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RÉSUMÉ

Cette thèse porte sur l’évaluation des ressources récupérables et de leur incertitude dans les
gisements minéraux. Une caractérisation adéquate des ressources minérales et de l’incertitude
associée est fondamentale dans la décision de poursuivre où arrêter les projets miniers, en par-
ticulier aux étapes préliminaires, où des données d’échantillonnage limitées sont disponibles.
Trois contributions sont proposées répondant aux principaux défis identifiés dans les pra-
tiques actuelles d’évaluation des ressources minérales, à savoir la génération de prédictions
non lissées et la quantification de l’incertitude sur la prédiction des ressources récupérables
pour les gisements uni- et multivariés. Une série de comparaisons avec les techniques géo-
statistiques traditionnelles est effectuée pour évaluer la pertinence des approches proposées
en vue de leur possible intégration dans les pratiques du domaine minier.

La première proposition est le krigeage contraint (CK, constrained kriging), une approche qui
génère des prédictions non lissées des ressources récupérables. Les performances de prédiction
sont validées à l’aide d’un ensemble de données synthétiques et de deux études de cas réels,
dont un gisement aurifère. Le CK surpasse le krigeage ordinaire, qui est la norme utilisée dans
les rapports techniques et réglementaires d’évaluation des ressources. Il permet une meilleure
prédiction du tonnage, de la teneur du minerai et du profit conventionnel. Bien que CK donne
des résultats comparables à ceux du conditionnement uniforme, ce dernier ne localise pas
directement les ressources et repose sur une hypothèse forte sur la distribution des teneurs. La
méthode CK est robuste à la densité d’échantillonnage et les ressources récupérables prévues
ne sont pas fortement affectées par les paramètres du variogramme sélectionnés. Cependant,
même si CK peut devenir une alternative aux approches géostatistiques traditionnelles, il ne
peut pas fournir une évaluation de l’incertitude des ressources récupérables prévues.

L’utilisation de techniques d’apprentissage automatique supervisé (ML, machine learning) est
suggérée pour remédier à l’absence de mesure d’incertitude des ressources tout en s’accommod-
ant de variogrammes expérimentaux souvent très bruités. L’idée de base est de fournir
une quantification de l’incertitude évitant la définition d’un modèle de variogramme unique
comme cela se fait habituellement avec le krigeage ou la simulation géostatistique. À cette fin,
de nombreuses simulations non conditionnelles de teneurs sont générées avec des paramètres
de modèle de variogramme choisi dans des intervalles de valeurs possibles. A partir de chaque
simulation, un gisement de référence est utilisé pour déterminer les variables d’entrée, et les
réalisations établissent les variables de sortie (c’est-à-dire les courbes de tonnage et les inter-
valles de confiance associés). L’apprentissage supervisé est effectué en utilisant les variables
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d’entrée-sortie pour restituer des modèles prédictifs, qui peuvent ensuite être appliqués pour
obtenir les ressources récupérables, et leur incertitude, à l’aide de caractéristiques extraites
des données disponibles. Parmi les techniques de ML, la régression linéaire multiple (MLR,
multiple linear regression) est considérée comme l’approche la plus appropriée car elle fournit
sur des cas synthétiques des résultats similaires à d’autres techniques de ML, telles que le
réseau de neurones artificiels, tout en étant plus simple d’utilisation et beaucoup plus rapide
en temps de calcul. MLR caractérise mieux les ressources récupérables que les approches
géostatistiques traditionnelles, et aussi bien que le modèle gaussien discret. Néanmoins, ce
dernier modèle montre une assez forte sensibilité aux variations du modèle de variogramme
choisi et il ne peut quantifier l’incertitude sur les ressources. La capacité de MLR à quantifier
correctement l’incertitude est validée sur des données test par des probabilités de couverture
très voisines des probabilités nominales.

Une extension multivariée de l’approche ML est proposée pour le cas des gisements multi-
éléments ou des gisements avec la présence de contaminants venant diminuer la valeur du
minerai. Cette approche utilise une série de modèles linéaires de corégionalisation avec des
paramètres choisis aléatoirement dans des intervalles de valeurs possibles et générant des
modèles admissibles. L’approche ML multivariée proposée est validée à l’aide d’un gisement
de nickel latéritique où le traitement métallurgique de la variable primaire (teneur en nickel)
est limité par un seuil maximal pour le rapport silice/magnésie. Un apprentissage MLR bi-
varié de la teneur en nickel et du rapport silice/magnésie est effectué en utilisant des surfaces
de tonnage. L’approche ML multivariée fournit des prédictions précises et une évaluation de
l’incertitude des ressources récupérables en nickel avec ou sans contrainte sur le rapport sil-
ice/magnésie. De plus, des analyses complémentaires valident la robustesse et l’applicabilité
de l’approche ML. Ainsi l’approche est appliquée avec succès à des modèles physiques qui, à
priori, ne présentent pas de distribution multigaussienne. Le comportement des intervalles de
confiance en fonction du nombre de données est examiné de même que la capacité de la méth-
ode à fournir des intervalles de confiance crédibles en fonction de la catégorie de ressources.
Finalement, l’approche est appliquée à la fonction de récupération profit conventionnel où
l’on observe que les intervalles de confiance apparaissent significativement plus larges pour
cette fonction que pour la fonction tonnage.

La thèse contribue à prouver l’applicabilité du CK dans le domaine minier, soulignant son
adéquation lorsqu’une localisation des ressources est requise tout en évitant l’effet lissant du
krigeage ordinaire. De plus, la thèse fournit des approches ML nouvelles et robustes non-
sujettes à des décisions subjectives des approches géostatistiques touchant les paramètres
caractérisant la structure spatiale. Les approches ML sont applicables aux gisements uni-
variés et multivariés. De plus, les approches ML peuvent évaluer l’incertitude des ressources
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prévues et cette incertitude coïncide bien avec les niveaux des intervalles de confiance. Les
trois approches sont recommandées principalement aux étapes initiales de l’évaluation des
ressources minérales récupérables lorsque la quantité limitée de données disponibles nuit à
l’utilisation des méthodes géostatistiques traditionnelles. On s’attend à ce que ces approches
puissent améliorer la prévision des ressources récupérables et surtout permettre de quan-
tifier leur incertitude pour aider à prendre des décisions mieux informées tout au long de
l’évaluation des projets miniers.
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ABSTRACT

The thesis focuses on the assessment of recoverable resources and their uncertainty in mineral
deposits. A proper mineral resources characterization and their associated uncertainty are
fundamental in mining projects, especially at preliminary stages, where limited sample data is
available, to decide whether to continue or abandon a project. Three approaches are proposed
to address the main challenges identified in current practices for mineral resource assessment,
namely the generation of non-smoothed predictions and the uncertainty quantification on
recoverable resources for univariate and multi-element deposits. A series of comparisons
against traditional geostatistical techniques are carried out to evaluate the suitability of the
proposed approaches to be incorporated as part of current practices within the mining field.

The first proposal is constrained kriging (CK), an approach that generates non-smoothed
predictions of recoverable resources. The prediction performance is validated by using a syn-
thetic dataset and two real case studies, including a gold deposit. CK outperforms ordinary
kriging, which is the standard used in technical and statutory resource assessment reports, as
it renders a better prediction of the tonnage, ore grade, and conventional benefit. Although
CK yields results comparable to those of uniform conditioning, the latter does not directly
localize the resources and relies on a strong assumption on the grade distribution. CK ex-
hibits robustness under different sampling densities, and the predicted recoverable resources
are not highly affected by the selected variogram parameters. However, even though CK
may become an alternative to the traditional geostatistical approaches, it cannot provide an
uncertainty assessment of the predicted recoverable resources.

The use of supervised machine learning (ML) techniques is suggested to address the draw-
back of the previous method, i.e., the lack of uncertainty quantification while dealing with
erratic experimental variograms. The basic idea is to provide an uncertainty quantification
avoiding the definition of a unique variogram model as usually done with kriging or geostatis-
tical simulation. To this end, numerous non-conditional grade simulations are generated with
variogram model parameters defined in intervals of possible values. From each simulation, a
reference deposit is used to determine the input variables, and the realizations establish the
output variables (i.e., tonnage and confidence interval curves). The supervised learning is
carried out employing the input-output variables to render predictive models, which can be
subsequently applied to obtain the recoverable resources and their uncertainty using features
extracted from the available data. Among the ML techniques, multiple linear regression
(MLR) is deemed the most suitable approach since it provides similar results faster and eas-
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ier compared to other ML techniques, such as artificial neural networks, in a synthetic study.
MLR characterizes recoverable resources better than traditional geostatistical approaches,
and as well as the discrete Gaussian model. Nevertheless, the latter model shows a relatively
strong sensitivity to variations on the chosen variogram model and cannot provide an un-
certainty assessment. The appropriate MLR capability to quantify uncertainty is obtained
by using a correction function that allows the coverage probabilities to achieve the nominal
probabilities for a set of defined cut-off grades.

A multivariate extension of the ML approach is included as the third proposal, which allows
assessing multi-element ore deposits characterized by several spatially correlated variables
and deposits where contaminants can affect the recoverability and quality of the primary
variable. This approach avoids the complex definition of a linear coregionalization model
by utilizing intervals of possible values to generate admissible models. The proposed mul-
tivariate ML approach is validated using a lateritic nickel deposit, where the metallurgical
processing of the primary variable (nickel grade) is restricted by a maximum threshold for the
silica/magnesia ratio. A bivariate MLR training of nickel grade and silica/magnesia ratio is
carried out employing tonnage surfaces. As a result, the multivariate ML approach provides
accurate predictions and an uncertainty assessment of the recoverable resources of nickel and
of the nickel constrained by the silica/magnesia ratio. Furthermore, complementary analyses
validate the robustness and applicability of the ML approach. First, the resources of physical
models that, a priori, do not exhibit a multivariate Gaussian distribution are properly as-
sessed. This approach is able not only to incorporate the effect of the amount of data on the
estimated confidence intervals, but also to adequately predict tonnage for resource categories
(i.e., measured and indicated). Finally, the results indicate a precise quantification of the
conventional benefit and provide credible confidence intervals on the benefit assessment. In
addition, these confidence intervals are wider compared to those obtained for the tonnage
function.

Ultimately, the research contributes to proving the applicability of CK in the mining field,
emphasizing its suitability when a localization of the resources is required while avoiding the
smoothing effect of ordinary kriging. Moreover, the study provides novel and robust ML
approaches to overcome subjective decisions behind the parameter definition to characterize
the spatial structure in geostatistical approaches. The ML approaches are appropriate to
evaluate univariate and multivariate ore deposits. Furthermore, the ML approaches can assess
predicted resources uncertainty and reproduce the nominal confidence intervals. Overall, the
three proposed approaches are recommended at initial stages of recoverable mineral resources
evaluation because the limited amount of available data may be insufficient for the use of
traditional geostatistical methods. It is expected that these approaches can improve the
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recoverable resources prediction and their uncertainty quantification to help make better-
informed decisions throughout mining projects evaluation.
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CHAPTER 1 INTRODUCTION

1.1 Context

Recoverable resources are conventionally defined as the portion of in situ mineral resources
that could be recovered depending on the selectivity of the mining method (Vann & Guibal,
2001). Global recoverable resources allow the whole ore deposit to be characterized, whereas
local recoverable resources are employed to determine the grade and tonnage values at block
or panel supports. The mineral resources assessment directly affects the ore reserves defi-
nition, and therefore, the revenues expected from mining projects. An incorrect prediction
of those resources and reserves may lead to severe repercussions on project investment de-
cisions (e.g., determining whether or not to proceed with the project) or mine design (e.g.,
life-of-mine estimation, mining method) (Goldsmith, 2002; Wellmer et al., 2007; Jones et al.,
2019). McManus et al. (2021) state that numerous mining projects fail because of mislead-
ing geological interpretations or defining inappropriately spatial domains, i.e., because of an
inaccurate appraisal of the mineral resources.

Several methods and good practices have been proposed to predict recoverable resources based
on sampling data availability and ore deposit characteristics. At initial stages, defining a
resource model that provides both conditionally unbiased (i.e., conditionally to the predicted
value, the expected error is zero) and precise (i.e., the error variance is minimal) predictions
is desired. At the same time, another key feature is dealing with the variability of the grade
and tonnage distributions at selective mining unit (SMU) support, owing to the so-called
support effect (Matheron, 1984). This is critical since mining operations require extracting
mining units that are more voluminous than the quasi-point support of sample data gathered
from exploration, and then, recoverable resources have to be determined at the SMU support.
Moreover, enhancing the knowledge on resources is vital because there is a limited amount of
drill holes at early stages of mining projects. Therefore, an appropriate approach to quantify
uncertainty is needed as it may provide valuable key information for decision-making through
the life-of-mine, principally when multi-elements ore deposits are of interest.

1.2 Problem statement

Despite the numerous geostatistical methods proposed to predict the recoverable resources,
and the fact that the assessment of those resources is crucial for the success of mining projects,
there is still no consensus about how to address the features mentioned earlier related to
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the mineral resources quantification. Hence, there is a need to explore reliable alternative
methods to overcome the following main challenges.

Reproduction of grade variability: The grades predicted with ordinary kriging (OK) do not
reflect the real variability of geological phenomena, which is an issue called smoothing effect
(Isaaks & Srivastava, 1989). This challenge is critical for the recoverable resources assessment
since biased responses occur when a non-linear operator (e.g., a cut-off grade) is applied to the
predicted kriging values. Even though some alternatives have been proposed to circumvent
the smoothed predicted values, such as non-linear geostatistical methods (Matheron, 1976a,b;
Rendu, 1980; Verly, 1983; Yates & Yates, 1988; Emery, 2005), they are complex and rely on
assumptions that reduce their applicability (Vann et al., 2000; Rivoirard, 1994). Therefore,
constrained kriging (CK) (Cressie, 1993) may arise as a promising alternative capable of
providing non-smoothed predictions at SMU support, ensuring that the variance of the pre-
dicted values is the same as that of the target values. Since CK has been mainly applied
in environmental domains (Hosseini et al., 1994; Hofer & Papritz, 2010; Hofer et al., 2013),
there is an opportunity to examine its suitability for the recoverable resources assessment.

Uncertainty quantification: Although CK can deal with the change of support and smoothing
effect, it cannot provide a measurement of the reliability of the predicted resources. In this
line, uncertainty quantification should be characterized as mineral resources are determined
from exploration drill holes usually known on widely spaced sampling. Conditional simula-
tions (CSs) (Journel & Huijbregts, 1978; Lantuéjoul, 2002; Journel & Kyriakidis, 2004; Chilès
& Delfiner, 2012) allow for uncertainty quantification of the simulated resources through mul-
tiple realizations of the element of interest. CSs can be applied to simulate resources at SMU
support while surpassing the smoothing effect of OK; nevertheless, they suffer from signif-
icant shortcomings, such as assuming strong stationarity and multiGaussianity hypotheses,
as well as the non-suitability for variables that exhibit a spatial continuity of their extreme
values. Moreover, traditional geostatistical approaches need to define parameters. The mea-
sure of uncertainty provided by CSs is certainly dependent on the exact specification of the
variogram model parameters. Any error on the model parameters would significantly impact
the uncertainty assessment obtained by CS. Hence, considering the accelerated growth of
data-driven techniques (e.g., machine learning (ML)), the usefulness of these methods for the
evaluation of recoverable resources and their uncertainty should be assessed. This is key be-
cause finding a data-driven method to avoid the sensitive variogram fitting may improve the
recoverable resources assessment. Some mining applications of ML can be found for mineral
resource assessment (Matías et al., 2004; Samanta et al., 2006; Jalloh et al., 2016), but no
further work is conducted for the prediction of recoverable resources and their uncertainty
quantification.
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Multivariate modeling: Since ore deposits commonly host several elements of interest, the
application of multivariate approaches is of significant relevance as they surpass univariate
techniques for the prediction of recoverable mineral resources (Battalgazy & Madani, 2019;
Hosseini & Asghari, 2019). Cokriging and cosimulation appear as options for the joint predic-
tion and simulation of coregionalized variables through the incorporation of the correlation
between data and their spatial continuity (Journel & Huijbregts, 1978; Myers, 1982; Wack-
ernagel, 2003; Chilès & Delfiner, 2012). However, the pitfalls advocated for kriging and CS
remain valid for their multivariate extensions. A possible alternative is exploring the use
of ML techniques to assess multi-element mineral resources. In this regard, a multivariate
prediction may allow for the prediction of tonnages and grades of primary variables and
by-products, or the resources of a primary variable constrained by the threshold of a contam-
inant. Essentially, an appropriate assessment of multi-element mineral resources and their
uncertainty is fundamental to achieve the correct development of mining projects.

1.3 Research objectives

1.3.1 General

The research aims to verify the suitability of alternative approaches for predicting recoverable
resources and quantifying their uncertainty. The proposed geostatistical and machine learning
techniques have to deal with the main pitfalls of traditional practices to enhance the mineral
resource assessment in the mining industry.

1.3.2 Specifics

In order to achieve the general objective of this study, three main specific objectives are
defined as follows.

1. To determine the applicability of CK for the quantification of recoverable mineral re-
sources by avoiding the smoothing of ordinary kriging estimates. To this end, the
performance of CK is compared with traditional geostatistical methods and its robust-
ness is tested under the application of different data types (i.e., synthetic data and real
mining cases).

2. To verify the suitability of supervised machine learning techniques for assessing recov-
erable resources and quantifying their uncertainty. It is required to determine the most
proper ML technique for the recoverable resources prediction, and then, compare it with
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traditional geostatistical approaches. Moreover, the robustness of the ML approach is
verified under different data type distributions and real case studies.

3. To apply the ML approach for multivariate ore deposits, providing a method of assessing
recoverable resources and their uncertainty in complex scenarios (e.g., prediction of
either non-additive variables or mineral resources of a primary variable constrained by
a threshold of a contaminant).

1.4 Scope

The main scopes of the research are the following:

1. The research is developed in a multiGaussian framework since this model is widely used
within the mining industry for modeling ore grades and, also, has the most efficient
simulation algorithms available.

2. Machine learning is the preferred approach to explore the applicability of data-driven
techniques for assessing recoverable mineral resources.

3. Case studies using synthetic datasets and real deposits are carried out in order to
analyze the performance of the proposed approaches and to compare them against
traditional geostatistical methods.
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CHAPTER 2 LITERATURE REVIEW

2.1 Recovery functions

The recovery functions are used to quantify the global recoverable resources with respect to
given cut-off grades (z) in an ore deposit (Lantuéjoul, 1990; Chilès & Delfiner, 2012). These
functions allow modeling the global distribution of a regionalized variable, represented by
the cumulative distribution function of a parent random field.

Four main recovery functions are defined in the mining context: (i) the tonnage T (z), which
corresponds to the proportion of values greater than or equal to z, representing the fraction
of total tonnage above the cut-off. The tonnage is a decreasing function of the cut-off grade,
(ii) the metal quantity Q(z) which is a decreasing function of the cut-off grade, (iii) the mean
grade m(z), which corresponds to the ratio between the metal quantity and the tonnage, an
increasing function of cut-off grade, and (iv) the conventional benefit B(z) that is a decreasing
function of the cut-off grade. The conventional benefit is defined by the difference between
real recovered metal quantity and the minimum quantity that is supposed to be recovered
above the cut-off grade, that is B(z) = Q(z) − zT (z). It should be noted that tonnage is
referred to the relative tonnage with regards to the total tonnage in the studied domain, T0.
The same is applied to the metal quantity. Hereinafter, tonnage and metal quantity are used
to refer to relative terms. At zero cut-off grade, T (0) = 1 and Q(0) = m(0) = B(0) = m,
which is equivalent to the global mean value. Q(0) = m(0) is valid only if Q(0) is normalized
by T0.

2.2 Change of support

During the mine operation, the material extracted is defined in a greater support than the
quasi-point support of the exploration drill hole samples. Thus, it is required to understand
how the recovery functions will be affected by this change of support.

The aforementioned recovery functions can be mathematically defined at SMU support (v)
as follows:

Tv(z) = E{1Z(v)≥z} (2.1)

Qv(z) = E{Z(v)1Z(v)≥z} (2.2)

mv(z) = E{Z(v)|Z(v) ≥ z} (2.3)

Bv(z) = E{(Z(v) − z)1Z(v)≥z} (2.4)
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where Z(v) is the SMU grade and 1 is the indicator function equal to 1 when Z(v) ≥ z and
0 otherwise. These formulae generalize the previous definitions of the recovery functions at
a point support.

The change of support has an impact on the distribution (hence, on the recovery functions) of
the studied variable. For instance, a higher support implies less variability, and consequently,
a loss of selectivity will occur when the mine is developed (Matheron, 1984; Chilès & Delfiner,
2012). An example of the loss of selectivity is depicted in Fig. 2.1, where conventional benefit
at SMU support is shown to be less selective than the point support, i.e., Bv(z) ≤ B(z).

Figure 2.1 Example of the loss of selectivity in the conventional benefit curve as a function
of cut-off grades. SMU support (red) and point support (blue)

The loss of selectivity at SMU support can be explained by Cartier’s relationship, which
implies that the expected grade at random point chosen within the SMU with a known grade
must be equal to the SMU grade (Matheron, 1984). This relationship is the basis for the
construction of change-of-support models such as the well-known discrete Gaussian model
(DGM) (Matheron, 1976a, 1984; Rivoirard, 1994).

2.3 Common practices in mineral resources assessment

Several studies have been conducted to determine the best practices and techniques associated
with the prediction of mineral resources. A comprehensive review can be found in Rossi &
Deutsch (2014), where the traditional approaches, their main issues, and several case studies
are presented.

The main steps required for assessing mineral resources generally include the definition of
geological domains, data analysis, the quantification of the spatial variability, and the ap-
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plication of geostatistical methods accounting for a change of support (Glacken & Snowden,
2001). Commonly, a reconciliation process is performed throughout the mine operation to
validate the predicted mineral resources. The approaches to assess mineral resources can
be divided between global and local techniques. The former focuses on predicting resources
as a whole without localizing them in the field, while the latter provides a characterization
of each SMU. Although traditional methods such as inverse distance weighting (IDW) can
be used to evaluate mineral resources (Glacken & Snowden, 2001), geostatistical approaches
are recommended as they account for the spatial continuity of regionalized variables. Krig-
ing (Matheron, 1963) has been the principal method employed to this end. Depending on
whether the mean value is known or unknown, the evaluation of mineral resources can be
carried out using simple kriging (SK), ordinary kriging (OK), universal kriging (UK), or
kriging with external drift (KED) (Chilès & Delfiner, 2012).

Depending on the goal sought for the predictions, three main types of mineral resources can
be considered (Deutsch et al., 2014). The initial predictions are performed for visualization
and geological understanding, where SK is the preferred method. The interim predictions
are employed for long-term evaluations considering limited data, where global accuracy is the
desired property. To accomplish this, OK with a restrictive kriging neighborhood is suggested,
in order to attenuate the smoothing effect and to obtain an unbiased (i.e., the expected error
is zero) or not-too-biased prediction of the recovery functions. Final predictions are used for
the decision-making process of sending material to either the mill or dump and consequently,
the focus is set on providing local precision (i.e., the conditional bias has to be reduced
by applying a large neighborhood) (Deutsch et al., 2014; Rossi & Deutsch, 2014). The
definition of the kriging neighborhood is therefore essential because the predictions are highly
affected by their parameters (Vann et al., 2003). These parameters can be selected taking
into account practical factors and the experience of practitioners. Some metrics to define the
kriging neighborhood were proposed by Rivoirard (1987), and later formalized as quantitative
kriging neighborhood analysis (QKNA) by Vann et al. (2003). Further details on the criteria
are found in Section 4.3.3. Despite applications of QKNA are still being carried out in the
prediction of mineral resources (Boyle, 2010; Khakestar et al., 2013; Hundelshaussen et al.,
2018), its criteria cover a limited range of the possible parameters. Until now, there is
no consensus about which criterion to prefer, leaving the geologists or mining engineers to
decide the parameters used in the prediction based on their prior knowledge or expertise.
Furthermore, it is worthwhile to mention that reducing conditional bias and enhancing local
precision implies a greater smoothing effect, hence, the prediction of the recovery functions
may be inaccurate (Isaaks, 2004). The optimal prediction of the mineral resources may not
provide a good prediction of the recoverable resources above a given cut-off grade. Advanced
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techniques for recoverable resources assessment are presented in the next sections.

In order to compute the global recoverable resources and the grades and tonnage at SMU
support, the studied variables should be additive (i.e., their average must have a meaning
(Journel & Huijbregts, 1978)). Some counterexamples found in orebody evaluation are re-
lated to the ratio between elements (e.g., solubility ratio), geometallurgical variables (e.g.,
metallurgical recovery) or to deposits where the rock density varies with the ore grade (e.g.,
iron deposits). The traditional approach to deal with non-additive variables is to identify,
when possible, additive variables to carry out their prediction, and later, obtain the non-
additive responses minimizing the bias (Carrasco et al., 2008). For instance, Adeli et al.
(2021) perform the prediction of the additive variables mass of metal in feed and mass of
metal in the concentrate, inferring the recovery by computing the ratio between them. More-
over, an appropriate assessment of recoverable resources has to consider the contaminants or
by-products that affect the primary variables. Since these variables usually are statistically
and spatially correlated, it is highly recommended to utilize methods that incorporate these
relationships. As an example, Vergara & Emery (2013) apply arsenic grades as a conditional
constraint on the predicted copper grades, resulting in a higher conditional bias when both
variables are predicted separately compared to the joint prediction of them.

A missing aspect in almost all the mineral resources reports is a measure of uncertainty on the
predicted resources. Most of the initial decisions in mining projects are based on the declared
information of these reports, even though they are carried out with scarce data that is unlikely
to be enough to characterize the inherent uncertainty of the ore deposits. For instance, the
national instrument NI-43-101 (CSA, 2016) requires disclosure of mineral resources to be
founded in reliable information through defined standards and best practices. Specific details
regarding data quality, laboratory assays or drilling results have to be reported; however, an
uncertainty assessment is not explicitly required. The measure of uncertainty in NI-43-101
aims to classify the mineral resources as measured, indicated, and inferred. However, within
each category, the uncertainty on the tonnage and ore grade is not reported. Instead, NI-43-
101 only requests a significant discussion on risks and uncertainties that can be expected (refer
to Item 25), although no standards or guides are officially defined. Dimitrakopoulos (1998)
indicates that a complete block resource model must include an assessment of uncertainty
on the mineral resources and the possible effects of their uncertainty on downstream stages
of mining projects. Today, uncertainty quantification has still not been incorporated as a
common practice in the industry, despite its significant impact on mining projects (Chiquini
& Deutsch, 2020).

An additional gap in current industrial practices, particularly in technical and statutory min-
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eral resources reports, is that machine learning techniques are not deemed to be incorporated
despite their rapid evolution and numerous applications carried out for academic purposes.

2.4 Model-driven methods for the assessment of recoverable mineral resources

2.4.1 Global change-of-support models

The basic approach to provide global recoverable resources at SMU support are denomi-
nated change-of-support models. The central idea is to relate the distribution at point and
SMU supports, assuming that the SMU distribution has the same mean, a reduced variance
(considering a variance correction factor that can be computed from the point-support var-
iogram), and a more symmetrical shape compared to the point support distribution as a
consequence of the support effect. Several change-of-support models have been proposed to
compute global resources at SMU support, e.g., affine correction, mosaic correction, direct
lognormal correction, indirect lognormal (IL) correction, among others (Journel & Huijbregts,
1978; Isaaks & Srivastava, 1989; Lantuéjoul, 1990; Rivoirard, 1994; Lajaunie, 2000; Chilès
& Delfiner, 2012). The most used methods are affine and IL correction. Although these
methods are simple alternatives able to reproduce the loss of selectivity of distributions at
SMU support, they suffer from drawbacks, such as the selected distribution does not get
more symmetrical when increasing the support (affine correction), or the proportion of zero
grade values does not decrease when increasing the support (IL correction) (Emery, 2007).

The discrete Gaussian model (Matheron, 1976a) is capable of predicting local and global
resources avoiding the shortcoming of the previous models. This method is based on a trans-
formation of the point and block-support grades into Gaussian equivalents and on satisfying
Cartier’s relationship, which provides a relationship between point and SMU distribution, al-
lowing for obtaining the recoverable resources at SMU support (Machuca-Mory et al., 2008).
Further mathematical details on DGM are presented in Appendix A. DGM is a robust al-
ternative compared to the before-mentioned change-of-support models because it relies on
relatively mild assumptions. Nevertheless, DGM can be unsuitable when the variables un-
der analysis have zero grades as the SMU support distribution must have fewer zero values
(Matheron, 1980).

Many applications of the change-of-support models are theoretical studies focused on ana-
lyzing how the methods modify the point distribution and comparing the predicted resources
with different models. For example, Emery & Torres (2005) conclude that the affine cor-
rection lead to unrealistic global distributions. In contrast, DGM and mosaic correction are
more effective approaches based on the results of a synthetic case study that mimics a gold
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deposit with connectivity of high grades and positive highly skewed distribution. The authors
mention that the so-called simple approaches (e.g., the affine correction) require the same
amount of defined parameters as DGM. Therefore, this is not a major argument to justify us-
ing these simple approaches. The superiority of DGM is in line with the findings of Demange
et al. (1987); Lantuejoul (1988) and Rossi & Parker (1994). Dutaut & Marcotte (2019) study
the effect of the variogram estimator type (i.e., traditional, normal score, correlogram, and
pairwise) on the change-of-support models. The results indicate that DGM overcomes the
IL correction on the tonnage-grade curves prediction. The authors conclude that DGM is a
robust method under different distribution types and sampling densities. Even though DGM
is the preferred alternative for assessing recoverable mineral resources, it does not provide a
measure of resources uncertainty.

2.4.2 Local geostatistical methods

Numerous geostatistical approaches have been utilized to assess mineral resources at a local
scale. Kriging, non-linear methods, constrained kriging, and simulations for local recoverable
mineral resources evaluation are discussed below.

Kriging

Ordinary kriging (Matheron, 1963) is one of the most used geostatistical predictor in the
mining industry. It considers the redundancy between the available sampling data and their
spatial continuity. A kriging neighborhood, that defines which subset of the available sample
data are used, and a covariance model are required to carry out the prediction. The fitting
of the covariance model is often derived from an experimental covariance or an experimental
variogram using a set of known basic models (i.e., nested structures). Further discussion of
the covariance fitting process can be found in David (1977), Journel & Huijbregts (1978),
Guibal (2001), and Chilès & Delfiner (2012), while a detailed elaboration of kriging can be
found in Goovaerts (1997) and Chilès & Delfiner (2012).

Isaaks (2004) demonstrates that this predictor cannot be conditionally unbiased and accurate
at the same time (i.e., the kriging oxymoron). In particular, the conditionally unbiased
prediction leads to a smoothed histogram of the predicted values, generating inaccurate
predictions when applying a non-linear function (e.g., a cut-off). In addition, the author
indicates that the decision of which property (precision or conditional unbiasedness) will
be prioritized depends on how the predictions will be used during the mine operation. For
instance, non-smoothness will be preferred when evaluating long-term scenarios (annual or
semi-annual periods of the life-of-mine), while (conditional) unbiasedness has to be chosen
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in a short-term scenario (ore-waste classification).

The extensive use of OK as an interpolation method is mainly explained by its properties, such
as the unbiasedness, the exact interpolation and the additivity property (Chilès & Delfiner,
2012). Nevertheless, kriging generates values with reduced variability. Some consequences of
this undesired property imply (i) predicted grades less variable than real grades, (ii) histogram
of predicted grades narrower than the histogram of real grades, (iii) non-reproduction of the
covariance model, (iv) issues in the representation of patterns of extremes values (Goovaerts,
1997), (v) biased predictions when a non-linear function is applied, and (vi) maps where
the densest sampling areas exhibit a high artificial variability compared with more sparse
sampling areas since the smoothing effect is non the same over the domain (Journel et al.,
2000). For instance, Fig. 2.2 shows the bias that appears when cut-off grades are applied to
the tonnage resources. An overestimation occurs if cut-off grades are lower than the mean
grade of the deposit, and otherwise, an underestimation is obtained.

Figure 2.2 Smoothing effect on tonnage resources. Kriging (red) and real (blue)

One common approach that deals with the smoothed predictions is the use of a restrictive
neighborhood when OK is applied. A comparison between DGM, optimized OK (i.e., OK
set to reduce the smoothing effect), and OK is performed by De-Vitry et al. (2007) for
predicting recoverable resources in an iron deposit. It is concluded that kriging methods are
not able to eliminate the smoothing effect, even when OK is adjusted to reduce the smoothing.
As a result, OK predictions are conditionally biased at low cut-offs and generate greater
tonnage values than DGM. Moreover, the authors criticize the decision to use optimized OK
in most technical reports, stating that it is not recommended because local accuracy can also
be important in long-term planning. Therefore, DGM can be a good alternative to move
from linear (in-situ resources) to non-linear (recoverable resources) predictions, as well as
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conditional simulation (CS) that will be explored later in this chapter.

Several other alternatives have been proposed to minimize the smoothing effect on the pre-
dictions. Guertin (1984) suggests the use of a binormal model distribution, while Olea &
Pawlowsky (1996) utilize cross-validation to define the coefficients of a linear regression used
to generate non-smoothed predicted values. Journel et al. (2000) apply the spectral approach
proposed by Yao (1998) as a post-processing of the kriging results to furthermore incorporate
the appropriate covariance model in the prediction process. The predicted results do not ex-
hibit artifacts generated by the smoothing effect; however, a reduction in the local accuracy
is introduced using this method. Yamamoto (2005) proposes a post-processing approach
based on a four-step procedure able to reproduce the covariance to generate accurate local
predictions. This approach has been validated by Yao et al. (2014) and Yamamoto (2007,
2008). Nonetheless, this approach suffers from a complex formulation because it requires
additional steps to generate the non-smoothed results.

Since the thesis aims to assess mineral resources accurately, one goal is to determine a pre-
dictor capable of reducing or eliminating the smoothing effect.

Non-linear geostatistical methods

Non-linear approaches such as disjunctive kriging (DK) (Matheron, 1976b; Rendu, 1980;
Yates & Yates, 1988), bi-Gaussian kriging (Marcotte & David, 1985), multiGaussian kriging
(MK) (Verly, 1983; Emery, 2005), and uniform conditioning (UC) (Rivoirard, 1994) may
also be considered as alternatives to avoid the smoothing effect of kriging (Vann et al., 2000).
DK and MK are able to estimate a non-linear function of the variable under study (e.g.,
tonnage at given cut-off values). Apart from its mathematical complexity, one drawback of
DK is the order relation problems that produce inconsistencies on the predicted recoverable
resources (Emery & Ortiz, 2004). MK assumes that the transformed variables follow a
multiGaussian distribution. This hypothesis can be inappropriate for variables with extreme
values that are highly spatially correlated (Rivoirard, 1994). Both DK and MK may be
applied for resource prediction at SMU support using the DGM. UC enables the prediction
of recoverable resources at SMU support located within a panel (i.e., the union of several
SMUs) conditioned to a prediction of the panel value, alleviating the strict stationarity
hypothesis stated for DK and MK. Nevertheless, UC may be sensitive to the misspecification
of the covariance model, requires extending the DGM hypotheses to the panel support, and
does not allow distinguishing the predictions of the SMUs within the same panel. Further
mathematical details on UC can be found in Appendix B.

Within the mining industry, few applications of DK and MK are found due to the theoretical
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complexity behind these methods, where most of the studies involve academic research.
Conversely, UC and localised uniform conditioning (LUC) (an extension of UC that provides
SMU grades within the predicted UC panels, see Abzalov (2006)) are more widely used to
assess recoverable resources. For instance, Guibal & Remacre (1984) argue that UC leads
to predictions comparable to DK or MK, while Remacre (1989) finds that UC outperforms
indicator kriging. Millad & Zammit (2014) compare the tonnage and grade resources obtained
by LUC and OK in a porphyry copper deposit, concluding that LUC outperforms OK in the
reproduction of the mineral resources of the grade control model. Govindsammy (2016)
derives the same conclusion from a gold deposit in an underground mine, where UC provides
superior accuracy compared to OK. Hansmann (2016) performs an analysis of whether UC
can be adequately applied, indicating that the non-linear method is more effective than OK
when data is widely spaced and follows a lognormal distribution. The influence of the amount
of data in the mineral resource assessment by UC is investigated by Assibey-Bonsu & Muller
(2014). The authors suggest that a conditional bias appears when limited data is considered,
which is common in pre-feasibility and feasibility studies, and hence, UC can be unsuitable
in such cases.

Constrained kriging

Cressie (1993) proposes a variant of kriging to obtain unbiased and non-smoothed predictions.
The predictor, known as constrained kriging (CK), ensures that the predictions have the
same theoretical variance as the true values. Further elaboration of the CK equations can
be found in Section 4.3. Aldworth & Cressie (2003) propose an extension of CK called
covariance matching constrained kriging (CM). This predictor is capable of matching not only
the variance of the target values, but also the covariance between the predicted and target
values. Because they do not smooth the variability, CK and CM are expected to generate
unbiased predictions when non-linear functions are applied to the predictions. The main
applications of CK and CM and its comparison with traditional approaches are summarized
below.

Cressie (1993) conducts a synthetic study where CK generates less biased predictions com-
pared to OK, suggesting that CK should be used in resource evaluation when unbiasedness is
a desired property. Nevertheless, the mean square prediction error (MSPE) increases between
20% and 50% for CK compared to OK. In the environmental domain, Hosseini et al. (1994)
analyze the interpolation of soil salinity data by geographic information systems employing
different methods, where thin plate smoothing splines and OK are the best predictors regard-
ing precision. Although CK presents the lesser smoothing effect, it is less precise than the
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other methods. Cressie & Aldworth (1997) carry out numerical experiments to analyze the
impact of sampling designs. The authors state that OK and CK present acceptable MSPE,
even in cases where measurement errors are observed. OK is smoother than CK when the
spatial mean and spatial cumulative distribution function are studied. As a general conclu-
sion, CK performs better than OK regardless of the considered scenarios. Later, Aldworth
& Cressie (1999) conduct several experiments to compare the performance of OK and CK.
Although OK is the preferred predictor for spatial predictions over a local region, CK shows
similar results to OK. Regarding global predictions, OK and CK perform adequately.

Several studies have been developed to compare CK, CM, and traditional geostatistical meth-
ods. First, Aldworth (1998) performs a comparison between OK, CK, and CM using sim-
ulated data. The author concludes that OK is the best predictor for linear predictands,
and the performance of OK, CK, and CM is similar if the spatial correlation is strong. In
addition, under the application of non-linear functions and Gaussian distributions, CK out-
performs OK. Cressie & Johannesson (2001) compare the performance of CM with OK and
CK using data of scallop abundance within the environmental field. As a result, CM and CK
avoid the smoothness of OK and generate heavier tails than OK. The authors suggest that
CM have to be selected instead of CK, even though specific cases have to be analyzed, such
as the effect of distributions far from Gaussian. Aldworth & Cressie (2003) introduce CS
into the comparison using synthetic data that consider Gaussian and non-Gaussian random
fields. For linear functions and Gaussian data, the best results are obtained through OK and
CS. CS fails when data do not follow a Gaussian distribution. For non-linear functions, CK
and CM show a robust performance, with slight biases and intermediate MSPE with respect
to the other methods. In general, the performance of CM is better than CK based on the
lower prediction error. Exploring a robust method to predict threshold exceedance, Hofer &
Papritz (2010) carry out several simulation experiments to compare UK, CK, CM, and CS
considering different data distributions, non-stationary mean functions, and different incor-
poration of errors. The results indicate that CK and CM provide lower precision in sparse
sampling density cases but outperform UK in all the non-linear scenarios. When skewed data
distributions are analyzed, CS shows a strong bias while CK and CM generate unbiased and
precise predictions. In general, CK and CM are the best predictors in most of the studied
cases. Even though no clear advantages of utilizing CK instead of CM are presented in their
work, the authors firmly recommend the use of CK because of its simplicity and robustness.
Hofer et al. (2013) perform an application using heavy metal values in soils around a metal
smelter to compare the performance of lognormal CK, lognormal CM, lognormal UK, and
CS. CS reaches the best precision for the block mean and threshold exceedance evaluation,
but it does not exhibit a notable advantage. Lognormal UK outperforms the other methods
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when non-linear functions are applied, which is unexpected due to the bias of traditional
kriging approaches but can be explained by the high-density sampling. Notwithstanding, the
authors recommend using either CK, CM or CS when non-linear functions are applied.

Most of the CK applications have been carried out using numerical experiments and within
the environmental field. Thus, research on the mining field is needed to explore CK as an
alternative for assessing recoverable resources, especially considering the seemingly satisfac-
tory results of CK under the application of non-linear functions. Furthermore, the robustness
of CK has not been thoroughly studied, where case studies and numerical experiments using
different data distributions have to be performed.

Simulation of mineral resources

None of the previous methods provide uncertainty quantification on the predicted recoverable
resources as geostatistical simulations (Chilès & Delfiner, 2012). The approach aims to gen-
erate values reproducing the spatial variability of the available data. These simulated values
are a realization of a random field, which could be interpreted as the stochastic representation
of the regionalized variable under study.

Simulations are classified as non-conditional and conditional simulations. The former pro-
vides realizations with the same variability as the available data without reproducing values
at sampling locations. The latter reproduces both the spatial variability and data at sam-
pling locations. A non-conditional simulation can be converted into a conditional simulation
in the case of Gaussian random fields, where an additional step known as residual kriging is
required (Chilès & Delfiner, 2012):

YCS(x) = Y SK(x) + YS(x) − Y SK
S (x) (2.5)

where YCS(x) is the conditional simulation value obtained at location x, Y SK(x) is SK of the
conditioning data, YS(x) is a non-conditional simulation at location x, and Y SK

S (x) is the SK
of the non-conditional simulation values at the conditioning data locations.

The multiGaussian model is typically employed in the mineral resources assessment. Some
algorithms such as sequential (Ripley, 1987; Deutsch & Journel, 1998) and matrix decompo-
sition (Davis, 1987; Alabert, 1987) can directly provide conditional simulations. In contrast,
spectral (Shinozuka & Jan, 1972) and turning bands (TB) algorithms (Journel, 1974; Emery
& Lantuéjoul, 2006) require the additional step specified in Eq. 2.5. Other approaches such
as fast Fourier transform and fast Fourier transform moving average (FFT-MA) (Ravalec
et al., 2000) can also be used. Applications and comparisons of the simulation methods are
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found in Vann et al. (2002), Benndorf (2013), and Paravarzar et al. (2015). Paravarzar et al.
(2015) conclude that TB outperforms sequential simulation because a better reproduction of
the spatial structure (covariance function or variogram) is observed. An error propagation
due to the use of a moving neighborhood explains the inaccurate reproduction of the spatial
structure in sequential simulation during the simulation process (Emery & Peláez, 2011).

High-resolution CSs are commonly performed, and then, the simulated SMUs are obtained by
averaging the simulated point-support values within the SMU (Verly, 1984). Consequently,
this process is demanding in terms of computational resources. Some alternatives have been
provided to deal with this issue, for example, direct block simulation at the SMU support
using sequential simulation (Marcotte, 1994) or incorporating a change-of-support model
into the simulation algorithm (Boucher & Dimitrakopoulos, 2009; Emery & Ortiz, 2011).
Nonetheless, additional assumptions have to be considered when applying the direct simula-
tions, and therefore, the current practice of block-averaging point-support simulations is still
suggested (Journel & Kyriakidis, 2004).

The outcomes of geostatistical simulations may be used to perform either risk analysis, un-
certainty assessment, or the predictions of recoverable resources (considering the average of
recovery functions calculated over several realizations). A typical barrier to the use of CS
appears since common practice in assessing mineral resources is to determine the resources
taking into account only one resources model. This may be surpassed since all the calcu-
lations that commonly consider a single model could be carried out on all the realizations,
providing a range of results, hence an uncertainty quantification of recoverable resources.
If necessary, a subsequent calculation can be performed to generate one result model, for
instance, using the average of the recoverable resources calculated over all the realizations.

Verly & Parker (2021) provide a valuable insight into the application of CS for mineral
resource classification and mining dilution assessment from the 1990s until now. Numerous
considerations are given to select the simulation parameters, and, also, four case studies
are shown where simulations outperform traditional methods such as DGM, DK and others.
The authors highlight improvements in simulations associated with speed, computer capacity,
memory, storage, and development of algorithms. In addition, they indicate that CSs provide
a valuable tool for not only classification and dilution assessment, but also stochastic mining
optimization and operational efficiency improvement.

Some drawbacks significantly affect CSs. This approach does not ensure local accuracy, and
the resulting error variance is larger than the kriging error variance. CSs often rely on strong
hypotheses (e.g., the multiGaussianity and stationarity) and cannot be suitable when the
regionalized variable exhibits correlation of the extreme values or patterns of spatial connec-
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tivity of high or low values. Finally, CSs require parameters to be specified for their correct
application, where some inaccurate responses may be obtained if the covariance or variogram
model is misspecified (Englund & Heravi, 1993). These pitfalls as well as the complexity
associated with geostatistical simulations, limit their usability in the mining industry. De-
spite this, much research has been conducted to validate their applicability, emphasizing the
importance of incorporating uncertainty into the complete mining project evaluation. It is
then suggested to account for uncertainty assessment in mineral resources reports.

2.4.3 Multivariate approaches for mineral resources assessment

Primary variables are commonly observed alongside by-products and contaminants in mining
operations since deposits can host several elements of interest. These elements are usually
spatially correlated, and thus, the application of multivariate approaches rather than univari-
ate methods is highly recommended. The first attempt to reproduce the relationship between
the variables of interest is the use of a linear combination of these variables. This defines an
equivalent grade that can be employed with traditional geostatistical methods (Myers, 1983;
Davis & Jalkanen, 1988). Nonetheless, the meaning of the equivalent grade is generally not
practical. Therefore, multivariate approaches are required so as to obtain a prediction of
each underlying variable, not only of a combination of these variables.

Cokriging arises as an alternative to the joint prediction by utilizing the correlation between
data and their spatial continuity (Journel & Huijbregts, 1978; Myers, 1982; Wackernagel,
2003; Chilès & Delfiner, 2012). In order to incorporate the spatial dependency between
variables, experimental direct and cross-covariance functions are calculated and then usually
fitted through a linear coregionalization model (LCM). The LCM relies on a set of basic
nested structures, where the sill matrix of each nested structure has to be symmetric positive
semi-definite for mathematical consistency (Chilès & Delfiner, 2012). Cokriging minimizes
the prediction error variance and provides unbiased predictions; however, it suffers from the
same limitations as kriging, in particular, the smoothing effect.

In terms of non-linear methods, several applications for multi-element deposits consider the
use of multivariate LUC. Refer to Deraismes et al. (2008) for further details on porphyry
copper deposits and Deraisme & Assibey-Bonsu (2012) and Assibey-Bonsu et al. (2014) on
porphyry copper-gold deposits. Assibey-Bonsu et al. (2014) demonstrate that multivariate
LUC provides consistent results for the predicted resources through reconciliation employing
production data. Geostatistical simulations can also be extended to a multivariate setting,
incorporating the spatial correlation between the variables by using a LCM in the multiGaus-
sian model. Since fitting the LCM can be challenging, an alternative approach for parameters
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inference of LCM is the use of Bayesian inference (Kitanidis, 1986). The estimates of the
parameters are obtained from the posterior distribution, which links the prior distribution of
the parameters and the likelihood referring to the conditional probability of the observations
given the values of the parameters. This method suffers from issues in the definition of the
prior distribution, which is typically selected based on expertise and assuming a multiGaus-
sian distribution for the likelihood. Moreover, the approach is limited by the number of data.
Other approaches to avoid the LCM fitting are based on the spatial decorrelation of the vari-
ables, for example, principal component analysis (Goovaerts, 1993a), minimum-maximum
autocorrelation factorization (Desbarats & Dimitrakopoulos, 2000), and stepwise conditional
transformation (Leuangthong & Deutsch, 2003). Their major limitation is the spatial decor-
relation, which is approximate. An alternative, in the LCM setting, is coregionalization anal-
ysis (Wackernagel, 2003), which provides factors with no spatial cross-correlation, at the cost
of a larger number of factors. Projection pursuit multivariate transform (PPMT) (Barnett
et al., 2014) can overcome this problem by transforming multiple variables into uncorrelated
multivariate Gaussian distribution. Traditional univariate geostatistical simulation can then
be employed, and a posterior back transformation is used to restore the correlation of the
original variables. However, PPMT is not always able to reproduce the original multivariate
distribution due to univariate realizations far from Gaussian distribution.

Several studies confirm the validity of using multivariate approaches instead of the univari-
ate methods for the mineral resources assessment. For instance, Dhaher & Lee (2013) obtain
better predictions for the metal quantity of copper and nickel with cokriging compared to
kriging. Through geostatistical simulations, Madani & Ortiz (2017) perform an analysis
in a nickel-laterite deposit. The results demonstrate that the joint simulation of iron and
magnesia outperforms the univariate simulation in terms of both reproducing the correlation
between variables and generating a lower relative error for the validation set. Consequently, it
is recommended to evaluate recoverable resources of several variables of interest and account
for their correlations, which is usually required in the mining operation. As an example, in
iron deposits, where industrial steel is the expected product, the ore concentrate is restricted
by the content of phosphorus and sulphur, e.g., 0.05% P and 0.1% S (Svoboda, 2004). In
copper-silver deposits, Montoya et al. (2012) consider five variables in the mineral resource
evaluation: copper and its by-products, silver and molybdenum, as well as arsenic and anti-
mony, contaminants that determine the quality of the predicted grade of the primary variable
affecting its mineral processing.

De-Vitry et al. (2007) provide a guideline to help in deciding the most appropriate tech-
niques to assess multivariate iron deposits. They indicate that few applications of non-linear
techniques can be found in iron deposits evaluation due to numerous relationships between
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the variables that have to be reproduced. It is proposed the use of DGM as an effective
tool to decide when to move from traditional linear predictors to non-linear geostatistical
techniques, including conditional simulations.

Ultimately, the recovery functions representation as selectivity curves (tonnage, metal quan-
tity, mean grade and conventional benefit above a cut-off) can be extended to selectivity
surfaces in a bivariate context. For instance, the tonnage can be obtained as a function of
the cut-off grades of both variables of interest. So far, this idea has not been thoroughly
explored within the mining field. A concept close to the selectivity surface is developed by
Silva & Almeida (2017), where the tonnage of copper is illustrated as a function of copper
cut-offs for massive and stockwork ores. Hence, there is a significant opportunity to explore
the applicability of selectivity surfaces for assessing bivariate recoverable resources.

The aforementioned approaches typically rely on strong assumptions or parameter definitions
to be correctly applied. Therefore, it is noteworthy to contemplate analyzing the suitability
of data-driven techniques to assess mineral resources and their uncertainty, primarily focused
on recoverable resources.

2.5 Data-driven methods for the assessment of recoverable mineral resources

Data science has become an attractive field in geosciences and natural resources engineering,
where significant contributions are related to solving challenging problems such as non-linear
relationships and complex interactions. In the mining field, the amount of available informa-
tion from different processes is heterogeneous and large. Then, data-driven methods (e.g.,
machine learning (ML) techniques) have the potential to significantly make decisions more
accurate than experience or prior knowledge from practitioners.

Machine learning techniques are categorized as supervised, unsupervised, and reinforcement
learning. Depending on whether the data is labelled, the learning can be considered super-
vised or unsupervised, respectively, while reinforcement learning trains the model founded
on a reward system. In the supervised environment, the main tasks are classification and
regression. Their goal is to learn the relationships or patterns of a labeled dataset to es-
tablish the underlying relationship between input and output variables and to apply this
relationship to new data for which only the input is known. Methods employed to this end
may be random forest, multiple linear regression (MLR), decision tree, nearest neighbors,
support vector machines (SVM), and artificial neural network (ANN). Further details on ML
techniques can be found in Mitchell (1997), Murphy (2012), and Kuhn et al. (2013).

Several ML techniques have been applied to the study of earth sciences, for example, in geo-
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logical mapping (Cracknell & Reading, 2014; Harris & Grunsky, 2015; Harvey & Fotopoulos,
2016), mineral exploration using geochemical and petrophysical data (Kirkwood et al., 2016;
Caté et al., 2017), classification of categorical geological data (Caté et al., 2018; Ishitsuka
et al., 2021), among others.

2.5.1 Mineral resource assessment applications

A comprehensive review of ML applications for the mineral resources assessment can be found
in Dumakor-Dupey & Arya (2021). A detailed description of the applications includes the
ore deposit type, type of datasets (e.g., field, synthetic, or laboratory-scale data), the ML
technique selected, and main results. The authors found 51 published scientific articles asso-
ciated with ML and mineral resources assessment from 1993 to 2021. ANN is the preferred
technique, followed by SVM. The studies cover a wide range of deposits, including bauxite,
iron ore, nickel, coal, gold-silver, copper, among others. Most of the works are related to the
idea of predicting ore grades at unsampled locations given the relationships between data
locations and known grade values, which can be extracted through supervised learning un-
der the assumption of a homogeneous geology. Several results indicate a good performance
of ML techniques since the mean absolute errors are smalls and the correlation coefficient
between predicted and true values is close to one. Different conclusions are derived when
ML techniques are compared with traditional geostatistical methods. For instance, Zhang
et al. (2013) show that least-square SVM outperforms IDW, OK, and ANN, being a robust
method with a high generalization capability in predicting ore grades in a seafloor hydrother-
mal sulphide deposit. Conversely, Afeni et al. (2020) indicate that OK surpasses ANN in the
prediction of iron grades as OK is able to explain a higher variability, as well as to provide
a better generalization capacity and prediction performance.

The prediction of local recoverable resources (recovery functions) has been reviewed only in
one work. Jafrasteh et al. (2018) compare Gaussian process (GP), OK, and indicator kriging
(IK) for assessing the tonnage and grade at different cut-off grades in a copper deposit. They
conclude that OK and GP perform similarly, while IK shows more tonnage resources and low
grades at the same cut-offs compared with the other methods. The main difference between
OK and GP is revealed at low cut-off grades, where GP significantly exhibits less tonnage
than OK. Nevertheless, this study is non-conclusive as there are no real recoveries to contrast
with the results.

In a global resource quantification setting, Nezamolhosseini et al. (2017) perform the tonnage
prediction using ANN and OK in an iron deposit. The results are similar for both methods,
but they slightly differ in the shallowest of the deposit. Based on the idea of predicting
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multi-element ore deposits, Chatterjee et al. (2006) utilize ANN to assess four elements of
interest (silica, alumina, calcium oxide and ferrous oxide). As a result, ANN exhibits better
performance than OK for all the analyzed variables.

Few studies have been focused on employing ML for the uncertainty quantification of spa-
tial variables. Fouedjio & Klump (2019) compare a traditional geostatistical method (i.e.,
kriging with external drift) with quantile random forest (QRF) to examine their uncertainty
assessment on synthetic and real case studies. The uncertainty accuracy is measured by the
accuracy plot, probability interval width plot, and goodness statistic. The authors conclude
that one method can perform better than the other depending on the data characteristics.
Although QRF can be a valuable technique for assessing regionalized variables, it fails to
provide accurate uncertainty quantification when a strong spatial correlation is observed.
However, no further research has been conducted to determine recoverable resources while
providing a measure of uncertainty on the predicted resources.

Some difficulties experienced during the use of ML techniques for the mineral resource eval-
uation are related to the input dimensionality and singularities of each ore deposit. Hence,
each mineral resource evaluation may require applying a specific ML technique (Kapageridis,
2005).

2.6 Gap of knowledge in recoverable resource assessment

After reviewing traditional approaches in the resource evaluation domain, there are various
opportunities to explore alternative geostatistical and ML techniques capable of dealing with
current challenges in assessing global or local recoverable mineral resources, accounting for a
change of support from point-support samples to voluminous SMUs.

• Constrained kriging is able to provide unbiased and non-smoothed predictions. Despite
these significant features, this predictor has not been thoroughly used to assess local
recoverable resources, and its applications take a limited type of datasets into account.
Therefore, there is still a lack of certainty about the performance and robustness of CK
for the characterization of recoverable resources. Since non-smoothness is the desired
property in preliminary studies, it is expected that CK may provide appropriate results,
avoiding the assumptions and complexity of traditional approaches.

• Machine learning techniques may be suitable to provide resources prediction and un-
certainty quantification for variables of interest. Nevertheless, there are no relevant
applications within the literature that assess recoverable mineral resources and quan-
tify their uncertainty, and thus, it is not clear whether ML can be properly applied
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to this purpose. Circumventing complex parameter definitions, surpassing the limited
amount of data gathered at initial project stages, and avoiding the assumptions consid-
ered in traditional geostatistical approaches can be strength features of ML techniques.

• Multivariate assessment plays a key role in predicting the recoverable resources of min-
ing projects. Until now, there is no research focused on predicting variables of interest
in multi-element ore deposits and providing a measure of their uncertainty using ML
techniques. Consequently, there is an opportunity to examine the effectiveness of ML
in this matter. Avoiding the complex definition of a unique LCM for several spatially
correlated variables through the use of ML may be beneficial for pre-feasibility and
feasibility studies.
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CHAPTER 3 THESIS ORGANIZATION AND COHERENCE OF THE
ARTICLES IN RELATION TO THE RESEARCH GOALS

3.1 Thesis outline

The thesis is carried out in order to contribute to improving the recoverable mineral resources
and uncertainty assessment by the application of new practices based on geostatistical and
machine learning techniques. Each chapter aims to address a specific objective of the research
through the development of scientific articles. The chapters are organized as follows:

Chapter 4 shows the article Constrained kriging: an alternative to predict global recoverable
resources published in Natural Resources Research.

Chapter 5 exhibits the second article Quantifying mineral resources and their uncertainty
using two existing machine learning methods published in Mathematical Geosciences.

Chapter 6 presents the article Assessment of recoverable resource uncertainty in multivariate
deposits through a simple machine learning technique trained using geostatistical simulations
published in Natural Resources Research.

Chapter 7 provides complementary results to the findings from Chapters 5 and 6 through
additional analyses in order to evaluate the applicability and robustness of the ML approach.

Chapter 8 gives a general discussion of the research project.

Chapter 9 presents the conclusions and further research.

3.2 Coherence of articles

In this research thesis, three different articles are included in order to deal with the main
challenges associated with improving the recoverable mineral resources assessment and their
uncertainty quantification, which is the general research objective. These articles are founded
on different approaches described as follows.

Article 1: Constrained kriging: an alternative to predict global recoverable re-
sources

The undesired smoothing effect of kriging predictions may be avoided by using CK, a method
seldom used in the mining industry. The article, submitted in April 2019 and accepted in
2019 in Natural Resources Research, aims to address the first specific objective: determine
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the applicability of CK for the quantification of recoverable mineral resources by avoiding the
smoothing of ordinary kriging estimates. This work shows the main findings of testing CK
for the assessment of global recoverable resources. A comparison between CK and traditional
geostatistical approaches, such as OK and UC, is performed employing a synthetic dataset
and two case studies: a gold deposit and the Walker Lake dataset. As a result, CK pro-
vides better predictions than OK and similar to UC. Moreover, a sensitivity analysis for the
variogram model parameters proves the robustness of CK compared to traditional methods,
providing an alternative to predict non-smoothed resources at SMU support while allowing
for their localization.

Article 2: Quantifying mineral resources and their uncertainty using two existing
machine learning methods

Since CK is not able to quantify uncertainty and, also, data-driven methods arise as a promis-
ing option to predict recoverable resources and their uncertainty, a second article is submitted
in May 2020 and accepted in 2021 in Mathematical Geosciences, whose goal is to reach to the
second specific objective of this research: verify the suitability of supervised machine learning
techniques for assessing recoverable resources and quantifying their uncertainty. The basic
concept is to avoid the assumptions and variogram model definition required in traditional
geostatistical approaches by replacing them with supervised learning of a series of input and
output variables. These variables are obtained from conditional simulations whose param-
eters are defined within an interval of possible values. Two machine learning techniques
are compared: multiple linear regression and multi-layer artificial neural network. Similar
results are obtained with both methods, and therefore, the first technique is preferred as it
is the most straightforward approach and easily allows for the corrections on the confidence
intervals used to evaluate the uncertainty. Compared to traditional geostatistical methods
(such as OK, CK, UC and IL correction), MLR exhibits better predictions of the recoverable
resources, being only outperformed by DGM; however, the latter uses the true variogram
model to provide the predictions, which may be an irrealistic assumption in practice. Two
case studies demonstrate the validity of the ML approach, highlighting two critical aspects of
this proposal: the recoverable resources assessment while providing a measurement of their
uncertainty.

Article 3: Assessment of recoverable resource uncertainty in multivariate de-
posits through a simple machine learning technique trained using geostatistical
simulations
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Based on the results obtained with the proposed ML approach, a multivariate extension is
carried out in the third article submitted in November 2021 and accepted in 2022 in Natural
Resources Research, which addresses the third specific objective of this research: apply the ML
approach for multivariate ore deposits, providing a method of assessing recoverable resources
and their uncertainty in complex scenarios. This study is crucial as ore deposits typically host
multiple elements of interest (e.g., main products, by-products and contaminants). Hence, the
prediction of recoverable mineral resources may be markedly improved when considering their
dependence relationships. Two challenges can be faced by using a multivariate approach: the
prediction of non-additive variables and the prediction of joint recoveries of several elements
of interest. The latter allows assessing the recoverable resources of each variable of interest
and the resources of a primary variable constrained by the threshold of a secondary variable.
The proposed multivariate ML approach is based on conditional simulations where features
and targets can be extracted from each of these simulations, and consequently, they are used
to perform the bivariate supervised learning. The outcomes of this research are validated by
a synthetic case study and tested on a real application on a lateritic nickel deposit, where
the ratio between silica and magnesia is a constrained on the recoverability of the nickel
resources.
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CHAPTER 4 ARTICLE 1: CONSTRAINED KRIGING: AN
ALTERNATIVE TO PREDICT GLOBAL RECOVERABLE RESOURCES

Nadia Mery, Denis Marcotte and Raphael Dutaut
Natural Resources Research 29(4), 2275–2289, DOI 10.1007/s11053-019-09601-6

Accepted: November 2019

4.1 Abstract

In most NI-43-101 resource assessment reports the prediction of global in-situ resources is
performed either by inverse distance weighting (IDW), ordinary kriging (OK) or uniform con-
ditioning (UC). These methods have known drawbacks: OK estimates are over-smoothed and
UC necessitates an additional step to localize resources within panels. An alternative, named
constrained kriging (CK), enables to circumvent the smoothing issue of OK by imposing the
desired theoretical variance to the interpolated variable. CK is not used in NI-43-101 reports,
possibly due to a lack of real application examples and little detailed study of its properties.
This paper seeks to fill the gap by comparing the prediction performance for global resources
of OK, UC, and CK on a synthetic lognormal dataset, and two real datasets, the Walker Lake
and a gold deposit. Results indicate that CK, although being slightly less precise than OK,
provides better predictions of grade-tonnage curves than OK and predictions comparable
to UC, a remarkable achievement considering that UC is a widespread non-linear method
specifically designed to predict recovery functions. CK is also shown to provide resource es-
timates more robust than UC with respect to the variogram model specification. Hence, CK
appears as a valuable tool allowing simultaneously to localize resources and easily account
for change of support in resources estimation.

Keywords: Ordinary kriging - constrained kriging - uniform conditioning - kriging neigh-
borhood analysis - recovery functions

4.2 Introduction

A suitable quantification of mineral resources is a significant stage within a mining project
since it defines the value of the project and has direct implications on downstream stages
(Morley et al., 1999; Goldsmith, 2002). The assessment is usually carried out employing
ordinary kriging (OK) (Matheron, 1963). However, OK is known to have a smoothing effect,
the variability of estimated block grades being less than the variability of the true block
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grades. Applying a cut-off to the estimated grade can result in serious biased ore grade-
tonnage curves. As the smoothing effect increases when less information is available, the
bias is particularly severe for interim prediction of recoverable resources where data is less
abundant than for final estimates. For interim resource estimates, NI-43-101 reports indicate
that often small kriging neighborhood are rather used to reduce the smoothing effect. This is
accomplished at the expense of a loss in precision and increased discontinuities in kriged maps.
Finding a suitable neighborhood size is often performed using the Kriging Neighborhood
Analysis (KNA) strategy (Rivoirard, 1987; Vann et al., 2003), which seeks a tradeoff between
conflicting objectives of good precision and reduced smoothing. However, it is difficult on
KNA to account for the fact that sampling density is rarely homogeneous over the whole
deposit or even within sub-domains so that the best neighborhood can be unsatisfactory in
the different parts of the deposit or domain.

Numerous alternatives exist to circumvent the pitfalls of smoothed values. For instance,
nonlinear methods, such as indicator kriging, disjunctive kriging, multi-Gaussian kriging and
conditional simulation have been developed (Journel, 1974; Verly, 1983; Rivoirard, 1994;
Goovaerts, 1997; Chilès & Delfiner, 2012). These methods rely on stronger distributional
hypothesis than OK and they try to estimate conditional distributions rather than to provide
a single prediction. Indicator kriging requires, in addition, a change of support model to shift
from point conditional distribution to block distribution. A simpler approach is uniform
conditioning (UC) (Rivoirard, 1994), a method widely spread in the mining industry, as
it is able to compute the grade-tonnage curves for the block support within each panel.
However, UC does not localize the recoverable resources spatially at a finer scale than the
panel. Abzalov (2006) proposed an extension to UC known as localized uniform conditioning
(LUC), which produce block grades within the panel such as to recover the distributions
predicted by UC for each panel. The method is based on ranking of block kriged estimates.
The caveats are that it introduces discontinuities of the grades at panel boundaries and two
blocks having the same OK estimate but taken in different panels do receive different LUC
estimates, which appears a bit arbitrary.

A promising variant of kriging is constrained kriging (CK) (Cressie, 1993), which, by con-
struction, produces unbiased and non-smoothed grade predictions at block support. CK was
developed to ensure that the predicted values have, theoretically, the same variance as the
target values. Basic CK equations may be found in Cressie (1993), while a thorough deriva-
tion of CK equations can be found in section 4.3. This predictor has been mostly studied
within the environmental field at block support, where several comparisons between OK and
CK have been carried out for different applications (Hosseini et al., 1994; Aldworth & Cressie,
1999). CK was further generalized to covariance matching constrained kriging (CM) (Cressie
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& Johannesson, 2001; Aldworth & Cressie, 2003; Hofer & Papritz, 2011; Hofer et al., 2013),
which additionally imposes constraints on covariance of predicted values. Hofer & Papritz
(2010) performed a comparison between CK and CM, concluding that CM does not exhibit
a significant benefit over CK. Furthermore, the additional constraints in CM increase its
theoretical estimation variance. The authors firmly recommend the use of CK because of its
simplicity and better robustness compared to CM.

We emphasize that CK was originally designed to be applied on block-support distributions
(Cressie, 1993). When it is incorrectly used on point support, large negative and positive
weights can be obtained, leading numerous negative estimates and poor precision of the
estimates (Hosseini et al., 1994; Hofer & Papritz, 2010; Hofer et al., 2013).

Although CM was used for coal tonnage assessment (Tercan, 2004) and estimation of coal
quality variables (Ertunç et al., 2013), no previous studies using CK for resources predictions
have been performed in the mining field. This article assesses for the first time the capacity of
CK to improve interim resource predictions compared to OK and UC. Different neighborhood
sizes and case studies are considered herein and the sensitivity of results to the neighborhood
choice and variogram model is appraised. Moreover, we introduce a new measure in KNA,
the oversmoothing ratio (OSR), which helps to select the best neighborhood for resource
prediction by OK.

The paper is structured as follows. Section 4.3 exhibits a complete derivation of CK equations
and the main criteria used in KNA, including the new OSR criterion. Section 4.4.1 describes
the KNA results obtained with OK and CK for a synthetic case study. Section 4.4.2 compares
the performances of OK, CK, and UC on two case studies, one using the Walker Lake data
and the other data from a gold deposit. Finally, section 4.5 discusses the main findings
and conclusions of this research and its implications for the important problem of resource
estimation as currently practiced.

4.3 Methods

4.3.1 Constrained kriging (CK) equations

A linear predictor has the form Z∗
v = λλλ′Z, where λλλ is the vector of weights and Z is the vector

of observed values. The variance of the predictor is given as: λλλ′Kλλλ, where K is the covariance
matrix between all known data points (usual simple kriging matrix). Let the prediction error
variance be minimized under the constraints 1′λλλ = 1 and λλλ′Kλλλ = σ2

v , where 1 is a column
vector of ones. Using the Lagrange method and posing derivatives equal to zero, one obtains
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the following equations:
Kλλλ + µ11 + µ2Kλλλ = k (4.1)

1′λλλ = 1 (4.2)

λλλ′Kλλλ = σ2
v (4.3)

where k is the simple kriging right member, σ2
v is the block variance and µ1 and µ2 are the

Lagrange multipliers associated to constraints.

Upon a few simple manipulations and substitutions (see Appendix for details), the solution
to the above system of equations is the following:

m2 = 1 + µ2 =
[

k′λλλs − b2/s

σ2
v − 1/s

]1/2

(4.4)

with b = 1′K−1k = 1′λλλs, s = 1′K−11 and λλλs is the vector of simple kriging weights, i.e.
λλλs = K−1k.

µ1 = b − m2

s
(4.5)

λλλ = 1
m2

K−1 (k − µ11) (4.6)

Eqs. 4.4 to 4.6 are identical, up to a change of notation, to expressions 3.11 to 3.13 of Cressie
(1993). Recall that Eq. 4.4 involves terms that depend only on the covariance model. Once
m2 = 1 + µ2 is computed, it is straightforward to compute µ1 and λλλ using Eqs. 4.5 and 4.6.
Note that it can occur that CK does not have a real solution in Eq. 4.4, especially when the
selected neighborhood is small in fields with relatively strong spatial correlation. In this case,
OK can be used as a substitute predictor. A better option to simply increase the number of
neighbors for these points.

Another instance where CK cannot be evaluated is when k = 0. In this case, the simple
kriging weights are all 0s, b = 0, m2 = 0 so µ1 in Eq. 4.5 is 0 and λλλ in Eq. 4.6 is indeterminate.
Including a long range component with very small variance in the variogram model solves
this problem.

CK prediction variance

Using the classical prediction variance formula the CK estimation error variance is:
σ2

c = V ar(Zv − Z∗
c ) = V ar(Zv) + V ar(Z∗

c ) − 2Cov(Zv, Z∗
c )

= 2(V ar(Zv) − λλλ′k) (4.7)
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where Z∗
c is the CK predictor. The simple kriging variance is σ2

k = V ar(Zv) − λλλ′
sk. It

is known that the prediction variance of a conditional realization used as a predictor is
V ar(Zv −Zsc

v ) = 2σ2
k = 2(V ar(Zv)−λλλ′

sk), which has the same form as σ2
c . However, because

λλλ minimizes the prediction variance and conditional simulation does not, one is ensured that
σ2

k ≤ σ2
c ≤ 2σ2

k.

4.3.2 Computational aspects

Computation of CK has similar complexity to OK (i.e., O(n3), n the number of neighbors) as
the main step in Eq. 4.4 requires solving the simple kriging system. The notable difference
with respect to OK is the computation of s = 1′K−11, which requires the explicit compu-
tation of the inverse of K to sum all its elements. For OK, the inverse does not need to be
computed explicitly, and therefore, more efficient factorization methods may be used (Chilès
& Delfiner, 2012, p. 170).

4.3.3 Kriging neighborhood analysis (KNA)

Defining a proper search neighborhood is crucial for the prediction of regionalized variables
because it can improve precision and reduce the risk of introducing conditional bias within the
predictions. A well-established method in the literature is the kriging neighborhood analysis
(KNA), which considers that the spatial correlation model (variogram or covariance) is valid
and the regression is linear (Vann et al., 2003). Five criteria were found in the literature:
slope of regression (SR), over-smoothing ratio (OSR), kriging efficiency (KE), weight of the
mean (WOM), and proportion of negative weights (NEG). This article focuses on the analysis
of three determining criteria: SR, KE, and OSR. WOM and NEG are not considered herein
since the former is highly correlated to KE, and the latter is rather unstable and more difficult
to interpret.

The slope of regression (SR) linearly relates the true value with the predicted value through
E [Zv|Z∗

v ] = a + bZ∗
v , where b is the SR and Z∗

v is the predicted value for the volume v

(Rivoirard, 1987). The slope is given by:

SR ≡ b = 1 + µ

V ar(Z∗
v ) = 1 + µ

σ2
v − σ2

ok − 2µ
(4.8)

where µ is the Lagrange multiplier, σ2
v is the block variance and σ2

ok is the ordinary kriging
variance and (σ2

v −σ2
ok−2µ) = V ar(Z∗

v ). A slope b = 1 implies a = 0, therefore, no conditional
bias occurs. BiGaussian distribution of Zv and Z∗

v ensures that the conditional expectation
is linearly related to the predictor. Most often µ is negative, thus, b < 1, which implies ore
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grade overestimation at high cut-off.

Krige (1997) proposed the kriging efficiency (KE) as an indicator of the effectiveness of the
block predictions. KE is calculated as:

KE = σ2
v − σ2

ok

σ2
v

= V ar(Z∗
v ) + 2µ

σ2
v

(4.9)

High KE (i.e. close to 100 %) values correspond to small kriging variance (hence, small µ)
and variance of the predictor close to the block variance, so the smoothing is limited.

Camus & Desharnais (2015) proposed to compute experimentally the level of smoothing
from the estimates by comparing the theoretical block variance with the variance of the
block estimates, which is the statistic known as over-smoothing ratio (OSR). An analogous
theoretical definition that we introduce is:

OSR = σ2
v − (σ2

v − σ2
ok − 2µ)

σ2
v

= σ2
ok + 2µ

σ2
v

(4.10)

A zero OSR value indicates absence of smoothing. With ordinary kriging, OSR is usually
positive, but it can be negative for very small neighborhoods. When using a restricted neigh-
borhood, the Lagrange multiplier can take non-negligible negative values reducing the OSR
and providing a partial theoretical justification for the common practice of using restricted
neighborhood (Rossi & Parker, 1994).

Note that the above definitions enable to compute one different theoretical value per predicted
block for SR, KE, and OSR. We assume that their average over different blocks is meaningful
and can be used as a comparison to the unique experimental equivalent.

4.4 Results

Three case studies are considered. The first dataset is obtained by simulation and is used to
compare KNA results of OK and CK. Two real datasets, Walker lake data and data from a
real gold deposit, are used to compare performances of OK, CK, and UC for both precision
of estimates and quality of ore grade-tonnage curves.

4.4.1 Synthetic data

This section aims to perform the KNA for OK and CK using a marginal lognormal distri-
bution. Samples are generated along vertical boreholes. In each borehole, the two closest
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samples to the estimated block are retained. The prediction performance of OK and CK is
compared with root mean square prediction error (RMSPE), correlation coefficient (R), and
recovery functions obtained (ore grade, tonnage and conventional profit curves).

Figure 4.1a shows the marginal lognormal density function considered in this analysis. The
Gaussian dataset is simulated using the Cholesky method, with an isotropic spherical covari-
ance structure (range 20 m), and a nugget effect representing 30 % of the sill. Ten thousands
blocks of size 5 m x 5 m x 5 m were individually simulated in the Gaussian domain along
with five vertical boreholes per quadrant randomly located around and within the estimated
block considering a rectangular window of size 40 m x 40 m centered on the block. Different
neighborhood configurations were considered: 3 boreholes in total (6 samples), 1 borehole
per quadrant (8 samples), 2 boreholes per quadrant (16 samples) and 3 boreholes per quad-
rant (24 samples). The large number of available boreholes (5 boreholes per quadrant of the
rectangular window) would typically categorize resource estimates as measured in NI-43-101
reports.

Variogram analysis

After back-transformation, sets of boreholes and block grades compatible with the point
lognormal marginal distribution are obtained. The grade variogram is also computed by
back-transformation of the variogram used in Gaussian space. First, numerous pairs of points
(n=100,000) separated by h m are simulated in Gaussian space through the Cholesky method.
Second, the half mean square difference of the back-transformed pairs is computed. This is
repeated for a series of different lag distance h m. The resulting “experimental" variogram is
then automatically fitted using a nested model composed of a nugget, an exponential, and a
spherical structure. The “experimental" and modeled variograms are illustrated in Fig. 4.1b.

KNA results

Figure 4.2 shows the SR, KE, and OSR statistics as a function of the number of boreholes
used in OK and CK. Average theoretical values (solid lines) and experimental values (dashed
lines) for SR and OSR are shown. The theoretical expressions for SR, KE and OSR match
adequately the experimental values in this well-controlled experiment.

OK presents higher SR, KE, and OSR than CK in all cases. OK is almost conditionally
unbiased (SR close to 90 %) when the sampling density is large enough (i.e., 3 boreholes
per quadrant in the search area ≡ 12 boreholes and 24 samples total). On the contrary, CK
remains conditionally biased (SR close to 70 %) in all cases.
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(a) Lognormal distribution (b) Variogram

Figure 4.1 Histogram (a) and variogram (b) of synthetic dataset. Experimental variogram
(blue crosses) and theoretical model (solid line): γ(h) = 1.89 nug + 1.36 exp(h, a = 8.05) +
1.46 sph(h, a = 17.88).

As expected, for a fixed number of boreholes, the KE is systematically larger for OK compared
to CK. A larger sampling density is therefore required in CK to recover KE comparable to
OK.

As imposed by construction, CK has no smoothing effect in none of the cases. In contrast, OK
exhibits significant smoothing effect even when only one borehole per quadrant is considered.
Hence, the common practice of using small neighborhoods for OK reduces SR and KE, and
does not necessarily permit to reach the goal of completely removing the smoothing effect.
In contrast, CK does not show smoothing for all choices of neighborhoods.

Table 4.1 compares the performance of OK and CK regarding the root mean square pre-
diction error (RMSPE) and correlation coefficient (R) for different neighborhood sizes. As
expected, MSPE is smaller for OK than for CK and both RMSPEs decrease with an increase
of neighborhood size (differences for the same neighborhood between 2 % to 10 %). The
correlation R shows little differences between OK and CK for all neighborhoods. OK with a
small neighborhood (3 boreholes total) has similar MSPE and R to CK with a larger neigh-
borhood (3 boreholes per quadrant). In that case, both OK and CK are not smoothed with,
respectively, OSR of -5 % and 0 %.
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(a) OK (b) CK

Figure 4.2 KNA results for SR (blue), KE (black) and OSR (red) as a function of number of
boreholes per quadrant, synthetic dataset. Theoretical values (solid lines) and experimental
values (dashed lines).

Table 4.1 RMSPE and R results using OK and CK and different neighborhood sizes.

Number of neighbors MSPE R

OK CK OK CK
6 (1 borehole in 3 quadrants) 1.12 1.14 0.67 0.67
8 (1 borehole per quadrant) 1.03 1.08 0.68 0.68

16 (2 boreholes per quadrant) 0.97 1.07 0.70 0.69
24 (3 boreholes per quadrant) 1.02 1.09 0.70 0.69
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Recovery functions

Using the synthetic dataset, Figure 4.3 displays the recovery functions of tonnage, ore grade,
and conventional profit obtained with OK and CK considering two neighborhood configura-
tions: one with three boreholes in total (i.e., 6 samples; best results with OK) and the other
with three boreholes per quadrant (i.e., 24 samples; best results for CK).

Based on Figure 4.3, CK satisfactorily reproduces the recovery functions at all cut-offs in
both neighborhood configurations. In contrast, OK does not match the real curves when
three boreholes per quadrant are used. In that case, the tonnage is overestimated at low
cut-offs and underestimated at high cut-offs, whereas ore grades and conventional profits are
underestimated at all cut-offs as a result of the smoothness of OK predictions. Hence, CK
recovery curves appear quite robust to the exact choice of the neighborhood contrary to OK
which appears to be more sensitive to this choice. In a sense, this justifies the practice of
KNA for OK to select the “right" neighborhood for interim resource estimation if such a
thing exists. As already discussed, this requires implicitly a strong homogeneity in sampling
density. CK has the definite advantage of being able to adapt automatically to the sampling
density available locally and still provide un-smoothed estimates.

(a) Tonnage curve
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Figure 4.3 OK and CK recovery functions using one borehole in three quadrants (dots) and
three boreholes per quadrant (dashed lines). Real recoveries with synthetic dataset (solid red
line).

4.4.2 Real datasets

This section aims to compare the CK, OK and UC prediction performance and reproduction
of recovery functions on two real datasets, the Walker Lake data and grade data from a gold
mine (unidentified for confidentiality reasons).
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Walker Lake

Walker Lake dataset (Isaaks & Srivastava, 1989) is a well-known public domain database
constructed from the topography of the Walker Lake area in Nevada, US. The exhaustive
dataset (considered as the reality) is preferentially sampled in the high-grade area to mimic
real sampling patterns found in mining. Only the variable V of the Walker Lake dataset is
analyzed.

(a) Exhaustive dataset
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(b) Sample dataset

Figure 4.4 Location maps of variable V, Walker Lake. The exhaustive dataset (a) and the
sample dataset (b).

The declustered experimental variogram is computed using the sample dataset. The fitted
variogram model is: γ(h) = 90, 000 exp(−h/14) where the range 14 is expressed in number of
cells. OK and CK predictions are computed for a block model of 5×5 cells, using one neighbor
per quadrant for OK and two neighbors per quadrant for CK as these neighborhoods were
found to provide best results for each method. For UC, the prediction with OK is firstly
performed at panel support (here 65 cells × 75 cells) with the 50 closest neighbors. A
declustered histogram is used to define the required Gaussian transformation for UC.

Table 4.2 compares the performance of the three methods with the real values obtained from
the exhaustive dataset. Note that UC does not localize results at the 5 × 5 scale, hence, it
is not possible to compute RMSPE and R at this scale. The mean grade of OK is closer to
the real value, but the OK variance of the estimated values (σ2) indicates the presence of a
smoothing effect even with the small neighborhood considered (one neighbor per quadrant).
CK suitably describes the real variability of the studied variable as the real variance and CV
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are well reproduced. Finally, the RMSPE is smaller for OK than for CK and R coefficients
are similar.

Table 4.2 Comparison of statistics obtained with UC, OK, and CK methods for blocks 5 × 5,
Walker Lake.

µµµ σ2σ2σ2 CV RMSPE R
Real 277.98 52,304 0.82
OK 277.81 44,089 0.76 112.57 0.87
CK 274.97 52,918 0.84 122.87 0.86
UC 280.07

The experimental variogram of real block values is shown in Figure 4.5 along with the ex-
perimental variograms of OK and CK estimates. Note that even though both OK and
CK estimates are non-stationary by construction (for example, their variances are location-
dependent), the experimental variograms can be used as a descriptive measure of similarity
between the fields. Hence, CK variogram appears to be more similar to the real block grade
variogram than OK variogram.

Figure 4.5 Experimental block variograms of OK (blue), CK (black) and real block values
(red dashed). Walker Lake dataset.

Figure 4.6 shows the ore grade-tonnage curves for OK, CK and UC. Firstly CK properly
fits the real recovery functions for the ore grade and tonnage. Secondly UC shows a good
reproduction of the real tonnage, while the reproduction of the ore grade is not as good in
this test case. On the other hand, OK generates an overestimation of tonnage at low cut-
offs and an underestimation of tonnage at high cut-offs, a typical direct consequence of the
smoothness of OK estimates. Ore grades are however well reproduced by OK in this test,
especially at high cut-offs.
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(a) Tonnage curve (b) Ore grade curve

Figure 4.6 Recovery functions for OK (blue), CK (black), UC (cyan) and real values (red
dashed). Walker Lake dataset.

Swath plots of real values, as well as OK and CK estimates, are drawn along the two main
directions: East-West (EW) and North-South (NS). Figure 4.7 indicates that OK and CK
present similar swath plots even though CK estimates have slightly more variations. Both
methods show larger discrepancies in the same locations when compared with the real field.

(a) East-west direction (b) North-south direction

Figure 4.7 Swath plots along east-west (a) and north-south (b) directions. Walker Lake
dataset.
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Sensitivity to variogram model

It can be difficult to define a variogram model unambiguously. The robustness of recovery
functions obtained for OK, CK and UC is examined by repeating estimations with a signif-
icantly different model. To this end, the variogram model was modified to include a nugget
effect of 30 % of the total sill (compared to 0 % in previous estimates), while keeping the
range, the sill, and type of model.

Figure 4.8 shows the ore grade-tonnage curves for OK, CK and UC. OK and CK ore grade
functions are slightly modified by the change in the variogram model. This is corroborated
by the high correlation of new predicted values with former ones (0.994 and 0.989 for OK and
CK respectively). However, UC grade curve appears farther from the real curve (compare
Figs 4.8 to 4.6). The average relative differences between ore grade predictions with the
original and modified variogram models are 0.6 %, 2.1 %, and 4.2 % for OK, CK and UC
respectively. For tonnage, while OK seems little affected, both CK and UC present higher
tonnages at low cut-offs with the modified variogram model. The average differences between
the predicted tonnage using the original and the modified variogram models are 2.7 %, 6.6
%, and 15.1 % for OK, CK and UC respectively. This experiment shows that OK is most
robust method followed by CK and then UC. However, even with the modified model, CK
still globally performs better than OK for the tonnage and ore grade curves.

We repeated the experience this time modifying the original model by increasing in 50 % the
variogram range. Differences in ore grade and tonnage curves were almost imperceptible for
the three methods when compared to Fig. 4.6, so they are not further reported.

(a) Tonnage curve (b) Ore grade curve

Figure 4.8 Recovery functions for OK (blue), CK (black), UC (cyan) and real values (red
dashed). Walker Lake dataset.
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Gold deposit

The case study is a real gold deposit where fine-grained felsic volcanic units compose the
main part of the stratigraphy. Most of the mineralization are gold-bearing quartz and quartz-
carbonate shear, and tension veins hosted in the footwall of a reverse fault. The mineralogy
in the ore zones includes 2 % to 7 % pyrite and some traces of pyrrhotite. A total of 91,104
diamond drill (DDH) core samples and 82,773 reverse circulations (RC) inclined drilling used
for grade control (see Fig. 4.9) are available. The RC data are concentrated in a volume
representing roughly 40 % of the volume covered by the DDH.

(a) RC (b) DDH

Figure 4.9 Plan views of gold variable. Reverse circulations drilling (a) and diamond drill
samples (b) at level 443 m.

Table 4.3 shows the main statistics of uncapped and capped data (at 30 ppm) for DDH and
RC. The capped value corresponds to a very high percentile of the distribution of both DDH
(99.91 %) and RC (99.96 %) data. The capped mean is slightly smaller than the uncapped
one. However, a substantial reduction in variance occurs for both distributions (27.7 % for
DDH and 40.0 % for RC). Therefore, the capped value was applied hereafter.

Table 4.3 Declusterized capped (at 30 ppm) and uncapped statistics for DDH and RC

µµµ σ2σ2σ2 skewness Percentile at capped value
DDH uncapped 0.25 2.02 22.50 99.91 %

DDH capped 0.24 1.46 15.53 -
RC uncapped 0.39 2.59 30.53 99.96 %

RC capped 0.38 1.56 12.60 -
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Given the high-density of RC drilling, it is assumed that one realization obtained by turning
bands method over blocks of 5 m x 5 m x 5 m is representative of the block grade. Those
DDH samples found within the RC domain were composited to a length of 3 m which was
found to ensure DDH grade variance comparable to RC grade variance. A strong difference
was nevertheless observed between the declusterized means of DDH and RC grades (the mean
of DDH representing only 77 % of the RC mean). The causes of this difference are unknown.
DDH grades were corrected by applying a quantile-quantile transformation so that DDH
distribution matches the RC distribution. The experimental variogram on RC was fitted
by cross-validation. The resulting variogram model is: γ(h) = 1.2nug + 0.35 sph(h, a =
25m) + 0.05 sph(h, a = 60m) where nug and sph stands respectively for nugget effect and
spherical model and a is the finite range. One neighbor per octant (i.e., a total of 8 samples)
is used for CK and OK. This neighborhood was found best for both methods after KNA. For
UC, the panel size used is 50 m x 50 m x 30 m.

Table 4.4 compares the statistics obtained with OK, CK and UC. UC shows a good repro-
duction of the global mean grade value. OK has the lower RMSPE value and the higher R
but shows a lower variance than the variance of the blocks, contrary to CK which succeeds
in reproducing the block variance exactly.

Table 4.4 Comparison of statistics obtained with UC, OK, and CK methods for blocks 5×5×5
m, gold deposit.

µµµ σ2σ2σ2 CV RMSPE R
Real 0.37 0.27 1.40
OK 0.38 0.20 1.18 0.58 0.28
CK 0.39 0.27 1.35 0.63 0.27
UC 0.37

To compare the spatial behavior of real values to OK and CK estimates, the experimental
variograms of real block grades, CK and OK estimates are depicted in Fig. 4.10. As for
Walker Lake data, CK variogram seems more similar to the real block grade variogram than
OK variogram.

Figure 4.11 exhibits the ore grade-tonnage curves for OK, CK and UC predictions. UC
tonnage curve indicates a suitable reproduction of the real curves. CK and OK slightly
overstimate the tonnage at middle cut-off values. UC and CK properly reproduce the ore
grade curves, while OK underestimates the ore grade at all cut-off values.

Figure 4.12 depicts a plan view of the predicted gold variable at 443 m level using OK (left)
and CK (right). Despite the higher variance of CK estimates compared to OK, both figures
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Figure 4.10 Experimental block variograms of OK (blue), CK (black) and real values (red
dashed). Gold deposit dataset.

(a) Tonnage curve (b) Ore grade curve

Figure 4.11 Recovery functions for OK (blue), CK (black), UC (cyan) and real values (red
dashed). Gold deposit dataset.
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appear quite similar visually.

(a) OK (b) CK

Figure 4.12 Plan view (level 443 m) of predicted gold variable using OK (a) and CK (b).

The grade distribution along specific swaths are computed for the there main directions:
East-West (EW), North-South (NS) and elevation. Swatch plots are illustrated in Fig. 4.13.
As for Walker Lake data, CK and OK swaths are quite similar and they show globally similar
discrepancies to the real swath. Certainly, CK cannot be considered as a panacea for those
samples whose estimated grades do not represent well the real grades in some parts of the
field.

4.5 Discussion

Predicting global resources on block support and simultaneously localizing the resources in
a deposit is a challenge when only relatively sparse data are available for the prediction of
interim resources. The localization is achievable to some extent with local change of support
methods, conditional simulation, and other non-linear kriging approaches (e.g., disjunctive
kriging, UC, multiGaussian, and biGaussian kriging). However, these approaches either per-
mit the localization at the scale of large panels or depend on more restrictive multiGaussian
hypothesis.

Block kriging is typically used in NI-43-101 resource assessments despite the known bias
it introduces in recovery function estimation due to the smoothing effect. It is a common
practice to shrink the neighborhood so as to reduce the smoothing effect. The question arises
as how to determine a suitable neighborhood to diminish the bias on recovery functions and
still precisely localize the resources. KNA based on SR, KE, and the newly introduced OSR
statistics is useful for this purpose in domains homogeneously sampled. However, when the



44

(a) East-west direction (b) North-south direction

(c) Elevation

Figure 4.13 Swath plots along east-west (a), north-south directions (b) and elevation (c).
Gold deposit.
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sampling density varies in space, the KNA approach would require to subdivide the deposit in
homogeneously sampled domains. A different and easier approach is to use non-smoothed CK
predictions as proposed by Cressie (1993), which has the distinct advantage of self-adapting
to varying sampling densities.

For the synthetic case, the KNA of OK shows that decreasing the neighborhood size reduces
smoothing. This beneficial effect is obtained at the expense of a loss in KE and SR. In
contrast, KNA of CK shows no smoothing for all choices of neighborhoods; hence, OSR is
robust to this choice. The KE and SR statistics of CK slightly increase with the neighborhood
size, suggesting that it might be better for precision to use CK with larger neighborhoods.
Interestingly, the only configuration in OK that shows a small OSR (3 boreholes total) also
shows similar SR and KE to those of CK with more boreholes. Recovery functions based on
OK predictions (with 3 boreholes) and CK predictions (any number of boreholes) show an
excellent agreement with the real recovery functions. However, recovery functions computed
from OK predictions with 3 boreholes per quadrant are clearly impacted by the increased
smoothing effect. These results support the current practice of the mining industry to work
with limited neighborhoods for OK. However, the fact that CK is rather insensitive to the
choice of the neighborhood constitutes a definite advantage when the sampling density is
non-homogeneous or is insufficient to ensure local availability of boreholes in the restricted
search area.

Both the Walker Lake and gold deposit case studies showed similar results. OK is more
precise than CK but CK has less smoothing effect, which results in ore grade-tonnage curves
closer to the real ones. In fact, CK reveals to be as good as the non-linear UC for recovery
function estimation, a remarkable achievement considering UC is specifically designed for
this task. Moreover, contrary to CK, UC necessitates a stronger biGaussian hypothesis of
the transformed grades at block and panel scales and it assumes that the discrete Gaussian
model applies for both. In addition, CK (like OK) allows to localize the predictions at
the block scale compared to the panel scale for UC. An extension to UC, localized uniform
conditioning (LUC) Abzalov (2006) has been proposed to localize UC estimates at the block
scale, but this approach is known to generate discontinuities in the predicted grades at the
panel boundaries, which is not the case for CK.

An alternative not examined in this paper is the use of conditional simulations. Contrary
to CK, conditional simulation requires a stricter multiGaussian hypothesis. Moreover, the
variogram of the Gaussian variable must be selected very carefully as mean grade after back-
transformation can be strongly affected by a wrong choice of variogram parameters in the
Gaussian space. Finally, the localization of resources is not as direct as with CK. One can
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produce e-type maps (that will then be similar to OK), or probability maps to be above
cut-off grades (similarly as with UC), but there is no direct equivalent to CK.

Some issues regarding CK have to be mentioned. One difficulty with CK is the absence of
real solutions in few cases where too small neighborhood sizes are used. This problem is
easily solved by using a larger neighborhood. A second problem is the higher proportion of
(small) negative grade predictions obtained with CK compared to OK. The solution adopted
here was simply to set to zero all negative estimates obtained by either CK or OK. Another
problem is the absence of solutions when no data is found within the largest (finite) range of
the variogram. In that case, k = 0, hence simple kriging return all zero weights, b, m2 and µ1

in Eqs. 4.4 and 4.5 are also 0, hence λ in Eq. 4.6 is indeterminate. An easy solution is either
to incorporate one variogram component with asymptotic sill (e.g. exponential, Gaussian
or Matérn models), or include a component with large finite range (and eventually small
variance contribution).

4.6 Conclusions

Constrained kriging represents a promising alternative to traditional approaches for block-
support resources estimation, such as ordinary kriging and uniform conditioning, because of
its capacity to simultaneously predict and localize geological resources. CK adopts common
practices of OK (e.g., the use of search neighborhood) and avoids the main issues of UC and
the strong multiGaussian hypothesis of conditional simulation. Despite the fact that CK
predictor is less precise than OK, it generates non-smoothed predictions and it succeeded
to properly reproduce the recovery functions in all study cases. One definite advantage of
CK over OK is that it is by construction self-adaptive, i.e., the estimates are non-smoothed
for all neighborhood configurations. Recovery functions obtained by CK in the two real
case studies were at least as precisely estimated by CK than by UC, an interesting outcome
considering that UC is a widely used non-linear method specifically targeted to estimate
recovery functions.

4.7 Appendix

Recall the system of equations to solve for determining CK weights:
Kλλλ + µ11 + µ2Kλλλ = k (4.11)

1′λλλ = 1 (4.12)

λλλ′Kλλλ = σ2
v (4.13)
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Premultiplying Eq. 4.11 by K−1 and arranging the terms, it follows:
λλλ = 1

1 + µ2
K−1 (k − µ11) = 1

m2
K−1 (k − µ11) (4.14)

where m2 = 1 + µ2. Premultiplying Eq. 4.11 by 1′K−1, the following form is written:
m2 + µ1s = b (4.15)

with b = 1′K−1k = 1′λλλs and s = 1′K−11. Premultiplying Eq. 4.11 by λλλ′, the following
expression is obtained:

m2σ
2
v + µ1 = λλλ′k (4.16)

Substituting Eq. 4.14 in Eq. 4.16 leads to the following:
m2σ

2
v + µ1 = 1

m2
(k′ − µ11′) K−1k (4.17)

= 1
m2

(k′λλλs − µ1b) (4.18)

Substituting Eq. 4.15 in Eq. 4.18, one obtains:

m2 =
[

k′λλλs − b2/s

σ2
v − 1/s

]1/2

(4.19)

which completes the proof.
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5.1 Abstract

Mineral resources are typically quantified by estimating the grade-tonnage curve for different
resource categories. Statutory resource assessment reports (e.g., NI-43-101), however, do not
include a measure of uncertainty for the disclosed resources despite the major investments re-
quired for mining projects. Although conditional simulation can provide confidence intervals
(CIs) for resource estimation, it requires a strong stationarity assumption and depends on
the variogram model selected, which is often poorly defined with the available data. In order
to avoid these limitations, this research proposes the use and comparison of two machine
learning (ML) methods: multiple linear regression and multi-layer neural network to gener-
ate tonnage curves and their CIs directly from the data. The classical variogram modelling
step is replaced by the specification of intervals for each parameter of the selected variogram
model. The learning is carried out in a perfectly controlled environment using simulations
with known variograms. Numerous reference deposits are sampled, and for each one, a se-
ries of conditional realizations define the mean tonnage and CI curves. Different statistics
computed for the entire dataset are used as input to predict the tonnage and CI curves by
the ML methods. The results indicate that there are no significant differences between the
ML methods. In addition, ML resource predictions outperform those obtained with ordinary
kriging, constrained kriging, uniform conditioning and indirect lognormal correction, being
surpassed only by the discrete Gaussian model. Nevertheless, these predictors were favored
by the use of true variogram models. Moreover, the coverage probabilities of different CIs
reach the nominal levels indicating adequate resource uncertainty quantification. Finally,
two case studies validate the effectiveness of the proposed approach for tonnage prediction
and uncertainty quantification.

Keywords: machine learning - recovery curves - tonnage curve - confidence intervals -
geological uncertainty
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5.2 Introduction

A proper mineral resource assessment should quantify associated uncertainty. Financial
investments and the failure/success of several mining projects are strongly influenced by the
precision of resource assessment, which relies on relatively scarce data obtained from a limited
number of boreholes (Roden & Smith, 2001; Dominy, 2007). Nevertheless, statutory resource
assessment reports, such as NI-43-101, rarely include information on the uncertainty of the
predicted values and mainly summarize the available resources using grade-tonnage curves
(Owusu & Dagdelen, 2019).

Conditional simulation (CS) (Chilès & Delfiner, 2012) enables to quantify uncertainty on
regionalized variables by generating multiple scenarios. However, CS relies on strong as-
sumptions, such as stationarity and multi-Gaussian distribution. Moreover, CS requires that
a variogram model be defined, which is typically fitted on experimental variograms. The
latter are often erratic because of the highly skewed distribution of the data. Several authors
have studied the effect of variogram model definition on resource predictions, providing tools
to enhance variogram model selection (Armstrong, 1984; Olea, 1994; Gringarten & Deutsch,
2001; MacCormack et al., 2017). Nevertheless, variogram modelling may be considered a
sensitive step since it requires subjective and interrelated decisions, such as defining statis-
tically homogeneous domains where the stationarity hypothesis can be stated, determining
parameters for computing experimental variograms and variogram model selection.

The most widely used geostatistical methods, such as ordinary kriging (OK) (Matheron, 1963)
and uniform conditioning (UC) (Rivoirard, 1994), also rely on the variogram model definition
to characterize the spatial behavior of regionalized variables. These predictors suffer from
pitfalls, such as smoothed predicted values generated by kriging (Isaaks & Srivastava, 1989),
the effect of the kriging neighborhood on the conditional bias of predictions (Rivoirard, 1987),
and for UC, the inability to localize recoverable resources at a smaller scale than a large panel.
Localized uniform conditioning (LUC) (Abzalov, 2006) has been proposed for this purpose,
but this method generates discontinuities at panel boundaries. Change of support models are
an alternative to directly compute global resources at volumetric support larger than point
support. Several models have been developed to this end, such as affine correction, direct
lognormal correction, indirect lognormal correction (IL) and discrete Gaussian model (DG)
(Isaaks & Srivastava, 1989; Emery & Torres, 2005; Chilès & Delfiner, 2012). None of these
methods make it possible to compute confidence intervals (CIs) on resource estimates.

Constrained kriging (CK) (Cressie, 1993; Mery et al., 2020) has shown promising results for
resource prediction. Mery et al. (2020) completed a sensitivity analysis of the variogram
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model definition to evaluate its impact on recovery curves obtained by OK, CK and UC.
The authors indicate that UC is the method most affected by an incorrect variogram model
definition, followed by OK and CK. Furthermore, CK provides more robust predictions than
OK when analyzing the choice of kriging neighborhood. However, the most common weakness
of OK, CK, UC and any other interpolation method is the lack of uncertainty quantification
for grade-tonnage curves.

In recent years, machine learning (ML) methods have been applied in a variety of geoscientific
contexts, including geothermal borehole optimization (Pasquier et al., 2018), earthquake
predictions (Rouet-Leduc et al., 2017), geological domain classification (Balamurali et al.,
2019; Halotel et al., 2020; Hasterok et al., 2019), landslide susceptibility mapping (Micheletti
et al., 2014), mineral recognition (Maitre et al., 2019), spatial interpolation (Nwaila et al.,
2020) and mineral exploration (Zuo & Xiong, 2020). The increased acceptance of artificial
neural network (ANN) tools is due to their ability to find patterns or intrinsic relationships
between a set of input variables and the corresponding dependent outputs without needing
to generate an explicit model or knowing the process itself. This advantage makes it possible
to solve complex problems (Zhang et al., 1998). To our best knowledge, ML methods has
not been applied to predicting grade-tonnage curves and quantifying their uncertainty.

This research uses and compares two ML methods, namely multiple linear regression (MLR)
and ANN, to learn rules that link a series of statistics computed directly from data with
tonnage curves provided by geostatistical simulations. For a given dataset obtained from
a reference realization, conditional simulations can be used to generate a series of potential
tonnage curves. A large number of such reference fields are created, each with a different var-
iogram and fixed sample locations. Therefore, the learning process takes place in a perfectly
controlled environment where the true variogram models are known. This process seeks to
identify features within the data that are best related to mean tonnage and quantile tonnage
curves. Once the learning process is completed, the mean tonnage and its CI can be predicted
directly from the data of a real deposit.

The proposed approach aims to quantify uncertainty on resource estimates within a fixed
domain. The quantification of uncertainty may contribute in early stages to the decision
to proceed or not with a mining project. ML methods are data-driven, as it provides the
tonnage curves and CI directly from data, without having to specify a variogram model or a
block variance. Although the studied domain is fixed, the proposed approach may be applied
separately to any domain, such as geological subdomains or subdomains corresponding to
resource categories for the ore deposit. The approach is global, and kriging is not required
for the ML approach. Finally, only resources, not reserves, are considered in this work, as
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defining reserves involves numerous additional factors and decisions far outside the scope of
this research.

The paper is structured as follows. Sect. 5.3 describes the ML methods and the methodology
used to predict the mean tonnage and quantile curves. Sect. 5.4 provides the results obtained
from applying ML methods to predict tonnage curves and assess uncertainty for two synthetic
cases showing different distributions. A comparison of using MLR, ANN, OK, CK, UC, IL
and DG to predict tonnage curves is presented. Sect. 5.5 contains a series of non-Gaussian
cases, including data from a real gold deposit to verify the effectiveness of the proposed
method. Finally, Section 5.6 discusses the main findings of this research and the implications
for current practices in mineral resource assessment and uncertainty quantification.

5.3 Methods

The research aims to predict ore tonnage and confidence intervals using ML algorithms on
tonnage estimates at several cut-offs and for different confidence levels. First, assumptions
and choices are clearly stated to clarify the range of applicability of the approach. Then,
MLR, the architecture of ANN, output targets and input variables used in the learning are
described in turn.

5.3.1 Assumptions

The main assumption of the research is that the boundaries of the domain under study are
assumed to be fixed. This means that the confidence intervals obtained by ML methods
do not account for uncertainty on domain boundaries. The domain can correspond to a
geological domain or a particular resource category (e.g., measured, indicated) based on data
availability, as is usually assessed in resource estimation using different estimation passes. It
can also correspond to a period of exploitation (e.g., a year or more) for which resources and
their uncertainty need to be assessed.

In the learning phase, thousands of different cases were considered. Each case corresponded to
fixed sample locations, different variogram parameters and different sample Gaussian trans-
form (defined from declusterized data histogram). However, following standard practice in
geostatistical simulations, the Gaussian transform used to generate the reference deposit was
kept fixed for each case.

Conditional simulations were used to generate 100 realizations per case using the variogram
model of the case. However, the sample declusterized histogram was used to define the
Gaussian transform. The conditional realizations provided the output variables. The input
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variables were all computed directly from either the raw data or the Gaussian grades com-
puted with the sample Gaussian transform. No model or result from the reference deposit
or the conditional realizations were used on the input side. At last, sufficient statistical
homogeneity within the studied domain is assumed as usual in resource assessment.

The variogram parameters are allowed to vary within intervals. This makes it possible to
have a predictive model that has generalization capacity and is robust to variogram parameter
specification. It also allows producing different sample Gaussian transforms to incorporate
variability with respect to the initial Gaussian transform used to generate the reference
deposit of each case.

Table 5.1 summarizes the assumptions of the proposed approach. Note that since domain
and rock density are fixed, the proportion of resources, or normalized tonnage, at each cut-off
is used instead of raw resource tonnages to facilitate the training. The normalized tonnages
can be easily converted to real tonnages by simply multiplying by T0, the rock tonnage in the
studied domain at zero cut-off. Hereinafter, the term tonnage is used for normalized tonnage.

Table 5.1 Summary of assumptions and choices made for ML training.

Element Assumption
Domain Fixed

Rock density Fixed
Gaussian transform (reference cases) Fixed

Gaussian transform (input and output) Variable (sample declusterized histogram)
Sampling location Fixed

Nugget effect Variable
Variogram range Variable
Variogram model Isotropic spherical (could be changed)

5.3.2 Machine Learning Algorithms

Two ML methods, classical multiple linear regression (MLR) and feed-forward artificial neu-
ral networks (FFANN), are used to compare the performance of predicting tonnage curves
and the capability of accurately assessing the uncertainty defined by CIs. In FFANN, the
information moves in one direction following a path from the input nodes towards hidden
layers (multi-layer perceptron, MLP) until the output layer, with neither cycles nor loops in
the process (Carvalho et al., 2011). Figure 5.1 portrays a scheme of an MLP with two hidden
layers and an output layer displaying a single node. The input information is weighted and
flows through several interconnected layers of neurons, while an activation function generates
the output signal of each node. The network training is done by backpropagation, an iterative
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process that adjusts the weights of the network so as to minimize a statistic of the prediction
error. FFANNs are able to model any measurable function with low error when both a proper
number of neurons is used within the hidden units and a relationship between the input and
output information exists (Hornik et al., 1989). The success of the ML approach is highly
related to the quality of the input and output data.

5.3.3 Output (target) Data

Output data is constituted of ore tonnage as a function of cut-offs. The function is discretely
sampled at different cut-offs that encompass the main part of the grade distribution. To
obtain a distribution of possible tonnages at each cut-off, conditional realizations are em-
ployed. Quantiles of tonnage distributions define tonnage CIs. Since the mean tonnage at
each cut-off is considered the best tonnage predictor, the ML models are carried out on the
mean at different cut-offs. Similarly, separate ML models are performed for each quantile of
interest.

To obtain the numerous exemplars of mean tonnage and quantile curves necessary for ML
trainings, several datasets are simulated over the same field, each considering the same pdf

but a different variogram. Fixed samples locations are used in each dataset. For a given
dataset, the sample Gaussian transform computed from the declusterized histogram and
the true variogram model are used to generate conditional realizations. Mean tonnage and
quantile curves are computed based on these conditional realizations.

5.3.4 Input Data

It is advisable to feed the ML models with meaningful data-derived features or statistics
chosen based on the learning objective. These statistics should jointly reflect the point pdf

and the effect of the change of support on grade distribution, and should account for the
spatial correlation.

Nearest-neighbor (NN) interpolation is applied to the same grid used in the conditional sim-
ulation to define a declusterized histogram. Convolutions on previous NN interpolations for
different block sizes are subsequently calculated to help in identifying short-scale correla-
tion and change of support rules. The spatial correlation is also characterized by the first
lags of an experimental variogram computed on Gaussian-transformed grades to reduce the
variability of the values.

The steps of the proposed approach are summarized in Algorithm 1.
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Algorithm 1 ML approach
1. Initialization

- Define the Gaussian anamorphosis
- Define the parameter interval and type for variograms
- Define the field size
- Define the number of samples and locations

2. for i = 1 to K (K the number of cases)
- Randomly select a set of variogram parameters
- Simulate reference deposit i

- Extract data from the reference deposit using fixed locations
- Perform NN interpolation on a regular grid to get declusterized point histogram
- Define a sample Gaussian transform based on declusterized histogram
- Compute N conditional realizations
- Compute selective mining units (SMUs) grade for the realizations and determine ton-

nage curves for each one
- Compute mean tonnage curve and quantile tonnage from realizations. Output variables

are obtained for the three different trainings (mean, lower-bound (LB) and upper-bound
(UB))

- Compute input statistics used in training ▷ see Section 5.4.2

3. Choice of ANN architecture

4. Training by MLR and ANN
- Perform the three trainings (mean, LB and UB) separately for each method

5. Prediction performance
- Compare predictions of the trained models with references using new cases

6. Quantification of uncertainty
- Compare nominal CI probability to the coverage probability of the CIs computed from

the conditional realizations
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Figure 5.1 Neural network architecture schematic composed of two hidden layers.

5.3.5 Settings for the Synthetic Case

Table 5.2 summarizes the parameters used for the synthetic case. These parameters represent
values that may be found in a typical gold deposit. They are sampled using a low-discrepancy
Halton sequence (Halton, 1960) to ensure uniform sampling.

The mean tonnage curve and tonnage curves at different quantiles of the realizations (i.e.,
2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 55%, 60%, 65%, 70%, 75%, 80%,
85%, 90%, 95%, and 97.5%) are trained separately. Using these curves, ten CIs (95%, 90%,
80%, 70%, 60%, 50%, 40%, 30%, 20% and 10%) are generated to quantify uncertainty on the
predicted mean tonnage curve. Each CI is defined by its lower and upper bounds. The CIs
are not symmetric around the mean curve.

Once the input-output pairs are determined for the ANN method, different network archi-
tectures are tested and compared to establish an efficient network. This process includes
analyzing the number of hidden layers and neurons, defining the activation function and
choosing training algorithms, among other decisions. The main statistics considered to se-
lect the network architecture are the mean absolute error (MAE) and the root mean square
error (RMSE) for the testing set. The shape of the predicted curves and the absence of
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Table 5.2 Summary of parameters utilized to generate each of the K = 5, 000 cases for
training.

Parameter Value and units
Sampling density 375 samples

Nugget effect ∈ [0, 0.7]
Variogram range ∈ [20, 100] m
Variogram model Spherical

Number of conditional realizations N 100
Cut-off values From 0.3 to 3.3 by step of 0.3 (any unit)
Domain size 500 × 500 m

SMU size 5 × 5 m
Capping value 30 ppm

inconsistencies for each curve independently and between curves are also examined by com-
puting metrics, such as the difference between consecutive values for each curve and values
of different tonnage curves at the same cut-offs to evaluate crossing between curves.

The predictions generated with the trained models are validated by the MAE and RMSE.
The coverage probability (CP) is calculated and compared to the nominal CI probability.
CP measures the proportion of cases (over all cut-offs) in which the real tonnage curve lies
within the intervals defined by the CI curves. A similar analysis is also performed for each
cut-off separately.

5.4 Results

In this section, numerous tonnage and CI curves are computed and subsequently used as
output data in the training process for both MLR and ANN. In addition, two different
distributions are considered: lognormal and bimodal. The corresponding input parameters
and the network architecture of the ANN are defined to predict tonnage curves and quantify
their uncertainty. Lastly, the prediction performance of the ML models is compared to the
results obtained by OK, CK, UC, IL and DG.

5.4.1 Point Grade Distributions

Lognormal and bimodal distributions are considered (Fig. 5.2). All the steps described in
Algorithm 1 are applied to each distribution independently in a perfectly controlled two-
dimensional case.
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(a) Lognormal distribution (b) Bimodal distribution

Figure 5.2 Probability density function of histogram values generated from defined Gaussian
anamorphosis used in the synthetic controlled case. Lognormal (a) and bimodal (b) distri-
butions.

5.4.2 Input Data

For each dataset, NN interpolation is used to obtain a declusterized histogram. Then, block
values at SMU size are generated by applying a convolution operator on the interpolated
grid. The first five bins of the experimental variogram at five lag distance (the SMU size)
are used to describe the spatial correlation.

Table 5.3 describes the set of inputs used to result in 27 variables. Note that several other
inputs were tested without success. For instance, variograms of different orders for raw or
Gaussian-transformed values, indicator variograms and rank variograms were assessed, but
based on the results, they were not retained. Nonetheless, the selection of input variables
is not a critical issue, as ML adapts learning to the inputs provided. Hence, similar results
were obtained with a variety of input variable combinations. The inputs selected in Table
5.3 represent variables that are relatively easy to compute, have a clear interpretation and
provide more stable results overall for the cases analyzed.

5.4.3 Network Architecture of ANN

The Levenberg-Marquardt backpropagation algorithm is used in the training process because
of its speed and efficiency (Hagan & Menhaj, 1994).

The number of layers and nodes is decided based on the performance of the testing dataset.
Figure 5.3 shows the RMSE for different configurations. According to these results, two
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Table 5.3 Summary of input variables.

Item Variables Number
Point recovery from NN interpolation Tonnages at 11 cut-offs 11

NN SMUs recovery Tonnages at 11 cut-offs 11
Experimental variogram of Gaussian transformed

variable
γ(h) for h ∈ {5, 10, ..., 25} 5

Total 27

hidden layers with ten nodes are utilized in the network. For this configuration, several
activation functions are tested (see Table 5.4). The sigmoid function is finally used as the
activation function in the two hidden layers and a linear activation function is applied to the
output layer. Moreover, input and output data are pre-processed and post-processed during
the training process by normalizing the values between -1 and 1 since data normalization
usually improves prediction performance (Kotsiantis et al., 2006).

Figure 5.3 Sensitivity analysis of network architecture.

5.4.4 Tonnage Curve Prediction

Of the 5,000 cases considered, 4,000 were used for training while 1,000 were set aside as
testing set. MAE and RMSE are computed on the testing datasets for all the resulting
tonnage curves, including those generated at different quantile values (see Table 5.5). The
errors in the testing datasets are just slightly larger than in the training dataset, indicating a
good generalization capability. Results obtained with the bimodal distribution are similar to
those obtained with the lognormal distribution, indicating good robustness to the Gaussian
transform used. MLR and FFANN performed similarly on the test set.
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Table 5.4 Sensitivity analysis of activation function.

Activation function RMSE
Log-sigmoid 0.0264

Rectified linear 0.0278
Linear 0.0314

Radial basis 0.0277
Normalized radial basis 0.0267

Saturating linear 0.0264
Softmax 0.0271
Sigmoid 0.0263

Triangular basis 0.0271

Table 5.5 MAE and RMSE for training and testing datasets obtained by ANN and MLR.

ML
method

Dataset Lognormal distribution Bimodal distribution

MAE RMSE MAE RMSE
ANN Training 0.0169 to

0.0287
0.0220 to

0.0343
0.0145 to

0.0261
0.0188 to

0.0306
Testing 0.0169 to

0.0292
0.0220 to

0.0350
0.0145 to

0.0262
0.0188 to

0.0307

MLR Training 0.0169 to
0.0287

0.0220 to
0.0343

0.0144 to
0.0261

0.0187 to
0.0306

Testing 0.0169 to
0.0295

0.0220 to
0.0350

0.0145 to
0.0261

0.0187 to
0.0308
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Figure 5.4 depicts an example of the results for the testing dataset obtained by MLR. One of
the realizations is plotted alongside the predicted mean tonnage curve and the corresponding
95% CI, defined by the predicted LB 2.5% and UB 97.5% quantile curves. The predicted 95%
CI entirely includes the real tonnage curve for both distributions. Note that all CI curves
monotonically decrease despite the fact that this constraint could not be explicitly imposed
in ML modelling.

(a) Lognormal distribution (b) Bimodal distribution

Figure 5.4 Real and predicted tonnage by MLR, predicted upper-bound (UB 97.5%) and
lower-bound (LB 2.5%) defining 95% CI. Lognormal (a) and bimodal (b) distributions.

5.4.5 Assessment of Uncertainty over Resource Predictions

The coverage probability of each CI is computed to assess prediction performance based
on the uncertainty quantification of tonnage curves. Each interval is compared to all the
N × K = 100 × 5, 000 tonnage curves generated by CS. Thus, the proportion of times the
curves lie within the CI is counted separately for each cut-off. The mean proportion over
different cut-offs is considered the CP.

The initial coverages obtained for both ML methods are systematically lower than the nom-
inal CI probability (see Fig. 5.5, blue squares). Self-correction of the confidence interval was
learned in the MLR training by optimizing the following correction function

w(c) = α exp(−|c − β|/δ) with c ≥ 0, δ > 0, (5.1)

where c is the cut-off, whereas α, β and δ are parameters of the function chosen such that the
difference between the coverage and the nominal CI probability, after setting UBcorr = UB+w
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and LBcorr = LB−w, is minimized considering all cut-offs. Note that the same w(c) function
is applied to all cases as well as to UB and LB, but a different function is computed for each
CI. The correction function allows the continuous modification of the UB and LB. After
correction, the resulting CPs are close to the diagonal for the testing set (see Fig. 5.5).

(a) Lognormal distribution (b) Bimodal distribution

Figure 5.5 Coverage probability vs CI width in testing dataset: Original coverage (blue
squares), ANN (red squares) and MLR (yellow circles). Lognormal (a) and bimodal (b)
distributions.

Figure 5.6 displays the initial and corrected CP for the nominal 95% CI at different cut-offs.
When the additive correction w(c) is applied, CP is enhanced at all cut-offs.

5.4.6 Comparison between Curves Predicted by ML Methods and Traditional
Geostatistical Methods

This section compares the prediction performance of tonnage curves obtained by ML methods
to those obtained by CK, UC, OK, IL and DG. For OK, small neighborhoods of one neighbor
per quadrant are selected to reduce the smoothing effect of kriging. More samples are used
for CK (two per quadrant), as CK has no smoothing effect by construction, whatever the
neighborhood size (Mery et al., 2020). In the case of UC, a panel size of 50 × 50 is chosen
and 50 neighbors are considered. CK, UC, OK, IL and DG were favored, compared to ML
methods, by using the same variogram models as were used in the simulations to generate
the reference deposits.

The results are summarized in Table 5.6. The success rate is computed as the percentage
of times a method outperforms the other ones over the 5,000 cases × 11 cut-offs. On this
criterion, DG ranks first, followed by MLR for both distributions. Similar results are obtained
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(a) Lognormal distribution (b) Bimodal distribution

Figure 5.6 Coverage probabilities for 95% CI at different cut-off values in testing dataset.
Original coverage (blue squares), ANN (red squares) and MLR (yellow circles). Lognormal
(a) and bimodal (b) distributions.

based on the MAE and the RMSE. DG appears best, followed by MLR, ANN and CK with
similar performances. The fact that ML methods perform well is interesting, considering
that DG and CK were favored by using the true variogram.

Table 5.6 Summary of MAE and RMSE of tonnage curves and success rate of different
prediction methods: ANN, MLR, CK, UC, OK, IL and DG.

Method Lognormal distribution Bimodal distribution

MAE RMSE Success
rate

MAE RMSE Success
rate

ANN 0.0173 0.0225 13.0% 0.0154 0.0199 13.0%
MLR 0.0170 0.0220 13.5% 0.0145 0.0187 15.0%
CK 0.0191 0.0236 11.6% 0.0144 0.0182 14.5%
UC 0.0336 0.0383 6.4% 0.0256 0.0297 6.6%
OK 0.0332 0.0404 9.2% 0.0310 0.0376 8.1%
IL 0.0159 0.0208 14.4% 0.0196 0.0243 10.0%

DG 0.0094 0.0134 31.9% 0.0088 0.0133 32.8%

Table 5.7 shows the pairwise comparison results for the different methods. Each row indicates
the percentage of times, the method corresponding to the row beat the methods indicated
in columns, also computed over the 5,000 cases × 11 cut-offs. This analysis verifies that
for both distributions, DG is the best method compared with the geostatistical predictors
studied. ANN, MLR and CK are contenders as the second-best approach, followed by IL,
OK and UC in descending order.
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Table 5.7 Pairwise comparison between prediction methods.

Lognormal distribution Bimodal distribution

ANN MLR CK UC OK IL DG ANN MLR CK UC OK IL DG
ANN - 48.8% 54.3% 69.7% 66.3% 48.4% 30.3% - 46.9% 49.5% 67.6% 69.6% 60.2% 31.3%
MLR 51.2% - 55.3% 71.7% 68.0% 49.3% 30.8% 53.1% - 52.0% 70.8% 72.3% 62.6% 34.3%
CK 45.7% 44.7% - 67.7% 64.5% 43.8% 25.9% 50.5% 48.0% - 70.1% 71.2% 61.3% 31.2%
UC 30.3% 29.3% 32.3% - 51.3% 30.2% 15.5% 32.4% 29.2% 29.9% - 56.9% 45.1% 17.5%
OK 33.7% 32.0% 35.5% 48.7% - 33.3% 21.0% 30.4% 27.7% 28.8% 43.1% - 40.5% 20.0%
IL 51.6% 50.7% 56.2% 69.8% 66.7% - 28.8% 39.8% 37.4% 38.7% 54.9% 59.5% - 21.8%

DG 69.7% 69.2% 74.1% 84.5% 79.0% 71.2% - 68.7% 65.7% 68.8% 82.5% 80.0% 78.2% -

Since MLR and ANN provided similar performance, only MLR is considered hereinafter
because of its simplicity.

Sensitivity to the Variogram Model for DG Predictions

DG (and all the other methods) were favored by specifying the same variogram model used
to obtain the reference simulated deposits. In practice, only the experimental variogram is
available, which is often erratic and noisy. Defining the right variogram model can therefore
be difficult. To evaluate the impact of variogram uncertainty on DG predicted curves, the
true block variance s2

v is varied by a multiplicative factor between 0.7 and 1.3. New predicted
curves are obtained by using the modified block variance on DG.

Figure 5.7 shows the success rate of MLR compared with DG and the MAE ratio of DG to
MLR. DG appears quite sensitive to the selection of the right block variance. MLR outper-
forms DG in both studied distributions when the error on block variance exceeds 20%.

5.4.7 Computational Aspects

Given the large amount of information required in the training process, different strategies
are applied to maintain a reasonable computation time for the generation of the data used in
the training phase. Conditional simulations are carried out using the fast Fourier transform
moving average (FFT-MA) method (Le Ravalec et al., 2000), post-conditioning is conducted
with global dual kriging, and parallel computing is performed on the graphics processor unit
(GPU). Once the training is completed, expected grade-tonnage curve and confidence interval
predictions are rapidly computed for a new dataset.
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(a) MLR success rate % compared with DG (b) MAE ratio DG/MLR

Figure 5.7 Sensitivity analysis of varying block variance s2
v by a factor, lognormal and bimodal

distributions. Success rate of MLR (a) and MAE ratio DG/MLR (b).

5.5 Case Studies

Two different case studies are used to test the applicability of the method to non-Gaussian and
less-controlled cases. The first case study concerns a series of ten satellite images randomly
selected from the Internet. The second case study pertains to a two-dimensional section of a
real gold deposit (unidentified for confidentiality reasons) that has been extensively sampled
by blast holes and reverse circulation (RC) holes.

5.5.1 Synthetic Data of non-Gaussian Fields

A new training is performed for the satellite images using parameters of Table 5.8. The
training of MLR is done with 5,000 new cases, each involving 100 realizations. For each
image, samples are selected at fixed locations to obtain the dataset. Input statistics for
MLR prediction are computed using the dataset and used to predict the mean, 5% and
95% tonnage curves for each image individually. Real SMU (i.e., 5 × 5) tonnage curves are
also computed on each backtransformed image and compared with the prediction curves.
The backtransformed images utilized in this case study are shown in Fig. 5.8 for the two
distributions studied (lognormal and bimodal).

When the comparison between predicted and real tonnage curves is considered, the MAE
and RMSE values computed over all cut-offs and the ten images, are 0.0258 and 0.0305,
respectively, for the lognormal distribution and 0.0270 and 0.0329, respectively, for the bi-
modal distribution. The CI encompasses most of the real curves. Exceptions are found in
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(a) Lognormal distribution (b) Bimodal distribution

Figure 5.8 Images used in the synthetic non-Gaussian case. Lognormal (a) and bimodal (b)
distributions.
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Table 5.8 Summary of parameters utilized to generate each of the K = 5, 000 cases for
training. Synthetic non-Gaussian case.

Parameter Value and units
Sampling density 375 samples

Nugget effect ∈ [0.05, 0.6]
Variogram range ∈ [90, 190] m
Variogram model Spherical

Number of conditional realizations N 100
Cut-off values From 0.3 to 3.3 by step of 0.3 (any unit)
Domain size 500 × 500 m

SMU size 5 × 5 m
Capping value 30 ppm

images 5 and 10 for both distributions, where the tonnage curves appear slightly outside the
computed CI for certain cut-offs (see Fig. 5.9).

Real and predicted tonnage curves are then averaged over the ten images to represent the
case of a deposit with different geological domains. The average tonnage curves are presented
in Fig. 5.10, which indicates an excellent overall prediction performance for the ML models,
as the real curve is entirely contained in the CI.

Finally, the proposed ML approach is compared with CK, UC, OK, IL and DG using the
methodology and parameters discussed in Section 5.4.6. Based on the MAE and RMSE
(Table 5.9), the predicted MLR curves outperform those obtained using traditional methods
for both distributions. In this case, the variogram models are unknown and the variogram
model parameters of CK, UC, OK, IL and DG are thus inferred from the available data of
each image. MLR is the best method in four out of ten images for both distributions, followed
by DG, CK, IL, OK and UC.

Table 5.9 MAE and RMSE of tonnage curves and success rate of prediction methods MLR,
CK, UC, OK, IL and DG. Training on synthetic Gaussian case, prediction for images of Fig.
5.8.

Method Lognormal distribution Bimodal distribution

MAE RMSE Success
rate

MAE RMSE Success
rate

MLR 0.0258 0.0305 40% 0.0270 0.0329 40%
CK 0.0299 0.0391 30% 0.0278 0.0333 20%
UC 0.0409 0.0484 0% 0.0318 0.0396 0%
OK 0.0404 0.0465 0% 0.0340 0.0395 0%
IL 0.0326 0.0401 0% 0.0338 0.0398 20%

DG 0.0290 0.0350 30% 0.0288 0.0349 20%
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(a) Lognormal distribution (b) Bimodal distribution

Figure 5.9 Real (solid blue) and predicted (dashed red) tonnage curves with predicted upper-
bound 95% and lower-bound 5%, for the images of Fig. 5.8. Lognormal (a) and bimodal (b)
distributions.
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(a) Lognormal distribution (b) Bimodal distribution

Figure 5.10 Real and predicted tonnage curves and 90% CI for the amalgam of the ten images
of Fig. 5.8. Lognormal (a) and bimodal (b) distributions.

5.5.2 Gold Deposit

The gold mineralization is mainly composed of pyrite (2% to 7%) and pyrrhotite. Several
reverse circulation drilling data are available as they are used for grade control. From this
dataset, a level is selected for the case study. The main statistics of the case study are
summarized in Table 5.10.

Table 5.10 Basic statistics of RC data.
Mean Variance Median CV Skewness Kurtosis #

samples
0.38 1.77 0.11 3.49 12.16 205.97 2,268

A new training process is carried out for this case study considering the gold deposit his-
togram, domain size and variogram model parameters. In order to generate the input-output
pairs for the learning process, the parameters have to be adapted to the information gathered
from the real dataset. The intervals of the variogram model parameters are determined from
quick examination of the real RC experimental variogram, and cut-off values are adjusted to
the gold grade distribution of the RC dataset. Table 5.11 summarizes the parameters used
in the case study.

The training process is performed with unconditional simulation in a perfectly controlled
Gaussian case. The predictive model obtained from training is used on the real deposit (i.e.,
200 samples from the RC dataset) to predict the tonnage curve. This curve is subsequently
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Table 5.11 Summary of the parameters utilized to generate each of the K = 3, 000 cases for
training. Gold deposit dataset.

Parameter Value and units
Sampling density 200 samples

Nugget effect ∈ [0.4, 0.8]
Variogram range ∈ [20, 65] m
Variogram model Spherical

Number of conditional realizations N 100
Cut-off values From 0.05 to 0.75 by step of 0.05 ppm

SMU size 5 × 5 m
Capping value 30 ppm

Surface covered by RC 1,775 × 448 m2

compared with the ‘real’ tonnage curve generated from a turning bands (TB) conditional
simulation using all RC data on the defined domain. Note that the TB realization can be
considered a close approximation to reality because of the initial large number of RC data.
Figure 5.11 shows the real and predicted tonnage curves alongside 95% CI. The MAE and
RMSE are 0.0147 and 0.0185, respectively. An excellent prediction performance is observed,
and the real tonnage curve lies mostly within the 95% CI.

Figure 5.11 Real and predicted tonnage curves and 95% CI obtained with samples taken from
RC data.

Finally, the ML model is compared with OK, CK, UC, IL and DG for real tonnage curve
prediction. OK, CK, UC, IL and DG used the same variogram model to generate the real
tonnage curve with TB simulation. The results are summarized in Table 5.12. MLR is the
best method in terms of errors, followed by DG, CK, IL, OK and UC in decreasing order.
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Table 5.12 Summary of MAE and RMSE for tonnage curves computed using different pre-
diction methods: MLR, CK, UC, OK, IL and DG. Gold deposit dataset.

Method MAE RMSE
MLR 0.0197 0.0207
CK 0.0295 0.0351
UC 0.0356 0.0468
OK 0.0318 0.0423
IL 0.0303 0.0406

DG 0.0272 0.0338

5.6 Discussion

Quantifying recoverable resources and their corresponding uncertainty is a complex task.
Current geostatistical approaches, such as CK, UC, OK, IL and DG are not able to gener-
ate confidence intervals on predictions. For this purpose, conditional simulations are more
appropriate. However, the quality of CS results depends entirely on the choice of variogram
model parameters and the validity of the stationarity hypothesis. The variogram model may
be challenging to obtain when data are sparse, erratic or not representative of the entire
domain under study. CS is particularly sensitive to the variogram model and the stationarity
assumption, as its parameters are defined in the Gaussian scale.

The proposed ML approach does not rely directly on this sensitive modelling feature and
instead uses multiple sets of conditional simulations in the training phase. Each set considers
different variogram parameters and sample data. The output recoveries are computed on
each conditional realization for a given dataset. The recoveries at each cut-off are averaged
over different sets (mean recovery) and ranked to define quantile curves. Recoveries are then
paired to data input statistics using two different ML methods: MLR and ANN that learn
the key relationships in the input stream to predict the recoveries (with a separate training
phase for each desired curve).

The performance of the ML methods was similar for the prediction of tonnage curves, repro-
ducing the CP at different CIs. Being simpler to apply, the MLR technique was preferred
over FFANN for application to case studies. Other ML methods, such as random forest and
support vector machine, were tested but provided similar results to MLR for this particular
problem. The results suggest that features extracted from the data (i.e., input variables)
are well correlated with the tonnage (i.e., output values). Hence, the MLR approach suf-
fices to capture the useful information without recurring to evolved ML methods. Despite
this, more complex problems could require deep learning methods able to deal with stronger
non-linearity than the problem addressed in this research.
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Although the proposed approach is general, a new training phase has to always be rerun based
on the parameters of each case, such as the histogram of the studied field or the intervals for
variogram model parameters.

According to the MAE and RMSE values for lognormal and bimodal distributions, ML models
exhibit excellent prediction performance for mean and quantile tonnage curves. The results
are similar for both training and testing datasets. The quantification of uncertainty by CIs
provides coverage probabilities on the test set close to the nominal CI level. As expected,
the CIs generated are asymmetrical around the mean grade-tonnage curve. CPs at different
cut-offs are stable and close to CI level.

For the lognormal distribution, DG is the best predictor in 31% of cases compared to 15% for
MLR and 12% for CK. The results are similar for the bimodal distribution. All methods but
ML methods were favored by utilizing the same variogram model used in the simulation of the
reference deposits. A sensitivity analysis of the block variance used to compute DG tonnage
curves showed significant variations in the performance of DG. MLR has the advantage of
not requiring a variogram model to predict tonnage after training is completed. CK, which is
a local estimator, like OK, showed good overall performance due to the absence of smoothing
effect, confirming the findings of Mery et al. (2020). However, only ML methods provide CIs
on the tonnage curves. The coverage probabilities of the CIs were shown to reproduce the
nominal probabilities, especially after applying an additive correction function that is easily
determined by optimization during the training phase.

Two case studies were carried out to further test the effectiveness of the proposed method-
ology. First, non-Gaussian images were analyzed where the predicted tonnage curves are
precise (i.e., small MAE and RMSE values). The predictive models are capable of predicting
local (i.e., each image separately) and global uncertainties (i.e., based on the juxtaposition of
the ten images). The second case study is of a two-dimensional section of a real gold deposit.
Prediction performance, uncertainty quantification and comparison with traditional methods
lead to the same conclusions as for the other case. Therefore, the ML approach is a suitable
alternative to reproduce tonnage curves and quantify uncertainty while providing acceptable
predictions, compared to geostatistical methods such as OK, CK, UC, IL and DG.

The proposed ML approach is trained in an ideal environment where stationarity is guar-
anteed. The combined analysis of ten satellite images, emulating a deposit with different
domains, suggests that the method is robust to some forms of non-stationarity. However,
further studies are required to define and quantify the extent of non-stationarity that the
model can tolerate. These studies could lead to revisions of the input statistics or how the
tonnage curves are parameterized. The method was applied to two different distributions,
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lognormal and bimodal. These distributions are analogous to those found in several deposits.
However, they represent only a small range of possibilities. Further research is needed to as-
sess changes in the ML approach to incorporate other probability distributions, for instance,
a stronger bimodal distribution.

The set of input variables was selected after several analyses of a wide variety of variables,
such as variograms of various orders for both the raw and the Gaussian grade, and other
histogram and sampling density statistics. The variables used provide acceptable results, but
they do not necessarily represent an optimal subset. In some cases, adding more variables
can deteriorate the results, especially when the variables are noisy or very erratic. Similarly,
numerous tests were conducted for the output variables. For instance, the parameterization
of the curves with dual kriging added complexity without improving the results. Attempts
to model the tonnage curve using a mixture of different cdfs also failed to enhance the
predictions.

The field extent was not considered as a parameter in this research. This assumes that the
limits of the deposit (or part of the deposit) are known. The sample locations were fixed
within the domain studied to reproduce a real case where data samples are available, and
therefore, their location are known. Note that the model can be applied to a particular
sub-zone (or domain) of the deposit. For instance, the proposed approach may be used
first for a well-sampled zone considered as measured, then in a less sampled zone considered
as indicated. Thus, training for each zone separately makes it possible to provide tonnage
estimates and CIs by resource category.

This research explores the capacity of ML to predict mean grade-tonnage and CI curves in
a two-dimensional stationary case. Additional research has to be carried out to assess the
robustness of the method for non-homogeneous deposits. The possibility of extending the
results to 3D cases is also of great importance and to be addressed in further studies.

The ML approach aimed to quantify the uncertainty (i.e., the CI) on resources in prelimi-
nary assessments to enhance the decision-making process of mining projects. Although the
uncertainty on histogram and variogram models is accounted for in the training phase, the
uncertainty on deposit boundaries is not included, as the training pertains to a specified
domain. As is customary in geostatistics, a single (population) Gaussian transform was used
to simulate the reference deposits. Each sample declusterized histogram defines a different
sample Gaussian transform for the conditional realizations used to generate output variables.
ML training is completely data-driven, as the input side relies entirely on statistics computed
directly from raw or Gaussian-transformed data. No kriging and no variogram or histogram
modelling are needed to obtain predictions for a new case.
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5.7 Conclusions

Machine learning is a reliable alternative to quantify mineral resources (tonnage curves)
without needing to perform complex variogram modelling. The proposed approach showed
outcomes comparable to the best results obtained with geostatistical methods on reference
deposits, even though the latter were favored by using the known variogram model. More-
over, the ML models allow for the uncertainty on resulting tonnage curves to be quantified
by predicting the CI tonnage curves at different confidence levels. Coverage probability re-
sults indicate that ML models are able to adequately reproduce nominal values. Simulation
and case studies conducted on a series of satellite images and data from a real gold de-
posit demonstrate the effectiveness of the method at predicting grade-tonnage curves and
quantifying resource uncertainty.

5.8 Amendment

Addendum to Figure 5.8: x and y axis are respectively Easting and Northing given in pixels.
The length of each pixel along each direction varies from one satellite image to the other.
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CHAPTER 6 ARTICLE 3: ASSESSMENT OF RECOVERABLE
RESOURCES UNCERTAINTY IN MULTIVARIATE DEPOSITS THROUGH

A SIMPLE MACHINE LEARNING TECHNIQUE TRAINED USING
GEOSTATISTICAL SIMULATIONS
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6.1 Abstract

Mine design, mine production planning and the economic evaluation of multivariate ore de-
posits are based on the mineral resources that are recoverable after applying cutoffs to the
grades of selective mining units. Being able to reliably assess the recoverable resource un-
certainty of more than one element is key for the economic evaluation of mining projects.
Multivariate geostatistical models are difficult to fit and strongly influence the resources re-
ported. The proposed approach avoids the delicate modeling step by directly estimating
multivariate tonnages and their associated confidence intervals from a reduced set of features
extracted from data. The predictive models are obtained by training with conditional simu-
lations. For each case considered in the training phase, the coregionalization parameters are
drawn randomly from within specified intervals and multiple realizations make it possible to
obtain deposits conditional to the simulated data sets. Multiple linear regression training is
carried out using input-output data to generate predictive models that relate the input vari-
ables calculated from the simulated data sets and the output variables (i.e., mean tonnage
and tonnage quantiles) computed from the simulated deposits. The results from a synthetic
bivariate case indicate excellent tonnage prediction and credible uncertainty quantification.
A lateritic nickel deposit subject to a constraint on the maximum silica/magnesia ratio shows
the applicability of this approach in a real-world context. The resulting tonnage surface and
the associated uncertainty quantification provide an essential tool to help assess the economic
value of the mine project.

Keywords: recoverable resources - resources uncertainty - data-driven technique - multi-
variate modeling - tonnage surfaces - machine learning
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6.2 Introduction

Recoverable resource assessment significantly impacts the downstream stages of mining projects,
such as mine planning, mine design and financial forecasting. Resource uncertainty, which
stems from our partial knowledge of the deposit, is critical for correctly valuing a mining
project in preliminary studies. Incorrect uncertainty quantification can have severe effects
on the life and profitability of the mine (Dominy et al., 2002).

There is increasing interest in the current mining practices for predicting not only the main
products, but also the by-products and contaminants in ore deposits. For instance, in copper-
molybdenum deposits, the ore definition includes both elements (Hosseini et al., 2017). In
iron deposits, it is desirable to predict the alumina content conditional to the iron content
(Boucher & Dimitrakopoulos, 2012). In lateritic deposits, the nickel content is usually sub-
ject to a constraint on the maximum admissible silica (SiO2) / magnesium oxide or magnesia
(MgO) ratio, with the latter having a determinant influence on the performance of the fer-
ronickel smelting process (Keskinkilic, 2019).

The study of multi-element ore deposits poses a particular challenge for resource evaluation.
Several studies conclude that multivariate geostatistical techniques outperform approaches
that model the variables independently. For instance, cokriging outperforms kriging in poly-
metallic copper deposits (Pan et al., 1993; Yalçin, 2005; Dhaher & Lee, 2013; Vergara &
Emery, 2013) and a synthetic case study (Minnitt & Deutsch, 2014). In addition, Montoya
et al. (2012), Battalgazy & Madani (2019) and Eze et al. (2019) contrast univariate and mul-
tivariate simulations in different ore deposits and applications. For example, Montoya et al.
(2012) display ore grade variability as a function of time using all the realizations obtained
by conditional simulation (CS) in a porphyry copper-silver deposit. Eze et al. (2019) use CS
to generate probability maps and quantify the spatial uncertainty of lead in a copper-nickel
deposit, where lead is considered a contaminant. The multivariate approaches require speci-
fying a coregionalization model that is usually difficult to determine and strongly influences
the resources estimated (Faria et al., 2021). Alternative methods based on factorization
techniques can be also utilized to simulate the multiple variables of interest, such as prin-
cipal component analysis (Goovaerts, 1993b), maximum minimum autocorrelation factors
(Desbarats & Dimitrakopoulos, 2000), stepwise transformation (Leuangthong & Deutsch,
2003), projection pursuit multivariate transform (Barnett et al., 2014), flow anamorphosis
(van den Boogaart et al., 2017) and independent component analysis (Tercan & Sohrabian,
2013). Most applications either do not report any measure of uncertainty for the predicted
resources or provide one that is model-dependent, i.e., valid when all the assumptions are
strictly met. Moreover, the validity of the uncertainty quantification is not evaluated in the
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latter applications. Hence, there is a need for a resource uncertainty assessment method-
ology that is more data-driven and less dependent on the tricky adjustment of a particular
geostatistical model.

Machine learning (ML) methods include multiple linear regression (MLR), logistic regression,
support vector machine, random forest and artificial neural network (ANN), among others.
They are data-driven methods that have been widely applied in the geosciences, including
for resource evaluation (Zhang et al., 2021b; Mery & Marcotte, 2022), subsurface mineral-
ization modeling using lithogeochemical data (Granian et al., 2015), rock type prediction
and hydrothermal alteration detection (Bérubé et al., 2018), mineral prospectivity mapping
(McKay & Harris, 2015; Karbalaei Ramezanali et al., 2020; Ghezelbash et al., 2021; Zhang
et al., 2021a), low-salinity waterflooding performance prediction (Kalam et al., 2021) and
geochemical exploration (O’Brien et al., 2015).

Mery & Marcotte (2022) study recoverable resource assessment and uncertainty quantification
in a gold deposit utilizing ML. ML uses multiple ensembles of conditional simulations, each
having its own set of parameters and data. Experimental statistics data on the input side
are related to tonnages computed on the simulated deposits on the output side. The authors
compare the performance of two ML techniques, MLR and ANN, and conclude that both
methods perform similarly, although MLR is ultimately chosen as the preferred technique for
its robustness, simplicity and fast learning. The authors also apply their approach to a series
of simulated deposits, demonstrating the validity of their proposed uncertainty assessment
approach.

This research aims to extend the recoverable resource assessment and uncertainty quantifi-
cation methodology proposed by Mery & Marcotte (2022) to multi-element deposits. The
additional elements can be either economic by-products or costly contaminants to avoid
or control. The approach accommodates non-additive element functions, such as the sil-
ica/magnesia ratio in nickel deposits.

As in Mery & Marcotte (2022), the method uses an MLR training phase where input and
output variables are obtained from conditional simulations. The outcomes of this approach
include tonnage resources of a primary variable subject to a critical value of a secondary
variable (e.g., a contaminant) or tonnage surfaces describing the joint distribution of two
variables. Moreover, the confidence intervals (CIs) on constrained tonnages or tonnage sur-
faces are obtained simultaneously by an MLR training. The coverage probability (CP) of the
CIs is studied and compared to the nominal level.

This paper is organized as follows. Section 6.3 explains the proposed approach and the
methodology used to predict multivariate recoverable resources and their uncertainty. Sec-
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tion 6.4 shows the application of the MLR approach on a three-dimensional (3D) bivariate
synthetic case where the predictive performance and uncertainty quantification is validated
on simulated deposits. Moreover, univariate and bivariate predictive models obtained by
MLR are contrasted. Section 6.5 illustrates the efficiency of the proposed approach on a
nickel deposit. Finally, Section 6.6 addresses the main findings, highlighting the impacts of
the research on the practice of recoverable resources assessment.

6.3 Methods

In this section, an ML algorithm for multivariate recoverable resource prediction is detailed
along with the main parameters required for its proper implementation.

6.3.1 General assumptions

The proposed approach is an extension of Mery & Marcotte (2022). The assumptions stated
therein are replicated in this research, i.e., the geological domain is fixed, hence, the uncer-
tainty quantification does not include uncertainty about geological boundary delimitation.
Even though the approach is said to be data-driven, some parameters have to be defined to
generate the data for MLR training, especially to perform the CSs that are the source of the
training data. As is commonly done in mineral resource assessment, statistical homogeneity
is assumed in the defined domain. The term “tonnage" refers, with a slight abuse of language,
to the fraction of rock tonnage that is above the cutoff grade in the domain studied. Since
the domain and rock density are considered fixed, the reverse transformation to mass tonnage
is direct.

6.3.2 MLR for multivariate recoverable resource prediction and uncertainty
quantification

The approach involves applying MLR to predict multivariate recoverable resources based on
sample data following the methodology used in Mery & Marcotte (2022). Consequently, a
set of feature (input) and target (output) variables have to be generated for the learning
process. Without loss of generality, only a case with two variables is presented for simplicity.
However, the approach is straightforwardly generalizable to more than two variables.

The input-output pairs are obtained from multivariate CSs using linear coregionalization
models (LCMs) and the turning bands (TB) algorithm (details about this algorithm can be
found in Brooker (1985) and Emery et al. (2006)). Note that any simulation algorithm may
be used for this purpose. The simulation requires that the conditioning data, the domain
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to simulate and the Gaussian anamorphosis be specified and that the LCM parameters be
defined. The location of the conditioning data and the domain to simulate are assumed to
be known. The Gaussian anamorphosis can be obtained from the declusterized sample data.
The LCM parameters are only loosely specified by providing wide intervals of possible values
for the nugget effect components, the distance of correlation, and the collocated correlation.
These intervals are determined from the data after a quick examination of variograms and
cross-variogram. There is no need to define a unique LCM as is usually done; the LCM is
used only for the training phase, not for the prediction phase.

Numerous sets of LCM parameters are drawn using a quasi-random Halton sequence. Each
set is checked to provide an admissible coregionalization model. As routinely used in Bayesian
analysis, the sampling scheme assumes a non-informative prior uniformly and independently
distributed over the selected parameter intervals. A reference deposit is simulated for each
set. Simulated data are extracted from data locations and used as conditioning data for a
series of CSs. The input variables for training are computed from the set of conditioning
data, whereas the output variables are obtained from the multiple conditional realizations of
the set. This is repeated for each set to provide as many inputs and outputs as there are sets
of parameters.

MLR training is carried out on a per-cutoff-pair basis. The cutoff pairs sweep the range of
values for both variables (e.g., at regular intervals or at every decile of the point distribution
for each variable). Then, a distinct MLR is done for each cutoff pair. The ensemble of MLR
models makes it possible to predict a discretized version of the bivariate tonnage surface.
Note that the training at each cutoff can be performed for different outputs, such as the
mean tonnage recovered from the CSs or a given quantile. For example, if one wants to
predict the mean tonnage along with the upper bound (UB) and lower bound (LB) at level
α, three distinct MLR training phases have to be conducted at each cutoff. Clearly, this
might become computationally heavy unless a fast training method like MLR is employed.

For comparison purposes, separate univariate training phases are also conducted utilizing
the same multivariate simulations. In this case, the univariate training passes incorporate
the distribution of each variable considered separately. On the input side, only univariate
statistics are used (i.e., no experimental cross-variogram is considered). Also, the tonnage
curve of a primary variable subject to the constraint value of a secondary variable can be
obtained under the independence assumption.

The algorithm proposed for 3D multivariate predictions is described in Algorithm 2 and
shown schematically in Fig. 6.1.
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Algorithm 2 : ML multivariate approach

1. Define parameters from available sample data

1.1. Sample data locations
1.2. Domain size for prediction
1.3. Initial Gaussian anamorphosis for each variable, which is used to obtain a reference

deposit and conditioning data values
1.4. Interval of LCM parameters (range, nugget, correlation coefficient and model

type). For an LCM to be admissible, the coefficient matrices have to be sym-
metric positive semi-definite

2. Obtain k conditional multivariate LCMs
For each CS from i = 1, ..., k

2.1. Randomly select a set of LCM parameters
2.2. Simulate the reference deposit i

2.3. Define and store simulated pseudo-data values from the reference deposit at the
real data locations

2.4. Perform nearest-neighbor (NN) interpolation on a fine grid to get a declustered
point histogram

2.5. Compute pseudo-selective mining unit (SMU) distribution by convoluting previous
interpolated values

2.6. Compute input variables ▷ see Section 6.3.3
2.7. Obtain a sample Gaussian anamorphosis based on the declustered data histogram
2.8. Simulate n conditional realizations using TB, conditional to the simulated pseudo-

data at real data locations
2.9. Compute simulated grades at SMU support for the n realizations

2.10. Calculate and store the mean and quantile tonnage curves and surfaces from the n
realizations, which will define the output variables. Note that all tonnage curves
are normalized by T0, the total tonnage of the domain studied ▷ see Section 6.3.4

3. Bivariate MLR learning
Using the tonnage surfaces as target variables

3.1. Randomly divide the k cases to generate training and testing sets
3.2. Perform separate training phases at each cutoff pair for each output variable (i.e.,

mean, quantile 2.5% and quantile 97.5% tonnage surfaces)
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Figure 6.1 Scheme of the proposed multivariate ML algorithm
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Algorithm 2 : ML multivariate approach (continued)

4. Prediction performance assessment

4.1. Calculate metrics to evaluate performance on the training and testing sets, such as
the root mean square error (RMSE), mean absolute error (MAE) and coefficient
of determination (R2)

4.2. Compute the marginal tonnage curve for each variable using the predicted surfaces
4.3. Define a constraint value for the secondary variable and apply it to the predicted

surfaces to define a tonnage curve subject to this value
4.4. Use the sample data to evaluate the predictive models by computing the RMSE

5. Uncertainty quantification

5.1. Use the symmetric predicted quantiles (2.5% and 97.5%) from step 3.2 to define
the 95% CI

5.2. Compute the CP of the predicted CI using the n conditional realizations from step
2.8

5.3. Compare the CP against the nominal CI probability (95%)
5.4. If necessary, apply a correction function in the MLR training (step 3.2) to ensure

the CP is close to the nominal CI probability ▷ see Section 6.3.5

Definition of interval parameters for LCM

An initial LCM is fitted to the Gaussian transform values of the variables studied. The
parameters are allowed to vary for the training. The LCM is parameterized as

C(h) =
 C0

xx C0
xy

C0
xy C0

yy

+
 1 − C0

xx ρxy − C0
xy

ρxy − C0
xy 1 − C0

yy

Sph(a; h) (6.1)

where the first matrix on the right describes the nugget components (all ≤ 1) on the direct
variograms and cross-variograms, ρxy is the collocated correlation, Sph indicates the spherical
model, a is the correlation range, and h is the separation vector between two points. The
determinants of the two coefficient matrices must be ≥ 0 for the LCM model to be admissible.

6.3.3 Definition of input variables

Three key aspects are considered when defining the input variables: (i) the grade distribution
at the point support (see Algorithm 2, step 2.4), (ii) the grade distribution at the SMU
support to take into account the change of support (see Algorithm 2, step 2.5), and (iii)
the spatial correlation of the grades. The first distribution is obtained from declustered
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data by NN interpolation on a dense grid. The second distribution is obtained by averaging
the NN interpolated values over the SMU support. The experimental direct variograms
and cross-variograms of the Gaussian-transform values describe the spatial correlation and
cross-correlation of the grades.

For univariate training, the spatial correlation is solely characterized by the experimental
variogram. The input variables for univariate and bivariate training are summarized in
Table 6.1.

Table 6.1 Summary of the input variables for univariate and bivariate training

Variable Quantity

Inputs -
Univari-
ate
training

Tonnage at point support As many as cutoff
values

Tonnage at SMU support As many as cutoff
values

Experimental variogram of Gaussian transform
values computed along the borehole (down-the-
hole variogram). The lag value is equal to the
composite length, and the number of lags is be-
tween five and eight

Number of lags

Inputs -
Bivariate
training

Tonnage surface at point support Cutoff values of
variable 1 × cutoff
values of variable 2

Tonnage surface at SMU support Cutoff values of
variable 1 × cutoff
values of variable 2

Experimental direct variograms and cross-
variograms of Gaussian transform values com-
puted along the borehole (down-the-hole vari-
ogram). The lag value is equal to the compos-
ite length, and the number of lags is between five
and eight

3 × number of lags

6.3.4 Definition of target variables

As n conditional realizations are simulated for each case, mean and quantile tonnage surfaces
are computed at defined cutoff values. The quantile values are defined according to the
uncertainty level desired. For instance, if a 95% CI is required, then quantiles 2.5% and
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97.5% have to be calculated. These tonnage values correspond to the target variables used
in the bivariate training.

The output variables for univariate and bivariate training are summarized in Table 6.2.

Table 6.2 Summary of the output variables for univariate and bivariate training

Variable Quantity

Outputs -
Univariate
training

Mean tonnage curve As many as cutoff values
Quantile tonnage curve As many as cutoff values × number

of quantiles defined
Outputs
-
Bivariate
training

Mean tonnage surface Cutoff values of variable 1 × cutoff
values of variable 2

Quantile tonnage surface (Cutoff values of variable 1 × cut-
off values of variable 2) × number of
quantiles defined

6.3.5 Uncertainty quantification

The predicted quantile surfaces are renamed the LB and UB of the CI they define. These
surfaces are used to quantify the uncertainty of the predictive models. The indicator function
is defined as

Iij(c1, c2) =

 1 when LB ≤ Tij(c1, c2) ≤ UB
0 otherwise

(6.2)

where Tij(c1, c2) is the tonnage for realization i in case j at the corresponding cutoff values
c1 and c2 of variables 1 and 2, respectively.

Then, the CP as a function of the cutoffs is computed using Eq. 6.3

CP(c1, c2) = 1
nk

k∑
j=1

n∑
i=1

Iij(c1, c2) (6.3)

where k is the number of cases used for bivariate MLR training and n is the number of
realizations of each case.

The overall CP is then calculated by averaging CP(c1, c2) over all the cutoff values.

The CP values are expected to be similar to the nominal CI probabilities at every cutoff.
Since this does not usually happen, a simple correction function is proposed to bring the CP
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values closer to the nominal CI values at every cutoff pair, as follows

f(c1, c2) = α exp
(

−
√

(c − β)RAR′(c − β)′
)

(6.4)

where c = [c1, c2], β = [β1, β2], A = [1/δ2
1 0 ; 0 1/δ2

2], R is a rotation matrix defined by an
angle, and c1 and c2 are the known cutoffs. Parameter α is real and controls the amplitude
of the correction, parameters β1 and β2 are real and determine where to apply maximum
correction, and parameters δ1 and δ2 are real positive scale factors. Variable A is the scaling
matrix along each rotated axis. Note that six free parameters define the correction function.

The parameters that define f(c1, c2) in Eq. 6.4 are obtained by minimizing the weighted
squared differences between the corrected CP(f(c1, c2)) and the nominal CI value, as follows

f̂(c1, c2) = arg minf

∑
c1

∑
c2

w(c1, c2) × [CP(f(c1, c2)) − CI]2 (6.5)

where CP(f(c1, c2)) is determined by LBcorr(c1, c2) = LB(c1, c2) − f(c1, c2), UBcorr(c1, c2) =
UB(c1, c2) + f(c1, c2), w(c1, c2) is a weight function taken as the probability density function
evaluated numerically at cutoffs c1 and c2 using all the cases considered during training. The
weights favor good coverage for grades with highest probability density.

A unique correction function f(c1, c2) is obtained for each nominal CI and remains the same
for the LB and UB that defined the CI, and for all the cutoff values considered. The opti-
mization described in Eq. 6.5 is a fast process carried out during MLR training.

6.3.6 Model evaluation

The following metrics are used to evaluate the performance of the predictive models on the
training and testing sets: root mean square error (RMSE), mean absolute error (MAE), and
coefficient of determination (R2). For the uncertainty quantification assessment, the coverage
probability (CP) defined in Eq. 6.3 is computed for each set. Moreover, a heat map with
the CP values as a function of the cutoffs for the variables of interest in the testing sets is
analyzed to evaluate whether the uncertainty quantification is properly reached at each cutoff
pair. To show that approximately 5% of the realizations fall outside the corresponding 95%
CI in the testing set, the differences between a few randomly selected realization tonnage
curves and the predicted UB and LB are displayed.
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6.4 Results

The proposed approach is applied to two different case studies. The first is a synthetic case
in which two continuous variables are created from data representing voids in a small cube.
The second is a nickel deposit subject to a constraint on the SiO2/MgO ratio.

6.4.1 3D synthetic bivariate deposit

A synthetic model (Fig. 6.2) is created as follows. First, X-ray 3D microphotogrammetry
of a small ceramic cube identifies voids in the solid matrix (coded as 0-1). Then, variable
v1 is computed proportionally to the amount of voids found in a sphere of radius 25 voxels
centered at every voxel. Variable v2 is similar to v1 except that a large amount of noise
(random voids and solid) is added to the original cube. Note that this is a physical model
not obtained by geostatistical simulation. A priori, there is no Gaussian signature in this
field, contrary to the geostatistical simulations used to train the MLR model.

(a) v1 (b) v2

Figure 6.2 Section view at elevation 120 (a) v1 and (b) v2

The main statistics of both variables are shown in Table 6.3. Variable v1 has a right-skewed
distribution, while v2 follows a close-to-normal distribution.

Data are extracted from the cube along vertical profiles mimicking boreholes located on
a pseudo-regular grid and spaced approximately 100 units apart. Variables v1 and v2 are
sampled at every point along the “boreholes" (Fig. 6.3).
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Table 6.3 Basic statistics

Mean Min Max Std. dev. CV Skewness Kurtosis Correlation ρ

v1 1.5 0 3.8 1.0 0.7 0.3 2.1 0.76
v2 4.3 0 8.5 1.0 0.2 0.1 2.7

(a) v1 (b) v2

Figure 6.3 Samples from (a) v1 and (b) v2

6.4.2 MLR training

The training parameters and intervals of possible values for the various LCMs are given
in Table 5.2. The LCM parameter intervals are chosen after a quick examination of the
experimental variograms and the cross-variogram.

MLR learning is carried out using 70% of the input-output pairs as the training set and the
remaining 30% as the testing set.

Table 6.5 presents the metrics used to evaluate the bivariate MLR approach’s performance on
the training and testing sets. As expected, the metrics are slightly better for the training sets
than for the testing sets. The average CPs are 95.3% and 94.1% for the training and testing
sets, respectively, which are close to the nominal 95% level and thus demonstrate that the
proposed correction function generalizes adequately from the training set to the testing set.
Note that the metrics are slightly better for the mean curve than for the UB and LB curves
as the latter two are intrinsically more variable. Note also the very high R2 values obtained
for both the training and testing sets on the three curves, which indicate good performance
and good generalization of the MLR training.
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Table 6.4 Summary of the parameters utilized to generate the k = 3, 000 cases used for MLR
training. 3D synthetic bivariate analysis

Parameter Values

Number of conditional realizations n 100
Cutoff values of v1 From 0.1 to 2.3 in steps of 0.2
Cutoff values of v2 From 2.8 to 5.3 in steps of 0.25
Domain size 282 × 282 × 282
SMU size 15 × 15 × 15

LCM initial fitting Variation for MLR training

Nugget matrix
[
0 0
0 0

]
∈ [0, 0.1] for the diagonal terms

Correlation matrix
[

1 0.76
0.76 1

]
± 0.15 on the off-diagonal terms

Sill matrix
[

1 0.76
0.76 1

]
As described in Section 6.3.2

Range ∈ [16, 48]
Variogram model Cubic

Fig. 6.4(a) shows a map of CP as a function of cutoffs for v1 and v2. CP is close to 95%
for most cutoff pairs. The values that are farther from the nominal CI are found mostly at
cutoff combinations corresponding to rare events (e.g., a small c1 combined with a large c2,
which is an unlikely event considering the strong positive correlation between v1 and v2). The
differences between a few randomly selected realization tonnage curves and the predicted UB
and LB are displayed in Fig. 6.4(b). In both cases, around 5% of the realizations lie outside
the CI defined by the LB/UB at each cutoff, which is in line with Fig. 6.4(a).

Additionally, the CP is calculated and compared to the nominal CI probability for ten CIs
from 10% to 95% in order to validate the uncertainty quantification of the approach. This
is performed as explained for the 95% CI in Algorithm 2 step 5. Figure 6.5 shows that
the resulting CPs are close to the diagonal for the testing set, which indicates a correct
uncertainty assessment.

6.4.3 Tonnage curves predicted by bivariate MLR training

Once training is completed, the data is used to compute the input variables described in
Table 6.1. These input variables then make it possible to predict the tonnage at each cutoff
pair.
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(a) CP (b) Difference between tonnage and LB/UB

Figure 6.4 (a) Heat map of mean CP as a function of cutoff values for the testing set and (b)
difference between real tonnage curve and predicted LB/UB as a function of the cutoff on v1
for the testing set

Testing set

Figure 6.5 Coverage probability vs nominal CI in testing dataset
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Table 6.5 Metrics to evaluate MLR learning for the training and testing sets. 3D synthetic
bivariate analysis

MAE RMSE R2 CP

Training set
LB 0.0056 0.0072 0.987
Mean 0.0045 0.0057 0.995 95.3%
UB 0.0075 0.0087 0.985

Testing set
LB 0.0068 0.0083 0.984
Mean 0.0056 0.0064 0.993 94.1%
UB 0.0082 0.0092 0.983

Figure 6.6 shows the predicted mean, LB and UB tonnage curves for v1 and v2 along with
the real tonnage curves. The latter are within the predicted CI at all cutoffs.

(a) v1 (b) v2

Figure 6.6 Predicted mean tonnage curve (orange dashed line) and its 95% CI (yellow and
purple dashed lines) along with the real tonnage curve (blue line) for (a) v1 and (b) v2.
Bivariate predictions

6.4.4 Comparison of univariate and bivariate MLR training for constrained ton-
nage curves

The tonnage curves of v1 subject to a constraint on the value of v2 are computed to mimic
the case of a contaminant affecting the recoverability of the primary variable. The bivariate
predictions of the tonnage curves are derived from the surfaces obtained through bivariate
MLR training. These curves are compared against the predictions obtained using univariate
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MLR training and assuming independence between v1 and v2, i.e., P (v1 > c1 ∩ v2 < 5)=
P (v1 > c1) × P (v2 < 5).

Figure 6.7 displays important differences between the two cases. The real constrained tonnage
curve is better reproduced by the bivariate MLR approach, while the univariate predictive
model has a significant bias at high cutoff values. Moreover, the real curve is entirely within
the predicted bivariate 95% CI, which is not the case for the univariate 95% CI. Note that
the width of the predicted CI is significantly narrower for the bivariate MLR training than
for the univariate training. This is due to the strong positive correlation (0.76) between
the variables, which is accounted for in the bivariate training but ignored in the univariate
training.

(a) Univariate predictions (b) Bivariate predictions

Figure 6.7 Predicted constrained tonnage curve (orange dashed line) and its 95% CI (yellow
and purple dashed lines) along with the real constrained tonnage curve (blue line). (a)
Univariate MLR training and (b) bivariate MLR training

6.5 Case study: Multi-element nickel deposit

For Ni deposits, the SiO2/MgO ratio typically plays a key role in metallurgical processing
and can result in downgrading ore tonnages. The mining operation has to provide the mill
with ore that is sufficiently rich in Ni while controlling the SiO2/MgO ratio (Sagadin et al.,
2016). The maximum ratio that is accepted before downgrading the ore can vary from mine
to mine but is typically close to 2. Note that the non-additivity of the SiO2/MgO ratio
makes it necessary to simulate SiO2 and MgO on point support and then compute the ratio
of averages over SMU support.
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6.5.1 Reference deposit

The lateritic profile is formed by a superficial iron-rich layer over a limonite layer that follows
a transition zone to finish in a saprolite zone. The nickel enrichment can be explained by the
weathering of ultramafic rock. Other elements of interest are present, such as iron, cobalt,
silica and magnesia.

A densely sampled sub-domain of the deposit contains 1,597 samples from 137 vertical drill
holes composited at 1 m lengths for Ni, SiO2 and MgO grades. Figure 6.8 shows the sample
data and grades distribution for nickel. An LCM is fitted to the data (see Table 6.7) and used
to produce the reference deposit by multivariate CS. A total of 1,054 samples are extracted
from the reference deposit along vertical pseudo-boreholes, and this data is used to apply the
proposed approach.

(a) Nickel sample data (b) Nickel histogram

Figure 6.8 (a) Isometric view of nickel samples and (b) histogram of nickel grades

The main statistics of the 1,054 samples of the reference deposit are summarized in Table
6.6.

6.5.2 MLR training

The LCM parameter intervals used for training are given in Table 6.7. For each case, candi-
date LCM parameters are randomly drawn from these intervals and the LCM admissibility
is checked. When a model is found non-admissible, new parameters are drawn. The input
and output variables of each case are computed as described in Table 6.8. MLR training of
the mean, UB (97.5 %) and LB (2.5 %) surfaces is conducted using a random subset of 70%
of the admissible LCMs. The remaining 30% of admissible LCMs form the testing set.
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Table 6.6 Basic statistics of the 1,054 samples of the reference deposit

Mean Min Max Std.
dev.

CV Skewness Kurtosis

Ni 1.5 0.14 4.2 0.7 0.5 0.4 2.4
MgO 18.9 0.42 42.2 14.7 0.8 -0.1 1.3
SiO2 26.8 0.7 77.8 18.1 0.7 -0.3 1.5

The MAE and RMSE values shown in Table 6.9 demonstrate both excellent prediction per-
formance on the training set and adequate generalizability on the testing set. CP reaches
the desired 95% CI on the training set and 94.1% on the testing set. The analysis of CP on
the testing set at every cutoff pair (see Fig. 6.9(a)) shows almost perfect reproduction of the
95% CI in areas corresponding to most likely grade combinations. Fig. 6.9(b) displays the
differences between a few randomly selected realizations (one out of every 100 realizations
per LCM in the testing set) and the predicted UB and LB as a function of the nickel cutoff
grades. These results illustrate that most of the curves lie within the predicted 95% CI.

(a) CP (b) difference between tonnage and LB-UB

Figure 6.9 (a) Heat map of mean CP as a function of cutoff values for the testing set and
(b) difference between real tonnage curve and predicted LB/UB as a function of the nickel
cutoff for the testing set
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Table 6.7 Summary of the parameters utilized to generate the k =3,000 cases used for MLR
training. Nickel deposit

Parameter Value and units

Sampling density 1,054 samples
Cutoff values of Ni From 0.3% to 2% in steps of 0.15%
Cutoff ratios From 1 to 2.8 in steps of 0.2
Capping value of Ni 2.95%
Capping value of MgO 39.98%
Capping value of SiO2 50.71%
Number of conditional realizations, n 100
Domain size 150 × 150 × 25 m
SMU size 5 × 5 × 5 m

LCM initial fitting Variation for MLR training

Nugget matrix

 0.2 −0.1 0
−0.1 0.22 0

0 0 0.2

 ± 0.2 on all the terms

Correlation matrix

 1 −0.1 0.4
−0.1 1 0.63
0.4 0.63 1

 ± 0.2 on the off-diagonal terms

Sill matrix

0.8 0 0.4
0 0.78 0.63

0.4 0.63 0.8

 As described in Section 6.3.2

Range ∈ [30, 70] m
Variogram model Spherical

6.5.3 Nickel tonnage curve prediction

The input variables given in Table 6.8 are computed for the sample data extracted from the
reference deposit. The surface models predicted by bivariate MLR training (see Fig. 6.10(a))
make it possible to compute the predicted mean and 95% CI for tonnage resources of nickel
and compare them to the recoveries obtained from the reference deposit, as illustrated in Fig.
6.10(b).

6.5.4 Comparison of univariate and bivariate predictions for nickel tonnage
curves constrained to the SiO2/MgO ratio

Given the operational requirement to control the SiO2/MgO ratio, it is necessary to determine
the Ni resources that are subject to this constraint. On one hand, the nickel resources
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Table 6.8 Summary of the input and output variables for tonnage surface prediction. Nickel
deposit

Variable Details Quantity

Inputs Point tonnage surface from
declustered sample data
(NN interpolation)

Tonnage surface at 12 Ni cutoffs
and 10 ratio cutoffs

12 × 10

Tonnage surface from SMU
grades computed from point
NN interpolation

Tonnage surface at 12 Ni cutoffs
and 10 ratio cutoffs

12 × 10

Experimental cross-
variograms of Gaussian
transform for Ni and ratio
values computed along the
borehole

γNi(h), γratio(h) and γNi−ratio(h)
for h ∈ {5, 10, ..., 25}

15

Total 255
Outputs Mean tonnage surface Tonnage surface at 12 Ni cutoffs

and 10 ratio cutoffs
12 × 10

2.5% quantile tonnage sur-
face

Tonnage surface at 12 Ni cutoffs
and 10 ratio cutoffs

12 × 10

97.5% quantile tonnage sur-
face

Tonnage surface at 12 Ni cutoffs
and 10 ratio cutoffs

12 × 10

Total 360

with SiO2/MgO<2 can be derived from the tonnage surfaces (see the cross-section in Fig.
6.10(a)). On the other hand, the univariate prediction of these resources can be determined
with separate training for Ni and the SiO2/MgO ratio, under the independence assumption,
using P (Ni > c1 ∩ SiO2/MgO < 2) = P (Ni > c1) × P (SiO2/MgO < 2).

Figure 6.11 illustrates the predictions obtained using univariate and bivariate MLR training.
Both predictions reproduce the real nickel resources constrained to ratio<2 appropriately.
Nevertheless, the width of the predicted 95% CIs of univariate and multivariate MLR train-
ing phases are significantly different. Accounting for the joint distribution of Ni and the
SiO2/MgO ratio makes it possible to reduce the uncertainty on the predicted tonnage curves.
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(a) Tonnage surface prediction (b) Nickel resources

Figure 6.10 (a) Predicted tonnage surface (orange surface) and its 95% CI (yellow and purple
surfaces) along with a cross-section at ratio<2 (white) and (b) predicted mean tonnage curve
(orange dashed line) and its 95% CI (yellow and purple dashed lines) along with the real
tonnage curve (blue line) for nickel resources

(a) Univariate predictions (b) Multivariate predictions

Figure 6.11 Predicted mean tonnage curve (orange dashed line) and its 95% CI (yellow and
purple dashed lines) along with the real tonnage curve (blue line) for nickel grades constrained
by SiO2/MgO<2. (a) Univariate MLR training and (b) multivariate MLR training
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Table 6.9 Metrics to evaluate MLR learning for the training and testing sets. Nickel deposit

Curve MAE RMSE R2 CP

Training set
LB 0.0195 0.0215 0.987
mean 0.0064 0.0077 0.993 95%
UB 0.0111 0.0125 0.988

Testing set
LB 0.0180 0.0195 0.985
mean 0.0084 0.0104 0.991 94.1%
UB 0.0207 0.0225 0.985

6.6 Discussion

The adequate assessment of recoverable resources and their associated uncertainty in the
early stages of a mining project is essential for project success. Mineral deposits commonly
host several variables of interest that should be jointly quantified to properly assess mineral
resources. The multivariate conditional simulation is one tool that can be used to assess
resource uncertainty. However, it relies on strong stationarity assumptions and requires the
correct identification of parameters of the coregionalization model. Errors of the coregional-
ization model parameters definition (LCM herein for simplicity) directly impact the predicted
recoverable resources and, above all, the uncertainty quantification. On the contrary, data-
driven techniques do not require the problematic fitting of an LCM because several LCMs are
used in the training phase considering parameters randomly selected within a large interval
of possible values. The predicted recoverable resources are directly obtained from statistics
based on the data. Admittedly, the proposed approach is computationally more demanding
than the traditional CS in the training phase. However, it is shown that the approach pro-
vides an adequate uncertainty assessment on the resources (i.e., a right coverage of the real
tonnage curves). A similar result could be obtained with CS only when the true underlying
coregionalization model is used. Since fitting a coregionalization model relies on scarce and
erratic data, the fitted model would most likely differ from the true one; therefore, CS would
provide incorrect uncertainty quantification results. Thus, the additional computational time
of the proposed approach is deemed justified.

Despite their increased usage, data-driven methods have not been used to predict multivariate
recoverable resources to our knowledge. This research develops a multivariate extension of
the studies carried out by Mery et al. (2020) and Mery & Marcotte (2022), one that focuses
on predicting recoverable resources (i.e., tonnage curves) and their uncertainty.
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A synthetic bivariate case obtained from a physical model is analyzed to validate the proposed
methodology. The metrics on the training and testing sets (see Table 6.5) show excellent
prediction performance since MAE and RMSE are lower than 0.01 for both sets and R2

is close to one. The average CP is 95% for the training set and 94% for the testing set,
which is close to the CI imposed by the correction function. Moreover, for most cutoff pairs
the coverage in the testing set is close to the nominal 95% level, indicating the CIs are
credible. We stress that the testing set is not used in the learning phase, so this suggests
good generalizability of the MLR model obtained using the proposed training approach.

A comparison of univariate and bivariate MLR training is also performed on the synthetic
deposit. As compared to the univariate learning approach, the bivariate approach simultane-
ously better estimates the real tonnage curve and produces a narrower CI while maintaining
the right coverage. It should be noted that no inconsistencies such as crossing of the pre-
dicted tonnage curves or non-monotonicity of the tonnage functions are observed, despite
these constraints not being explicitly incorporated in the training.

Regarding the lateritic nickel deposit, the MLR approach is used to predict the nickel ton-
nage curves subject to SiO2/MgO<2 on simulated SMU grades. The non-additivity of the
SiO2/MgO ratio is resolved by simulating each variable separately and computing the ratio
of averages at SMU support. The recoverable resources and their uncertainty are precisely
estimated (refer to Fig. 6.11(a)). However, the univariate predictive models exhibit greater
uncertainty on the predicted resources (Fig. 6.11(b)), confirming that the incorporation of
correlation between highly correlated variables improves the predicted tonnages obtained.

A correction function is introduced to correct coverage bias observed when MLR is applied
to raw CS quantiles. The results shown in Figs. 6.4 and 6.9 validate the proposed correction
function, as the CP reaches the desired 95% in the area of most likely values for the variables
studied. The correction function is defined by six parameters (in the bivariate case) that
have to be optimized (see Eq. 6.5). The objective function includes a weighting function so
as to give more weight to the most likely values of the joint distribution. The weight function
is proportional to the norm of the gradient vector of the tonnage surface.

One of the main possible drawbacks of the proposed approach is that MLR training is still
based on the multiGaussian model when jointly simulating the variables of interest, which
might be unsuitable in some cases. This drawback is shared by the usual CS approach
and its LCM fitting. However, in the proposed approach, the final predictions are obtained
using only statistics extracted from data, which may confer some robustness to the results
as suggested by the synthetic case where good results are obtained using variables computed
from a physical model in which Gaussianity is not expected a priori.
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The proposed MLR approach involves CSs using an LCM for the sake of simplicity. Recent
works propose a series of multivariate models that are more general than the LCM used
and could easily be used in its place. Some examples include hypergeometric covariance
kernels (Emery & Alegría, 2021), Matérn covariance (Emery et al., 2021) and the possible
adaptation of the twenty-two parametric isotropic multivariate covariance kernels defined in
spheres proposed by Emery et al. (2021).

A final note about the computational aspects: a different training is done at each cutoff
pair and for each curve. The cutoffs selected in the two case studies represent a total of
396 different training phases for the synthetic case and 360 training phases for the lateritic
deposit. Moreover, the optimization of the six parameters of the coverage correction function
involves retraining the LB and UB surfaces for each iteration. Despite this quite large number
of training phases, the efficiency of MLR and the reduced size of each training make the
computing time of the training step almost negligible compared to the time spent producing
the CSs required to obtain the input and output data for training.

6.7 Conclusions

Data-driven methods, such as multiple linear regression, can provide a reliable alternative
approach to predict recoverable resources and assess their geological uncertainty for univariate
and multivariate ore deposits. The results obtained on a synthetic bivariate deposit and
a lateritic nickel deposit demonstrate the proposed approach’s capacity to assess tonnage
resources and their uncertainty. The confidence intervals obtained present close-to-nominal-
level coverage, indicating they are credible. A comparison of univariate and bivariate MLR
predictions emphasizes the importance of including existing dependence between variables
for adequate mineral resource quantification, especially when conditioning constraints are
applied.
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CHAPTER 7 COMPLEMENTARY RESULTS

Four additional analyses are carried out to enhance the results of the proposed ML approach.
These complementary results corroborate the applicability of the ML approach in two differ-
ent non-Gaussian cases, studying the effect of the sampling density on uncertainty quantifi-
cation, analyzing the ML approach under a resource category definition (i.e., measured and
indicated), and extending this method to the conventional benefit assessment.

7.1 3D synthetic non-Gaussian deposits

The additional synthetic cases are further analysed to complement the results presented in
Section 6.4.1, following the same procedure.

The synthetic models correspond to X-ray 3D microphotogrammetry of small carbonate and
sand cubes (Fig. 7.1 (a) and (b), respectively). Univariate analyses are carried out. It
should be noted that there is no Gaussian signature in any of these cases, and also, they are
significantly different.

(a) Carbonate cube (b) Sand cube

Figure 7.1 Section view at elevation 120 (a) carbonate cube and (b) sand cube

The main statistics of each case are presented in Table 7.1.

Boreholes are sampled on a pseudo-regular grid on each case considering different locations
(see Fig. 7.2 (a) and (b)).

The training parameter intervals of each case are given in Table 7.2.
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Table 7.1 Basic statistics

Mean Min Max Std.
dev.

CV Skewness Kurtosis

Carbonate cube 0.98 0 6.25 1 1.02 1.49 5.05
Sand cube 0.94 0 4.64 1 1.08 1.22 3.78

(a) Carbonate cube (b) Sand cube

Figure 7.2 Samples of (a) carbonate cube and (b) sand cube

Then, 70% of the input-output pairs (defined in Tables 6.1 and 6.2) are used as training set in
the MLR training, while the testing set is composed of the remaining 30%. Three predictive
models for each case are generated, representing the mean, 2.5% and 97.5% quantiles. Using
the boreholes defined in Fig. 7.2, the mean tonnages are predicted, as well as the 95% CI
curves for the carbonate (Fig. 7.3 (a)) and the sand cases (Fig. 7.3 (b)).

This result supports the conclusion that cases exhibiting dissimilar textures with different
spatial continuities and sample locations can generate results able to reproduce the real
tonnage curve. This is due to the low MAE for both the carbonate case (0.0105) and the
sand case (0.0283). Moreover, the predicted CIs provide a measure of the uncertainty on the
tonnage resources as the real tonnage curves lie completely within the defined CIs. Therefore,
the approach appears robust to the particularities of the studied field.
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Table 7.2 Summary of the parameters to generate the k = 3, 000 cases used for each MLR
training. 3D synthetic carbonate and sand cases

Parameters carbonate case Values

Number of conditional realizations 100
Cutoff values From 0.1 to 1 in steps of 0.1
SMU size 15 × 15 × 15
Domain size 268 × 268 × 268
Nugget ∈ [0,0.2]
Sill 1 - Nugget
Range ∈ [35,100]
Variogram model Cubic
Parameters sand case Values

Number of conditional realizations 100
Cutoff values From 0 to 1.2 in steps of 0.1
SMU size 15 × 15 × 15
Domain size 282 × 282 × 282
Nugget ∈ [0,0.2]
Sill 1 - Nugget
Range ∈ [10,24]
Variogram model Cubic

(a) Carbonate cube (b) Sand cube

Figure 7.3 Predicted mean tonnage curve (orange dashed line) and its 95% CI (yellow and
purple dashed lines) along with the real tonnage curve (blue line) for (a) carbonate cube and
(b) sand cube
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7.2 Influence of the sampling density

The effect of the amount of data (i.e., the number of boreholes used as conditioning data) is
tested to evaluate whether the additional information of sample data can have a considerable
impact on the prediction performance of the real curve and the uncertainty assessment by
evaluating the width of the 95% CI. The synthetic variable v1 defined in Section 6.4.1 is
employed to carry out the analysis. Three configurations are defined (i.e., three, six, and
twelve boreholes), where the smallest boreholes configurations are included in the definition
of the subsequent configurations. Figure 7.4 shows the defined boreholes configurations.

(a) 3 boreholes (b) 6 boreholes (c) 12 boreholes

Figure 7.4 Sample configurations. (a) 3 boreholes, (b) 6 boreholes, and (c) 12 boreholes

An univariate adaptation of the procedure detailed in Algorithm 2 is performed for each
boreholes configuration, using the same parameters and input-output variables described in
Section 6.4.1. After each MLR training is performed, each boreholes configuration displayed
in Fig. 7.4 is used to obtain the predicted mean and 95% CI (see Fig. 7.5).

(a) 3 boreholes (b) 6 boreholes (c) 12 boreholes

Figure 7.5 Predicted mean tonnage curve (orange dashed line) and its 95% CI (yellow and
purple dashed lines) along with the real tonnage curve (blue line) using as conditioning data
(a) 3 boreholes, (b) 6 boreholes, and (c) 12 boreholes

Based on Fig. 7.5, there are no significant differences between the prediction performance of
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each borehole configuration compared with the real tonnage curve, as the MAE is close to
0.015 for the three sampling densities. In addition, all the predicted 95% CI contain the real
tonnage curve. Nonetheless, the uncertainty associated with each case clearly changes as the
width of the predicted 95% CI decreases, as expected, when the number of conditioning data
increases.

7.3 Application using mineral resources categories

The synthetic variable v1 introduced in Section 6.4.1 is utilized to study whether the proposed
MLR approach can predict the tonnage curves and their uncertainty on different mineral
resource categories. To this end, a new set of vertical boreholes is defined on the physical
cube (Fig. 6.2 (a)) to compute the predicted values and their associated variance through
ordinary kriging (See Fig. 7.6 (a) for the kriging variance map at level 120m). The kriging
variance is employed to determine the kriging efficiency (KE), which allows the mineral
resources to be classified as

Category =


Measured when KE ≥ 0.8
Indicated when 0.5 ≤ KE < 0.8
Inferred otherwise

(7.1)

The final definition of the resource categories (Fig. 7.6 (b)) is obtained after morphological
operators that consider a disk as a structuring element of radius 2 for the closing and radius
1 for the opening operations. It is of great importance to note that no inferred resources are
defined due to the high amount of sampling data. Moreover, the sample locations have a
noticeable effect on the resources category definition since the kriging efficiency is related to
the kriging variance.

For each defined category, the samples within the category domain are used to choose the
parameters needed to carry out the MLR training independently. As a result, the predicted
tonnage and 95% CI for the measured and indicated resources are shown in Fig. 7.7 (a) and
(b), respectively. Higher uncertainty (i.e., wider CI) is observed for the indicated resources
compared with the measured resources. Therefore, the MLR approach reproduces the level
of confidence of the mineral resources classification.
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(a) Kriging variance (b) Resources categories

Figure 7.6 (a) Section view of the kriging variance at elevation 120. (b) Resources categories
obtained using the kriging efficiency. Measured resources (blue) and indicated resources
(yellow) along with sampling data (red dots)

(a) Measured resources (b) Indicated resources

Figure 7.7 Predicted mean tonnage curve (orange dashed line) and its 95% CI (yellow and
purple dashed lines) along with the real tonnage curve (blue line). (a) Measured resources
and (b) indicated resources
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7.4 Another recovery function: the conventional benefit

A new recovery function (i.e., conventional benefit) is predicted to extend the proposed ML
approach. The same methodology described in Algorithm 2 of Section 6.3 is applied, where
step 2.10 does no longer calculate the tonnage curves, but instead computes the conventional
benefits B(z), i.e., the difference between real recovered metal quantity and the minimum
quantity that is supposed to be recovered above the cut-off grade. Quantifying the conven-
tional benefit provides a general idea of profit estimation from exploiting an ore deposit, even
when no discount rates are considered. The benefit integrates the tonnage and ore grade,
and therefore, it is a valuable tool to characterize the available recoverable resources.

The carbonate cube introduced in Section 7.1 is used considering v1 and its parameters
to perform the MLR training. The result indicates an excellent reproduction of the real
conventional benefit curve from the full carbonate cube and the associated 95% CI (see Fig.
7.8). The predicted 95% CI of the conventional benefit is wider than the predicted 95%
CI of the tonnage curves in Fig. 7.3 (a). This can be explained by the higher variability
of the benefit values compared with the tonnage values, which are defined in a [0-1] range,
whereas the conventional benefit involves both the tonnage and the grade, each with its own
uncertainty.

Figure 7.8 Predicted mean conventional benefit curve (orange dashed line) and its 95% CI
(yellow and purple dashed lines) along with the real conventional benefit curve (blue line)
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CHAPTER 8 GENERAL DISCUSSION

Three techniques have been proposed for the recoverable resources assessment and their un-
certainty quantification. The research encompasses the use of geostatistics and machine learn-
ing techniques to predict resources considering change of support, providing non-smoothed
estimates, properly characterizing the resource uncertainty, and extending their applicability
to multi-elements ore deposits. The findings allow adequate fulfilment of the gaps of knowl-
edge found in the state-of-the-art for the recoverable resource prediction, which is discussed
in the following paragraphs.

CK is proposed to avoid the smoothness of traditional geostatistical approaches such as OK
(refer to Chapter 4). This technique is able to predict recoverable resources taking into ac-
count the change-of-support in a univariate setting. The results enrich knowledge on CK
since its applicability is extended beyond the environment field by predicting recoverable re-
sources in the mining field by using synthetic cases and two real case studies (including a gold
deposit). Moreover, the robustness of CK is studied considering several kriging neighborhood
configurations, demonstrating the advantages over traditional methods such as UC. The ma-
jor strength of CK is the reproduction of the grade variability, which is guaranteed as the
method is designed to accomplish this property. CK also allows local and global predictions
to be obtained within the studied ore deposits. The application of CK is straightforward
and avoids the assumptions of non-linear predictors (e.g., DGM and UC). However, its main
drawbacks are the possibility to get some imaginary predicted values when using small neigh-
borhoods (e.g., no imaginary values were obtained for neighborhoods of at least one sample
per quadrant in the case studies) and the inability to provide a measure of uncertainty on
the predictions. The former issue can be dealt with a large neighborhood definition because
the method is not affected by the smoothing effect (therefore, there is no need to restrict the
neighborhood to attenuate this effect), while the use of CK variance can partially address the
latter. It is important to note that this variance depends on the data configuration without
accounting for the data values, so it is a measure of the neighborhood adequacy (same as
for kriging variance). It does not provide a measure of precision on recoverable resources.
Despite these drawbacks, the method is still better than traditional geostatistical predictors
for recoverable resources prediction. The predicted negative values obtained by CK can be
problematic if this proportion is high compared to the total predicted values; nevertheless, the
case studies did not exhibit a proportion greater than 1%, where a straightforward solution
is to set the negative values to zero.
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Since CK is unable to quantify the uncertainty on both predicted values (beyond an error
variance) and non-linear functions of the predicted values (such as, the recovery functions),
there is a need to provide alternative approaches to address this challenge. CS, which is a
possible option, is highly sensitive to model parameters definition and relies on strong as-
sumptions. Considering that data-driven methods can avoid specifying the model parameters,
ML techniques arise as promising tools to deal with the uncertainty assessment in mineral
resource evaluation. The research carries out the recoverable resources assessment and the
corresponding uncertainty quantification under a supervised learning environment, utilizing
geostatistical simulations to obtain the input-output variables for the ML training (refer to
Chapter 5). The outcomes of this thesis significantly improve current knowledge toward ML
applications in mineral resources prediction. A comparison between ML techniques reveals
that MLR is the most suitable method for the objective because it provides similar results
faster than other alternative techniques, such as ANN. This can be explained by the strong
correlation between input and output variables used in the training. The usability of MLR
is demonstrated by the excellent prediction performance and an adequate generalization ca-
pability to predict recoverable mineral resources. The results obtained using the testing sets
exhibit almost the same precision and coverage compared with the training sets. The MLR
training time is negligible compared to the generation of the input-output variables required
to perform the training. The predicted tonnage curves do not exhibit inconsistencies, for
instance, non-monotonic behavior or crossing, even when no constraints are imposed on the
training. ML techniques enable uncertainty to be assessed on recoverable resources as suc-
cessfully confirmed by applying MLR and a correction function. This function is needed to
adjust the initial ensued coverage through a straightforward and fast implementation. This
correction is not applied with ANN due to its complexity and slowness. Consequently, the re-
search suitably addresses the question that emerged during the literature review, concluding
that ML techniques can predict recoverable mineral resources and perform their uncertainty
evaluation. A novel finding from the application of the ML approaches is the new paradigm
provided for assessing mineral resources since there is no need to define specific parameters.
Furthermore, ML techniques may be suitable for preliminary studies in mining projects when
there is insufficient available data to fit a variogram model and to make hypotheses on their
distribution. Therefore, ML techniques become a promising alternative to traditional geosta-
tistical methods; for example, CS, which is the most similar approach but is highly sensitive
to the chosen variogram model.

A multivariate ML approach is proposed to predict the recoverable resources and their un-
certainty for multiple elements of interest (refer to Chapter 6), based on the work of Mery &
Marcotte (2022). The application of multivariate ML techniques helps to deepen knowledge
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on how ML techniques perform on the mineral resources evaluation of multi-element ore
deposits and on uncertainty quantification in multivariate contexts. Moreover, this research
confirms the idea that carrying out the joint prediction of mineral resources is more beneficial
when spatially correlated variables are analyzed. The principal drawback of this approach is
the application of geostatistical simulations to generate the feature and target variables that
still need LCMs to characterize the spatial continuity of the regionalized variables. Some
attempts to fit the LCMs using the Bayesian inference were unsuccessful as this method is
sensitive to the underlying Gaussian hypothesis. Projection pursuit multivariate transform
(PPMT) was also tested as an option to avoid the fitting of a LCM; nonetheless, the results
show a poorer prediction performance and therefore are not presented in the thesis. Another
disadvantage of the ML approach is the necessity to update the predicted curves by new
training when additional data is available (e.g., data gathered from production drill holes
during the exploitation of the mine). It is expected that the mean tonnage curve does not
significantly change if this information is incorporated; however, the width of the CIs can
be substantially modified as shown in Section 7.2. This limitation can be handled by the
efficiency of the MLR training and the simple definition of the input-output variables, where
both maintain the regular update of the predicted models tractable if efficient CS algorithms
are used. The multivariate ML approach has the potential to circumvent not only the def-
inition of unique parameters but also the heavy reliance on assumptions usually accepted
in traditional geostatistical multivariate approaches. Ultimately, the method allows for the
assessment of multiple elements of interest and their geological uncertainty. This prediction
can be conducted on either a primary variable or resources of a primary variable constrained
by the values of a contaminant, which are typical scenarios that occur in mining projects.

Four complementary analyses (refer to Chapter 7) are performed to verify the robustness and
suitability of the proposed ML approach. First, two additional cases (sand and carbonate
cubes) confirm the results obtained with the ceramic cube presented in Chapter 6, as they
validate the ability of MLR to reproduce the mean tonnage curves and characterize their
uncertainty. These case studies are 3D physical models where Gaussianity is not visually ex-
hibited, and therefore, the robustness of the approach under non-Gaussian fields is confirmed.
The second study analyzes the influence of the amount of data on the uncertainty assess-
ment. The width of the CI is reduced when additional data is provided to the MLR training.
This finding confirms the idea that uncertainty on the tonnage resources can be diminished
when more information is included, as typically occurs throughout mining exploitation. The
third analysis is carried out to predict the tonnage resources within two domains classified as
measured and indicated. A tonnage prediction is obtained for each resource category, where
a higher uncertainty is observed for indicated resources compared to measured resources.
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This outcome is expected since the resource classification is defined based on the kriging
variance, which considers the sample configuration. As a result, a thinner CI is predicted
within the measured resources area as more samples are available. Finally, the conventional
benefit is predicted by the proposed approach. An excellent prediction of the mean benefit
and uncertainty quantification is observed. This result extends the applicability of the ML
approach, which has been tested herein only for tonnage resources.

Some assumptions of the ML approach should be stated. The uncertainty on the domain
boundaries is not considered, and therefore, they are assumed to be fixed. These boundaries
can be defined, for instance, by using an implicit geological model, a geological interpreta-
tion from boreholes in cross-sections, blocks that define the classical three passes of kriging
employed in NI-43-101 reports, from the blocks that correspond to the amount of production
in specific years, among others. The use of both a known Gaussian transform to generate
the reference deposits and the multiGaussian model are also assumed. This is not exclusive
to the proposed approach as CS has the same limitation.

The research provides three meaningful proposals that deal with the main challenges identified
in current practices for the recoverable resources assessment. A comparison against tradi-
tional geostatistical methods is carried out to determine whether the studied approaches are
applicable to the mining field. It is clear that CK outperforms most of the popular methods,
namely OK and UC, based on the resulted predictions as well as the robustness of CK. In
addition, the univariate ML approach overcomes several methods, including CK, UC, OK,
and IL. Even though DGM surpasses ML, it may not be a fair comparison due to the fact
that DGM uses the true variogram model to obtain the predictions. A sensitivity analysis
shows that a moderate variation on the block variance (e.g., 20%) results in a deterioration
of the prediction obtained with DGM, implying that it is not a robust option for assessing
recoverable resources. Consequently, it is worth noting that the proposed methods may be-
come suitable alternatives in the mineral resource evaluation, especially at preliminary stages
where a global characterization of the recoverable resources is required.

Comparing the three proposed approaches reveals that CK is faster than ML in terms of
computational calculations. Learning methods require data generation from geostatistical
simulations, while CK is more straightforward and does not depend on additional inputs.
However, the MLR training itself is a rapid process, especially when compared with other
ML techniques such as ANN. After the MLR training is completed, the determination of
recovery curves and their corresponding CIs is almost instantaneous. Based on this, it can
be inferred that CK is an appropriate alternative because of its simplicity compared to ML
techniques, but it cannot provide an uncertainty quantification on the predicted recoverable
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resources. Thus, ML methods are suitable options to assess their uncertainty.

A summary of features found in the proposed techniques is presented in Table 8.1. The check-
mark indicates whether the approach is able to deal with or can be used for the properties
stated on the left.

Table 8.1 Summary of features in the proposed geostatistical and machine learning techniques

Property CK ML Multivariate ML
Change of support ✓ ✓ ✓

Avoid the smoothing effect ✓ ✓ ✓
Univariate predictions ✓ ✓

Multivariate predictions ✓
Uncertainty quantification ✓ ✓

Non-parametric ✓ ✓
Avoid variogram fitting ✓ ✓

Global assessment ✓ ✓ ✓
Local assessment ✓

Robustness against
parameter misspecification

✓ ✓ ✓

Robustness against model
assumptions

✓ ✓ ✓

ML techniques are capable of meeting more properties than CK as they can be employed for
uncertainty assessment on the predicted recoverable resources, avoiding complex parameter
definitions and strong assumptions (stationarity and multi-normality) found in traditional
approaches. Hence, ML techniques should be the preferred method of choice when performing
mineral resource evaluation, and depending on the ore deposit under study, the univariate or
multivariate ML technique may be selected. Either the characterization of each SMU grade
is required or a quick evaluation is needed, then, it is highly recommended to utilize CK to
provide a local assessment of the resources.
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CHAPTER 9 CONCLUSION AND RECOMMENDATIONS

The techniques available for resources assessment have been extended by proposing three
complementary methods to conduct univariate and multivariate predictions, and also, to
deal with the main challenges identified in the context of recoverable resource evaluation.
The general objective of this research is successfully reached since the proposed approaches
enrich current practices in the mining industry. The approaches aim to characterize recov-
erable resources at initial stages of mining projects, improving the decision-making process
throughout the life-of-mine. This is due to the fact that precise predictions are provided
along with a measure of their uncertainty, helping to generate mitigation plans during the
development of mining projects.

The research is significantly relevant as it extends CK for the recoverable resources assess-
ment and introduces novel techniques (i.e., machine learning). Although ML methods have
gained extensive attention over the years, there is no research that addresses the prediction
of recoverable mineral resources and their corresponding uncertainty. Hence, this gap in the
state-of-the-art is filled by testing and validating the proposed methods, utilizing synthetic
datasets and real ore bodies (gold and nickel deposits) as case studies.

9.1 Summary of Works

CK enables the prediction of non-smoothed block grades for the element of interest to ac-
curately assess the recoverable resources. This method performs better than similar geosta-
tistical predictors since it avoids the smoothing effect of OK and allows local predictions of
the resources (for each individual SMU) to be obtained, overcoming the limitation of UC.
Moreover, CK does not rely on strong assumptions about the data distribution and can be
directly applied as OK is employed today. The validation of CK is carried out using one
synthetic and two real case studies. The prediction performance for assessing the recovery
functions exhibits appropriate results. Furthermore, CK shows robustness under different
kriging neighborhood configurations. Based on these findings, CK becomes a promising
alternative method to predict recoverable resources, instead of UC or LUC.

Machine learning can be utilized for the assessment of recoverable mineral resources and
their associated uncertainty. The proposed ML approach considers the use of geostatistical
simulations to compute a series of input-output variables. A key aspect is that there is no
need to specify a unique variogram model as is usually done when CS is applied. Firstly,
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MLR and ANN perform similarly and thus, the simplest and computationally much faster
approach (i.e., MLR) is established as the studied ML technique. Secondly, MLR outperforms
traditional geostatistical methods, non-linear approaches, and change-of-support models in
predicting the recoverable resources. A sensitivity analysis verifies that MLR is able to
surpass its competitor (i.e., DGM) when a misspecification on the variogram model affects
DGM. In addition, when the true variogram is used, DGM is slightly more precise than
MLR, but it does not provide CIs on the predicted resources. The efficiency of the ML
approach is tested using two synthetic cases and a real gold deposit, providing an accurate
quantification of the uncertainty on the predicted resources and a proper characterization of
the recoverable resources in each case study. Therefore, ML is deemed to be part of current
practices to properly assess global recoverable resources.

A multivariate extension of the MLR approach is provided to account for predicting multiple
elements of interest and their corresponding uncertainty quantification in ore deposits. To
this end, the recovery curve is extended to the concept of recovery surfaces, which describe
the joint predicted resources in a bivariate context. The proposed MLR approach considers
geostatistical simulation to generate the training set used in the learning phase. The result-
ing predicted surface models can determine the resources of both a primary variable and a
primary variable constrained by thresholds of a secondary variable. A suitable prediction
performance and uncertainty assessment are proved by employing a synthetic and lateritic
nickel deposit. Comparing univariate and multivariate predictions obtained through the MLR
approach confirms that the incorporation of the dependence relationships between correlated
variables allows for enhancement of the evaluation of resources. Hence, a significant value
can be derived from including the proposed approach into current methodologies to assess re-
coverable resources. Additional results verify the robustness of the ML approach in deposits
where the multiGaussian distribution cannot be assumed. The ML approach is validated by
three analyses: the effect of the sampling density properly exhibited in the predicted CIs,
the adequate quantification of measured and indicated resources and their uncertainty, and
an appropriate prediction of the conventional benefit.

In summary, the three complementary methods presented herein expand the range of ap-
proaches considered within the mining industry, providing novel solutions for specific chal-
lenges identified in current practices. These methods can be jointly applied, for instance, to
determine the global recoverable resources and their uncertainty employing the ML approach,
and subsequently, localize the ore grades by using CK.
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9.2 Limitations

Even though the proposed methods can be considered as proper alternatives for the evaluation
of recoverable resources, some limitations remain.

Up to now, CK has been applied only for univariate predictions (probably because their
main applications have been carried out in the environment field) and is not able to provide
a complete measure of the uncertainty on the predictions. Since the non-smoothness is
guaranteed, deterioration may occur for the precision of the estimates, as seen in Table
4.4 for the gold deposit. However, its overall performance and robustness for the parameter
definition of the kriging neighborhood can overcome this effect. The proposed ML approaches
cannot localize the predicted resources because they are not designed for this purpose. As seen
in current literature, numerous applications can predict ore grades at unsampled locations
using ML techniques; however, these approaches are not considered in this research as they
are out of the scope.

An additional restriction of ML methods is the computation time required to generate the
predictive models. This is non-restrictive since proper simulation algorithms and parallel
computing can surpass this limitation.

9.3 Future Research

Further studies may include seven lines of research to enhance the approaches carried out in
the thesis.

Research should be focused on a multivariate extension of CK, which may be capable of in-
cluding information on other variables of interest. Since orebodies are typically multi-element
deposits, this study would have the particularity of generating non-smoothed predicted values
under more realistic prediction scenarios.

The so-called information effect (Matheron, 1976a) has a direct impact on the selectivity of
the recovery curves. This is generated by misclassifying ore and waste material based on the
ultimate information available when the classification is performed. Consequently, further
work should be focused on incorporating the information effect into the recoverable mineral
resources prediction through the use of the proposed techniques. It should be noted that
neither most resource studies nor NI-43-101 resources assessment reports have incorporated
this effect.

Future research is also required to apply the proposed methods to other types of ore deposits,
such as porphyry copper or iron deposits. This is key to verify their appropriateness and
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robustness thoroughly.

Fitting an LCM is the default decision to characterize the spatial structure of variables
hosted in multi-element ore deposits. The process can be especially challenging when several
variables are simultaneously analyzed. Alternative methods for the LCM fitting process (i.e.,
Bayesian inference and PPMT) lead to unfavorable results in tests that are not reported
in the thesis. In addition, further research should explore the non-linear coregionalization
models (Marcotte, 2016) or utilize novel parametric covariance models that offer flexibility
to represent the joint spatial correlation structure of coregionalized variables. For instance,
Gneiting et al. (2010) and Apanasovich et al. (2012) provide validity conditions for the
multivariate Matérn covariance model, in which each direct or cross-covariance can possess
proper scale and shape parameters. Other parametric families such as the hypergeometric
models in Euclidean spaces (Emery & Alegría, 2021) or models in other spaces such as spheres
(Emery et al., 2021) that could possibly be adapted to define new models in Euclidean spaces.

The research could be extended using the proposed approach to predict the profit of the
mineral resources and its uncertainty when the operational cut-off is known. This can be
understood to be an extension of the conventional benefit assessment incorporating the real
expected prices and costs.

In this thesis, three variables have been simulated for the nickel deposit, but the predicted re-
sources are associated with nickel and the silica-magnesia ratio; therefore, the MLR training
is performed as bivariate. Adaptations are needed to extend the proposed multivariate ap-
proach to more than two variables for the MLR training (e.g., nickel, cobalt, and chromium).
The dimensionality of the problem likely implies that the training time would increase; how-
ever, this would not be a major obstacle to determining the recoverable resources.

Finally, the thesis applies ML techniques since no previous research has been conducted to
assess recoverable mineral resources and quantify their uncertainty. However, the question
still remains as to whether more sophisticated approaches (e.g., deep learning) will be suitable
for improving or optimizing the obtained results. Ideally, deep learning should directly use
raw data to predict the recovery functions without defining input and outputs variables.
Even when more research is needed in this regard, it is expected that the computing power
will be a considerable limitation for next years due to the deposit sizes, large amount of data,
and complexity of the required networks.
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APPENDIX A DISCRETE GAUSSIAN MODEL

The discrete Gaussian model was initially developed by Matheron (1974) to assess the re-
coverable resources by accounting for the support and information effects. A comprehensive
review of the model can be found in Matheron (1976a); Rivoirard (1994); Emery & Torres
(2005) and Chilès & Delfiner (2012).

Relating the point- and block-support grade distributions

The point-support grade Z(x) is transformed into a variable Y (x) with a standard Gaussian
distribution by an anamorphosis function ϕ(·)

Z(x) = ϕ(Y (x)) (A.1)

Similarly, the block-support grade Zv can be also transformed as

Zv = ϕv(Yv) (A.2)

where ϕv is the block-support anamorphosis function.

It is assumed that Y (x) and Yv, with x uniformly distributed within v, follow a bigaussian
distribution with correlation rv. The anamorphosis transformation at point-support ϕ(·)
can be derived from the sample data, while the anamorphosis at block-support ϕv and rv

can be obtained using the Cartier’s relationship (Matheron, 1984; Rivoirard, 1994). This
relationship states that the expected grade of a sample randomly located within a block v is
equal to the block grade

E[Z(x)|Zv] = Zv (A.3)

where x stands for a point uniformly distributed within v.

From the bigaussian distribution, the following expressions are derived

E[Y (x)|Yv] = rvYv (A.4)

var(Y (x)|Yv) = 1 − r2
v (A.5)
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Then, Y (x) conditionally on Yv can be written as

Y (x) = rvYv + (1 − r2
v)1/2U (A.6)

where U∼N(0,1).

Using the definition of the expectation, it can be obtained

Zv = ϕv(Yv) = E[Z(x)|Zv] =
∫

ϕ(rvYv + (1 − r2
v)1/2u)g(u)du (A.7)

where g(u) is a standard Gaussian probability density function. The coefficient rv ∈ [0,1] is
called the change-of-support coefficient, where 0 is associated with very large blocks and 1
with very small blocks. This coefficient is determined so as to reproduce the correct block-
support variance: var(Zv) = var(Z(x)) − γ(v, v).

Figure A.1 shows the normalized histogram of variable that follows a lognormal distribution
under four different supports. A lower change-of-support coefficient corresponds to a larger
support, which implies a less skewed distribution.

Figure A.1 Normalized probability distribution varying the change-of-support coefficient

Once the distribution of Zv is determined, any quantity associated with Zv can be obtained,
for instance, the recovery functions. The tonnage Tv(c) and metal quantity Qv(c) above a
cutoff grade c with c = ϕv(yc) are defined as
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Tv(c) = 1 − G(yc) (A.8)

Qv(c) =
∫ ∞

yc

ϕv(u)g(u)du (A.9)

where G is the cumulative probability density function of a standard Gaussian variable.

Determining the distributions and recoverable resources via expansions into Her-
mite polynomials

The point-support anamorphosis function ϕ(·) can be computed via either a graphical trans-
formation of the data (quantile-quantile method), or an expansion into Hermite polynomials
{Hn : n = 0, 1, ...} as follows

ϕ(Y (x)) =
∞∑

n=0
ϕnHn(Y (x)) (A.10)

where {ϕn : n = 0, 1, ...} are coefficients determined from the experimental distribution of
the point-support data.

In turn, the block-support anamorphosis function (Eq. A.7) can be rewritten as

ϕv(Yv) =
∞∑

n=0
ϕnrn

v Hn(Yv) (A.11)

The change-of-support coefficient rv can be determined from the known variance of the block-
support grades considering the following expression

var(Zv) =
∞∑

i=1
ϕ2

nr2n
v (A.12)

Alternatively, the metal quantity function of Eq. A.9 can be expressed using the Hermite
polynomials as

Qv(c) = ϕ0[1 − G(yc)] −
∞∑

n=1
ϕnrn

v n−1/2Hn−1(yc)g(yc) (A.13)
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The practice of the discrete Gaussian model

The application of the discrete Gaussian model relies on the following steps:

1. Select the area of study and the SMU size (depending on the mining method)

2. Normal-score transform the point-support data within the area of study, and also, de-
termine the point-support anamorphosis function. A declustering of the data may be
needed to obtain representative point-support distribution and point-support anamor-
phoses. The procedure can be performed by expanding the experimental anamorphosis
into Hermite polynomials as:

2.1 Sort the grade data z1, ...znd
in ascending order and determine the Gaussian equiv-

alents y1, ..., ynd
(quantile-quantile transformation)

2.2 Choose the order of the polynomial expansion N

2.3 Evaluate the polynomials Hn(yi), n = 0, ..., N at each value yi

2.4 Evaluate ϕn = 1
nd

∑nd
i=1 ziHn(yi), where nd is the number of data

2.5 Compare the experimental values zi with the values calculated by the polynomial
anamorphosis model. The process is stopped when the fit is satisfactory; otherwise,
one can increase the degree of the polynomial expansion

3. Calculate the variogram of the original point-support data and compute the variance of
Zv by the block-regularization formulae. The sill of the point-support variogram may
be previously corrected in order to match the variance of the point-support data, as
determined by the point-support anamorphosis calculated at step 2

4. Determine the change-of-support coefficient rv based on the point-support anamorpho-
sis, and the block-support variance computed at step 3 using Eq. A.12. An alternative
approach is to generate a large amount of values Yv ∼ N(0, 1) and numerically evalu-
ate the integral of Eq. A.7 for each value Yv and a given rv. Then, several Zv values
are obtained and used to calculate the experimental variance. Finally, rv is optimized
until the experimental block-support variance coincides with the theoretical variance
obtained in step 3

5. The block-support distribution, in particular, the tonnage, quantity of metal, among
others, can be estimated once the change-of-support coefficient is known
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APPENDIX B UNIFORM CONDITIONING

Extension of the discrete Gaussian model to a panel support

Uniform conditioning (Rivoirard, 1994) is an extension of the discrete Gaussian model, fo-
cused on determining the distribution of block-support grades conditional to the grade of a
panel V (composed by several small blocks). The Cartier’s relationship can also be extended
for the block Zv and panel ZV grades as

E[Zv|ZV ] = ZV (B.1)

where v stands for a block randomly distributed within panel V.

This relationship implies that the expected grade of a block randomly located within a panel
is equal to the panel grade.

Assuming that Yv and YV follow a bigaussian distribution with correlation R, E[Yv|YV ] = RYV

and var(Yv|YV ) = 1 − R2 can be derived. Therefore, it is possible to obtain an expression
similar to Eq. A.7 in order to calculate the panel grade distribution

ZV = ϕV (YV ) = E[Zv|ZV ] =
∫

ϕv(RYV + (1 − R2)1/2u)g(u)du (B.2)

here ϕV (·) is the anamorphosis at panel-support.

It can be also supposed that Y (x) and YV follow a bigaussian distribution with correlation
rV ; then, the following expression can be obtained

ZV = ϕV (YV ) = E[Z(x)|ZV ] =
∫

ϕ(rV YV + (1 − r2
V )1/2u)g(u)du (B.3)

Eqs. B.3 and B.2 allow the grade distribution to be calculated at panel-support considering
the point and block-support distributions, respectively. It ensues R = rV /rv, linking the
change-of-support coefficients between point, block and panel supports. When v → V , then
R → 1 and ϕV = ϕv. Likewise, when V → ∞, then R → 0 and the influence of the panel
disappears in Eq. B.2, returning to the global prediction of the discrete Gaussian model
(refer to Appendix A).
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Hypothetical case when the panel grade is known

Assuming a known value for the panel grade zV , it is possible to determine any function at
block-support within the panel since yV can be calculated as yV = ϕ−1

V (zV ). Conditional
to ZV = zV , Yv follows a Gaussian distribution with mean RyV and variance 1 − R2. The
tonnage and metal quantity above a cutoff grade c = ϕv(yc) at block-support within the
panel are defined as

Tv|V (c) = 1 − G

(
yc − RyV√

1 − R2

)
(B.4)

Qv|V (c) =
∫ ∞

yc

ϕv(RyV +
√

1 − R2u)g(u)du (B.5)

where u ∼ N(0, 1).

In terms of the Hermite polynomial expansions, the following expression is obtained

Qv|V (c) =
∞∑

n=0
qn(c)RnHn(yV ) (B.6)

where qn(c) are the coefficients of the Hermite polynomial expansion of Zv1Zv>zc .

Real case when the panel grade is unknown

In practice, one does not perfectly knows the panel grade, so that zV is replaced with a
prediction of the panel grade z∗

V and yV with the Gaussian equivalent of z∗
V . Typically, z∗

V

is obtained by ordinary kriging, which is advantageous in situations where the stationarity
assumption is questionable, (e.g., the mean grade is locally constant, but varies at the scale
of the deposit) and strictly stationary techniques such as the traditional multigaussian sim-
ulation fails at accounting for such a spatially varying mean.

Practical implementation

The implementation of UC is similar to the one described in Appendix A. The main differences
are the additional definition of a panel size, the computation of the variance of ZV , the
determination of rV to compute R, and the estimation of the panel grades by ordinary
kriging to determine yV by Eqs. B.3 or A.12 (defined in terms of the panel grades).
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