emissions are the three main goals of the CSA, of which greenhouses
are its key components.

Greenhouses are structures with transparent walls and ceilings that can regulate the cli-
matic conditions of their crops. Optimal control of greenhouse climatic conditions leads to
an increase in agricultural products and their quality. Furthermore, greenhouse plants can
yield at any time during the year. Despite their advantages, greenhouses’ power consump-
tion should be controlled; otherwise, they may cause adverse environmental impacts and
additional demand peaks.

Each greenhouse usually has several main subsystems to control its climatic conditions; a
thermal control system for regulating the indoor temperature, a lighting system for adjusting
environmental illumination, a CO2 generator for controlling CO2 concentration level, and a
ventilation and humidity control system. Crops usually have four growing stages, seed,
sprout, seedling and adult plant. Depending on the stage, controlling some of the above
parameters have higher priority. For example, controlling indoor temperature is more critical
than CO2 level during the seed stage. The low-priority subsystems have the chance to
contribute to the DR program.

Like buildings, greenhouses can play an essential role in the grid by reducing their power
consumption. In [141], authors develop a centralized irrigation system that predicts the crop
water uptake depth based on soil moisture. The proposed system by rescheduling irrigation
times can reduce the energy consumption of the greenhouse. Chen et al. in [142] address the
non-linear control problem of greenhouse temperature, and propose a two-layer hierarchical
control method. The upper layer calculates the optimal setpoints of the thermal subsystem
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by minimizing net costs. At the same time, the lower level is responsible for reducing the
tracking error between these setpoints and actual temperatures. To optimize the performance
and energy consumption of greenhouses’ artificial lightening system, Gianluca et al. in [143]
first introduced a predictive control strategy and then tested their algorithm on an actual
greenhouse case study. Their results show that the proposed algorithm can achieve a 19.4%
cost saving. However, the main goal of these studies is to reduce energy consumption, and
none of them investigate the effects of all greenhouse subsystems directly for the DR program.

Greenhouses can also be integrated with RES. Some studies investigate the performance of
RES in greenhouse [144–148], however only a few studies consider their impact in the DR
programs. Achour et al. in [149] propose an MPC-based approach to control all subsystems
of a single greenhouse integrated with wind turbine and PV system. In [150], Ouammi et
al. present a centralized control approach for a network of smart greenhouses with shared
resources such as batteries, PV panels, wind turbines, and a water reservoir, aiming to
reduce energy consumption. In a similar study, the author in [151] proposes a cooperative
control framework for a network of greenhouses in which electricity can be exchanged in
a peer-to-peer manner. However, to the best of the author’s knowledge, no works in the
literature investigate the distributed control of such networks, where autonomy is given to
each greenhouse to control its local climate conditions and distributed resources.

2.3 Optimization Methods in Networks of Microgrids

As discussed in Chapter 1, a network of MGs or N-MGs is a group of interconnected MGs
which collaborate to achieve a specific goal. If these MGs are buildings integrated DER, then
the network is also known as a network of buildings. Microgrids are willing to participate
in N-MGs because of their opportunities, such as blackout emergency backups and financial
benefits. In the literature, three different optimization approaches exist for N-MGs: central-
ized, decentralized and distributed. Fig. 2.2 provides an overview of these approaches. As
mentioned earlier, privacy, reliability, computational load and the complexity of the approach
for finding the optimal solution are four factors that must be considered when comparing
these approaches, Fig. 1.1. In the following, we briefly discuss these approaches and compare
them based on these four factors.

2.3.1 Centralized

In centralized methods, all MGs send their information (e.g., thermal models, setpoints and
loads) directly to a coordinator, Fig. 2.2a. Then the coordinator solves an optimization
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(a) Centralized (b) Decentralized (c) Distributed

Figure 2.2 Different optimization methods used in N-MGs

problem considering MGs, the main grid and the coordinator’s constraints and objective
functions (known as general optimization problem), and then sends back the solutions to
MGs [150–154].

In the case of N-MGs, Arefifar et al. in [31] present a centralized energy management op-
timization strategy for a multi-microgrid system to minimize the operational cost. Authors
in [32] propose a centralized approach for a network of MGs that aims to minimize the power
exchanged between MGs while their local ESS operates around an optimal point. With the
same objectives, authors in [155] propose a different centralized optimal power flows control
approach based on Pontryagin’s minimum principle. In [33], Gupta et al. propose a deep
reinforcement learning approach for controlling a network of buildings to improve thermal
comforts and reduce energy cost. Solving one optimization problem is the main advantage
of these approaches. However, the coordinator (central controller) needs considerable com-
puting power to solve this single problem, and this is impossible if there are many MGs in
the network. In addition, MGs must share all their data with the coordinator, thus increas-
ing the chances of information disclosure. Finally, the network reliability is as good as its
coordinator reliability, and if the coordinator fails, the network can no longer work.

2.3.2 Decentralized

In the decentralized methods, each MG, on the other hand, solves its own optimization
problem and makes decisions based on its benefits. The objectives of MGs can be aligned or
even opposite. [34–36]. Unlike centralized methods, the decentralized methods can protect
the privacy of MGs since they do not need to share their data. Because each MG operates
independently of the other networks, decentralized networks are reliable in the case of an
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MG failure, Fig. 2.2b. In addition, the computational load is crumbled at the level of each
MG.

In N-MGs literature, Wang et al. in [156] propose a bi-level decentralized optimization
method for networked microgrids, where the first level finds the optimal value for the negoti-
ation penalty factor and the second level is responsible for the coordination of MGs by using
this penalty factor. However, they do not consider using predictive methods (e.g., MPC) or
participating in the demand response program. Authors in [37] model networks of MGs as
teams in which the agents are cooperating to achieve specific goals. A decentralized control
approach is then introduced to control the power flows in the network. Similar to previous
work, they do not investigate the RES stochastic behaviours or network potential for partic-
ipating in the DR program. In [157], a game theory approach is utilized to model each agent
and its interactions with other MGs. In this study, each MG selfishly tries to maximize its
profits, and hence the whole network can work even in the absence of communication. The
proposed method uses Karush-Kuhn-Tucker (KKT) conditions to simplify the problem so
that the network can participate in the DR program. In general, finding the optimal solution
for the decentralized network that participates in the DR program with RES uncertainties
is challenging and usually requires intensive computation.

2.3.3 Distributed

The third approach is the distributed methods, which can operate in both hierarchical and
P2P networks. In this approach, like the centralized one, the whole network has a general
objective function, which needs the cooperation of MGs to optimize; however, different from
the centralized approach, each MG shares a limited version of its data with its neighbourhood
MGs or the coordinator, Fig. 2.2c. Although the type of information shared depends on
the network’s distributed method, MGs mainly share their offers to buy or sell the power
they need, not their private information. Hence, MGs’ privacy is preserved. Unlike the
decentralized approach, a third party coordinates the negotiation process between MGs in
this approach, ensuring a globally optimal solution.

To this end, decomposition methods are needed to break down the general optimization
problem and find the optimal solution. These methods first decompose the general opti-
mization problem at the level of each MG and then find the optimal solution through an
iterative process, also known as the negotiation process. This approach is a trade-off be-
tween decentralized and centralized ones, and it offers more reliability, more privacy and less
computational load than centralized approaches. At the same time, it is more feasible to
achieve an optimal global solution in this approach than the decentralized one in a limited
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time.

ADMM and dual decomposition are the two most widely used decomposition methods in
the N-MGs literature. In [158], authors develop a P2P distributed framework based on dual
decomposition for energy trading in a network of islanded MGs. An event-based distributed
MPC approach aiming to reduce the negotiation process is presented in [159]. Falsone et al.
in [160] study the dual decomposition method in a cooperative multi-agent setting, where
the agents negotiate with each other over shared resources through a time-varying network.
Some other studies use dual decomposition dealing with optimal power flow problems in
distributed N-MGs [161,162].

However, dual methods can successfully decompose an optimization problem, but they suffer
from poor convergence properties such as convergence rate and they require a convex objective
function [163]. ADMM (alternating direction method of multipliers) is another decomposition
method that has better convergence properties compared to dual methods [164, 165]. In
the practical cases of N-MGs, the negotiation process between MGs to reach a consensus
should be finished within a reasonable time. More specifically, in the networks using MPC
methodology, this process should finish before the next time-step, usually in the order of
minutes, e.g., 15 minutes. Therefore, the decomposition method used in the network must
have a rapid convergence rate feature. ADMM, compared to dual decomposition, converges
under much more relaxed conditions while it is more robust and has a fast convergence rate.
For these reasons, ADMM methods are considered in this work. Consider the following
optimization problem :

min
x,z

f(x) + g(z)

s.t.: Ax+Bz = c (2.1)

where x and z are two separate variables set, and f and g are convex functions. Then, using
the Gauss-Seidel method, the optimal solution of the above equation can be found by using
the following iteration process:

xk+1 := argmin
x

(
f(x) + (ρ/2)‖Ax+Bzk − c+ uk‖2

2

)
zk+1 := argmin

z

(
g(z) + (ρ/2)‖Axk+1 +Bz − c+ uk‖2

2

)
uk+1 := uk +

(
Axk+1 +Bzk+1 − c

)
(2.2)

where k is the iteration and ‖y‖2 represents norm 2 of vector y. We need to mention that
the above algorithm in this form is sequential, but it can be adopted to our concept with the
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right formulation.

Recently ADMM has received attention in the literature of N-MGs. Braun et al. in [44]
present an ADMM-based MPC for a network of linear systems that are physically decoupled
but coupled in the objective function. However, they assume a linear model for MGs and do
not consider the uncertainties of RES. Liu et al. in [166] propose a distributed MPC method
for frequency regulation in N-MGs with different modes of operation and system topology.
A robust distributed energy management method aiming to minimize the total operational
cost, which can handle energy exchange and price uncertainties, is developed for N-MGs
in [167]. However, none of these studies consider the network in the DR program.

Similarly, Nikmehr in [168] proposes a model for the concept of interconnected energy hubs
in N-MGs and controls this network distributively using a robust ADMM approach. Though
robust approaches can manage the uncertainty of the network, they result in more con-
servative decision strategies, meaning in terms of the value of objective function obtained,
the stochastic methods usually have better performance. Authors in [25] present a three-
layer multi-agent architecture for P2P networked MGs, where frequency/voltage restoration
and minimizing power loss are the network’s main objectives. Authors in [169] introduce a
two-level ADDM-based optimization control framework. At the upper level, the proposed
algorithm minimizes the total power generation cost in a distributed manner, while each MG
controls its generators at the lower level. Nevertheless, neither of the above studies considers
the DR programs.

Some recent studies investigate the performance of distributed N-MGs for DR programs. Au-
thors in [170] investigate the joint coordination of optimal power flow and demand response.
Reducing operational costs and controlling the fluctuations of power load are its main ob-
jectives. A distributed parallel optimization method for a network of MGs is introduced
in [171]. In order to manage energy, the proposed method is then used to decompose coupled
constraints of MGs. Liu et al. in [172] develop a distributed EMS for a network of residential
buildings where residential appliances such as HVAC and ESSs are controlled without par-
ticipating in the DR program. Given the binary variables defined in their proposed model
(e.g., HVAC systems on/off), the objective function is non-convex, so they use ADMM to
decompose the optimization problem. In the absence of RES uncertainties, their proposed
method can converge to the optimal solution in a reasonable number of iterations. In [173],
Zhong et al. propose a distributed DR approach for a multi-energy residential network, which
surfers incomplete information caused by nonideal communications in a randomly connected
network. The proposed approach can be used to plan a day ahead, while it can help con-
sumers buy energy inside the network and at a lower price than the main grid. Although
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other works address the problem of DR programs in the distributed N-MGs [174–177], the
RES stochastic behaviours in the distributed network of residential buildings have not been
well studied in the literature.

This thesis studies the problem of distributive coordination of MGs in the hierarchical and
P2P structures. Its novelties are divided into three parts. First, it proposes a real-time
energy management system for residential buildings integrated with renewable energy sources
and examines their potential to participate in the demand response program. Second, It
proposes a novel stochastic ADMM-based decomposition method and proves its convergence
mathematically. Finally, this proposed method is used to design an MPC-based framework
for controlling the networks of MGs in a distributed manner. The proposed framework can
consider the RES uncertainties and work in networks with different topologies, either P2P
or hierarchical.
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CHAPTER 3 SYNTHESIS OF WORK AS A WHOLE

Fig. 3.1 presents the synthesis of this Ph.D. project. In Chapter 4, the first objective is to
model a residential building integrated with RES and EVs. An MPC algorithm is designed to
control and manage energy and resources in the building while integrating the RC method for
the thermal dynamics of the building. The building energy management system (BEMS) is
able to achieve the minimization of the energy consumption in the building without violating
occupants’ comforts.

Figure 3.1 Synthesis of the Ph.D. project.
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For objective 2, we use the BEMS presented in the previous step to design a stochastic
distributed MPC-based framework for networks of BIMGs, where buildings participate in
the DR program by controlling their thermal dynamic and battery. The proposed framework
can handle the stochastic behaviour of RESs. Furthermore, objective 2 considers different
network topologies such as hierarchical and P2P. Hence, it presents a distributed control
approach for a network of MGs (mainly residential buildings integrated with RES), in which
the uncertainty of RES is considered. The analysis is conducted in Chapter 5.

For objective 3, for the first time in the literature, we propose a distributed MPC-based
control method for a network of greenhouses. Compared to the buildings, greenhouses have
more subsystems than buildings that can participate in the DR program, such as thermal
and CO2 generation subsystems. In this method, greenhouses are connected to the main grid
through an aggregator and participate in the demand response program by utilizing different
load shaving and load shifting strategies. The ADMM decomposition method is then adopted
to solve the optimization problem with the nonlinear objective function. Chapter 6 analyzes
this method.
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CHAPTER 4 ARTICLE 1: OPTIMAL REAL-TIME ENERGY
MANAGEMENT IN APARTMENT BUILDING INTEGRATING

MICROGRIDS WITH MULTIZONE HVAC CONTROL

Authors: Ehsan Rezaei, Hanane Dagdougui
IEEE Transactions on Industrial Informatics, Volume 16, 2020

Abstract: Today, distribution systems are presently transforming from a demand-driven to
an active asset driven activity, portrayed by expanding measures of decentralized generation
units and an increasing participation of end-users in demand response programs. The role
of residential buildings will change to an active player in the power grid, either by integrat-
ing distributed energy resources onsite and even by an active orchestration of local demand.
This paper presents an effective approach for the modeling and optimization of a multi-unit
residential or multiple dwelling units building, integrating a local shared renewable power
generation, energy storage system and electric vehicles. We aim to supports decision-making
in the context of energy consumption for a multi-unit building through developing a model
predictive control able to effectively control the heating, ventilation, and air conditioning
(HVAC) system in each apartment of the building in order to reduce the electric bill of the
building and improve the matching performance between the local generation and consump-
tion. The problem is solved for a multi-unit apartments building in the Montreal area. The
results show the efficiency of proposed method.

Keywords

Energy management, residential building RC model, microgrids, model predictive control,
demand response, optimization.

4.1 Introduction

Buildings around the world consume approximately 40% of global energy consumption [178].
In particular, residential buildings are among the buildings sector responsible for high energy
consumption. The International Energy Agency (IEA) recommends actions on: improvement
of energy efficiency in buildings for the reduction of greenhouse gas (GHG) emissions and
introducing the concept of zero-energy buildings (ZEB) [179]. Numerous measures have been
taken into account to construct more energy efficient buildings, such as implementing new
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effective insulation materials, increasing the utilisation ratio of sunlight, etc. [180]. However,
there is also a need for practical solutions to reduce the GHG emissions from the residential
and commercial sectors. In particular, the building-integrated microgrid (BIMG) is a preva-
lent green approach that allows each building to integrate local available Renewable Energy
Resources (RES), distribute, and regulate the flow of electricity to consumers using the in-
formation and communication technologies, smart meters and building energy management
system (BEMS). Particularly, integration of information and communication technologies,
and in-building distributed energy resources in each building will allow building manager to
communicate, control and coordinate various building devices in order to create the concept
of a network of building integrated microgrid. The basic control objectives for a building
energy management system are to maintain the high comfort level while reducing total en-
ergy consumption and peak of electricity demand. Demand response (DR) is an alternative
solution that will allow consumers to reduce and regulate energy consumption and peak loads
in response to programs related to electricity prices, or incentive payments [181–183]. With
the growth interest of smart grids and the increased use of DR in the residential sector,
the number of participating consumers is expected to increase significantly. From the grid
perspective, individual residential consumers make only a limited contribution to the overall
demand response strategy. However, aggregating consumers’ loads become more represen-
tative to balance the needs of generation companies and end-users. The rapid increase in
urban population and its patterns has led to increase construction of apartment dwellings
or multi-unit residential buildings. In Canadian metropolitan areas, the share of dwellings
that were apartments was highest in the census metropolitan areas of Montreal, Vancouver
and Quebec. Apartment dwellings are attractive target for energy management and demand
response, since they aggregate high energy density in one building.

In such type of buildings, HVAC systems are excellent resources for DR participation us-
ing temperature adjustments and control in different zones. Majority of works focused on
residential buildings from the perspective of an aggregation of consumers or prosumers hous-
ing [184–186]. However less works have addressed apartment buildings with consumers or
prosumers are connected to the same building, and where thermal multi-zone features also
affect the consumption in each apartment.

In BIMG, the intermittent nature of RES, and especially that of solar energy, has led to much
concern over the flexibility, stability and reliability of microgrids. Therefore, the BIMG needs
to be flexible, and their BEMS needs to respond to real-time fluctuations and uncertainties in
energy generation and demand. With the growing popularity of electrical vehicles (EVs) as
high fuel economy with low greenhouse gas emissions, their utilization in residential buildings
are expected to increase in the near future [187].
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From an EV user viewpoint, EVs offer a number of benefits that make them an attractive
solution for an increasing number of drivers such as high fuel economy, low operating cost,
high performance, low emissions, etc. However, from the building manager viewpoint, the
inclusion of EVs’ charging load will increase the building loads when vehicles are being charged
and can even lead to creating new load peaks in the building. As a result, it is important to
implement smart coordination strategies to coordinate the fleet of EVs in the same residential
building. The implementation of a BIMG makes it possible to use whenever is possible
the additional mobile batteries of EVs as to create the vehicle-to-building (V2B) [188] to
contribute to the DR programs by smoothing, dispatching loads and lowering building power
consumption.

Consequently, the peak load in apartment building, which occur mostly in nighttime may
be avoided using local distributed energy generators, control the temperature set point of
each HVAC unit including inter-zonal effects among apartments, but also exploiting the
available EVs in the building as a means to enable serving internal loads in the building [189].
In census metropolitan area, such as Montreal, in average, people make about 40 minutes
commuting to work [190], and for the rest of the day their cars are mostly parked at parking
lots or building garage [191]. While some research works have been recently introduced to
investigate the charging and discharging scheduling problem of EVs [192], however, no major
research has been reported to study the interaction between EVs and apartments building
while considering EVs charging behavior, local residential electric loads, grid interaction
and PV systems coupled with stationary storage system. In [193], authors investigated the
impact of residential buildings EV charging strategies on grid and buildings themselves.
They concluded that for decreasing EV grid impacts, day-time charging is the best solution.
In [194], Cristana et al. proposed a real-time hardware implementation architecture that aims
to control inside temperature by using of electric water heater and Resistance-Capacitance
(RC) model of a single three bedrooms [195]. In [196], a new algorithm for allocation and
pricing of distributed energy resources (DERs) in apartment houses is proposed to understand
the effect of sharing distributed generation, however, no demand response is implemented.

Majority of works focused on residential buildings from the perspective of an aggregations of
consumers or prosumers housing [184–186]. In [197], authors presented a nonlinear optimal
algorithm to manage energy in smart buildings of a microgrid. This algorithm aims to keep
comfort parameters of each building at a suitable range while reducing the operation cost.
However, the work did not consider EVs and their impacts. A daily charging and discharging
management framework for EVs is investigated in [198]. Also, in [199] a real-time coordination
energy management is introduced for an energy-hub. In both works, MPC controller could
achieve a better results against uncertainties.
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In this paper, we propose an optimization method for the BEMS in an apartment building.
The method makes decisions on the operations of local storage system, EVs and controllable
HVAC units to take advantages of the available local shared renewable power generation
and to minimize the power consumption in the building. So far, a few papers focused on
the structure of building to reduce consumption power. In this paper, however, a Grey-
box building model is implemented to reduce power consumption while satisfying comfort
parameters of each zone in the building. More specifically:

1) We proposed a centralized building energy management system (BEMS) that better
control the comfort parameters in each apartment, while considering thermal exchange
effect between zones.

2) We use model predictive control to not only control comfort parameters at a satisfied
level, but also to prevent power consumption of building excess power subscribed level
of building.

3) We study impacts of daytime EVs coordinated charging as a DR tool to response to
renewable energy such as solar panels, load and price variations.

The rest of this paper is organized as follows. In Section 4.2, the proposed components of the
residential building integrating microgrid are formulated including photovoltaics, energy stor-
age system, electric vehicles and the residential thermal model. In section 4.3, we will define
the control method and finally, in section 4.4, the proposed controller has been simulated.

4.2 System Models

4.2.1 Energy management structure

Fig. 4.1 shows the configuration of the proposed microgrid in the residential building. The
main distributed energy resources comprise PV array and an energy storage system (ESS)
that has the flexibility to be charged by the main grid or power generated from PV pannels.
The considered microgrid is connected to parking lot and integrated to an apartment building.

The apartment building may buy/sell electricity from/to the main grid. The BEMS, as
shown in Fig. 4.1, is designed to gather and analyze data from various smart meters related
to PV generation, energy storage systems, EVs, non-flexible load and HVAC aggregators. In
addition, it communicates the optimal control signals to EVs and HVACs through appropriate
aggregators. In this paper, we propose a curtailable DR, where customers agree to participate
in DR programs defined by the BEMS in response to load dispatching. We consider a scenario
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Figure 4.1 Architecture of a building integrated with microgrid.

where a PV generation unit is shared by several apartments. Here it is worth to mention that,
two aggregators are acting as intermediate agents to collect and send data to BEMS. The
aggregators can also enter into contracts with customers to manage their HVAC units and EVs
power consumption in order to participate in the energy market. In all regulation services,
the main advantage of having aggregators is to estimate the reserve capacity of population
of loads, i.e. the available power that controllable loads could offer in the ancillary service
market. This aspect is out of the scope of this paper.

In the following section, elements of this system and their constraints will be modeled. Since
we are interested to real-time model predictive control (MPC), the extension form of each
element from time step n to n + nc or n + np will be needed. These extension form , later,
can be used to solve the real-time optimization problem of MPC.
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4.2.2 Model of PV

The output power of the photovoltaic array at the maximum power point (MPP) can be
modelled by a linear power source according to the irradiance level. The MPP tracking
(MPPT) role is to maximize the power output:

Ppv = [PPV,Rated ×
G

1000 × ηMPPT ] (4.1)

where PPV , PPV,Rated are respectively the output power at the MPP and the rated power at
the GT=1000 W/m2, GT and ηMPPT are respectively the irradiance level and the efficiency
of the PV’s dc/dc converter and the MPPT system.

4.2.3 Energy storage system model

The BIMG is equipped with an energy storage system (ESS) which provides additional
flexibility. Lithium-ion batteries are considered since they provide several advantages and
benefits such as no memory effect, and the highest energy density among other types of
batteries [200]. It is supposed that the discharged power can be used by apartments or/and
for charging the EVs. The battery can be charged by the excess of the PV power generation
or/and by the main grid depending on the selected pricing mechanism. The evolution over
time of energy stored is supposed to be described by the following state equation:

SOCb[k + 1] = SOCb[k] + (ηb,chPb,ch[k]− Pb,dch[k]
ηb,dch

)∆T ] (4.2)

where SOCb[k] [kWh] is the state of the energy stored in the ESS, Pb,ch (t) and Pb,dch are re-
spectively the charged and discharged powers and ηb,ch and ηb,dch are respectively the charging
and discharging efficiencies.

The power charged/discharged to/from the ESS is bounded by a certain maximum charg-
ing/discharging power limits:

0 ≤ Pb,ch[k] ≤ Pb,ch,max

0 ≤ Pb,dch[k] ≤ Pb,dch,max

Pb,ch[k]× Pb,dch[k] = 0 (4.3)

Constraint (4.3) is used to avoid charging and discharging the energy storage system at the
same time. Furthermore, SOCb[k] cannot exceed its limitations, which means the battery
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state of charge, cannot be more than SOCb,max, or less than SOCb,min.

SOCb,min ≤ SOCb[k] ≤ SOCb,max (4.4)

Since the SOCb[k + n] depends on SOCb[k] and all of Pb,ch[k + i] and Pb,dch[k + i] for i ∈
{0, 1, . . . , n− 1} we can rewrite SOCb[k + n] as follows:

SOCb[k + n] = SOCb[k] +
k+n−1∑
i=k

(ηb,chPb,ch[i]−
Pb,dch[i]
ηb,dch

)∆T (4.5)

Using model predictive control for a prediction horizon of np:


SOCb[k]
SOCb[k + 1]
SOCb[k + 2]

...
SOCb[k + np + 1]


︸ ︷︷ ︸

SOCb,np+1[k]

=



1
1
1
...
1


︸︷︷︸

I(np+1)×1

SOCb[k]+

+



0 0 · · · 0
ηb,ch 0 · · · 0
ηb,ch ηb,ch · · · 0
... ... . . . ...

ηb,ch ηb,ch · · · ηb,ch


︸ ︷︷ ︸

Λb,ch
np+1[k]


Pb,ch[k]

Pb,ch[k + 1]
...

Pb,ch[k + np]


︸ ︷︷ ︸

Pb,ch,np+1[k]

−Λb,dch
np+1[k]Pb,dch,np+1[k]⇒

SOCb,np+1[k] = I(np+1)×1SOCbk] + Λb,ch
np+1[k]Pb,ch,np+1[k]−Λb,dch

np+1[k]Pb,dch,np+1[k] (4.6)

where k can be any time step. Constraints (4.3) and (4.4) can be rewritten as:

SOCb,min × I(np+2)×1 ≤ SOCb,np+1[k] ≤ SOCb,max × I(np+2)×1

(4.7)
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and

0(np+1)×1 ≤ Pb,ch,np+1[k] ≤ Pb,ch,max(γnp+1 ∗ I(np+1)×1)

0(np+1)×1 ≤ Pb,dch,np+1[k] ≤ Pb,dch,max((1− γnp+1) ∗ I(np+1)×1)

(4.8)

where ∗ is element-by-element multiplication and γnp+1 =
[
γ1 γ2 . . . γnp+1

]T
is a vector

of slacks variables used to avoid problem of charging and discharging at the same time.

4.2.4 EVs Model

The EV can operate under two main modes, in the charging mode, it can be considered
as a load, while in the discharging mode, the EV can be regarded as a source of power.
This flexibility can participate in enhancing the operation and the power management in the
building, especially, during the presence of EVs in the parking garage. Let consider that each
EV j ∈ Nev is equipped with an energy control which enables the vehicle to communicate
with the aggregator through a smart metering infrastructure once connected to the charging
infrastructure. The EV can transmit data to the EVs aggregator such as battery capacity, the
desired charge and the departure time. The state of charge of the j-th EV can be expressed
as follow:

SOCj
ev[k + 1] = βj[k](SOCj

ev[k] + (ηjb,chP
j
b,ch[k]−

P j
b,disch[k]
ηjb,disch

)∆T ) + γj[k] (4.9)

In this equation, ∆T , ηjb,ch and ηjb,disch are respectively the sampling time, charging and
discharging efficiencies. βj[k] and γj[k] can be defined for vehicle j as follow:

βj[k] =

 1 kjA ≤ k ≤ kjD

0 otherwise
, γj[k] =

 SOCj
A T = kjA

0 otherwise
(4.10)

In this equation, kjA and kjD are the arrival and the departure time of vehicle j. At the arrival
time, vehicle j has the amount of SOCj

A energy in its battery.

EVs have similar constraints to the ESS, however, they are only valid during the the avail-
ability of EVs in the parking garage. Thus, constraints (4.3) and (4.4) can be modified as
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follows:

βj[k]SOCev,min ≤ βj[k]SOCj
ev[k] ≤ βj[k]SOCev,max

0 ≤ βj[k]P j
ev,ch[k] ≤ βj[k]P j

ev,ch,max

0 ≤ βj[k]P j
ev,dch[k] ≤ βj[k]P j

ev,dch,max

βj[k]P j
ev,ch[k]P j

ev,dch[k] = 0 (4.11)

SOCj
ev[k + np + 1] can be expressed as follow:

SOCj
ev[k + np + 1] = (

np∏
i=0

β[k + i])SOCj
ev[k]

+
[

(
np∏
i=0

β[k + i])︸ ︷︷ ︸
β(k,0,np)

δc[k] (
np∏
i=1

β[k + i])︸ ︷︷ ︸
β(k,1,np)

δc[k + 1]
np∏
i=np

β(k + i)
︸ ︷︷ ︸

β(k,np,np)

δc[k + np]
]
×


Pc[k]

Pc[k + 1]
...

Pc[k + np]


︸ ︷︷ ︸

Pj
ev,ch,np+1[k]

−
[
β(k, 0, np)δd[k] β(k, 1, np)δd[k + 1] β(k, np, np)δd[k + np]

]
×


Pd[k]

Pd[k + 1]
...

Pd[k + np]


︸ ︷︷ ︸
Pj

ev,dch,np+1[k]

+
[
β(k, 1, np) β(k, 2, np) · · · 1

]


γ[k]
γ[k + 1]

...
γ[k + np]


︸ ︷︷ ︸

Γnp+1[k]

⇒
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SOCj
ev[k + np + 1] = β(k, 0, np)SOCj

ev[k]

+
[
β(k, 0, np) β(k, 1, np) · · · β(k, np, np)

]
×


δc[k] 0 · · · 0

0 δc[k + 1] · · · 0
... ... . . . ...
0 0 · · · δc[k + np]


︸ ︷︷ ︸

∆c,np+1[k]

Pj
ev,ch,np+1[k]

−
[
β(k, 0, np) β(k, 1, np) · · · β(k, np, np)

]
×∆d,np+1[k]Pj

ev,dch,np+1[k]

+
[
β(k, 0, np) β(k, 1, np) · · · β(k, np, np)

]
Γnp+1[k]

(4.12)

and finally the model predictive formalization can be written as follow:

SOCj
ev,np+1[k] = Φnp+1[k]SOCj[k]−Λnp+1[k]∆d,np+1[k]Pj

ev,dch,np+1[k]

+ Λnp+1[k]∆c,np+1[k]Pj
ev,ch,np+1[k] + Λ0,np+1[k]Γnp+1[k] (4.13)

where:

Φnp+1[k] =



1
β(k, 0, 0)
β(k, 0, 1)

...
β(k, 0, np)


Λ0,np+1[k] =



0 0 · · · 0
1 0 · · · 0

β(k, 1, 1) 1 · · · 0
... ... . . . ...

β(k, 1, np) β(k, 2, np) · · · 1



Λnp+1[k] =



0 0 · · · 0
β(k, 0, 0) 0 · · · 0
β(k, 0, 1) β(k, 1, 1) · · · 0

... ... . . . ...
β(k, 0, np) β(k, 1, np) · · · β(k, np, np)



Therefore, constraint (4.11) will be changed to:

SOCev,minΞj
np

[k]I(np+1)×1 ≤ Ξj
np

[k]SOCnp [k] ≤ SOCev,minΞj
np

[k]I(np+1)×1 (4.14)
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Figure 4.2 An apartment and its equivalent RC circuit (These pictures are adopted from
[201]).

where:

Ξj
np

[k] =


β[k] 0 · · · 0

0 β[k + 1] · · · 0
... ... . . . ...
0 0 · · · β[k + np]

 (4.15)

Also, there are some other constraints for EVs that must be satisfied:

0 ≤ Pj
b,ch,np+1[k] ≤ P j

b,ch,maxΞj
np

[k](γnp+1 ∗ I)

0 ≤ Pj
b,dch,np+1[k] ≤ P j

b,dch,maxΞj
np

[k]((1− γnp+1) ∗ I)

(4.16)

where in (4.16) matrices I and 0 have appropriate dimensions.
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4.2.5 Residential Thermal Model

One of the most significant energy consumption in residential buildings is related to satisfy
the thermal comfort of the occupants. From this perspective, the proposed algorithm aims to
keep this parameter in a predefined comfort range which means that each apartment requires
a specific range of comfort [Tmin, Tmax]. For achieving this goal, we developed RC-model of
an apartment building to control the temperature in each apartment. The RC thermal model
is a Grey-Box model that is commonly used to define the thermal dynamics of a building
zone. The model uses physics-based models as the structure of the model whose parameters
can be estimated using the construction data or estimated from the measured data using
a parameter identification technique. Nonlinear least squares, simplex search, and genetic
algorithm (GA) are among the widely used identification techniques [202,203]. In this paper,
due to the unavailability of data, the parameters of the RC-model have been estimated using
EnergyPlus residential building simulation program. More details about the RC-model can
be found in [204].

In Fig. 4.2, an example of studio apartment and its equivalent RC model are shown( [201]).
In this figure, Ti, Ta, Tom and Tim are interior, ambient, home envelop walls, and inside walls
temperatures respectively. φs is sun radiation on apartment which is divided in two parts:
1) (1− P ) percent of sun radiation absorbed by inside air and 2) P percent of sun radiation
absorbed by home elements such as inside and outside walls, equipment etc. φzi

h is the power
that HVAC consumes in apartment zi to warm it up.

In these study, without loss of generality, we used the map of a given floor which is shown in
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Fig. 4.3. For this floor we have :


x[k + 1] = Acx[k] +Bc



φz1
h [k]

φz2
h [k]

...

φzn
h [k]


︸ ︷︷ ︸

u[k]

+Ec

φs[k]

Ta[k]


︸ ︷︷ ︸

v[k]



T z1
i [k]

T z1
im[k]

T z1
om[k]

...

T zn
i [k]

T zn
im[k]

T zn
om[k]


︸ ︷︷ ︸

y[k]

= Ccx[k] +Dcu[k] + Fcv[k]

⇒


x[k + 1] = Acx[k] +Bcu[k] + Ecv[k]

y[k] = Ccx[k] +Dcu[k] + Fcv[k]
(4.17)

where (Ac, Cc), (Bc, Dc) and (EC , Fc) are specific constants matrices related to states, in-
puts and disturbances values in each apartment. x, u, v and y are states, control inputs,
disturbance inputs and zone temperature respectively.

To obtain comfort temperature in each apartment, there are maximum and minimum con-
straints for inside temperature. However, these limitations depend on different parameters
such as walls, floors or ceil of building and even can be changed in presence of occupants. In
table 4.1, the comfort standard temperature of a room is shown. Furthermore, power used by
HVAC units in each apartment cannot be greater than some specific amount. To conclude,
for such building the following constraints can be used:

T
zj

min[k] ≤ T
zj

i [k] ≤ T zj
max[k]

0 ≤ φ
zj

h [k] ≤ φzj
max (4.18)

where T zj

min and T
zj
max are minimum and maximum acceptable temperatures in each apartment.
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Figure 4.3 Floor map of 8 of studio apartments

Also, φzj
max is the maximum power available by heater of each apartment.


x[k]
x[k + 1]
x[k + 2]
...

x[k + np]


︸ ︷︷ ︸

Xnp [k]

=



I

A

A2

...

Anp


︸ ︷︷ ︸

Anp

xzj [k] +



0 0 ... 0 0 0
B 0 ... 0 0 0
AB B ... 0 0 0
... ... . . . ... ... ...

Anp−1B Anp−2B ... AB B 0


︸ ︷︷ ︸

Bnp

Uzj
np

[k]

+



0 0 ... 0 0 0
E 0 ... 0 0 0
AE E ... 0 0 0
... ... . . . ... ... ...

Anp−1E Anp−2E ... AE E 0


︸ ︷︷ ︸

Enp

Vzj
np

[k]

⇒ Xzj
np

[k] = Azj
np
xzj [k] + Bzj

np
Uzj
np

[k] + Ezj
np
Vzj
np

[k] (4.19)
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and for outputs:


y[k]
y[k + 1]

...
y[k + np]


︸ ︷︷ ︸

Y
zj
np [k]

= CXzj
np

[k] + DUzj
np

[k] + FVzj
np

[k]

C =
[
C . . . C

]
D =

[
D . . . D

]
F =

[
F . . . F

]
(4.20)

Now by combining equations (4.19) and (4.20), final form can be obtained:

(4.19) & (4.20)⇒ Yzj
np

[k] = CAnpx[k] + (CBnp + D)Unp [k] + (CEnp + F)Vnp [k] (4.21)

and constraint (4.18) changed to:


y
zj

min[k]
y
zj

min[k + 1]
...

y
zj

min[k + np]


︸ ︷︷ ︸

Y
zj
min[k]

≤ Yzj
np

[k] ≤


ymax[k]

ymax[k + 1]
...

ymax[k + np]


︸ ︷︷ ︸

Y
zj
max[k]

0
0
...
0

 ≤ Uzj
np

[k] ≤


φ
zj
max[k]

φ
zj
max[k + 1]

...
φ
zj
max[k + np]


︸ ︷︷ ︸

Φ
zj
max[k]

(4.22)

4.2.6 Demand-Supply Balance Constraint

The power balance constraint can be expressed as follow:

Pbuy,G[k]− Psell,G[k] + PPV [k]−
Napt∑
i=1

P i
apt[k] +

NEV s∑
j=1

βj[k](P j
disch[k]−P j

ch[k])

+ (Pb,disch − Pb,ch) = 0 ∀k
(4.23)

In this equation, Pbuy,G and Psell,G are respectively the amount of power ought from grid and
sold to the grid.
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4.3 Control Algorithm

In order to control the building, we choose model predictive control because of its capability
to consider the future information. The main purpose of the proposed algorithm is to reduce
operation costs. Here, we define the objective function as the cost of power buying from the
grid minus the cost of poweror selling to grid over a given horizon. Thus, the final form of
optimization problem becomes:

min
Θ

n+np or n+nc∑
k=n

Cbuy[k]Pbuy,G[k]− Csell[k]Psell,G[k]

s.t : (4.8) & (4.7)

(4.14) & (4.16)

(4.21) & (4.22) & (4.23) (4.24)

where Θ = {uzi , Pbuy,G, Psell,G, P
j
disch, P

j
ch, Pb,disch, Pb,ch |∀j, i & ∀k ∈ {n, n+ 1, ..., n+ np}} are

the decisional variables which must be found by solving the optimization problem (4.24). In
this equation, Cbuy and Csell are actually refers to purchasing cost and selling cost respectively.
This optimization function will be solved at each time step n for times n to n+np or n+nc,
only the first time step element of Θ will be applied to the system at each time step.

4.4 Simulations

In this section, we illustrate an application of the proposed approach and compare it with
the classical PID controller, which is widely used in buildings. We considered a residential
building with four floors, each having 8 apartments. The buiding is connected to a parking lot
having 20 electric vehicles. The building is connected to the main grid, where a Time-of-use
(TOU) pricing is included as a pricing mechanism for power exchange with the grid [205].
For temperature setpoints variations, constraints shown in table 4.1 are considered.

The RC-model of a building including 32 apartments is implemented in Simulink to obtain
the nonlinear model and then Linear Analysis Toolbox of MATLAB was used to obtain the
linear state space model. The MPC problem was formulated in MATLAB and we used
CPLEX package for MATLAB to solve the MPC problem at each time step.

The properties of EVs and ESS can be illustrated in table ??. Besides, we assume that,
arrival time, departure time and SOC of each EV at the arrival time can be estimated.
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Figure 4.4 PV Power and Battery SOC.

Table 4.1 Standard temperatures to feel comfortable in a room [79].

Parameter Unit Occupied
Room temperature °C 19 ≤ T azi

≤ 26
Ceiling surface temp. °C 15 ≤ T czi

≤ 27

The price of Cbuy is assumed to follow Ontario selling price which depends on time of use
(TOU). On the other hand, since power balance (4.23) is used to avoid infeasibility, we decide
to choose Csell equals to 2¢ per kWh less than Cbuy at each time step k. In addition, we
assume that the maximum power that can be bought from the grid cannot exceed a certain
amount (170kW).

Our sampling time is 15 minute with prediction horizon of np = 4 days = 4 × 24 × 4 =
384 quarters and control horizon of nc = 2 hours = 8 quarters. Outside temperature is
between [−10°c 1°c] and the rated power generated by the roof-top PV pannels is equal to
300 kW (see Fig. 4.4).

It is assumed that apartments number 4 and 7 require temperature between [20°c 25°c] while
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Figure 4.5 Charging and discharging power of ESS

Table 4.2 EVs and Battery Properties

EVs Type Capacity(kWh) Charge Rate(kW)
EVs Group 1 24 6.6
EVs Group 2 16 3.6
EVs Group 3 9.2 3.8
EVs Group 4 28 7.6
Battery 5 × 100 5 × 9.2

the other apartments define upper and lower bounds temperature equal to 26°c and 19°c
respectively. To make simulation more realistic, the building construction materials have
been obtained from materials which is used in residential examples of EnergyPlus (table ??).

By solving optimization problem (4.24), the values of uzi , Pbuy,G, Psell,G, P
j
disch, P

j
ch, Pb,disch, Pb,ch

can be found at each time step. In Fig. 4.4, the amount of PV power and SOC of ESS are
shown. It must be mentioned that the extra power from PV is saved in ESS and can be
used during nighttime period. Fig. 4.5 shows, the status of charging (Pb,ch) and discharging
(Pb,disch) of the ESS. It seems that ESS stores more energy during the daytime (when PV
generates power) and building uses this stored energy during night time. Due to limitation of
ESS charging and discharging power, sometimes BEMS suggests whether selling extra power
of PV to grid or buying from grid to overcome this limitations. Furthermore, the ESS seems
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Figure 4.6 Zone temperatures

to be charged and discharged once per day which from the view point of life cycle of batteries,
the proposed algorithm follows the normal routine.

As it can be shown in Fig. 4.6, all apartments’ temperatures are controlled between desired
setpoints by controlling uzi for each zone zi. Compared to PID, the proposed approach
keeps the temperatures between the minimum and maximum bounds. In figure 4.7, the total
amount of power required to keep temperatures of the apartments at desired ranges and the
pricing system (TOU) are shown. By comparing Figs. 4.6 and 4.7, it can be depicted that
before on-peak time which starts almost at 7am, BEMS tends to warm-up each apartment
as much as possible. Thus, in on-peak time, the total consumption of the HVAC units can
be reduced. In addition, by comparing results of proposed method with PID, it can be seen
that the proposed method tends to consume less power due to the implementation of data
prediction. The proposed method avoids high power peak while keeping temperatures at an
average values. On other words, the apartment building is considered as a large one-way
thermal storage system which can save energy during off-peak time and use it during on-
peak time. This implies that, the amount of power which should be bought from grid will
be reduced, as can be seen from Fig. 4.9.

Total number of 20 EVs from four types of electrical vehicles have been used in this simulation.
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Figure 4.7 The total amount of HVAC power consumption for MPC and PID.

Table 4.3 Building Parameters

Parameter Value Parameter Value
Ri 50°C/kW Ci 9.7kWh/°C
Rim 7.14°C/kW Cim 0.011kWh/°C
Ram 0.054°C/kW Com 250.50kWh/°C
Ra 8.021°C/kW

The time of departure for each vehicle is assumed to follow a normal Gaussian probability
distribution function (PDF) with N ∼ (7 am, 45 min) and the same PDF for time of arrival,
N ∼ (4 pm, 45 min) at the same day. Fig. 4.8 shows that, however at the time of the
departure each vehicle has the desired SoC, but during time of presence, by controlling P j

disch

and P j
ch of each EV, the algorithm uses their batteries to accomplish its objective. For

example, at the time of arrival, since it is in an on-peak period, extra power stored in EVs
will be used until appropriate amount of PV power is generated or the on-peak period is
surpassed.

As can be depicted in Fig. 4.9, othe power purchased from the grid does not exceed the
maximum allowable limit of 170kW. Furthermore, during the first 24 hours when high power
generation is observed, the excess amount has been used for charging the energy storage
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Figure 4.8 State of charge of EVs and power generation from PV.

system and also, sold to the grid.

4.5 Conclusion

In this paper, we proposed a MPC algorithm for energy management in an apartment build-
ing integrating microgrid. We aim to present an effective approach for the modeling and
optimizing a multi-unit residential building, integrating a local shared renewable power gen-
eration, energy storage system and electric vehicles. The proposed algorithm could handle
both power consumption and comfort parameters objectives through using MPC while involv-
ing HVAC systems in demand response. By applying TOU pricing, results of the algorithm
suggested to store extra solar generated power in ESS or sell it to grid to gain more benefits.
During off-peak periods, BEMS tried to increase temperature inside building, so in on-peak,
which is usually during daytime, less power will be needed. In other words, BEMS is assum-
ing building as a thermal battery and by controlling its temperature, it tries to reduce its
power consumption during on-peak periods. Furthermore, through V2B concept, the BEMS
uses EVs’ batteries to accomplish its goals, charging EVs at off-peak or in case of extra solar
power and discharging them in case of on-peak periods.

Future work will investigate the use of stochastic model predictive control for better handling
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Figure 4.9 red The amount of power exchanged with the grid.

uncertainties related to loads, RESs and electric vehicles. Future work will also aim to
implement distributed optimization strategy for a network of residential buildings integrating
microgrids, where buildings can cooperate with each other for an overall optimal operation.
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CHAPTER 5 ARTICLE 2: DISTRIBUTED STOCHASTIC MODEL
PREDICTIVE CONTROL FOR PEAK LOAD LIMITING IN NETWORKED

MICROGRIDS WITH BUILDING THERMAL DYNAMICS

Authors: Ehsan Rezaei, Hanane Dagdougui, Mahdi Rezaei
Accepted for publication: IEEE Transactions on Smart Grid, 2021

Abstract: Today’s increase in demand for renewable energy resources has attracted a lot
of attention towards Microgrids (MGs). Due to their reliability, computation power and
performance, a distributed network of MGs seems to be a promising approach to integrate
a large number of distributed energy resources, energy storage systems and loads. However,
local privacy, the consensus process and the stochastic behaviours of renewable resources are
some of the challenges which should be addressed before a wide deployment of such networks.
In this paper, we introduce a distributed MGs with buildings, focusing on their ability to
provide peak load limiting. The algorithm is formalized as a two-stage stochastic problem,
where the first stage variables determine the next time-step buildings’ temperatures setpoints
in each microgrid, while the second-stage variables define the power exchange decisions for
limiting peak load in the network of microgrids. Leveraging by alternating direction method
of multipliers (ADMM), the proposed framework can work in a real-time environment as a
supervisory controller to coordinate MGs.

Keywords

Network of microgrids, Demand response, Distributed optimization, Stochastic model pre-
dictive control, ADMM.

5.1 Nomenclature

i Index of Microgrid i
ki Neighbours of MG i

∆T Time-step length
ζ Scenarios set
ζj Scenario j of scenario set ζ
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pj Occurrence probability of scenario ζj
v Disturbances vector
Υ Network adjacency matrix

θout Outside temperature
Ppv,i Generated PV power
G Solar irradiation
P i
Rated Rated power of PV panels
θiSTC Standard operation point of PV panels
τi Temperature coefficient of PV panels

xi Building state vector
ul,i Building heating/cooling control vector
yi Building measurable temperatures vector
uil,c Maximum power of building cooling system
uil,h Maximum power of building heating system
yides Building desired temperatures (setpoints) vector
δδδi Vector of small deviation from yides
∆uimax Maximum rate of cooling/heating systems power changes

soci Battery state of charge
ub,c,i Battery charging power
ub,d,i Battery discharging power
ub,i Battery total exchanging power
ηisd Battery self-discharging rate
ηib,c Battery charging rate
ηib,d Battery discharging rate
Ci
b Battery capacitance

uimaxc
Maximum charging power of Battery

uimaxd
Maximum discharging power of Battery

socimin Minimum admissible SOC
socimax Maximum admissible SOC
αb Auxiliary Boolean variable
αp Price of buying power from main grid per kWh
αs Price of selling power to main grid per kWh
α0 Trade-off level control parameter
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ρki,j,ζ Link Li,j Lagrange multipliers at iteration step k
ρkg,i,ζ Link Li Lagrange multipliers at iteration step k
Φi Objective function of MG i

Ωi Constraints of MG i

Φg Objective function of aggregator
Ωg Independent constraints of aggregator
Γg Shared constraints of aggregator
Ωli,j

Independent constraints of link Li,j
Γli,j

Shared constraints of link Li,j

Pgb,i Bought power from main grid
Pgs,i Sold power to main grid
Pj,i Exchange power between MG i and j
P i
ncLoad Non-controllable load
Pm
g,i MG i Maximum exchangeable power with main grid
Pm
i,j MG i Maximum exchangeable power with MG j

Γg,i Link i constraints of link between main grid and MG
Γi,j Constraints of link between main grid and MG i

5.2 Introduction

Growing energy consumption and meeting environmental targets encourage not only main
producers but also consumers to take advantage of renewable energy sources (RESs). Build-
ings account for 40% of global energy consumption, with 75% of it going toward controlling
comfort parameters [50]. Demand response (DR) programs have been considered as a promis-
ing solution for utilities and consumers. From a utility perspective, DR helps increase the
flexibility in the grid for balancing supply and demand, which may delay investments for
new generator units and transmission lines. From the consumer side, DR offers consumers a
unique opportunity to increase their participation in grid management while saving money
on their energy bills and earning income from the grid.

Due to their potential in energy management, buildings with large thermal dynamic capac-
itance and distributed renewable energy resources have received much attention in recent
years. In [206], a model predictive controller for apartment buildings integrated with RESs
and electrical vehicles (EVs) is proposed. The study demonstrated that DR and the proposed
controller can successfully overcome on-peak problems using the thermal capacity of apart-
ments, saving energy during off-peak hours and reducing total energy consumption during
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on-peak time, without violating occupants’ comforts. In [207], the authors extended the pre-
vious study to capture uncertainties in electricity price, solar power generation and weather
conditions by proposing a two-stage stochastic optimization problem. In [208], a price-based
DR framework having the main objectives of minimizing both energy costs and occupants’
thermal discomfort is proposed. The author trained a neural network from occupants’ votes
to find the best thermal preferences. Then the network was estimated with piece-wise linear
equations and integrated with DR. An intelligent energy management system for residential
buildings, is proposed in [209]. The proposed system schedules the controllable loads to
maintain the building’s total power consumption below a maximum demand limit (MDL)
while considering the dynamic of non-controllable loads and the intermittent behaviour of
RESs. In a recent work [210], Yu et al. proposed a non-model-based reinforcement learn-
ing approach for controlling heating, ventilation, and air conditioning (HVAC) systems in
commercial buildings. Although there are some studies investigating the integration of DR
in buildings and microgrids (MGs), to the best of the authors’ knowledge, coordinating DR
actions in a network of building-integrated MGs has not been carefully studied.

A network of MGs consists of several microgrids that can exchange power following a peer-
to-peer (P2P) manner or through an aggregator / distribution network operator. Compared
to a single MG, a network of microgrids has more potential to influence the main grid. Three
different approaches are usually considered to control this type of network: centralized, dis-
tributed and decentralized. In [211], a network of building-integrated microgrids coordinated
by an aggregator can reduce total consumption below MDL by controlling buildings’ tem-
peratures. In [212], the authors developed a supervisory control and data acquisition system
and investigating its performance by applying it to a real-scenario case. Despite integrat-
ing temperature control in the buildings, both studies implemented a centralized structure,
which suffers from heavy computational load, privacy and reliability issues.

To solve the aforementioned problems of centralized networks, distributed methods such
as dual decomposition and the alternating direction method of multipliers (ADMM) have
been used to decouple the optimization problem to smaller sub-problems at the level of each
MG. Parisio et al. [213] propose a distributed MPC-based algorithm for network of MGs to
manage total exchange power between MGs and the main grid. In [214], a two-level control
methodology is presented where the upper-level loop distributively optimizes the generation
output of MGs, while optimal settings are tracked in the lower-level loop. Some recent studies
consider the electrical aspects of such networks. However, there are some ongoing research
investigating or improving its convergence rate (such as [215–217]), but compared to other
decomposition optimization methods, ADMM has benefits of practical fast convergence with
a reasonable precision, ease to implementation and generalization [165]. In [166], the authors
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develop an ADMM-MPC-based algorithm to regulate the frequency of buses while considering
their voltage constraints. Zhou et al. [218] address unbalanced single- and three-phase MG
problems and propose a hierarchical event-based distributed controller that can regulate the
power flows of phases. However, none of them consider the stochastic behaviours of RESs or
the network of buildings.

In this paper, we present a distributed stochastic model predictive control framework for a
network of residential MGs. The problem is formulated as a two-stage stochastic optimiza-
tion, and the stochastic version of ADMM is introduced. The proposed algorithm can handle
uncertainties related to renewable power generation resources while guaranteeing both pri-
vacy and reliability of the network. The main contributions of this paper are summarized as
follows:

• A novel stochastic distributed framework for a network of MGs is introduced. This
framework can handle the stochastic behaviours of renewable energy resources which
are modeled as a stochastic process with a dynamic probability distribution function.

• By controlling MGs’ HVAC systems and managing their resources, the proposed frame-
work can keep the total purchased power of the network below MDL while satisfying
the comfort parameters of buildings’ occupants by considering thermal dynamics and
multi-zones effects of each building.

• In this framework, aggregators can have their own objectives and optimization prob-
lems, which should be solved with respect to their electrical constraints, at each time
step.

• Using parallel programming in the simulation section, the performance of proposed
framework has been investigated and it is shown that it can be used in real-time appli-
cations.

The rest of this paper is organized as follow: Section 5.3 presents mathematical models of
MG elements. Section 5.4 first formulates the general optimization problem of a network
of MGs and then introduces an ADMM-based distributed stochastic MPC framework for
solving the optimization problem. Section 5.5 demonstrates the efficiency of the proposed
method through a case study, and finally Section 5.6 concludes the paper.

5.3 Mathematical Modeling

A network of residential building-integrated PV-battery microgrids is a set of N different
MGs with PV panels to generate power and a battery to store energy. MGs can exchange
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power among themselves or with the main grid in a P2P or hierarchical manner. The network
is defined as a directed graph with MGs and the grid / aggregator as its vertexes denoted by
Ψ = {MGn : n ∈ {1, 2, . . . n}} ∪ {G}. Now, Υ can express the network structure as:

Υ =
[
Υi,j|

Υi,j = 1 physical link
→
ij exists

Υi,j = 0 o.w.

]
∀i,j∈Ψ

Note that the direction of the physical link
→
ij is conventional and obviously, Υj,i = 0 if

Υi,j = 1. Moreover, the Li,j represent the link
→
ij if i, j ∈ Ψ/{G}, and in case if one of i or j

is {G}, Li is used to represent the link between MG and main grid.

5.3.1 Thermal Dynamic Model of Buildings

In this work, the thermal behaviour of each building is modeled by its equivalent resistance-
capacitance (RC) model. The model obtained from RC method, due to its capabilities in
thermal modeling of building’s elements and also considering effects of different disturbances,
e.g., outside temperature and solar irradiation, has a high accuracy. However, the model is
not complex as the white-box models, e.g., 3-D heat equations [219], and so it does not
suffer from their problems, mainly needs for high computational power. In the RC modeling
method, each element of a building is replaced by its equivalent thermal resistance and
heat capacitance. Using the building blueprints, these elements are then connected to each
other and, similar to electrical circuits, a thermal network can be designed. The state space
equations of this thermal network can now be used to control the temperature of building
zones.

According to [204], the discretized version of the RC model obtained from the aforementioned
process can be expressed as follows:

∀k :


xi[k + 1] = Aixi[k] +Bi

uul,i[k] +Bi
vv[k]

+∑nu
j=1(Bi

vu,jv[k] +Bi
xu,jxi[k])uj,i[k]

yi[k] = Cixi[k]

(5.1)

where xi[k],v[k] and yi[k] are the state vector, disturbance vector and output temperature
vector, respectively, for a building of MG i. The matrices Ai, Bi

u, B
i
v, C

i, Bi
uv,j and Bi

xu,j are
fixed, and their values can be found either directly from the building’s blueprints or using
identification methods applied to historical data. Vector xi represents temperature of building
i’s different elements. ul,i[k] =

[
u1,i[k] u2,i[k] . . . unu,i[k]

]T
denotes the input control
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vector, each uρ,i represents the output power of a heating / cooling actuator in controllable
zone ρ of building i and nu is the total number of actuators in said building. Usually, the
limited number of actuators in the building makes it impossible to control the temperatures of
all zones, and so instead of controlling the temperature in all zones, our focus is on controlling
the temperature of at most these nu zones with actuators, temperature vector yi. Obviously,
the vector size of yi is less than or equal to nu (a zone can have more than one actuator). For
the sake of simplicity, the superscript notation i is used to distinguish MG i components. The
nonlinear summation term∑nu

j=1(Bi
vu,jv[k]+Bi

xu,jx[k])uj,i[k] models the interaction of inputs-
disturbances or inputs-states. For example, blind position (control input) can affect the
energy absorbed from sun irradiation through windows (disturbance), and the temperature
of ventilated air (control input) can decrease or increase another zone’s temperature due to
ventilation between different zones (states). A detailed example of applying RC-method to
a real case home, used in our case study, is given in Appendix 5.7.1.

According to equation (5.1), the temperature of controllable zones depends on disturbances,
control inputs and previous states. To satisfy comfort parameters, we need to keep zone
temperatures in an acceptable range near occupants’ desired values, setpoints yides[k]. Then
we have:

∀k : yides[k]− δδδi ≤ yi[k] ≤ yides[k] + δδδi (5.2)

where δδδi is a small acceptable deviation from yides[k], which should not violate occupants’
comforts. Due to its thermal retention characteristic, a building behaves like a large thermal
battery. Defining δδδi can guarantee the feasibility of the final optimization problem. Also,
buildings can act as thermal storage systems using this small deviation and their slow thermal
dynamic feature, providing additional flexibility to the related MGs and to the network.

The maximum power consumption of actuators can be guaranteed by:

∀k : −uil,c ≤ ul,i[k] ≤ uil,h (5.3)

where uil,c and uil,h show the maximum cooling and heating power, respectively. Obviously,
in cooling (warming) seasons, the value of uil,c (uil,h) should be set to zero. Furthermore, for
avoiding any damage to building’s thermal systems , the rate of ul,i[k] changes should be
limited:

∀k : −∆uimax ≤ ul,i[k]− ul,i[k − 1] ≤ ∆uimax (5.4)

Note that ∆uimax is a function of cooling/heating mode of thermal systems and time-step ∆T
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used for discretization of RC-model (5.1). Although the response time of building’s thermal
systems is not modeled explicitly, but choosing a big enough time-step ∆T can cover their
response time delay.

5.3.2 PV Panels

In this study, the PV panels are assumed to work at their maximum power, and the model
(5.5) is therefore considered to estimate generated power Ppv,i,ζ from solar irradiation Gζ :

∀k, ζ : Ppv,i,ζ [k] = P i
Rated

Gζ [k]
1000 [1 + τi(θout − θiSTC)] (5.5)

where P i
Rated, θiSTC and τi are the rated power, the temperature of the standard operation

point and temperature coefficient of solar panels, respectively and θout denotes outside tem-
perature. At time step k, solar irradiation Gζ [k] depends on a random process ζ at each
time step k, which its probability density function (pdf) p(ζ[k]) can be found by analyz-
ing solar irradiance data from previous years [220]. Using a continues form of p(ζ[k]) in
practice, needs considerable computational power and time, and hence using a reduced and
discrete form of an ensemble realizations of p(ζ[k]), is necessary. Deploying scenario tree
method to discretize ζ[k] to different n-value ζ1[k], ζ2[k], . . . , ζn[k] with occurrence probabil-
ities of p1[k], p2[k], . . . , pn[k] at time k, is a reasonable and yet efficient way to decrease its
complexity, where pis are defined as follow:

∀k :pj[k] =


∫ γ1

0 p(ζ[k]) dζ j = 1∫ γj
γj−1

p(ζ[k]) dζ o.w.

γj = ζj + ζj+1

2 (5.6)

Besides, as we will explain later in part 5.3.4, due to power flow constraints, almost all
decision variables have stochastic behaviours and therefore, for rest of this paper, we use
subscript ζ to show the dependency of a variable on ζ.

5.3.3 Electrical Storage System

Usually, PV panels come with batteries to save their extra generated energy. In this study,
each MG has its own energy storage system, mainly batteries. If soci[k] denotes the state of
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charge of the MG i battery at time step k, the battery can be modeled for all k and ζ as:

soci,ζ [k + 1] = ηisdsoci,ζ [k]

+ 1
Ci
b

(
ηib,cub,c,i,ζ [k]− 1

ηib,d
ub,d,i,ζ [k]

)
(5.7)0 ≤ ub,c,i,ζ [k] ≤ uimaxc

0 ≤ ub,d,i,ζ [k] ≤ uimaxd

(5.8)

0 ≤ ub,c,i,ζ [k] ≤ αb[k]uimaxc

0 ≤ ub,d,i,ζ [k] ≤ (1− αb[k])uimaxd

, αb[k] ∈ {0, 1} (5.9)

socimin ≤ soci,ζ [k] ≤ socimax (5.10)

where in (5.7), ηisd, ηib,c and ηib,d respectively denote the self-discharging, charging and dis-
charging rates of battery with capacitance Ci

b. Equations set (5.8) limits the charging and
discharging power of battery ub,c,i,ζ and ub,d,i,ζ , by their maximum values uimaxc

and uimaxd
,

while equations set (5.9) by defining binary variables αb[k] prevents battery’s charging and
discharging mode activate at the same time. Also by limiting its soc between maximum and
minimum admissible socimin and socimax, equation (5.10) guarantees safety of battery from
being fully charged or discharged. The auxiliary variable ub,i,ζ defined as

ub,i,ζ [k] = ub,c,i,ζ [k]− ub,d,i,ζ [k], ∀i, ζ, k, (5.11)

will help us to consider effects of battery’s charging and discharging power together. Ob-
viously when the battery is in charging (discharging) mode, the sign of ub,i,ζ [k] is positive
(negative).

5.3.4 Power Balance

In a hierarchical structure, each MG can buy power Pgb,i from or sell power Pgs,i to the main
grid through the aggregator. In a P2P structure, on the other hand, MGs can exchange power
with either the main grid or their neighbours. Considering the adjacency matrix Υ, if Υi,j is
non-zero, then there is a link Li,j between two MGs i and j and they can therefore exchange
power Pi,j. To solve the optimization problem, for all time steps k, power exchange Pj,i[k]
should be equaled to −Pi,j[k], otherwise the optimization becomes infeasible. Depending
on the network structure, we can have two different power balance equations for each MG
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i, ∀k, ζ:

Hierarchical structure:

Ppv,i,ζ [k] + ub,i,ζ [k] + Pgb,i,ζ [k]− Pgs,i,ζ [k]

−
nu∑
j=1
|uj,i,ζ [k]| − P i

ncLoad[k] = 0 (5.12a)

P2P structure:

Ppv,i,ζ [k] + ub,i,ζ [k] + Pgb,i,ζ [k] +
∑
j∈ki

Pj,i,ζ [k]

− Pgs,i,ζ [k]−
nu∑
j=1
|uj,i,ζ [k]| − P i

ncLoad[k] = 0 (5.12b)

where P i
ncLoad[k] is the non-controllable consumption of MG i at time step k. Also, in reality,

to avoid physical damage to the power transmission cables, each power line (link) has a
maximum capacity defined by, ∀ζ, i, k, j ∈ ki:


Γg,i(Pgs,b,i) :

0 ≤ Pgb,i,ζ [k], Pgs,i,ζ [k] ≤ Pm
g,i

Pgb,i,ζ [k]Pgs,i,ζ [k] = 0

Γi,j(Pi,j, Pj,i) : −Pm
i,j ≤ Pi,j,ζ [k] = −Pj,i,ζ [k] ≤ Pm

i,j

(5.13)

where Pgs,b,i =
[
Pgb,i Pgs,i

]T
.

5.4 Distributed Optimization

5.4.1 Single MG Optimization Problem

Each MG is minimizing its energy consumption cost while keeping constantly a comfortable
temperature for occupants, for all controllable zones of a building:

Eζ
[
α0‖yi[k]− yidesi[k]‖2

2 +ααα1Pgs,b,i,ζ [k]
]

(5.14)

where ‖ · ‖2 represents norm 2 of the matrix, ααα1 =
[
αp −αs

]
is the matrix of prices for

exchanging with (buying from and selling to) the main grid and α0 is a control parameter,
set by each MG to adjust the trade-off level between building temperature comforts and its
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exchange power with the main grid. Obviously, αs should be less than αp, otherwise the
optimization problem will be infeasible, since buying power from the main grid and selling it
back right after is an optimal solution that can maximize objective function (5.14).

The stochastic behaviour of PV-generated power influences all variables in (5.14) through
power balance equations (5.12b or 5.12a), and so these variables can all have stochastic
behaviours. However, standing at time step t − 1, the MG i should find optimal values for
zones’ temperatures yi and set these temperatures during the next time step t. As a result,
yi and the total power consumption of the building can be seen as first-stage variables that
should be decided at the beginning of time step t and are independent of ζ. In this case, Pgs,i,ζ

and Pgb,i,ζ , selling and buying power, respectively, are second-stage variables. Therefore, the
optimization problem of each MG over prediction horizon np can be reformulated as:

min
xi

t+np∑
k=t+1

Φi(xi[k])︷ ︸︸ ︷
α0‖yi[k]− yidesi[k]‖2

2 + Eζ
[
ααα1Pg,i,ζ [k]

]
s.t.: Ωi (5.15)

where xi represents the vector of all optimization variables, such as Pgb,i,ζ , Pgs,i,ζ and ub,i,ζ ,
and Ωi is the set of all constraints of MG i, (5.7) to (5.13).

5.4.2 Aggregator Optimization Problem

In hierarchical coordination, the aggregator has the opportunity to offer flexibility services to
the distribution system operators. In this case, an objective function (Φg) defines the energy
scheduling:

min
agg. vars

t+np∑
k=t+1

Φg[k]
(
or ΦLi,j

[k]
)

(5.16)

s.t. ∀ζ, k ∈ [t+ 1, t+ np] :

Γg

(
or Γli,j

)
Ωg

(
or Ωli,j

)
where the aggregator and link Li,j have independent constraints Ωg and ΩLi,j

and shared
constraints Γg and ΓLi,j

, respectively.

The peak load limiting strategy can be achieved by assuming all MGs are connected to the
grid through the same transformer or substation that may impose power limits sometimes.
At the level of the aggregator, the objective of the scheduling problem is to control the total
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net power exchange to achieve better grid stability and high network performance during on-
peak time and to keep the power generated by the main grid at a reasonable level. As a result,
the shared constraint Γg can be broken down to keep the total net power consumption of the
MGs around a desired MDL level cdesi, and also a group of constraints Γg,i(Pg,i,η), related to
both MG i and the aggregator / main grid:

min
c, agg. vars

t+np∑
k=t+1

Eζ [(cζ [k]− cdesi[k])2] + Φg[k] (5.17)

s.t. ∀ζ, k ∈ [t+ 1, t+ np] :


Ωg

Γg,i(Pg,i,ζ)∑
i Pg,i,ζ [k] = cζ [k]

where cζ [k] is a decisional variable denoting the total net power consumption of scenario ζ
at time step k. Note that the first group of constraints in equation (5.17), Ωg, expresses the
constraints of the aggregator itself such as voltage regulation and line capacitance constraints.
The role of the link, on the other hand, is to coordinate the power exchange among the MGs
through the consensus process. So it can be assumed ΦLi,j

[k] = 0. The optimization problem
of the links will be given later, in Section 6.3.2.

5.4.3 ADMM Introduction

In the network of MGs introduced in section 5.4.1, individual MG prefers conservative ap-
proaches for sharing their information with third party or other MGs, especially when they
have different stakeholders. On the other hand, the network main goal is to keep its to-
tal purchased power under MDL and therefore, a distributed communication way is needed.
ADMM-based distributed optimization due to its practical speed and convergence properties,
can be used in favor of both MGs privacy policy and network MDL objective, [165].There-
fore, the ADMM decomposition method is implemented to solve the problem in a distributed
fashion. In this work, a stochastic version of ADMM is proposed to handle the stochastic
variables.

Theorem 1 Assume ζ is a random variable that comes from a known distribution P, and is
discretized to ζis, using a discretization method. In this case, a solution to the optimization
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problem

min
x,z

f(x) + Eζ [g(zζ)]

s.t. : Ax+Bzζi
= cζi

∀ζi ∈ ζ (5.18)

can be found by using following iteration method:

zk+1 = argmin
z

(
Eζ
[
g(zζ) + ρ

2‖D(Axk +Bzζ − cζ + ukζ )‖2
2

])
xk+1 = argmin

x

(
f(x) + ρ

2Eζ
[
‖D(Ax+Bzk+1

ζ − cζ + ukζ )‖2
2

)
uk+1
ζi

= ukζi
+ (Axk+1 +Bzk+1

ζi
− cζi

) ∀ζi ∈ ζ (5.19)

Its convergence proof is given in Appendix 5.7.2. In the next section, we use this theorem
to propose an ADMM-based distributed stochastic MPC (SMPC) algorithm for networks of
MGs.

5.4.4 ADMM-based Distributed SMPC

Model predictive control (MPC) is a well-known control methodology that is widely used and
shows high performance due to its model consideration and prediction properties. SMPC
proposes a stochastic version of MPC that can deal with stochastic variables in the model,
such as solar irradiation.

According to equation (5.5), the probability density function of sun irradiation p(ζ[k]) is
needed to find the optimal solution. For this reason, we assume the location of the MGs is
known to both the aggregator and the links and they therefore know the p(ζi) of MG i at each
time step. The algorithm can be extended to different p(ζi), but without loss of generality
and for the rest of the paper, we assume that all MGs are located in the same geographical
location (e.g., city) and therefore have similar p(ζi). The general objective function can be
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now expressed as follows:

min
xi,c

Tobj =
t+np∑
k=t+1

[
Eζ [(cζ [k]− cd[k])2] + Φg[k] +

∑
i

Φi(xi[k])
]

s.t. : ∀i, k, ζ, j ∈ ki



MG cons: Ωi

Link cons: ΓLi,j
(Pi,j,ζ , Pj,i,ζ)

Grid cons:


Ωg

Γg,i(Pg,i,ζ)∑
i Pg,i,ζ [k] = c[k]

(5.20)

Notice that the links’ constraints ΓLi,j
and total net exchange power are coupled among

MGs. For decoupling, we need to define the following auxiliary variables P̄g,i,ζ = Pg,i,ζ and
P̄i,j,ζ = Pi,j,ζ :

min
xi,c

Tobj

s.t. : ∀i, k, ζ, j ∈ ki



MG cons: Ωi

Grid cons:


Ωg

Γg,i(P̄g,i,ζ)∑
i P̄g,i,ζ [k] = c[k]

Link cons: Γi,j(P̄i,j,ζ , P̄j,i,ζ)

Coupled cons:

P̄g,i,ζ = Pg,i,ζ

P̄i,j,ζ = Pi,j,ζ

(5.21)

Now according to [165], the dual function of (5.21) with respect to coupled constraints can
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be expressed as:

Tobjnew =
t+np∑
k=t+1

Eζ [(cζ [k]− cd[k])2] (5.22a)

+
∑
i

ρkg,i,ζ
2 Eζ

[
‖P̄g,i,ζ [k]− Pg,i,ζ [k] + vi,ζ [k]‖2

2

]
(5.22b)

+
∑
i

Φi(xi[k]) +
ρkg,i,ζ

2 Eζ
[
‖P̄g,i,ζ [k]− Pg,i,ζ [k] + vi,ζ [k]‖2

2

]
(5.22c)

+
∑
i

∑
j∈ki

ρki,j,ζ
2 Eζ

[
‖P̄i,j,ζ [k]− Pi,j,ζ [k] + wi,j,ζ [k]‖2

2

]
(5.22d)

+
∑
i

∑
j∈ki

ρki,j,ζ
2 Eζ

[
‖P̄i,j,ζ [k]− Pi,j,ζ [k] + wi,j,ζ [k]‖2

2

]
+ . . .

 (5.22e)

where ρki,j,ζ and ρkg,i,ζ are corresponding Lagrange multipliers, and vi,ζ and wi,j,ζ are opti-
mization control parameters that will be used to coordinate and guarantee the convergence
of ADMM. Also, there are some constant terms that do not affect the optimization problem
(for more information, see [165]). In objective function (5.22), the first and second terms are
related to the main grid / aggregator, the third and fourth terms can be handled by each
MG, and the last term will be optimized in the corresponding link Li,j. For simplicity, a
time-dependent variable without time index denotes the vector of all its values between time
steps [t+ 1, t+ np]. Now, a new objective function can be defined for each part:

• Main Grid:

objg(c,v, P̄g,Pg) = (5.22a) + (5.22b) (5.23)

where v, P̄g and Pg denote all values of vi,ζ , P̄g,i,ζ and Pg,i,ζ , respectively.

• MG i:

objMG
i (vi,ui, P̄g,i, Pg,i, P̄i,Pi) = (5.22c) + (5.22d) (5.24)

where ui, P̄i and Pi are all values of ui,j,ζ [k], P̄i,j,ζ [k] and Pi,j,ζ [k], respectively.
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• Link Li,j (where j ∈ ki):

objLi,j
(ui,j, P̄i,j, Pi,j) = (5.22e) (5.25)

The proposed ADMM-based distributed SMPC algorithm is given in Algo. 1. The variables
v0
i,ζ , w0

i,j,ζ , P̄ 0
g,i,ζ and P̄ 0

i,j,ζ are initialized at each time step t (line 1). Considering the location
of each MG, the main grid / aggregator can calculate the pdf of solar irradiation p(ζ) and
broadcast pair (ζ, p(ζ)) to the corresponding MG (line 2). By starting the consensus process
(lines 4-11), the main grid / aggregator and links will send vni,ζ , wni,j,ζ , P̄ n

g,i,ζ and P̄ n
i,j,ζ values

to the corresponding MG (lines 5 and 6).

Considering the proposed powers of the aggregator and links at iteration n, MG i should
solve its optimization problem (5.26) and find the values of P n+1

g,i,ζ and Pn+1
i (line 7). These

values represent MG i’s new suggestions for its energy requirements during the next consensus
iteration n + 1. Obviously, MG i tries to make a trade-off between its own goals and the
tracking powers proposed by aggregator and links, without violating its constraints.

Figure 5.1 Example of MGs trading energy with the main grid

This information is then sent to the aggregator and the corresponding link Li,j (line 8). In the
next step, considering the MGs’ power requirement suggestions, the main grid / aggregator
and each link Li,j can solve their own optimization problems (5.27) and (5.28) (lines 9 and
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Algorithm 1: DMPC algorithm via ADMM
for Time step t = 1, 2, . . . do

1 Initialize v0
i,ζ , w0

i,j,ζ , P̄ 0
g,i,ζ and P̄ 0

i,j,ζ , ∀ζ, i, j ∈ ki;
2 Main grid/aggregator should broadcast (ζ, p(ζ)) ;
3 Set n = −1;

repeat
4 n← n+ 1;

for ∀i, j ∈ ki (in parallel) do
5 Main grid/aggregator broadcasts vni,ζ and P̄ n

g,i,ζ to MG i;
6 Link Li,j broadcasts wni,j,ζ and P̄ n

i,j,ζ to MG i;
7 MG i should find values of P n+1

g,i,ζ and Pn+1
i :

P n+1
g,i,ζ ,Pn+1

i = argmin objMG
i

s.t.: Ωi (5.26)

8 MG i should send P n+1
g,i,ζ to main grid and P n+1

i,j,ζ to link Lijl, for all ζ and
each j ∈ ki;

end
9 aggregator should find values of P̄t+1

g :

cn+1, P̄n+1
g = argmin objg (5.27)

s.t.:


Ωg

Γg,i(P̄g,i,ζ)∑
i P̄g,i,ζ [k] = c[k]

for ∀i, j ∈ ki do
10 Link Li,j should find values of P̄ n+1

i,j,ζ s and P̄ n+1
j,i,ζ :

P̄ n+1
j,i,ζ , P̄

n+1
i,j,ζ = argmin objLi,j

+ objLj,i

s.t. :

Γi,j(xi, xj)
P̄i,j,ζ = −P̄j,i,ζ

(5.28)

end
11 Main grid and links should update vn+1

i,ζ [k] and wn+1
i,j,ζ [k], for all

ζ, i, k ∈ [t+ 1, t+ np] and j ∈ ki;

v
n+1
i,ζ [k] = vni,ζ [k] + (P̄ n+1

g,i,ζ [k]− P n+1
g,i,ζ [k])

wn+1
i,j,ζ [k] = wni,j,ζ [k] + (P̄ n+1

i,j,ζ [k]− P n+1
i,j,ζ [k])

(5.29)

until ∑
i,ζ
‖vn+1

i,ζ − vni,ζ‖2
2 + ∑

ζ,i,j
‖wn+1

i,j,ζ − wni,j,ζ‖2
2 ≤ ε or maxItr ;

12 Apply P n+1
g,i [t+ 1] and P n+1

i,j [t+ 1] for all i, j ∈ ki;
13 t← t+ 1

end



63

10, respectively). Solving these optimization problems makes it possible to determine the
values of cn+1, P̄n+1

g and P̄ n+1
i,j , which are the aggregator’s and links’ new proposed powers

after considering the MGs’ suggestions. Also, the coordination values v and wi are updated
at the level of the main grid / aggregator and links (line 11). These values are updated in the
direction that the aggregator’s and links’ proposed powers become as close as possible to those
proposed by the MGs. The consensus process is finished if the difference in proposed powers
is less than a fixed threshold or the maximum number of iterations, maxItr, is reached.

Finally, after the consensus process is finished,the MGs should set their buildings’ setpoints
at yi[t + 1] and should wait until the value of ζi[t + 1] is reached, and the corresponding
scenario can be applied based on that. Meanwhile, the algorithm can go to the next time
step by setting t ← t + 1 and starting over from line 1. In the case of P2P, the value of
Eζ
[
ρt+1
i,j,ζw

n+1
i,j,ζ [t + 1]] can be used as the MG clearing price, the power exchange price among

MGs in market equilibrium [214].
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Figure 5.2 Generated PV power of MGs (top) and outside temperature (bottom)

5.5 Case Study

In order to demonstrate the performance of the proposed distributed algorithm, the algorithm
is applied to a single line IEEE 12-bus network of buildings integrated with PV panels and
a battery. We define the network adjacency matrix, which expresses the network, as follows:
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Υ =
[
υi,j|υi,g = 1, υi,j = 0,∀i, j ∈ Ψ

]

Fig. 5.1 illustrates the aforementioned network structure. To consider various roof-top PV
installed capacities, different sizes of PV panels are used: 1kW, 2.5kw, 5kW (for 4 houses),
10kw (for 3 houses), 12kw and 22kW (for 2 houses) PV panels are assumed to be installed.
At each time step, MGs can either buy energy from or sell it to the main grid through
the aggregator. It is assumed that all MGs are located in the same geographical area and
so the difference between the MGs’ probability density function (pdf) is negligible. The
thermal satisfaction of building occupants, the zones temperatures in each MG’s building
are randomly set between 19° and 23° Celsius during the daytime (from 7AM to 10PM), and
are changed daily. During nighttime (from 10PM to 7AM) and for saving energy purpose,
however, these set-points are set to their minimum admissible limit, 19°C. For this case
study, a hierarchical structure is assumed for the network where the proposed algorithm is
used as a high-level controller to manage the power exchanging among MGs and main grid.
Therefore, a 15-minute time-step is chosen for ∆T and the same time-step is used both for
discretizing building’s RC-model and MPC time-step. Furthermore, to handle the variations
of PV and other resources which are usually less than 15 minutes, it is assumed that primary
and secondary control levels are available in each microgrid and can manage those variations.

A fixed price scheme as the one used in Quebec [221], is used for exchanging power with the
main grid; MGs can buy energy from the main grid at a price of $0.07/kWh or sell energy to
it at a price of $0.056/kWh. Also, we consider a total subscribed power (cdesi) of 9.5kW for
12 buildings. According to (5.17), by solving this optimization problem, the aggregator will
decide the value of c[k] at each time step; however, choosing a different value than cdesi[k]
will come at a heavy price in terms of (c[k] − cdesi[k])2. To maintain the accuracy of the
solar irradiation predictions, a 90-minutes prediction horizon with time-step of 15 minutes
(np = 6) is chosen for MPC. Besides, as mentioned in Section 5.3.2, due to computational
limitations, the probability density function p(ζ[k]) should be discretized to scenarios. In
this simulation, we consider three different scenarios for irradiation ζ at time step k;

• similar sun irradiation ζn[k] as the predictions, with probability of p(ζn[k]) = 0.7

• a lower level of sun irradiation ζl[k] than the predictions, 15% lower than normal (ζl[k] =
0.85ζn[k]), with probability of p(ζl[k]) = 0.2

• a higher level of sun irradiation ζu[k] than the predictions, 10% higher than normal
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Figure 5.3 Buildings’ average temperatures and setpoints

(ζu[k] = 1.1ζn[k]), with probability p(ζl[k]) = 0.1.

Therefore, at the beginning of each time step, the prediction horizon times the number
of different scenarios (6 × 3) for both ζm[k] and p(ζm[k]) (m ∈ {n, l, u} and so a total of 36
numbers) should be calculated and broadcast to all MGs to help them solve their optimization
problem.

Fig. 5.2 shows the generated PV power of each MG. Although the generated power varies
between 0 and 12kW, it was expected because the small-sized MGs 4 and 12 produce less and
MGs 3 and 8 produce more PV power compared to the other MGs. In this simulation and
for simplicity, we assume just solar irradiation has a stochastic behaviour, and the outside
temperature is deterministic and can be predicted at least for the prediction time horizon.

Each simulated building has 13 different zones, 9 of which have access to HVAC. One of the
MGs’ objectives is to control these zones’ temperature around desired setpoints. The average
temperature of the MGs’ buildings and their power consumptions are shown in Fig. 5.3 and
Fig. 5.4, respectively. In the early hours of the simulation, depending on the difference
between its initial and desired temperatures, each MG needs different amount of power to
satisfy its comfort objectives; MGs with lower temperature setpoints such as No. 3, 5, 8
and 12 require less amount compare to the others. This behaviour, however, becomes more
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Figure 5.4 Buildings’ power consumption

reasonable in the days that follow. According to Fig. 5.3, due to their nighttime lower
setpoints (19°C), other MGs except the four mentioned above, reduce their temperatures
and so their power consumption, near the end of the daytime 10PM, Fig. 5.4. This behaviour
arises from the looking ahead characteristic of MPC and the trade-off property of the objective
function (5.14), which encourages MGs to lower their temperatures in advance to reduce the
amount of purchased power from the grid. MGs No. 3, 5, 8 and 12, on the other hand, have
almost the same setpoints during first day and night times, and so they do not need to reduce
their consumption, anymore. In fact, in order to preserve their occupants’ comfort during
nighttime, they need to increase their power consumption, otherwise due to lower outside
temperature (Fig. 5.2), their indoor temperatures will drop below admissible minimum limit.
The same pattern can be found in MG No. 5 behaviour during next days nighttime, when
they increase their consumption to preserve their comforts.

Figs. 5.5 and 5.6 show the state of charge and charging/discharging power of the batteries,
respectively. As it can be seen in Fig. 5.5, almost all MGs try to store extra electrical power
generated by the PV panels during the day and use that energy later. Using the thermal
capacitance of the building is another way of saving this extra energy. This effect can be seen
obviously in MGs No. 3 and 8, and during the third day in MGs No. 2 and 10 when, due
to the physical constraints of the batteries (either maximum charging rate or SOC), MGs
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Figure 5.5 State of charge (SOC) of MGs’ batteries

can save extra energy by preheating their buildings to increase inside temperatures. Fig. 5.7
shows, although MGs No. 3 and 8 use preheating method to store PV generated power, but
their temperatures are kept in their comfort zone.

Behaviours of MGs during nighttime are also of interest, when despite their consumption pro-
files, they receive the same amount of power from main grid unless they have some limitations
(e.g., soc limitations) to store it.
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The power exchanged between the MGs and main grid through the aggregator is illustrated
in Fig. 5.8. As mentioned before, subscribed power for this network is set exactly to 9.6kW.
The black dashed-dot line in the figure shows the total power exchanged (power bought minus
power sold) and, as it is shown, this value is almost fixed around 9.5kW, which is the main
objective of peak load limiting. The following table gives more details about the results:

desired MDL average min max
9.6kw '9.626kw ' 9.514kw '9.76kw

As can be seen, with a small deviation (maximum 150 W), the MGs’ total power consumption
is limited around MDL. To achieve this goal, collaboration between the MGs is needed. For
example, during the second day, MGs No. 3 and 8 sell part of their PV-generated power
to the main grid and store the rest of that power either by preheating the building and
increasing building temperatures without violating occupants’ comfort or store it in their
battery. This strategy will later let them sell more of their generated power to the main grid,
to keep total exchange power at a fixed level.

From practical viewpoint, we simulated three days of this network on an Intel Core i7-
7700@3.60 GHz laptop, using IBM ILOG CPLEX Optimization Studio API for python (doc-
plex) to solve the optimization problems. Leveraging by parallel programming, six cores out
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of laptop’s 8 cores were used to run lines 5 to 8 of algorithm 1 in parallel and the operation
time was then recorded for each iteration. It means, to simulate 12 MGs, these 6 cores should
be deployed twice and the real operation time of each iteration is so half of the recorded ones.
Fig. 5.9 illustrates the performance of consensus process. As it can be seen in the top figure,
the necessary time and iterations for MGs and aggregator to find the optimal solution are
reasonably small, less than 100 seconds and 20 iterations. Although, in some steps, more
iterations and time are required, on average, 40 seconds and 8 iterations are needed for the
consensus process. Note that choosing a reasonable 15-minutes time step not only guarantees
the feasibility of algorithm in time steps where more iterations and time are needed, but also
can handle other unseen delays such as communication or response time of HVACs. This
makes the algorithm suitable for real-time applications.

5.6 Conclusion

In this paper, we propose an ADMM-based distributed stochastic model predictive control
framework for a network of building-integrated microgrids. The problem is formulated in the
form of a two-stage stochastic optimization problem. The first-stage variables are related
to buildings’ zone temperatures, while the second-stage variables are exchanged power and
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the charging/discharging of the batteries. This formulation makes it possible for networks
to capture the uncertainties of renewable resources by exchanging as little information as
possible, such as the location of MGs for finding the value of p(ζi). Thanks to ADMM,
the privacy and reliability of the network is preserved and the convergence of the consensus
process is guaranteed. Simulation results prove the performance of the proposed method in
such networks, and due to its fast convergence, it can be used in real-time control. For future
works, considering the uncertainties of loads with unknown distribution, investigating the
effects of other types of loads such as EVs and EWH, and moving towards more intelligent
methods can be considered.

5.7 Appendices

5.7.1 Appendix A: Details of Building RC Model

In this project, We modeled a real triplex home Fig. 5.10, using real data of home. This
home has three floors with 15 rooms and closets, of which 9 have access to HVAC systems
and so only their temperatures are controllable. Vector ui and yi in equation (5.1) denote
these rooms HVACs’ powers and temperatures. It is also assumed that each floor ceiling is
thermal-proof and according to its blueprints two different types of walls are used in this
building: Internal walls and external walls. Obviously, external walls are more resistant
against thermal conduction. Detailed information of building such as materials, thickness,
density, thermal resistance and capacitance are shown in table 5.1 which can easily be found
from building’s blueprints. For the windows, we consider the same material with the same
thermal parameters but different area.

Table 5.1 Wall types and their materials; Thermal resistance and heat capacitance units are
(m°K/W) and (J/kg°K) respectively.

Wall Type Materials (Thickness cm)
ExtWall EP(0.01),MI(0.1),C(0.15),IP(0.01)
IntWall IPP(0.015),RW(0.07),IPP(0.015)

Identifier Description (Density kg/m3) Thermal Res.& Cap.
IPP Interior Panel Plasterboard (700) 1000 & 4.8
EP External Plaster (1600) 1000 1.2
IP Internal Plaster (1400) 1000 1.4
RW RockWool (90) 612 27.8
MI Mineral Insulation StoTherm (90) 830 27.8
C Concrete (2000) 1000 0.6
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Figure 5.10 The model of studied triplex home(This figure is plotted by [222]).

In the next step, each element of building will be replaced by its equivalent thermal values
and using the map of building, they can then be connected together to build a electrical
circuit network. Fig. 5.11 show the equivalent electrical circuit of thermal network of 3rd

floor of the mentioned home. In this circuit, each node represents temperature of an element
inside the building, e.g. first layer of third floor south ExtWall. Vector xi in equation (5.1)
represents these temperatures. Since, the ceilings are assumed to be heat-proof, the same
method can be applied to other floors to obtain their models. Finally, effects of 6 different
types of disturbance are consider for this building; outside temperature, ground temperature
and 4 directions of sun irradiation. These disturbances are shown in equation (5.1) by vi.

After providing these information, and also a map of the building, a MATLAB toolbox,
proposed in [223], was deployed to generate equivalent electrical circuits. Choosing a 15
minutes time-step, this continuous model was then discretized to a discrete model which is
represented in equation (5.1).
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Figure 5.11 An example of thermal network of 3rd floor of mentioned home.

5.7.2 Appendix B: Proof of Theorem 1

First we show that if matrix D has a diagonal form with positive elements, then a solution
to optimization problem

min
x,z

f(x) + g(z) s.t. : Ax+Bz = c (5.30)

where f and g are convex functions, can be found by following iterative method:

xk+1 := argmin
x

(f(x) + (ρ/2)‖D(Ax+Bzk − c+ uk)‖2
2)

zk+1 := argmin
z

(g(z) + (ρ/2)‖D(Axk+1 +Bz − c+ uk)‖2
2)

uk+1 = uk + (Axk+1 +Bzk+1 − c) (5.31)

Note that, since matrix D is a positive definite matrix, it can be multiplied to both side
of problem (5.30) constraint. Now if we rewrite the augmented Lagrangian with quadratic
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penalty term, we have:

t := Ax+Bz − c = 0⇔ Dt = 0⇒

L(x, z, y) = f(x) + g(z) + yTDt+ 1
2‖Dt‖

2
2

= f(x) + g(z) + 1
2(2y +Dt)TDt

= f(x) + g(z) + 1
2(y +Dt+ y)T (y +Dt− y)

= f(x) + g(z) + 1
2‖y +Dt‖2

2 −
1
2‖y‖

2
2

D is invertible (D−1 exists) and is also positive definite. So y = Du is a bijection map
between u and y spaces and as a result, we can define new variable u such that u = D−1y:

L(x, z,u) =

f(x) + g(z) + 1
2‖D(Ax+Bz − c+ u)‖2

2 −
1
2‖Du‖

2
2

Finally, by applying Gauss-Seidel iteration method, the same update rules as (5.31) can be
found for xk+1 and zk+1. For variable y, we have:

yk+1 = yk +Dtk+1

= yk +D(Axk+1 +Bzk+1 − c) y=Du=====⇒
D−1exist

uk+1 = uk + (Axk+1 +Bzk+1 − c)

Now just by setting D ←
√
p(ζζζ)D, we have:

‖
√
p(ζζζ)D(Axk +Bzζ − cζ + ukζ )‖2

2

=
∑
ζ

p(ζ)‖dζ(Axk +Bzζ − cζ + ukζ )‖2
2

= Eζ
[
‖D(Axk +Bzζ − cζ + ukζ )‖2

2

]

and update rules (5.19) can be found easily and it completes our proof.
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Abstract: Greenhouses are a key component of modernised agriculture, aiming for pro-
ducing high-quality crops and plants. Furthermore, a network of greenhouses has enormous
potential as part of demand response program. Saving energy during off-peak time, reduc-
ing power consumption and delaying the start time of subsystems during on-peak time are
some strategies that can be used to limit power exchanged with the main grid. In this work,
a hierarchical distributed alternating direction method of multipliers-based model predic-
tive control framework is proposed that has two main objectives: 1) providing appropriate
conditions for greenhouses’ crops and plants to grow, and 2) limiting the total power ex-
changed with the main grid. At each time step in the framework, an aggregator coordinates
the greenhouses to reach a consensus and limit the total electric power exchanged while
managing shared resources, e.g., reservoir water. The proposed framework’s performance is
investigated through a case study.

Keywords

distributed control, demand response, network of greenhouses, load shifting, load shaving

6.1 Introduction

International economic development, predicted population growth, the expansion of cities
and extreme weather patterns put considerable pressure on the restricted water resources and
arable lands of the earth [137]. Therefore, using traditional agriculture is an inadequate strat-
egy to cover the growing needs of the population and alleviate food security concerns [224].
Based on a report published by Canada’s Minister of Environment and Climate Change,
approximately 10% of annual greenhouse gas emissions in Canada are due to agricultural
activities. At the current values, one-third of global greenhouse gas emissions are due to the
food production system [139]. The COVID-19 pandemic has had various impacts on agricul-
ture activities; it has accentuated the need for sustainable self-reliant food economies [225].
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Sustainable greenhouse systems present a strong opportunity to increase the productivity
and efficiency of the modern agriculture sector. However, if greenhouse energy consumption
is not controlled, it may cause adverse environmental impacts and increase peak demand.
Hence, it is vital to develop a sustainable and reliable energy management system to control
commercial greenhouses. Using a distributed energy management system for greenhouses
can lead to several benefits. It can increase the penetration of distributed energy resources,
reduce greenhouse gas emissions along with the greenhouses’ dependency on non-renewable
energy sources and create additional income for the farmer through bidirectional energy ex-
change with the grid. Microgrid systems can be designed to support greenhouses. With their
potential flexibility, they can offer myriad benefits including a reliable and resilient energy
supply, peak load reduction and increased penetration of renewable energy resources. These
systems can be optimised to provide the energy required for ideal growing conditions. Re-
cently, research activities demonstrating the benefits of demand response have been widely
developed for the residential and commercial sectors. The potential of demand response for
agricultural consumers is still challenging and deserves careful attention.

In the literature, there are several studies that have investigated various methods to reduce
energy consumption in greenhouses. Some examples of these methods include enhancing
the efficiency of the energy production equipment including water irrigation systems [141],
upgrading the structure of greenhouses [226], and controlling indoor climate conditions [227].

In [228], the authors propose an idea to integrate smart agriculture with clean energy. In fact,
they conduct a comprehensive review in order to depict a road map for integrating smart
agriculture with clean energy. They also summarise the recent technologies, advantages and
bottlenecks. In their approach they suggest using extra clean energy to help agricultural
production. In addition, when following their approach, smart agriculture can support the
main grid through the penetration of clean energy. A model for an internet of things(IoT)-
based based agricultural greenhouse system is investigated in [229]. The proposed greenhouse
management system aims to enhance crop production by utilising automated detection, con-
trolling important greenhouse climate factors and decreasing human intervention. A cooper-
ative control mechanism for a cluster of microgrids consisting of multiple smart greenhouses
is proposed in [151]. It uses a centralised model predictive control (MPC) to manage the
performance of microgrids and reach a net-zero framework.

Energy management systems for individual greenhouses are addressed in several studies. The
authors of [230] use NSGA-II (a multi-objective evolutionary algorithm) as well as a combined
microclimate crop yield model to develop a model to increase crops’ production yield by
applying a microclimate control setpoints strategy. In [231], two problems are addressed for
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a single greenhouse. First, the authors solve a sizing problem to find the optimal number
of renewable energy and storage units. Afterwards, they propose a scenario-based robust
optimisation approach to maximise income in grid-connected mode and minimise costs in
islanded mode. Their results show that the lowest objective function value is reached when
the investment in combined heat and power systems is half of the investment in solar power
and 4 times that in energy storage systems. A stochastic multi-timescale energy management
system for greenhouses considering a photovoltaic (PV) system, a combined heat and power
unit and an energy management system is introduced in [232]. In this study, the uncertainties
of renewable energy sources (RES) and weather conditions are considered by formulating the
problem as a multi-timescale Markov decision process. A climate control problem for a single
greenhouse is addressed in [233]. To solve this problem, an indirect adaptive fuzzy control
scheme is suggested for a multi-input multi-output non-affine nonlinear system with unknown
conditions and dynamics. In [234], a model-based predictive controller assisted by heater and
ventilation windows is designed to adjust the indoor temperature of a greenhouse in order to
reach setpoint tracking and reduce cost. In [149], a greenhouse environment controller using
MPC is proposed. This controller aims to maintain the artificial lighting level, CO2 rate,
indoor greenhouse temperature and humidity within acceptable boundaries.

The intensification of greenhouse agriculture is now a growing reality around the world to
meet the nutritional needs of humans. The clustered coordination of greenhouses integrating
distributed energy resources is a new opportunity to better manage electricity consumption,
increase agricultural demand-side flexibility to reduce peak demand and generate new rev-
enue streams for farmers. To the best of the authors’ knowledge, no studies have focused on
developing a comprehensive distributed energy management system for a network of green-
houses, and if there are any, they contribute to centralised energy management systems,
which impose vital data sharing with the controller [150].

In this work, we present an alternating direction method of multipliers (ADMM)-based MPC
framework to manage a network of greenhouses in a distributed manner. The main contri-
butions of this paper are:

• A hierarchical distributed framework to control a network of greenhouses that partici-
pate in the demand response programs. This framework helps the network to provide
benefits to the electricity grid while reducing its energy costs.

• A mathematical model to control temperature, CO2, lighting and irrigation subsystems
that enables the framework to consider both load shaving and shifting for demand
response programs.
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• In the proposed framework, the aggregator is responsible for not only the coordination
of greenhouses to limit the network’s total power exchange with the main grid, but also
managing shared resources, e.g., reservoir water. Therefore, the network can further
contribute to the demand response program by controlling its subsystems (e.g., pumping
system).

• Due to its fast convergence rate, the proposed framework can be used for practical
projects. The simulation results show that the algorithm response time is less than 1
minute, which makes it suitable for real-time applications.

The rest of this paper is organised as follow: mathematical models of greenhouse subsystems
with their objectives and constraints are presented in Section 6.2. In Section 6.3, the opti-
misation problems of each greenhouse and the aggregator are formulated, and the proposed
framework is then introduced. The efficiency and performance of the proposed framework
are demonstrated by a case study in Section 6.4 and finally, future work and the conclusion
are discussed in Section 6.5.

6.2 Mathematical Modelling

Fig. 6.1 shows a network of greenhouses. As it is illustrated, each greenhouse has its own
renewable energy resource (mostly PV panels), energy storage system (battery), temperature
control, lighting, CO2 and water subsystems. The greenhouses can exchange energy with
the main grid through the aggregator, which also controls the shared resources such as the
reservoir water. In the following subsections, mathematical models of the greenhouses’ sub-
systems and the aggregator are presented and their constraints are discussed.

6.2.1 Modelling of Greenhouse Components

In each greenhouse, artificial lighting, CO2 generation, HVAC (heating, ventilation and air
conditioning) and water pumping subsystems are needed for microclimate control to achieve
maximum plant growth and yield. These subsystems are modeled below with their con-
straints.

PV Panels

Each greenhouse is equipped with PV panels that generate power that can be used to cover
greenhouse’s energy needs or be either sold to the main grid or stored in the energy storage
system. It is assumed that the PV panels work at their maximum power point when connected
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Figure 6.1 Conceptual model of the proposed network of greenhouses

to the main grid and generate the maximum possible PV power. The following model can
then express the power generated by the PV panels:

upv,i[k] = Apv,iηpv,iPf,iG[k] (6.1)

where Apv,i, ηpv,i and Pf,i are the PV panels’ area, efficiency and packing factor, respectively,
and their values depend on the panels technology of greenhouse i. The generated PV power
upv,i[k] depends also on the solar irradiation G at time step k, which is assumed to be the
same for all greenhouses.

Energy Storage System (ESS)

Stored energy can be either used by the greenhouses or sold to the main grid. The ESS has
an important role in the greenhouse demand response program; it can support load shifting
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and shaving at peak times. The dynamic of a battery can be expressed as follows:

soci[k + 1] = αsoci[k] + (βch,iuch,i[k]− 1
βdch,i

udch,i[k])∆T

∀k :


0 ≤ uch,i[k] ≤ umaxch

0 ≤ udch,i[k] ≤ umaxdch

socmini ≤ soci[k] ≤ socmaxi

∀k, βk ∈ {0, 1} :

0 ≤ uch,i[k] ≤ βku
max
ch

0 ≤ udch,i[k] ≤ (1− βk)umaxdch

(6.2)

where soci denotes the state of charge (SOC) of greenhouse i’s battery, uch,i and udch,i rep-
resent its charging and discharging power, respectively, and α, βch,i and βdch,i are the self-
discharging, charging and discharging efficiencies of the battery, respectively. The first group
of constraints in (6.2) ensures the safety of the battery, and the second group makes sure
that the battery does not charge and discharge at the same time.

Thermal Dynamic

Resistance-capacitance (RC) modelling is capable of capturing the thermal behavior of a
greenhouse. Using an RC model requires the equivalent thermal capacitance and resistance
models of the greenhouse’s elements including the walls, roof and floor. These equivalent RC
models are then combined to form an electrical circuit of the greenhouse and the greenhouse’s
thermal dynamic can then be expressed as:

xi[k + 1] = Aixi[k] +Bu,iuG,i[k] +Bv,iv[k] + fi(xi,uG,i) + gi(xi,v)

yi[k] = Cxi[k]
(6.3)

where Ai, Bu,i, Bv,i and C are constant matrices depending on the construction materials of
greenhouse i, and uG,i and v are the HVAC power vectors and outside disturbances, respec-
tively. Variable xi[k] represents the temperature vector of the elements inside the greenhouse
at time step k. Practically, it is not possible to measure all the values of temperature vector
xi directly, so the temperature vector yi is introduced to represent the measurable tempera-
tures, such as the indoor temperature. Functions fi and gi are modelling the nonlinear effects
of uG,i and v on xi. To simplify this model, two assumptions can be considered:

• The greenhouse is using an artificial ventilation system. In other words, the CO2 system
is also responsible for ventilation inside the greenhouse and has its own temperature
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control loop that adjusts the temperature of the air injected into the greenhouse.

• Considering the model’s accuracy, a time step ∆T bigger than the response time of
the ventilation process is chosen. By choosing this ∆T , the dynamic of the ventilation
system can be neglected.

As a result of these assumptions, the nonlinear terms fi and gi in equation (6.3) can be
neglected and the thermal equivalent circuit of the greenhouse can be simplified as in Fig.
6.2. Also, to reduce the effects of model uncertainties and consider the impacts of the current
control signal on the future of the system, the MPC methodology is used.

Figure 6.2 Thermal equivalent circuit of the greenhouse

The following greenhouse elements are modeled:

• Walls, glass and roof : Assuming walls, glass and roof are in thermal equilibrium at all
times, their temperatures are denoted by θ3.

• Air : The indoor air can also store thermal energy and needs to be considered. Due
to HVAC and CO2 generation activities, the indoor air is homogeneous; and the same
temperature θ1 can therefore be assumed for air at each point inside the greenhouse.

• Other : A major portion of the space in a greenhouse is occupied by the plants, which
carry a huge portion of water, hence their thermal capacitance cannot be neglected and
should be included in the modelling. It is worth mentioning that thermal capacitance
and resistance are different for each type of crop. Crops’ temperatures are expressed
by θ2.

If the vector
[
θ1[k + 1] θ2[k + 1] θ3[k + 1]

]T
is denoted by x[k+1], the state space equations

of the circuit presented in Fig. 6.2 for greenhouse i can be reformulated as:
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⇒ xi[k + 1] = Aixi[k] +Bu,iuG,i[k] +Bv,iv[k] (6.4)

where: 

ai = 1/(Ci
airR

i
air)

ei = cieqr
i
eqR

i
other

cieq = Ci
wall + Ci

glass + Ci
roof

1
ri

eq
= 1

Ri
wall

+ 1
Ri

roof
+ 1

Ri
glass

In these equations, the thermal resistance of the roof, glasses, walls, indoor air and other
elements are denoted by Rroof , Rglass, Rwall, Rair, and Rother, respectively. The constant
values Croof , Cglass, Cwall, Cother and Cair refer to the thermal capacitance of the roof, glass,
walls, other elements and inside air, respectively. The power of solar irradiation at time
k is shown by φs[k] with its 1 − pi portion absorbed by indoor air, making the indoor
temperature increases compared to the outside temperature Ta[k], whereas θ1 shows the
indoor (measurable) temperature:

yi[k] = θi1 =
[
1 0 0

]
︸ ︷︷ ︸

C


θi1[k]
θi2[k]
θi3[k]

⇒ yi[k] = Cxi[k] (6.5)

And so we have: xi[k + 1] = Aixi[k] +Bu,iuG,i[k] +Bv,iv[k]

yi[k] = Cxi[k]
(6.6)

Due to the actuators’ limitations, the values of uG,i should be restricted by uimax cool and
uimax heat that express the actuators’ maximum cooling and heating power vectors, respec-
tively. In this case, the actuators’ power vector constraint can be written as follows:

−uimax cool[k] ≤ uG,i[k] ≤ uimax heat[k] (6.7)
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During cooling (heating) periods, the value of uimax cool (uimax heat) should be set to zero. On
the other hand, the value of the indoor temperature θi1 should also be limited at each time
step to avoid damaging the plants:

θimin[k] ≤ θi1[k] ≤ θimax[k]

⇒θimin[k] ≤ yi[k] ≤ θimax[k] (6.8)

CO2 Generator

The control of the CO2 concentration level inside a greenhouse plays an important role in
different phases of plant growth. The dynamic model described in [235] is used to model the
CO2 variation level:

ci[k] =ci[k − 1] + βi1pi[k] + βi2(cout[k]− ci[k]) + βi3yi[k] + βi4Ii[k] + βi5 (6.9)

where ci[k] and pi[k] denote the indoor CO2 level and the pressure of CO2 injected by the
generator of greenhouse i at time k. The outside CO2 level is represented by cout[k], whereas
the βjs are constant variables that depend on various factors of greenhouse i such as its sizes,
the crop type(s) and the ventilation system.

In the linearized equation (6.9), the second and third terms model the CO2 injected into the
greenhouse by the generator and the ventilation system, respectively. The fourth and fifth
terms show the amount of CO2 generated by the plants themselves and depend directly on
the indoor temperature and lighting intensity. Due to the generator’s fast response compared
to time-step ∆T , its consumption power can be expressed as a linear relationship:

uC,i[k] = αiC × pi[k]

0 ≤ uC,i[k] ≤ uimax CO2

cimin[k] ≤ ci[k] ≤ cimax[k] (6.10)

where αiC represents the efficiency of the generator, while uC,i[k] is its power consumption.
The first equation in (6.10) expresses the relationship between its power consumption and
injected CO2 pressure pi[k]. The second equation limits the value of uC,i, and last one ensures
that the CO2 level is limited to an appropriate range. For higher productivity, the indoor
CO2 level is usually kept higher than that outside. In other words, decreasing the indoor
CO2 level is usually done through the ventilation system, the third term on the right-hand
side of equation (6.9).
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Artificial Lighting

Due to the fast response of the artificial lighting system compared to other subsystems, its
dynamic can be considered a linear relationship between its generated illumination Ii[k] and
power consumption uI,i[k] at each time step k:

uI,i[k] = αiL × Ii[k] (6.11)

where coefficient αiL is a constant value representing the efficiency of greenhouse i’s lighting
system. The crop growing process depends on the light, but providing the necessary artificial
light at specific periods does not have high priority. In other words, inside a greenhouse, lights
can be turned on with delay without a loss of productivity or quality, so the greenhouse can
contribute even more to the demand response program:

∀k :



0 ≤ uI,i[k] ≤ umaxI,i

βI [k](Isp,i[k]− σIi) ≤ Ii[k] ≤ βI [k](Isp,i[k] + σIi)

βI [k] ∈

{0, 1} if k − kIsp,i ≤ ∆kI,i
{1} o.w.

(6.12)

In this equation, umaxI,i , Isp,i and σIi denote the maximum power of the lighting system, the
illumination setpoint and admissible tolerance from the illumination setpoint, respectively.
βI [k] is a binary decision variable that depends on the turn-on delay (k−kIsp,i) of the lighting
system. If the delay is more than an acceptable delay ∆kI,i, then by setting βI [k] = 1, the
value of Ii[k] is forced to be nonzero and limited to a specific range, and the lighting system
can therefore participate in the peak load shaving only during peak periods. On the other
hand, if the delay is less than ∆kI,i, then βI [k] can be either zero or one, resulting in a zero
or nonzero Ii[k]. As a result, this subsystem can participate in both peak load shaving and
peak load shifting during on-peak times.

Water Pump

Each greenhouse has access to a water pump installed at a fixed height. This system can be
modeled as follows:

uW,i[k] = αiw × qw,i[k] (6.13)
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where uW,i and qw,i are the power consumption of the pump and the flow of injected water,
respectively, and αiw denotes the efficiency of the water pump times ∆T . Similarly to the
artificial lighting system, the water system can also participate in both the load shaving and
the load shifting of the demand response program. In this case, by defining umaxW , qsp, σq, kWsp,i
and ∆kW as the maximum admissible pump power, the water flow setpoint, the admissible
tolerance of the water flow, the start time setpoint and the admissible delay time of the water
pump, a similar set of constraints can be defined, ∀k:



0 ≤ uW,i ≤ umaxW,i

βW [k](qsp,i[k]− σqi) ≤ qw,i[k] ≤ βW [k](qsp,i[k] + σqi)

βW [k] ∈

{0, 1} if k − kWsp,i ≤ ∆kW,i
{1} o.w.

(6.14)

Grid Interactions

Greenhouses are also connected to the main grid through an aggregator. In the event of
insufficient PV power generation, they can buy the power they need from the main grid. The
following equation expresses the power balance constraint of each greenhouse for all k:

uG,i[k] + uC,i[k] + uI,i[k] + uW,i[k] + uch,i[k]− udch,i[k]− upv,i[k] = ugrid,i[k] (6.15)

where ugrid represents the power exchanged with the main grid. Obviously, the sign of ugrid
is positive if a greenhouse buys power from the main grid and negative if it sells power to
the grid.

6.2.2 Modelling of Aggregator Components

In this work, the aggregator has two main objectives. First, it controls the aggregated power
consumption of all greenhouses while keeping it below a maximum demand limit (MDL).
Second, it controls the shared reservoir’s water level by controlling its input water pump.
These components are modeled below.
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Water Reservoir

As shown in Fig. 6.1, greenhouses use the water stored in the reservoir for plant irrigation.
The reservoir model can be described as:

vR[k] = vR[k − 1] +
(
δQQw[k]−

∑
i

δiqw,i[k]
)

∆T. (6.16)

In this equation, vR denotes the volume of water stored in the reservoir. At each time step,
the water flow Qw is pumped into the reservoir and ∑i qw,i is pumped out. Depending on
the properties of the input water pump (δQ), the greenhouses’ pumps (δi) and time step ∆T ,
the water level can be increased or decreased. For safety and redundancy, the level of water
in the reservoir should be maintained between a minimum vmin and a maximum vmax:

∀k : vmin ≤ vR[k] ≤ vmax (6.17)

Similarly to the greenhouses’ pumps, the following model and constraints can be used for the
input water pump:

Model: uR[k] = αR ×Qw[k] (6.18)

Constraint: 0 ≤ uR[k] ≤ umaxR (6.19)

where αR denotes the efficiency of the input water pump and umaxR is the pump’s maximum
power.

Maximum Demand Limit

The aggregator’s main goal is to keep the total power consumption under or near the MDL
level which can be expressed as the following constraint:

∀k : uR[k] +
∑
i

ugrid,i[k] . PMDL[k] (6.20)

where PMDL is the MDL, and its value is set by the main grid.
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6.3 Optimisation Problems

6.3.1 Greenhouse and Aggregator Optimisation Problems

The greenhouses’ main goals are to provide suitable conditions for crops and plants growth,
and reduce the amount of power purchased from the main grid. These two objectives can
sometimes not be aligned in the same direction. Therefore, the objective function of green-
house i can be defined as:

min
Xi

Φi(Xi) =
t+np∑
k=t

(
γy(yi[k]− ysp,i[k])2 + γc(ci[k]− csp,i[k])2 + γI(Ii[k]− Isp,i[k])2

+ γW (qw,i[k]− qsp,i[k])2 + γgugrid,i[k]
)

s.t. : Ωi =
{
Constraints (6.1)-(6.2) and (6.6)-(6.15),∀k

}
(6.21)

where t is the current time step, np is the prediction horizon and Xi is the set of decision
variables of greenhouse i. Control parameters γg, γy, γc, γI and γW are used to make a trade-
off between different components of this objective function.

On the other hand, the optimization problem of the aggregator can be described as:

min
Xg

Φg(Xg) =
t+np∑
k=t

(p[k]− PMDL[k])2

s.t. : Ωg =
{
∀k

uR[k] +∑
i ugrid,i[k] = p[k]

Constraints: (6.16)-(6.19)

}
(6.22)

where Xg is the set of aggregator decision variables.

6.3.2 Optimization Problem Decomposition

In this paper, ADMM is used to decouple the main optimization problem. This decomposition
approach ensures a general optimal solution is found while preserving the local information
of each greenhouse and increasing the reliability of the network. To satisfy the objectives
of the greenhouses and the aggregator, the general objective function of the network can be
defined as a summation of all the objectives:

min
Xi,Xg

Φ(Xg) +
∑
i

Φ(Xi)

s.t. : Ωg ∪ {∀i : Ωi} (6.23)



88

To solve this optimization problem in a distributed manner, only constraints (6.16) and
(6.20) need information from all greenhouses and the aggregator; the rest of constraints can
be assigned either to each greenhouse or the aggregator. To handle these constraints, first
some auxiliary variables need to be defined:

q̄i = qw,i, ūi = ugrid,i (6.24)

The variables with the bar can be interpreted as duplicates of the original variables that are
going to be optimised and broadcasted by the aggregator. Now, constraints (6.16) and (6.20)
change to the following format:

Ω̄g =
{
∀k :


vR[k] = vR[k − 1] +

(
δQQw[k]−∑i δiq̄i[k]

)
∆T

uR[k] +∑
i ūi[k] . PMDL[k]

Constraints: (6.17)-(6.19)

}

and the optimization problem (6.23) then changes to:

min
Xi,Xg

Φ(Xg) +
∑
i

Φ(Xi)

s.t. : {Ω̄g} ∪ {∀i : Ωi, q̄i = qw,i, ūi = ugrid,i} (6.25)

Note that in this current structure, the variables in (6.24) are the only coupled ones. Now,
by applying the ADMM process, the optimization problem of each entity can be expressed
as follows:

for greenhouse i:

min
Xi

Φ̄i(q̄i, ūi,vi,wi) = Φi + |qw,i − q̄i + vi‖2
2 + ‖ugrid,i − ūi + wi|22

s.t. : Ωi (6.26)

where the bold notation is used to represent the time aspect of variables; for example, ūi =[
ūi[t], . . . ūi[t+ np]

]T
.

and for the aggregator:

min
Xg ,q̄i,ūi

Φ̄g(qw,i,ugrid,i,vi,wi) = Φg +
∑
i

(
‖qw,i − q̄i + vi‖2

2 + ‖ugrid,i − ūi + wi‖2
2

)
s.t. : Ω̄g (6.27)
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Algorithm 2: ADMM-based DMPC algorithm
H for Time step t = 1, 2, . . . do

1 Initialise u0
i , w0

i , q̄0
i , ū0

i ;
2 Set n = −1;

repeat
3 n← n+ 1;

for ∀i (in parallel) do
4 Aggregator broadcasts uni .wn

i , q̄ni and ūni to greenhouse i;
5 greenhouse i finds values of un+1

grid,i and qn+1
w,i :

un+1
grid,i,qn+1

w,i = argmin Φ̄i(q̄ni , ūni ,vni ,wn
i )

s.t. : Ωi

6 un+1
grid,i and qn+1

w,i are sent to aggregator;
end

7 Aggregator finds values of q̄n+1
i and ūn+1

i :

∀i : ūn+1
i , q̄n+1

i = argmin Φ̄g(qn+1
w,i ,un+1

grid,i,vni ,wn
i )

s.t. : Ω̄g

8 Aggregator updates vn+1
i and wn+1

i , for all i;v
n+1
i = vni + (qn+1

w,i − q̄n+1
i )

wn+1
i = wn

i + (un+1
grid,i − ūn+1

i )

until ∑
i
‖vn+1

i − vni ‖2
2 + ‖wn+1

i −wn
i ‖2

2 ≤ ε or maxItr ;

9 Apply first elements of un+1
grid,i and qn+1

w,i for all i;
10 t← t+ 1

end

Algorithm 2 presents the proposed ADMM-based distributed model predictive control (DMPC)
for the network of greenhouses. At the beginning of each time step t, the values of u0

i ,w0
i , q̄0

i

and ū0
i should be initialised (line 1). After the initialization step and at the start of the iter-

ation process, the aggregator broadcasts the values of uni .wn
i , q̄ni and ūni to the corresponding

greenhouse (line 4). After solving their optimization problems (line 5), the greenhouses send
the values of un+1

grid,i and qn+1
w,i to the aggregator (line 6). After receiving these values from

all the greenhouses, the aggregator finds q̄n+1
i and ūn+1

i using the received information and
solves its optimization problem (line 7). Using gradient ascent, the aggregator updates the
values of vn+1

i and wn+1
i as the final step in each iteration (line 8). The iteration process

is finished whenever these values converge to the optimal point or n reaches its maximum
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iteration value maxItr . Finally, as the MPC methodology proposes, each greenhouse applies
the first element of un+1

grid,i and qn+1
w,i (line 9), and the whole network moves to the next time

step (line 10).
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Figure 6.3 Top: PV generated power of each greenhouse. Bottom: Outside temperature.

6.4 Case Study

For the case study, a network of five greenhouses with different crops is simulated for three
days. Although each greenhouse has its own energy storage system, only three of them have
PV panels. Two have a 40kW panel, and the third has a 15 kW panel. We assume that all the
greenhouses are located in a limited geographical area, therefore, similar outside temperature
and disturbances are used for the simulation. The greenhouses’ generated PV power and the
outside temperature are shown in Fig. 6.3. The simulation time step ∆T is 15 minutes, and
the prediction horizon is 90 minutes.
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Figure 6.4 Top: Indoor CO2 level. Bottom: Indoor temperature.

In each of the four stages of crop growth (seed, sprout, seedling and adult plant), some
of the environmental parameters have a higher impact on the quality of the final product.
For example, in the seed stage, controlling indoor temperature using the HVAC subsystem is
more important than controlling the CO2 level. To control the importance of each subsystem,
controlling parameters γ are introduced in the equation (6.21). For the simulation, the
following table is used to set the values of γ:

Table 6.1 Control parameters values.

Parameter Values
1 γy 20000γg
2 γc 100γg
3 γI 30γg
4 γW 50γg
5 γg 9.502¢/kWh ' 2.5¢/kW∆T

Furthermore, according to [236], two time periods are considered for each day: the diurnal
period, which starts around 07:00AM and ends at 10:30PM, and the nocturnal period. Fig
6.4 presents the greenhouses’ indoor CO2 level (top) and temperature (bottom), where the
dashed and solid lines are the setpoints and measurements, respectively. The temperature
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Figure 6.5 Greenhouse watering plot

setpoints of greenhouses No. 1, 2 and 4 vary during the diurnal and nocturnal periods,
whereas a constant diurnal temperature is required for the crops in greenhouses No. 3 and
5. The CO2 level setpoints also vary. Greenhouses No. 3 and 5 need a higher level of CO2

during the diurnal period, whereas, greenhouses No. 1, 2 and 4 need it during the nocturnal
period. According to Table 6.1, as expected, high values of γy and γc ensure acceptable
temperature and CO2 level tracking performance for all greenhouses except for greenhouse
No. 2, where it is challenging to achieve perfect tracking of CO2 setpoints due to its slow CO2

evacuation dynamic. Greenhouses should irrigate crops usually once per hour for a duration
of 15 minutes. This process, however, can be delayed up to 40 minutes and therefore, the
greenhouse can contribute even more to the demand response program. As it is illustrated in
Fig. 6.5, due to constraints (6.14) and a lower value of γW , greenhouse watering subsystems
have more flexibility in the demand response program than the HVAC and CO2 subsystems,
as both the irrigation time and rate can be optimised. It can be noted that on the 1st day at
around 06:00AM all greenhouses except greenhouse No. 1 not only postpone the activation
of the watering process (load shifting), but also reduce their required water (load shaving).
The same behaviour can be observed in greenhouse No. 3 during the evening of the 2nd day.
On the other hand, near noon when greenhouses have surplus PV energy, they are asked to
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Figure 6.6 Greenhouse illumination

consume more energy so the total power exchanged with the main grid can still respect the
MDL.

To maximise plants productivity, greenhouse illumination should always be kept at a spe-
cific level during diurnal periods: sunlight during the daytime and artificial light during the
nighttime. Fig 6.6 shows the setpoints and behaviours of the greenhouses’ lighting subsys-
tems. During the surplus energy time (around 12:00PM), since the greenhouses’ batteries
are either fully charged (greenhouses No. 1 and 4 in Fig. 6.7 bottom) or are charging at their
maximum admissible power (greenhouses No. 2, 3 and 5 in Fig. 6.7 top), lighting systems
are turned on to consume a portion of the surplus energy. It should also be mentioned here
that due to crops’ sensitivity to indoor temperature increases, the high value of γy requires
that a preheating strategy be avoided for energy saving purposes.

Fig. 6.8 illustrates a) the energy exchanged between the greenhouses and the main grid (top),
and b) the main pump consumption and reservoir capacity (bottom). The red dash-dot line
shows the MDL power dynamic. The MDL power is set to a total of 110kW (average 22kW
per greenhouse) during the on-peak time (from 09:00AM to 06:00PM) and to 350kW (average
70kW/greenhouse) during the off-peak period (from 06:00PM to 09:00AM). Also, the Quebec
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Figure 6.7 Top: Battery dis/charging power. Bottom: Battery SOC

Rate D flat price mentioned in Table 6.1 (9.502¢/kWh) [237] is used for energy exchanged
with the main grid. The solutions obtained using Algorithm 2 try to follow the MDL, but due
to the dynamic of the greenhouses and the discontinuity of MDL, these solutions are not as
practical and efficient as expected. To overcome this issue, the MDL should have a continuous
form (for example a ramp) and consider the average response time of each greenhouse. With
a prediction horizon of 90 minutes, considering a 2-hour ramp seems appropriate:

PMDL[k] =



350 20PM ≤ k ≤ 07AM

350− 30(k − 7AM) 07AM ≤ k ≤ 09AM

110 09AM ≤ k ≤ 18PM

110 + 30(k − 18PM) 18PM ≤ k ≤ 20PM

(6.28)

As it is presented in Fig. 6.8 top, the total power consumption of the greenhouses (black dash-
dot line) usually follows the MDL, except around the middle of the day when greenhouses
No. 1 and 4 generate excess PV energy. The batteries of the other greenhouses can then
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Figure 6.8 Top: Greenhouse exchanged power. Bottom: Main pump power and reservoir
capacity

store this energy until reaching their maximum state of charge and the remaining energy is
sold to the main grid. For example, around 12:00AM, the batteries of greenhouses No. 2, 3
and 5 charge at their maximum charging power until the maximum admissible SOC. Later
on, in the evening, this stored energy is used to satisfy the greenhouses’ energy needs. The
cooperation between greenhouses to limit the total buying of power from the main grid can be
seen in the evening and at the end of on-peak time, when greenhouses No. 1 and 4 sell their
stored energy to other greenhouses. Together with load shifting and load sharing strategies,
this cooperation can limit the total power consumption of the network during on-peak time.

During the night and off-peak time, by setting a higher level of MDL, the aggregator en-
courages greenhouses to use and store more energy. As a result, the batteries start to charge
during the night, as shown in Fig. 6.7. Furthermore, during the nighttime, the aggregrator
also uses this higher level of MDL to fill up the reservoir at a faster rate using the main
pump (see Fig. 6.8 bottom). According to the objective function (6.26), around noon, the
greenhouses and aggregator prefer to sell their surplus energy to the main grid so the main
pump doesn’t work at full capacity at that time.
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From a practical view point, the network was simulated on an Intel Core i7-8565u@1.80GHz
and 1.99GHz laptop using IBM ILOG CPLEX Optimization Studio API for python (docplex)
to solve the optimisation problems. To measure the speed and performance of the proposed
algorithm, parallel programming was leveraged and each core of the laptop was assigned to
a separate greenhouse. In other words, the optimisation problem of each greenhouse was
solved in a core so lines (5) to (7) of Algorithm 2 were computed in parallel. The results
are illustrated in Fig. 6.9. Note, however, that the maxItr was set to 50, but the consensus
process was usually finished before 10 iterations and the total time per step was between
15 and 35 seconds (average time per iteration is 3.5 seconds). These results show that the
proposed algorithm suits the real-time applications.

6.5 Conclusion

In this paper, a distributed optimisation method is introduced for a network of greenhouses
having access to distributed energy resources. The proposed ADMM-based algorithm can
increase the performance of greenhouses while implementing demand response strategies such
as load shifting and load shaving. A hierarchical coordination scheme is implemented through
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an aggregator to keep the total power exchanged with the main grid below or around the
MDL level. This power limitation does not affect the quality of the greenhouses’ crops,
however. Depending on the crops’ growing stage, the proposed algorithm makes more effort
to control the subsystems that are most important for crop growth, while other subsystems
can participate in the demand response program. The proposed algorithm’s performance has
been proven by the case study, and its fast convergence rate means it can be used for real-time
scenarios. In future work, we would like to investigate a distributed peer-to-peer network
scheme that considers uncertainties related to renewable energy resources and energy prices.
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CHAPTER 7 GENERAL DISCUSSION

In this dissertation, we study the problem of distributed energy management in N-MGs, which
include residential buildings or greenhouses integrated with renewable energy resources.

As the first objective of this dissertation, we present an effective way to model a multi-
unit residential building integrated with PV panels, an energy storage system and electric
vehicles. We first propose a mathematical model for the thermal dynamics of the building
by using the RC modelling method and then integrate it with the building’s battery and
EVs models. Then, we present an MPC approach for the BEMS, which uses the proposed
model to reformulate the building’s energy consumption problem to an optimization problem.
Reducing the building’s operational cost while satisfying occupants’ comfort is the objective
of the optimization problem. The simulation results show that the BEMS uses the building
preheating method alongside its battery and available EVs’ to store energy during off-peak
periods. Later on, the battery’s stored energy is used to satisfy the building’s comfort
parameters during on-peak periods. Furthermore, the BEMS successfully charges EVs to the
desired SOC before the departure time.

In the second objective, we design a stochastic distributed MPC-based framework for the
networks of MGs. The proposed framework addresses the RES stochastic behaviours problem
in both hierarchical and P2P structures. The P2P structures do not integrate an aggregator,
so it becomes challenging to find the optimal solution. The general optimization problem
of N-MGs is reformulated as a two-stage SOP, and a novel ADMM-based decomposition
method is then introduced to decompose the two-stage SOP. In the proposed framework, the
coordinators calculate the next time-step RES scenarios along with their probabilities and
broadcast this data to all MGs. Each MG solves a two-stage SOP; The first stage variables are
the building’s indoor temperatures, while the second stage variables are PV generated power,
battery dis/charging power, and power exchanged with the main grid or neighbours. The
negotiation process starts when MGs send their proposed power exchanges to neighbouring
MGs and ends when all parties agree on the amount of power. The efficiency of the proposed
framework is demonstrated through the case study, and due to the fast convergence rate of
the proposed method, the framework can be used in real-time applications.

As the third objective of this dissertation, for the first time to the best of the author’s knowl-
edge, we introduce a hierarchical distributed approach for a network of greenhouses integrated
with RESs and batteries. The proposed approach is an ADMM-based MPC approach where
the aggregator coordinates the greenhouses and manages the shared resources such as water
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reservoirs. Limiting the power exchanged with the power grid at the MDL level and con-
trolling indoor climatic conditions for plant growth are the main goals of the network. In
this approach, the aggregator limits the power problem while each greenhouse solves a local
optimization problem to reach optimal indoor conditions. The network can contribute to the
DR programs through various DR strategies such as load shifting and shaving by using the
proposed approach.
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

8.1 Concluding Remarks

This dissertation introduces a model predictive control approach for minimizing the power
consumption of residential buildings integrated with renewable energy resources and EVs.
The suggested method can limit the total power consumption of the building to a maximum
demand limit indicated by the main grid, while maintaining occupants’ comfort.

This control approach is then used to propose an ADMM-based distributed framework for
a network of microgrids, which considers the stochastic behaviours of RESs. The proposed
framework can work with different network topologies such as peer-to-peer or hierarchical.
In hierarchical networks, the aggregator plays an interface role between the MGs and the
main grid. The aggregator coordinate the shared resources and is responsible to limit the
total power demand in the network. In the peer-to-peer networks, MGs can exchange their
required power directly with each other, while limiting the total power exchange with the
main grid can be done by the main grid or an aggregator.

With different simulations on the network of MGs (residential buildings and greenhouses),
the performance of the proposed framework is evaluated. In a well-designed network, the
framework can drive the negotiation process between the MGs to the optimal point reasonably
fast, in both peer-to-peer and hierarchical structures. Hence, it can be used in real-life
applications.

8.2 Limitations

In terms of work’s limitations, while the author tried to simulate the proposed algorithms
and frameworks with the real-world data, for the validation purposes, they need to be tested
and validated in real-world applications. Validating the proposed methods in the real-world
scenarios is the first limitation of this dissertation.

We use the RC method to model buildings with different applications. This method usually
requires a lot of information about a building, such as its blueprints or building materials.
Sometimes, and especially for old buildings, this data is either missing or not shareable. In
this case, the efficiency of the RC method is questionable, which is the next limitation of this
work.

Finally, the number of MGs in each network is another limitation which needs to be investi-
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gated. Due to computational power limitation, MGs number in the simulations was limited,
however in a real-life applications, we can have more MGs in a network.

8.3 Future Work

Although the RC modelling method showed an acceptable performance in the simulations,
it requires a high volume of information from the building. Moving toward data-driven
approaches such as model-free and model-based reinforcement learning approaches can be a
good research direction [33,84,114,115,210].

So far in the literature of N-MGs, networks of homogeneous-type microgrids were mainly
considered, e.g., a network of residential buildings or a network of greenhouses. Inhomoge-
neous networks with various types of MGs need to be investigated more, so they are a good
direction for future considerations.

In this work, we assumed that the scenarios for the prediction horizon were known beforehand,
and we did not discuss how they could be generated in real-life applications. Forecasting
scenarios by using generative adversarial networks or GANs are also engaging for future
works.

Finally, improving the convergence rate of the proposed framework and methods can help
them to be used for real-life applications.
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APPENDIX A A P2P EXAMPLE

This extension provides an example application for Algorithm 1 of Chapter 5 in a P2P
network of greenhouses. Figure A.1 illustrates the topology of the network. In this network,
greenhouse No. 3 directly connects to the aggregator and exchanges information with it,
while greenhouses No. 1 and 2 connect to the aggregator and each other through link No. 1.
The aggregator is responsible for coordinating greenhouses’ energy exchanged with the main
grid and managing the water reservoir. Link No. 1, on the other hand, is responsible for
coordinating the power exchanged between greenhouses No. 1 and No. 2.

Figure A.1 The network topology

To illustrate the performance of the proposed algorithm, we consider a network of three
greenhouses. PV panels are available only in Greenhouse No. 1, generating a power of up to
40 kW. In order to investigate exclusively the effects of P2P topology, the γs in (6.21) are
adjusted to avoid the participation of the greenhouses in demand response schemes. Similar
to Section 5.5, three scenarios are considered for solar irradiation at each 15 minutes time
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step, and the network is simulated for a period of 24h.
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Figure A.2 Greenhouse climatic parameters

Figure A.2 shows the climatic conditions inside each greenhouse. As mentioned earlier, the
high values of gammas ensure the perfect control of the indoor temperature, CO2 level, light-
ing and watering system. Similarly, Fig. A.3 presents batteries SOC and their dis/charging
powers. We randomly set the initial values of batteries between 60 and 70 percent, with a
minimum admissible SOC of 18%.

Although the ADMM guarantees the convergence of the proposed algorithm, the convergence
rate can sometimes be slow for real-time applications. For this reason, the algorithm uses
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Figure A.3 Greenhouse battery condition

maxItr and ε parameters for early stopping. We set maxItr = 150 and ε=2.4; however,
the algorithm sometimes does not converge with these early stopping criteria, so a secondary
control level is needed. At this level, the corresponding link (Link No. 1) decides whether
the negotiation process was successful or not. If successful, the greenhouses will exchange
the proposed link energy and buy/sell the difference between it and their proposed energy
from/to the main grid. Otherwise, the corresponding link sets it to zero, and the greenhouses
have to exchange the power they need with the main grid, Fig. A.4.

At each step, the greenhouses propose a new value for the amount of power exchange (dashed
lines in Fig. A.4). The corresponding link (Link No. 1) then solves an optimization problem
to find the optimal value (solid lines). Link No. 1 then proposes this optimal value to
greenhouses and updates the trading price. This process continues till they reach a consensus
or the algorithm meets the stopping conditions, and the link determines the amount (red
lines).

This process for greenhouses No. 1 and 2 are illustrated in Figures A.4a and A.4b, respec-
tively. In the early hours of the simulation (12:00 AM-08:00 AM), due to the energy stored
in batteries, greenhouse No. 1 can sell some of this energy to GH 2 and vice versa. Around
08:30 AM, when GH 1 starts to generate PV power, it can sell the excess power to GH 2
instead of the main grid, Fig. A.5.

Due to maxItr, during the on-peak times (07:00 AM - 06:00 PM), the negotiation process
usually ends before reaching a consensus. In this case, Link 1 compares the difference between
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the proposed powers and the threshold ε. The negotiation process from 07:00 AM to 01:30
PM is almost successful, thanks to the PV power generated by GH 1, Fig. A.4. However,
from 01:30 PM to 06:00 PM, the negotiation process is practically failed. The main reasons
for this failure are lower levels of MDL, lack of sufficient PV power generated, and lack of
energy storage in the battery. Therefore, the greenhouses buy their needs from the main
grid, and as a result, the level of total power exchanged with the main grid is increasing,
more than the MDL. After the on-peak times, when the MDL level rises, the negotiation
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process can continue between greenhouses again until the end of the day, with almost no
other failures.

Finally, Fig. A.6 provides the information of the iterations in the negotiation process. Com-
pared to previous case studies (Sections 6.4 and 5.5), although the average time per iteration
is almost the same as before, the total time (' 600s) and number of iterations (' 150) per
step are notable. Its main reason, as mentioned earlier, is that this case study is extreme.
We assume just one greenhouse has RES, and none of the greenhouses are willing to reduce
their consumption to participate in the DR program. There are usually more than one RES
in the network in practice, and MGs are more eager to participate in the DR programs.
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