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RÉSUMÉ 

La dégradation est un phénomène naturel qui se produit dans les différents systèmes en raison de 

l'utilisation et de l'exposition à l'environnement. Par conséquent, une maintenance est nécessaire 

pour maintenir les systèmes dans des conditions de fonctionnement sûres. Au cours de la dernière 

décennie, la maintenance conditionnelle s'est avérée capable d'améliorer la fiabilité des systèmes 

et de réduire les coûts. La maintenance conditionnelle est une stratégie de maintenance qui décide 

des actions de maintenance en détectant les premiers signes de défaillance à partir de l'état du 

système. Le développement rapide des technologies de surveillance et d'acquisition de données a 

encouragé l'application de stratégies de maintenance conditionnelle. 

Malgré l'intérêt croissant pour la maintenance conditionnelle et les différentes études proposées 

dans ce domaine, ce sont des lacunes existantes qui nécessitent davantage d'investigations et de 

recherches. La littérature s'accorde sur la distinction de la maintenance conditionnelle car elle 

utilise des informations collectées à partir des systèmes, néanmoins la majorité des études 

proposées proposent des stratégies de maintenance conditionnelle basées sur des modèles avec des 

paramètres supposés qui ne sont pas liés aux informations ou données collectées à partir de 

systèmes réels. De tels modèles ont également des difficultés à envisager des actions de 

maintenance plus applicables autres que les actions de remplacement. Nous abordons ces 

problèmes en proposant un modèle et une méthodologie capables d'utiliser des informations réelles 

collectées sur différents systèmes qui n'ont pas d'hypothèses et d'envisager différentes actions de 

maintenance. Nous trouvons également une lacune dans la recherche concernant l'utilisation de la 

durée de vie utile résiduelle. La durée de vie utile restante principalement utilisée dans la littérature 

pour optimiser les intervalles d'inspection, nous proposons un arrangement différent pour utiliser 

la durée de vie utile restante avec une méthode de solution basée sur les données pour atteindre une 

meilleure rentabilité. Enfin, pour tenter de combler l'écart consistant à ne considérer qu'un seul 

mode de détérioration, le modèle proposé dans ce travail a traité ce problème en utilisant un thème 

axé sur les données similaire proposé pour combler les deux écarts précédents. 

Cette thèse propose un modèle et une méthodologie génériques basés sur les données qui combinent 

principalement des modèles de prédiction de détérioration et une méthode de solution sans modèle 

prédéfini, pour optimiser une stratégie de maintenance conditionnelle préventive à plusieurs 
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niveaux d’intervention. Cette méthodologie n'est pas limitée à certaines hypothèses sur le processus 

de détérioration et apprend le processus de détérioration directement à partir de données réelles. Il 

prend également en compte les actions de réparation préventive à plusieurs niveaux à côté des 

actions de remplacement pour résoudre le problème de maintenance de manière pratique. La 

méthode de solution sans modèle prédéfini, en particulier l'apprentissage par renforcement, a 

facilité l'applicabilité de la méthodologie car elle obtient la solution à l'aide d'un apprentissage 

interactif sans avoir besoin d'estimer aucun paramètre. Plus tard, le concept de durée de vie utile 

restante du système est adopté pour améliorer la rentabilité des stratégies obtenues. Une méthode 

qui adopte des techniques de survie non paramétriques ainsi qu'une approche basée sur la fiabilité 

est proposée pour estimer la durée de vie utile restante à utiliser dans le cadre d'une nouvelle 

conception pour la fonction de récompense de la méthode d'apprentissage par renforcement. Enfin, 

cette méthodologie est développée pour être capable de traiter le problème des modes de défaillance 

multi-dégradation. 

Deux points méritent d'être mentionnés. Premièrement, les stratégies obtenues grâce à cette 

méthodologie associent l'état de dégradation du système à l'action de maintenenance appropriée. 

Ce qui différe des stratégies de maintenance basées sur les conditions de seuil des actions largement 

proposées. Deuxièmement, un ensemble de données réelles est utilisé dans cette recherche pour 

tester la méthodologie proposée. 

La contribution de la méthodologie proposée est présentée en trois volets qui peuvent être utilisés 

ensemble pour résoudre des problèmes complexes. De plus, chacun des volets a sa capacité à 

résoudre certains problèmes d'applications différentes. Indépendamment de l'individualité de 

chaque volet, la méthdodologie proposée se développe progressivement de manière séquentielle. 
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ABSTRACT 

Degradation is a natural phenomenon that occurs in different systems as a result of usage and 

environmental exposure. Accordingly, there is a need for maintenance and inspection to keep the 

systems in safe and functional condition. Over the past decade, condition-based maintenance has 

been found to be capable of improving the reliability of systems and reducing costs. Condition-

based maintenance is a maintenance strategy that decides and optimizes maintenance actions by 

detecting early signs of failure from the condition of the system.  The rapid development of data 

monitoring and acquisition technologies encouraged the application of condition-based 

maintenance strategies.  

Despite a growing interest in condition-based maintenance and various studies that have been 

proposed in that domain, there are existing opportunities that call for more investigation and 

research. The literature agrees on the distinction of condition-based maintenance, as it uses 

information collected from the systems; nevertheless, the majority of the studies have proposed 

condition-based maintenance strategies based on models with assumed parameters that are not 

related to information or to data collected from real systems. Such models also suffer from 

challenges in considering more applicable maintenance actions, other than replacement actions. 

We address these issues by proposing a model and methodology that are capable of using real 

information collected from different systems that do not have assumptions and consider different 

maintenance actions and allow optimally carry out proactive maintenance. We also find a gap in 

the research with remaining useful life utilization. Remaining useful life is mainly used in the 

literature to optimize inspection intervals. So based on the estimation of the remaining useful life, 

some planned inspections are canceled, and others are added. We propose a different arrangement 

for using the remaining useful life with a data-driven solution method as prediction and 

reinforcement learning models to reach better cost-efficiency. Finally, in an attempt to address the 

gap of considering only a single deterioration mode, the proposed model in this work treats this 

problem using a similar data-driven theme proposed to address the two previous gaps.  

This thesis proposes a generic data-driven model and methodology that mainly combines 

deterioration prediction models and model-free solution methods to optimize a multilevel 

preventive condition-based maintenance strategy. This methodology is not limited to certain 
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assumptions about the deterioration process and learns the deterioration process directly from real 

data. It also considers multi-level preventive repair actions, aside from the replacement actions, to 

tackle the maintenance problem in a practical way. The model-free solution method, specifically, 

reinforcement learning, strengthened the applicability of the methodology, as it obtains the solution 

using an interactive learning manner without a need to estimate any parameters. Later, the concept 

of the system’s remaining useful life is adopted to improve the cost-effectiveness of the strategies 

obtained. A method that adopts survival techniques, together with a reliability-based approach, is 

proposed to estimate the remaining useful life that is used as a part of a new design for the reward 

function for the reinforcement learning method. Finally, this methodology is developed such that 

it is capable of addressing the multi-deterioration failure modes problem.  

Two points are worth mentioning: first, the strategies obtained through this methodology map from 

state to action differently than the widely proposed actions’ threshold condition-based maintenance 

strategies. Second, a real dataset is used in this research to test the proposed methodology. 

The contributions of this proposed methodology are presented in threefold that can be employed 

together to solve complex problems. Each has its own capacity to solve certain problems in different 

applications. While each is an individual solution, they have been developed progressively, in a 

sequential manner.   
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 INTRODUCTION 

Systems that are used in the production of goods (i.e., production machines) or for service providers 

(i.e., aircraft, vehicles, roads, and railways) witness deterioration over time and from use (Wang, 

Hongzhou 2002). Such systems should be kept in conditions that allow them to operate safely, as 

the failure of these systems encompasses high costs and high risks. Thus, failure needs to be 

mitigated and avoided through maintenance. Maintenance costs can represent up to 70% of 

production or service costs (Lopes Gerum et al., 2019; Yacout, 2010). As a result, maintenance 

optimization is a necessity in the growing competition between manufacturers of goods and service 

providers. 

Maintenance is defined as a set of activities that can restore a failed or a deteriorated system to 

operational conditions that enable it to perform  its functions (Ahmad et al., 2012). A few decades 

ago, maintenance activities were presupposed to be performed after failure to restore systems to 

operating condition. Over the past decades, and with the second industrial revolution, the concept 

of maintenance experienced a dramatic transformation from being reactive to proactive. The era of 

mass production started with the second industrial revolution, and during this period, a strong need 

for cost minimization and reliability maximization emerged to optimize production (Sakib & 

Wuest, 2018). Generally, maintenance strategies are classified into two categories: corrective 

maintenance (CM) and preventive maintenance (PM) strategies, as Figure 1.1 depicts. CM is 

reactive run to failure maintenance, as it waits until failure takes place and then maintenance is 

performed. Contradictory PM is proactive maintenance with strategies that suggest performing 

maintenance before failure takes place to avoid it or reduce its rate (Alaswad & Yisha, 2017; 

Hongzhou, 2002). With an increasingly competitive market, different organizations have realized 

that maintenance is an essential business function that needs to be managed efficiently. Therefore, 

CM is no longer an option, as it encompasses expensive costs and leads to production losses. All 

of the attention has been given towards developing optimal PM strategies.  
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Maintenance strategies

Time-based 
maintenance (TBM)

Condition-based 
maintenance 

(CBM)

Preventive 
Maintenance (PM)

Corrective 
Maintenance (CM)

 

Figure 1.1. Maintenance Strategies Classification. 

1.1 Preventive Maintenance 

In the early era of PM, it was performed either based on the original system manufacturer (OSM) 

recommendations or on the user experience (UE) (Zheng & Makis, 2020). Normally, OSM 

recommends maintenance based on calendar age or usage time and such recommendations are 

founded upon a scientific approach. UE is built over time with the usage of the system. Users learn 

a PM strategy for the system they use as they experience different situations. In most cases, 

engineers or technicians are the individuals who acquire this experience. The main limitation of 

UE PM strategies is the dependency on experienced personnel. If an experienced person departs, 

problems with maintenance will arise. Later, in the late 1940s and during the 1950s, the operation 

research approach began to be developed for PM optimization (Ahmad et al., 2012; Boros et al., 

2000; Hafez et al., 2019; Shin & Jun, 2015). Generally, PM has two main categories: time-based 

maintenance (TBM) and condition-based maintenance (CBM) are shown in Figure 1.1. 

1.1.1 Time-Based Maintenance  

TBM is a category of PM strategies based on usage time or interval. TBM strategies are traditional 

and easy to implement since the maintenance action is performed after a certain usage time or 

interval (de Jonge et al., 2017). The usage time or interval to perform the maintenance is based on 
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the system’s failure time analysis. TBM strategies assume that the failure rate follows the bathtub 

curves shown in Figure 1.2. According to the bathtub curve, a system failure rate passes through 

three stages (Bai et al., 2020). The first stage is infant mortality, with a decreasing failure rate at 

the beginning of the system’s age or life cycle. The second stage is the random failure stage, with 

a low constant failure rate. Finally, the third stage is the wear-out stage, in which failures occur at 

an increasing rate(Ahmad et al., 2012; Bai et al., 2020). TBM mainly targets the wear-out stage to 

avoid failures through PM actions (Ahsan et al., 2020). 

Infant 
Mortality

Random 
Failures

Wear OutF
ai

lu
re

 r
at

e

Time
 

Figure 1.2. Example of the Bathtub Curve. 

A summary of the general TBM steps is shown in Figure 1.3.  Based on failure times, the system’s 

reliability is modeled using different statistical distributions, e.g., the Weibull distribution, Normal 

distribution, Binomial distribution, and Poisson distribution. After modeling the system’s 

reliability, TBM seeks to obtain the time or interval for performing maintenance with minimum 

cost. Obtaining the optimal interval for performing maintenance is a trade-off between the PM cost 

and CM cost if a failure takes place. The general mathematical model for TBM strategies was first 

proposed by Barlow and Hunter (1960). This mathematical decision model of TBM strategies 

includes only the replacement action, as the PM action returns the system to as-good-as new. The 

replacement is performed either at fixed intervals 𝑇 with cost 𝐶𝑃𝑀 or at failure with cost 𝐶𝑓𝑎𝑖𝑙. The 

cost associated with replacement after failure includes unplanned system downtime, loss of 

production, and PM replacement costs. On the other hand, the planned PM replacement includes 
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only the maintenance cost. The unplanned system’s downtime cost and the loss of production cost 

are high costs, even higher than the PM replacement, that fact increases the unfavorability of the 

failure events. The mathematical model by  Barlow and Hunter (1960) aimed to obtain the optimal 

replacement interval that minimizes the total maintenance cost based on the planned PM 

replacement cost, the cost of unplanned maintenance due to failure, the cumulative failure 

distribution function, and the reliability function.  

Other TBM strategies also consider a minimal repair action. Minimal repairs are performed after 

failure to retune the system to the operating conditions on which the system was just before failure.  

The minimal repair cost is lower than the PM replacement cost. Under such strategies, when failure 

takes place before the defined replacement interval 𝑇, a minimal repair action is performed. The 

objective of strategies with minimal repairs is to obtain the replacement interval 𝑇 that minimizes 

the long-run expected cost per unit time. They also consider the expected number of failures that 

may take place until reaching this replacement interval based on the minimal repair cost 𝐶𝑀𝑅, the 

expected number of failures at time 𝑇 and the preventive replacement cost 𝐶𝑃𝑀. 

Failure Data (failure times 
or ages)

Failure/Reliability modeling 
using statistical models

Decreasing 
failure rate

(Infant Mortality)

Constant 
failure rate

(Random 

Failures)

Increasing 
failure rate

(Wear Out)

Maintenance 
only in case of 

failure

Maintenance based 
on the optimal 

obtained intervals 
 

Figure 1.3. Summary of the general TBM steps. 
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Various TBM strategies have been proposed in the literature to cover different applications. 

Comprehensive literature about TBM strategies and applications can be found in (Ahmad et al., 

2012; Kim et al., 2016). Regardless of the reasonable results obtained based on TBM strategies, 

two serious limitations arise when TBM is used. Firstly, TBM needs failure data, which may not 

be available for all systems. The failure of some systems can lead to catastrophic results, so no 

failure is allowed; thus no failure data is available. Other systems have relatively long-life cycles, 

which make collecting failure data a difficult process. Secondly, TBM considers only the use of 

time or interval to decide maintenance actions. It is clear that the use of time or interval is not 

sufficient to determine whether a system will witness a failure soon or after a long time. The manner 

of use also significantly affects the system’s failure (Quatrini et al., 2020). Therefore, TBM may 

lead to unnecessary replacement actions or even allow failures in some cases.    

1.1.2 Condition-Based Maintenance 

The limitations that have arisen within TBM, together with the developments in condition 

monitoring through sensors that are capable of collecting and transmitting the systems’ conditions, 

have led to an increasing interest in CBM. The beginning of CBM implementation goes back to 

the 1970s (Ahmad et al., 2012; Baldin, 1986). Performance of the systems is commonly related to 

the deterioration process, which is a natural phenomenon in which deterioration takes place with 

usage. CBM  provides a more efficient approach than TBM, as CBM detects early signs of failure 

by observing the deterioration process and accordingly deciding on a maintenance action (Jardine 

et al., 2006). Deciding a maintenance action based on the systems’ conditions is more realistic, as 

the manner of use significantly affects the system’s conditions. Different indicators can be used to 

identify the deterioration process and the systems’ conditions, i.e., noise, vibration level, crack size, 

temperature, lubrication oil viscosity, and pressure level. Over the usage, the deterioration process 

is naturally evolving and changes in the different indicators occur as crack size propagation and 

vibration magnitude increase. When the values of these measured heath conditions reach a certain 

level, failure takes place (Jardine et al., 2006). Therefore, the approach that CBM follows to decide 

maintenance actions leads to strategies that decrease the life cycle cost and avoid catastrophic 

failure.  A variety of models and methods have been proposed in an attempt to develop optimal  
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CBM strategies.  A summary of general CBM steps is shown in Figure 1.4, while a more detailed 

discussion about CBM is provided in Chapter 2.  

Deterioration data e.g. 

vibration level, crack size

Deterioration  modeling

Maintenance based 
on the obtained 

strategy

Deterioration 
level doesn t 

reach the failure 

limit

Deterioration 
level  reaches the 

failure limit

Current 
deterioration 

level 

 

Figure 1.4. Summary of general CBM steps 

1.2 Maintenance and Data 

Clearly, the early shift in the concept from reactive to proactive maintenance was a need that was 

achieved with the help of data. At the beginning, with TBM strategies, data was the base for the 

models to obtain optimal replacement intervals 𝑇. Even when PM is based on UE, maintenance 

experts have developed this experience based on data they collect and observe during their use of 

the systems. Because of a lack of this failure data and the availability of other types of data, 

attention has been directed to CBM. It is important to acknowledge that the availability of data, in 

addition to the need for more optimal maintenance strategies, has contributed to the shift to CBM. 

CBM requires a clear understanding of a system’s normal operating conditions and failure modes.  

This understanding can be acquired either through prior comprehensive knowledge about the 
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system, or by using data that has been collected to monitor the system. Based on prior 

comprehensive knowledge of the system, fault detection can be done through model-based fault 

detection methods. Unfortunately, this way is not very effective since new patterns of faults may 

occur with time. Covering all of the fault types and patterns using these models is unfeasible. Using 

the data collected to monitor the system can help understand the systems’ normal and faulty 

conditions. Relying on data to achieve successful CBM is more applicable through the following 

steps: data collection, data processing and analyzing, and accordingly suggesting the proper 

maintenance actions (Khan et al., 2021; Yacout, 2010). The data collection process is concerned 

with acquiring and storing different health indicators about the systems. With the advances in data 

sensing and storage, the data acquisition process witnesses remarkable improvements, and data 

availability is no longer present. The data processing and analyzing step focuses on transforming 

the collected data into useful forms using different techniques. Using the output of the data analysis 

process, proper maintenance actions can be recommended.    

Various types of models and methods are proposed in the literature to use the available data in 

developing practical and optimal CBM (de Jonge & Scarf, 2020). Statistical-based models, such as 

Weibull analysis, are used extensively with the CBM problem (Aboura et al., 2014; Bracke, 2020; 

Khan et al., 2021; Qiuyu & Meiju, 2021; Sgarbossa et al., 2018; Zhang, S.-x. et al., 2015). Despite 

the wide usage of the Weibull analysis, it has a critical limitation. Weibull analysis is limited to 

failure data, which is unavailable in many applications. Other studies have adopted different 

analysis models that do not suffer from this limitation, e.g., logical analysis of data (LAD) 

(Ghasemi & Esmaeili, 2015; Jocelyn et al., 2020; Lo et al., 2019; Yacout, 2010), artificial neural 

networks (ANN) (Hafez et al., 2019; Phuc et al., 2019; Santolamazza et al., 2018),  support vector 

machines (SVM) and  random forests (RF) (Muhamad et al., 2020; Soonsung et al., 2018; Tan et 

al., 2019). Such models are generally classified as machine learning (ML) based methods.  

1.3 Maintenance and Machine Learning 

According to El Naqa and Murphy (2015) “Machine learning is an evolving branch of 

computational algorithms that are designed to emulate human intelligence by learning from the 

surrounding environment.” As the amount of data collected during the systems’ condition 

monitoring process comes to unprecedented levels, ML methods became increasingly adopted in 
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the industrial domain.  Generally, ML methods can analyze large amounts of data to help optimize 

industrial operation. ML methods have been used through different means to tackle various 

challenges related to CBM. For example, a ML pattern recognition algorithm might contribute to 

diagnostic capabilities of the CBM. LAD, ANN, and decision trees are adopted to help with such 

fault detection tasks (Apinantanapong & Nivesrangsan, 2021; Dettenborn et al., 2020; Kaparthi & 

Bumblauskas, 2020; Mortada et al., 2014; Ragab et al., 2019; Zhou, P. & Yin, 2019). The faults 

and their root causes are obtained and analyzed using such methods (Bulla & Birje, 2021; Waghen 

& Ouali, 2019).  Failure prediction is another important point to consider for optimal CBM, as it 

defines a specific point of time in the future for failure. Different ML methods such as SVM, RF, 

ANN, k-nearest neighbor have been adopted to enable this forecasting task (Alves et al., 2020; 

Hamaide & Glineur, 2019; Kaparthi & Bumblauskas, 2020; Khorsheed & Beyca, 2020; Nowaczyk 

et al., 2013; Silva & Capretz, 2019; Xiang et al., 2018). The results obtained using such methods 

have shown that ML failure prediction models are effective for a variety of applications, such as 

wind turbines, aircraft, and production machines (Leukel et al., 2021). Optimizing the 

maintenance/production joint, inventory levels, and spare parts flow is also another important issue 

that has been tackled using ML, specifically, reinforcement learning (RL) methods. Various studies 

have adopted RL to tackle the aforementioned decision-making problems in maintenance 

(Compare et al., 2020; Huang et al., 2020; Ramírez-Hernández & Fernandez, 2007; Wang, X. et 

al., 2016; Wei et al., 2020; Xanthopoulos et al., 2018; Yousefi et al., 2020). Regardless of the 

progress made in the literature, the maintenance domain still a strong nominee domain to benefit 

from the growth of efficient data analysis that contributes to the decision-making field 

(Ingemarsdotter et al., 2021). 

1.4 Objective and Contributions  

The work proposed in this thesis aims to develop a genuine, data-driven approach for CBM 

modeling and optimization that makes use of the available data in a way that addresses various 

limitations exist related to: (1) the deterioration modeling assumptions; in most of the cases, certain 

models are used to model the deterioration. These models assume a certain shape or bath for the 

deterioration; moreover, these models have certain parameters, and those parameters are normally 

assumed and are not estimated from real data. (2) the possible maintenance actions; only 
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replacement actions are considered for CBM. Other maintenance actions are not widely considered, 

regardless of their existence and benefits. (3) RUL is mainly used to optimize the inspection 

intervals, limiting the usage of RUL only for this purpose overlooks other benefits of using RUL 

directly within the optimization criterion, especially when the solution is based on methods such 

as RL. (4) the existence of multi deterioration failure modes has been disregarded in the proposed 

CBM models. (5) a threshold paradigm is widely followed in most of the proposed CBM strategies. 

In such strategies, the solution is a replacement threshold, and in some cases, a repair threshold 

when a repair action is considered.   

The contributions of the work proposed in this thesis are threefold. All three aspects of this work 

have a common main theme that progressively grows to tackle more and more complicated 

challenges.  

Contribution 1: A data-driven methodology for multi-level CBM strategy. 

The first contribution proposes a data-driven methodology based on machine learning for CBM 

optimization. Machine learning models such as prediction models and reinforcement learning 

models are adopted and integrated to address challenges related to the modeling of, and solutions 

for, CBM strategies. Multi-level preventive repair actions are considered in the CBM strategy 

without suffering limitations related to the solutions. The obtained CBM strategy does not follow 

a widely used threshold paradigm, as it is a map from state to action. The proposed methodology 

is applied to a real case study and its performance is validated through a comparison with various 

other strategies.   

Contribution 2: A data-driven methodology with a non-parametric survival method for optimal 

multi-level CBM strategies. 

The second contribution aims to improve the performance of the methodology proposed in 

contribution 1 by combining it with a nonparametric survival technique. The nonparametric 

survival technique is used to estimate RUL for the system based on its condition through a 

reliability approach. RUL is used as a part of the optimization criteria that aim to maximize RUL 

while keeping a low level of maintenance cost. Based on this criterion, a new design for the RL’s 

reward function is proposed. The new design for the reward function yields better results that 
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minimize the average maintenance cost when compared to optimization criteria that only consider 

the cost of the maintenance actions.   

Contribution 3: Optimal CBM strategies for systems with multi-deterioration failure modes.  

The third contribution aims to develop a CBM model that addresses the maintenance problem for 

systems with multi-deterioration failure modes.  This model is developed based on contribution 2 

and it proposes certain essence modifications to allow the problem of multi-deterioration failure 

modes to be tackled. The model proposed is applied to a real case study and the strategy obtained 

is validated.  The validation process is performed to examine the optimality of the obtained strategy 

and to test the main points considered in the proposed CBM model.  

1.5 Organization of the Thesis 

This thesis includes seven chapters. Next chapter 2 presents recent studies that address the CBM 

problem; various aspects related to the modeling, optimization criteria, and solution method are 

discussed. The problem statement, research objective, and the contribution of this thesis are 

presented also at the end of this chapter. Chapter 3 provides an overview of the proposed 

methodology and discusses how this methodology achieves the research objectives. Chapter 4 

presents an example that tests a simple methodology the uses RL as a solution method against 

traditional maintenance optimization methods. Chapter 5 presents the first contribution of this thesis: 

a data-driven methodology to obtain CBM strategy is proposed and validated. Chapter 6 presents 

the second contribution of this thesis, in which RUL is employed with RL to reach the most cost-

efficient CBM strategy. The third contribution of this thesis is presented in Chapter 7, in which the 

effect of considering multiple deterioration failure modes and their dependency on the CBM 

strategies is studied. Chapter 8 concludes the thesis and possible future research topics.  
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 LITERATURE REVIEW 

This literature review presents a review of CBM that aims to help understand the fundamentals and 

recent state of the art of CBM modeling approaches and solution methods, and the challenges that 

still need to be addressed. Most existing literature is focused on single-component systems. Few 

studies consider multi-components, and the main target of this literature is studying dependencies 

between components (Hong, H. P. et al., 2014).  Our interest is mainly in single-component systems 

and their challenges. CBM literature can be discussed from different aspects; this literature is built 

to consider mainly the different aspects of CBM models as optimization criteria, deterioration 

models, and the related solution methods. Further in this chapter, remarks and conclusions about 

CBM in general and the revised studies will be provided. Finally, the motivation for this research 

is discussed at the end of this chapter.  

2.1 CBM and Optimization Criteria  

Optimality is the key aspect of a successful maintenance strategy. Different optimization criteria 

are considered in CBM for minimizing cost, minimizing downtime, and maximizing availability 

(Alaswad & Yisha, 2017; Lin, S. et al., 2020). The cost of maintenance includes several parameters 

such as inspection cost, downtime cost, PM replacement cost, and corrective replacement cost. 

Minimizing a CBM strategy cost involves obtaining a threshold for PM replacement, and in some 

cases, obtaining inspection frequency to minimize the total maintenance cost over a finite or infinite 

horizon based on the problem (Huynh et al., 2011). Generally, CBM models follow a framework 

of three consecutive steps: (1) define the deterioration condition, (2) decide the maintenance action 

(do nothing, preventively replace, or correct preventively), (3) determine the time for the next 

inspection as Figure 2.1. This framework can be found in different publications, such as (Diyin, 

Makis, et al., 2015; Fouladirad, Mitra & Grall, 2015; Xuejing et al., 2010; Yang et al., 2017). 

Define the Deterioration 
condition 
(Inspection)

Decide  the proper 
Maintenance action

(Replace, Repair, Do nothing) 

Decide the next inspection
(Fixed inspections/Variable 

inspections) 

 

Figure 2.1 CBM general steps. 
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 The inspection step encompasses certain costs related to the process itself and the system 

downtime cost; therefore, avoiding unnecessary inspections can reduce the maintenance costs. This 

fact encourages developing CBM strategies that optimize maintenance inspection intervals 

(Deloux et al., 2015; Fouladirad, M. & Grall, 2014; Golmakani, 2020). An interesting approach 

followed in such strategies is using the remaining useful life (RUL) to decide whether the 

inspection is needed (Lin, L. et al., 2019; Salih, 2020; Vu et al., 2016). In such cases, the inspection 

intervals are flexible and could be increased or decreased based on the RUL. At inspection, based 

on the deterioration condition the RUL is estimated, and one of two of the following scenarios is 

followed: (1) if the RUL is longer than the scheduled inspection interval, then this interval 

increases. (2) if the RUL is shorter than the scheduled inspection interval, a failure will take place 

before the next inspection, so the inspection interval is shortened to avoid failure. Different 

approaches are proposed to estimate the RUL and employ this scheme (Hamidi et al., 2016; Mei 

& Jie, 2012; Tangbin et al., 2017; Zhen et al., 2019). 

Availability of a system is another applicable measure for the CBM optimality, especially in cases 

when different maintenance cost parameters are not available. In such cases, the useful information 

is the time needed to perform PM replacement and the time needed for corrective replacement. 

Maintenance time and inspection time are considered as downtime and the production time is the 

uptime. The objective is to maximize the availability by minimizing the ratio of uptime/downtime 

by obtaining a threshold for PM replacement, and in some cases, the frequency of inspection  

(Barde et al., 2019; Klutke & Yoonjung, 2002; Lin, L. et al., 2018; Zhao et al., 2021). This 

optimization criterion is not as popular as cost minimization and was considered more with TBM. 

Examples of CBM strategies with an availability maximization objective can be found in (Ait-Kadi 

& Chelbi, 2010; Elsayed et al., 2006; Klutke & Yoonjung, 2002; Lin et al., 2018; Qingan et al., 

2017; Zhao et al., 2021). 

2.2 CBM, Deterioration Modeling, and Solution Methods 

Different models have been proposed to address the deterioration modeling for CBM problems.  

Gamma process, Inverse Gaussian process, Wiener process, and Markov decision process (MDP) 

are the most adopted models in CBM problems (Alaswad & Yisha, 2017; Braga & Andrade, 2019).  
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Gamma process and Inverse Gaussian process are both appropriate for describing continuous 

monotonic deterioration processes. Cholette et al. (2019) proposed a CBM model for a heat boiler 

exchanger using the Gamma process to model the deterioration. The objective was to obtain an 

optimized CBM renewal strategy that can adopt different loading scenarios for the boiler. Phuc et 

al. (2015) created a CBM policy with deterioration following a Gamma process model that 

considers perfect and imperfect maintenance actions. The objective of the study is to obtain the 

optimal policy and to study the effect of the imperfect maintenance actions on the deterioration 

process. Examples for other studies that benefit from the gamma process for deterioration modeling 

can be found in (Castanier et al., 2005; Wang, Han et al., 2021; Zhang, C. & Tee, 2019; Zheng & 

Makis, 2020). The inverse Gaussian process is similar to the Gamma process with more flexibility. 

Nan et al. (2015) proposed a CBM replacement policy with an optimal inspection interval when 

the deterioration follows an inverse Gaussian process. The study defined an optimal inspection 

interval and replacement policy that minimized total operation costs. Comparable work was 

proposed by Renqing et al. (2017), in which the deterioration was assumed to follow the inverse 

Gaussian process. This work aimed to obtain an optimal CBM that maximizes availability while 

respecting cost constraints. With the constraint of maintenance budget an optimal CBM strategy is 

that maximizes availability of the product.  Huynh (2021) proposed a CBM model that conforms 

to the deterioration as an inverse Gaussian process, where the previous maintenance actions effect 

was represented using the random effect of an inverse Gaussian process. Various numerical 

assessments confirmed that the proposed model is flexible in molding the deterioration and cost-

effectiveness. Other studies that considered the inverse Gaussian process as a deterioration model 

can be found in (Lu et al., 2019; Wu, Z. et al., 2020; Zhang, Xinsheng et al., 2017; Zhenyu et al., 

2014). A Wiener process can describe a continuous non-monotonic deterioration that takes place 

incrementally over time, as proposed in (Elwany et al., 2011; Mimi et al., 2014). Guo, C. et al. 

(2013) proposed a CBM that assumes a gradual degradation modeled by a Wiener process for 

mission-oriented systems. This model intended to obtain an optimized PM threshold that minimizes 

the maintenance cost and while considering missions related constraints. A numerical example is 

presented to demonstrate the proposed model. Comparable work can be found in (Hong, P. et al., 

2018; Minghui et al., 2020).   
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The previously discussed studies considered a single deterioration failure mode; this is the case in 

most studies (Alaswad & Yisha, 2017). Other studies considered another failure mode; in such 

cases, this failure mode is sudden. The sudden failure modes are generally modeled using statistical 

distributions as non-homogenous Poisson and Weibull distribution (Diyin, Makis, et al., 2015; Jian 

et al., 2016; Li, X. et al., 2019). Models based on the Gamma process, inverse Gaussian process, 

and Wiener process are solved using methods like Monte Carlo simulation and genetic algorithm 

(Alaswad & Yisha, 2017; Quatrini et al., 2020).  

Regardless of the advances accomplished through the Gamma process, inverse Gaussian process, 

and Wiener process model, there are still certain common limitations that appear with such models. 

Firstly, these models assume a certain shape or bath for the deterioration that is applicable for 

certain cases e.g. monotonic deterioration path that is irreversible. Secondly, another strong 

assumption that exists in most cases is that the model parameters are known; however, these 

parameters are usually unknown in practice and should be estimated (Huynh, 2021). The estimation 

process for the parameter from the deterioration data is not a straightforward process and needs 

data that has certain statistics and properties based on the model.  Finally, using continuous state 

space is not always practical from an engineering point of view as there is no need - or it is not 

applicable – to consider every value 

Distinct from the aforementioned models, the MDP is another model for the deterioration process 

that assumes discrete state space. MDPs are found to be appropriate to model discrete deterioration 

without assuming a certain bath for it. MDPs assume discrete deterioration, which is practical from 

the engineering point of view, since in many cases there is no need - or it is not applicable - to 

consider every value (Alaswad & Yisha, 2017; Zheng & Makis, 2020). In general, MDPs are the 

framework for decision-making problems under uncertainties. It is important to mention that MDPs 

can be used to model both the deterioration and the maintenance problem from the beginning, or a 

different deterioration model can be aggregated into discrete states and can form the CBM problem. 

These facts make MDPs interesting and useful models; more detail about MDP and the solution 

method are discussed in the following sections. 
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2.3 CBM and MDP Modeling 

CBM models that assume discrete-state deterioration are generally modeled using MDP or its 

extensions as a Semi-Markov decision process and a Hidden Markov decision process. Braga and 

Andrade (2019) proposed a CBM model for railway wheelsets that model the deterioration as a 

Markov process.  An optimal maintenance policy that minimizes the maintenance cost is obtained 

considering three possible actions: do nothing, renewal, and turning action. A similar study that 

addressed the problem of the high-speed train wheels is proposed by Mingcheng et al. (2018). In 

this case, the deterioration was modeled as a Semi-Markov process and the CBM strategy obtained 

was found to minimize the long-term expected cost per time unit. Other studies that assume similar 

deterioration modeling can be found in (Byon & Ding, 2010; Farnoosh & Makis, 2015; Kurt & 

Kharoufeh, 2010; Liang et al., 2019). The previously mentioned studies estimated the transition 

probability matrix (TPM) for the MDP and solved the problem using methods such as dynamic 

programming (DP) and linear programming (LP). An essential assumption for DP and LP is the 

availability of a perfect MDP model. This assumption of a perfect, complete model is hard to ensure 

in many cases, as estimating TPM is a challenging process (Braga & Andrade, 2019; Mandiartha 

et al., 2017; Van Otterlo & Wiering, 2012). Besides, solving the MDPs using DP requires multiple 

complete sweeps through the state space, which is computationally expensive. LP is less is 

computationally expensive than DP. It forms an optimization problem for each state and tries to 

find the optimal policy that maximizes or minimizes - based on the problem - the total return, while 

respecting constraints about the possible action at each state. Using branching and bound 

algorithms, LP can efficiently obtain the optimal solution for large MDP (Lopes Gerum et al., 2019; 

Malek et al., 2014; Sanner & Boutilier, 2012). However, as with DP, LP is still limited by an 

assumption of a perfect MDP model with a defined TPM. This assumption led the CBM, based on 

MDP, to be limited to certain applications. The TPM is unknown and it either takes assumed values 

or has to be estimated from the deterioration data. As mentioned, the estimation process of the 

TPM has been found to be a challenging and subjective process (Braga & Andrade, 2019; Liang et 

al., 2019; Mandiartha, Duffield, Razelan, et al., 2017). The process is subjective, as it uses different 

methods and steps based on the available data and the application. Then, moreover, the difficulty 

of such models cannot be generalized.  
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Another category of methods that can be used to solve MDP based models is the Model-Free 

method, namely, RL. RL, in contrast to DP and LP, can obtain an optimal solution for MDP without 

the assumption of a complete MDP model (Buoniu et al., 2018). RL obtains the solutions directly 

from the data. It requires only episodes of data. The episodes are sequenced tuples of state, action, 

and reward. It has been found that, in many cases, it is easy to get the data episodes, while it is 

infeasible to obtain the complete probability distribution of all the possible transitions (Sutton & 

Barto, 2018). Moreover, RL does not experience challenges with large size problems.  RL has been 

used with CBM to overcome the limitations related to TPM estimation and, in some cases, the 

limitation of high computational cost (Rabbanian et al., 2021).  

2.4 Maintenance and RL Decision-Making 

This section proposes a general review of the applications of RL in maintenance strategies. Adsule 

et al. (2020) proposed an optimized CBM strategy based on RL. This study assumed that the 

deterioration can be assessed using health index HI, HI(t) = HIinitial + m*t. in the equation that 

models the HI, m is a deterioration rate obtained from Gaussian distribution and t is the time. 

Besides the replacement action, a minor repair action is possible. The minor repair action is 

assumed to reduce the deterioration rate. A numerical example is proposed in the study for 

illustrative purposes. Unfortunately, no real cases were addressed in this study. Zhang, N. and Si 

(2020) proposed a CBM model for a multi-component system using RL. The deterioration of the 

components was assumed to follow either a compound Poisson process or a Gamma process and 

the maintenance model for the whole system is modeled as MDP. The purpose of using RL is to 

obtain a CBM strategy that considers all the components and their dependencies. Two numerical 

studies were carried out to prove the optimality of the obtained CBM strategy through the proposed 

model. The two studies address systems with a different number of components to test the 

scalability of the model. It is worth mentioning that in the two numerical studies, the parameters of 

the deterioration models were assumed, and not obtained, from real data.  Other studies adopted 

RL for obtaining an optimal TBM policy for a multi component system, as proposed by (Barde et 

al., 2016; Barde et al., 2019). 

On the level of maintenance/production control, Liu, Y. et al. (2019) proposed a dynamic selective 

maintenance approach based on RL. The proposed approach addressed the problem of 
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production/maintenance joint. The objective of the proposed approach is to optimize the 

maintenance to allow the execution of multiple consecutive missions over a finite horizon. The 

failure time of each component was assumed to conform to an arbitrary distribution. Kuhnle et al. 

(2019) addressed the problem of maintenance scheduling for parallel working machines based on 

RL. The objective of the proposed maintenance schedule is to maximize the number of completed 

jobs by opportunistically maintaining production machines during breaks. The failure times of the 

production machines are assumed to follow Weibull distributions. The obtained maintenance 

schedule leads to a reduction in downtime, increases in the production output, and a reduction in 

the maintenance costs compared to existing maintenance schedules. Comparable studies are 

proposed in (Hu, Y. et al., 2021; Ling et al., 2018; Wang, X. et al., 2016; Xanthopoulos et al., 

2018). Other studies profited from RL application in maintenance to manage the flow of the parts, 

as proposed in (Compare et al., 2020; Rocchetta et al., 2019).  

2.5 Discussion  

The discussed studies demonstrate the variety of CBM strategies and models proposed to tackle 

various maintenance challenges, yet these studies still endure certain limitations. The Gamma 

process, Inverse Gaussian process, and Wiener process succeeded in providing deterioration 

models for various CBM strategies and applications; however, the parameters of such models are, 

in most of the cases, assumed (Huang et al., 2020; Huynh, 2021). Using assumed parameters means 

that no real data is involved in the model. Another point to consider is that using these models 

limits the study to certain applications, since each model can represent certain deterioration shapes 

or bathes. Markov processes are not limited to certain deterioration shapes if TPM is available. As 

discussed, TPM can be either assumed or estimated directly from the data. The estimation process 

is challenging and cannot be generalized (Braga & Andrade, 2019; Mandiartha, Duffield, 

Thompson, et al., 2017). As MDPs are good models for decision-making problems in general, 

CBM profits from this point by merging deterioration models as Gamma process with MDP and 

used RL to solve the problem without the need for the TPM (Huang et al., 2020). Such cases 

overcame the limitations related to TPM estimation; nevertheless, limitations related to models 

based on the Gamma process arose again. Also, RL is adopted excessively in the case of 

maintenance/production control problems where the deterioration is treated based on time-based 
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models and not on condition-based methods, which led to consider the maintenance problem to the 

TBM one (Kuhnle et al., 2019; Liu, Y. et al., 2019).   

The majority of the discussed studies and the existing CBM models are generally limited to 

maintenance actions that return the system to as-good-as-new condition; however, other 

maintenance actions exist at the practical level (Alaswad & Yisha, 2017; Zhang, N. & Si, 2020). 

Certain studies consider minimal repair actions that return the system to as-bad-as-old condition 

(Fu et al., 2020; Xanthopoulos et al., 2018), and some others consider maintenance actions called 

general repair or imperfect repair actions; such actions were assumed to improve the deterioration 

condition by a random amount (Adsule et al., 2020; Ling et al., 2018; Liu, Y. et al., 2019). The 

type or degree of maintenance actions considered is also related to the failure modes considered in 

the models. Few studies discussed multi-failure modes for the same system and the studies that 

consider more than one failure mode assume one hard failure mode that occurs randomly or 

suddenly without any warning, and another soft failure mode that is described as deterioration 

failure mode, as proposed in (Diyin, Jinsong, et al., 2015; Jian et al., 2016; Li, X. et al., 2019; Rui 

& Makis, 2020). In such cases, the hard failure mode is corrected only by replacement, and the soft 

failure mode can be corrected by replacement, minimal repair, or general repair actions. In real 

cases, systems experience multiple soft or deterioration failures, not only one; there is a chasm in 

considering this fact.  

2.6 Research Motivations 

CBM has attained remarkable achievements in terms of efficient maintenance that minimizes cost 

and increases reliability; yet, there are still a number of open-ended research points, as explained  

in the discussion section. This research is motivated by the following main issues:  

1- Developments in condition monitoring, data acquisition, and data storing technologies have 

increased the availability of the data that can be used in maintenance planning as 

deterioration data. There is a need for CBM models that use the available data in a generally 

applicable way that is not limited to a specific application or limited by specific assumptions 

that limit the applicability of these CBM models.  
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2- CBM takes maintenance actions based on the system’s conditions. These conditions have 

a direct relation to the system’s RUL and some studies utilize the RUL to obtain better 

results. An interesting open question for research is to explore how RUL can be employed 

with data-driven solution approaches as RL to obtain more cost-efficient maintenance 

strategies.  

3- Multiple deterioration failure modes are involved in the deterioration process of the same 

system, most of the existing CBM models focus on a single failure deterioration mode. 

There is an unanswered question about how considering multiple deterioration failure 

modes in the same CBM model and hoe it may affect the cost-efficiency of the obtained 

CBM strategy.      
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 REASEACH METHODOLOGY AND WORK SYNTHESIS 

This research provides a model and methodology to obtain optimal multi-level CBM strategies. Multi-

level terminology refers to the possible maintenance action that can be performed to improve the 

system’s deterioration condition by different levels. Multi-level preventive repair actions are 

considered, in addition to the no maintenance or do-nothing action and the preventive or corrective 

replacement actions. The proposed model and methodology are generic and data-driven. They are 

generic since they are applied to a wide range of applications without subjective steps or assumptions. 

Subjective steps or assumptions are steps or assumptions that are related to certain applications or cases 

that cannot be generalized to other applications. They are data-driven since both the model and the 

methodology, including the solution method, are purely based on the deterioration and maintenance 

data.  

3.1 Basic Elements of the Proposed Methodology  

MDP is the first, basic element for our proposal. MDPs are a good model for decision-making 

problems. Moreover, they do not assume a certain bath or shape for the deterioration. However, 

MDPs witness two main limitations, which we have addressed in our proposal. Firstly, the 

estimation of the TPM of the MDP is a challenging and subjective process. A prediction 

deterioration model is proposed, adopted and integrated with the MDP. This prediction model 

learns the deterioration process directly from almost any available deterioration data without 

assuming a certain shape or bath for the deterioration. Secondly, solving MDP problems using 

traditional methods as DP or LP needs a perfect MDP model; this means a model with a TPM. To 

overcome this challenge, the RL method is adopted to our problem. RL methods are, in general, 

sensitive to the design of the reward function. Generally, when RL was used with maintenance, the 

optimization criterion is to minimize the average maintenance cost and the reward function used is 

negative the maintenance cost. This reward is used in the first contribution, chapter 5, with the 

other elements of the model and the methodology. Later, a different reward function design is 

proposed in this work. The new design incorporates the system’s RUL in addition to the 

maintenance cost. RUL is used in optimizing the inspection frequency and it yields praiseworthy 

results, but we propose a different way to utilize the RUL in maintenance decision optimization. 

The proposed reward function design is more appropriate and enables RL to obtain the optimal 
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solution. Reward functions that consider only cost could be misleading and influence the solution 

obtained by the RL. The proposed RUL’s estimation method is also data-driven and adopts and 

integrates a nonparametric and semi-parametric survival function methods and reliability-based 

approach. The previously described model and methodology that is developed considers a single 

deterioration failure mode. Deterioration failure modes are failure modes that are described through 

the deterioration process and take place progressively. To address the overlooked problem over 

multi-deterioration failure modes, we develop a methodology that has the same elements and theme 

as the one previously discussed. In this methodology, the deterioration prediction models are 

developed to consider multi-failure modes and their interactive effect on each other. Multi-level 

preventive repair actions are enabled for the different failure modes, where the actions are capable of 

improving the different failure modes at different levels. The method for RUL estimation is also 

developed using a reliability-based approach, taking into account multi-failure modes. Figure 3.1 

presents the scheme for the proposed the model and methodology.  
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actions 
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Figure 3.1 General scheme for proposed model and methodology 

This research addresses four main challenges related to the assumptions of deterioration modeling, 

the type of the considered actions and their relation to the deterioration modeling and the solution 

approach, the employment of RUL in the decision-making process and finally the multi-

deterioration failure modes and their effects on the obtained CBM strategies. These challenges are 

addressed in three contributions that are presented in detail in chapters 5 through 7. The elements 
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of the model and methodology proposed in the thesis are individual scientific contributions that 

can be applied separately to solve different maintenance problems. However, the progressive fashion 

of their development is a central point. It is worth mentioning that each of the three contributions is 

tested and validated using a real case study.  

3.2 Case Study 

The case study proposed in this research is based on real data for identical sheet metal culverts.  

The deterioration conditions of the culvert are assessed regularly through inspection. Different 

health indicators or failure modes are evaluated to estimate the culvert general deterioration 

condition. According to the experts, the most dominant failure modes are defects in material and 

cracking and assembly defects. The general deterioration condition of the culvert is assessed on a 

0-100 scale, with 100 meaning as-good-as new condition and 0 meaning very deteriorated 

condition. This 0-100 scale is discretized by the experts into five levels of deterioration: A, B, C, 

D, and E, where E is the failure level, as table 3.1 shows.  

Table 3.1 Levels of deterioration condition. 

Deterioration 

levels 
Description Value on 0-100 scale  

A Perfect 85 or more.  

B Very good 71 – 84  

C Good 56 – 70  

D Acceptable 41 – 55  

E Bad (Failure) 40 or less.  

 

The value of the deterioration condition on the 0-100 scale is based on the health indicators, or 

failure mode levels. The defects in material failure mode are assessed using a five-level scale; 5 is 

the best and 1 is the worst, and the cracking and assembly defect failure mode is assessed using a 

three-level scale level: 3 is the best and 1 is the worst. 

This data is used based on two perspectives. The first perspective observes the condition of the 

culvert based on its general deterioration level. The second perspective observe more details and 

use the different deterioration failure mode to describe the culvert condition. In the first and second 

contributions, chapters 5 and 6 respectively, the deterioration process is described by the general 
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deterioration condition and its five levels A, B, C, D, and E without using details about the different 

failure modes and their effects. In the third contribution, chapter 7, the deterioration process 

description required more detail, so the failure mode levels, are used to describe the process.  

This case study, with its real data, is used to test the different contributions proposed and show 

their scientific and practical advantages. This case study is selected to be representative and general 

enough that if the methodology is applied to other cases, it should work properly. 

The structure of the rest of this thesis is organised into 5 chapters. Chapter 4 presents a practical 

example to test a simple methodology that uses RL as a solution against traditional maintenance 

optimization methods. This example is a simple first attempt towards the contributions proposed. It 

strengthened our ideas about adopting RL for more complex maintenance problems. Also, it confirms 

the importance of the reward function for the RL and opened the door to propose a new design for the 

reward function. Chapters 5, 6, and 7 present the three main contributions with developments of the 

model and the methodology. Chapter 8 is a general discussion about the results and the limitations of 

this research. Finally, chapter 9 provides the conclusions and recommendations. 
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Abstract 

Taking optimal maintenance decisions is a challenging process as different maintenance actions 

have different effects on the system. Maintenance is defined as a set of associated techniques, tools 

and management actions that aim to maintain or restore the functioning state of the system. 

Maintenance excellence is the balance between performance and risk, therefore this helps improve 

the sustainability of production. Traditionally, maintenance decisions are taken based on human 

experience and on the basic information known about the system. With the availability of data 

collected during the system’s life cycle; machine learning approaches can help develop optimal 

strategies for maintenance actions. This paper proposes and depicts an optimization model 

imported from the machine learning field and developed to find optimal preventive maintenance 

strategies. The main objective of this developed optimization model is to minimize the downtime 

and allow the system to take autonomous decisions. In this work, the maintenance strategy is 

modeled as a Markov Decision Process (MDP). MDP is a classical forming of sequential decision-

making problem.  Reinforcement learning (RL) model is then developed to solve the problem 

interactively. RL uses the MDP to define the interaction between the learning agent and the 

environment. The final output from this method in an optimal policy allows providing optimal 

actions in different situations.  

Keywords 

Preventive Maintenance, Systems Reliability, Reinforcement Learning, Markov Decision Process. 
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4.1 Introduction  

4.1.1 Maintenance Problem  

The growing competitive environment in the manufacturing field forces different organizations to 

reduce their costs (Barde et al., 2016). The two main expenditure sources that can be reduced, 

without any loss of the quality level, are the energy consumption cost and the maintenance cost. 

Proper maintenance can also lead to optimizing energy consumption. The main objective of 

maintenance excellence is to ensure the maximum reliability and availability of the system with 

the minimum cost and without affecting the production quality. Maintenance can be classified into 

corrective maintenance (CM) and preventive maintenance (PM). CM is the maintenance actions 

that take place when the failure of the system occurs, thus these actions are the result of failure and 

they aim to restore the system to specific conditions. PM is performed while the system is still 

operating; and considered as set of activities performed to retain the system in specific conditions. 

Several steps are needed to achieve PM, which are inspection, detection and prevention of 

anticipated failure (Hongzhou, 2002).  

In this paper, our main concern is obtaining optimal PM strategy to minimize the downtime of the 

system. For this type of PM, the component is replaced after a specific time T or after failure, 

depending on which occurs first (Shey-Huei et al., 1995). Classically the optimal replacement time 

T* is obtained by solving an optimization problem. An example that implements this concept is 

proposed in (AbdelHaleem & Yacout, 1998). It has been noted that the solution given by this 

method may lead to local optimal time to replace for the different components of the system  

(Barde et al., 2016). To overcome this limitation, RL has been used to provide data-driven 

optimized solutions that could outperform the classical optimization techniques. 

4.1.2 Reinforcement Learning 

Reinforcement learning (RL) is an area of machine learning algorithm that is concerned with the 

decision-making process. A software agent learns to take actions by interacting with a dynamic 

environment. The agent knowledge is enhanced by using scaler value feedback, which is related to 

a reward function. The agent learns how to take actions that lead to maximizing this reward function 

(Wiering & Van Otterlo, 2012). Mapping from the situation (state) to an optimal action is the main 
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output of the RL and it is in the form of optimal policy to be followed in different situations. RL is 

solving problems modeled as Markov decision processes (MDPs). Unlike dynamic programming, 

RL does not need the probability transitions matrix and does not perform full backups to solve 

problems (Sutton & Barto, 2011). RL algorithms are model-free; they use exploration and 

exploitation techniques, and interaction with the environment to provide the optimal actions in 

different situations. 

Game theory and robotics are the most popular domains for RL (Sutton & Barto, 2011), the 

industrial field is one of the domains impacted by RL. Xanthopoulos et al. (2018) proposed an 

approach to obtain near-optimal control policy for production-maintenance joint based on 

reinforcement learning. The solution proposed in this paper aimed to minimize the sum of two 

conflicting objective functions: the average inventory level and the average number of backorders. 

Kuhnle et al. (2019) addressed the optimization of an opportunistic maintenance schedule for 

parallel working machines. The aim of this paper was to reduce downtime and increase production 

output. Xiao et al. (2016) investigated the problem of scheduling maintenance for two different 

series machines to sustain a certain buffer level between the two machines. Mattila and Virtanen 

(2011)  proposed a maintenance scheduling for a fleet of aircrafts. The main objective of this paper 

is how to select maintenance times for different aircraft to keep a high level of readiness of the 

aircrafts fleet. This situation takes place when the activities of the fleet are not planned a priori. 

Liu, Q. et al. (2019) proposed an optimized maintenance plan that considers restrictions related to 

the resources as the spare parts that are available in stock. Also, Compare et al. (2018) treated the 

problems of gas turbine parts flow management by considering a preventive maintenance plan and 

stochastic failures of gas turbines. All the previous literature is related to assembly line scheduling, 

optimal inventory level and optimal maintenance production joint schedules. Some limited 

literature refers to the use of RL to optimize maintenance plans only. Barde et al. (2019) proposed 

optimized preventive maintenance strategies for a fleet of military trucks. Three different 

preventive maintenance strategies were optimized using Monte Carlo reinforcement learning 

methods (MRCL). Also Barde et al. (2016) proposed another solution to optimize opportunistic 

preventive maintenance for a multi-component system with a hierarchical structure. The optimized 

strategy was obtained using temporal difference reinforcement learning algorithm SARSA(λ). 

Based on the literature review a variety of work has been proposed in the field of using RL with 
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maintenance. Most of this work is directed towards scheduling production and maintenance times 

to reach a certain required level of inventory. A smaller portion of the proposed work focuses its 

efforts to optimize the preventive maintenance plans using RL techniques. 

This paper presents a model to optimize PM strategies using RL. The main goal of this model is to 

minimize the downtime of the system through autonomous decisions based on data-driven machine 

learning techniques. The reward function is constructed in terms of system reliability. The 

reliability of the system is obtained using the Kaplan-Meier estimate, which is a nonparametric 

survival function. This model avoids the limitations related to the parameters needed as inputs for 

traditional optimization methods like the renewal reward theory. The rest of this paper is organized 

as follow: section 2 provides a description of the problem and the proposed solution. Section 3 

contains a numerical example. Conclusions and future work are presented in section 4.       

4.2 Model Description  

4.2.1 Problem Description 

Maintenance plans that aim to maintain the equipment in a functioning state are looking for 

maintenance excellence. As mentioned, balancing maintenance excellence is a challenging task, 

since to ensure high performance or reliability levels for systems, maintenance actions should be 

performed regularly and within short periods. These frequent maintenance activities have high 

costs related to spare parts cost, labor cost and cost due to loss of availability. To solve this problem 

a compromise is needed. Most of the PM plans addressed this compromise by using the renewal 

reward theory. This theory proposes an explicit form to solve this compromise (Blischke & Murthy, 

2003). AbdelHaleem and Yacout (1998) proposed a preventive maintenance strategy for a fleet of 

military trucks based on the renewal theory. The replacement time for each component is obtained 

by the renewal reward theory. The objective of this work was to obtain the optimal replacement 

time that minimizes the downtime of the system.  The main limitation of this method is that many 

parameters needed as input to the model. In addition, the obtained solution is dependent on the 

inputs and any small change in the values of these parameters leads to different solutions. As an 

alternative, such limitations could be overcome by using the data collected during the equipment’s 

life cycle to propose solutions based on machine learning. As maintenance is a decision-making 
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problem, RL methods can be used to optimize maintenance strategies by using the data collected 

during the life cycle.  

4.2.2 Reinforcement Learning Model 

4.2.2.1 Model Description 

In the proposed solution, a Markov decision process (MDP) is used to model the problem of 

searching for an optimal maintenance strategy. MDP is used since it is the classical forming of 

sequential decision-making problem and RL uses it to define the interaction between the learning 

agent and the environment. 

 MDP has mainly the following four elements:  

1. Discrete state-space S in which, at every time step, a new state st  ϵ S takes place. 

2. A set of actions is available in action space A, in which, at every time step, an action at  ϵ 

A is taken. 

3. Transition probabilities between the states  P(st+1|st, at) , which is the probability of being 

in state st+1 given that the system was in state st and action at is performed.  

4. The reward function r(st, at), which is the reward of performing an action at at state st.  

RL is capable of solving this MDP problem without the need for the transition probability 

matrix. A principal point in this modeling process is how the reward function is designed. The 

objective of this work is to minimize the system’s downtime. That could be achieved through 

eliminating the failures by PM actions without exaggerating in the frequency of PM actions. 

Therefore, finding the optimal time for the PM actions is the solution to this problem. To fulfill 

these requirements without being restricted to use certain parameters, nonparametric estimation 

of the system R(t) could be used for designing the reward function. A full description of the 

reward function is provided in the next section. 

4.2.2.2 Model Formulation 

As discussed, RL is a model-free concept, so there is no need for the transition probabilities matrix. 

The main elements that need to be defined are the states, the actions, and the reward function. In 
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the proposed model the system state is defined by the age G and W, which denotes the system status 

either normal W= 1 or failure W= 0.  Then the following vector defines the equipment’s state at any 

time: 

𝑠𝑡 =  (𝐺𝑡 , 𝑊𝑡) Eq. 4.1 

 

The action at every time step can be either a PM action at  = 1 or it may be “do-nothing” at  = 0. 

The last element to be defined is the reward function r(st, at). As discussed, the reward function 

design is proposed in a nonparametric form. In addition, it should represent the objective of the 

model which is minimizing the downtime without introducing very frequent unnecessary PM 

actions. To achieve this compromise the following design for the reward function is proposed: 

r(𝑠𝑡, a𝑡) = {

−𝑅(𝑡),                                              𝑖𝑓 a𝑡 = 1     
−1,                       𝑖𝑓a𝑡 = 0 𝑎𝑛𝑑   𝑊𝑡+1 = 0       

𝑅(𝑡),                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 
Eq. 4.2 

Eq. 4.3 

Eq. 4.4 

Where R(t) denotes the reliability function. Equation (4.2) represents PM action before failure 

takes place. In this case, the reward that the agent receives has a small penalty with a negative value 

of reliability. This value is associated with the time when PM action is taken. The purpose of 

introducing this penalty aims to avoid any needless PM actions and encourage the agent to pick the 

right time for PM actions. Equation (4.3) represents the failure of the system before the PM action 

is taken. In case, the agent is penalized by a relatively large value, as the action that was selected 

by the agent leads to failure. Equation (4.4), R(t) represents a positive value reward that the agent 

receives if no failure takes place and while no PM action is taken. As mentioned, the value of R(t) 

is obtained by the Kaplan-Meier estimate which is a nonparametric survival function. 

4.2.2.3 Solution Description   

The objective of the RL is to find the best policy π that can maximize the expected reward 𝑟∗ over 

an infinite time horizon as shown in Equation (4.5) (Sutton & Barto, 2018): 
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𝑟∗ = 𝔼[∑ 𝛾𝑡. 𝑟(𝑠𝑡,𝜋(𝑎𝑡))|𝑠𝑜
∞
𝑡=0 ]𝜋

𝑚𝑎𝑥        Eq. 4.5 

Where γ is the discount factor, 𝛾 ∈ (0,1), and 𝑠𝑜 is the initial state of the equipment. 

The reward r depends on the actions taken in the different states under a certain policy π. So, all 

the RL algorithms start with an arbitrary policy π and evaluate the state-action value function Q(s, 

a) under π, then they keep improving the policy until reaching the optimal policy π*. SARSA (λ) 

(State-Action-Reward-State-Action) algorithm is suitable in our case since it does not need to wait 

until the end of an episode to update the value of Q(s, a). It just needs one step forward. Moreover, 

it provides fast convergence and it is not computationally expensive (Sutton & Barto, 2011).  

SRASA (λ) estimates the value function Q(s, a) by using temporal-difference methods that are 

combined with eligibility traces. The value function Q(s, a) is updated every transition from one 

state-action pair to another. In this way, the value function is continuously updated. At the same 

time, policy π is keeping updating towards π* by using the greedy approach (Sutton & Barto, 2018). 

The update for the value function is done as shown in Equation (4.6): 

𝑄(𝑠𝑡, a𝑡) = 𝑄(𝑠𝑡, a𝑡) +  𝛾 [𝛼. 𝑄(𝑠𝑡+1, a𝑡+1) − 𝑄(𝑠𝑡, a𝑡)] Eq. 4.6 

Where γ is the discount factor, γ ∈ (0,1) and α is the learning rate, α ∈ (0,1). 

The value function Q(s, a) estimate provides the optimal policy π*. Then π* provides the optimal 

action to take at each state. Therefore, optimal time T*for taking replacement action is obtained 

through this optimal policy π*. The next section, section3, presents an evaluation of the proposed 

model through a numerical example. 

4.3 Model Evaluation 

AbdelHaleem and Yacout (1998) proposed an optimized PM plan for a fleet of military trucks. The 

objective of the proposed plan is to minimize the downtime of the system. The optimal replacement 

time for each component was obtained by solving the optimization Equation (4.7) that is based on 

the renewal theory.  
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𝑎𝑟𝑔𝑚𝑖𝑛𝑇∗𝐷 =  
𝑡𝑝 .  (1 − 𝐹(𝑇) + 𝑡𝑓 .  𝐹(𝑇))

(𝑇 + 𝑡𝑃) .  (1 − 𝐹(𝑇) + [(𝑡𝑓 + 𝐸[𝑡|𝑡 ≤  𝑇])] .  𝐹(𝑇) )
    Eq. 4.7 

Where T* is the optimal replacement time to minimize the downtime D, tp is the time to perform 

preventive maintenance action, tf  is the time for replacing the component in case of failure, F(T) 

is the failure probability of component at time T and E(t|t≤ T) is the expected time to failure given 

that failure happened before T. Failure data were gathered for all the components of the trucks and 

the failure probability distribution for each component was modeled by a Weibull cumulative 

density function then T* was obtained for each component.  

Two components, the brake, and the coupling are selected to evaluate the proposed model. The 

optimal replacement times T* for the two components are obtained by the proposed model.  

4.3.1 Finding the Optimal Replacement Time using the Proposed Model 

In order to obtain the optimal replacement time T* by the proposed model, MDP is used to model 

the problem of obtaining the optimal maintenance strategy. The proposed RL model solves the 

MDP without the need for the transition probability matrix. The Input for the proposed model is 

data in form of episodes; each episode consists of tuples of state, action, and reward. The time step 

between every two tuples is 10 hrs, thus the age is defined for the state every 10 h also the decision 

is taken every 10 hrs. The state is defined by the age G and W which denotes the system status 

either normal W= 1 or failure W= 0. The actions at each state are either a PM action at = 1 or it 

may be “do-nothing” at  = 0. The reward function is defined by the reliability R(t). The reliability 

is obtained using the Kaplan-Meier estimate. 

For the SARSA (λ) algorithm that solves the proposed model, the learning rate is selected to be 

0.001. This learning rate is small enough to eliminate rough fluctuations if any noise appears on 

the data. The discounting factor is selected to be 0.6 to introduce an acceptable level of uncertainty 

about the actions in the future. Decaying exploration rate ϵn is used, ϵn = 1
(1 + n)⁄  where n is the nth 

episode. The decaying exploration rate is used to ensure the convergence to the optimal solution 

(Sutton & Barto 2011). To define the size of the data sample needed to train the SARSA (λ) 

algorithm, the average change in the value function Q(s, a)  is measured against the number of 



32 

 

 

episodes. The required sample size can be defined as the number of episodes that lead to a low and 

stable average change of Q(s, a) (Sutton & Barto, 2011). As shown in figure 1, when using 10000 

episodes or more the average change in Q(s, a) is stable at a value less than 0.05. Therefore, a 

sample size of 10000 episodes is sufficient to be used for training SARSA (λ) algorithm to solve 

the model.  

 

 

Figure 4.1 The average change in the value function versus the number of episodes. 

4.3.2 Discrete Event Simulation  

After obtaining T* for the brake and the coupling, these values are compared with the values 

provided by AbdelHaleem and Yacout (1998). To complete the comparison a discrete event 

simulation for 100,000 hrs is performed. The simulation is performed using the optimal 

replacement time obtained by the two models to compare their performance. The simulation inputs 

are:   

1. The optimal replacement time which defined by the proposed model and by the model of 

(AbdelHaleem & Yacout, 1998).  

2. The time needed for PM action tp and the time needed to correct a failure tf are respectively 

0.7 h and 3.5 h for the brake and .857 h and 6 h for the coupling.  
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3. The failure distribution function Weibull distribution P(t; λ, k), for the brake λ= 3933.12, k 

= 143.60  and for the coupling λ= 1406.84, k = 115.21. All the parameters tf,  tp, λ, and k   

are obtained from (AbdelHaleem & Yacout, 1998) and(Barde et al., 2019). 

At each decision time, a random failure time (FT) is generated from the failure distribution function 

then: 

If T* > component age (G), then check if FT > G, then we move to the next step and the age of the 

component is increased by the time interval, while if FT < G, then the component is replaced, its 

age is reset to 0, the downtime is increased by tf and 1 is added to the failure counter. 

If T* < G, then the component is replaced, its age is reset to 0, the downtime is increased by tp, and 

1 is added to the replacement counter. 

 

 

The outputs from this simulation are the total downtime of the equipment due to PM action or 

failure, the number of PM actions, and the number of failures in 100000 hrs. Comparison and 

results are shown in table 1, table 2, and figure 2.   

 

Table 4.1 Comparison between the results of the two models for the Brake. 

 
Brake 

 Optimal replacement 

time T* hrs. 

Number of PM actions Number of Failures Total Downtime hrs. 

(AbdelHaleem & Yacout, 

1998) Model 
2250 444 0 310.8 

Proposed Model 3800 261 2 189.7 
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Table 4.2 Comparison between the results of the two models for the Coupling 

 
Coupling 

Optimal replacement 

time T* hrs. 

Number of PM actions Number of Failures Total Downtime hrs. 

(AbdelHaleem & Yacout, 

1998) Model 

2160 0 715 4290 

Proposed Model 1320 757 0 648.75 

 

 

 

Figure 4.2 Simulation Results for the model by (AbdelHaleem & Yacout, 1998) and the proposed 

model. 
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4.4 Discussion of the Results 

Figure 2, Table 1, and Table 2 show a comparison between the proposed model and the model by 

(AbdelHaleem & Yacout 1998). In terms of the optimal replacement time T* the two models 

provide different results. For the brake T*= 2250 hrs using the original model while by the proposed 

model T*= 3800 hrs. For the coupling T*= 2160 hrs by the original model while by the proposed 

model T*= 1320 hrs. It is notable that in the brake’s case T* using the proposed model is bigger 

than T* by the original model, while in the case of the coupling T* by the proposed model is smaller 

than this by the original model. To investigate which of the two models having a better solution 

the discrete event simulation was performed using each solution. The results of the simulation show 

that the proposed model was able to outperform the original model by yielding lower downtime in 

both of the cases. For the brake, the downtime due to PM actions or failures correction is reduced 

by 39%. For the coupling a great reduction for the downtime by 84% took place. The interpretations 

of these results can be concluded as follows:  

1. In the case of the brake, the original model performed the PM actions with a high frequency 

which is not needed. These unneeded actions lead to an increase the downtime. The 

proposed model found the value of T* that eliminated the unneeded PM actions. A limitation 

appeared in the solution by the proposed model; that it allows two failures.  

2. In the case of the coupling, the original model did not take any PM actions, it just corrected 

the failures. The proposed model obtained T* that eliminated the failures to minimize the 

downtime.    

From the previous interpretations, we could conclude the proposed model provides better 

performance than the original model. In addition, the proposed model is not dependent on any 

parameters.   

4.5 Conclusion  

The objective of this work aimed to find an optimal PM strategy, using the RL area imported from 

machine learning. This maintenance strategy minimizes the downtime of the systems. The 

proposed solution in this work to this problem is to develop an RL model that could be solved by 

SARSA (λ) algorithm. First, the challenges related to the maintenance problem are described with 
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the limitations of the available models. Mainly these limitations are both the need and the high 

dependency of the available models on the input parameters and their values. The proposed model 

overcomes this limitation. In the proposed solution the problem was modeled as MDP, the 

developed model was based on the reliability of the system. The Reliability was obtained using the 

Kaplan-Meier estimate. Then an optimal solution to the problem was founded by the SARSA(λ) 

algorithm. The problem was solved without the need for the transition probabilities matrix. In 

addition, the proposed model is not dependent on any parameters as the failure distribution 

function, tp, or tf. These capabilities of RL as a nonparametric data-driven model enable it to solve 

the real-time problem of autonomous decision-making.  

To evaluate the performance of the proposed model, a numerical comparison between the original 

model and the proposed model through discrete event simulation was performed. The proposed 

model outperformed the original model in two different cases, as the proposed model provides T* 

that yield less downtime when used to perform PM actions.     

Areas for further research are: i. solve the limitation related to failure allowance as in the case of 

the brake. ii. extend the model for the mult-component systems, so all the components are 

considered together in the same model. iii. extend the model to include minimizing the maintenance 

cost explicitly in the objective.    
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Abstract 

This paper proposes a data-driven methodology that combines a deterioration prediction model and 

reinforcement learning method to optimize a multi-level preventive condition-based maintenance 

strategy. The strategy consists of ordinary replacements and do-nothing actions in addition to multi-

level repair actions that temporarily mitigate the deterioration of a system. The optimization 

problem is formulated using a finite Markov decision process with the objective of minimizing the 

total average maintenance cost over a finite horizon. The data-driven prediction model learns the 

deterioration process without any assumptions about its shape or bath. Then, the prediction model 

interacts with a reinforcement learning agent to obtain an optimal sequence of maintenance actions 

without the need for the Markov decision process’s transition probability matrix. The strategy 

obtained is a map from the state to the action, which differs from the widely presented action 

threshold condition-based maintenance strategies. This proposed methodology is applied to a case 

study of sheet metal culverts system and its results are compared to different maintenance 

strategies, starting from new and degraded states.  

Key Words: Reinforcement learning, Deterioration prediction, Condition-based maintenance, 

Multi-level preventive repair. 

5.1 Introduction 

Following optimal maintenance strategies is necessary since as maintenance has a significant 

impact on the operational efficiency of various systems and assets. A maintenance strategy (or 

policy) can be defined as a set of actions performed on a system based on certain decision criteria 
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to sustain or restore its safely functioning state (Ahmad et al., 2012). In the literature, the terms 

strategy and policy are used interchangeably. In this work, we are using the term “strategy” to 

describe our model, or when we refer to literature that uses that term. The term “policy” is used 

when referring to literature that uses that term. In general, maintenance strategies can be classified 

as corrective maintenance (CM) that is performed after failure, or preventive maintenance (PM) 

that is done to improve a system’s conditions while it is still operating (de Jonge et al., 2017). CM 

actions have high costs of failure and require excessive amounts of time; as a result, they are mostly 

undesirable. PM actions are supposed to lead to lower costs, and they are carried out during planned 

withdrawals, so they do not affect the availability of the system.  

Time-based preventive maintenance (TBM) and condition-based preventive maintenance (CBM) 

are the main classes of PM (Hu, J. & Zhang, 2014; Yang et al., 2017). For TBM, statistical models 

such as Weibull, Normal, and Poisson distributions are used to perform a lifetime analysis and to 

determine the intervals of PM maintenance actions (Peng et al., 2010; Shafiee & Finkelstein, 2015; 

Zhang, N. & Yang, 2015). TBM models have two main limitations: 1) the need for failure data and 

2) a disregard for a system’s conditions and effects of usage. As a result, TBM may lead to failure 

or unnecessary maintenance.  

CBM is capable of overcoming these limitations by recommending maintenance actions based on 

the information collected about the system’s conditions to avoid both failures and unnecessary 

maintenance (Chen, N. et al., 2015; Jardine et al., 2006; Jingjing et al., 2019). It has been found 

that CBM can effectively improve a system’s reliability and reduce maintenance costs (Alaswad 

& Yisha, 2017; He et al., 2017; Zhou, Z.-J. et al., 2012). The distinction of CBM over TBM 

increases interest in molding and optimization methods of CBM strategies. Markov decision 

process (MDP) is one of the most widely used methods to model CBM strategies (Braga & 

Andrade, 2019; Khaleghei & Makis, 2015; Li, X. et al., 2018). MDPs are useful to model this kind 

of problem since they are able to address a system’s deterioration process (Zhang, Xueqing & Gao, 

2012). Moreover, MDPs are appropriate models for sequential decision-making under uncertainties 

in which the actions affect subsequent situations and not only the immediate situation (Puterman, 

2014). Methods such as linear programming (LP), dynamic programming (DP), and reinforcement 

learning (RL) are used to obtain the optimal solution for an MDP optimization problem (Lopes 

Gerum et al., 2019; Malek et al., 2014; Sutton & Barto, 2018). While estimating the transition 
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probability matrix (TPM) for the MDP is necessary for LP or DP solution methods, the RL method 

does not need TPM. RL is a data-driven method that solves the problem in an interactive manner 

(Sutton & Barto, 2018).   

Another issue of great concern is the effect of maintenance actions on a system’s conditions. Most 

PM strategies consider replacement actions that return a system’s conditions to as good as new and 

a do-nothing action, which leaves the system’s conditions as they are. The maintenance strategy in 

such cases has a threshold for performing the PM action. In many applications, other maintenance 

actions are possible, such as general and minimal repairs. While general repair actions may improve 

a system’s conditions by different levels, minimal repair actions restore the system to a condition 

that is as bad as the old system’s condition before failure (Liu et al., 2016; Wu, F. et al., 2015; 

Zheng & Makis, 2020). Examples for implementing such actions in CBM can be found in (Adsule 

et al., 2020; Braga & Andrade, 2019; Liang et al., 2019; Ling et al., 2018). In the following two 

sub-sections, the relative work and limitations are discussed.  

5.1.1 MDP and Maintenance  

Braga and Andrade (2019) proposed a maintenance optimization approach for railway wheelsets 

based on the MDP. The MDP was adopted to model wear and damage and to offer possible actions. 

The states of the wheelsets were defined by the diameter change, the damage that occurred, and 

the mileage since the last turning action. Three different actions were proposed:  renewal, turning, 

and do nothing. An empirical approach was used to obtain the (TPM) for the MDP under each 

action. Policy iteration and value iteration approaches based on DP are used to find the optimal 

strategy with regards to cost over a life cycle. Mandiartha, Duffield, Razelan, et al. (2017) proposed 

an optimization model for pavement using MDPs. The optimization model aimed to minimize 

maintenance costs. The state space of the model has eleven states and the action space has three 

actions: routine action, periodic action, and rehabilitation action. The TPM was obtained from 

another publication that discussed the same application  (Mandiartha, Duffield, Thompson, et al., 

2017). The estimation of the TPM in (Mandiartha, Duffield, Thompson, et al., 2017) used a 

mathematical method that is based on assumptions related to the pavement structure and the traffic 

volume. The problem was solved using a dual LP formulation. The obtained maintenance strategy 

was explained and interpreted. Liang et al. (2019) proposed an optimized CBM strategy for long-
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life assets. A Semi-Markov decision process (SMDP) was used to model the maintenance policies 

and to obtain the optimal policy. The proposed approach was used to optimize the thresholds for 

both major and minor maintenance actions to minimize the time-averaged operation cost. 

Comparable work could also be found in (Fan et al., 2019; Huang et al., 2020; Huy et al., 2020). 

The above-mentioned papers have demonstrated that MDP based models that consider a system’s 

condition achieve cost optimal maintenance strategies. However, they still experience limitations 

related to obtaining the MDP’s TPM, which is essential for the DP and LP techniques to solve the 

problem. DP solution techniques have two significant limitations: they are computationally 

expensive and need TPM to be capable of solving the problem. DP performs multiple sweeps 

through the state space during the solution process to obtain the result, which leads to high 

computational cost. The recent advances in the computational capabilities of computers allow us 

to overcome this limitation. In addition, LP proposed methods to solve the MDP problem with less 

computational cost (Malek et al., 2014; Mandiartha, Duffield, Razelan, et al., 2017). Such methods 

could be better than DP in terms of computational cost, but as with DP, they need TPM to solve 

the problems. According to the authors, obtaining the TPM is a challenging limitation. It contains 

particular steps related to the application and cannot be generalized or transferable to other 

applications (Braga & Andrade, 2019; Mandiartha, Duffield, Razelan, et al., 2017).  

In attempt to overcome these limitations, RL is adopted to solve PM models based on the MDPs. 

RL is capable of solving such problems without the need for TPM. It needs episodes of data 

sequences that are tuples of (state, action, reward) to obtain an optimal solution. Generally, the 

state is an observation that describes the system’s conditions. Based on the state, an action is 

selected by the RL agent. Finally, the reward is a return that is provided to the RL agent, depending 

on both the state and the action that is taken. The availability of data helps with the application of 

such approaches.   

5.1.2 RL and Maintenance 

Barde et al. (2019) formulated three replacement PM strategies for multi-component military trucks 

as MDPs. For the first strategy, each component is replaced at failure and at replacement intervals. 

For the second, an overhaul action for the system replacement, at a fixed interval, is added to the 

first strategy. The third is a group-based strategy that allows opportunistic maintenance actions, so 
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when a component is replaced due to failure, or there is a PM replacement, the components that 

are in a neighborhood with that component are also replaced. These replacement PM strategies 

were optimized using the Monte Carlo RL (MCRL) method, where the objective is to minimize 

the system’s downtime by obtaining the optimal replacement interval for each component and the 

optimal overhaul time for the system replacement. The results show that the MCRL method results 

outperformed the results obtained by the optimization problem for downtime minimization solved 

using simulation. Barde et al. (2016) developed two opportunistic PM replacement maintenance 

policies for a system that exhibits a hierarchical structure. In the first PM replacement policy, each 

component is replaced upon failure and at the replacement interval. The second policy considers 

the system hierarchy.  When the system experiences downtime due to either a component failure 

replacement or PM replacement, the first policy is applied, and other components could be replaced 

if their remaining time to PM is less than a certain predetermined value. The problem is modeled 

as MDP and the solution was obtained using the temporal difference RL algorithm, named 

SARSA(λ). The problem was also solved using the renewal reward theory. A simulation was 

performed to compare and measure the average cost per unit time for the policies obtained using 

the two solving approaches. A solution based on SARSA(λ) for the second policy was found to 

conclude with the minimum cost per unit time. 

 In the previous works, MDPs and RL were applied to optimize the maintenance policy, and RL 

was shown to outperform the ordinary optimization techniques. However, the proposed 

maintenance policies are mainly TBM and do not consider the system’s condition, which may lead 

to a failure or unnecessary maintenance, as discussed earlier.  Also, they only consider the 

replacement and do-nothing maintenance action and aim to obtain the replacement intervals based 

on the system’s age.  

Liu, Y. et al. (2019) proposed a dynamic selective maintenance approach based on RL. For 

selective maintenance, aged components are maintained during the system’s breaks between the 

different production tasks. In this work, the joint between production and maintenance is modeled 

as MDP. The states of the components were defined by their effective age, and either they have 

failed or not using a Weibull density function. RL was used to solve the problem to overcome the 

“curse of dimensionality”. The objective of the proposed work is to optimize a selective 

maintenance strategy that maximizes the expected number of successful future multiple 
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consecutive tasks. A relative work was proposed by Kuhnle et al. (2019) to optimize an 

opportunistic maintenance schedule for parallel working machines by using the Deep-Q-Networks 

RL algorithm. The breakdown times of the machines were determined using a combination of two 

Weibull density functions. The opportunity to perform PM for the parallel working machines had 

been investigated through the proposed work. The maintenance schedule obtained leads to a 

reduction in downtime, an increase in the production output, and a reduction in the maintenance 

costs compared to the TBM or CM policies.  

Xanthopoulos et al. (2018) used RL to optimize a parametric production-control policy for 

deteriorating manufacturing systems. The objective of this policy is to minimize the sum of two 

conflicting objective functions: the average inventory level and the average number of backorders. 

The deterioration of the system was defined to follow assumed deterioration failure rates related to 

time.  Preventive maintenance action was considered. Its threshold was part of the optimization 

problem and a corrective maintenance action was applied in the case of failure. The optimal joint 

production/maintenance control policy was obtained and compared with different parametric 

production and maintenance policies. The obtained policy based on RL was able to outperform the 

ordinary policies based on ad hoc. Ling et al. (2018) considered a two-machine flow line system 

with a buffer zone in between. The failure time of the two machines was taken to follow a Gamma 

density distribution that decreases as the machine ages. The actions considered are preventive 

repair, corrective repair, and minimal repair. The optimal maintenance strategy for the whole 

system is obtained by considering maintenance resource constraints, and the RL algorithm is used 

to obtain the optimal solution that minimizes the total system average cost rate.  

Adsule et al. (2020) proposed a CBM policy with a health index employed to define the 

deterioration level. The proposed policy considered minor maintenance action in addition to the 

replacement and do-nothing actions. The health index was a function of time and a deterioration 

rate that followed a Gaussian distribution, and a RL solution technique was suggested to obtain an 

optimal maintenance strategy that minimizes the long-run average cost. An illustrative example is 

proposed to elaborate on the idea without an application to a real problem. A comparable work that 

was applied to a multi-component system with dependent competing risks was proposed by Zhang, 

N. and Si (2020). 
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The maintenance strategies and policies developed in the discussed literature based on RL have 

shown some advancement compared to other various solutions. Nevertheless, these efforts are 

oriented towards the maintenance/production control problem and do not focus on the maintenance 

problem. Also, the systems’ deterioration and failures were defined based on either statistical 

density functions or assumed failure and deterioration rates related to age or time. Only 

replacement or minimal repair actions were considered and CBM strategies aimed to identify a 

preventive replacement threshold.  

To this end, we can conclude that the CBM demonstrated real advances in optimal maintenance 

decision-making. In addition, adopting RL helps overcome the need for TPM, as its estimation 

process is challenging and can not be generalized for different applications. The first limitation that 

still exists is the assumptions that have been made to model the deterioration. The deterioration is 

either modeled directly using age, with a model that mainly depends on age, or the deterioration is 

assumed to follow a certain statistical model. Treating the deterioration in such a way leads to 

either TBM or to CBM that is limited due to deterioration modeling assumptions. The second 

limitation is related to maintenance actions that have been considered. Mainly, replacement, do-

nothing, and minimal repair actions are considered. However, multi-level preventive repair actions 

that improve a system’s deterioration in different levels are not as extensively considered, even 

though they have great potential to lead to more cost-effective maintenance strategies. In addition, 

they are practiced in different applications.  

To overcome the aforementioned limitations, we propose a generic data-driven modeling and 

optimization methodology for a multi-level CBM strategy. The methodology combines a 

prediction model and the RL method. The data-driven prediction model is proposed to learn a 

system’s deterioration from the available deterioration historical data. This prediction model is then 

merged into the environment that represents the system to be maintained, with which RL interacts 

to obtain the optimal maintenance strategy. The originality of this work is based on its ability to 

tackle real issues in maintenance problems that are normally treated with assumptions. These 

assumptions are typically related to the shape of the deterioration, its modeling parameters, and 

possible maintenance actions. Such assumptions limit the applicability on a practical level.  The 

contribution of the proposed methodology and the multi-level CBM strategy is threefold: 1) it 

addresses the deterioration through a data-driven method that is widely applicable without limiting 
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assumptions. 2) It is different from the traditional CBM strategy that defines a threshold for a 

preventive replacement action; instead, the proposed multi-level CBM strategy provides mapping 

from a state to action, as it suggests an action for each state. 3) It considers the potential cost savings 

that could be achieved by including multi-level preventive repair actions that are practiced in 

different applications. 

 The rest of this article is organized as follows. Section 2 provides the proposed methodology for 

the multi-level CBM strategy. It contains descriptions for the MDP model, the deterioration 

prediction model, RL methods and their integration. Section 3 presents a case study using real data. 

Moreover, validation of the results obtained is proposed in section 3.  Section 4 concludes the paper 

and presents future research.  

5.2 Proposed Methodology for Multi-level CBM Strategy 

Optimization 

We propose a generic methodology for a multi-level CBM strategy that tackles the limitations 

related to TPM estimation, the deterioration modeling assumptions, and the limited maintenance 

actions. The proposed methodology employs an MDP to model the CBM strategy. MDPs are a 

relevant method for sequential decision-making under uncertainties, where the actions affect 

subsequent situations and not only the immediate situation. The proposed strategy includes multi-

level preventive repair actions that improve the system’s deterioration by different levels, in 

addition to the ordinary replacement and do-nothing actions. The deterioration process is learned 

from historical data through a data-driven deterioration prediction model that is capable of learning 

any type of deterioration without the need for assumptions. The RL is integrated with the 

deterioration prediction model by merging the prediction model in the environment of the RL, as 

Figure 5.1 shows. 
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Figure 5.1 Schematic representation for the proposed methodology. 

5.3 Maintenance Strategy Description and Model 

The proposed multi-level CBM strategy is modeled as MDP and concerns deteriorating systems 

with an identified and finite state space that are subject to multi-level preventive repairs, preventive 

and corrective replacements, and do-nothing actions. Each of the multi-level preventive repair 

actions has a specific effect on the deterioration level and encounters a certain cost. The following 

points summarize the MDP assumptions and model expressions that are given in the present paper.  

• Finite-state space describes the system’s states 𝑆 = {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛} the state 𝑠 that 

identifies the system state could be defined by one or more variables, e.g., the system’s 

deterioration level and the system’s age.  

• The deterioration of the systems is continuous in time, but it could be discretized into 

multiple levels, as shown in Table 5.1. This discretization process is practical from an 

engineering point of view, as in a lot of the cases there is no need - or it is not applicable – 

to consider every value (Alaswad & Yisha, 2017; Zheng & Makis, 2020). Then, at any time 

𝑡 the system’s deterioration level falls into any of the categories.  The age is continuous, 

but it could be discretized to a finite state space. 

• The deterioration of the system is Markovian, which means that the conditional probability 

of moving from state 𝑖 at time 𝑡 to state 𝑗 at time 𝑡 + 1 depends only on the current state 𝑖; 
this condition can be defined as: 

𝑝𝑖𝑗 = 𝑝𝑟 {𝑠𝑡+1 = 𝑗|𝑠𝑡 = 𝑖} = 𝑝𝑟 {𝑠𝑡+1 = 𝑗|𝑠𝑡 = 𝑖, 𝑠𝑡−1, … , 𝑠0}.     

• The system deterioration level is observed through inspection. The worst state of the system 

is assumed to be a functional failure observed during the inspection. That means that when 

the system reaches this failure state it will function inefficiently, which also encompasses 

a high risk in terms of safety.  This is considered to be a functional failure. 
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• At each state 𝑠 𝜖 𝑆 a set of different actions 𝐴(𝑠) could be performed. Multi-level preventive 

repairs, preventive and corrective replacement, and do-nothing actions can be performed in 

the proposed CBM strategy. 

• Each action has a cost 𝐶(𝑠, 𝑎). The cost is related to both the action and the initial state, as 

Table 5.2 shows.  

• The last component of the MDP is the transition probability matrix. The elements of the 

matrix can be defined as 𝑝𝑖𝑗 = 𝑝𝑟 {𝑠𝑡+1 = 𝑗 |𝑠𝑡 = 𝑖, 𝑎𝑡 = 𝑎}. The transition probability is 

based on both the state and the action performed. This transition probability matrix is not 

needed in this work, since it adopts the RL method to solve the problem. 

 

Table 5.1 Discretization of the system’s deterioration. 

Index (s) Deterioration 

level 

Description 

A Perfect New state. 

B Very good Damage initiation. 

C Good Minor damage. 

D Acceptable Moderate damage. 

E Bad Major damage affects safety and functionality (functional 

failure) 

 

Table 5.2 Different possible actions with the associated costs. 

Action (a) Description of actions’ effects Actions’ cost function 𝑪(𝒔, 𝒂) 
Do-nothing Do-nothing action, the system will continue to 

deteriorate. 
0 

Preventive repair 1 Improve the deterioration by one level. 𝐶𝑅𝑎
𝑑 is the repair cost for 

𝑎𝑡ℎ = 1,2,3 level improvement 

at 𝑑𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑑 =
{𝐴, . . , 𝐷 

Preventive repair 2 Improve the deterioration by two levels. 
Preventive repair 3 Improve the deterioration by three levels. 
Preventive repair 4 Improve the deterioration by four levels. 

Preventive replace 
Preventive replacement action. 

𝐶𝑟 is the preventive 

replacement cost. 
Corrective replace 

Corrective replacement after failure 
𝐶𝑐 is the corrective 

replacement cost. 

 

5.3.1 Deterioration Prediction and RL 

Solving by interaction is the main characteristic of the RL method. The interaction occurs between 

the RL agent, which is based on the SRARA (State-Action-Reward-State-Action) algorithm that 

takes a maintenance action based on a given system’s state and the environment returns the 
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predicted new system state and its reward in terms of the maintenance cost, as illustrated in Figure 

5.2. 

Environment that returns 
the new state and reward 

after each action. 

RL agent based on SARSA 
algorithm

 Action(t)
(Maintenance action)

State(t+1) 
(The system state)

Reward(t+1) 
(Maintenance action cost)

MDP model

Deterioration prediction 
model. 

 

Figure 5.2 RL agent learning process. 

Specifically, the environment represents the system to be maintained. The regulations that regulate 

the environment dynamics rely on the system’s deterioration and its improvements over time. They 

take place as a result of the effects of the different maintenance actions as shown in Table 5.2. The 

system deterioration results from natural aging and from leaving the system without maintenance. 

The deterioration of the same system follows different paths and shapes depending on the 

conditions of use, age, and previous maintenance actions. Defining the progress of the system’s 

degradation under different conditions is a challenging issue. To address this issue, the data-driven 

prediction model is used to predict the system deterioration level. The system’s age is part of the 

information provided to the prediction model to ensure that it is capable of capturing the increase 

in failure risk that could take place over time as its age increases. This prediction model is merged 

in the environment to represent the dynamics of the system’s deterioration. Figure 5.3 shows a 

schematic representation of the proposed deterioration prediction model. Different data-driven 

prediction models are convenient with the proposed methodology. The random forests technique 

is adopted in the proposed case study in section 5.4 to predict the state of the system over the age, 

as it is capable of performing linear and nonlinear prediction tasks with high accuracy and moderate 

amounts of data (Carvalho et al. 2019; Falamarzi et al. 2019). 
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Figure 5.3 Deterioration prediction model. 

This work adopts the temporal-difference (TD) RL agent, specifically based on the SARSA 

algorithm. SARSA is a TD RL algorithm that provides fast convergence without being 

computationally expensive (Sewak, 2019). Figure 5.4 shows the adopted agent based on the 

SARSA algorithm, where 𝑄(𝑠, 𝑎) is the value function for a state action pair, 𝑟(𝑠, 𝑎) is the reward 

obtained after choosing action 𝑎 in state 𝑠, 𝛼 is the learning rate, 𝛾 is the discounting factor, and 𝜀 

is the threshold for following a greedy policy. The optimal maintenance strategy is obtained 

through the interaction of the RL agent with its environment.  

Initialize arbitrary values 𝑄(𝑆, 𝐴) ∀ 𝑠 = (Deterioration Level, 𝑎𝑔𝑒)  ∈  𝑆, 𝑎 ∈  𝐴(𝑠) 

while 𝑛 ≤ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 episods 

Choose starting state 𝑠 = (Deterioration Level, 𝑎𝑔𝑒)  ∈  𝑆  

Choose 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎 ∈  𝐴(𝑠) following ε-greedy approach.  

Get the reward 𝑟𝑡+1 = 𝑟(𝑠, 𝑎) = 𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡  and observe the next state 𝑠′  

Update the state-action pairs value function: 

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) +  𝛼 [𝑟𝑡+1 +  𝛾𝑄(𝑠′ , 𝑎′ ) − 𝑄(𝑠, 𝑎)] 

Update: 𝑠 = 𝑠′ , 𝑎 = 𝑎′  

Continue until termination takes place either by failure or preventive replacement 

𝑛 = 𝑛 + 1  

 𝛼: learning rate. 𝛾: discounting factor. 𝜀: threshold for acting greedy. 
 

 RL agent based on SARSA algorithm 

 

Figure 5.4 RL agent adopted to the maintenance problem. 
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5.4 Case Study 

The purpose of this section is to apply the proposed methodology to a real case study to prove its 

applicability and to validate the solution obtained with it. This case study deals with sheet metal 

culverts’ maintenance problem and uses real data about the deterioration and maintenance of the 

sheet metal culverts. The optimal multi-level CBM strategy for the sheet metal culverts that 

minimizes the maintenance costs over a finite time horizon is derived and validated through a 

comparison with other strategies; among them are well-known corrective and preventive 

maintenance strategies.  

5.4.1 MDP States, Actions, and Rewards 

In this case study, the culvert deterioration level is defined using a performance index that combines 

different failure mode measurements obtained through a regulatory inspection process. The 

performance index takes a continuous value between 0, which depicts the worst condition of 

deterioration, and 100, which denotes the best condition of the deterioration, meaning no 

deterioration has taken place. This continuous value is discretized into five levels by the domain 

experts, as per the example that was shown in Table 5.1. The deterioration levels, and the age of 

the culvert, are used to identify the culvert’s state for the MDP model. From the available data, 

culverts can have a maximum age of 60 years, and then the age span to be considered is between 0 

and 60 years. At the age of 0, the culvert is new, which means it does not need any type of 

maintenance. The culvert state can be any of the deterioration levels at any age between 10 and 60, 

with increments of 10 years, which is a reasonable step size to use to update the maintenance 

strategy for such applications. The different combinations between the deterioration level and age 

result in 30 different states. The failure is defined by either exceeding the age of 60 years or 

reaching the deterioration level E. Given that the age affects the deterioration process, the choice 

of maintenance actions is affected by the age of the systems. For systems with the same 

deterioration level and different ages, different maintenance actions are optimal.  For each state, a 

set of actions can be performed. There are 84 state-action pairs, as shown in Figure 5.5. Figure 5.5 

also shows different maintenance action costs. The cost of multi-level preventive repairs per unit 

of length ($/u.L) is a function of improvement level, deterioration level, and age. The corrective 



50 

 

 

replacement maintenance action after failure cost is three times the preventive replacement. The 

high cost of a corrective replacement penalizes failures.  

E
Failure State

Do nothing

A,60
Preventive 

replacement
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B,60 Preventive repair 1
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Figure 5.5 State action pairs according to deterioration level and age. 

To summarize, the state is defined by deterioration level and age, while the reward of an action is 

the maintenance action cost. Then, the effects of the maintenance actions and the system 

deterioration process need to be defined. The effects of the maintenance actions are defined in 

Table 5.2 and a deterioration prediction model is trained using the historical deterioration data.   

5.4.2 Data-driven Deterioration Prediction Model 

The random forest algorithm is adopted for the deterioration prediction model. Two random forest 

prediction models are built. In the first model, the categorical values of the deterioration index are 

used. In the second model, the continuous values of the deterioration index are used. The two 

models are built to compare their performance and to assess the information that may be lost as a 

result of this categorization.  

The random forest has hyperparameters that need to be tuned to maximize the accuracy of the 

model. These parameters are the number of trees, the criterion to measure the quality of the split, 

the number of features to consider in order to obtain the best split, and the maximum depth of the 
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tree. The number of trees defines how many trees are used to build the random forest model. The 

splitting criterion is a function based on it the decision tree algorithm decides how to make a split 

on certain input features to create a node. The feature is selected each time using a comparison 

criterion for the different features based on the split. This comparison is not done between all of 

the input features, but is done between a subset of the input features. The subset size is a parameter 

that needs to be optimized. The maximum depth of the tree is the number of layers on the longest 

bath between the tree’s root and a leaf. More details about the random forest hyperparameters can 

be found in (Lior, 2014) (Pedregosa et al., 2011). Grid search is used to obtain the hyperparameters 

that maximize the accuracy of the model. It is an exhaustive concept, as it tries every combination. 

In our case, this type of search is possible, since the data size of 2665 observations is adequate for 

this type of search. To obtain the optimized hyperparameters, the random forest prediction model 

is trained, and the grid search is applied.  

Tables 5.3 and 5.4 show the selected hyperparameters for discrete and continuous deterioration 

levels, respectively. Using the hyperparameters defined by the grid search, the two prediction 

models are trained.  For the discrete prediction model, the training accuracy is 82.7%, and the 

testing accuracy is 74%. For the continuous prediction model, training accuracy is 91.3% and 

testing accuracy is 90.4%. Notably, the performance of the continuous deterioration model is better 

than the performance of the discrete deterioration model by 15.6%. This performance is expected 

in the discrete model, deterioration can only be five levels, which leads to the loss of some of the 

information that is found in the continuous model. This difference in performance is reasonable 

because discretization can lead to the loss of much more information. The discrete model is used 

in this study since the discretization is done by domain experts and the performance of the discrete 

model is still acceptable.  
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Table 5.3 Selected hyperparameters for a discrete deterioration prediction model. 

Parameter Available values 

Selected values for 

Discrete deterioration 

model 

Number of 

trees 

Integer: optional, can be any value. The defined 

search space is [100, 250, 500, 750, 1000] 
500 

Criterion 
“Gini” impurity factor or “Entropy” for the 

information gained 
Gini 

Max depth 
Integer: optional, can be any value. The defined 

search space is [3, 5, 7, 9, 11, 13] 
9 

Number of 

features 

Square root (Number of features), Log2(Number of 

features), or Number of features 
Number of features 

 

Table 5.4 Selected hyperparameters for the continuous deterioration prediction model. 

Parameter Available values 

Selected values for 

Continuous deterioration 

model. 

Number of 

trees 

Integer: optional can take any value. The defined 

search space is [100, 250, 500, 750, 1000] 
250 

Criterion 
“mse” mean square error or “mae” mean absolute 

error.   
mse 

Max depth 
Integer: optional can take any value. The defined 

search space is [3, 5, 7, 9, 11, 13] 
9 

Number of 

features 

Square root (Number of features), Log2(Number of 

features), or Number of features 

Square root (Number of 

features) 

5.4.3 RL Agent 

The ɛ-greedy method is followed to enhance the exploration during the training process of the RL 

agent. Additionally, the value function 𝑄(𝑠, 𝑎)  has an arbitrary optimistic starting value of 10 to 

encourage the exploration process. Based on the ɛ-greedy approach at each state 𝑠, an action 𝑎 that 

appears to be optimal is chosen by a probability of 1 − ɛ +
ɛ

|𝐴(𝑠)|
 and each of the other actions is 

chosen with a probability of 
ɛ

|𝐴(𝑠)|
 . The selection of exploration rate ɛ, learning rate 𝛼, and 

discounting factor 𝛾 is a crucial point to consider. The values of these parameters are selected by 

the researcher in most cases based on the problem type and previous experience. To ensure an 

optimal selection of values, two approaches are followed in our work. The first approach is applied 
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to the discounting factor 𝛾. The optimal selection of the discounting factor is based on the fact that 

in episodic tasks, 𝛾 is proven to be effective when it takes a value near 1 (Pitis, 2019). Based on 

this conclusion, 𝛾 is chosen to be 0.9 in the present application.  Since for ɛ and 𝛼 there is no clear 

recommendation in the literature, a systematic search is done, as shown in Figure 5.6. Both ɛ and 

𝛼 take values between 0 and 1 but a very large value for ɛ  risks convergence. Fig. 6 shows a change 

in the average cost per unit length when 𝛼 takes different values between 0 and 1, and ɛ = 0.01, 

0.05, 0.1, 0.15, 0.2, 0.3, and 0.4, respectively. The minimum average cost is obtained at ɛ=0.05 and 

α=0.9. The optimal maintenance strategy is shown in Table 5.5. 

 

Figure 5.6 Optimal Values for Learning and Exploration Rates. The SARSA algorithm is trained 

using 5000 episodes. The average cost per unit of length is obtained by averaging the 

maintenance cost over its age, starting from all of the available states. 

Table 5.5 Optimal maintenance strategy. 

State Action State Action State Action State Action State Action State Action 

(A,10) Do nothing (A,20) Do nothing (A,30) Do nothing (A,40) Do nothing (A,50) Do nothing (A,60) Preventive replacement 

(B,10) Do nothing (B,20) Do nothing (B,30) Repair 1 (B,40) Repair 1 (B,50) Do nothing (B,60) Preventive replacement 

(C,10) Repair 1 (C,20) Do nothing (C,30) Repair 1 (C,40) Repair 1 (C,50) Repair 1 (C,60) Preventive replacement 

(D,10) Repair 1 (D,20) Repair 1 (D,30) Repair 1 (D,40) Repair 1 (D,50) Repair 1 (D,60) Preventive replacement 

E: Corrective replacement 
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The results obtained demonstrate that the optimal actions of the strategy are not always the ones 

with the lowest cost.  This is due to the immediate and delayed reward trade-off.  For the immediate 

reward, some actions may appear to be less costly at present but performing these actions will lead 

to higher costs in the future. RL treats this trade-off to find an optimal strategy. Moreover, the 

results confirm that age affects the optimal selection of an action. The optimality of this strategy is 

investigated in the following section. 

5.4.4 Validation Approach 

The form of the obtained solution is a multi-level CBM strategy that defines the optimal action for 

each state of the system. The obtained strategy is supposed to minimize the average maintenance 

cost over its age. Validating the optimality of the obtained solution through the proposed 

methodology is an important issue to consider. Validation is performed by comparing the average 

maintenance cost over age for different strategies. This validation is conducted using a simulation, 

as shown in Figure 5.7.  

Maintenance 
strategy

Cost of maintenance 
actions

Average maintenance cost 
over the system age

System 
Simulation

Deterioration 
prediction  model.

Effects Of 
mmaintenance 

actions .

Starting state

 

Figure 5.7 System simulation that compares different maintenance strategies. 

The inputs for the simulation are the maintenance strategy and the cost of the actions. The 

simulation of the system includes the system deterioration prediction model and the effects of the 

maintenance actions. The output is the average maintenance cost over the system’s age. The 

simulation is done by selecting a starting state; this starting state can be any of the system’s states. 

Starting from this state, a maintenance strategy is followed until the system fails and corrective 

replacement is needed, or until a preventive replacement action takes place. The simulation keeps 

track of the costs of the actions performed, then the average cost over the system’s age is calculated. 
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To prove the optimality of the obtained strategy, it is compared against two well-known strategies, 

in addition to evaluating all other possible strategies. The two well-known strategies are: 1) the 

CM strategy, which is comprised of corrective replacement and do-nothing actions only, and 2) the 

ordinary PM strategy, which considers both preventive and corrective replacements and a do-

nothing action. 3) Finally, all of the strategies combine multi-level preventive repair actions, 

preventive and corrective replacements, and a do-nothing action. The first two strategies included 

in the comparison CM, and ordinary PM, are obtained by training our model with actions that are 

considered in each strategy. A brute force method is adopted to obtain all of the possible strategies 

that also consider multi-level preventive repair actions, preventive and corrective replacements, 

and a do-nothing action. The role of the brute force method is to try all of the possible combinations 

of actions that exist. In general, the brute force method is not efficient. In this case, it will confirm 

the optimality of the solution obtained by comparing it against all of the existing solutions. 

Furthermore, the proposed methodology holds for larger state spaces, in which the application of 

the brute force approach is difficult.   

5.4.5 Validation Results 

Two different states from the state space are selected as starting states to perform the comparison. 

The two starting states are selected randomly. Any state can be used to perform the validation, as 

the obtained solution is supposed to be optimal starting from any state. The two starting states 

selected to perform the comparison are (new state: deterioration level is A and the age is 0) and 

(degraded state: deterioration level is B and age is 30). Any other states can be selected to perform 

the test; these two points have been selected as an example.  

For the first starting state (new state: deterioration level is A and the age is 0): 1) CM strategy takes 

a replacement action when failure is observed. 2) Ordinary PM strategy is defined as the optimal 

threshold for preventive replacement actions to be at the state, as defined by deterioration level C 

and an age of 40 years. 3) The brute force method results in 64 different maintenance strategies - 

other than the one obtained - that can be followed starting from this point. The CM strategy, the 

ordinary PM strategy, and the 64 other strategies are introduced into the simulation and the average 

costs are calculated. Table 5.6 shows the results.  
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Table 5.6 Simulation results that compare the average cost of different maintenance strategies 

starting from the new state. 

Strategy 
Average cost per unit 

of length over the age 

Obtained by the model 89.06 

CM strategy 300 

Ordinary PM strategy 125 

Best strategy of 64 strategies 89.11 

Worst strategy of 64 strategies 500 

  

From Table 5.6, it is clear that the strategy obtained through the proposed methodology is the 

optimal one. Also, it is noteworthy that a sub-optimal strategy does exist in strategies obtained 

through the brute force approach, but the obtained strategy is the optimal one.  

For the second starting state (degraded state: deterioration level is B and the age is 30): 1) the CM 

strategy makes a replacement action when a failure is observed. 2) An ordinary PM strategy is 

defined the optimal threshold for preventive replacement action, which is the same as the one 

defined earlier. 3) The brute force approach results in 30 different maintenance strategies, other 

than the one obtained, that can be followed starting from this point. The CM strategy, the ordinary 

PM strategy, and the 30 other strategies are introduced to the simulation and the average costs are 

calculated. Table 5.7 illustrates the results. In this case, also, the proposed methodology is capable 

of obtaining the optimal strategy.  

Table 5.7 Simulation results comparing the average cost of different maintenance strategies 

starting from a degraded state. 

Strategy 
Average cost per unit 

of length over the age 

Obtained by the model 89.83 

CM strategy 300 

Ordinary PM strategy 125 

Best strategy of 30 strategies 92.72 

Worst strategy of 30 strategies 375 
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Figure 5.8 presents a comparison between the optimal, sub-optimal, and worst maintenance 

strategies. The comparison is performed by running the simulation based on each strategy. The 

simulation should be run for at least a complete life cycle, so that maintenance strategies reach a 

steady state. The run time for the simulation is selected as three times the maximum culvert age, 

with a step size of 10 years for demonstrative reasons. Figure 5.8 (A) shows the results for the first 

starting state (the new state: the deterioration level is A and the age is 0) and Figure 5.8 (B) shows 

the results for the second starting state (degraded state: deterioration level is B and the age is 30).  

The results presented in Table 5.6, Table 5.7, and Figure 5.8 confirm two main points: 1) the 

obtained multi-level CBM through the proposed methodology is the optimal one and outperforms 

all other strategies. 2) Considering the multi-level preventive repair actions, aside from the ordinary 

replacement do-nothing actions in the proposed strategy, leads to minimizing the average 

maintenance cost more than considering only the replacement and do-nothing actions. 

 

 

Figure 5.8 Comparison between the optimal, sub-optimal, and worst maintenance strategies when 

applied for 180 years. The comparison is in terms of the average cost per unit of length over age, 

starting from a new state (A) and degraded state (B). 
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5.5 Conclusion 

Condition-based Maintenance (CBM) strategies based on Markov Decision Process (MDP) show 

advances in the optimization of the maintenance problem, yet they still experience challenging 

limitations. When Dynamic Programming (DP) or Linear Programming (LP) is adopted to solve 

these optimization problems, estimating the Transition Probability Matrix (TPM) and the high 

computational cost are the main limitations. In an attempt to overcome these limitations, 

Reinforcement Learning (RL) is employed to solve such problems. However, in this case, the main 

issue was the maintenance/production control problem. In addition, the deterioration is addressed 

based on either statistical density functions or assumed failure and deterioration rates related to age 

or time. Addressing the deterioration in such a way either returns the problem to being a TBM, 

does not provide sufficient representation for the deterioration, or limits the ability to transfer it to 

other cases. Besides, in most of the CBM strategies, multi-level preventive repair actions have not 

been explored enough to examine their efficiency. 

This paper presents a generic data-driven methodology to optimize multi-level CBM strategies that 

tackle these challenges. The proposed methodology integrates a RL method and a prediction model. 

This methodology does not suffer the discussed limitations of developing or solving MDP based 

models. The deterioration of the system is modeled using a data-driven prediction model. The data-

driven deterioration prediction model can learn the real deterioration process from the historical 

deterioration data. It can learn and model any deterioration process without any assumptions. This 

prediction model is merged in the environment that represents the system. Besides the widely 

considered replacement maintenance and do-nothing actions, multi-level preventive repair actions 

are considered in the CBM strategy. RL is adopted to solve the optimization problem by interacting 

with the environment, which comprises the data-driven deterioration prediction model. 

A real case study on sheet metal culverts is proposed to verify the optimality and applicability of 

the proposed methodology. For the culvert system, the optimal maintenance strategy is obtained 

based on the proposed methodology. Then, it is compared to various other strategies to examine its 

optimality. The obtained strategy is compared against 1) CM strategy, which takes a replacement 

action when a failure is noticed, 2) an ordinary PM strategy that is optimized to obtain the 

preventive replacement threshold, and 3) all of the possible strategies that consider multi-level 
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preventive repair actions, preventive, corrective replacement, and do-nothing actions. A brute force 

approach is used to obtain the last set of strategies. The comparison is done based on average 

maintenance cost over age. It has been proven that the solution obtained is optimal and leads to the 

minimum average maintenance cost over age. Also, it is worth noting that considering multi-level 

preventive repair actions leads to minimal average maintenance costs.  It is important to emphasize 

that the obtained solution is optimal from any starting state in the system state space. Thus, if the 

system is left without maintenance for certain interval or was maintained inefficiently and has 

reached a degraded state, this approach is still applicable.  

This proposed methodology applies to any system or application as long as historical data and 

maintenance information are available. The availability of the deterioration data is not a limitation, 

as this type of data is widely available due to recent advances in data acquisition and storage. 

Furthermore, the state size does not cause any limitations. The case study proposes a moderate state 

space size to allow for validation and interpretation of results. For further research, it is of interest 

to examine the effect of using different data-driven prediction algorithms to address deterioration. 

Moreover, the effect of imperfect maintenance and the interaction between the different failure 

modes of the system should be studied. 
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Abstrt 

Condition-based maintenance (CBM) strategies have been receiving increasing attention due to 

their advances in terms of avoiding failures and decreasing maintenance costs. This paper proposes 

a CBM optimization methodology that adopts the remaining useful life (RUL) as a part of its 

optimization criterion.  The proposed methodology combines data-driven prediction model and 

reinforcement learning (RL) method with a nonparametric survival model, called Kaplan-Meier 

(KM) product limit. The prediction model learns the system’s deterioration process from historical 

data. The RL model integrates the prediction model with a customized reward function to fulfill 

the objective of the CBM strategy that simultaneously maximizes the system’s RUL and minimizes 

the cost of maintenance through selecting the proper maintenance actions. The RUL is estimated 

based on the appropriate KM survival curve, which represents the time at which the system reaches 

a predetermined deterioration level. Both the prediction model and the KM model are generic and 

are not based on certain assumptions.  The CBM decision-making problem that enables preventive 

and corrective replacements besides multi-level preventive repairs at periodic intervals is modeled 

using a Markov decision process (MDP). Each of the considered maintenance actions restores the 

system’s condition to a certain deterioration level. The RL is used to obtain the optimal 

maintenance strategy without the need for the transition probability matrix (TPM) of the MDP. 

Contrary to the widely proposed threshold based traditional CBM strategies, the proposed 

methodology provides an optimal CBM strategy that maps each system state to the appropriate 

maintenance action that maximizes the RUL over the maintenance cost. A case study dealing with 

sheet metal culverts systems is used to demonstrate the relevance and the cost efficiency of the 

obtained CBM strategy. The obtained CBM strategy through the proposed methodology is found 

to be more cost-efficient when it is compared to widely proposed baseline strategies. An important 
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quality to highlight is the generic character of this methodology as it applies to a wide range of 

problems without depending on certain statistical assumptions. 

6.1 Introduction 

A maintenance strategy is a decision-making criterion that maintains or restores a system at a given 

performance level related to its reliability, availability, maintainability, and safety according to a 

maintenance budget and expected services (Han et al., 2020; Jardine et al., 2006).  Cost, downtime, 

and reliability, or a combination of the three, are mostly considered to be optimization criteria of 

maintenance strategies (Hongzhou 2002; Fan et al. 2019). Age-based maintenance (ABM) and 

condition-based maintenance (CBM) are the two main preventive maintenance strategies (Zhang 

and Yang 2015; Yang et al. 2017). In the case of ABM, maintenance decisions are based on the 

usage interval or age, regardless of the deterioration level or the performance level of the system 

(Shafiee and Finkelstein 2015). On the other hand, CBM selects a maintenance action based on the 

system’s condition as defined by the deterioration level or performance level. Among the different 

maintenance categories, CBM has obtained significant attention because it considers both safety 

and cost by avoiding unnecessary maintenance activities that could be introduced by ABM 

(Bousdekis et al. 2018; Shi et al. 2020).         

A large variety of CBM strategies employ Markov decision processes (MDPs) to model the 

maintenance decision-making problem. According to Braga and Andrade (2019), MDPs are ideal 

structures for CBM models since they do not assume certain deterioration paths or shapes and they 

involve the process of sequential decision-making under uncertainty. Mandiartha et al. (2017) 

proposed a CBM optimization model for pavement. The problem is modeled as an MDP and solved 

using dual linear programming (LP) formulation to obtain a maintenance strategy that minimizes 

the total average cost. Braga and Andrade (2019) proposed a CBM decision model for railway 

wheelsets using MDP that was solved using dynamic programming (DP) to minimize the total 

maintenance cost over the life cycle. Sancho et al. (2021) adopted a similar approach for rail tracks 

and the proposed CBM planning aimed to minimize the cost over an infinite time horizon. Similar 

CBM strategies are proposed for different applications such as wind turbines, machining, and 

manufacturing machines (Li et al. 2017; J. Wang et al. 2019; Rui and Makis 2020). An extensive 

literature review is proposed by Alaswad and Yisha (2017) for interested readers. Despite the 
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encouraging results obtained in the reported literature, it is still based on a strong limitation of the 

need for the transition probability matrix (TPM) to solve the proposed models using LP or DP. 

Various authors have reported that estimation of the TPM has been found to be challenging and 

contains steps that cannot be generalized (Mandiartha et al. 2017; Braga and Andrade 2019; Sancho 

et al. 2021). Also, it is worth noting that most of the optimization criteria are related to minimizing 

costs.  

Reinforcement learning (RL) methods are adopted to address challenges related to the estimation 

of the TPM for maintenance problems. RL is capable of solving problems modeled as MDP without 

the need for the TPM (Wiering and Van Otterlo (Eds.) 2012; Sutton and Barto 2018); RL only 

needs episodes of data. The episodes are sequential tuples of state, action, and reward. Adsule et 

al. (2020) proposed a CBM strategy that minimizes the long-run average cost.  The deterioration 

is defined using a health index that is modeled as linear growth. The solution approach based on 

RL is explained using a small illustrative example with assumed parameters, but not applied to a 

case study. A CBM strategy for a multi-component system with competing risks and a cost 

minimization objective is proposed by Zhang and Si (2020). The deterioration of the system 

components is represented using either the compound Poisson process or the gamma process. Two 

numerical examples are used to demonstrate and verify the optimality of the obtained solution.  The 

RL method has also shown promising results for optimizing maintenance/production control policy 

with either CBM or TBM  (Huang et al., 2020; Kuhnle et al., 2019; Ling et al., 2018; Wang, X. et 

al., 2016). In such work, the maintenance problem is constrained by certain production 

requirements.  

From the literature discussed in the previous paragraphs, the major similarity between most existing 

CBM research is the aim to minimize the maintenance cost by considering a system’s conditions 

to eliminate both unneeded maintenance and failure.  The remaining useful life (RUL) is a key 

point that helps maintenance managers achieve more cost-effective maintenance strategies. 

Predicting or estimating the RUL based on degradation data could be accomplished through 

statistical data-based or machine learning methods (J. Guo et al. 2020). These methods are found 

to be accurate and effective (Si et al. 2017). A review of recent studies discusses such methods can 

be found in (Bousdekis et al. 2018; J. Guo et al. 2020).  
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Zhen et al. (2019) proposed  RUL prediction method using a hidden Markov model with auto-

correlation to minimize the cost per unit time of a CBM strategy. At each inspection time, the RUL 

is predicted to make sure that the system could survive until the next inspection takes place. Based 

on the RUL prediction, a PM threshold is obtained. It yields a lower average maintenance cost than 

the one obtained without considering the RUL estimation.  (Du et al. 2020) proposed a CBM 

strategy that optimizes the inspection interval based on the RUL prediction. The strategy 

considered two types of degradation: natural degradation and random shock. RUL estimation 

allowed the inspection intervals and the PM threshold that minimize the long-term expected 

maintenance cost to be obtained. Huynh et al. (2019) proposed a methodology for a predictive 

maintenance decision framework for a deteriorating system subject to inspection and replacement. 

In the proposed methodology, the RUL estimation is used to decide whether an irregular/extra 

inspection is needed, in addition to planned inspections, to avoid potential failure before the next 

planned inspection. The proposed methodology with a flexible inspection option demonstrated 

improvements in terms of cost reduction over the traditional fixed inspections. A comparable 

approach that optimizes both the inspection interval and the PM threshold is proposed by Huynh 

(2021). Other examples can be found in (Deutsch, J. & He, 2018; Deutsch, Jason et al., 2017; 

Elsheikh et al., 2019; Guo, J. et al., 2018; Huynh et al., 2014; Huynh et al., 2019; Salih, 2020). 

From the literature discussed, it is remarkable that most of the existing literature has used RUL to 

update the inspection intervals or to obtain an optimized preventive replacement threshold. 

This paper proposes a novel methodology to optimize CBM strategies. The methodology merges 

a data-driven deterioration prediction model, RL method, and nonparametric survival techniques. 

The CBM strategy is modeled using MDP and includes multi-level preventive repair actions that 

improve the deterioration level by different levels in addition to preventive replacement, corrective 

replacement, and do-nothing. To overcome the limitations related to the TPM estimation for the 

MDP, the RL method is adopted. The deterioration is learned through the adopted data-driven 

prediction model, then it is integrated into the RL environment. The reward function for the RL is 

designed to incorporate both the RUL and the maintenance cost simultaneously. The RUL 

estimation is based on a reliability approach that employs Kaplan-Meier (KM) as a nonparametric 

survival technique.  

  



64 

 

 

The contribution of this work is threefold:  

• The deterioration phenomenon is addressed through a generic practical model that is not 

limited to certain applications and does not assume certain parameters or a certain shape for the 

deterioration, as is the case in most literature.  

• A new design for the reward function that incorporates RUL and the cost is proposed. This 

reward function provides the RL with better feedback about the effects of the maintenance actions 

on the system. That helps in obtaining more cost-effective strategies. The proposed method for 

RUL estimation uses a nonparametric model with a reliability-based approach. The nonparametric 

model namely KM is selected as it does not rely on certain assumptions. 

• The multi-level preventive repair actions that are mostly overlooked are considered within 

the CBM strategy. Such actions restore the system’s condition to a previous deterioration level and 

they lead to a more cost-efficient CBM strategy.  

Based on the actions considered and the proposed methodology, the CBM strategy that is obtained 

provides a map from a condition or state to action. This means that at each deterioration condition, 

an optimal maintenance action is provided and not only a threshold for preventive replacement. 

The remainder of this article is structured as follows. Section 6.2 covers the details of the proposed 

methodology, the MDP model for the CBM strategy and the combination of the RL, the 

nonparametric survival techniques KM method for RUL estimation, and the data-driven prediction 

model. Section 6.3 presents a case study based on real data for identical sheet metal culverts. The 

proposed methodology is applied to the data of the culverts to obtain an optimal CBM strategy. 

The results, interpretations, and validation of the results are also discussed in section 6.3. Section 

6.4 summarizes the contribution, the findings, and introduces areas of research for future 

consideration. 

6.2 Proposed Methodology 

A schematic showing the main procedure of the proposed methodology is presented in Figure 6.1. 

Using the historical data the states and actions of the MDP are developed. The deterioration is 

learned by the data-driven deterioration prediction model that is based on Random Forest (RF) 

algorithm. The survival curves corresponding to the deterioration levels are constructed using the 
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KM method. To construct the KM curves, different levels of deterioration are defined and the times 

to reach each level are used to construct the corresponding KM curve. The MDP, deterioration 

prediction model, and the KM curves are integrated into the environment that stands for the system 

to be maintained. The RL agent adapted to our problem then interacts with the environment and 

the final output is optimal CBM strategy inform of optimal action 𝑎∗ for each state 𝑠𝑖 ∈ 𝑆 that is 

defined through both the deterioration level and the system age. The details are presented in the 

following two sections 6.2.1 and 6.2.2.   

Deterioration prediction 
model. 

KM method

MDP model
Deterioration 

measurements. 
Maintenance data.

 RL agent based on Q-
learning

Optimal strategy 

∀ 𝑠𝑖  ϵ  𝑆 →  𝑎∗ 

Enviroment

 

Figure 6.1 Main procedure for the methodology. 

6.2.1 MDP Model 

The MDP model generally has four main elements to be defined: the state space, the action space, 

the rewards, and finally, the TPM between the states. The states of the system to be maintained are 

defined by the deterioration level and age.  The system’s continuous deterioration condition is 

discretized into 𝑁 number of deterioration levels (DLs) {𝐷1, 𝐷2, 𝐷3, … , 𝐷𝑁} based on the 

application. Then, the state-space 𝑆 has 𝑛 discrete finite number of states  𝑆 = {𝑠1, 𝑠2, 𝑠𝑖, … , 𝑠𝑛}, 

each state  𝑠𝑖 = (DL, 𝑎𝑔𝑒). The failure of the system is defined by a certain DL; when the system 

reaches this DL, it is considered to have failed. The action space consists of 𝑚 different actions for 

each state 𝐴(𝑠𝑖) = {𝑎0, 𝑎1, 𝑎𝑗 , … , 𝑎𝑚}. The action space includes preventive and corrective 

replacements, do-nothing, and multi-level preventive repair actions. The multi-level preventive 

repair actions improve the system’s DL. The possibility of the multi-level preventive repair actions 

is based on the DL; e.g., if the DL is “as good as new,” no repair actions are possible. The execution 
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of each action results in a certain reward. The reward function is designed to meet the CBM 

strategy’s objective of maximizing the system’s RUL while keeping the maintenance cost at a low 

level. The reward function  𝑟𝑡(𝑠𝑖, 𝑎𝑗) =  RUL𝑡/𝐶(𝑠𝑖 , 𝑎𝑗), where RUL is estimated based on the 

system’s deterioration level after the maintenance activity at age 𝑡 and 𝐶(𝑠𝑖, 𝑎𝑗) is the maintenance 

action cost. The reason for this reward function design is to provide the RL with enough feedback 

about the effect of the different actions on the RUL together with their associated costs. Both the 

RUL and the maintenance cost are important factors to consider while deciding which maintenance 

action to perform. This reward function provides this kind of information in a relative way so the 

RL became capable of selecting the maintenance actions that minimize the cost over the system’s 

age. The proposed estimation technique for RUL is presented in section 6.2.2.  

As has been mentioned, the TPM that defines the transition between the different states is not 

needed. Since the solution approach is based on the RL method, the transition probability 

distribution is not needed. RL needs episodes of data that consist of tuples of state, action, and 

reward. The dynamics of the episodes are defined through the effect of the maintenance actions or 

the deterioration process. The effects of the maintenance actions and the deterioration are defined 

by the maintenance data and the data-driven deterioration prediction model, respectively. Figure 

6.2 shows how the deterioration prediction model is constructed. It also depicts that the 

deterioration prediction model considers the age besides the deterioration level as the age affects 

the deterioration process and considering it preserves the intrinsic character of the deterioration 

process. We can expect that at older ages systems tend to deteriorate with higher rates.   
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Trained data 
driven 

deterioration 
prediction 
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(DL)t+Δt

Historical 
deterioration 

data         

Data driven 
Prediction Model 

Hyperparameter 
optimization 

processs  

Figure 6.2 Deterioration prediction model. 

6.2.2 RUL Estimation Method  

The proposed reward function 𝑟𝑡(𝑠𝑖, 𝑎𝑗) =  RUL𝑡/𝐶(𝑠𝑖, 𝑎𝑗)  consists of two elements, the 

remaining useful life RUL𝑡 of the system at age 𝑡 just after the maintenance action, and the 

maintenance action cost 𝐶(𝑠𝑖, 𝑎𝑗) The action costs are obtained from historical maintenance data. 

The estimation technique of the RUL proposed is based on a reliability approach. The formula used 

to estimate RUL Eq. 6.1 is adopted from (Elsayed, Elsayed A, 2003; Ragab et al., 2019), where 

RUL𝑡 is the remaining useful life at a certain age 𝑡, 𝑅(𝑡𝑙), and 𝑅(𝑡𝑙−1) are the survival probabilities 

at different times and the difference between 𝑡𝑙−1 and 𝑡𝑙 is a time step.  

RUL𝑡 =  
∑ 𝑡𝑙(𝑅(𝑡𝑙−1) − 𝑅(𝑡𝑙))∞

𝑡𝑙=𝑡

𝑅(𝑡𝑙−1)
− 𝑡 Eq. 6.1 

According to the previous formula, the estimation of the RUL  requires a reliability or survival 

function. The KM estimate for survival function as shown in Eq. 2 is a nonparametric survival 

technique that does not rely on certain statistical assumptions (Klein & Moeschberger, 2006) and 

is adopted in the proposed methodology to estimate RUL. The choice of the KM model as a non-

parametric model to estimate the RUL is motivated by the concern to keep the proposed 

methodology generic and does not suffer from assumptions that limit its applicability, in the same 

way as the data-driven deterioration prediction model and  RL are selected. In Eq. 6.2  𝑅(𝑡) is the 

survival function at time 𝑡, 𝑡𝑖 is a time when at least one failure took place, 𝑑𝑖 is the number of 
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systems that have failed up to the time 𝑡𝑖, and 𝑛𝑖 is the number of systems that have survived up to 

time 𝑡𝑖. 

𝑅(𝑡) =  ∏ (1 −
𝑑𝑖

𝑛𝑖
)

𝑖:𝑡𝑖≤𝑡
 Eq. 6.2 

In the proposed RUL estimation method, the failure is defined by reaching a certain DL, then the 

times or ages to reach this certain DL are the failure times that are needed. During its life, the 

system undergoes different DLs until it reaches failure. Based on lifetime samples, we can construct 

a KM curve for each DL using the times at which the different systems reached each DL, as such 

the failure event is not only the catastrophic failure that is traditionally used in the literature but 

also failure can be defined by reaching certain deterioration level.  Figure 6.3(a) shows an example 

for different deterioration curves, and it shows four deterioration levels (D1, D2, D3, and D4) using 

the times at which the system reached the different predetermined DL a KM curve corresponding 

to this DL can be construed. The KM curves that are shown in Figure 6.3(b) are constructed for 

each DL using the data from the different deterioration curves where the deterioration reaches a 

certain level. 
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Figure 6.3 Example of the KM survival curves characterizing three DLs. 

Using Eq. 6.1, the RUL is estimated based on the KM survival curve of the corresponding DL. 

Doing so, the estimation of the RUL considers not only the system’s age but also its DL and the 

survival curve that it corresponds to.  Two scenarios for estimating the RUL will be followed and 

their results will be compared. The difference between the two scenarios is the state that is based 
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on which the RUL is estimated, as Figure 6.4 shows. In the first scenario, the RUL is estimated 

directly after the maintenance action is performed. While the first scenario provides a shortsighted 

estimation for the RUL, the second scenario provides a farsighted estimation. In other words, the 

second scenario provides more information about how the deterioration process will affect the 

system’s RUL in the future. Such information could help a RL agent to take better actions. The 

strategies that can be obtained are based on the two scenarios will be compared in order to 

investigate the effect of exchanging the RUL estimation for the reward function on the obtained 

CBM strategy. 

RUL estimation based 
reliability estimation by KM

𝑠 = (𝐷𝐿, 𝑎𝑔𝑒)  𝑠𝑛𝑒𝑤 = (𝐷𝐿𝑛𝑒𝑤 , 𝑎𝑔𝑒) 
Action

𝑠′ = (𝐷𝐿′ , 𝑎𝑔𝑒 + ∆𝑡)  

Scenario 2Scenario 1

Trained data 
driven 

deterioration 
prediction model 

 

Figure 6.4 Two scenarios to estimate the RUL. 

6.2.3 RL Based Solution 

RL is a machine learning branch that concerns the decision-making problem. The RL’s agent learns 

and provides optimal actions by interacting with the environment. The environment that represents 

the problem should be structured as MDP. The RL’s agent observes the state, takes an action, and 

it receives a reward. The agent aims to maximize the return 𝐺𝑡 by taking the optimal actions at each 

time step 𝑡 over a certain time horizon 𝑇 based on the problem as shown in Eq. 6.3. By definition, 

the return is the total discounted reward 𝑟. 

𝐺𝑡 =  𝑟𝑡+1 +  𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + 𝛾3𝑟𝑡+4 + ⋯ + 𝛾𝑇−1𝑟𝑇 =  ∑ 𝛾𝑙

𝑇−1

𝑙=0

𝑟𝑡+𝑙+1 Eq. 6.3 
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The discounting factor γ∈[0,1) avoids the infinite return values for continuous problems and also 

helps determine a present value for future rewards. 

Different algorithms are proposed in the domain of RL. Q-learning is an off-policy algorithm based 

on the temporal difference (TD) approach (Sutton and Barto 2018). Q-learning learns the optimal 

policy by evaluating the value function 𝑄(𝑠, 𝑎) of the state action pairs, as shown in Eq. 6.4. 

𝑄(𝑠𝑡, 𝑎𝑡) =  𝑄(𝑠𝑡, 𝑎𝑡) +  𝛼 [𝑟𝑡+1 + 𝛾𝑚𝑎𝑥 𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] Eq. 6.4 

 

The TD approach makes updates after each time step and does not wait until the termination of the 

task or the episode to update 𝑄(𝑠, 𝑎). Generally, RL agents could choose the actions either on-

policy or off-policy. An off-policy update for the value function is based on the optimal action-

value function of the next state, regardless of the policy followed (Sutton & Barto, 2018). Figure 

6.5 shows a schematic representation of the proposed solution technique and basic, simplified steps 

of the Q-learning algorithm, adapted to our problem.      
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Environment that returns the new 
state and reward after each action. 

 Action(t)
(Maintenance action)

State(t+1) 
(The system state)

Reward(t+1) 
(Maintenance action cost 

& Remaining useful life)

RUL estimation based 
reliability approach and KM

𝑠 = (𝐷𝐿, 𝑎𝑔𝑒)  𝑠𝑛𝑒𝑤 = (𝐷𝐿𝑛𝑒𝑤 , 𝑎𝑔𝑒) 
Action

𝑠′ = (𝐷𝐿′ , 𝑎𝑔𝑒 + ∆𝑡)  

Scenario 2Scenario 1

Trained data 
driven 

deterioration 
prediction model 

Q-learning algorithm steps 

Initialize arbitrary values 𝑄(𝑆, 𝐴) ∀ 𝑠 = (DL, 𝑎𝑔𝑒)  ∈  𝑆, 𝑎 ∈  𝐴(𝑠) 

Note 𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒) = 0 

while 𝑙 ≤ 𝑛episod 

Choose starting state 𝑠 = (DL, 𝑎𝑔𝑒)  ∈  𝑆  

Choose 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎 ∈  𝐴(𝑠𝑖) following ε-greedy approach.  

Get the reward 𝑟𝑡+1 = 𝑟(𝑠, 𝑎) = 𝑅𝑈𝐿/𝐶(𝑠, 𝑎)  and observe the next 

state 𝑠′  

Update the state-action pairs value function: 

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) +  𝛼 [𝑟𝑡+1 +  𝛾 𝑚𝑎𝑥𝑄(𝑠′ , 𝑎′ ) − 𝑄(𝑠, 𝑎)] 

Update: 𝑠 = 𝑠′ , 𝑎 = 𝑎′  

Continue until termination takes place either by failure or preventive 

replacement 

𝑙 = 𝑙 + 1  

𝑛episod: number of episodes. 𝛼: learning rate. 𝛾: discounting factor. 𝜀: threshold 

for acting greedy. 

 

 

 

 

RL agent based on Q-learning

 

Figure 6.5 Schematic representation of the proposed model-free RL solution technique. 

6.3 Case Study 

The objective of this section is to illustrate and examine the applicability of the proposed 

methodology by applying it to solve a real CBM problem concerning identical sheet metal culverts. 

The culverts are inspected regularly, and their deterioration is assessed using different measures 

that are concluded and represented in a single deterioration condition by domain experts. The 

deterioration condition has a 0-100 range scale, this range is discretized – by the domain experts - 

into five DLs, as Table 6.1 shows. The DL for a culvert could be improved by multi-level 
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preventive repair actions proposed in Table 6.2. The other possible actions are a do-nothing action, 

preventive replacement action, and corrective replacement action performed in case of failure.   

Table 6.1 Discrete deterioration levels. 

DL DL description Deterioration condition range 

A Perfect 85 or more. 

B Very good 71 – 84 

C Good 56 – 70 

D Acceptable 41 – 55 

E Bad (Failure) 40 or less. 

 

Table 6.2 The actions and their description. 

Action Description 

𝑎0 Do-nothing action allows the system to deteriorate. 

𝑎1 Repair action improves the system’s DL by 1 level. 

𝑎2 Repair action improves the system’s DL by 2 levels. 

𝑎3 Repair action improves the system’s DL by 3 levels. 

𝑃𝑟 
Preventive replacement action returns the system to 

as good as new conditions. 

as new state. 
𝐶𝑟 

Replacement action is performed in case of failure, 

and it returns the system to as good as new 

conditions. 

6.3.1 CBM Strategy Model 

As discussed in section 6.2, MDP is the base model, so for this culverts system, the elements of the 

MDP have to be defined, except the transition probability matrix, which is not needed.  

The state-space 𝑺 The states will be represented by both the culvert’s DL and the culvert’s age  

𝑠 = (𝐷𝐿, 𝑎𝑔𝑒). Based on the available deterioration data, the maximum age that a culvert could be 

reached is 80 years. A time step of 10 years is used; this time step is appropriate to update the DL 

for this application. The combination of the discrete DL and the age results in 32 states, excluding 

the new state when the age is zero, and the failure states, which are defined by reaching DL E at 

any age.  

The action space 𝑨(𝒔): Do-nothing and preventive replace actions are possible for all of the states. 

The possibility for multi-level preventive repair actions depends on the DL of the state. For DL 

equal to A, no repair actions are possible, for DL equal B 𝑎1 action is possible, for DL equal C 𝑎1, 
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and 𝑎2 are possible and for DL equal D 𝑎1, 𝑎2, and  𝑎3 actions are possible. If the DL reaches E, 

only the corrective replacement action is possible. The size of the state-action space is 120 and 

considers only the age up to 80 years, but if the age exceeds 80 years during learning, the new state 

is added to the model and the optimal action for it is obtained. 

The reward 𝒓(𝒔, 𝒂) In the proposed model, the reward is related to the RUL of the system after 

performing the maintenance action and the performed action cost  𝑟𝑡(𝑠𝑖, 𝑎𝑗) =  RUL𝑡/𝐶(𝑠𝑖, 𝑎𝑗) 

year/ dollars per unit length of the culvert (year/$/u.L)., The preventive replacement action cost is 

5100 $/u.L, the corrective replacement cost is 15100 $/u.L, the cost for a do-nothing action is 100 

$/u.L, and the costs of the rest of the actions differ based on the DL, the age as shown in Table 6.3. 

The costs of the multi-level preventive repairs shown in Table 6.3 depends on the system’s state 

and not only the action, i.e. the same action has different costs when performed at different system 

states. Also, the corrective replacement cost is almost three times the preventive replacement that 

exhibits disfavor of the failure event. The RUL is estimated as discussed in section 6.2.2 following 

two scenarios, as Figure 6.4 shows.  

Table 6.3 Costs of the actions at different states ($/u.L). 

(𝑠, 𝑎) 𝐶(𝑠, 𝑎) (𝑠, 𝑎) 𝐶(𝑠, 𝑎) (𝑠, 𝑎) 𝐶(𝑠, 𝑎) 

((𝐵, 10), 𝑎1) 213.3 ((𝐶, 10), 𝑎1) 230 ((𝐶, 10), 𝑎2) 320 

((𝐵, 20), 𝑎1) 226.67 ((𝐶, 20), 𝑎1) 260 ((𝐶, 20), 𝑎2) 440 

((𝐵, 30), 𝑎1) 240 ((𝐶, 30), 𝑎1) 290 ((𝐶, 30), 𝑎2) 560 

((𝐵, 40), 𝑎1) 253.3 ((𝐶, 40), 𝑎1) 320 ((𝐶, 40), 𝑎2) 680 

((𝐵, 50), 𝑎1) 266.67 ((𝐶, 50), 𝑎1) 350 ((𝐶, 50), 𝑎2) 800 

((𝐵, 60), 𝑎1) 280 ((𝐶, 60), 𝑎1) 380 ((𝐶, 60), 𝑎2) 920 

((𝐵, 70), 𝑎1) 293.3 ((𝐶, 70), 𝑎1) 410 ((𝐶, 70), 𝑎2) 1040 

((𝐵, 80), 𝑎1) 306.67 ((𝐶, 80), 𝑎1) 440 ((𝐶, 80), 𝑎2) 1160 

((𝐷, 10), 𝑎1) 253.3 ((𝐷, 10), 𝑎2) 413.3 ((𝐷, 10), 𝑎3) 680 

((𝐷, 20), 𝑎1) 306.67 ((𝐷, 20), 𝑎2) 626.67 ((𝐷, 20), 𝑎3) 1160 

((𝐷, 30), 𝑎1) 360 ((𝐷, 30), 𝑎2) 840 ((𝐷, 30), 𝑎3) 1640 

((𝐷, 40), 𝑎1) 413.3 ((𝐷, 40), 𝑎2) 1053.3 ((𝐷, 40), 𝑎3) 2120 

((𝐷, 50), 𝑎1) 466.67 ((𝐷, 50), 𝑎2) 1266.67 ((𝐷, 50), 𝑎3) 2600 

((𝐷, 60), 𝑎1) 520 ((𝐷, 60), 𝑎2) 1480 ((𝐷, 60), 𝑎3) 3080 

((𝐷, 70), 𝑎1) 573.3 ((𝐷, 70), 𝑎2) 1693.3 ((𝐷, 70), 𝑎3) 3560 

((𝐷, 𝑎𝑔𝑒
≥ 80), 𝑎1) 

626.67 
𝐶((𝐷, 𝑎𝑔𝑒 
≥ 80), 𝑎2) 

1906.67 
((𝐷, 𝑎𝑔𝑒 
≥ 80), 𝑎3) 

4040 
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Using the historical deterioration data, a prediction model is trained using the Random Forest (RF) 

algorithm. RF is a tree-based algorithm that shows advances in the prediction tasks with reasonable 

amounts of data (Falamarzi et al., 2019; James et al., 2013). The model is trained to predict the 

system’s DL after any time step 𝛥𝑡 based on its current age and DL. The model’s hyperparameters 

are tuned through grid search to obtain the prediction model with the highest possible accuracy. 

The final optimized model training accuracy is 82.7%, and the testing accuracy is 74%. The 

hyperparameters of the final optimized model are: the number of trees in the forest is 500 trees, the 

maximum depth of the trees is 9, the splitting criteria is Gini, and the number of features to split 

on is the total number of features. The model training and testing accuracies are acceptable as the 

model is based on the categorical values for DL, not the continuous ones.   

6.3.2 The Results 

The described model is merged into the environment that represents the culvert. The Q-learning 

RL agent is trained to obtain the solution by interacting with the environment. The interactive 

training of the RL agent is trained using 2500 episodes. The episodes are terminated if failure takes 

place or if preventive replacement action is performed. The chosen value for the discounting factor  

𝛾 is 0.9 and for the learning rate 𝛼 is 0.1. As the task we have is episodical, which means it has 

explicit termination, the discounting factor should be selected to be near 1 (Pitis, 2019) and with 

the number of episodes taken to be 2500, a learning rate of 0.1 is suitable.  The exploration rate ɛ 

value decays over time to allow a high rate of exploration at the beginning of the training and a 

low rate towards the latest episodes. The starting value of ɛ is 1 and it keeps decays by small 

increments of  (𝑐1 ∗ 𝜀)/(𝑐2 ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝑛𝑢𝑚𝑏𝑒𝑟)  after each episode. The values for the 

two constants 𝑐1 and 𝑐2 are taken to be 0.25 and 0.5; such values allow a moderate decrease for ɛ.  

Table 6.4 summarises the case study parameters and Table 6.5 shows the solution obtained by the 

agent for the two scenarios of RUL estimation.  
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Table 6.4 Summary for the case study parameters. 

MDP model parameters 

Number of discrete deterioration levels 

State-space 𝑆 size  

State action pairs space size 

Deterioration prediction model 

5 

34+ 

120+ 

Random forest 

Q-learning based agent parameters 

Number of episodes  

Discounting factor 𝛾  

Learning rate 𝛼 

Exploration rate ɛ 

2500 

0.9 

0.1 

Decaying: 1 to 0.05 

 

Table 6.5 The optimal strategy obtained by the RL agent. 

State A 
Action 

State B 
Action 

Scenario1 Scenario2 Scenario1 Scenario2 

 (𝐴, 10) 𝑎0 𝑎0  (𝐵, 10) 𝑎1 𝑎1 

(𝐴, 20) 𝑎0 𝑎0 (𝐵, 20) 𝑎1 𝑎1 

(𝐴, 30) 𝑎0 𝑎0 (𝐵, 30) 𝑎1 𝑎1 

(𝐴, 40) 𝑎0 𝑎0 (𝐵, 40) 𝑎1 𝑎1 

(𝐴, 50) 𝑎0 𝑎0 (𝐵, 50) 𝑎1 𝑎1 

(𝐴, 60) 𝑎0 𝑎0 (𝐵, 60) 𝑎0 𝑎0 

(𝐴, 𝑎𝑔𝑒
≥ 70) 

𝑃𝑟 𝑃𝑟 
(𝐵, 𝑎𝑔𝑒 
≥ 70) 

𝑃𝑟 𝑃𝑟 

State C 
Action 

State D 
Action 

Scenario1 Scenario2 Scenario1 Scenario2 

 (𝐶, 10) 𝑎2 𝑎2  (𝐷, 10) 𝑎3 𝑎3 

(𝐶, 20) 𝑎2 𝑎2 (𝐷, 20) 𝑎3 𝑎3 

(𝐶, 30) 𝑎2 𝑎2 (𝐷, 30) 𝑎3 𝑎3 

(𝐶, 40) 𝑎2 𝑎2 (𝐷, 40) 𝑎3 𝑎3 

(𝐶, 50) 𝑎2 𝑎1 (𝐷, 50) 𝑎3 𝑎3 

(𝐶, 60) 𝑎1 𝑎1 (𝐷, 60) 𝑎3 𝑎2 

(𝐶, 𝑎𝑔𝑒
≥ 70) 

𝑃𝑟 𝑃𝑟 
(𝐷, 𝑎𝑔𝑒 
≥ 70) 

𝑃𝑟 𝑃𝑟 

𝑆𝑡𝑎𝑡𝑒 𝐸, 𝑎𝑛𝑦 𝑎𝑔𝑒, 𝐶𝑟 

 

Table 6.5 indicates that the two scenarios for estimating the RUL in the reward function yield 

similar strategies, except for two states (𝐶, 50) and (𝐷, 60). For the state (𝐶, 50) 𝑎2 repair action 

is selected based on scenario 1 versus 𝑎1  repair action selected based on scenario 2. For the state 

(𝐷, 60) 𝑎3 repair action is selected based on scenario 1 versus 𝑎2  repair action selected based on 
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scenario 2. The obtained actions based on scenario 2 are repair actions with less improvement effect 

on the DL for the two states. It can be observed that the two states have high DLs and old ages.  

6.3.3 Validation and Interpretation 

To validate the proposed methodology, the obtained results are compared with three baseline 

strategies. The comparison will be based on the average cost per unit of age. The three baseline 

strategies are:  

• Baseline 1. A CBM strategy that does not consider the RUL, and the reward function is 

based on the maintenance action cost, only to minimize the maintenance cost.  

• Baseline 2. A CBM strategy that uses the same reward function design as the one proposed 

with preventive repair, corrective repair, and do-nothing. It does not consider multi-level 

repair actions.  

• Baseline 3. A corrective maintenance strategy that only performs corrective replacement 

after failure.  

To obtain the baseline strategies, the Q-learning-based agent is trained based on the reward function 

and available maintenance actions for each strategy. Tables 6.6 and 6.7 show the first two baseline 

strategies, respectively. The third strategy is run to failure strategy.  To estimate the cost per unit 

of age, a simulation that follows the algorithm shown in Figure 6.6 is used. 

Table 6.6 Optimal results of Baseline 1 strategy. 

State Actio

n 
State Actio

n 
State Actio

n 
State Actio

n 

(𝐸, 𝑎𝑛𝑦 𝑎𝑔𝑒) 

 

𝐶𝑟 

(𝐴, 10) 𝑎0 (𝐵, 10) 𝑎1 (𝐶, 10) 𝑎2 (𝐷, 10) 𝑎2 

(𝐴, 20) 𝑎0 (𝐵, 20) 𝑎0 (𝐶, 20) 𝑎1 (𝐷, 20) 𝑎1 

(𝐴, 30) 𝑎0 (𝐵, 30) 𝑎1 (𝐶, 30) 𝑎0 (𝐷, 30) 𝑎1 

(𝐴, 40) 𝑎0 (𝐵, 40) 𝑎0 (𝐶, 40) 𝑎1 (𝐷, 40) 𝑃𝑟 

(𝐴, 50) 𝑎0 (𝐵, 50) 𝑎0 (𝐶, 50) 𝑎1 (𝐷, 50) 𝑃𝑟 

(𝐴, 60) 𝑎0 (𝐵, 60) 𝑎0 (𝐶, 60) 𝑎1 (𝐷, 60) 𝑃𝑟 

(𝐴, 𝑎𝑔𝑒 ≥ 70) 𝑃𝑟 (𝐵, 𝑎𝑔𝑒 ≥ 70) 𝑃𝑟 (𝐶, 𝑎𝑔𝑒 ≥ 70) 𝑃𝑟 (𝐷, 𝑎𝑔𝑒 ≥ 70) 𝑃𝑟 
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Table 6.7 Optimal results of Baseline 2 strategy. 

State Actio

n 
State Actio

n 
State Actio

n 
State Actio

n 

(𝐸, 𝑎𝑛𝑦 𝑎𝑔𝑒) 

 

𝐶𝑟 

(𝐴, 10) 𝑎0 (𝐵, 10) 𝑎1 (𝐶, 10) 𝑎2 (𝐷, 10) 𝑎2 

(𝐴, 20) 𝑎0 (𝐵, 20) 𝑎0 (𝐶, 20) 𝑎1 (𝐷, 20) 𝑎1 

(𝐴, 30) 𝑎0 (𝐵, 30) 𝑎1 (𝐶, 30) 𝑎0 (𝐷, 30) 𝑎1 

(𝐴, 40) 𝑎0 (𝐵, 40) 𝑎0 (𝐶, 40) 𝑎1 (𝐷, 40) 𝑃𝑟 

(𝐴, 50) 𝑎0 (𝐵, 50) 𝑎0 (𝐶, 50) 𝑎1 (𝐷, 50) 𝑃𝑟 

(𝐴, 60) 𝑎0 (𝐵, 60) 𝑎0 (𝐶, 60) 𝑎1 (𝐷, 60) 𝑃𝑟 

(𝐴, 𝑎𝑔𝑒
≥ 70) 

𝑃𝑟 
(𝐵, 𝑎𝑔𝑒
≥ 70) 

𝑃𝑟 
(𝐶, 𝑎𝑔𝑒
≥ 70) 

𝑃𝑟 
(𝐷, 𝑎𝑔𝑒
≥ 70) 

𝑃𝑟 

 

Inputs The maintenance strategy (mapping from state to action) 

The cost of maintenance actions. 

The deterioration prediction model. Initiate cost=0, age=0 

 𝑠 =  (𝐴, 0) start from new system state 
follow the maintenance strategy to determine the action.

𝑠 = (𝐷𝐿, 𝑎𝑔𝑒)  𝑠𝑛𝑒𝑤 = (𝐷𝐿𝑛𝑒𝑤 , 𝑎𝑔𝑒) 
Action 𝑠′ = (𝐷𝐿′ , 𝑎𝑔𝑒 + ∆𝑡)  Deterioration 

prediction model 

𝑠 =  𝑠′ 

cost= cost+ performed maintenance action cost 

age=age+Δt 

continue until preventive replacement or corrective replacement takes place.  

Average cost = cost/age ($/u.L/year) 
Figure 6.6 Algorithm for obtaining cost per unit age to compare maintenance strategies. 

 

Table 6.8 Average maintenance cost for all strategies considered. 

Maintenance strategy 
Average maintenance cost 

($/u.L/year) 

Proposed strategy, RUL based on 

scenario 1 
116.7 

Proposed strategy, RUL based on 

scenario 2 
108.9 

Baseline 1 strategy 137.5 

Baseline 2 strategy 137.5 

Baseline 3 strategy 310 
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The results for an average maintenance cost shown in Table 6.8 depict that the proposed reward 

function design that uses the RUL as part of optimization criteria leads to more cost-effective 

maintenance strategies. The two proposed CBM strategies (scenarios 1 and 2) outperform the three 

baseline strategies. It is important to note that Baseline 1 and Baseline 2 strategies are optimal 

according to their own optimization criteria, which minimizes the maintenance cost without 

considering the RUL. This means the proposed optimization criterion that is based on the RUL 

demonstrates better performance over the ordinary optimization criteria, based only on cost.  

In addition, it is worth noting that the two scenarios for selecting the state based on which the RUL 

is estimated yield different actions in some states, hence different average costs. Table 6.8 shows 

that scenario 2 outperforms scenario 1 and yields a lower average cost. As mentioned previously, 

the strategy based on scenario 2 chooses repair actions with less improvement effects for states 

with high deterioration levels and old ages. These actions have lower costs. The interpretation for 

this difference in the selection of the actions is related to the deterioration process. After the system 

is maintained in high deterioration levels and old age states, it witnesses a quick deterioration over 

the next 10 years of its age. Then, based on scenario 2, estimating the RUL based on the predicted 

DL state after 10 years, that gives the RL agent a better idea about what will happen in the future 

in terms of the system’s deterioration. In other words, scenario 1 overestimates the RUL as it only 

has the information based on the current system state and does not consider the deterioration. 

Considering current DL in states that would witness fast deterioration after maintenance leads to a 

selection of repair actions that have high improvement levels. These actions may not be the most 

cost-effective for such states.  We can conclude that scenario 2 provides a more farsighted reward 

for the RL agent, which allows the agent to select more cost-effective actions for such highly 

deteriorated states.   

6.4 Conclusion 

In this work, a novel CBM optimization methodology that combines data-driven deterioration 

prediction, RL method, and nonparametric survival techniques is developed. The objective is to 

maximize the system’s remaining useful life (RUL) while keeping the maintenance cost at a low 

level.  The deterioration process of the system is learned by a data-driven prediction model and 

introduced to the RL environment together with the MDP model and the RUL estimation method. 
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The proposed action space includes the usual preventive replacement, corrective replacement, and 

do-nothing actions besides multi-level preventive repair actions. The multi-level preventive repair 

actions improve the DL by certain amounts based on the action. The MDP transition probability 

distribution is not needed, as RL solution method needs only episodes of data that consist of 

sequential tuples of state, action, and reward. The reward function is designed to meet the CBM 

strategy objective using both RUL and maintenance actions cost. The proposed RUL estimation 

method is developed based on the Kaplan-Meier (KM) reliability model, which is a nonparametric 

survival technique that does not rely on any statistical assumptions. It is employed to estimate RUL 

in a way that considers the system’s condition defined by its DL. Two scenarios for estimating the 

RUL are considered. The difference between the two scenarios is the way in which the system’s 

deterioration process is considered. The first scenario is more concerned about the current 

deterioration level and estimates RUL based on that, and the second scenario considers the future 

effects of the deterioration process on the RUL estimation.   

The proposed methodology is applied to a case study. The case study contains a deterioration data 

set collected from identical sheet metal culverts and the possible maintenance actions and their 

costs. Through the proposed methodology, two optimal CBM strategies are developed and solved. 

Each of the two strategies is optimal according to its own scenario for the RUL estimation. The 

two strategies are identical, except for only two states of high DL and old age. Validation is carried 

out by comparing the average maintenance cost for the obtained strategies with three baseline 

strategies: CBM strategy without the RUL, CBM strategy without the RUL and the multilevel 

repair actions, and the corrective replacement after failure. The comparison shows that considering 

the RUL as an optimization criterion leads to more cost-effective maintenance strategies.   

The comparison also shows that the strategy based on scenario 2 is more cost-effective than the 

one based on scenario 1. The interpretation of the difference between the two scenarios is related 

to the deterioration process. In the highly deteriorated and old age states, quick deterioration takes 

place, even after maintenance.  Scenario 1 estimates the RUL based on the state just after 

maintenance, which does not provide much information about the future.  Scenario 2 estimation 

provides the RL agent with a better idea about what will happen in the future by allowing the 

deterioration over a time step, then it estimates the RUL. The actions obtained based on scenario 1 

for the highly deteriorated and old age states incorporate high costs, and the system does not benefit 
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from them over a long time as expected. In conclusion, scenario 2 provides a more farsighted 

reward for the RL agent, which allows the agent to select more cost-effective actions. The actions 

obtained based on scenario 1 for the highly deteriorated and old age states incorporate high costs, 

and the system does not benefit from them over a long time. In the light of this interpretation, 

scenario 2 is more favorable than scenario 1. Furthermore, a key finding is that the appropriate 

estimation of the RUL minimizes the maintenance strategy costs.  

We would like to also confirm that a significant characteristic of the proposed methodology is that 

it does not depend on any prior assumptions other than the Markovian property for the MDP; this 

makes the model generic and applicable to a wide range of problems, as it only requires 

deterioration data. 

Future research may investigate two studies: the effect of using different RUL estimation 

approaches other than the one that is adopted, the additional use of RUL to optimize the inspection 

interval aside from using it in the reward function,  and the effect of using different deterioration 

prediction models on the optimal CBM strategy.   
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Abstract 

This paper proposes a data-driven modeling and solution method for an optimal Condition-Based 

Maintenance strategy that considers multi failure modes subject to multi-level preventive repairs, 

in addition to the ordinary preventive and corrective replacements. The strategy is modeled as a 

Markov decision process and combines a data-driven deterioration prediction model, Cox 

proportional hazard model, and reinforcement learning method to minimize the average 

maintenance cost. The deterioration process related to each failure mode is learned from 

deterioration data using a data-driven model that is based on machine learning and then used as a 

state predictive model to realize the environment of the reinforcement learning model. A reward 

function that comprises the remaining useful life of the system and maintenance costs is designed 

in order to meet the optimal maintenance actions over the system deterioration age. The system’s 

remaining useful life is estimated based on the undertaken maintenance action at a certain age and 

the deterioration conditions, using the Cox proportional hazard model that represents the survival 

curves under the competitive failure modes. A case study based on real data is used to illustrate the 

proposed maintenance strategy. The optimal solution takes the form of mapping from state-to-

action and not just a condition-based replacement threshold related to each failure mode, as is often 

widely suggested. The optimal solution obtained is compared with other benchmark strategies to 

demonstrate its effectiveness and cost-savings abilities over time. 

7.1 Introduction 

A Preventive Maintenance (PM) strategy (or policy) is defined as a set of actions carried on a 

system based on certain decision criteria to sustain or restore its safely functioning state (Ahmad 

et al., 2012). An appropriate PM strategy must satisfy the increasing demand to run the systems at 
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a high reliability level and at a low cost. PM has two main categories, time-based maintenance 

(TBM) and Condition-Based Maintenance (CBM) (Peng et al., 2010; Shin & Jun, 2015; Tran & 

Yang, 2012). TBM is periodic preventive maintenance that is carried out in fixed time intervals 

recommended by the systems’ manufacturer or based on maintenance experts' experience (Ahmad 

et al., 2012; de Jonge et al., 2017).  Differently, CBM is carried out based on the systems’ 

deterioration condition (Hu, J. & Zhang, 2014; Jardine et al., 2006). The improvements in data 

acquisition, storage, and analytics assist the CBM strategies in being more cost-efficient than TBM 

ones (Bousdekis et al., 2018; Sarazin et al., 2021). While the deterioration of an industrial system 

implies complex processes related to several failure modes, most of the existing CBM strategies 

consider a single deterioration failure mode (Braga & Andrade, 2019; Mandiartha, Duffield, 

Razelan, et al., 2017; Sancho et al., 2021; Wang, J. et al., 2019). According to soft or deterioration 

failure modes, which are deterioration processes that progressively affect the system’s 

performance, failure takes place when the deterioration level exceeds a certain predetermined 

threshold. In such cases, the system’s deterioration is modeled using a gamma process, Winner 

process, Markov decision process (MDP), or semi-Markov decision process (SMDP) (Cholette et 

al., 2019; Fan et al., 2019; Kumar et al., 2018; Liu et al., 2021). Other literature has considered 

sudden failures besides the deterioration failure modes, which also refer to hard failure modes. 

Hard failure modes are more serious and lead to considerable costs and downtime when they occur 

(Sharifi, M. & Taghipour, 2020).  

Li, Y. et al. (2017) proposed a CBM model for a system with two failure modes i.e., a deterioration 

failure mode and a shock failure mode. The deterioration failure mode is represented using a 

Winner process and the shocks are assumed to follow a non-homogenous Poisson process. The 

system state can either be normal, defective or fail. In case of a failure state, a corrective 

replacement is performed and two PM thresholds are determined to perform the PM actions in both 

the normal and defective states. Through a numerical example, the CBM strategy has proven that 

the solution obtained for the normal and defective states yields a lower average maintenance cost. 

The same problem is addressed by Li, X. et al. (2019) by proposing an optimal maintenance policy 

for gearbox subjected to two failure modes, namely a deterioration failure and a catastrophic 

failure. The maintenance optimization problem is modeled and solved using a semi-Markov 

decision process (SMDP) framework with three states (i.e. “good”, “warning” and “failure” states). 
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The preventive replacement is performed when the condition of the gearbox exceeds the warning 

state threshold, and the corrective replacement is undertaken when the failure state is reached. The 

obtained results have demonstrated that taking into consideration the two failure modes helps in 

the early detection of failure and improves the availability when it was compared with the 

traditional TBM strategy. Gao et al. (2020) proposed a comparable model to jointly optimize the 

maintenance and production for a system with soft and hard failure modes. While soft failure 

follows an exponential distribution and occurs after warning signs, hard failure occurs suddenly 

according to a Weibull distribution with no warning. Preventive maintenance, complete 

replacement, and minimal repair actions are considered in the maintenance strategy. Using two 

numerical examples based on the proposed model, a sensitivity analysis showed that improving the 

system reliability and avoiding failures are effective ways to increase profit. Comparable studies 

are proposed in (Diyin, Jinsong, et al., 2015; Jian et al., 2016; Rahimikelarijani et al., 2020; Rui & 

Makis, 2020; Sharifi, Mani & Taghipour, 2021) for the benefit of readers.   

Regardless of the improvements to the CBM achieved by the above-mentioned literature, they all 

are limited by 1. Assuming that only one soft failure mode exists in the systems, which is not the 

case in practice. 2. The deterioration model may depend on certain simplifying assumptions about 

the shape or the progression of the deterioration process. 3. Only preventive replacement action is 

considered, with limited exceptions, where minimal repair action is considered. 4. The obtained 

solution is defined as the threshold for preventive replacement. Most CBM models have overlooked 

the existence of multiple soft failure modes and multi-level preventive repair actions that improve 

the deterioration failure modes. These actions return the system deterioration conditions to 

somewhere between as-good-as new and as-bad-as old, aside from the preventive replacement 

action that improves the system to as-good-as new condition.  

This paper proposes a generic CBM strategy that considers multi soft failure modes, subject to 

multi-level preventive repair actions based on a data-driven modeling and solution method. The 

model combines MDP, a data-driven deterioration model that is based on machine learning, the 

Cox proportional hazard model (PHM), and reinforcement learning (RL) as a solution method to 

minimize the average maintenance cost over time. The MDP acts as a general framework for the 

maintenance optimization problem since it proposes an appropriate model for sequential decision-

making under uncertainties where the maintenance actions affect not only the immediate situation 
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but its future as well (Puterman, 2014). The deterioration of the system that incorporates multi soft 

failure modes is represented using a machine learning prediction model, which is normally generic 

and does not have any assumptions related to the nature of the deterioration shape or progression. 

The Cox PHM is a reliability-based model that is used in many applications of CBM strategies to 

describe the system's survival based on its age and deterioration conditions (Chen, C. et al., 2020; 

Zeyang et al., 2014). It is a regression model that defines a hazard-based on a baseline hazard 

function and a parametric effect of the deterioration conditions. In doing so, the Cox model is an 

appropriate reliability-based approach to enable remaining useful life (RUL) estimation, which will 

be used later in the reward function of the RL method. The RL method is developed to obtain the 

optimal maintenance strategy in the form of mapping from a state to action. Therefore, unlike the 

widely proposed CBM models that provide a threshold for preventive replacement, for each state 

that represents a certain deterioration condition, the optimal action is determined. Literature that 

adopted RL as the solution method for maintenance problems has similar limitations as the CBM 

models disused earlier  (Adsule et al., 2020; Kuhnle et al., 2019; Ling et al., 2018; Wang, X. et al., 

2016). Also, most of those models consider only the preventive replacement action and use the 

negative value of the maintenance cost in the RL reward function to minimize the average 

maintenance cost. In the proposed CBM model, a meaningful reward function is designed 

considering the systems’ RUL to obtain a more cost-effective maintenance strategy.  

Therefore, the proposed CBM strategy addresses the overlooked CBM problem of the system with 

multi soft failure modes through a generic data-driven model and solution method. The rest of this 

paper is arranged as follows. Section 7.2 provides a detailed description of the CBM strategy 

developed, i.e., the MDP model, the deterioration prediction model and RUL estimation, and RL 

method modeling. Section 7.3 applies the proposed CBM strategy to a case study based on real 

data. The objective of the case study is to examine the optimality of the CBM strategy by comparing 

the obtained solution to other benchmark strategies to demonstrate its effectiveness and cost 

savings over time. Section 7.4 highlights the main findings of the proposed CBM model and future 

research challenges. 
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7.2 CBM Model Development 

We propose a CBM model for systems that witness dependent soft multi failure modes. This model 

differs from the above-discussed models in three main ways: (1) It considers dependent soft multi 

failure modes and their effects on the systems’ deterioration condition through a data-driven 

prediction model that is based on machine learning. (2) It employs the RUL of the system in a 

reward function that serves the CBM strategy of maximizing the RUL and minimizing the 

maintenance cost. (3) It takes into account the possible multilevel preventive repair actions that are 

overlooked by most of the existing CBM strategies.  

7.2.1 MDP Model 

The proposed CBM strategy utilizes MDP as a general model for the optimization problem. The 

MDP model is defined using a tuple of five elements (𝑆, 𝐴, 𝑃, 𝑟, 𝛾). 𝑆 is the state space that consists 

of 𝑛 finite number of states. The state 𝑠𝑖  ∈ 𝑆 defines the system deterioration condition using 

different elements, in the proposed model ∀𝑠𝑖 ∈ 𝑆 = (𝐹𝑀𝐿1, 𝐹𝑀𝐿2, … , 𝐹𝑀𝐿𝑗  , … , 𝐹𝑀𝐿𝑘, 𝐷,

𝐴𝑔𝑒), where 𝐹𝑀𝐿𝑗  denotes failure mode 𝑗 level, 𝑘 is the total number of failure modes, 𝐷 is the 

system’s deterioration level, 𝐴𝑔𝑒 is the system’s calendar age. The system’s deterioration level 𝐷 

is obtained based on the different failure mode levels 𝐷 = 𝑓(𝐹𝑀𝐿1, 𝐹𝑀𝐿2, … , 𝐹𝑀𝐿𝑘), and the 

system’s failure is observed when 𝐷 reaches a certain threshold. 𝐴 denotes the action space. There 

is a set of possible maintenance actions 𝐴(𝑠𝑖) = {𝑎0, 𝑎1, ….  𝑎𝑚}  ∀𝑠𝑖 ∈ 𝑆, the possible number of 

actions 𝑚 depends on the state 𝑠𝑖. 𝑃 is the state transition probability matrix (TPM) that is not 

needed in our case thanks to RL. 𝑟 represents the reward function that divides the remaining useful 

life at a certain state 𝑠𝑖  (RUL𝑠𝑖
) by the maintenance cost 𝐶(𝑠𝑖, 𝑎𝑙) as follows 𝑟(𝑠𝑖, 𝑎𝑙) =

RUL𝑠𝑖

𝐶(𝑠𝑖, 𝑎𝑙)
⁄ . This customized reward function aims to yield a more cost-effective maintenance 

strategy. Finally, 𝛾 ∈ [0,1) denotes the reward discounting factor used to decide the importance of 

future rewards.  

7.2.2 Deterioration Prediction and RUL Estimation 

Figure 7.1 depicts the general work frame for deterioration prediction using a data-driven model 

that is based on machine learning. The Random Forest (RF) algorithm is adopted to model the 
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system deterioration, taking into consideration the effect and dependency of various failure models. 

RF is a tree-based algorithm that shows advances in the prediction tasks with reasonable amounts 

of data (Falamarzi et al., 2019; James et al., 2013). Each of the failure modes is modeled using a 

prediction model that predicts the failure mode level 𝐹𝑀𝐿𝑗𝑡+𝛥𝑡 at 𝐴𝑔𝑒𝑡+𝛥𝑡  based on its level, the 

levels of all the other failure modes at 𝑡 , the 𝐴𝑔𝑒𝑡, and the time step 𝛥𝑡 that represents the 

difference in age. This prediction model preserves the dependency between the failure modes by 

including all failure modes as independent variables for the prediction. Therefore, the predicted 

level for any of the failure modes is affected by the levels of the other failure modes. The same 

approach is applied to model the system’s deterioration level 𝐷; it is defined based on the levels of 

the different failure modes and it is obtained using a prediction model that uses the levels of failure 

modes and age, as shown in Figure 7.2.  

 

FMLj 

Prediction 
Model

𝐹𝑀𝐿1𝑡
, 𝐹𝑀𝐿2𝑡  , … , 𝐹𝑀𝐿𝑘𝑡

, 𝐴𝑔𝑒𝑡 , 𝛥𝑡 𝐹𝑀𝐿𝑗 𝑡+𝛥𝑡
 

 

Figure 7.1 Machine learning prediction model for failure mode FMLjt+Δt
. 

 

D
 Prediction 

Model

𝐹𝑀𝐿1𝑡+𝛥𝑡
, 𝐹𝑀𝐿2𝑡+𝛥𝑡

, … , 𝐹𝑀𝐿𝑘𝑡+𝛥𝑡
, 𝐴𝑔𝑒𝑡+𝛥𝑡    𝐷𝑡+𝛥𝑡 

 

Figure 7.2 Machine learning prediction model for system’s deterioration level  Dt+Δt. 

A reliability-based method to estimate the RUL is adopted from (Elsayed, Elsayed A, 2003) and 

customized to our proposed model. Eq. 7.1 defines an estimation for the system’s RUL, where 𝑅(𝑡) 

is the reliability function at time t and 𝑓(𝑡) is a probability-density-function.  

RUL =  
1

𝑅(𝑡)
∫ 𝜏𝑓(𝜏)𝑑𝜏 − 𝑡

∞

𝑡

 Eq. 7.1 
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As previously discussed, the Cox model assesses the system’s reliability considering its 

deterioration condition, which is based on multiple failure modes. The general form for Cox PHM 

is shown in Eq. 7.2 (Cox, 1972; Jardine et al., 2006; Lin, D et al., 2006) where ℎ𝑜(𝑡) is the baseline 

hazard function that describes the risk over time when the covariates have no effect,  ψ =

(𝜓1, 𝜓2, 𝜓𝑖, … , 𝜓𝑝)  are 𝑝 covariates’ coefficients and 𝑋 = (𝑥1, 𝑥2, 𝑥𝑖 , … , 𝑥𝑝)  are 𝑝 covariates. In 

this work, the covariates are the failure mode levels (𝐹𝑀𝐿1, 𝐹𝑀𝐿2, … , 𝐹𝑀𝐿𝑗  , … , 𝐹𝑀𝐿𝑘) and all the 

possible interactions between them (𝐹𝑀𝐿1 ∗ 𝐹𝑀𝐿2, 𝐹𝑀𝐿1 ∗ 𝐹𝑀𝐿3, … , 𝐹𝑀𝐿𝑘−1 ∗ 𝐹𝑀𝐿𝑘).  

h(t, x) = ℎ𝑜(𝑡) exp(∑ 𝜓𝑖
𝑝
𝑖=1 𝑥𝑖) =  ℎ𝑜(𝑡) exp (ψ𝑋)   Eq. 7.2 

Using Eq. 7.2 and based on Cox PHM, Eq. 1 is reformulated as shown in Eq. 7.3. It provides an 

estimation for the RUL (t, X) at certain time 𝑡 and certain covariate values 𝑋, which are defined 

based on the current system state 𝑠𝑖 = (𝐹𝑀1, 𝐹𝑀2, … , 𝐹𝑀𝑗  , … , 𝐹𝑀𝑘 , 𝐷, 𝐴𝑔𝑒)  ∈ 𝑆 . Eq. 7.3 is 

demonstrated in the appendix.    

RUL(t, X) =  
1

𝑅𝑜(𝑡)exp (ψ𝑋) ∫ 𝑅𝑜(𝜏)exp (ψ𝑋)∞

𝑡
 𝑑𝜏 

where 𝑅𝑜(𝑡) = exp (− ∫ ℎ𝑜(𝜏)𝑑𝜏
𝑡

0
)  

Eq. 7.3 

In Eq. 7.3, there is a need to estimate 𝑅𝑜(𝑡) using ℎ𝑜(𝑡). Different methods can be used to estimate 

ℎ𝑜(𝑡). It can be modeled using different distributions such as Exponential, Weibull, or normal 

distribution. Also, ℎ𝑜(𝑡), can be estimated based on the Breslow estimator, which is a 

nonparametric estimator (Lin, DY 2007; Xia et al., 2018). In this work, the estimation of ℎ𝑜(𝑡) is 

based on the nonparametric Breslow estimator that is shown in Eq. 7.4 and Eq. 7.5 (Breslow, N., 

1972; Breslow, N. E. & Wellner, 2007; Xia et al., 2018). The Breslow estimator is selected to avoid 

any assumptions about ℎ𝑜(𝑡) that may limit the applicability of the RUL estimation to certain 

applications. In Eq. 7.5 𝑑𝑗 is the number of failures at time 𝑦𝑗, ℛ(𝑦𝑗) is the set of 𝑘 systems that 

are still at risk at time 𝑦𝑗, and 𝑋𝑘 are the corresponding covariates to ℛ(𝑦𝑗). 

𝑅𝑜(𝑡) = exp (− ∫ ℎ𝑜(𝜏)𝑑𝜏
𝑡

0

) = exp −Λ𝑜(𝑡) Eq. 7.4 
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Λ𝑜(𝑡) = ∑ (
𝑑𝑗

∑ exp (ψ𝑋𝑘)
𝑘∈ℛ(𝑦𝑗)

)𝑗:𝑦𝑗≤𝑡    Eq. 7.5 

The RUL in this case is an optimistic estimation since it assumes that the system will stay at the 

same deterioration condition until failure takes place, which is not true. Over time, the system 

deterioration condition gets worse until failure takes place. 

To have a more realistic estimation for the RUL𝑠𝑖
 to be used in the proposed reward function, an 

average estimation for the RUL is obtained. To clarify this, let us assume a simple example of a 

system with a single failure mode that has four levels (1, 2, 3,4) where 4 is the best level of the 

failure mode and 1 is the most deteriorated level. For each of the levels, a survival curve can be 

constructed using the Cox model. Suppose that at age t, the system is at level 3. This system will 

keep deteriorating until failure takes place, and it will witness the other levels 2 and 1 before failure. 

Through Eq. 1, the RUL estimation will assume that the system remains in level 3 until failure 

takes place, which is not true. To overcome this problem, we average the RUL estimations given 

by each failure mode level 3, 2, and 1 from time t until failure, as Figure 7.3 shows.  

Starting from any state  𝑠𝑖 = (𝐹𝑀𝐿1𝑡
, 𝐹𝑀𝐿2𝑡 , 𝐹𝑀𝐿𝑗𝑡

, 𝐷𝑡, 𝐴𝑔𝑒𝑡), get the failure modes levels and the age 𝑡. 

While no failure:  

Step1: Use (𝐹𝑀𝐿1𝑡
, 𝐹𝑀𝐿2𝑡 , 𝐹𝑀𝐿𝑗𝑡

, … , 𝐹𝑀𝐿𝑘𝑡
, 𝐹𝑀𝐿1𝑡

∗ 𝐹𝑀𝐿2𝑡
, 𝐹𝑀𝐿1𝑡

∗ 𝐹𝑀𝐿3𝑡
, … , 𝐹𝑀𝐿𝑘−1𝑡

∗ 𝐹𝑀𝐿𝑘𝑡
) as input 

covariates to the Cox PHM to get the survival probabilities based on these covariates’ values.  

Step2: Estimate RUL as   RUL𝑠𝑖
= RUL(t, X) =  

1

𝑅𝑜(𝑡)exp (ψ𝑋) ∫ 𝑅𝑜(𝜏)exp (ψ𝑋)∞

𝑡
 𝑑𝜏 

Step3: Keep a record of RUL estimated. 

Step4: Get failure modes levels (𝐹𝑀𝐿1𝑡+𝛥𝑡
, 𝐹𝑀𝐿2𝑡+𝛥𝑡 , … , 𝐹𝑀𝐿𝑗𝑡+𝛥𝑡,, … , 𝐹𝑀𝐿𝑘𝑡+𝛥𝑡

) after ∆𝑡 using the prediction 

models.  

If no failure go to Step1 

else: terminate and go to step 6 

Step6: RUL𝑠𝑖
 = Average value of the obtained RUL estimations until failure, where 𝑠𝑖  is the current system state in which 

the deterioration condition is defined, and the age is 𝑡.   

Figure 7.3 RULsi
 Estimation method. 
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7.2.3 RL Modeling 

A RL model has two principal elements: the environment and the agent. The environment 

represents the problem’s model with which the agent interacts to progressively learn the optimal 

solution. The environment in our CBM optimization problem comprises the defined MDP, the 

deterioration prediction, and the Cox model for the RUL estimation. The objective of the RL agent 

is to learn the optimal strategy 𝜋 that maximizes the return for a problem modeled as MDP without 

using the MDP’s TPM. The total return is shown in Eq. 7.6, which calculates the total discounted 

reward following the strategy 𝜋. 

𝐺𝑡 =  (𝑟𝑡+1 +  𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + 𝛾3𝑟𝑡+4 + ⋯ + 𝛾𝑇−1𝑟𝑇)|𝜋 =  ∑ 𝛾𝑙

𝑇−1

𝑖=0

𝑟𝑡+𝑖+1|𝜋 Eq. 7.6 

The interaction between the environment and the agent is as follows. The agent observes the 

environment’s state 𝑠𝑖 ∈ 𝑆, then it takes an action  𝑎 ∈ 𝐴(𝑠𝑖) and receives a reward 𝑟. A typical 

learning process for a RL agent customized to our CBM model is based on the Q-learning 

algorithm, described in Figure 7.4.  

Q-learning algorithm steps 

Initialize arbitrary values 𝑄(𝑆, 𝐴) ∀ 𝑠𝑖 = (𝐹𝑀𝐿1, 𝐹𝑀𝐿2, … , 𝐹𝑀𝐿𝑗 … , 𝐹𝑀𝐿𝑘 , 𝐷, 𝐴𝑔𝑒) 𝜖 𝑆, 𝑎 𝜖 𝐴(𝑠𝑖) 

Note 𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒) = 0 

while 𝑚 ≤ 𝑛𝑒𝑝𝑖𝑠𝑜𝑑 

Choose starting state 𝑠𝑖  = (𝐹𝑀𝐿1, 𝐹𝑀𝐿2, … , 𝐹𝑀𝐿𝑗 … , 𝐹𝑀𝐿𝑘 , 𝐷, 𝐴𝑔𝑒) 𝜖 𝑆 

𝐶ℎ𝑜𝑜𝑠𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎 𝜖 𝐴(𝑠𝑖)following ε-greedy approach.  

Get the reward 𝑟𝑡+1 = 𝑟(𝑠𝑖 , 𝑎𝑙) =
RUL𝑠𝑖

𝐶(𝑠𝑖 , 𝑎𝑙)⁄   and observe the next state 𝑠𝑖+1 

Update the state-action pairs value function: 

𝑄(𝑠, 𝑎) =  𝑄(𝑠, 𝑎) +  𝛼 [𝑟𝑡+1 + 𝛾𝑚𝑎𝑥 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] 

Update: 𝑠 = 𝑠𝑖+1; 

Continue until termination takes place either by failure or preventive replacement. 

𝑚 = 𝑚 + 1 

𝐹𝑀𝐿𝑗 is the failure mode 𝑗 level, 𝑘 is the total number of failure modes, 𝐷 is the system’s deterioration level, and 𝐴𝑔𝑒 is 

the system calendar age. 

nepisode: number of episodes to train.  𝛼: learning rate. 𝛾: discounting factor.  ε: threshold for acting greedy. 

 

Figure 7.4 Basic steps of Q-learning algorithm customized to the proposed CBM model. 
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The Q-learning is an off-policy algorithm that is based on the temporal difference (TD) technique 

(Sutton & Barto, 2018). It learns the optimal solution by evaluating the value function 𝑄(𝑠, 𝑎) of 

the state action pairs as shown in Fig.4. Q-learning is based on the TD technique; it updates 𝑄(𝑠, 𝑎) 

after each step using the reward and does not wait until the episode is terminated. Also, as an off-

policy technique, Q-learning updates are based on the optimal action-value function of the next 

state regardless of the policy followed (Sutton & Barto, 2018). The episodes are the data 

observations that the agent learns from. They consist of tuples of (𝑠, 𝑎, 𝑟). At the end of the learning 

process, the action that has the maximum 𝑄 value at each state corresponds to the optimal action 

for that state. Therefore, the solution that the agent obtains depends on the reward, and different 

reward function designs lead to different solutions. Therefore, more explicit information about the 

minimization horizon should be provided to the agent through the reward function to obtain the 

solution that minimizes the average cost over the defined horizon. The proposed reward function 

aims to define a solution that minimizes the maintenance cost over the age by simultaneously 

maximizing the RUL and minimizing the maintenance cost. The following section proposes a case 

study with real data that applies and validates the proposed CBM model. 

7.3 Case Study 

This case study deals with the CBM problem of identical metal sheet culverts. The deterioration 

data of the culverts is collected through reglementary inspections, and the levels of different failure 

modes are assessed by inspectors. The deterioration level of the culvert is described as a function 

of the failure mode levels and the age. The failure modes are assessed using either a five-level or 

three-level scale. In the collected deterioration data, the main failure modes that affect the culverts’ 

deterioration are defects in materials with a five-level scale (level 5 is the best and 1 is the worst) 

and cracking and assembly defects, with a three-level scale (level 5 is the best and 1 is the worst). 

The system’s deterioration level 𝐷 takes continuous values between 0 and 100, where a value less 

than 40 is considered a failure. Failure of the culvert means that it functions inadequately with high 

risk in terms of safety. The two failure mods  𝐹𝑀𝐿1 and 𝐹𝑀𝐿2 can be improved through multi-

level preventive repair actions; as their levels improve, the system’s deterioration level also 

improves. Different actions comprise different effects and costs. Also, the culvert can be replaced 

and returned to as-good-as-new condition.  
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7.3.1 Culver’s MDP Model 

Table 7.1 shows the MDP model summary for the case study. In Table 7.1, the state is defined by 

the 𝐹𝑀𝐿1 (five levels), 𝐹𝑀𝐿2 (three levels), system’s deterioration level 𝐷 (0-100), 𝐷 < 40 

indicates the culver failure, and the age of the culvert. Mostly, the max culver’s age is 60 years and 

in rare cases (less than 15%) it reaches 80 years. Thus, we considered the age span to be between 

0 and 80 years. A 10 year time step is used for the age, which is suitable for this kind of application. 

At the age of 0, the culverts are in as-good-as new condition, so it is clear that no maintenance is 

needed; therefore, this age is eliminated from the state space. The state-space contains 120 states 

that consider all combinations of 𝐹𝑀𝐿1 , 𝐹𝑀𝐿2 , age, and the corresponding 𝐷.  

For each state, the possible actions are: do nothing 𝑎0, preventive replacement (Pr), corrective 

replacement (Cr), and set of possible multi-level preventive repair actions 𝑎𝑥𝑦, where 𝑥 is the 

amount of improvement applied to 𝐹𝑀𝐿1 and 𝑦 is the amount of improvement applied to 𝐹𝑀𝐿2 

i.e.  𝑥 = 1 means improvement for 𝐹𝑀𝐿1by the amount of one step, 𝑦 = 2 means improvement 

for 𝐹𝑀𝐿2 by the amount of two steps. Therefore 𝑎21 means improvement applied to 𝐹𝑀𝐿1by the 

amount of two steps and improvement applied to 𝐹𝑀𝐿2 by the amount of one step, and 𝑎10 

improvement applied to 𝐹𝑀𝐿1by the amount of one step and do nothing for to 𝐹𝑀𝐿2. The 

corrective replacement Cr action is performed only in case of failure. The obtained state, actions 

pairs space size is 840 (state, action) pairs.  

The reward 𝑟(𝑠𝑖, 𝑎𝑥𝑦) incorporates both RUL𝑠𝑖
 and 𝐶(𝑠𝑖, 𝑎𝑥𝑦) defined for unit length (u.L). The 

estimation method for RUL𝑠𝑖
 is proposed in section 2.2. As Table 1 depicts The multi-level 

preventive repair cost 𝐶(𝑠𝑖, 𝑎𝑥𝑦) depends on the failure modes levels, the amount of improvement 

in each failure mode, and the age; where 𝑐𝑖 = 100 ($/u.L) is the inspection cost that is incurred, 

even if no maintenance is performed, 𝑐𝑏 = 100 ($/u.L) is the basic maintenance cost, and 𝑐 = 20 

($/u.L) is a constant. For the replacement actions 𝐶(𝑠𝑖, Pr) = 5000 ($/u.L), and 𝐶(𝑠𝑖, Cr)= 15000 

($/u.L). Remarkably, the Cr cost is higher than the Pr cost as a result of the catastrophic effect that 

failures have.   
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Table 7.1 MDP model summary. 

∀𝑠𝑖 ∈ 𝑆 = (𝐹𝑀𝐿1, 𝐹𝑀𝐿2, … , 𝐹𝑀𝐿𝑘 , 𝐷, 𝐴𝑔𝑒) = ∀𝑠𝑖 ∈ 𝑆 = (𝐹𝑀𝐿1, 𝐹𝑀𝐿2, 𝐷 = 𝑓(𝐹𝑀𝐿1, 𝐹𝑀𝐿2), 𝐴𝑔𝑒) 

𝐴(𝑠𝑖) = {𝑎0, 𝑃𝑟, 𝐶𝑟, 𝑎𝑥𝑦 , … }  ∀𝑠𝑖 ∈ 𝑆 

𝑟(𝑠𝑖 , 𝑎𝑥𝑦) =
RUL𝑠𝑖

𝐶(𝑠𝑖 , 𝑎𝑥𝑦)
⁄  

𝐶(𝑠𝑖 , 𝑎𝑥𝑦) =  𝑐𝑖 + 𝑐𝑏 + (𝑐 ∗ 𝐹𝑀𝐿1
2 ∗  𝑥2 + 𝑐 ∗  𝐹𝑀𝐿2

2 ∗ 𝑦2) ∗  
𝐴𝑔𝑒

max 𝐴𝑔𝑒⁄  

7.3.2 Culver’s Deterioration Prediction and RUL Estimation 

Three prediction models are built to learn the deterioration process of 𝐹𝑀𝐿1, 𝐹𝑀𝐿2, and 𝐷. The 

RF algorithm is used to train the three deterioration prediction models. Table 7.2 shows the inputs, 

output, optimal hyperparameters, and testing accuracy for the deterioration prediction models. The 

optimal hyperparameters for the prediction models are obtained using random search, where the 

criterion is the splitting criteria, max_depth is the maximum depth of any tree, max_features is the 

number of features to split on, and n_estimator is the total number of trees in the forest. Details 

about the RF and its implementation are available in (Friedman et al., 2001; James et al., 2013; 

Pedregosa et al., 2011). 

Table 7.2 Failure modes prediction model parameters. 

Inputs (independent variables)      𝐹𝑀𝐿1𝑡
, 𝐹𝑀𝐿2𝑡

, 𝐴𝑔𝑒, ∆𝑡 𝐹𝑀𝐿1𝑡+∆𝑡
, 𝐹𝑀𝐿2𝑡+∆𝑡

, 𝐴𝑔𝑒 

Output (dependent variable) 𝐹𝑀𝐿1𝑡+∆𝑡
 𝐹𝑀𝐿2𝑡+∆𝑡

 𝐷𝑡+∆𝑡 

Testing accuracy 81.9% 86.3% 91.3% 

Hyperparameters 

criterion 'gini' 'entropy' 'mse' 

max_depth 9 7 7 

max_features 'auto' 'sqrt' 'auto' 

n_estimators 750 250 500 

After building the deterioration prediction models Cox model can be constructed as it needs inputs 

from the deterioration models. The covariates of the Cox model are 𝐹𝑀𝐿1, 𝐹𝑀𝐿2, and their 

interaction 𝐹𝑀𝐿1*𝐹𝑀𝐿2. The failure event is defined based on 𝐷 since 𝐷 < 40 is a failure. The 

Cox model is built using the survival package on R (Therneau & Lumley, 2013). Table 3 

summarizes the results for the Cox model.  
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Table 7.3 Cox survival models summary. 

 coefficient exp(coefficient) Z p-value  

𝐹𝑀𝐿1 -0.05819 

 

0.94347 

 

-0.979 

 

0.3276  

 𝐹𝑀𝐿2 -0.14910 

 

0.86148 

 

-2.159 

 

0.1309 

 𝐹𝑀𝐿1*𝐹𝑀𝐿2 -0.34748  

 

0.70647 

 

-7.834 

 

4.74e-15 * 

 Schoenfeld residuals for 𝐹𝑀𝐿1*𝐹𝑀𝐿2 0.89 

From Table 3, we can conclude that the interaction covariate 𝐹𝑀𝐿1*𝐹𝑀𝐿2. is the significant 

covariate. The proportional hazard assumption is tested using Schoenfeld residuals, and Table 3 

shows an insignificant p-value for the Schoenfeld residuals of 𝐹𝑀𝐿1*𝐹𝑀𝐿2. The residuals are 

independent of time, which means the proportional hazards assumption holds. This Cox model is 

used to get the survival probabilities for any possible  𝐹𝑀𝐿1and 𝐹𝑀𝐿2 to be used for estimating 

the RUL, as proposed in section 7.2.2. 

7.3.3 Culver’s RL Modeling and Solution 

The MDP model, the three deterioration prediction models, and the Cox model are integrated to 

form the environment for the RL. As described in section 7.2.3, the RL agent is based on a Q-

learning algorithm that is trained to obtain the solution by interacting with the environment. The 

RL agent is trained using 2500 data episodes. The episodes are terminated if failure takes place or 

if preventive replacement action is performed. The discounting factor 𝛾 is 0.9 and the learning rate 

𝛼 is 0.1. In case of explicit termination conditions for the episodes, the discounting factor should 

be selected near 1 (Pitis, 2019), and with 2500 data episodes, a learning rate of 0.1 is suitable. The 

exploration rate ɛ decays over time to allow a high exploration at the beginning of the training that 

keeps decreasing until the latest episodes. Initially, ɛ = 1 and it keeps decays by small increments 

of  (𝑐1 ∗ 𝜀)/(𝑐2 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 ) after each episode. The values for the two constants 𝑐1 

and 𝑐2 are equal to 0.25 and 0.5, respectively. Such values allow a moderate decrease for ɛ. The 

obtained CBM strategy is presented in Figure 7.5. As discussed earlier, the strategy maps from a 

state to action. 

In Figure 7.5, 𝐹𝑀𝐿1and 𝐹𝑀𝐿2 are shown on the horizontal axis and the age on the vertical axis. It 

is worth noting that for culverts at the same age and different deterioration conditions, different 

𝐹𝑀𝐿1and 𝐹𝑀𝐿2, different actions are selected by the agent. The strategy obtained reaches 

optimality through the different actions. In the following subsection, the optimality is tested 
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through validation. It is important to note that the strategy is optimal starting from any state and 

not only a new or as-good-as new state.  
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Figure 7.5 Obtained CBM strategy. 

7.3.4 Validation 

A validation process is performed to examine the optimality of the proposed CBM model and to 

test four main points considered in the proposed CBM model. The first two points to test are related 

to the reward function design. The third point is the dependency between the failure modes. Finally, 

the fourth point is related to the possible maintenance actions. The strategy obtained is compared 

against four strategies based on four scenarios that tackle the mentioned points. The comparison is 

based on the objective of the proposed CBM model, which is the average maintenance cost. Figure 

7.6 and Figure 7.7 show the algorithm that was followed to obtain the average maintenance cost 

starting from any state.  
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Inputs The Maintenance strategy (mapping from state to action) 

The cost of maintenance actions. 

The deterioration prediction models. 

Cox model.  

Initiate  cost=0, i = 1  

while i < state space size  

𝑠 = 𝑠𝑖  

age = Age of 𝑠𝑖  

Starting from 𝑠𝑖follow the maintenance strategy to determine the action and follow the process in Fig. 7, 

where 𝐹𝑀𝐿1𝑡
′ , 𝐹𝑀𝐿2𝑡

′ are the failure modes levels after performing the maintenance action and 𝐷𝑡
′ is the 

corresponding system’s deterioration level.  

cost= cost+ performed maintenance action cost 

age=age+Δt 

continue until preventive replacement or corrective replacement takes place.  

Average cost = cost/age ($/u.L/year) 

Figure 7.6 Algorithm to obtain the average maintenance cost starting from any state. 

 

Action based on 
the obtained 

strategy

Deterioration 
prediction models.

COX PHM 

Survival 
probabilities to 
estimate RUL

𝑠𝑖 =  (𝐹𝑀𝐿1𝑡
, 𝐹𝑀𝐿2𝑡  , 𝐷 = 𝑓(𝐹𝑀𝐿1𝑡

, 𝐹𝑀𝐿2𝑡  ), 𝐴𝑔𝑒𝑡) 

𝑠𝑖+1=(𝐹𝑀𝐿1𝑡+𝛥𝑡
, 𝐹𝑀𝐿2𝑡+𝛥𝑡

, 𝐷𝑡+𝛥𝑡 = 𝑓(𝐹𝑀𝐿1𝑡+𝛥𝑡
, 𝐹𝑀𝐿2𝑡+𝛥𝑡

),

𝐴𝑔𝑒𝑡+𝛥𝑡 )  

𝑠𝑖
′ =  (𝐹𝑀𝐿1𝑡

′ , 𝐹𝑀𝐿2𝑡  
′ , 𝐷′ = 𝑓(𝐹𝑀𝐿1𝑡

′ , 𝐹𝑀𝐿2𝑡  
′ ), 𝐴𝑔𝑒𝑡) 

 

Figure 7.7 The obtained maintenance strategy application. 

Comparison 1. The first comparison examines the effect of using a different reward function where 

RUL is estimated based on the current state only. The strategies obtained are based on the two 

scenarios. Scenario (a) is based on the proposed model, and the proposed RUL estimation section 

7.2.2. Scenario (b) estimates the RUL based on the current state only. Figure 7.8 presents the 

actions and the average cost for each state based on the two scenarios. 
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Figure 7.8 Action and average maintenance cost ($/u.L/year) comparison between scenarios (a) 

and (b). 

In Figure 7.8, the states at which the average maintenance cost is different in the two scenarios are 

highlighted. Table 7.4 summarizes the differences in the average cost.   

Table 7.4 Summary of the differences between the scenarios (a) and (b). 

 scenario (a) scenario (b) 

Number of states with a lower 

average cost 

17 0 

Saving average per state 
($/u.L/year/state) 

6.9 0 

 

Figure 7.8 and Table 7.4 depict that estimating the RUL using the proposed process yield a more 

cost-effective strategy that minimizes the average cost in 118 states by the average amount of 6.6 

($/u.L/year/state). The interpretation behind this finding is that estimating the RUL based on the 

current state only assumes that the system will stay on the current deterioration conditions until 

failure. Following this assumption leads to an optimistically high value for the RUL estimation. 

This assumption is not accurate, as the system will keep deteriorating over time. The proposed 

method for estimating the RUL does not follow this assumption, as it considers the system’s 
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deterioration over time, which leads to a more realistic RUL estimation. Optimistic RUL estimation 

in the reward function leads to a strategy with action selected based on an inaccurate optimistic 

reward function; such a strategy does not yield the minimum average cost.  

Comparison 2. In this comparison, a new scenario (c) that uses negative maintenance cost as a 

reward function is compared against scenario (a). Figure 7.9 presents the obtained results based on 

scenario (c) compared to scenario (a). 
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Figure 7.9 Action and average maintenance cost ($/u.L/year) comparison between scenario a and 

scenario c. 

Table 7.5 Summary of the differences between scenarios (a) and (c). 

 Scenario (a) Scenario (c) 

Number of states with a lower 

average cost 

26 7 

Saving average per state 
($/u.L/year/state) 

34.7 7.024 

 

From Figure 7.9 and Table 7.5, we can conclude that the proposed design for the reward function 

yields better results in 26 states with an average savings of 34.7 ($/u.L/year/state), and using a 
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reward function that depends on cost only yields better results in 7 states, with an average savings 

of 7.024 ($/u.L/year/state). In summary, the proposed design for the reward function returns a more 

cost-effective strategy. As an interpretation, the proposed design for the reward function provides 

explicit information about the effect of the action on the system’s RUL besides the action cost. 

This kind of information related to the expected RUL helps the RL agent return a strategy that 

minimizes the average maintenance cost. The reason for the better results in 7 states when only the 

cost is used in the reward function is the accuracy of the RUL estimation. More accurate estimation 

for the RUL is expected to lead to a lower number of states in which a cost only reward function 

performs better.  

Comparison 3. The proposed maintenance model stresses the importance of considering the 

dependency between the different failure modes in the maintenance modeling. The scenario for 

this comparison is designed to test and emphasize the importance of this point. The proposed model 

treats the dependency between the failure modes in both the deterioration prediction model and the 

Cox model. Table 7.2 shows that both 𝐹𝑀𝐿1 and 𝐹𝑀𝐿2 are used as inputs to the three deterioration 

prediction models for 𝐹𝑀𝐿1, 𝐹𝑀𝐿2, and 𝐷. Also, Table 7.3 shows that an interaction covariate 

𝐹𝑀𝐿1*𝐹𝑀𝐿2 is considered in the Cox model, which is found to have a significant covariate. 

scenario (d) omits the dependency between the failure modes. New deterioration prediction models 

and the Cox model are constructed without considering dependency. Table 7.6 shows the inputs 

for the deterioration prediction models and the covariates considered for scenario (d). 

Table 7.6 Failure mode prediction model parameters for scenario (d). 

Inputs (independent variables) 
𝐹𝑀𝐿1𝑡

, 𝐴𝑔𝑒, ∆𝑡

= 10 

𝐹𝑀𝐿2𝑡
, 𝐴𝑔𝑒, ∆𝑡

= 10 
𝐹𝑀𝐿1𝑡+∆𝑡

, 𝐴𝑔𝑒 𝐹𝑀𝐿2𝑡+∆𝑡
, 𝐴𝑔𝑒 

Output (dependent variable) 𝐹𝑀𝐿1𝑡+∆𝑡
 𝐹𝑀𝐿2𝑡+∆𝑡

 𝐷𝑡+∆𝑡 𝐷𝑡+∆𝑡 

Testing accuracy 79.2% 83.2% 76.39 %. 77.39 %. 

 

 

Hyperparameters 

criterion 'gini' 'entropy' 'mse' 'mse' 

max_depth 9 5 7 7 

max_features 'auto' 'None' 'log2' ''sqrt'' 

n_estimators 750 1000 100 750 

 

  



99 

 

 

Table 7.7 Cox model summary for scenario (d). 

 coefficient exp(coefficient) Z p-value 

 𝐹𝑀𝐿1 -0.24789  0.78044  -11.16  <2e-16 *  

𝐹𝑀𝐿2 -0.50605  0.60287  -27.77  <2e-16 *  

Schoenfeld residuals for 𝐹𝑀𝐿1 0.229 

Schoenfeld residuals for 𝐹𝑀𝐿2 0.387 

 

The deterioration prediction model for each failure mode level depends on the failure mode level 

itself and the age. Two deterioration prediction models for 𝐷 are constructed, one for each failure 

mode. The definition of the failure of the system does not change (𝐷 < 40 is failure). The main 

difference is that the 𝐹𝑀𝐿1 and 𝐹𝑀𝐿2 effects are separated. Each of the two failure modes is 

predicted and maintained individually without considering the other failure mode. The Cox model 

does not include the interaction between failure modes. Notably, the prediction models that do not 

respect the dependency between the 𝐹𝑀𝐿1 and 𝐹𝑀𝐿2 have less testing accuracy than those that 

respect the dependency. In the developed Cox model for scenario (d), both 𝐹𝑀𝐿1 and 𝐹𝑀𝐿2 are 

statistically significant in the absence of the interaction covariate, as Table 7.7 shows. Also, the 

proportional hazards assumption is justified using the Schoenfeld residuals as shown in Table 7.7. 

The states, reward function, and RL agent have the same configuration. The obtained strategy and 

its average cost starting from each state are shown and compared to the strategy obtained based on 

the proposed maintenance model in Figure 7.10.  

Figure 7.10 shows the two strategies as a mapping from state to action and the average cost in 

($/u.L/year) starting from each state. The highlighted states are those with different average costs. 

Both Table 7.8 and Figure 7.10 show that considering the dependency between the failure modes 

has a significant effect on the obtained strategy and therefore on the average cost. Treating the 

failure modes separately provokes early corrective replacement, as Figure 7.10 shows. These 

corrective replacements are avoided by considering the failure modes’ dependency and defining 

the failure using both 𝐹𝑀𝐿1 and 𝐹𝑀𝐿2and not each one separately. Independent failure mode 

modeling results in the improvement of the action selected in one state only, whereas significant 

cost savings are observed in 35 states when the dependency between the failure modes is 

considered. 
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Figure 7.10 Action and average maintenance cost ($/u.L/year) comparison between scenario a 

and scenario d. 

Table 7.8 Summary of the differences between scenario a and scenario (d). 

 Scenario a Scenario d 

Number of states with a lower 

average cost 

35 1 

Savings average per state 
($/u.L/year/state) 

462.9 22.5 

 

Comparison 4. The effect of considering the multi-level preventive repair action is studied in this 

comparison. In scenario e, a strategy that only includes the preventive repair, corrective repair, and 

do-nothing action is obtained and compared to the one obtained through scenario a. To obtain this 

strategy, the same maintenance model is used by removing the multi-level preventive repair action 

from it. Figure 7.11 and Table 7.9 show the obtained results and the comparison between scenario 

a and scenario (e).  
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Figure 7.11 Action and average maintenance cost ($/u.L/year) comparison between scenario a 

and scenario e. 

Table 7.9 Summary of  the differences between scenario a and scenario (e). 

 Scenario a Scenario e 

Number of the states with 

a lower average cost 

50 1 

Savings average per state 
($/u.L/year/state) 

68.3 8.5 

 

From Figure 7.11 and Table 7.9, it is remarkable that considering the possible multi-level 

preventive repair action leads to a more cost-effective maintenance strategy than considering only 

the preventive repair action.  

7.4 Conclusion 

Regardless of the growing interest in CBM strategies, most of the proposed models overlooked the 

existence of multi deterioration failure modes for the same system. Most of the studies consider a 

single deterioration failure mode; others considered a sudden failure mode in addition to the 

deterioration failure mode. Even when flexible models like MDP are used with solution methods 

like RL, the same limitations still exist.  
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This paper has proposed a CBM strategy that considers multi deterioration failure modes with 

multi-level preventive repair actions. The proposed modeling and solution methods are both 

generic, data-driven combining a machine learning deterioration prediction model, a RL solution 

method, and a Cox model. The dependency between the failure modes is preserved in both the 

deterioration prediction models and the Cox model. Unlike the widely used RL reward function 

that only considers the cost, a reward function that comprises both the RUL and the cost is 

proposed. This is to ensure that the maintenance strategy obtained by the RL results in a minimum 

average maintenance cost. An estimation process for the RUL based on a reliability approach is 

proposed in the CBM model to be used by the proposed reward function. In contrast to widely 

considered replacement actions that return the system to as-good as-new condition, multi-level 

preventive repair actions are considered. The multi-level preventive repair actions can improve the 

deterioration failure modes and return the system to a condition that is between as-good-as-new 

and as-bad-as-old condition.  

The proposed CBM modeling and solution method are applied to a case study on the maintenance 

of culvers. The solution obtained by the proposed model in the case study is a CBM strategy, which 

is a mapping from state to action. This strategy is compared with four other strategies to prove its 

optimality. Four comparisons are intended to test the four main points with respect to the CBM 

model. The first point is related to the proposed RUL estimation process. The second is related to 

the reward function design. The third is concerned with the dependency between the failure modes. 

The final one is related to the multi-level preventive repair actions. The first comparison tested two 

different processes of RUL estimation. The second test is on the proposed reward function against 

the ordinary reward function, which uses only the cost. In the third comparison, the obtained 

strategy is compared against a strategy that does not consider the dependency between the multi 

deterioration failure modes. It is obtained by modeling the two failure modes separately in both the 

deterioration prediction models and the Cox model. Finally, in the fourth comparison, a traditional 

strategy with only a preventive repair action is obtained and compared with the optimal CBM 

strategy. The four comparisons showed that the proposed CBM strategy is the most cost-efficient 

in terms of minimizing the average maintenance cost. 

The proposed CBM modeling and solution method are both generic and data-driven. Therefore, 

they can be widely applied to different cases whenever deterioration data is available. Interesting 
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points for future research include studying the effect of different RUL estimation methods and the 

effect of imperfect maintenance.  

7.5 Appendix  

Demonstration that RUL(t, X) =  
1

𝑅𝑜(𝑡)exp (ψ𝑋) ∫ 𝑅𝑜(𝜏)exp (ψ𝑋)∞

𝑡
 𝑑𝜏 

𝑓(𝜏) =  
−𝑑𝑅(𝜏)

𝑑𝜏
 , then 𝑓(𝜏)𝑑𝜏 = −𝑑𝑅(𝜏)     

 
Eq. 7 

RUL(t) =  
1

𝑅(𝑡)
∫ 𝜏𝑓(𝜏)𝑑𝜏 − 𝑡

∞

𝑡

 Eq. 8 

RUL(t) =  
1

𝑅(𝑡)
∫ −𝜏𝑑𝑅(𝜏)𝑑𝜏 − 𝑡

∞

𝑡
      Eq. 9 

RUL(t) =  
1

𝑅(𝑡)
(∫ 𝑅(𝜏)𝑑𝜏

∞

𝑡

+ [−𝜏𝑅(𝜏)]𝑡
∞) Eq. 10 

RUL(t) =
1

𝑅(𝑡)
∫ 𝑅(𝜏)𝑑𝜏 

∞

𝑡
+ 

1

𝑅(𝑡)
(𝑡𝑅(𝑡)) − 𝑡 = 

1

𝑅(𝑡)
∫ 𝑅(𝜏)𝑑𝜏 

∞

𝑡
      Eq. 11 

Considering the Cox PHM model  𝑅(𝑡) = exp (− ∫ ℎ
𝑡

0
(𝜏)𝑑𝜏)      Eq. 12 

𝑅(𝑡, 𝑋) = exp (− ∫ ℎ𝑜(𝜏)exp (ψ𝑋)  𝑑𝜏
𝑡

0
)     Eq. 13 

Based on Cox’s proportional hazards assumption 

𝑅(𝑡, 𝑋) = exp (−exp (ψ𝑋)   ∫ ℎ𝑜(𝜏)𝑑𝜏
𝑡

0
 )      

Eq. 14 

𝑅(𝑡, 𝑋) = exp (− ∫ ℎ𝑜(𝜏)𝑑𝜏
𝑡

0

)exp (ψ𝑋)   

 

Eq. 15 

𝑅(𝑡, 𝑋) = 𝑅𝑜(𝑡)exp (ψ𝑋)       Eq. 16 

Substitute Eq. 16 in Eq. 11 RUL(t, X) =  
1

𝑅𝑜(𝑡)exp (ψ𝑋) ∫ 𝑅𝑜(𝜏)exp (ψ𝑋)  ∞

𝑡
 𝑑𝜏 
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 GENERAL DISCUSSION 

8.1 Comments on the Methodology  

The methodology proposed in this research is intended to be a generic data-driven methodology to 

obtain optimal CBM strategies. The methodology has been progressively developed in the three main 

contributions presented in Chapters 5 through 7. These contributions are related, yet they can be 

applied separately to solve maintenance problems with different levels of complexity.  

The methodology treated the modeling and the solution components of the CBM problem based on 

data-driven approaches and it discussed a critical point of RL application in maintenance and how 

critical the design of the reward function is.  

This thesis proposed a case based on real data to test the three contributions of the proposed 

methodology. The case study is assumed to be representative and general enough that if the 

methodology is applied to other cases, it should work properly.  

8.2 Research Limitations 

The proposed research in this thesis has certain limitations. Those are related to ignoring imperfect 

maintenance actions, assuming fixed inspection frequency, the selection of the deterioration prediction 

model, and testing the methodology on a single case study.  

All of the maintenance actions considered in this research are assumed to be perfect. This means that 

the actions have a guaranteed effect on the system. In reality, the effect of maintenance actions -

especially multi-level repair actions - is not granted because of the different variables of human labor. 

In many cases, these actions may have less effect on the system deterioration condition; in other words, 

the effect of the action has a stochastic nature to a certain level and in this research, the effects of the 

action are assumed to be deterministic.  

Also, the inspection intervals are assumed to have a fixed distribution through the age of the system. 

The inspection interval is selected based on the application of the case study and it has to be adjusted 

according to the application. The reason to fix the interval inspections is to separately test the effect of 

the new reward function design that encompasses the RUL.  Flexible inspection intervals were proven 

to have positive effects on cost minimization.      
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The deterioration prediction model was based only on the random forest approach. Other prediction 

approaches as deep neural networks may result in different performance; this research does not study 

the effect of considering different prediction approaches. In this research, we mainly focused on the 

proof of concept. Using different prediction approaches may have certain improvements on the 

methodology performance, but this does not help much with the proof of concept. Also, the size of the 

data in the case study used in this research is not sufficient for training models as deep neural networks, 

and only a single case study is used to test the methodology.  

Overall, and regardless of the discussed limitations, we believe that we have proposed a practical 

working methodology for CBM that can make use of widely available deterioration and maintenance 

data. This methodology should work and yield optimal results with other applications, beyond just the 

one proposed in the case study. 
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 CONCLUSION AND RECOMMENDATIONS 

Condition-based maintenance has been receiving increasing attention from both the scientific and 

industrial sectors. This attention is driven by its superiority and applicability from both scientific 

and industrial points of view. Despite this increasing attention, whether the condition-based 

maintenance models are realistically applicable has been overlooked.  

This research presents a generic data-driven methodology for optimizing multi-level CBM 

strategies that applies to real-world problems. The proposed methodology integrates several data-

driven approaches and methods as prediction models, reinforcement learning, nonparametric 

survival approaches, and reliability-based estimation technique for the remaining useful life. The 

contribution of the proposed methodology has scientific and practical aspects. Scientifically, the 

proposed methodology solves an important problem in maintenance doming by adopting data-

driven approaches; namely, machine learning-based approaches. Adopting a machine learning 

approach with industrial problems has a notable impact on efficiently enabling the use of widely 

available data from industry. Moreover, these approaches are not limited to certain assumptions 

that are practically hard to fulfill. Practically, the proposed methodology applies to real problems. 

This methodology considers aspects such as the different possible maintenance actions, treating 

the modeling and solution through machine learning methods that use available data. In addition, 

the proposed methodology is generic and can be applied to a wide range of real-world problems.  

In Chapter 5, the first part of this thesis contribution, the proposed methodology integration 

between prediction models and reinforcement learning for optimizing condition-based 

maintenance strategies is proposed. Multi-level preventive repair actions are considered in this 

condition-based maintenance strategy to have contact with more realistic problems. This proposal 

does not suffer from the usual limitations of parameters and TPM estimating or assuming, and it is 

not related to a certain application. The proposed methodology is applied to real data on sheet metal 

culverts, and the optimality of the obtained strategy is tested.  

In the second part of this thesis contribution, Chapter 6, the proposed methodology is enhanced by 

proposing integration between a nonparametric survival technique and reliability-based approach 

for remaining useful life estimation and adding it to the original methodology. The remaining 

useful life estimation is utilized in a novel way via a new design for the reinforcement learning 

reward function. Comparing the condition-based maintenance strategies that are based on this 
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proposal with other strategies that use reward function based on cost only has shown that 

considering the remaining useful life as a part of the optimization criterion leads to more cost-

effective maintenance strategies.   

In the third part of this thesis contribution, Chapter 7, the previously proposed methodology is 

reformed to allow multi deteriorating failure modes for the same system to be considered. In this 

proposal, the overlooked problem of existing multi deteriorating failure modes and their 

dependency is addressed. The dependency is addressed from the deterioration perspective and the 

maintenance perspective. The reward function also considered the remaining useful life through a 

nonparametric survival technique that takes into account multi failure modes and a reliability-based 

approach. After applying the methodology to the case study, comprehensive comparisons are 

carried out to test all the anchor points of the proposed methodology.  All of the comparisons 

performed showed that the obtained strategy based on the proposed methodology is the most cost-

efficient in terms of minimizing the average maintenance cost. 

The proposed research in this thesis opens the door for more aspects to be considered in the future: i. 

the effect of using different deterioration prediction models on the obtained CBM strategies. ii. The 

imperfect maintenance action effects on the RL learning process. iii. The improvement that could be 

achieved in the cost reduction if the inspection intervals are considered as a decision variable by the 

RL. iv. It would be of interest to have different real-world case studies with applications from different 

domains.  
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