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RÉSUMÉ

De nombreux procédés hydro-environnementaux, géotechniques et d’ingénierie impliquent des
écoulements multiphasiques de matériaux granulaires immergés dans des fluides. Dans de
tels problèmes, la phase fluide (par exemple, l’eau) et les grains solides (par exemple, les sédi-
ments) interagissent et subissent différents régimes d’écoulement concernant l’écoulement du
fluide ambiant et les forces corporelles (comme la gravité). Le transport de sédiments dans les
environnements côtiers et fluviaux, la rupture de barrages hydrauliques, les coulées de débris
et les glissements de terrain sont des exemples de ces écoulements granulaires immergés.
Comprendre et prévoir le comportement mécanique de ces systèmes complexes est crucial
pour optimiser les conceptions techniques et atténuer les risques environnementaux associés.
De tels phénomènes sont caractérisés par des déformations de surface libre hautement dy-
namiques et des écoulements non linéaires de la phase granulaire. Les modèles numériques
bien développés, avec moins de coûts et plus de flexibilité et de précision par rapport aux
études théoriques et expérimentales, ont été introduits comme des outils puissants et fiables
pour étudier la physique sous-jacente des écoulements à surface libre et granulaire. Néan-
moins, les propriétés mécaniques complexes et les évolutions violentes de la surface libre de
ces problèmes multiphysiques imposent des défis importants à la précision et à la stabilité
des calculs pour leurs prédictions précises .

Les méthodes traditionnelles basées sur le maillage ont des difficultés à gérer les écoulements
à surface libre avec de grandes déformations interfaciales. Les méthodes de particules sans
maillage, telles que les particules mobiles semi-implicites (MPS) et l’hydrodynamique des
particules lissées (SPH), grâce à leur nature lagrangienne, ont prouvé leurs avantages pour
faire face à la complexité de tels écoulements de fluides. Pourtant, leur stabilité numérique,
leur précision et leur efficacité sont des problèmes ouverts, en particulier pour des simula-
tions précises d’écoulements granulaires violents à surface libre et immergés . De plus, les
lois de comportement manquent d’une formulation unifiée et cohérente pour capturer dif-
férents régimes d’écoulements granulaires dynamiques. Pour combler ces lacunes dans les
connaissances, nous devons améliorer la précision et la stabilité des méthodes numériques et
des modèles rhéologiques granulaires.

L’objectif global de ce projet de recherche est de développer des méthodes de particules
continues sans maillage robustes et cohérentes pour simuler des écoulements à surface libre
et granulaire hautement dynamiques. Pour cela, nous proposons une méthode particulaire
conservatrice originale (basée sur la méthode MPS faiblement compressible) enrichie par
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des algorithmes robustes de stabilisation des particules. Les développements incluent de
nouveaux termes diffusifs artificiels et plusieurs techniques de régularisation des particules.
Nous étudions le rôle des techniques de régularisation des particules proposées dans le con-
texte des méthodes MPS et SPH faiblement compressibles pour simuler des écoulements
à surface libre hautement dynamiques. En outre, nous présentons un nouveau modèle de
rhéologie avancé avec une formulation nouvelle et cohérente pour estimer la pression effec-
tive. Pour étudier la dynamique granulaire rapide, nous introduisons une nouvelle formulation
MPS multi-résolution avec les nouvelles techniques de stabilisation et le modèle de rhéologie
généralisée.

Nous validons les méthodes de particules améliorées pour des écoulements à surface libre
hautement dynamiques caractérisés par des vagues déferlantes, des événements d’impact
fluide-fluide et fluide-solide et une évolution d’écoulement non linéaire. De plus, nous étu-
dions le comportement mécanique des écoulements granulaires immergés (entraînés par la
gravité et les écoulements rapides de fluides), en simulant des cas de référence difficiles. Nous
analysons les simulations numériques à travers des comparaisons qualitatives et quantita-
tives avec les données théoriques, analytiques et expérimentales disponibles. Les techniques
de stabilisation des particules garantissent la précision numérique et la stabilité des grandes
déformations de surface libre et des événements d’impact. Le modèle de rhéologie général-
isée capture le comportement mécanique complexe et les régimes d’écoulement dynamiques
des écoulements granulaires rapides entraînés par la gravité et les fluides. Les résultats
numériques et les validations confirment l’efficacité et la nécessité des développements orig-
inaux présentés dans cette étude. Globalement, ce projet de recherche doctorale contribue
à l’avancement des connaissances pour simuler des écoulements à surface libre et granu-
laire hautement dynamiques. Une telle compréhension des problèmes multiphysiques peut
améliorer les processus décisionnels impliqués dans les activités de gestion des risques de
divers problèmes hydro-environnementaux et géotechniques.
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ABSTRACT

Many hydro-environmental, geotechnical, and engineering processes involve multiphase flows
of granular materials immersed in fluids. In such problems, the fluid phase (e.g., water)
and the solid grains (e.g., sediment) interact and experience different flow regimes concern-
ing the ambient fluid flow and body forces (like gravity). Sediment transport in coastal
and fluvial environments, water dam failure, debris flows, and landslides are examples of
these immersed granular flows. Understanding and predicting the mechanical behavior of
these complex systems are crucial for optimizing the engineering designs and mitigating
the related environmental hazards. Such phenomena are characterized by highly dynamic
free-surface deformations and non-linear flows of the granular phase. The well-developed
numerical models, with fewer costs and more flexibility and accuracy over theoretical and
experimental studies, have been introduced as powerful and reliable tools for studying the
underlying physics of free-surface and granular flows. Nevertheless, the complex mechanical
properties and violent free-surface evolutions of such multiphysics problems impose significant
challenges to computational accuracy and stability for their accurate predictions.

The traditional mesh-based methods have difficulties in handling free-surface flows with large
interfacial deformations. Mesh-free particle methods, such as Moving Particle Semi-implicit
(MPS) and Smoothed Particle Hydrodynamics (SPH), thanks to their Lagrangian nature
have proved their advantages for dealing with the complexities of such fluid flows. Yet, their
numerical stability, accuracy, and efficiency are open problems, particularly, for accurate
simulations of violent free-surface and immersed granular flows. In addition, the constitutive
laws lack a unified and consistent formulation for capturing different regimes of dynamic
granular flows. To address these knowledge gaps, we require to enhance the accuracy and
stability of numerical methods and the granular rheological models.

The global objective of this research project is to develop robust and consistent mesh-free
continuum particle methods for simulating highly dynamic free-surface and granular flows.
To that end, we propose an original conservative particle method (based on the weakly-
compressible MPS method) enhanced by robust particle stabilization algorithms. The devel-
opments include new artificial diffusive terms and several particle regularization techniques.
We study the role of proposed particle regularization techniques within the context of the
weakly-compressible MPS and SPH methods for simulating highly dynamic free-surface flows.
Also, we present a new rheology model advanced with a novel and consistent formulation
for estimating the effective pressure. To investigate rapid granular dynamics, we introduce
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a novel multi-resolution MPS formulation with the new stabilization techniques and the
generalized rheology model.

We validate the enhanced particle methods to highly dynamic free-surface flows characterized
by breaking waves, fluid-fluid and fluid-solid impact events, and non-linear flow evolution.
Furthermore, we investigate the mechanical behavior of immersed granular flows (driven
by gravity and rapid fluid flows), simulating challenging benchmark cases. We analyze the
numerical simulations through qualitative and quantitative comparisons with the available
theoretical, analytical, and experimental data. The particle stabilization techniques ensure
numerical accuracy and stability of large free-surface deformations and impact events. The
generalized rheology model captures the complex mechanical behavior and dynamic flow
regimes of rapid gravity- and fluid-driven granular flows. The numerical results and valida-
tions confirm the effectiveness and necessity of the original developments presented in this
study. Overall, this doctoral research project contributes to the advancement of knowledge
for simulating highly dynamic free-surface and granular flows. Such an understanding of
the multiphysics problems can enhance the decision-making processes involved in hazard
management activities of various hydro-environmental and geotechnical problems.
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CHAPTER 1 INTRODUCTION

1.1 Background and motivation

Highly dynamic free-surface flows, granular (sediment) flows, and their interactions are ubiq-
uitous in various hydro-environmental, geotechnical, and engineering processes. Examples
include fluvial and coastal flows, sediment dynamics, flash floods, debris flows, sub-aerial
and submerged landslides, and water and tailings dam failure. The socio-economic impact
of such phenomena can be devastating as they can threaten human life, the environment,
and infrastructures. For example, the 2016 landslide in Alberta destroyed Cecil Lake road
(Figure 1.1-(a)), and the 1996 dam-failure of Lake Ha!Ha! in Quebec due to a severe rain-
storm caused significant sediment erosion upstream and downstream of the failed earthfill
dyke (Figure 1.1-(b)) [1]. The 2014 tailings dam breach at the Mount Polley Mine in British
Columbia released eight million cubic meters of pollution into Polley Lake, Hazeltine Creek,
and Quesnel Lake [14]. The 2017 flooding events in Quebec inundated more than 5,000 homes
with $223 million property damages [15]. Climate changes and immoderate human activi-
ties have further intensified their environmental impacts. Understanding the processes and
mechanisms associated with these highly dynamic systems is crucial for many engineering
designs and the prevention and mitigation of related risks. Granular materials (macroscopic
small particles, e.g., gravel and sand) and the ambient fluids (water) (Figure 1.2-c) are the
two main components whose interactions create a complex and hard-to-predict system.

Such multiphysics problems, including rapid flows of fluid and granular materials, demon-
strate complex nonlinear mechanical behaviors challenging their predictions. Highly-dynamic
fluid problems consist of breaking waves, fluid sloshing, and impact events characterized by
high velocity, high-pressure gradients, and large interfacial deformations. The granular phase
manifests dynamic fluid- and solid-like behaviors driven by fluid flows and body forces (like
gravity). The main characteristic of granular flows is the simultaneous presence of quasi-static
(solid), dense-flow (liquid), and kinetic (suspended) regimes [16] (Figure 1.2). The granular
phase transitions between these flow states concerning the flow and material properties. The
inertia, viscosity, and pore pressure of the fluid phase play role in the mechanical behavior
of the granular phase [17]. Particularly, in rapid flows, the mixture of solid grains and pore
water (or simply the mixture phase) experiences dilatation and compaction that change flow
evolution.

Understanding the underlying physics of highly dynamic fluid and granular flows is essen-
tial for predicting and mitigating the related environmental hazards [1]. Engineers employ
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Figure 1.1 Examples of granular dynamics in hydro-environmental problems: (a) Cecil Lake
road landslide in Alberta 2016 (the inset photo is taken from the Geological Survey of Canada)
and (b) dam failure in Quebec, 1999 (the inset photo is taken from Brooks & Lawrence [1]).
(c): The co-presence of water and sediment in such phenomena.

experimental, theoretical, and numerical approaches to provide insights into the mechani-
cal and flow evolution of such problems. Experiments require highly sensitive measurement
instruments and are limited to laboratory size test cases [18,19]. Theoretical studies use sim-
plifying assumptions based on empirical shear stress functions, and thus, can only provide
rough estimation of flow evolution [13,18]. On the other hand, with the current advancement
of computing resources and algorithms, computational methods have proven to be practical
alternatives for studying free-surface and immersed granular flows in various hydrodynamic
conditions [20].

Numerical methods have been widely developed for simulating rapid free-surface and im-
mersed granular flows. While discrete-based methods (e.g., the Discrete Element Method
[21]) provide in-depth analysis of solid grains’ microscopic behavior, they are computation-
ally expensive for dealing with engineering problems that involve a large volume of materials.
On the other hand, continuum-based numerical methods homogenize the solid grains or the
mixture of solid and fluid into bulk properties at the macroscopic level (Figure 1.3-(a) &
(b)). Thus, they are introduced as scalable models and computationally affordable for large-
scale modeling. Mesh-based continuum methods, despite their remarkable advancements in
simulating interfacial flows, due to their mesh dependency require particular treatments to

https://www.asc-csa.gc.ca/eng/multimedia/search/image/watch/6526
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deal with highly dynamic flows (e.g., see [22, 23]). In contrast, mesh-free continuum-based
methods, or simply particle methods (such as the Material Point Method (MPM) [24], the
Moving Particle Semi-implicit (MPS) method [25], and the Smoothed Particles Hydrodynam-
ics (SPH) method [26]), discretize the fluid domain into moving particles carrying flow and
material properties (Figure 1.3-(c)). Such particle methods, owing to their Lagrangian na-
ture, have become powerful computational tools for studying free-surface flows and granular
dynamics in hydro-environmental and geotechnical studies [27–29].

Figure 1.2 Different flow regimes of the immersed granular collapse

Mixture of solid grains and pore fluid

Fluid phase

(a) Representative volume

Interface

(c) Discretized computational domain

Mixture particles

Fluid particlesFluid phase

(b) Homogenization of phases

Interface

Mixture phase

Fluid phase

Figure 1.3 (a) Representative volume of the fluid and submerged solid grains, (b) Homogeniza-
tion of phase, and (c) the discretization of the computational domain into moving particles.

Nevertheless, accurate simulation of the multiphase flows with large free-surface deformations
is still challenging for numerical methods. Inconsistent governing equations and discretization
errors affect the reliability of the computational tools and thus, surmounting them remain
subjects of ongoing investigations. The numerical stability and accuracy of the models re-
quire further improvements for predicting the violent interfacial and dense granular flows.
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Moreover, the constitutive laws (i.e., the rheology models) predicting the mechanical behavior
of the mixture of solid grains and fluid (at the macroscopic level) lack a unified formulation
capable of considering the dynamic flow regimes with variable material and flow properties.

This doctoral research project aims at developing consistent mesh-free particle methods for
accurate simulation of highly dynamic free-surface and immersed granular flows. The numer-
ical model solves Lagrangian governing equations based on the SPH and MPS formulations.
We introduce several enhancement techniques concerning the stability and accuracy of the
particle methods for dealing with large interfacial flow deformations. Moreover, we propose
a generalized rheology model and a multi-resolution particle method to investigate the me-
chanical behavior of sediment dynamics driven by gravity and rapid fluid flows. Overall,
this doctoral research project contributes to the advancement of knowledge for the in-depth
analysis of complex and highly dynamic fluid and dense granular flows over a broad range of
conditions.

1.2 Dissertation outline

We have organized this dissertation in nine chapters including the introduction. In Chapter 2,
we present a critical literature review on particle methods and immersed granular flow mod-
eling. In Chapter 3, we discuss the research questions, identify the main research objectives,
and summarize the research contributions. We have addressed the main objectives in five
research articles that constitute Chapters 4, 5, 6, 7, and 8. At the end, we discuss the general
achievements and present the concluding remarks of this research project in Chapters 9 and
10.
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CHAPTER 2 LITERATURE REVIEW

2.1 Mesh-free particle methods

Eulerian mesh-based and Lagrangian mesh-free methods are two conceptually distinct ap-
proaches adopted for the continuum-based modeling of fluid dynamics. Mesh-based methods
(e.g., the Finite Volume Method (FVM) [30], the Finite Difference Method (FDM) [31],
and the Volume of Fraction (VOF) method [32]) construct a computational grid system for
discretizing the fluid domain. In such numerical methods, the governing equations solve
the convection of flow and material properties passing through the mesh faces while the
spatial position of the calculation nodes remains semi or fully fixed. The conventional mesh-
based methods struggle to simulate the complex fragmentation of interfacial flows. Thus, for
handling extreme flow deformations, mesh-based methods should be further developed with
special implementations regarding their grid system, e.g., the moving-mesh method [33], and
the reference map technique [22]. On the other hand, mesh-free methods (e.g., the Mate-
rial Point Method (MPM) [24], the Moving Particle Semi-implicit (MPS) method [25], and
the Smoothed Particles Hydrodynamics (SPH) method [26]) discretize the fluid domain into
moving nodes (i.e., particles) that carry the flow and material properties. The movements
of particles, based on the Lagrangian-form governing equations, introduces such methods
as powerful computational tools for capturing highly dynamic free-surface flows involved in
complex hydro-environmental system [34, 35]. Due to their Lagrangian characteristic, SPH
and MPS have attracted a great deal of attention for numerical modeling of free-surface and
multiphase flows [11,36,37].

SPH and MPS are the two most popular and well-developed particle methods for various
scientific and engineering studies (e.g., in coastal and ocean engineering [27, 38], nuclear en-
gineering [39], and industrial applications [40]). Gingold and Monaghan [26] and Koshizuka
and Oak [25] proposed the original SPH and MPS formulations, respectively. Both particle
methods discretize the Lagrangian form of the Navier-Stokes equations into moving parti-
cles without any connectivity [34, 35]. The particle approximation operators, 〈·〉i , employ a
compact weighting function (W , so-called the kernel) to smooth the flow and material prop-
erties, e.g., f , over a target particle, i, interacting with its neighboring particles, j, inside
the finite smoothing radius, re (where the inter-particle distance, rij = ‖rij = (rj− ri)‖ ≤ re,
N is the number of neighbor particles, and ri is the position of particle i) (Figure 2.1-a).
The kernel is a positive function of the smoothing length and the inter-particle distance, i.e.,
Wij = W (rij , re) and Wij ≥ 0. The particles interact with each other through the discretized
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form of the governing equations (including the pressure and shear forces). The particle in-
teraction is conservative if the force, F, is anti-symmetric with respect to i and j indexes,
i.e., if Fij = −Fji ; otherwise, the particle interaction is non-conservative based on Newton’s
third law (excluding body and dissipative forces of the system) (Figure 2.1-b).

Figure 2.1 (a) The kernel approximation over the computational fluid domain, and (b) the
particle interaction force, F.

SPH and MPS, as two sister methods, while differ in their basic approximation techniques
yet share similar solution algorithms and numerical issues. Table 2.1 compares the kernel
summation, the particle approximation and gradient operators of an arbitrary function, f ,
with the standard SPH and MPS formulations. SPH retains the fluid density, ρ, in its approx-
imation operators; the MPS formulations are independent of the density substituted by the
non-dimensional particle number density, n. For multiphase flows, the standard SPH formu-
lations require special treatments at the interface for treating the density-discontinuity [36].
MPS by using the non-dimensional particle number density can be a natural choice for resolv-
ing the density-discontinuity issues of the interfacial flows [41]. The kernel of SPH (W SPH ) is
a dimensional term ((ρ/m)−1 where m is the particle mass) which should respect the unity
condition [35, 42]; nevertheless, the kernel of MPS (WMPS) is a non-dimensional smoothing
function without the need for respecting the unity condition as a constant normalization
factor (n0) appears in its operators [34, 43] (Table 2.1). Moreover, SPH derivatives include
the gradients of kernel, i.e., ∇iW

SPH
ij = (rji/rij)(∂W SPH

ij /∂rij) where ∂W SPH
ij /∂rij ≤ 0 [35,42];

MPS directly uses the non-dimensional kernel within its approximation terms. Accordingly,
MPS (as a kernel-derivative-free approach) does not suffer from the numerical instability
associated with the kernel derivative that exists in the force terms of the standard SPH
formulations [44, 45]. d is the space dimension equal to 1, 2, and 3 for the one-, two-, and
three-dimensional problems (i.e., for 1D, 2D, and 3D, respectively).
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Table 2.1 The kernel summation (for the density, ρ, and the particle number density, n,
calculations), the particle approximation and gradient operators of an arbitrary function, f ,
with the standard SPH and MPS formulations.

Operator SPH MPS

The kernel summation: ρi =
N∑
j

mjW
SPH
ij ni =

N∑
i 6=j

WMPS
ij

The particle approximation, 〈f〉i =
N∑
j

mj

ρj
fjW

SPH
ij

1
n0

N∑
i 6=j

fjW
MPS
ij

The gradient operator, 〈∇f〉i =
N∑
j

mj

ρj
fj∇iW SPH

ij
d

n0

N∑
i 6=j

fj − fi
r2

ij
rijW

MPS
ij

The original SPH method [26] considers the fluid flow as a weakly-compressible and barotropic
phase, and therefore, solves the equation of state (EOS) to update the thermodynamic pres-
sure. The original MPS method [25,46] treats the fluid flow as a fully incompressible phase,
keeping the density of particles constant by solving the Pressure Poisson Equation Equation
(PPE). While the weakly-compressible SPH (WC-SPH) methods solve the time integration
algorithm explicitly, the fully-incompressible particle methods, including SPH and MPS,
have to solve PPE implicitly. Numerically solving the PPE matrix is one of the most time-
consuming parts of the incompressible models. On the other hand, solving the equation of
state is straight forward and significantly reduces the computational costs. Shakibaeinia and
Jin [47] introduced the weakly-compressible version of the MPS method (WC-MPS) for free-
surface flows by proposing the equation of state as a function of the particle number density
and the normalization factor. The main focus of the current research project is to develop
and validate enhancement techniques, compatible with both the WC-MPS and WC-SPH
methods, for highly dynamic free-surface and immersed granular flows.

In the standard weakly-compressible SPH and MPS methods, the kernel summation operator
estimates the local fluid density and the particle number density, respectively (Table 2.1).
The accuracy of this equation greatly depends on the type of the kernel function, the kernel
truncation issues at the boundaries, and the particle distribution. Particularly, the kernel
summation operator act poorly at the vicinity of the free surface where the kernel support
is incomplete causing numerical instability and non-uniform particle distributions [48]. Fur-
thermore, such models neglect the velocity divergence (i.e., they consider∇·v = 0), and thus,
the conservation properties of the discrete system (considering the energy equation [49]). To
surmount this inaccuracy in the standard SPH formulation, Bonet and Lok [48] employed
the continuity equation as an alternative model for the density calculation. Including the
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continuity equation into the governing equations provides the model the opportunity to be
variationally consistent, assign initial density and pressure fields, and improve the pressure
estimations close to the boundaries [42,48,49].

SPH and MPS suffer from several numerical issues associated with the Lagrangian movement
of the particles and the discretization errors (i.e., the particle approximation errors). Par-
ticularly, in the WC-SPH methods, the discretization errors and numerical (false) diffusion
affect the density estimation manifested as high-frequency pressure fluctuations (i.e., pres-
sure noises). Moreover, the long-term stability and accuracy of such methods depend on the
conservation properties of the discrete system and uniformity of particle distribution [49,50].
Over the past years, SPH and MPS have gone through significant enhancements concerning
their numerical accuracy, stability, and efficiency. The developments include adopting high-
order derivatives [51, 52], implementing artificial repulsive force and diffusive terms into the
governing equations [53, 54], and imposing uniform particle distribution [55, 56]. We review
the numerical solutions and their limitations as follows:

• High-order approximation operators

In SPH and MPS, the numerical accuracy of the approximation operators (i.e., the gradient,
divergence, and Laplacian operators) depends on the uniformity of the particle distributions,
as well as, the order of accuracy of the derivatives. High-order approximation operators are
introduced in the discrete system of particles to increase the convergence order and numerical
accuracy of the derivatives. Such high-order formulations can also improve the numerical
stability and smoothness of the pressure field [51]. Considering the Taylor expansion series,
different corrective matrices (also called the renormalization tensors) for the first- and second-
order numerical accuracy are derived [52, 57, 58]. Oger et al. [52] proposed a high-order
convergence SPH by introducing the correction matrix for the continuity and momentum
equations. Khayyer and Gotoh [57] proposed a modified multi-term source with the higher-
order operator for the Poisson’s pressure equation. Khayyer and Gotoh [57] implemented a
corrective matrix into the standard pressure gradient operator similar to the renormalization
matrix Oger et al. [52] employed to apply higher-order calculations. One should note that
inconsistent implementation of the high-order gradient and divergence operators ignores the
conservative properties of the particle interactions (as they are not anti-symmetric with
respect to the particle indexes, see Figure 2.1 and Table 2.1). This feature of high-order terms
is not in favor of the stability of weakly-compressible SPH and MPS methods [49]. Gotoh
and Khayyer [59] pointed out that the implementation of particle stabilization techniques
is essential for the models with the corrective matrix. Duan et al. [60] also confirmed that
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even with implementing high-order derivatives, stabilizing techniques are still required for
ensuring numerical stability of the simulations.

• Artificial diffusive terms

High-frequency and unphysical pressure fluctuations affect the numerical stability and ac-
curacy of the WC-SPH methods [54]. To eliminate pressure noises, artificial viscosity and
density diffusion terms are proposed. Gingold and Monaghan [61] introduced the artificial
viscosity term into the pressure gradient term of the momentum equation. This numerical
correction has shown to be an effective technique for improving the pressure oscillations (e.g.,
see [3, 62–64]). Using the same concept, Molteni and Colagrossi [54] proposed the standard
density diffusion term as the Laplacian of the density added to the right-hand side of the
continuity equation. This approach (so-called δ-SPH) leads to robust numerical results for
simulation of the free-surface flows [65]. However, the standard form of the density diffusive
term diverges the density field (from the hydrostatic solution) near the boundaries with the
kernel truncation [66, 67]. Antuono et al. [66] proposed a convergent form of this term by
the Taylor expansion series and a corrective interpolator for the kernel gradient. Antuono
et al. [65] compared different numerical diffusive terms in the WC-SPH method. Meringolo
et al. [68] employed the sub-particle scale turbulence closure to determine the coefficients of
viscosity and density diffusive terms dynamically according to the local and instantaneous
flow conditions. Fourtakas et al. [69] introduced a new form of the density diffusive term by
substituting the dynamic density with the total density; however, their formulation violates
the conservation of mass considering that it is not an anti-symmetric term [65].

For multiphase flow problems, the divergence issue of the density diffusion terms requires
adopting special boundary treatments at the interface. Sun et al. [70] and Hammani et al. [71]
employed the convergent diffusive term for the multiphase flows restricting its application
to the fluid particles of the same phase. Zheng and Chen [72] substituted the oscillation of
density increment for the density variable in the multiphase SPH model. In such developed
formulations of WC-SPH methods, the corrective matrix and the first-order density gradient
operators are also limited to the same phase particles. In this case, although the higher-order
gradient formulation reduces the associated errors at the interface, this solution remains
incompetent for highly dynamic interfacial flows.

• Particle regularization techniques

Another common numerical issue of the standard SPH and MPS methods is the unphysical
inter-particle penetrations (so-called particle clustering and tensile instability) [44]. Such
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numerical instabilities originate from the Lagrangian equation, which moves the particles
along the streamlines [50,52]. Irregular positions of particles (i.e., non-isotropic particle dis-
tribution) increase the approximation errors leading to numerical instabilities and inaccurate
estimations of flows. Also, in the standard SPH formulation, the kernel gradient reduces
to zero at its center, and thus underestimates the magnitude of the inter-particle repulsive
force [44, 45]. To improve the uniformity of the particles, different particle regularization
techniques are developed in SPH and MPS. In the context of the SPH method, Xu et al. [55]
proposed the Particle Shifting (PS) method, which shifts particles to the area with less par-
ticle concentration. Lind et al. [50] and Skillen et al. [73] adapted PS to free-surface flows
involving body-water impacts. Khayyer et al. [74] optimized the PS formulation by canceling
its normal component at the free surface. On another approach, the pair-wise Particle Colli-
sion (PC) techniques, based on the momentum transfer between a pair of colliding physical
solid or gas particles, are developed. Lee et al. [56] formulated the PC within the context
of the fully-incompressible MPS method for free-surface flows. Shakibaeinia and Jin [75] ex-
tended the PC formulation for multiphase flows within the context of the weakly-compressible
MPS method.

• Multi-resolution particle methods

To further improve efficiency and accuracy, multi-resolution particle methods are introduced
as desirable approaches for capturing more flow/solid deformations over a refined compu-
tational domain/element. In general, they aim at eliminating the computational costs of a
fully refined single-resolution simulation. Several SPH and MPS methods pair their multi-
resolution formulations with dynamic particle splitting and merging algorithms [76–78], adap-
tive particle refinement techniques [79–81], and overlapping methods [82, 83], to simulate
complex flow problems. In a different approach, Sun et al. [84] have proposed a volume
adaptive scheme to limit particle volume variations of compressible multiphase flows. Ap-
plications of these multi-resolution particle methods include wave body interactions, high
Reynolds number flows past a bluff body, and rapid multiphase flows (e.g., see [76], [85],
and [86]). Moreover, multi-resolution SPH and MPS approaches are extended for modeling
of fluid-structure interactions where the higher spatial resolution of the structure elements
allows more accurate deformations [70,87–89]. In such developed models, it is imperative to
implement conservative approximation operators in a consistent manner concerning particle
interactions with different sizes and mechanical properties. In the standard MPS formula-
tion, the approximation terms consider an identical spatial resolution for the entire domain.
In other words, the discrete equations ignore the particle size and the smoothing length [43].
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This feature of the MPS operators should be noted for deriving consistent and conservative
multi-resolution models.

2.2 Immersed granular flows

Over the past decades, many experimental and theoretical studies have focused on presenting
physical and mathematical explanations for granular flows’ mechanical behavior (e.g., [18,
19, 90–93]). Both approaches have been employed for analyzing the mechanism of granular
avalanches and slides, e.g., [10, 19, 94, 95], and intense bed-load transports [12, 13, 18]. The
granular phase, under gravity and fluid flows, undergoes different flow states identified as
quasi-static (solid or viscous), dense-flow (liquid), and free-fall (suspended) regimes [16, 17].
With the presence of ambient fluid (like water), the situation becomes more complex as the
mechanical and flow properties of the interstitial fluid influence on the granular flow behavior
[17]. The empirical models (obtained from the experimental and theoretical investigations)
aim at capturing such complex granular dynamics. However, the experiments rely on the
accuracy of the measurement instruments and are limited to laboratory-scale cases. Also,
the theoretical solutions adopt simplifying assumptions (like the steady flow conditions and
the shallow-water equations) and can only provide an overall estimation of the granular
flow [18]. As another alternative, numerical methods, in the discrete and continuum-based
formats, have been widely developed for investigating the underlying physics of granular flows.
Discrete-based methods (e.g., the Discrete Element Method [21]) deal with the individual
grains subjected to macroscopic and microscopic forces (e.g., [96, 97]). Although they are
effective methods for in-depth analysis of granular mechanical behavior, computational costs
associated with microscopic simulations of solid particles limit their application to small-scale
problems [20]. On the other hand, the continuum-based methods homogenize the granular
phase into macroscopic properties. The scalability of the continuum-based methods makes
them computationally less expensive and appropriate for large-scale simulations involved in
engineering studies (e.g., [20, 33]).

In the continuum-based models of immersed granular flows, the rheology model estimates
the mechanical properties of fluid and solid grains. The numerical method implements the
rheology formulation within the governing equations as the single- or two-phase continuum
models [16, 17]. The single-phase model treats the solid grains and ambient fluid as a single
mixture phase; the mixture interacts with the fluid phase directly through one set of gov-
erning equations. The two-phase model simulates the relative motion of the fluid and the
homogenized solid phase (as two separate and continuous fluid phases), solving two sets of
governing equations coupled by the inter-phase forces (i.e., the buoyant, drag, and non-drag
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forces) [17, 95]. Therefore, unlike the single-phase model, the two-phase model includes the
effects of volume fraction variations in the constitutive formulations [20, 95, 98]. Neverthe-
less, in the two-phase model, solving the computational domain over two sets of calculation
points is computationally expensive (particularly for three-dimensional simulations); also,
the phases’ mechanical properties depend on empirical equations used for estimating the
inter-phase forces.

Many empirical and numerical studies have been devoted to introducing general and reliable
constitutive laws for different regimes of the granular flows [17,99]. For the immersed condi-
tion, different non-Newtonian models are developed (e.g., see [92,93,100,101]). Guazzelli and
Pouliquen [17] presented a comprehensive review of the rheology of concentrated granular
suspensions. Among them, the local µ (I) rheology (proposed by Jop et al. [99] and Forterre
and Pouliquen [102]) has drawn attention for the dry and submerged cases (e.g., [96,103,104]).
Considering low Stokes immersed granular flows, Boyer et al. [101] conducted a series of ex-
periments to derive a unified rheology equation. Amarsid et al. [100] with some dimensional
analysis and simulating the inertial and viscous regimes of the mixture introduced a uni-
fied rheology model for the dry and immersed granular flows. Baumgarten and Kamrin [20]
combined the former models (i.e., the models by [101] and [100]) in a single formulation to
capture different states of the dense granular flows using a two-continuum mixture model. It
should be highlighted that in the adopted rheology models, the inertial number, I, is a pre-
defined function according to the expected flow regime. Therefore, the standard µ(I) models
are not unified for simulating viscous, inertial, and free-fall regimes of the granular flows.
Particularly, for the immersed and dense granular flows, both inertial and viscous regimes
may control the mechanical behavior of the flow; thus, predicting the underlying physics of
the mixture would be more challenging [100].

In the context of SPH and MPS methods, the adopted constitutive laws include the Bingham
plastic formulation [105–107], the Herschel-Bulkley model [107, 108], the Herschel-Bulkley-
Papanastasiou model [109], the regularized µ(I) [110–113], and the elastic-viscoplastic model
[114]. Moreover, to improve the prediction of the flow threshold of the mixture, some methods
have employed an additional yielding threshold based on Shields’ erosion criterion [106,115,
116]. Particularly, in the standard WC-MPS framework, Shakibaeinia and Jin [108] simulated
the mobile-bed dam-break including the non-linear behavior of the granular material by the
Generalized Visco-plastic Fluid (GVF) model (proposed by Chen et al. [117]). Nodoushan
and Shakibaeinia [118] employed the regularized form of the local µ(I) rheology to model the
submerged and dry granular collapses. Further, Tajnesaie and Shakibaeinia [112] developed
the same model to simulate the granular landslide in a two-dimensional configuration and
compared the results with the Heschel-Bulkley model. Recently, Ke et al. [119] investigated
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the role of the µ(I) rheology for the dry granular slide and dam-break via the standard
WC-MPS method.

An accurate and dynamic estimation of effective pressure is essential for detecting the yielded
and non-yielded flow regions. SPH and MPS methods (e.g., [105, 113, 116, 120]) assume
the lithostatic condition for predicting the pore-water pressure within the mixture phase.
Ghaïtanellis et al. [114] appended an additional term into the constitutive model to calculate
the effective pressure independently (via solving the Laplacian of the field accompanied by the
boundary conditions of the model). In general, these approaches involve the free-surface and
interface detection which limits the capability of the particle methods for dealing with highly
dynamic granular flows. In another approach, Fourtakas and Rogers [109] and Zubeldia et
al. [115] employed a modified equation of state (EOS) for their WC-SPH model by using
the density of the saturated sediment to estimate the pore-water pressure. However, their
models consider different reference pressures within the EOS (for the total pressure and
the pore-water pressure); thus, the pressure oscillations due to the slight compressibility of
the fluid model affect the estimation of the viscosity of the submerged granular flows [114].
Moreover, in standard particle methods, the unphysical pressure noises and the particle
clustering can significantly affect the accuracy of the granular modeling. Resolving these
numerical issues put great emphasis on adopting the particle regularization techniques and the
artificial diffusive terms for ensuring the stability and accuracy of the numerical simulations.
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CHAPTER 3 RESEARCH PROJECT

3.1 Research problems

The previous chapter reviewed the past research works and highlighted the gaps in knowledge
and the needs for the research, which define our research questions here. These knowledge
gaps are related to numerical aspects of the particle methods and their application for free-
surface and granular flows.

3.1.1 Stability and accuracy of particle methods

To study the multiphysics of complex flows, the discrete system of governing equations should
respect the mechanical properties of the problem (i.e., the mass and momentum conserva-
tion laws). Also, the numerical model should implement high-order approximation opera-
tors to improve the accuracy and convergence order of the results. SPH and MPS can not
achieve both noting that the high-order derivatives of the Lagrangian equations violate the
momentum conservation law. Particularly, the WC-MPS method does not benefit from a
conservative system of equations (even without the high-order terms). In this method, the
kernel summation operator estimates the particle number density, and the pressure gradient
terms ignore the linear momentum conservation in the particle interactions. In addition, the
approximated shear force violates the conservation of the angular momentum of the discrete
system. The kernel truncation (at the free surface) and the non-conservative pressure and
shear forces increase the numerical errors and pressure noises leading to particle clustering
and instability affecting the flow accuracy.

Particle stabilization techniques have shown promising outcomes for eliminating unphysical
pressure oscillations and improving particle clustering issues. Such numerical developments
include artificial diffusion terms (like the density diffusion term) and particle regularization
techniques (like the PC and PS methods). Yet, the efficiency and convergence behavior of
their implementations are limited to low Reynolds numbers. To simulate highly dynamic free-
surface deformations (with fluid-fluid and fluid-solid impacts) and deal with negative pressure
fields, the particle stabilization techniques still lack conservative and convergent formulations.
The standard form of the density diffusion term causes the divergence of the pressure field
close to the boundaries and interfaces. This divergence of density parameter affects the long-
term stability of multiphase and violent free-surface flows. Moreover, the effectiveness of PS
techniques greatly depends on the accuracy of the free-surface detection algorithm. Without
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special boundary treatments, the developed PS techniques struggle to present uniform par-
ticle distribution in large flow deformations and where impact events occur. In cases with
several impact events and where the potential energy is dominant, the standard form of PS
methods alters the system’s potential energy (manifested as unphysical volume expansions
in the fluid domain). This numerical anomaly is due to the non-Lagrangian displacement
of the particles without respecting the conservative properties of the system. To accurately
model rapid free-surface and multiphase flows (particularly with high viscosity and extreme
deformations), resolving such numerical inconsistencies is essential.

3.1.2 Granular flow modeling

In the constitutive laws, the rheology model predicts the mechanical behavior of the mixture
phase as a function of the material and flow properties. Submerged granular material under-
goes dynamic fluid- and solid-like behaviors driven by gravity and ambient fluid flows. The
implemented rheology models in particle methods lack a unified formulation for simulating
different states (i.e., the viscous, inertial, and suspension regimes) of the immersed granular
flows. Also, the yield stress and post-failure terms of the rheology models, as functions of
the mixture effective pressure (i.e., the normal stress in the solid phase), are sensitive to the
accuracy and smoothness of the estimated pressure field. Thus, unphysical pressure noises
can directly affect the shear force estimation. This inaccuracy in particle methods not only
threatens the stability of the simulation but also leads to unrealistic granular evolution. In
addition, the lithostatic stress (commonly adopted for the effective pressure of the mixture)
neglects the dynamics of the interstitial fluid flow in the rheological model. To deal with the
large deformation of the sediment continuum, we require a consistent formulation to estimate
the effective pressure without the hydrostatic assumption and the interface tracking for the
pore-water pressure.

In the continuum-based methods, the macroscopic scale representing the continuum (i.e., the
representative elementary volume) must be large enough to contain a sufficient number of
solid grains [17, 121]. Otherwise, the numerical element would reach the size of the discrete
elements (i.e., the solid grains), and therefore, the continuum assumption of the constitu-
tive law would become invalid. On the other hand, the spatial resolution of the discretized
computational domain should be small enough (concerning the characteristic length-scale
of the case study) to mathematically represent its vicinity and minimize the numerical ap-
proximation errors [114, 122]. Furthermore, to capture highly dynamic and high Reynolds
number fluid flows (e.g., the fluid-driven sediment erosion), the numerical solution requires
a higher spatial resolution for the fluid phase than that of the mixture. The current contin-
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uum particle methods, developed for immersed granular flows, adopt a single particle size
for discretizing the entire fluid domain. Considering an identical spatial resolution for both
water and mixture particles restricts the capability of the particle methods in simulating
large interfacial deformations and minimizing the numerical discretization errors.

3.1.3 Research questions

Accordingly, we summarize the key questions of this research project as follows:

• Q1: How to develop a conservative form of the governing equations for the WC-MPS method?

• Q2: How to enhance stability and accuracy of particle methods for violent free-surface flows?

• Q3: How to model multiphysics of immersed granular flows through a unified rheology model?

• Q4: How to develop a consistent particle method for highly-dynamic sediment transport?

Overall, the identified questions target filling the research gaps in particle methods for sim-
ulating accurate flow evolution of highly dynamic free-surface and granular flows. To re-
duce numerical errors and instability (associated with the non-conservative discrete system,
high-frequency pressure noises, and unphysical inter-particle penetrations), particle methods
should be enhanced by addressing Q1 and Q2. As for understanding the underlying physics
of immersed granular flows, the rheology equation should be generalized to model different
flow regimes (Q3). Moreover, to simulate multi-scale fluid-sediment interactions (while re-
specting the continuum assumption of the constitutive law), developing a multi-resolution
approach becomes essential (Q4).

3.2 Research objectives

This research project aims at developing and validating a consistent mesh-free particle method
capable of accurate simulation of violent free-surface flows and dynamics of immersed granu-
lar flows. It contributes to a longer-term objective of providing the scientific community and
engineers with the predictive tools that can help in engineering designs, protecting the envi-
ronment, and managing the risk associated with the hydro-environmental systems. Based on
the four research questions, Q1-Q4, respectively, we identify the specific research objectives
as follows:

• O1: Proposing and evaluating conservative forms of the WC-MPS method,

• O2: Developing effective particle stabilization techniques for free-surface flows,
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• O3: Elaborating the theoretical foundation and developing a generalized rheology model for
immersed granular flows,

• O4: Developing a consistent multi-resolution particle method for immersed granular flows.

3.3 Research originality and contributions

This research project contributes to the advancement of knowledge in different aspects. We
propose and validate several new developments to mesh-free particle methods to provide a
reliable numerical model for simulating highly dynamic free-surface and immersed granular
flows

We represent the original contributions of this research project, corresponding to the four
research objectives, in the following sections:

3.3.1 A conservative form of WC-MPS

We develop a novel version of the WC-MPS method considering the conservative properties of
the governing equations. We derive new conservative operators for the pressure gradient and
the shear stress calculations. The new model employs the continuity equation for updating
the particle number density to reduce the kernel truncation errors at the boundaries. The new
conservative pressure force implements anti-symmetric particle interactions and acts as an
artificial repulsive force between the fluid particles. To conserve the system’s global energy,
we present the conjugate form of the approximation operator for the velocity divergence
term in the new continuity equation. This original conservative WC-MPS method provides
a unique and novel platform for studying the numerical accuracy of the simulations and
convergence properties of the approximation operators.

3.3.2 Particle stabilization techniques

We propose several enhancement techniques to ensure numerical stability and accuracy of
the particle methods. They include developing new artificial density diffusive terms and ef-
fective particle regularization algorithms. We develop the particle stabilization techniques
by considering the conservative feature of the discrete system. Hereinafter, we denote the
conservative WC-MPS method coupled with the particle stabilization techniques as the En-
hanced WC-MPS (EWC-MPS) method. A summary of the new developments are listed as
follows:
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• WC-MPS with diffusion
In the context of the conservative WC-MPS method, we propose a novel diffusive term
as the Laplacian of the particle number density. We further improve the accuracy of
this diffusive term by implementing the convergent form of the Laplacian operator and
high-order gradient derivatives (presented as the modified diffusive term). We consider
the mass conservation of the system in the derivation of these new diffusive terms and
keep their formulations independent of the density variable.

• Particle regularization techniques
To improve stability of particle methods, we propose and develop several particle reg-
ularization techniques, within the framework of WC-MPS and WC-SPH formulations:

– A corrected particle shifting technique: CPS + PC
We propose a new conservative equation for the PS technique (within the MPS
framework) advanced with effective free-surface detection algorithms. We couple
the proposed PS method with the standard form of the PC techniques, given rise
to a novel hybrid approach (CPS + PC), to improve particle distribution at the
free-surface boundary layer.

– Dynamic pair-wise Particle Collision technique: DPC
We propose a new formulation of the PC technique presenting dynamic coeffi-
cients for the collision term and adding a dynamic background pressure. We
introduce and validate DPC, in SPH and MPS, as a powerful particle regular-
ization technique for dealing with different states of inter-particle penetrations in
violent free-surface flows.

– The consistent form of CPS: CPS∗ + DPC
We advance our CPS by deriving the additional diffusive terms (due to the PS
transport-velocity term) to resolve the non-conservative-volume issue of its formu-
lation. Including the diffusive terms into the CPS technique and proposing further
developments for the boundary treatment algorithm results in the consistent form
of CPS (denoted as CPS∗). By coupling CPS∗ with our novel DPC, CPS∗+DPC,
we present a robust hybrid particle regularization technique.

3.3.3 A generalized rheology model

We propose a new generalized rheology model for estimating the mechanical properties of the
immersed granular flows. The generalized rheology formulation treats the fluid (here, water)
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and mixture (i.e., the mixture of water and solid granules) phases as Newtonian and non-
Newtonian flows, respectively. For the fluid phase, the model includes a turbulence model
(based on the Sub-Particle Scale (SPS) formulation in particle methods) and the effects of
the solid phase volume fraction. For the mixture phase, we adopt the visco-inertial rheology
model by Baumgarten and Kamrin [20] that can capture the dominant regimes of dense
granular flows through its post-failure terms. To resolve the singularity issue of this friction
equation (when the strain rate magnitude is strictly zero), we derive a new regularized form
of the dynamic viscosity equation (denoted as the regularized visco-inertial rheology model).

Furthermore, we develop a novel and consistent equation to calculate the effective pressure
dynamically based on the mass conservation law of the pore-water phase (within the mixture
phase). The consistent effective pressure incorporates the flow dynamics of the mixture
within the rheology model by estimating the true density of the pore-water phase without
any interface detection.

3.3.4 A multi-resolution particle method for granular dynamics

As a part of this research project, we propose a novel multi-resolution particle method for
fluid-driven granular dynamics. The main idea behind the multi-resolution model for gran-
ular flows is to respect the continuum assumption of the rheology model while reducing
the size of the fluid/water particles. To that end, we derive new approximation operators
respecting the conservative properties of the discrete system based on the conservative WC-
MPS formulation (according to the objective O1). To ensure numerical stability and avoid
unphysical oscillations, we adapt the modified diffusive term and the DPC technique to the
newly developed multi-resolution framework (i.e., following the objective O2). Further, we
couple the developed method with the generalized rheology model supplied with a suspension
equation for rapid and immersed granular flows (i.e., following the objective O3). We em-
ploy the validated numerical method to investigate the importance of multi-scale multiphase
water-sediment interactions in rapid fluid-driven problems.

3.4 Publications

This research project has directly contributed to five journal articles included as chapters of
the thesis. In addition, it has led to the publication of two conference papers and one journal
article. These articles are listed below:

• Article 1: "An enhanced weakly-compressible MPS method for free-surface flows" [123]
Authors: Mojtaba Jandaghian and Ahmad Shakibaeinia
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Journal: Computer Methods in Applied Mechanics and Engineering
Publication date: March 2020
Authorship statement: The first author proposed and developed the conservative for-
mulations and the stabilization techniques. He implemented the new methods within
the 2D serial code and simulated the benchmark cases. He validated and analyzed the
numerical results, prepared the figures, wrote and revised the original draft, responded
to the comments, and revised the manuscript in the review process of the article.

• Article 2: "Enhanced weakly-compressible MPS method for violent free-surface flows:
Role of particle regularization techniques" [124]
Authors: Mojtaba Jandaghian, Abdelkader Krimi, Amir Reza Zarrati, and Ahmad
Shakibaeinia
Journal: Journal of Computational Physics
Publication date: June 2021
Authorship statement: The first author proposed the new methodology including the
new particle regularization techniques. He developed a GPU-accelerated code (for the
3D modeling) and implemented the new techniques. He conducted the simulations,
validated and analyzed the numerical results, prepared the graphs and figures, wrote
and revised the original draft. In the review process of the article, he responded to
the comments and revised the manuscript. The second co-author provided general
comments on the quality of the figures and participated in the related discussions. The
third co-author provided detailed comments and revised the original draft of the article.

• Article 3: "Stability and accuracy of the weakly-compressible SPH with particle reg-
ularization techniques" [125]
Authors: Mojtaba Jandaghian, Herman Musumari Siaben, and Ahmad Shakibaeinia
Journal: European Journal of Mechanics - B/Fluids
Submitted in October 2021 and accepted on March 17, 2022
Authorship statement: The first author derived the new particle regularization tech-
niques in the SPH method. He implemented the new formulations inside the open-
source code DualSPHysics software. He conducted the simulations, validated and ana-
lyzed the numerical results, prepared the graphs and figures, wrote the original draft,
and responded to the comments and revisions received from the reviewers. The second
co-author numerically solved the analytical solution of the first test case and wrote the
code for calculating the spatial particle disorder. Also, he revised the original draft and
provided general comments on the quality of the visualizations.

• Article 4: "Enhanced weakly-compressible MPS method for immersed granular flows"
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[126]
Authors: Mojtaba Jandaghian, Abdelkader Krimi, and Ahmad Shakibaeinia
Journal: Advances in Water Resources
Publication date: June 2021
Authorship statement: The first author proposed the new methodology including the
generalized rheology model and the modified diffusive term. He developed the GPU-
accelerated code and implemented the new techniques in the software. He validated
and analyzed the numerical simulations, extracted the experimental data, prepared
the graphs and figures, wrote and revised the original draft. In the review process of
the article, he responded to the comments and revised the manuscript. The second
co-author reviewed the article and provided general comments.

• Article 5: "Fluid-driven granular dynamics through a consistent multi-resolution par-
ticle method" [127]
Authors: Mojtaba Jandaghian and Ahmad Shakibaeinia
Journal: Journal of Fluid Mechanics
Submission date: February 2022
Authorship statement: The first author proposed the new multi-resolution method
and the adapted stabilization techniques. He developed the GPU-accelerated code and
implemented the new model. He validated and analyzed the numerical simulations
versus the theoretical solutions and the post-processed experimental data, visualized
the results, and wrote and revised the original draft.

• Conference paper 1: "A Moving Particle Semi-implicit numerical method for mod-
eling sediment dynamic" [111]
Authors: Mojtaba Jandaghian and Ahmad Shakibaeinia
Conference: E-proceedings of the 38th IAHR World Congress
Publication date: September 2019
Authorship statement: The first author developed the 2D serial code with the new
methodology for the particle stabilization. He simulated the test cases, analyzed the
results, prepared the figures, and wrote the original draft. He presented this paper at
the conference in Panama City.

• Conference paper 2: "Dynamic particle collision technique for free-surface flows in
SPH" [128]
Authors: Mojtaba Jandaghian, Herman Musumari Siaben, Abdelkader Krimi, and
Ahmad Shakibaeinia
Conference proceeding: 2021 International SPHERIC Workshop
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Publication date: June 2021
Authorship statement: The first author derived the new DPC technique for SPH. He
implemented the formulation inside the open-source code DualSPHysics and simulated
the test cases. He validated and analyzed the numerical results, prepared the graphs
and figures, and wrote and revised the original draft. He presented the paper at the
online conference. The second co-author provided the analytical solution of the first
test case and revised the manuscript. The third co-author also provided the analytical
solution and participated in the related discussions.

• Article 6: "A WC-SPH particle shifting strategy for simulating violent free surface
flows" [64]
Authors: Abdelkader Krimi, Mojtaba Jandaghian, and Ahmad Shakibaeinia
Journal: Water
Publication date: November 2020
Authorship statement: The second co-author revised the original draft, provided com-
ments on the quality of the results, and participated in the related discussions.

3.5 Structure of thesis

This thesis is presented in an article-based format. Following the Introduction and Literature
Review chapters (i.e., chapters 1 and 2, respectively), five interconnected journal articles are
presented in chapters 4-8 (see Figure 3.1). While chapters 4-6 concentrate on enhancing the
stability and accuracy of particle methods for general free-surface flows, chapters 7 and 6,
employ and further develop the new enhanced techniques for the particular cases of immersed
gravity-driven and fluid-driven granular flows, respectively. These chapters are organized as
follows:

• Chapter 4 (Article 1) addresses the research objectives O1 and O2 proposing the con-
servative form of the WC-MPS method. It also introduces the artificial density diffusive
term and the CPS + PC particle regularization technique.

• Chapter 5 (Article 2) also contribute to the research objectives O1 and O2. It inves-
tigates the role of particle regularization techniques in simulating violent free-surface
flows by the EWC-MPS method. It also proposes the modified density diffusive term
and the DPC and CPS∗+DPC particle regularization techniques.
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• Chapter 6 (Article 3) addresses the research objectives O2 in the context of the WC-
SPH method. It validates the effectiveness of the developed DPC formulation and a new
hybrid PS technique (PS + DPC, denoted as cPS) for highly dynamic free-surface flows.

• Chapter 7 (Article 4) primarily addresses the research objective O3 by proposing the
generalized rheology model for the immersed granular flows in the EWC-MPS method.
It also contribute to objectives O1 and O2 by presenting and evaluating a modified
diffusive term for multiphase flows.

• Chapter 8 (Article 5) focuses on developing a consistent multi-resolution particle
method for fluid-driven granular flows. Furthermore, it contributes to adapting the rhe-
ology model and stabilization techniques to the multi-resolution formulations, which
are aligned with the objectives O1-O3.

Finally, chapters 9 and 10 summarize and conclude the outcomes and the key findings of this
research project.

Article 3:
Stability and accuracy of the weakly-

compressible SPH with particle regularization 
techniques

Article 5:
Fluid-driven granular dynamics through a 

consistent multi-resolution particle method

Article 4:
Enhanced weakly-compressible MPS method 

for immersed granular flows

Article 1:
An enhanced weakly-compressible MPS 

method for free-surface flows

Article 2:
Enhanced weakly-compressible MPS method 
for violent free-surface flows: Role of particle 

regularization techniques

Immersed granular flows 

Stability and accuracy of 
particle methods

Figure 3.1 The five interconnected research articles addressing the four research objectives
(O1-O4). Articles 1-5 are represented as chapters 4, 5, 6, 7, and 8, respectively.
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CHAPTER 4 ARTICLE 1: AN ENHANCED WEAKLY-COMPRESSIBLE
MPS METHOD FOR FREE-SURFACE FLOWS

Authors: Mojtaba Jandaghian1 and Ahmad Shakibaeinia1

1Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Canada
Computer Methods in Applied Mechanics and Engineering

4.1 Abstract

Similar to other particle methods, the Weakly-Compressible MPS (WC-MPS) is known to
suffer from numerical instabilities and unphysical pressure fluctuations. Here we develop,
adapt and evaluate a series of enhancement techniques to improve the stability and accuracy
of this numerical approach. This includes a new conservative pressure gradient formulation
and its conjugate form of the continuity equation supplied with a new diffusive term to reduce
the numerical error related to the false diffusion. As a regularization technique, we have also
adapted and modified the particle shifting algorithm (with near-surface special treatment)
in combination with the pair-wise particle collision method to avoid particle clustering and
associated noises. The impact of each of these enhancement techniques is evaluated and
quantified using popular benchmark cases, i.e. hydrostatic pressure tank, elliptical water
drops, rotating square patch of fluid, and dam-break problems. While the results confirm
the effectiveness of all the enhancement techniques, the additional diffusive term is found
to play a key role in increasing stability and eliminating the high-frequency pressure noises.
Furthermore, results show that for the cases with large interfacial deformations, the developed
particle shifting algorithm is essential for maintaining the smoothness of the free-surface
region and avoiding unwanted fragmentation.

4.2 Introduction

Mesh-free particle methods (or simply particle methods) are a group of numerical techniques,
which are recognized for their abilities in the simulation of challenging problems, especially
those with large interfacial deformation and fragmentations. Despite the capabilities of these
methods, they are known to be associated with instabilities and accuracy problems, particu-
larly in prediction of the pressure field. Over past years, much effort has focused on dealing
with such issues (e.g., in [3,34,129–131]), yet they have remained to be open problems. The
issues such as high-frequency unphysical pressure fluctuations, particle clustering and the so-
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called tensile instability, affect the stability of the particle method and requires implementing
enhancement algorithms such as the higher-order approximations (e.g., [51, 132]), the artifi-
cial diffusive terms (e.g., [53, 54]) and the particle stabilizing and regularization techniques
(e.g., [50, 132]).

The widely-used particle models are the Smoothed Particle Hydrodynamics (SPH) and the
Moving Particle Semi-implicit (MPS) approaches, which have become powerful tools for
simulating complex hydro-environmental problems (e.g., [59, 114, 115, 133–135]). These two
sister methods differ in their basic approximation techniques yet share a lot in terms of
solution algorithms. The MPS method proposed by Koshizuka and Oak [25] is widely used
and validated for various hydrodynamic problems (e.g., in [105, 113, 136]). Shakibaeinia
and Jin [47] introduced the weakly compressible version of the MPS method (WC-MPS) by
employing an equation of state as the substitute for the Poisson’s Pressure Equation (PPE)
to solve the governing equations explicitly and reduce the calculation costs. This method is
the focus of the present study.

We can evaluate the accuracy and stability of the numerical models from the mathematical
(exact derivatives) and mechanical (exact momentum conservation) point of view. A numeri-
cal model that conserves the momentum of the system (in the absence of external forces) and
estimates the derivatives with a high-order of accuracy is an ideal model for the fluid flow
simulations. Nevertheless, SPH and MPS are incapable to accomplish both, since the exact
derivatives of acceleration terms ignore the conservation of momentum [49]. Considering the
Taylor expansion series for the higher-order calculations and antisymmetric pressure gradi-
ent formulations to conserve the momentum of a system, various approximation formulas for
the governing equations are proposed (refer to [51, 60, 133, 137, 138]). Particularly for MPS,
Koshizuka and Oka [25] added a particle stabilizing term (∆p = pi−p̂i, p̂i = min (pi, pj) , j ∈
neighbor of i) to the standard form of the pressure gradient to keep the interparticle forces
positive and exterminate particle clumping, however, it violates the momentum conservation
and reduces the order of accuracy. Khayyer and Gotoh [139] presented another equation for
the gradient of pressure in the MPS framework conserving the momentum, while estimating
inaccurate gradient values with incorrect gradient vector directions [140]. Suzuki et al. [141]
derived the Hamiltonian MPS formulations (similar to the SPH approximation equations
using the gradient of kernel function) conserving the mechanical energy of the system for the
fully incompressible fluid flows. Lee et al. [56] evaluated the role of a conservative pressure
gradient with ∆p = 2pi in an improved incompressible MPS model. Khayyer and Gotoh [57]
implemented a corrective matrix into the standard pressure gradient operator similar to the
renormalization matrix Oger et al. [52] employed to apply higher order calculations. Gotoh
and Khayyer [59] pointed out that the stability of the model with the corrective matrix is
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uncertain without implementing a particle regularization technique for simulating real test
cases. Duan et. al [60] showed that by including this corrective matrix in the gradient and
divergence formulations, the order of convergence mathematically increases from zero-order
to exactly first order, nevertheless the particle stabilizing techniques for the free-surface and
interior regions are required.

Furthermore, the particle methods suffer from particle clustering so-called tensile instability
as a result of the insufficient repulsive force between particles [44]. From a microscopic point
of view, an internal repellent force avoids molecules from clustering even when they attract
each other under external stretching forces. If a mathematical model underestimates the
repulsive force as the particles approach, the tensile instability occurs due to a negative
pressure field or an extreme compressive external force. This pairing instability originates
from the approximation errors and the sudden decrease of the repulsive force as the particles
cluster in particle methods with the kernel derivative (in SPH). Different solutions have
been suggested to eliminate the particles clumping and represent a smooth pressure field
based on the source of instability and disturbance. This includes implementing an artificial
repulsive force and diffusive terms into the governing equations, imposing uniform particle
distribution to avoid the collision of the particles, and smoothing the density and pressure
field approximation.

Molteni and Colagrossi [54] added a diffusion term as Laplacian of density into the continuity
equation to compensate for the numerical (false) diffusion associated with the numerical
technique in the weakly compressible SPH model. The concept behind this diffusion term
comes from the artificial viscosity term that Monaghan and Gingold [61] implemented into the
momentum equation to eliminate the shock discontinuities [54]. This approach (so-called δ-
SPH) leads to robust results in SPH for simulation of the free-surface flows [65]. However, near
the fluid free-surface due to the kernel truncation, the standard diffusion term diverges [66,67].
Antuono et al. [66] proposed a diffusion term by the Taylor expansion series and a corrective
interpolator for the kernel gradient to present a conservative form of the Laplacian of density
over the fluid domain. Antuono et al [65] compared different numerical diffusive terms in
the WC-SPH framework. Sun et al. [85,130] presented a modified δ-SPH algorithm, denoted
as δplus-SPH, improved by the optimized particle shifting approach. Recently, Meringolo
et al. [142] employed the sub-particle scale turbulence closure to determine the diffusive
parameters dynamically according to the local and instantaneous flow conditions.

The focus of some of the past studies has been on applying particle rearrangement/regularization
to achieve a uniform density field and overcome the problem with tensile instability and par-
ticle clustering. Monaghan [44] implemented a positive force term denoted as the repulsive
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force (i.e. an artificial pressure term) into the momentum equation in a weakly compressible
SPH model. Also, he purposed the XSPH method [143] that avoids particle interpenetration
by repositioning the particles based on the average velocity of the neighbouring particles.
Adami et al. [144] regularized the particle motions by introducing a stress term into the mo-
mentum equation that stands for the effect of a background pressure applied to modify the
particle’s transport velocity. They implemented the approach only for internal flows working
with the density summation formula in the weakly compressible SPH model. To enhance
the stability and accuracy of the MPS method and suppress the tensile instability, Khayyer
and Gotoh [57] proposed a modified multi-term source with the higher-order derivation of
Poisson’s pressure equation. Lind et al. [50] presented the generalized particle shifting (PS)
algorithm for an ISPH model that repositions particles to the area with less particle concen-
tration. In the PS approach, the gradient of particle concentration and the Fickian diffusion
coefficient determine the magnitude and direction of the particle shifting. Skillen et al. [73]
further generalized the PS method and applied it to test cases with the body-water slam and
wave-body interaction. Khayyer et al. [74] Optimized the PS method (OPS) for the ISPH
model by removing the false particles shifting in the normal direction to the free-surface. The
OPS indirectly simulates the physical role of free-surface tension in a numerical model [50].
Sun et al. [130] developed the PS approach for multi-resolution problems in the context of the
weakly compressible SPH method. Xu and Yu [145] employed the PS method to suppress the
tensile instability in viscoelastic free-surface flows using a weakly compressible SPH model.
Recently, Duan et al. [60,136] developed PS approach with a new shifting vector as a function
of direction vector and employing the conservative form of pressure gradient for the stability
of free-surface particles in the context of multiphase incompressible MPS scheme.

The pair-wise Particle Collision (PC) method applied in the MPS [75, 146] also aims to
eliminate particle clustering and tensile instability. The main concept of this approach comes
from the collision of granular particles considering their elasticity and mechanical energy
dissipation [147]. Shakibaeinia and Jin [75] implemented the PC method to remove the
particle clumping from the proposed weakly compressible MPS for multiphase flows. Xu and
Jin [146] and Lee et al. [56] evaluated the effects of the collision distance and coefficient on
MPS stability and the distribution of the particles.

Nonetheless, the WC-MPS model still suffers from instabilities (esp., in its pressure field)
and requires improvements to become robust for dealing with complex fluid flows. Therefore,
this research aims to address the well-known instabilities recognized in the particle methods
(including WC-MPS) by proposing and evaluating a series of enhancement techniques for
the WC-MPS formulations, some which of are new while the others are adapted from other
particle methods. To remove the weaknesses of the kernel summation equation in the par-



28

ticle number density calculation and reduce the kernel truncations errors, we will derive the
continuity-based method for calculation of the particle number density. Moreover, we propose
a new diffusive term in the context of the WC-MPS method, by adding an artificial density
diffusion term into the continuity equation to compensate for the false diffusion and obtain
a noise-free pressure field. To represent a conservative model, we will propose a new formu-
lation for the pressure gradient reproducing particle self-rearranging via a repulsive force in
positive pressure fields. With developing a dynamic free-surface detection algorithm for our
WC-MPS model and enhancing the particle shifting algorithm, we will provide an effective
tool for eliminating the tensile instability through small continuous particle displacements.
The effectiveness and stability of the proposed algorithms are discussed and validated via
simulating the challenging and popular free-surface flow benchmark cases.

4.3 MPS Methodology

4.3.1 Governing equations

The governing equations consist of mass and momentum conservation laws. In a particle
method, we can interpret the right-hand sides of the momentum and continuity equations as
the interaction forces and the particle’s expansion rate, respectively [34]. A general form of
the equations is given by:

1
ρ

Dρ

Dt
= −∇.v (4.1)

Dv
Dt

= −1
ρ
∇p+ F + 1

ρ
∇.τ (4.2)

Dr
Dt

= v (4.3)

where v is the velocity vector, p is the scalar value of the pressure, F is the acceleration
vector due to body forces, τ is the viscous stresses tensor and ρ is the fluid density. The
viscous stresses tensor (τ ) contains the laminar viscous stresses and the turbulence effects.
With a stiff Equation of State (EOS), p = f (ρ) , the behavior of an incompressible fluid is
predicted as a weakly compressible fluid. Neglecting the divergence of velocity for a weakly-
compressible model, the Laplacian of velocity field times the viscosity of the fluid (µ∇2v )
represents the viscous shear stresses [148].
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4.3.2 Standard MPS discretization

The mesh-free particle methods discretize the continuous medium into free-moving particles
and update their position (ri) in each time step (∆t) using the equation of motion (4.3). The
fluid particles carry the flow properties. In a Lagrangian frame, the temporal derivative of
the velocity field (Left-hand side of Eq. (4.2)) already contains the convection terms. The
MPS method uses a weight averaging (kernel smoothing) function,W (rij, re), to approximate
quantities and derivatives over a target particle i, from its neighboring particles. When the
distance between particle i and j, rij = |rj − ri|, is less than the smoothing length of the
kernel function, re, they are considered as neighbors. The smoothing length is usually selected
to be 2-4 times of the initial average particle distance l0. The most popular kernel function in
MPS is the rational kernel function with the compact support [25]. Shakibaeinia and Jin [47]
investigated the effects of different types of kernel functions and introduced a third-order
polynomial spiky function for MPS. In this study, we utilize the rational kernel function.

Using kernel smoothing process, the MPS approximation, < >, of an arbitrary function, f ,
for particle i is given by:

〈f〉i =
∑N
i 6=j fjWij∑N
i 6=jWij

(4.4)

in which Wij = W (rij, re) and N = the total number of neighbour particles of particle i.
The summation of kernel function for particles at the vicinity of particle i (rij ≤ re) defines
a dimensionless parameter called particle number density, n, as:

ni =
N∑
i 6=j

Wij(rij, re) (4.5)

The particle number density for an incompressible fluid should remain invariant to satisfy
the continuity equation [46]. Modifying Eq. (4.4), a reference particle number density value,
n0, can be used as a normalization factor:

〈f〉i = 1
n0

N∑
i 6=j

fjWij (4.6)

The relation between ρi and ni is given by [46]:

〈ρ〉i = m ni∫
WdV

(4.7)

Therefore, we can substitute ρi/ρ0 with ni/n0 in every derived equation. In this equation, m
is the mass of particle and

∫
WdV is a constant value (by neglecting the kernel truncation
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near the boundaries and V : the volume of particles).

In MPS, the gradient of an arbitrary scalar on a target particle is approximated using the
weight averaging of gradient vector between that particle and each of its neighbors:


〈∇f〉i = d

n0

N∑
i 6=j

fij
rij

eijWij

∇fi=
fj−fi
‖rj−ri‖

eij=
fij
‖rij‖

eij , eij=
rij

rij= ‖rij‖

(4.8)

in which eij is the unit direction vector between particle i and j, and d (=1, 2, 3) is the
number of space dimensions. Similarly, one can approximate the divergence of an arbitrary
vector, F, as:

〈∇.F〉i = d

n0

N∑
i 6=j

Fij

rij
.eijWij. (4.9)

By implementing the Taylor series, the approximation formula for the Laplacian of a vector
F (Divergence of a vector gradient) is:

〈
∇2F

〉
i

= 2d
n0

N∑
i 6=j

Fij

r2
ij

Wij. (4.10)

If we neglect the kernel truncations in a continuum field, r2
ij has a constant value over the

fluid flow domain as:
λ =

∑N
i 6=j r

2
ijWij∑N

i 6=jWij

. (4.11)

Hence, the final form of the Laplacian of a vector F in the MPS framework will be as:

〈
∇2F

〉
i

= 2d
λn0

N∑
i 6=j

Fij Wij. (4.12)

The MPS operators (Eqs. (4.8)-(4.12)) can be used to approximate the spatial derivative
in the flow governing equations. To solve the governing equation, the model requires an
additional equation to calculate the pressure field. The original MPS considers the flow as
fully incompressible and solves the Poisson’s pressure equation. The WC-MPS, however,
allows slight compressibility, making it possible to employ an equation of state (EOS) to
explicitly calculate the pressure field [34]. The equation of state in WC-MPS gives the
pressure as a function of ni by [47]:

pi = c2
0ρ0

γ

((
ni
n0

)γ
− 1

)
, γ = 7 (4.13)
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where ρ0 and c0 are reference density and numerical sound speed, respectively. To limit the
density variation to less than 1% (i.e., Ma < 0.10 ) numerical speed of sound is selected to
10 times the maximum possible flow velocity (‖vmax‖) [53].

We can solve the governing equations by employing the first-order prediction-correction
scheme (See [47]) or the second-order Symplectic time integrator (See [11]). As the time
integration schemes solve the weakly compressible fluid flows with an explicit approach, the
time steps of the time integration scheme (∆t) should satisfy the Courant-Friedrichs-Lewy
stability condition (i.e., the CFL condition) [67]. We implement the CFL condition to deter-
mine ∆t as:

∆t ≤ CFL l0
c0

(4.14)

where CFL is the Courant number (0 < CFL ≤ 1) [47]. In this study, the CFL condition
controls the time step of calculations for the benchmark cases, since the shear forces are
negligible (i.e. the fluid is inviscid or µ� 1).

4.3.3 Boundary treatments

To assign the boundary values to the free-surface, the free-surface particles must be identi-
fied. Standard MPS uses the decrease of particle number density near the free-surface as a
condition for detecting the free-surface particles. Particle i is a free-surface particle if:

ni ≤ βnn0 (4.15)

in which βn is a threshold parameter between 0.8 and 0.99 and should be tuned based on
the test cases [46,47]. This condition is simple to implement and computationally affordable.
However, to deal with complex flows with extreme surface deformations and patterns, more
accurate free-surface detection is necessary for enforcing suitable boundary conditions [149].

We employ fixed wall and ghost particles to simulate the solid boundaries (Figure 4.1).
The wall particles contribute in the momentum and particle number density calculations to
apply appropriate repulsive force to the approaching fluid particles, however, they remain
fixed similar to the model employed by [67]. The ghost particles prevent incomplete kernel
support near walls. The pressure parameter of the ghost particles is extrapolated from the
nearest wall particle. We assign the velocity of the nearest fluid particle (or zero velocity) to
the fixed wall and ghost particles to simulate the slip (or non-slip) boundary conditions. One
should note that for dealing with complex boundary geometries (e.g. curved solid boundaries)
special treatments become necessary [114,150].
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Figure 4.1 The fluid and solid boundary particles configuration

4.4 Enhanced Weakly-Compressible MPS

4.4.1 Conservative pressure force

For incompressible MPS, different formulations are proposed to estimate the force terms by
considering the higher-order calculations and particle stabilizing terms (refer to [51, 57, 60,
133, 137, 138, 151]). The standard MPS formulation (Eq. (4.8)) approximates the pressure
gradient as [25]:

〈∇p〉i = d

n0

N∑
i 6=j

pj − pi
rij

eijWij. (4.16)

To increase the accuracy of approximation to exact linear order, with the Taylor series expan-
sion a non-dimensional corrective matrix (Ci) is implemented into the gradient of pressure
as [57, 60,133]:

〈∇p〉i = d

n0

N∑
i 6=j

pj − pi
rij

(Cieij)Wij (4.17)

where

Ci =
 d

n0

N∑
i 6=j

rij
rij
⊗ eijWij

−1

(4.18)

and will be an identity matrix for a uniform particle distribution (away from free-surfaces).
Given that eij = −eji, Ci 6= Cj and Wij = Wji, equations (4.16) and (4.17) violate the
momentum preservation of the system as they are not anti-symmetric (∇pij 6= −∇pji) [75,
139]. Although the approximation errors of derivatives on the randomly distributed (but
fixed) particles can be reduced using the higher-order derivatives, the role of symmetry and
conservation properties of the numerical method is missing in such accuracy and convergence
evaluations. Therefore, implementing stabilizing techniques for rearranging particles toward
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a uniform distribution (e.g., using particle shifting or pair-wise particle collision method) are
necessary [60]. Price [49] and Lind et al. [50] discussed this issue in more detail by presenting
numerical examples showing the importance of respecting momentum conservation for the
long term stability and accuracy of a weakly compressible SPH method.

In order to improve the conservation features (considering the non-linear properties of the
system) of the weakly-compressible MPS method, here we propose a new formulation for
the pressure gradient to produce an anti-symmetric momentum equation (with respect to
the particle index). If particle i is at the center of its neighbouring particles and far from
boundaries (i.e. no kernel truncation occurs), the kernel summation of vector rij/rij2 is
zero [25]:

N∑
i 6=j

rij
rij2Wij = 0 (4.19)

therefore, the approximation of the gradient of pressure (Eq. (4.16)) can be reduced to:

〈∇p〉i=
d

n0

N∑
i 6=j

pj
rij2 rijWij. (4.20)

To obtain an anti-symmetric formulation for the pressure gradient in the SPH method, the
density is placed into the gradient operator as [42,49,152,153]:

∇fi
φi

= ∇
(
fi
φi

)
+ fi
φ2
i

∇φi. (4.21)

We consider φi = ρi and substitute ρi with ρ0ni/n0 to have the MPS form of Eq. (4.21) for
the pressure gradient:

∇pi
ni

= ∇
(
pi
ni

)
+ pi
n2
i

∇ni (4.22)

If we employ Eq. (4.20) to estimate the RHS of Eq. (4.22), we gain the final shape of the
new pressure gradient in the MPS framework as:

〈∇p〉i = d

n0

N∑
i 6=j

(ni
pj
nj

+ nj
pi
ni

)eij
rij
Wij. (4.23)

Consequently, the new gradient of pressure equation determines the inter-particle forces as
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follow (ρi = ρj = ρ0):


Tp
ij = m〈∇p〉i

ρ0
= md

n0ρ0

[(
ni
pj
nj

+ nj
pi
ni

)
rij
rij2Wij

]

Tp
ji =

m〈∇p〉j
ρ0

= md

n0ρ0

[(
nj
pi
ni

+ ni
pj
nj

)
rji
rji2

Wji

] . (4.24)

Given that rij = −rji and Wij = Wji, the interparticle forces are equal in magnitude and
opposite in direction (Tp

ij = −Tp
ji) and as a result, the linear and angular momentum con-

servation exists by implementing the new gradient pressure formula in MPS (in the absence
of external and shear forces).

We can interpret the conservative pressure gradient model as a particle stabilizing technique,
in which the dynamic particle stabilizing term (∆p) includes ni,j and pi,j as:

∆p =
(
nj
ni

+ 1
)
pi +

(
ni
nj
− 1

)
pj. (4.25)

If we assume a constant particle number density field surrounding particle i (ni = nj), the
pressure gradient model is similar to the gradient model evaluated by Lee et al. [56] in which
∆p = 2pi is added to the standard pressure gradient. It should be highlighted that these
models are more sensitive to the tensile instability in negative pressure fields (i.e. pi < 0 ),
since particles purely attract each other in the absence of any repulsive force [85].

To illustrate the importance of the momentum conservation and the role of the particle
stabilizing term in our model, we present a simple numerical test case called “Settling a
random particle distribution” suggested by Price [49]. In a 2-D square domain of x, y ∈
[−0.5, 0.5] with the periodic boundary conditions, we initially place particles on a hexagonal
lattice (l0 = 0.02). To achieve a non-uniform particle distribution, we randomly displace
particles as:

r′

i = ri + δri = ri + [kl0 (Rnx − 0.5) , kl0 (Rny − 0.5)], (4.26)

where 0 ≤ Rnx, y ≤ 1 is a random number, and the dimensionless coefficient, k, determines
the level of randomness. Here we use k = 0.2 to limit |δri| to 0.1l0 in x and y directions.
The kernel summation equation (4.5) and the equation of state (4.13) calculate ni and pi

for the randomized particle distribution (Figure 4.2-a). The smoothing length for the kernel
approximation is 3l0 and ρ0 = 1000 kg/m3 . The sound speed and calculation time steps are
set to 1 m/s and 0.002 s, respectively. Since no external and viscous shear forces exist, a
uniform pressure field is expected (∇p = 0). As Price [49] suggests, a gradient of pressure
with local momentum conservation should be able to rearrange the non-uniformly distributed
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particles toward a uniform one. The result (Figure 4.2) shows that our new MPS pressure
gradient contains this self re-arrangement (i.e. keeping particles uniformly distributed) which
gives an accurate estimation of the derivatives without including the higher-order calculations
(i.e. the corrective matrix, Eq. (4.18)) or any particles stabilizing technique. Employing the
new conservative form of the pressure gradient (Eq. (4.23)) leads to a stable condition with
uniform particle distribution and pressure equilibrium after 1 second of simulation (Figure
4.2-b), while the model with the non-conservative form of the higher-order pressure gradient
(Eq. (4.17)) reaches an unstable condition due to particle clustering (Figure 4.2-c).

Figure 4.2 (a) Initial pressure field (t = 0) of a randomized particle distribution placed on
a hexagonal lattice (maximum randomness level of 0.1l0 in the x and y directions) with the
periodic boundary conditions, (b) the pressure field obtained with the new conservative form
of the pressure gradient, d

n0

∑N
i 6=j (ni pjnj + nj

pi
ni

)eij
rij
Wij, and (c) the non-conservative form of

the higher-order pressure gradient (including Ci), d
n0

∑N
i 6=j

pj−pi
rij

(Cieij)Wij, at t = 1.0 second
of simulation

4.4.2 The continuity equation for the particle number density calculation

In MPS, a stable and accurate pressure field highly depends on a non-oscillatory particle
number density field. The standard MPS and WC-MPS directly calculate ni using particles’
position by summing the kernel function values over the neighbour particles (Eq. (4.5)). The
accuracy of this zeroth-order approximation is highly sensitive to the type of kernel function
and the small changes in the distribution of the particles [49]. There will be also a sudden
drop of pressure near free-surfaces due to low density. In addition, in this method, the initial
pressure field will have no impact on the simulation. Therefore, here to calculate ni we solve
the continuity equation to limit the errors near boundaries [48] and include the expansion
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rate of particles (i.e. the velocity divergence) in calculating the pressure field. This will also
allow us to apply initial pressure to smoothen the initial rearrangement of particles.

To discretize the continuity equation one should note that a model will conserve the total
energy of the particles, E, only if the conjugate operators estimate the pressure gradient and
the velocity divergence in the governing equations [49]. The conjugate divergence operator
to the gradient Eq. (4.22) employed to derive the new pressure gradient (Eq. (4.23)) is:

∇.Fi = 1
ni

[∇.(Fini)− Fi∇.ni] (4.27)

by having φi = ρi and Eq. (4.7). Considering equations (4.9) and (4.27) for the divergence of
the velocity vector and condition (4.19), the MPS approximation of the continuity equation
(4.1) is given by:

1
ni

Dni
Dt

= − d

n0

N∑
i 6=j

(
nj
ni

) vij
rij
.eijWij, (4.28)

where vij = vj−vi. Hence, with the conjugate operators the discretized form of the momen-
tum and thermal (internal) energy equations will satisfy the condition below for the total
energy conservation (in the absence of external forces and dissipation):

dE

dt
=
∑
i

m(vi.
dvi
dt

+ dui
dt

) = 0, (4.29)

n which ui is the thermal energy of particle i. By substituting equations (4.23) and (4.28)
into Eq. (4.29) and considering ρi = ρ0 and dui/dt = −pi/ρi∇.vi at a constant entropy, we
have

dE

dt
= −

∑
i

m
d

ρ0n0

N∑
i 6=j

(
ni

vipj
nj

+ nj
vjpi
ni

)
.
eij
rij
Wij = 0 (4.30)

which due to its antisymmetric feature (with respect to the particle index) confirms the
total energy preservation of the system provided with the discretized form of the governing
equations.

4.4.3 WC-MPS with Diffusion; WC-DMPS

In order to eliminate the particle number density fluctuations arising from the numerical
(or false) diffusion and discretization errors, we here introduce a new diffusive term in the
equations. Using the Laplacian of particle number density and the equation of state (Eq.
(4.13)), we add this diffusive term to the continuity equation (Eq. (4.28)). The basic idea of
this such diffusive term originates from the work of Molteni and Colagrossi [54] on the δ-SPH
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method.

Ideally, the particle number density is supposed to remain constant for an incompressible
fluid. However due to the physical (allowed by weak compressibility) as well as unphysical
density fluctuations, one can be having variation in the particle number density denoted
as n′

i. This variation is the correction that must be made to keep the particle number
density constant. Using the continuity equation one can calculate the velocity variation (v′)
corresponding to the variation of particle number density as:

1
ni

n
′
i

∆t = −∇.v′

i. (4.31)

The projection methods calculate the velocity variation (correction) from the momentum
equation, excluding the shear stress terms, as:

v′

i = −∆t
ρ0
∇pi. (4.32)

Taking divergence of the left and right-hand sides of Eq. (4.32) results in the Laplacian of
the pressure field:

1
ni

n
′
i

∆t = ∆t
ρ0
∇2pi; (4.33)

with Eq. (4.12) the approximation form of Laplacian of pressure is given by:

〈
∇2p

〉
i

= 2d
λni

N∑
i 6=j

(pj − pi)Wij. (4.34)

From the equation of state (Eq. (4.13)) where γ = 1, we have pij as:

pij = pj − pi = ρ0c
2
0

(
nj − ni
n0

)
. (4.35)

Substituting Eq. (4.35) into Eq. (4.34) determines the relation between the Laplacian of p
and n as: 〈

∇2p
〉
i

= ρ0c
2
0

2d
λni

N∑
i 6=j

(
nj − ni
n0

)
Wij = ρ0c

2
0

n0

〈
∇2ni

〉
. (4.36)

Finally, we derive the new diffusion term, Di, by substituting the Laplacian of pressure with
the Laplacian of the particle number density (Eq. (4.36)) in Eq. (4.33):

Di = δMPS
∆tc2

0
n0
∇2ni. (4.37)
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We introduce a non-dimensional coefficient, 0 < δMPS ≤ 1, into the diffusion term (in
analogy with δ-SPH models [65]) to adjust the intensity of the term according to test cases.
The modified continuity equation then is given by:

1
ni

Dni
Dt

= −∇.vi + δMPS
∆tc2

0
n0
∇2ni. (4.38)

Consequently, we update the particle number density of particle i through

1
ni

Dni
Dt

= − d

n0

N∑
i 6=j

(
nj
ni

) vij
rij
.eijWij +

(
δMPS

∆tc2
0

n0

)
2d
λn0

N∑
i 6=j

nijW ij. (4.39)

It should be highlighted that the new diffusive term is consistent with the global mass conser-
vation law by satisfying ∑i niDiVi = 0 condition (where Vi =

∫
WdV / ni from Eq. (4.7)).

Besides we apply the diffusive term only between the fluid particles to exclude the effects of
the solid boundary particles on the conservation features of the system (i.e. if i or j ∈ the solid
boundary particles, then Di = 0). Overall, the effect of this pure numerical correction shall
reduce by increasing the spatial resolution [65,142]. Further, for tuning the non-dimensional
coefficient one should note that the diffusive term should not introduce large energy dissi-
pation into the system affecting the time steps and the mechanical behaviour of the fluid
flow [53]. The proposed diffusive term reduces by decreasing the time steps of calculations
as the function of the CFL coefficient and the initial distance between particles (l0). Consid-
ering some dimensional analysis and the CFL condition (4.14) determines the relationship
between the magnitude of δMPS and the delta parameter employed in the δ-SPH method by
δSPH = δMPS (l0CFL/h) (in which h represents the smoothing length of the kernel approx-
imation, re = 2h and h = 1.55l0). In this study, we justify the intensity of the proposed
diffusive term in the simulations by confirming the compatibility between the numerical and
the reference results and ensuring that it has the same order of magnitude as the diffu-
sive term in the δ-SPH method. (e.g. for the dam break test case with CFL = 0.5 and
h/l0 = 1.55, the equivalent of the selected δMPS = 0.35 in SPH is 0.11, which is compatible
with the common constant δSPH = 0.1 used in the δ-SPH methods [65,68].)

4.4.4 A Corrected Particle Shifting technique; CPS + PC

Particle regularization/rearrangement techniques are common methods for improving particle
distribution uniformity to avoid problems like density fluctuations and particle clustering.
The original WC-MPS uses a pair-wise Particle Collision (PC) approach [75]. Here, however,
we have adapted and developed a particle shifting (PS) algorithm, whose idea originates from
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“Fick’s law of diffusion” implemented by Lind et al. [50] in SPH to shift fluid particles to the
area with less particle concentration. Fick’s law determines the magnitude and direction of
the particle shifting vector as:

δri = −Fi∇Ci (4.40)

in which Ci and Fi are the particle concentration and Fickian diffusion coefficient, respec-
tively. Lind et al. [50] considered the Von Neumann stability analysis of the advection-
diffusion equation and the CFL condition to estimate Fi as:

Fi = Al0‖v‖maxdt (4.41)

where A is a dimensionless constant between 1-6 and ‖v‖max is the magnitude of maximum
expected velocity. Considering Eq. (4.19) (the CFL condition for stability of an explicit
model) and the Mach number (Ma) we can rewrite Fi as [130]:

Fi = Al20.CFL.Ma (4.42)

(in this study, A = 2). In MPS, one can determine the particle concentration (volume
fraction) of i using Eq. (4.5) as:

Ci =
∑N
i 6=jWij

n0
. (4.43)

Using Eq. (4.8) to approximate the gradient of Ci, the particle shifting equation (Eq. (4.40))
would become non-conservative (i.e. δri→j 6= −δrj→i where δrj→i = − Fi

d
n0

Cj−Ci
rij

eijWij )
leading to unstable conditions in a non-uniform particles distribution. To derive an anti-
symmetric form of this equation we employ Eq. (4.21) with φi = ρi to approximate ∇Ci
as:

〈∇C〉i = d

n0

N∑
i 6=j

Ci + Cj
rij

eijWij (4.44)

by which the particle shifting vector lies on rij and has the conservation feature of the shifting
procedure. Unlike in SPH [50, 130], in our proposed concentration gradient equation (Eq.
(4.44)), no additional artificial pressure-like function (fij) is necessary, because the presence
of the kernel function (as Wij 6= 0 at its origin) overcomes the pairing instability problem
(arises from the SPH kernel derivative).

The pure PS technique requires special treatment near free-surface because of the incomplete
kernel support, where Eq. (4.44) predicts a false particle shifting toward the free-surface [50].
To overcome this issue, the scheme should correct the displacement vector by restricting the
particle diffusion in the normal direction to the free-surface [74]. Skillen et al. [73] proposed
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the following formulation to implement the modified particle shifting approach with ti and
ni (the unit tangential and normal vectors to the free-surface of fluid flow, respectively):

δri = −Fi
[
∂Ci
∂s

ti+α

(
∂Ci
∂n
− β

)
ni
]

(4.45)

where α and β are the dimensionless parameters that can be set to zero to remove the particle
shifting normal to the free-surface. To implement the PS algorithm with Eq. (4.45), particles
belonging to the free-surface region and the unit normal vector to the free-surface should be
determined.

Here, a dynamic algorithm in the context of MPS is developed to classify the fluid particles
into four groups of, (4.1) free-surface (i ∈ Type-F), (4.2) free-surface vicinity (i ∈ Type-B),
(4.3) inner (i ∈ Type- I) and (4.4) external or splashed (i ∈ Type- E) particles (The types E,
F, B and I refer to external/splashed (detached from the free surface), free surface, free
surface vicinity, and internal particles, respectively.) (Figure 4.3).

In this scheme, we employ the local particle number density (∑N
i 6=jWij) without additional cal-

culation costs instead of the eigenvalue of the renormalization tensor used by [149,151]. First,
the detection algorithm evaluates the particle concentration parameter (Ci = ∑N

i 6=jWij/n0)
with 

1) Ci < βE

2) βE ≤ Ci ≤ βF

3) βF < Ci

(4.46)

conditions, where βF and βE are the tunable threshold of Ci based on the type of kernel
function and the smoothing length (0 < βE < βF < 1). For the rational and spiky kernel
functions with re = 3.1l0, we set βE and βF to 0.4 and 0.9, respectively. If Ci < βE, the fluid
particle i is an external or splashed particle (i ∈ E). With the conditions two or three being
true, the scheme moves to the next step to detect the free-surface particles. For a particle
satisfying the second condition, we define an umbrella-shaped region proposed by Marrone
at al. [149] with the local normal vector to the free-surface (ni in Eq. (4.49)) and scan the
region for the neighbor particles. With the point S at the distance l0 from particle i in the
normal direction to the free-surface, we search R1 and R2 regions for the neighboring particle
j (Figure 4.3-b). The criteria to check for the candidate particle to eventually distinguish
the free-surface particles are as follow:
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|rij| ≥

√
2l0 and |rjS| < l0, R1 →i /∈ F

|rij| <
√

2l0 and |ni.rjS|+ |ti.rjS| < l0, R2 →i /∈ F

j /∈ R1 ∪ R2 or Ni < βNN0 →i ∈ F

(4.47)

If no particle is detected inside R1 and R2 regions or the number of neighbour particles
surrounding the particle i, Ni, is less than the maximum initial number of neighbors, N0,
multiplied by βN (i.e. Ni < βNN0, βN is set to 0.75), the algorithm labels particle i as a
free-surface particle (i ∈ F). Otherwise, with satisfying the third condition of (4.46) or if
particle i is a neighbor of a free-surface particle (j ∈ F) while rij ≤ αl0, the scheme considers
i as a particle in the vicinity of the free-surface, i ∈ B. The rest are classified as inner fluid
particles, i ∈ I. We determine α based on the smoothing length to eliminate the kernel
truncation of inner particles (with re = 3.1l0, α is set to 2.01).

Figure 4.3 A particle classification scheme in the context of the MPS method

Based on the particle classification scheme, our proposed PS approach determines the shifting
vector of the fluid particle i as [74]:
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δri =



−Fi∇Ci, if i ∈ I

−Fi (I− n̂i ⊗ n̂i) .∇Ci , if i ∈ B

−Fi (I− ni ⊗ ni) .∇Ci , if i ∈ F

0 if i ∈ E

(4.48)

in which I is the identity matrix. We can calculate the normal vector to the free-surface by the
kernel estimation of any arbitrary parameter representing the type of particles [154]. Similar
to the work of Duan et al. [60], we employ the unit direction vector, eij, for the free-surface
particles (i ∈ F) where the kernel truncation is intense (Ci ≤ 0.9) to define the local normal
vector, ni. However, for the free-surface vicinity particles (i ∈ B), we introduce the non-local
normal vector, n̂i, with respect to the neighbour free-surface particles (j ∈ F & rij ≤ 2.10l0)
making the normal vector of particles in this category independent of their local kernel
truncations and neighbour particles distribution (Eq.(4.49)).


If i ∈ F→ Local normal vector : Ni =

N∑
i 6=j

ejiWij, ni =
Ni

‖Ni‖

If i ∈ B→ Non− local normal vector : N̂i =
N∑
j∈F

njWij, n̂i =
N̂i∥∥∥N̂i

∥∥∥
(4.49)

The ultimate purpose of such a Corrected PS method is to modify the particles shifting
vector in the free-surface region to cancel the particle’s diffusion in the normal direction to
the free-surface. The gradient of particle concentration (Eq. (4.44)) may shift a particle in
the vicinity of the free-surface in the opposite direction to the free-surface regardless of its
incomplete kernel support. Therefore, here, based on the non-local normal vector for the
free-surface vicinity particles, we neglect modifying the shifting vector, if particle i ∈ B is
not shifted toward the free-surface by Eq. (4.40) (i.e. If n̂i.δri < 0, then δri∈B = −Fi∇Ci
and particle i is classified as inner particles in the shifting procedure). However, for the
rest of the free-surface particles (i ∈ F), we always implement the free-surface correction as
ni.δri > 0 due to the intense incomplete kernel support (Ci ≤ 0.9).

In addition, as the Corrected PS scheme deactivates the imaginary repulsive force between
the fluid particles in the normal direction to the free-surface (δri∈F∪B⊥ni, n̂i), the stability
of particles in the free-surface region is still vulnerable to negative pressure fields and highly
dynamic deformations. To overcome the tensile instability in the free-surface region, we add
the pair-wise PC method to our proposed PS algorithm. Here, the PC method modifies the
velocity vector by transferring linear momentum between colliding particles as:



43


v́i = vi −

1 + ε

2 vcollij

v́j = vj + 1 + ε

2 vcollij

(4.50)

where ε is the collision ratio (0 ≤ ε ≤ 1) and v́i is the velocity of particle i after the collision
with particle j. To do so, for the fluid particles in the free-surface region (j, i ∈ F∪B) if the
collision conditions are satisfied (rij ≤ 0.90l0 & vij.rij < 0), we calculate the collision velocity
(vcollij = (vij.eij)eij) and summate the velocity variations of each colliding particle i and j

(δvi = −1+ε
2 vcollij and δvj = +1+ε

2 vcollij where in this study, ε = 0.5). Hence, in the free-
surface region (i ∈ F∪B), the PC method updates the velocity of the particles colliding with
each other, while the Corrected PS algorithm regulates particles in the tangential direction
to prevent the tensile instability.

It should be highlighted that the PC method conserves the total linear momentum of the
system while indirectly repositions particles on the basis of the collision velocity (i.e. Since
the mass of particles remains constant, only the momentum moves from particle i to particle
j) [75]. However, the PS approach violates the momentum conservation of the system [50].
Since δri < 0.05l0 in each time step of the numerical test cases, we ignore the velocity and
density changes due to the particle shifting to keep the particle number density invariant as
we reposition particles according to Eq. (4.48) [130,155].

Eventually, the proposed particle regularization technique modifies the position and velocity
vectors of the fluid particles by ŕi = ri + δri (for i ∈ F ∪ B ∪ I ) and v́i = vi + δvi (for
i ∈ F∪B), respectively. Further, the CPS technique includes the solid boundary particles in
detecting the free-surface region and calculating the shifting vector of the fluid particles. In
summary, we represent the Corrected PS approach in the context of MPS, hereafter denoted
as (CPS), by implementing the following items:

(I) A new conservative equation for the particle shifting vector (Eq. (4.29)) with the kernel
function surmounting the tensile instability issue derived from the kernel derivative
function.

(II) A non-local normal vector for the free-surface layer particles (Eq. (4.49) for i ∈ B)
determined by the free-surface neighbor particles (j ∈ F) to improve the accuracy of
PS in cancelling the particles’ diffusion in the normal direction to the free-surface.

(III) Applying the particle shifting without any modification by the free-surface normal
vector in the free-surface vicinity layer (i ∈ B), if the particle shifting vector (Eq.
(4.40)) is in the opposite direction to the free-surface, i.e.:
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If i ∈ B & n̂i.δri < 0, then δri = −Fi∇Ci as if i ∈ I

(IV) Appending the pair-wise Particle Collision (PC) method to the Corrected PS (denoted
as CPS + PC) to eliminate the possible tensile instability in the free-surface region
(i ∈ F ∪ B) with the highly dynamic deformations and negative pressure fields.

Figure 4.4 summarizes the equations and correction techniques in the CPS+PC method.
We discuss the effectiveness of this particle regularization technique in the stability of the
free-surface region and the interior part of the fluid domain in the following section 4.5.

Figure 4.4 Sketch of the Corrected Particle Shifting algorithm

4.5 Numerical Results and Discussions

Here, we denote the enhanced WC-MPS model which employs the conservative pressure
gradient (Eq.(4.23)) and its conjugate form of the continuity equation (Eq. (4.39)), as the
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Conservative WC-MPS model. By activating the diffusive term inside the continuity equa-
tion, the model is denoted as the Conservative WC-DMPS model.

To validate and evaluate the enhanced WC-MPS model, we simulate four classical free-surface
flow benchmarks including (4.1) hydrostatic pressure tank, (4.2) elliptic water drop, (4.3)
rotating square patch, and (4.4) water dam break. The first two cases deal with the positive
pressure fields without and with deformations, respectively. The third test case is highly
deformative and requires overcoming the tensile instability due to the dominant negative
pressure field. Considering all the improvement techniques, we simulate and validate the
two-dimensional water dam break (the fourth test case) to illustrate the robustness of the
proposed schemes in handling such a complex free-surface flow. The characteristics of the
benchmark cases are presented as follow:

1. Hydrostatic pressure tank

With the particle arrangement 100× 100 (l0 = 0.002 m), we simulate a steady tank filled
with water (ρ = 1000 kg/m3) as a two-dimensional problem to validate the stability of the
numerical model in predicting the linear pressure field. A hydrostatic initial pressure field is
assigned (Figure 4.5-a). The simulation is done for two seconds. The prediction-correction
time integration scheme is employed and the CFL coefficient and the reference speed of sound
are set to 0.5 and 10

√
2gH ∼= 20 m/s, respectively. We plot the pressure contours and the

time evolution of local pressure at the midpoint of the steady reservoir (M) to validate and
compare with the theoretical hydrostatic pressure (i.e. ptheo. = ρghM). In this test case, we
adopt the initial Cartesian (cubic) and the hexagonal particle distributions to evaluate their
effects on the stability and convergence of the results.

2. Elliptic water drops

A circular water drops under the initial velocity field, v0 = (−w0x,w0y ), stretches in the
y-direction preserving the elliptical shape (i.e. ab remains equal to 1) in absence of external
forces and energy dissipation (i.e. µ = 0) [47]. Because of its simplicity and the availability of
the analytical solution [156], this case has been popular for the validation of particle methods
(e.g., [48,60,157]). The irrotational initial velocity forms a positive pressure field within the
bubble (Figure 4.5-b). We simulate the time evolution of the water bubble with radius 1.0
m and the initial particle distance 0.01 and 0.02 m (i.e. R/l0 = 100 and 50). In this test
case, the second-order Symplectic time integration scheme solves the system of equations and
the CFL coefficient and the reference speed of sound are set to 0.6 and 15Rw0, respectively.
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We evaluate the impact of the proposed enhancements achieved by employing the diffusive
term in the continuity equation (the Conservative WC-DMPS model) and the Corrected
PS approach on the time evolution and the pressure field. We initially allocate the fluid
particles on the hexagonal lattice (instead of adopting the packing algorithms used in [3, 7]
or the damping technique implemented in [158]) to eliminate the noise that the initial fluid
particle rearrangement produces in the Cartesian configuration. Accordingly, we will be able
to solely study the effectiveness of the proposed enhancement techniques.

3. Rotating square patch of fluid

The square patch of an inviscid fluid (L = 1.0 m) rotates by the initial angular velocity
(ω0 = 1.0 s−1). Similar to the water drops test case, the fluid particles are initially located on a
hexagonal lattice to avoid the initial particle rearrangement (l0 = 0.005 m where L/l0 = 200)
and their initial pressure is assigned by solving Poisson’s Pressure Equation ( [2]) (Figure 4.5-
c). We set the reference sound speed and the CFL coefficient to 5Lω0 and 0.2, respectively.
The second-order Symplectic time integration scheme is employed. The main characteristics
of this test-case are the negative pressure field (due to the centrifugal force) and the extreme
fluid domain distortion. At the four corners of the square, in the absence of any external
force, the gradient of pressure should remain zero and accordingly the four vertices preserve
their initial velocity [2]. This is a popular and challenging benchmark case for particle
methods (due to extreme deformations) (e.g., [3, 74, 129, 130]). We simulate this case to
evaluate the effects of the newly proposed CPS + PC, pressure gradients, and diffusive term
on tensile instability and the pressure field. Since no analytical solution for this benchmark
is available, we compare the time evolution of the free-surface and the pressure at the center
of the rotating fluid (point A) with the numerical results of the Lagrangian Finite Difference
Method (LFDM) supplied with the Boundary Element Method (BEM) [2, 156] and the δ+-
SPH models [3, 130].

4. Water dam break

Dam break is a widely used test case for particle methods (e.g., in [131, 142, 155, 159]). In
this test case, the dam gate is suddenly removed, the water column collapses and flows on
the horizontal bed then impacts the right wall and forms a returning wave. The large free-
surface deformations and the high flow velocity are the main characteristics of the dam break
problem making its simulation challenging. We set the dam break setup with H = 0.5B and
L = 5.366H (Figure 4.5-d) to simulate the water collapse evolution and determine the effec-
tiveness of the enhancement techniques in removing the pressure noise. The initial Cartesian
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(square) particle distribution with H/l0 = 60 and 100 resolutions is implemented. With
the Symplectic time integration scheme, the reference sound speed and the CFL coefficient
are set to 10

√
gH = 25 m/s and 0.5, respectively. The wave front propagation and the

pressure parameter probed on the right wall (at S1 in Figure 4.5-d) are validated with the
experimental results of Lobovský et al. [4].

Figure 4.5 The initial setups of the hydrostatic pressure (a), the elliptical water drop (b),
the rotating square patch of fluid (c) and the water dam break test-cases (d). The colour
contours represent the initial pressure fields.
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4.5.1 Hydrostatic pressure

We simulate the hydrostatic pressure in a steady reservoir filled with water to evaluate the
stability of the Conservative WC-MPS model by implementing the new pressure gradient
equation (Eq. (4.23)) and the continuity equation for the particle number density calculation
(Eq. (4.39)).

Using the proposed antisymmetric pressure gradient formulation activates a repulsive force
between the fluid particles leading to an accurate pressure field and a speedup in the con-
vergence stability (Figure 4.6). In Figure 4.6, comparing case (a) vs (b) shows that the
continuity equation (as the substitute for Eq. (4.5)) and the assigned initial pressure field
reduce the errors of the kernel truncation at the fluid free-surface resulting in a uniform
particle distribution and acceleration of the pressure convergence at the midpoint (graph
(c)). In the original WC-MPS model the kernel summation equation (4.5) and the pressure
gradient (4.16) with added ∆p = pi− p̂i term (where p̂i = min (pi, pj) and j ∈ neighbor of i)
approximate ni and ∇pi, respectively. This model shows instabilities (before t = 1.0 second)
at the free-surface and the pressure field as it violates the conservation feature (Figure 4.7-a
& graph (d)). By applying the pair-wise particle collision technique to the original WC-MPS
model, the model becomes numerically stable (Figure 4.7-b), however, the pressure oscillates
at the mid-point and does not converge to the theoretical result before t = 2.0 s (Figure 4.7-
graph (d)). The Conservative WC-MPS model reaches the stable pressure field in less than
1.0 s and the proposed diffusion term (the Conservative WC-DMPS model with δMPS = 0.1
which is equivalent to δSPH = 0.03) eliminates the noise in the pressure field originated from
the fixed Cartesian boundary particles arrangement (Figure 4.7-c).
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Figure 4.6 The hydrostatic pressure contour; (a) The WC-MPS model with the conservative
∇p (Eq. 23) and the kernel summation equation (4.5) for calculating the particle number
density, (b) with the Conservative WC-MPS model. The graph (c) represents the pressure
parameter at the center of the reservoir (Mid-point, M) over the simulation time (t =2
Seconds). In the original WC-MPS model (the gray dash line), Eq.(4.5) updates the particle
number density and the gradient of pressure is approximated by Eq. (4.16) with added
particle stabilizing term ∆p = pi − p̂i.
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Figure 4.7 The hydrostatic pressure contour; (a) the original WC-MPS, (b) the original WC-
MPS + the pair-wise particle collision approach and (c) the Conservative WC-DMPS (using
the conservative pressure gradient Eq. (4.23) and the added diffusive term to the continuity
equation (4.39) with δMPS = 0.1). The time history of the pressure at the mid-point for each
case is plotted in the graph (d).

In a similar setup, we initially allocate the particles on a hexagonal lattice where the energy
of the system would be at the minimum state and no transition from the cubic lattice to the
hexagonal-close-packed occurs [49]. In this test case, without the diffusion term (δMPS = 0.0)
or the particle regularization techniques, the Conservative WC-MPS model gives a noise-free
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and stable hydrostatic pressure field (Figure 4.8-a). Since the fluid particles are in the stable
isotropic particle arrangement, the initial hydrostatic pressure assigned remains constant
with no oscillation at the mid-point of the tank in the absence of any external disturbance
(Figure 4.8- graph (c)).

Figure 4.8 The role of the initial hexagonal particle distribution in the Conservative WC-MPS
model; (a) Conservative WC-MPS model with the initial hexagonal particle distribution (b)
Conservative WC-MPS model with the Cartesian particle distribution (same as the case (b)
in Figure 6). The evolution of the pressure at the mid-point of the steady tank is represented
in the graph (c) for the hexagonal particle distribution (the blue continues line) and the
Cartesian particle distribution (the red dashed line).



52

4.5.2 Elliptical water drops

In the second test case, we model the time evolution of the water drops deformed by an
irrotational initial velocity field. Figure 4.9 compares the results of the Conservative WC-
MPS models with and without the diffusive term and the CPS technique (b & a). Even
without the improvement techniques, the proposed Conservative WC-MPS model provides
stable and uniform particle arrangement obeying the analytical deformation of the elliptical
bubble (for tw0 ≤ 1.2). Nevertheless, undesirable pressure fluctuations are observed (Figure
4.9-a). Activating the diffusion term in the particle number density calculation (δMPS = 0.2
equivalent to δSPH = 0.08) and the CPS regularization technique eliminates these high-
frequency fluctuations (Figure 4.9-b).

Figure 4.9 The pressure field and the evolution of the water drop at tw0 = 0.1, 0.5 and 0.8;
(a) the Conservative WC-MPS model vs (b) the Conservative WC-DMPS with δMPS = 0.2 +
CPS algorithm. The black dash-dot line represents the analytical deformation of the elliptical
bubble.

The pressure fields shown in Figure 4.10 illustrate that the particle shifting approach alone is
incapable of reducing the approximation errors (a vs b), while the diffusive term (with δMPS =
0.2) effectively removes the pressure noise (c). However, the CPS technique accompanied by
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the diffusive term represents a more uniform particle arrangement, especially in the area
close to the free-surface, where the kernel support truncates (Figure 4.10-c vs d). Moreover,
applying the particle shifting algorithm is required to surmount the particle clustering for
the long-term stability of the simulation (Figure 4.11-a vs b, at tw0 = 1.7). Without the
CPS, the tensile instability becomes dominant affecting the pressure field smoothness and
the water drops stability (Figure 4.11-graph (c) in which pm is the local numerical pressure
at the center of the water drops).

Figure 4.10 The particles distribution and pressure field of the water drop test case at tw0 =
0.8 for the four different strategies (case a-d).
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Figure 4.11 The effectiveness of the CPS algorithm for the long-term stability of the model
and the tensile instability elimination: The water drop evolution and pressure contour at
tw0 = 1.7 without and with the CPS algorithm (Case (a) & (b)). The time history of the
local numerical pressure at point A without any frequency filtering is represented in the graph
(c) (c0 = 15Rw0).

For the quantitative comparison, we have plotted (pm − pAnal.)/ρw2
0R

2 with respect to tw0

in Figure 4.12, where pAnal. is the analytical pressure at the domain center. The figure
shows the effectiveness of the diffusive term in eliminating the high-frequency pressure noise.
One should note that the low-frequency pressure oscillations around the analytical solution
(Figure 4.11-graph (c) and Figure 4.12) originates from the compressibility allowed by the
numerical model since the exchange between the mechanical energy and the internal energy
exists throughout the simulation [160]. The reference sound speed controls the frequency of
this pressure oscillation. By selecting c0 = 15Rw0 (where Mach number < 0.1) the pressure
signal propagates faster than ‖vmax‖ not affecting the fluid flow [2]. To show the role of the
proposed diffusive term in removing the high-frequency pressure fluctuations we presented
the results without any frequency filtering and data averaging.
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Figure 4.12 The time history of local (pm − panal.)/ρw2
0R

2 at the domain center without any
frequency filtering; (a) Conservative WC-MPS (δMPS = 0) vs (b) Conservative WC-DMPS
with δMPS = 0.2 (c0 = 15Rw0).

Moreover, the time evolution of the semi-minor, a, and semi-major, b, axes of the drop (Fig-
ure 4.13), confirms the compatibility of the numerical and analytical results. Table 4.5.2
summarizes the Root-Mean-Squared Error (RMSE) of a, b and ab variables for the Conserva-
tive WC-MPS with l0= 0.01 m, and the Conservative WC-DMPS+CPS with l0= 0.01 m and
l0= 0.02 m. Hence, adopting the improvement techniques as well as using a finer resolution,
reduces the RMSE, showing a convergence.

Figure 4.13 The time evolution of the semi-minor, a, and semi-major, b, axes of the elliptical
water drop.
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Table 4.1 The elliptical water drop; The Root-Mean-Squared Error of the semi-minor and
semi-major axes and ab variables

Strategy l0 (m) Root-Mean-Squared Error (RMSE) of
Semi-minor, a, axis Semi-major, b, axis ab

Conservative WC-MPS 0.01 1.349E-02 1.349E-02 3.166E-02
Conservative 0.01 9.382E-03 1.239E-02 1.979E-02
WC-DMPS+CPS,δMPS = 0.2
Conservative 0.02 3.018E-02 1.181E-02 4.557E-02
WC-DMPS+CPS,δMPS = 0.2

4.5.3 Rotating square patch of fluid

Dealing with the dominant negative pressure field for simulating the rotation of the initially
square fluid patch, requires the particle stabilizing techniques to eliminate the fluid particle
clustering. To do so, we implement the CPS algorithm for the whole fluid domain and the
pair-wise PC method only for the free-surface layer of particles (the model is denoted as
the CPS + PC algorithm). In this test case, we investigate the role of the different pressure
gradient formulations. This includes the conservative pressure gradient (Eq. (4.23)), the non-
conservative pressure gradient (Eq. (4.16)) and the non-conservative higher-order pressure
gradient (Eq. (4.17)). For stability purposes, we use the conservative pressure gradient
equation for the fluid particles detected as the free-surface particles (i ∈ F ∪ B) in the
models with the non-conservative formulations (similar to the work of Duan et al. [60]). In
all these cases, the continuity equation (4.39) approximates the particle number density for
updating the pressure field.

Figure 4.14 compares the evolved fluid patch at tω0 = 1.08 using the Conservative WC-
MPS with and without implementing the diffusion term and the CPS+PC algorithm. The
Conservative WC-DMPS (δMPS = 0.5 equivalent to δSPH = 0.065) shows tensile instability
even with activating the pair-wise PC method for the whole fluid particles (Figure 4.14-
a). Nonetheless, by implementing the CPS+PC algorithm without the diffusive term the
simulation overcomes the tensile instability, although the pressure field still suffers from the
approximation errors (i.e. the noisy pressure field exists) (Figure 4.14-b and Figure 4.15).
Including the diffusive term results in a smooth pressure field (Figure 4.14-c). Moreover, the
overall deformations of the fluid patch obtained via the enhanced WC-MPS models are in
good agreement with the numerical simulation of [2] using the LFDM-BEM model (Figure
4.14-b & c and Figure 4.15).
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Figure 4.14 Evolution of the square patch of fluid at tω0= 1.08. The white squares represent
the LFDM-BEM results extracted from [2].

Figure 4.15 The square patch of fluid without the diffusive term at tω0= 2.04.
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Since the initial centrifugal force causes a negative pressure field, the conservative pressure
gradient equation simulates attractive forces instead of the desirable repulsive force between
two fluid particles. Nevertheless, the CPS+PC algorithm as an effective regularization tech-
nique controls this issue and forms a uniform arrangement of the fluid particles eliminating
the tensile instability (Figure 4.16-a). The WC-DMPS models using the standard pressure
gradient formulations (with and without the corrective matrix) as well as the proposed con-
servative pressure gradient equation all result in the smooth pressure fields. This is since
the CPS+PC algorithm is activated in all three cases (case (a-c) in Figure 4.16). Figure
4.17 compares the time history of the local pressure at the domain center (without any fre-
quency filtering or data averaging) using the different pressure gradient formulations versus
the numerical results of the δ+-SPH [130], showing a good compatibility. Figure 4.18 shows
the robustness of the proposed WC-DMPS+CPS+PC model for simulation of the extremely
deformed fluid patch at the late stages (at tω0 =4.0, 6.0 and 8.0).

Figure 4.18 The robustness of the proposed enhancement techniques in capturing large de-
formations (The long-term simulations of the case (a) in Figure 4.16).

The improvements achieved by the CPS algorithm in determining the normal vectors to
update the particle shifting vector and eliminating the tensile instability among the free-
surface particles are apparent in Figure 4.19. Both (a) and (b) test cases use Eq. (4.44) for
calculating the shifting vector and the classification algorithm represented in Figure 4.3. In
case (a) the CPS+PC method with all the proposed corrections is implemented. However, in
case (b) the PC method is not applied and the local normal vector in the free-surface vicinity
layer modifies the shifting vector (i.e. without corrections II and IV in section 4.4.4). Also,
the fluid particles in the free-surface layer with the shifting vector toward the interior domain
are not detected to be considered as the inner particles (i.e. without correction III). As shown
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Figure 4.16 The square patch of fluid with different pressure gradient formulations at tω0 =
2.04. The white squares represent the LFDM-BEM model results extracted from [2].
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Figure 4.17 The local pressure at the domain center for the three strategies in Figure 4.16,
without any frequency filtering and with c0 = 5Lω0; (a) Conservative WC-DMPS, (b) Non-
Conservative WC-DMPS and (c) Non-Conservative WC-DMPS with the higher-order 〈∇p〉i
vs the δ+-SPH model [3] (In all three cases a-c the CPS+PC algorithm is activated.)

in Figure 4.19-b, without the modifications appended to the PS method the instability in
the free-surface region leads to unphysical fluid fragmentations and the non-uniform normal
vectors. However, the CPS+PC method surmounts these issues by representing uniform
normal vectors and particle distributions in the free-surface region (Figure 4.19-a).
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Figure 4.19 The square patch of fluid with (a) and without (b) the proposed corrections in
the PS algorithm (i.e. the corrections II to IV), re = 3.1l0. However, the other calculation
conditions are the same as the case (c) in Figure 4.14.

4.5.4 Dam break

In the dam break test case, as the water flow impacts the right wall at T = t
√
g/H ≈ 2.5, a

plunging wave forms followed by a collapse at about T ≈ 6.5. Figure 4.20 shows the snapshots
of the evolution before and after the impact (T = 1.62 and 2.96), where the effectiveness of
the proposed diffusive term in reducing the high-frequency pressure noise is well illustrated.
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The model with the conservative pressure gradient, the continuity equation and the diffusive
term (δMPS = 0.35 which is equivalent to δSPH = 0.11) represents a smooth pressure field,
while the same model without the diffusive term suffers from the noisy pressure field (Figure
4.20-b vs a). To ensure the stability of the simulation in both test cases the CPS+PC
algorithm is implemented.

Furthermore, to show the robustness of the particle stabilizing techniques we plot the evo-
lution of the dam break forming the plunging wave at T =5.9, 6.5 and 7.8 in Figure 4.21.
Thanks to the stability achieved by the CPS+PC algorithm and the proposed diffusive term,
the Conservative WC-DMPS model represents accurate flow evolutions and a smooth pres-
sure field during the wave formations. A close snapshot of the wave at T = 5.9 confirms the
tensile instability elimination and the uniform particle arrangement achieved by the devel-
oped WC-DMPS model (Figure 4.21).

Figure 4.22 shows the effectiveness of the CPS method for determining the free-surface normal
vectors. Both (a) & (b) test cases have similar calculation conditions (Conservative WC-
DMPS, δMPS = 0.35) and H/l0 = 60 and modify the shifting vectors calculated by Eq.
(4.44) at the free-surface region. Nevertheless, unlike case (a) in which the local normal
vector is used, case (b) employs the non-local normal vector. Also, in case (a) corrections III
and IV are deactivated. As shown in Figure 4.22, the CPS+PC method represents accurate
and uniform normal vectors required for modifying the shifting vector at the free-surface
region.

Figure 4.23 provides a quantitative comparison between the numerical and experimental
(from [4]) wave front propagation (with H/l0 = 60 and 100) and the local pressure (for point
S1). The results show good compatibility, specially for the wave propagation. One should
note that the initial underestimation of the wave propagation can be related to the effects
of the gate removal mechanism, which has been neglected in the numerical simulations. The
local numerical pressure at point S1 is more oscillatory (comparing to those digitized from
experiments) and the second pressure increase (related to back wave) has a slight delay
(occurs at T ≈6.5 instead of T ≈6.0). Such discrepancy that can also be observed in the
results of other single-phase particle models (e.g., SPH [65,142]), can be related to the slightly
allowed compressibility, boundary effect, and absence of air-phase.
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Figure 4.20 Water dam break at T = t
√
g/H =1.62 and 2.96, The Conservative WC-MPS

model with and without the diffusive term (case (b) vs (a), respectively) where the CPS+PC
algorithm is activated. (H/l0 = 100)

Figure 4.21 Water dam break evolution with the Conservative WC-DMPS model and the
CPS+PC algorithm at T = t

√
g/H = 5.9, 6.5 and 7.8 (H/l0 = 100).
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Figure 4.22 The effectiveness of the proposed corrections in the CPS technique (i.e. correc-
tions II-IV in section 4.4.4) for determining the normal vectors to modify the particle shifting
vector (H/l0 = 60, re = 3.1l0). Other calculation conditions are the same as the case (b) in
Figure 4.20.

Figure 4.23 The numerical versus experimental [4] water pressure at S1 (Left) and the wave
front propagation (Right) for the dam break test case.

4.6 Conclusions

A series of enhancement techniques were developed, adapted and evaluated for the WC-
MPS particle method, to improve the stability and accuracy of this numerical approach. We
introduced a Conservative WC-MPS model by employing an antisymmetric pressure gradient
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formulation and its conjugate form of the continuity equation. A new diffusive term was
proposed (WC-DMPS technique) to reduce the numerical errors (false diffusion). We adapted
and corrected the particle shifting (CPS) algorithm to modify the normal vector and hence the
particle shifting vector of particles detected as the free-surface particles. Moreover, the pair-
wise Particle Collision approach was combined with the CPS method (CPS+PC ) as a particle
stabilizing technique for the free-surface particles. The proposed enhancements techniques
were evaluated using four benchmark cases (each with its special flow characteristics).

In general, the proposed techniques proved to be effective in increasing the stability and ac-
curacy and overcoming issues associated with the tensile instability and unphysical pressure
fluctuations. The results showed that the conservative pressure gradient regulates particles
via the repulsive force activated in the positive pressure fields. While the developed particle
shifting algorithm is still required to guarantee long-term stability and eliminate particle
clustering especially in the negative pressure fields. Moreover, the CPS+PC technique suc-
cessfully removed the fluid fragmentation problem in highly dynamic cases at the free-surface
regions.

We observed that without the diffusive term the other enhancement techniques are incapable
of removing the unphysical pressure noise. By assigning the initial pressure and activating the
diffusive term via the proposed continuity equation, the smooth pressure fields are achieved
in all four benchmark cases.

For future work, we suggest studying the role of the proposed conservative model in the
energy conservation of the system and extending the developments to the multiphase and
three-dimensional WC-MPS method. This requires the sensitivity analysis of the diffusive
term in the energy dissipation and its treatment at the free-surface and solid boundaries for
further improvements. Moreover, it is worthwhile to investigate the proposed particle shifting
method for the long-term simulations of violent free-surface flows where the potential energy
is dominant, and several breaking events occur.
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5.1 Abstract

This paper develops a consistent particle method for capturing the highly non-linear behavior
of violent free-surface flows, based on an Enhanced Weakly Compressible Moving Particle
Semi-implicit (EWC-MPS) method. It pays special attention to the evaluation and improve-
ment of two particle regularization techniques, namely, pairwise particle collision (PC) and
particle shifting (PS). To improve the effectiveness of PC in removing noisy pressure field,
and volume conservation issue of PS, we propose and evaluate several enhancements to these
techniques, including a novel dynamic PC technique, and a consistent PS algorithm with
new boundary treatments and additional terms (in the continuity and momentum equa-
tions). Besides, we introduce modified higher-order and anti-symmetric operators for the
diffusive and shear force terms. Evaluation of the proposed developments for violent free-
surface flow benchmark cases (2D dam-break, 3D water sloshing, and 3D dam-break with an
obstacle) confirms an accurate prediction of the flow evolution and rigid body impact, as well
as long-term stability of the simulations. The dynamic PC reduces pressure noises with low
energy dissipation, and the consistent PS conserves the volume even for extreme deforma-
tions. Comparing the role of these new particle regularization techniques demonstrates the
effectiveness of both in assuring the uniformity of the particle distribution and pressure fields;
nevertheless, the implementation of PS is found to be more complex and time-consuming,
mainly due to its need for free surface detection and boundary treatment with many tuning
parameters. (Figure 5.1)



67

Figure 5.1 The graphical abstract

5.2 Introduction

Continuum-based particle methods have been developed and applied for solving many sci-
entific and engineering problems (see e.g., [38–40, 42]). The Lagrangian nature of these
approaches has attracted many research projects involving complex fluid flow physics. In
contrast to the traditional Eulerian methods identified with semi- or fixed grids, the moving
particles carrying the flow and material properties provide an effective computational tool
for capturing extreme flows and interface deformations. Nevertheless, the numerical stabil-
ity and convergence of these particle methods are still open problems that require robust
stabilization techniques (e.g., [3, 161]).

Smoothed Particle Hydrodynamics (SPH) and Moving Particle Semi-implicit (MPS) (initially
developed by Gingold and Monaghan [26] and Koshizuka and Oka [25], respectively) are
two popular particle methods for fluid flow problems. Shakibaeinia and Jin [47] introduced
the Weakly Compressible MPS (WC-MPS) method, with the equation of state being the
function of the particle number density. This method has been the focus of many studies,
particularly for simulating hydro-environmental problems (e.g., see [75, 162] for free-surface
and multiphase fluid flows, and [29, 108] for sediment dynamic modeling). Jandaghian and
Shakibaeinia [123] recently proposed a new version of the WC-MPS approach, denoted as
the Enhanced WC-MPS (EWC-MPS). The EWC-MPS method, as a continuity-based model,
employs a diffusive term and particle regularization techniques to reduce/eliminate numerical
instability. In the present study, we further improve this method and investigate its stability
and convergence for the long-term modeling of violent free-surface flows by introducing several
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new enhancements.

Numerical instabilities in particle methods mainly arise from errors due to the discretization
methods and the Lagrangian motion, which lead to non-uniform particle distributions rec-
ognized as noisy pressure fields, particle clustering, and tensile instability. These drawbacks
of the particle methods not only cause numerical instabilities but also affect the modeling
accuracy, particularly in regions with high-pressure and/or tension forces and extreme flow
deformations [59]. To decrease the high-frequency unphysical pressure fluctuations, particle
methods implement higher-order operators (e.g., [52,58,157]) and artificial viscosity/diffusion
terms (e.g., [54,61]). Moreover, particle regularization techniques have been developed to as-
sure uniform particle distributions and overcome the common pairing instabilities. Among
these regularization techniques, the pair-wise Particle Collision (PC) (e.g., [56, 75, 146]),
the Particle Shifting (PS) (e.g., [3, 50, 55, 60, 74]), and the transport-velocity formulations
(e.g., [144,163,164]) approaches have shown to be promising in surmounting these instabili-
ties by regulating the particles.

Unphysical high-frequency pressure noises, as the common numerical issue of the weakly com-
pressible SPH and MPS methods, originate from the particle approximation and the kernel
truncation errors [54,123]. To reduce these pressure fluctuations, Monaghan and Gingold [61]
inserted an artificial viscosity term into the momentum equation of the weakly compressible
SPH method for shock simulations. The artificial viscosity term has shown to be an effective
numerical technique for eliminating the pressure fluctuations and ensuring numerical stabil-
ity, and is being implemented in well-developed SPH models (e.g., see [3,62–64]). Molteni and
Colagrossi [54] introduced a novel diffusive term defined as the Laplacian of the density field
in the continuity equation to surmount the pressure oscillations in the weakly compressible
SPH method. Antuono et al. [66] proposed the convergent form of this diffusive term using
high-order Laplacian and gradient operators. In the context of the weakly compressible MPS,
Jandaghian and Shakibaeinia [123] derived a new version of this diffusive term as a function
of the particle number density for free-surface flows. Furthermore, high-order approxima-
tion operators have been employed to increase the accuracy of the numerical calculations
and remove the pressure noises [57]. Oger et al. [52] improved the SPH method through
a renormalization-based formulation for increasing the accuracy of the gradient approxima-
tions. Similarly, Khayyer and Gotoh [57] represented a first-order accuracy pressure gradient
equation in the incompressible MPS framework. Duan et al. [58] implemented a second-order
corrective matrix and showed that in their incompressible MPS model the stabilization errors
are more dominant compared to the truncation errors. Jandaghian and Shakibaeinia [123] by
comparing a conservative pressure gradient operator versus the non-conservative high-order
pressure force illustrated that respecting the conservation properties of the system plays an
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important role in the numerical stability of the weakly compressible MPS method.

To increase the numerical stability, the particle methods adopt the PC technique developed
based on the concept of the momentum transfer in the collision of physical solid or gas
particles. This approach utilizes empirical coefficients to indirectly apply a repulsive force
between a pair of colliding particles. Lee et al. [56] represented the PC technique as a parti-
cle regularization technique in the MPS formulations for simulating violent free-surface flows
and impact loads. Shakibaeinia and Jin [108] developed the PC formulation for simulat-
ing sediment dynamic problems in the context of the multiphase weakly compressible MPS
method. Further, Shakibaeinia and Jin [75] extended the application of the PC method to
high-density ratio multiphase flows, and Xu and Jin [146] validated this technique as the
particle stabilization approach of the weakly compressible MPS method for free-surface flows
involving impact events.

Moreover, PS techniques aim at eliminating particle-clustering and tensile instability by mov-
ing particles to the area with less particle concentration. In the context of the incompressible
SPH method, Xu et al. [55] originally implemented the PS method for solving internal flows.
Lind et al. [50] represented the PS approach based on Fick’s law of diffusion and corrected
the PS vector for free-surface flows. Shadloo et al. [165] adopted the Lennard-Jones repulsive
force to derive the PS vector and validated the improved SPH method for simulating rapid
fluid flows over solid bodies. Zainali et al. [166] employed this PS formulation for multiphase
incompressible SPH simulations. Khayyer et al. [74] proposed an optimized version of the PS
scheme to enhance the performance of the incompressible SPH method for interfacial flows.
Mokos et al. [167] developed the PS technique for multiphase violent fluid flows in the weakly
compressible SPH framework. Duan et al. [60] implemented the PS technique within an in-
compressible multiphase MPS model considering the free-surface corrections of the PS vector.
Sun et al. [130] appended the PS technique to the weakly compressible SPH method with
special treatments of particles in the free-surface region. Further, Sun et al. [3] developed the
consistent form of this PS method by including additional diffusive terms of the PS trans-
port velocity within the governing equations. Jandaghian and Shakibaeinia [123] proposed
the corrected-PS algorithm coupled with the PC technique (i.e., the hybrid method denoted
as CPS+PC) for their enhanced weakly compressible MPS method, and the developed model
was shown to be effective and essential for avoiding unphysical fluid fragmentations.

Violent free-surface flows are particularly challenging for the well-developed particle methods
for capturing long-term mechanical behaviors (see e.g., [85, 164]). These complex flows are
usually associated with breaking waves, impact events, and water sloshing, and are char-
acterized by high Reynolds numbers, highly non-linear deformations, and fluid-fluid and
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fluid-solid impacts [62]. Hence, increasing stability and reducing the approximation errors of
the particle methods while conserving the global momentum/energy of the system become
critical issues for simulating these problems. For this purpose, in addition to employing
higher-order formulations and diffusive terms, eliminating the particle-pairing instabilities
requires rigorous particle regularization techniques [3]. The PS techniques (e.g., [62, 167]),
transport-velocity algorithms (e.g., [164,168]), and the PC method (e.g., [56,146]) have been
specifically developed and utilized to surmount the numerical instability of violent free-surface
flows. Nevertheless, despite their success in improving the particle distributions, many exist-
ing particle-shifting methods and the associated free-surface detection algorithms introduce
some new challenges in simulating such complex flows (e.g., [123,161]). Particularly in weakly
compressible particle methods, where the potential energy is dominant and several breaking
events occur (e.g., water dam break and sloshing problems), the continuous shifting of the
particles leads to an unphysical expansion of the fluid field [3, 64]. Further developments to
overcome these numerical issues involve implementing more accurate particle classification
algorithms and treatment of the free-surface particles (e.g., [64, 74, 161]). Moreover, includ-
ing some additional advection terms in the governing equations may dissipate the excessive
potential energy inserted via the particle-shifting technique [3]. On the other hand, the
conservative PC technique has advantages over PS because of its simplicity and being free
from many exceptions and boundary treatments; however, by using empirical coefficients,
this technique has been shown to be less effective for highly violent flows (see e.g., [56,146]).

The main objective of this paper is to propose a robust numerical tool based on the EWC-MPS
method for simulating the long-term stability of violent free-surface flows while predicting
the system’s global energy. To accomplish that, we propose a conservative form of the
three-dimensional EWC-MPS method by employing a higher-order gradient and Laplacian
operators (Section). Moreover, we implement a modified diffusive term in the MPS framework
(based on the formulation of [66]) to reduce the high-frequency pressure fluctuations and
kernel truncation errors. Regarding the particle regularization techniques, we investigate the
role and impact of PC and PS techniques on stability, accuracy, and conservation properties,
then to address the issues with these techniques we propose and evaluate a new dynamic PC
approach (Section) and a consistent form of the CPS technique (Section). By simulating and
validating two-dimensional dam-breaks and three-dimensional water sloshing and obstacle
impacts, we investigate and compare the performance of the proposed developments for the
long-term stability of relevant problems (Section).
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5.3 Governing equations

The mathematical model governs the fluid flows through the momentum and mass conser-
vation laws. The Lagrangian form of the governing equations in the continuum mechanics is
as follows [169]: 

Dρ

Dt
= −ρ∇.v

ρ
Dv
Dt

= −∇p+ ρF +∇.τ

Dr
Dt

= v

(5.1)

In this system, the continuity equation updates the fluid density, ρ, by the divergence of the
velocity, ∇.v, stated as the mass volume expansion rate. The momentum equation updates
the velocity vector, v, used to move the position of the material points, r. The gradient
of pressure, ∇p, the divergence of the shear stress tensor, ∇.τ , and the body force, ρF,
represent the interaction forces per unit volume. With the weak compressibility assumption,
the pressure, p, is a function of the density as a barotropic fluid given by the Equation of
State (EOS) (i.e., p = f(ρ)). The shear force, ∇.τ , introduces the laminar and turbulence
properties of the viscous fluid within the numerical model. For a Newtonian incompressible
fluid (with ∇.v ' 0), the shear stress tensor is given as a function of the dynamic viscosity, µ,
and the strain rate tensor of the fluid phase (i.e., τ = 2µE where E = 0.5

[
(∇v) + (∇v)T

]
).

5.4 The EWC-MPS model

5.4.1 The discrete system with the conservation properties

The particle methods discretize the computational domain, Ω, into particles that represent
the fluid phase, Ωf , and the solid walls, Ωs (i.e. Ω = Ωf ∪ Ωs). In the EWC-MPS method
using the symbolic notation, the approximation operator, 〈 〉, forms the differential equations
(5.1) for a target particle i into:



1
ni

Dni
Dt

= −〈∇.v〉i +Dm
i

Dvi
Dt

= − 1
ρi
〈∇p〉i + Fi + 1

ρi
〈∇.τ 〉i

Dri
Dt

= vi

(5.2)
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in which the model calculates the particle number density, ni, (as the substitute for the
density, ρi) via the continuity equation supplied with the modified diffusive term, Dm

i [123].
The momentum equation estimates the interparticle forces (i.e., the pressure force, 〈∇p〉i,
the shear force, 〈∇.τ 〉i, and the body force, ρiFi per unit volume) for updating the velocity,
vi, and eventually the position of the particle, ri, while the model keeps the fluid density
constant in the momentum equation (i.e., ρi = ρ0: the reference density of the fluid phase;
for water, ρ0 = 1000 kg/m3), the equation of state updates the pressure field as a function
of ni with:

pi = c2
0ρ0

γ

((
ni
n0

)γ
− 1

)
(5.3)

where n0 is the normalization factor and γ = 7 [47]. With the artificial speed of sound, c0,
being considerably larger than the maximum velocity corresponding to the problem, ‖v‖max ,
(e.g., c0 ≥ 10 ‖v‖max), the equation of state limits the compressibility of the fluid phase to
1%, as the Mach number (Ma) remains less than 0.1. The kernel function, W (rij, re), defines
the interaction of particle i with its neighboring particles (j ∈ N) through the approximation
procedure. The neighbor search algorithm updates the neighbor lists in each time step with
the kernel influence radius, re = 3.1l0, where rij = ‖rj − ri‖ ≤ re and l0 is the initial particle
distance. The conjugate form of the gradient and divergence operators for the pressure force
and the velocity field, respectively, gives:

〈∇p〉i = d

n0

N∑
i 6=j

(
ni
pj
nj

+ nj
pi
ni

)
eij
rij
Wij

〈∇.v〉i = d

n0

N∑
i 6=j

(
nj
ni

) vij
rij
.eijWij

(5.4)

in which eij is the unit direction vector between particle i and j (i.e. eij = (rij = rj−ri)/rij),
Wij = W (rij, re), and d (= 1, 2, 3) is the number of space dimensions [123]. The normalization
factor, n0, is calculated at the initial stage (t = 0) by the kernel summation over the fluid
particles with the complete kernel support (i.e., n0 = max(∑N

i 6=jWij) at t = 0). We employ
the rational kernel function [75] for all the approximated terms of the governing equation
(5.2).

Employing the conjugate form of the approximation operators in (5.4) ensures that the
particle system preserves the total energy of the numerical model (in the absence of the
shear and body forces and the diffusion terms) [49, 123]. Further, this model conserves the
linear and angular momentums, since the pressure force is antisymmetric (with respect to
the particle indexes) and with the same direction as the rij vector. In the presence of viscous
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stresses, we should approximate the shear force, 〈∇.τ 〉i, with an antisymmetric formulation
in order to still conserve the linear momentum of the system. To do so, in this study we
implement the following divergence operator:

〈∇.τ 〉i = d

n0

N∑
i 6=j

(
ni
nj
τ j + nj

ni
τ i

)
.
eij
rij
Wij (5.5)

derived based on the formulation by Jandaghian and Shakibaeinia [123] proposed for the
conservative pressure force in Eq. (5.4). In this equation, the shear stress tensor of particle
i is given by τ i = 2µiEi, where Ei is the deviatoric part of the strain rate tensor estimated
by 0.5(〈∇v〉i + 〈∇v〉Ti ) for incompressible flows. Furthermore, we implement a turbulence
model to simulate unresolved fluid motions smaller than the filter size [170]. Based on
the Sub Particle Scale (SPS) turbulence model, we add the turbulent viscosity, µti, to the
dynamic viscosity of the fluid phase (i.e., µi = µ + µti and for water µ = 10−3 Pa.s), where
µti = ρ0 (Csre)2

√
4IIEi and IIEi = 0.5Ei : Ei is denoted as the second main invariant of the

strain rate tensor and Cs is the Smagorinsky coefficient set to 0.12 in this study [29,37].

Even with Eq. (5.5) being an antisymmetric equation with respect to the particle indexes, the
direct methods are incapable of confirming the conservation of the angular momentum within
the discrete system [48]. Considering the variational procedure, Bonet and Lok [48] showed
that the numerical model preserves the angular momentum if the potential energy remains
invariant as the rigid body rotates. This is achieved by implementing a gradient operator
that correctly estimates the true velocity gradient, W, of an angular velocity vector, ω,
where vi = ω × ri (i.e., ideally 〈∇v〉i = W) [48]. In the MPS framework, the gradient of
this velocity field is approximated via:

〈∇v〉i = d

n0

N∑
i 6=j

Wrij
rij
⊗ eijWij (5.6)

in which ⊗ is the outer product of two vectors. Therefore, the condition that assures the
preservation of the related potential energy will be:

d

n0

N∑
i 6=j

rij
rij
⊗ eijWij = I (5.7)

which is required for estimating the true velocity gradient (I being the identity matrix).
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Satisfying this condition leads to a corrective matrix identical to Ci, given as:

Ci =
 d

n0

N∑
i 6=j

rij
rij
⊗ eijWij

−1

(5.8)

which ensures the exact calculation of the gradient of any linear velocity field [48, 52, 57].
Accordingly, we include the corrective matrix into the gradient operator of the velocity vector
as follows:

〈∇v〉Ci = d

n0

N∑
i 6=j

vij
rij
⊗ (Cieij)Wij (5.9)

which is used in the shear force calculations (i.e., in the τ i and µti terms) and vij = vj−vi. By
implementing this first-order accuracy operator, we aim to conserve the angular momentum
of the system (similar to the incompressible SPH method proposed by Khayyer et al. [170]).

Based on the flow equations in the MPS framework, Jandaghian and Shakibaeinia [123]
introduced the diffusive term into the continuity-based WC-MPS model to eliminate high-
frequency pressure fluctuations. We modify the standard diffusive term by employing a
higher-order Laplacian operator to implement its convergent form (like the formulation pro-
posed by Antuono et al. [66] for the δ-SPH models). This eliminates kernel truncation errors
at the free surface and in the vicinity of the solid boundary, converging the diffusive term
over the fluid domain, which is required to obtain a stable pressure field for long-term sim-
ulations [66]. In the context of the WC-MPS method, the modified the diffusive term forms
to:

Dm
i =

(
δMPS

∆tc2
0

n0

)
2d
n0

N∑
i 6=j

[
(nj − ni)−

1
2
[
〈∇n〉Ci + 〈∇n〉Cj

]
.rij

]
Wij

r2
ij

(5.10)

in which the time step of the calculation, ∆t, the reference sound speed, c0, the normalization
factor, n0, and the adjusting coefficient, 0 < δMPS ≤ 1 determine the strength of the numer-
ical diffusion (in this study, δMPS = 0.7 for all test cases). Using the higher-order gradient
equation produces the gradient of the particle number density, as follows:

〈∇n〉Ci = d

n0

N∑
i 6=j

nj − ni
rij

(Cieij)Wij (5.11)

where the corrective matrix, Ci, imposes the first-order accuracy on the gradient operator.
It should be noted that the modified diffusive terms conserve the total mass of the system,
as equations (5.8), (5.10), and (5.11) are limited to the fluid particles (i.e. i, j ∈ Ωf ) and∑
i niD

m
i Vi = 0, Vi is the volume of the particle.
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5.4.2 Particle regularization techniques for violent free-surface flows

Dynamic pair-wise Particle Collision technique: DPC

The idea behind the pair-wise Particle Collision (PC) approach originates from the momen-
tum transfer between colliding physical solid or gas particles in the normal direction [75,147].
In the particle methods (e.g., [56,75,146]), the standard PC technique modifies the velocity of
fluid particles penetrating each other considering the collision velocity, a constant coefficient
of restitution, and a threshold as the collision distance (vColl

ij , ε and θl0, respectively) through
v′i = vi + δvi as:

δvi =
N∑
i 6=j

(1 + ε

2

)
vColl
ij

in which:

vColl
ij =


(vij.eij) eij for rij ≤ θl0 and vij.rij < 0

0 otherwise
(5.12)

and ε specifies the kinetic energy variation of the particles after the collision and θ is a
non-dimensional threshold coefficient usually set to 0.8− 0.9 [75, 147]. The time integration
algorithm dispositions the particle with the post-collision velocity v′i [75]. This velocity
modification ignores the inter-particle penetration of other neighboring particles, j, that are
not approaching particle i (i.e., for vij.rij ≥ 0 → vColl

ij = 0 even if rij < l0). Moreover, the
constant coefficient and the predefined threshold of collision distance restrict the effectiveness
of the PC method for dealing with extreme flow deformations.

Here, we propose a new formulation of the PC technique to resolve the numerical instabilities
associated with particle-clustering in violent free-surface flows. The developed algorithm
employs variable coefficients and the local gradient of a dynamic background pressure to
update the transport velocity. This particle regularization technique, hereinafter denoted as
the Dynamic pair-wise Particle Collision (DPC) technique, modifies the velocity by:

δvi =
 N∑
i 6=j

κijvColl
ij − ∆t

ρ0

N∑
i 6=j

φij
pbij
rij

eij


where (

vColl
ij , φij

)
=


((vij.eij) eij, 0) if vij.rij < 0,

(0, 1) otherwise
(5.13)

acting between the fluid particles (i.e., i, j ∈ Ωf ). For pairs of interpenetrated particles
still approaching each other, i.e., vij.rij < 0, only the collision term (i.e., the first term
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on the right-hand side) modifies their velocity vectors with a variable coefficient, given as
0 ≤ κij ≤ 1, and a binary multiplier set to φij = 0. Otherwise, when they are receding
from each other, the second term, as the local gradient of dynamic background pressure, pbij,
activates an artificial repulsive force between the two target particles by setting φij = 1.
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Figure 5.2 The Dynamic Particle Collision (DPC) algorithm consists of the proposed collision
and repulsive terms and the dynamic coefficients defined by the Wendland kernel

This new formulation (i.e., Eq. (5.13)) covers the different conditions that demonstrate
inter-particle penetration, i.e., particle-clustering (shown in Figure 5.2). By calculating the
velocity variation of all the fluid particles, the proposed DPC technique updates the velocities
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and positions of the fluid particles as follows:
v′i = vi + δvi

r′i = ri + ∆tδvi
. (5.14)

We define the dynamic background pressure by the local pressure of the particles and the
inter-particle distance as follows:



pbij = p̃ijχij

p̃ij = max (min (λ |pi + pj| , λpmax) , pmin)

χij =

√√√√ W (rij, l0)
W (0.5l0, l0)

(5.15)

where λ is a non-dimensional coefficient (typically with a constant value of 0.1∼0.2). This
formulation limits the background pressure by the expected minimum and maximum values
of the pressures (i.e., pmin and λpmax , respectively, considered as positive constants in the
problem). The minimum pressure keeps the repulsive force non-zero, while the maximum
pressure eliminates large velocity variations (particularly in regions where flow impacts solid
walls or forms a plunging wave). The proposed dynamic background pressure (within the
repulsive term) increases the stability particularly close to the free-surface where attractive
forces may become dominant through the conservative pressure force. In this study, we set
λ = 0.2 for all benchmark cases and assign pmin and pmax considering the minimum hydro-
static pressure on the free-surface and the maximum impact load on the walls, respectively. In
test cases where the gravitational force is not dominant, these parameters can be determined
according to the analytical solution and/or the local particle pressure. The kernel function,
with a smoothing length equal to the initial particle distance, adjusts the strength of the
repulsive force through χij, defined as a non-dimensional variable. This function increases
as the particle distance decreases and becomes greater than the unit where rij < 0.5l0. Sim-
ilarly, we utilize χij as the variable coefficient of the collision term considering the following
conditions:

κij =


χij 0.5l0 ≤ rij < l0

1 rij < 0.5l0
(5.16)

by which the magnitude of the velocity variation decreases smoothly with the particle sepa-
ration. Further, the latter condition avoids excessive transfer of linear momentum between
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the colliding particles (i.e., with κij = 1.0, the coefficient of restitution, ε, reaches its maxi-
mum value which is unit). Through the dynamic coefficients, both the collision and repulsive
terms only modify the velocities and positions considering the nearest-neighbor particles that
penetrate the target particle (i.e., if rij ≥ l0, W (rij, l0) = 0→ χij = 0). Note that since Eq.
(5.13) is an antisymmetric term, the proposed DPC still conserves the total linear momentum
of the system (i.e., ∑imδvi = 0 with the constant mass of particles m).

The repulsive term in Eq. (5.13) regulates particles based on the pressure gradient term
of the momentum equation (i.e., dv/dt = −∇p/ρ0, similar to the generalized transport-
velocity approach of Zhang et al. [163] and the artificial repulsive forces of Monaghan et
al. [44] and Tsuruta et al. [132]). However, the proposed repulsive force coupled with the
new collision term still acts as a pair-wise technique without the smoothing procedure over
all the neighbor particles. Further, this term is antisymmetric, and the velocity is directly
updated by Eq. (5.14) without implementing any additional term in the momentum equation
(i.e., without (∇. (v⊗ δv)− v∇. (δv)) terms). It should be noted that the effectiveness of
the DPC technique depends on the type of kernel function used for the χij variable (e.g., the
kernel functions with the singularity issues (like the rational kernel function [47]) may lead to
large values of the repulsive force when rij → 0). In this study, we use the Wendland kernel
function [67], where 0 ≤ χij ≤ 2.31. Figure 5.2 illustrates the numerical implementation of
the DPC algorithm and plots the Wendland kernel and χij functions.

A consistent form of the corrected particle shifting technique: CPS∗+DPC

The particle shifting (PS) algorithm regulates the distribution of fluid particles, thus elim-
inating the tensile instability and increasing the numerical accuracy and stability. Here,
we propose and develop a consistent form of the corrected-PS algorithm (i.e., the hybrid ap-
proach originally proposed in [123] denoted as CPS+PC) for the EWC-MPS method. To that
end, we implement a more restricted criterion for boundary treatments of the particle-shifting
vector. We also re-derive the MPS formulation of the additional diffusive terms included in
the continuity and momentum equations resulting from the particle-shifting velocity (based
on the work of Sun et al. [3]). The former introduces new criteria to classify the fluid particles
required for dealing with corners and extreme curvatures of the interfaces. The latter aims to
include the effects of the gradients’ advection due to the particle shifting transport-velocity
within the governing equations. Eventually, coupling the new CPS algorithm with the DPC
technique, we propose a consistent form of the corrected particle-shifting technique, denoted
as CPS∗+DPC, for the free-surface flows.

• Numerical treatment of the particle-shifting vector
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Here, the conservative particle shifting vector of the fluid particles, i ∈ Ωf , is given by:

δri = −F∇Ci = −F d

n0

N∑
i 6=j|i,j∈Ωf

Ci + Cj
rij

eijWij (5.17)

where j only belongs to the fluid particles, Ωf , and F = Al20CCFLMa is the Fickian diffusion
coefficient with A and CCFL being a dimensionless number (A = 2 in this study) and the
Courant condition coefficient of the explicit model, respectively. Unlike in [123], Eq. (5.17)
excludes the contribution of the solid boundary particles to the particle-shifting of the fluid
particles. This vector dispositions the fluid particles to the area with less particle concen-
tration, quantified by Ci = ∑N

i 6=jWij/n0 as j ∈ Ω. Thus, the CPS algorithm should mod-
ify/cancel the particle-shifting vector with the incomplete kernel support (i.e., the particles
in the vicinity of the free-surface and solid boundaries) to eliminate false particle-shifting.

For this purpose, the new dynamic particle classification algorithm, in addition to the internal
particles (i ∈ I), the free-surface vicinity particles (i ∈ BF), the free-surface particles (i ∈ F),
and the external/splashed particles (i ∈ E), identifies the wall vicinity particles (i ∈ Bw) and
the fluid particles that signify the local volume expansion (i ∈ X). Note that these classes
represent the entire fluid domain (i.e., Ωf = I∪F∪BF∪Bw∪X∪E), whereas the wall and ghost
solid boundary particles are denoted as W and G, respectively (i.e., Ωs = W∪G). Based on
the particle shifting correction proposed by Lind et al. [50] and Khayyer et al. [74], the false
diffusion of the fluid particles toward the free surface should be avoided. In this study, with
the fluid particles being categorized, the new CPS formulation modifies the particle-shifting
vector through:

δri =



−F∇Ci, i ∈ I

−F [αiI− βi (n̂i ⊗ n̂i)] .∇Ci, i ∈ BF ∪ Bw

−F [αiI− βi (ni ⊗ ni)] .∇Ci, i ∈ F

0 i ∈ E ∪ X

(5.18)

in which I is the identity matrix. This formulation removes the normal component of the
particle-shifting vector of the free-surface particles (i ∈ F) and the particles identified in the
vicinity of the free-surface and the solid boundary particles (i ∈ BF ∪ Bw) via their unit
local normal vector, ni, and the non-local normal vectors n̂i, respectively [123]. The binary
coefficients αi and βi (which are either equal to 1 or 0) in the new equation impose some
restricting conditions on the particle-shifting vector of the free-surface and boundary particles
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(through Eqs. (5.24)-(5.27)).

The new particle classification algorithm and shifting vector 
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The dam-break test case:

the normal vectors &

the particles classification

for ∀𝑖 ∈ Ω𝑓, 𝐶𝑖 =
σ𝑖≠𝑗𝑊𝑖𝑗

𝑛0
as 𝑗 ∈ Ω

and

∇𝐶𝑖 =
𝑑

𝑛0


𝑖≠𝑗

𝐶𝑖 + 𝐶𝑗

𝑟𝑖𝑗
𝐞𝑖𝑗𝑊𝑖𝑗

as 𝑗 ∈ Ω𝑓

→ 𝑖 ∈ 𝔼

→ 𝑖 ∈ 𝔽

→ 𝑖 ∈ 𝔹F

→ 𝑖 ∈ 𝔹W

→ 𝑖 ∈ 𝕀

→ 𝑖 ∈ 𝕏

𝛿𝐫𝑖 = −𝐹∇𝐶𝑖

𝛿𝐫𝑖 = −𝐹 𝛼𝑖𝐈 − 𝛽𝑖 𝐧𝑖 ⊗𝐧𝑖 . ∇𝐶𝑖

𝛿𝐫𝑖 = 0

𝛿𝐫𝑖 = −𝐹 𝛼𝑖𝐈 − 𝛽𝑖 ෝ𝐧𝑖 ⊗ ෝ𝐧𝑖 . ∇𝐶𝑖

𝛿𝐫𝑖 = min 0.1 𝐯𝑖 ∆𝑡, 0.1𝑙0, 𝛿𝐫𝑖 ൘
𝛿𝐫𝑖

𝛿𝐫𝑖

Particle shifting vector

→

→

𝜅𝑖 ≥ 𝜅𝑚𝑎𝑥

𝛿𝐫𝑖 = 0

𝑖 ∈ 𝔼
𝛿𝐫𝑖 = 0

𝑖 ∈ 𝔽

𝑖 ∈ 𝔽 ∪ 𝔹F ∩ 𝔹W|
𝛿𝐫𝑖 = 0

𝑖 ∈ 𝔹W

𝑖 ∈ 𝕀

𝑖 ∈ 𝔹F & 𝛿𝐫𝑖 . 𝐍𝑖 > 0

𝑖 ∈ 𝔹F & 𝛿𝐫𝑖 . 𝐍𝑖 ≤ 0

External/splashed particles

Expanded particles 

Free-surface particles 

Free-surface vicinity particles 

Wall vicinity particles

Internal particles 

𝑖 ∈ 𝔹F → α𝑖 , 𝛽𝑖 =
1, 0 if 𝛿𝐫𝑖. 𝐍𝑖 ≤ 0

1, 1 otherwise

α𝑖 , 𝛽𝑖 : 𝑖 ∈ 𝔽 ∪ 𝔹F ∩ 𝔹W → α𝑖 , 𝛽𝑖 =
1, 0 if 𝛿𝐫𝑖. (𝐍𝑖 or 𝐍𝑖) ≤ 0 and 𝛿𝐫𝑖. 𝐍w𝑖 ≤ 0

0, 0 otherwise

α𝑖 , 𝛽𝑖 =
0, 0 if 𝜅𝑖 ≥ 𝜅𝑚𝑎𝑥

1, 1 otherwise
𝑖 ∈ 𝔽 ∪ 𝔹F ∪ 𝔹w | 𝑖 ∉ 𝔽 ∪ 𝔹F ∩ 𝔹w →

Binary coefficients

𝜅𝑖 = ∇.𝐧 𝑖 given as Eq. (26)

𝑖

2𝑙0

𝑙0
R1

R2

Umbrella-shaped Region: R1 ∪ 𝑅2

𝐍𝑖

Figure 5.3 The new particle classification algorithm and special treatments of the bound-
ary particles for the corrected particle-shifting vector. The umbrella-shaped region used for
identifying the free-surface particle is illustrated (i.e., R1 and R2 given by Eq. (5.19)). The
results of the two-dimensional (2D) dam-break test case (with H/l0 = 100) show the es-
timated normal vectors and the different categories of the fluid particles at T = 2.18 and
T = 6.43, where T = t

√
g/H is the non-dimensional time.

Firstly, the algorithm distinguishes the free-surface particles and the regions with unphysi-
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cal volume expansion (due to manipulation of the potential energy by the particle-shifting
procedure). To do so, the model evaluates Ci with the predefined limits and then searches
for the neighboring particles, j ∈ Ω, within the umbrella-shaped region: R1 and R2, defined
in [123] as: 

R1 : |rij| ≥
√

2l0 and |rjS| < l0

R2 : |rij| <
√

2l0 and |ni.rjS|+ |ti.rjS| < l0

(5.19)

where S is at the distance l0 from particle i ∈ Ωf in the normal direction and the unit local
normal vector of the fluid particles, ni, is given as:

ni = Ni

‖Ni‖
as Ni =

N∑
i 6=j∈Ω

ejiWij, (5.20)

noting that the unit tangential vector, ti, satisfies ti.ni = 0 condition (see R1 and R2
illustrated in Figure 5.3). Fluid particles with incomplete kernel support and without a
neighboring particle inside their search regions are identified as free-surface particles (i.e., if
0.4 ≤ Ci ≤ 0.9 and j /∈ R1 ∪ R2 → i ∈ F). A particle that still satisfies the 0.4 ≤ Ci ≤ 0.9
condition while finding a neighboring particle within the R1∪R2 region not detected as a free-
surface or a wall particle, indicates an unphysical local expansion of volume in the internal
region. To reduce the accumulation of errors in the potential energy of the system, we cancel
the shifting of these particles (i.e., if 0.4 ≤ Ci ≤ 0.9 and j ∈ R1∪R2 & j /∈ F∪W→ i ∈ X &
δri = 0). Further, for detecting particles that are detached from the main body of the fluid
domain, i.e., i ∈ E, we consider the number of surrounding neighbors, Ni, (as rij ≤ re with
j ∈ Ω) and Ci satisfying the Ci < 0.4 or Ni < 0.4N0 condition (where N0 is the maximum
number of neighbors as the isotropic particle distribution forms (e.g., with re = 3.1l0 in the
two- and three-dimensional problems, N0 is set to 34 and 140, respectively). In this case, its
particle-shifting vector is neglected due to the extreme kernel truncations and the insufficient
number of neighboring particles.

In the next step, the fluid particles that contain free-surface particles within their neighbor
list (i.e., rij ≤ (re− l0) as j ∈ F) are identified as free-surface-vicinity particles (i ∈ BF) [123].
For these particles, the non-local normal vector, n̂i, defined by [123] as:

n̂i = N̂i

‖N̂i‖
as N̂i =

N∑
j∈F

njWij for i ∈ BF (5.21)

cancels the shifting vector in the direction normal to the free surface. Furthermore, the new
algorithm considers fluid particles that interact with the wall particles (i.e., rij ≤ (re− l0) as
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j ∈W) in the vicinity of the wall (i ∈ Bw). The non-local normal vectors of the wall-vicinity
particles are specified by:

n̂i = N̂wi

‖N̂wi‖
as N̂wi =

N∑
j∈W

nwjWij for i ∈ Bw, (5.22)

where the unit normal and normal vectors of the wall particles (i.e., nwi and Nwi , respectively)
are given as follows:

nwi = Nwi
‖Nwi‖

as Nwi =
N∑

i 6=j∈W∪G
eijWij for i ∈W. (5.23)

With the unit normal vector given by (5.22), particle-shifting toward the solid boundary is
ignored through Eq. (5.18). Finally, the fluid particles that are not in the vicinity of the
free-surface and solid boundaries (i.e., i /∈ F ∪ BF ∪ Bw) and the kernel support is almost
complete (i.e., Ci > 0.9) are labeled as internal particles.

Considering the local curvature of the surfaces and the direction of the shifting vector against
the normal vectors, the algorithm determines the binary coefficients αi and βi. In case the
shifting vector of a fluid particle located in the vicinity of the free surface is toward the
interior domain, the algorithm treats the particle as an internal one, i.e.:

fori ∈ BF → (αi, βi) =


(1, 0) if δri.N̂i ≤ 0

(1, 1) otherwise
(5.24)

where δri is given by Eq. (5.17). To deal with fluid particles that are detected inside both
the F ∪ BF and Bw regions, special treatment of the shifting vector becomes necessary. This
occurs at the intersection of the free surface region and the solid boundary. If this fluid
particle’s shifting vector (given by Eq. (5.17)) is toward either its free-surface or wall-normal
vectors, the algorithm ignores its shifting, i.e.:

for i ∈ (F ∪ BF) ∩ Bw → (αi, βi) =


(1, 0) if [δri.(Ni or N̂i) ≤ 0 and δri.N̂wi ≤ 0]

(0, 0) otherwise
.

(5.25)
Moreover, for large surface curvatures (such as the corners of the fluid domain), correction of
the shifting vector with the normal vector in a direction tangential to the surface still leads
to inaccurate particle-shifting. Therefore, we introduce a criterion for distinguishing regions
with large curvatures in order to ignore their particle-shifting. To calculate the scalar value
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of curvature, we estimate the divergence of the unit normal vectors by:

[ll]κi = 〈∇.n〉i = d

n0

N∑
i 6=j

n′j − n′i
rij

.eijWij

for i ∈ (F ∪ BF) ∪ Bw while i /∈ (F ∪ BF) ∩ Bw (5.26)

in which, if i ∈ F → n′i = ni and if i ∈ (Bw orBF) → n′i = n̂i. Further, n′j = nj∈F

and n′j = nwj∈W for i ∈ (F ∪ BF) and i ∈ Bw, respectively, while the neighbor particles that
belong to intersecting free-surface and wall boundary particles are ignored (i.e., j ∈ (W ∪ F) |
j /∈ (F ∩ Bw)). With the scalar value of the curvature, κi, exceeding the predefined limit,
κmax , the binary coefficients set the shifting vector to null, i.e.:

i ∈ F ∪ (BF or Bw)→ (αi, βi) =


(0, 0) if κi ≥ κmax

(1, 1) otherwise
(5.27)

wherein both two- and three-dimensional problems κmax is adjusted to 5.0, validated for
the rational kernel function with re = 3.1l0. This condition entirely cancels the shifting of
free-surface and boundary particles in regions where the normal vectors are non-uniform. It
should be highlighted that the only intersection between the particle categories occurs with
fluid particles belonging to both the F∪BF and Bw regions, specifically treated by Eq. (5.25);
whereas no other identified regions overlap.

Altogether, the new particle-shifting vector, i.e., Eq. (5.18), modifies the positions of the
fluid particles as r′i = ri + δri. To avoid extreme deviation of the flow variables, we limit the
magnitude of the particle-shifting vector by [50]:

δri = min (0.1 ‖vi‖∆t, 0.1l0, ‖δri‖) δri/‖δri‖. (5.28)

Figure 5.3 summarizes the dynamic particle classification algorithm with the special treat-
ment of the free-surface and boundary particles by the new particle-shifting formulation.
Also, this figure shows the particles’ categories and the unit-normal vectors on the dam-
break test case as an example (with H/l0 = 100, H being the initial height of the water
column).

• Additional diffusive terms due to the particle-shifting transport velocity

The role of transport velocity of the particle-shifting in the governing equations (5.2) and
the total energy of the system is negligible with invariant (or zero) potential energy (e.g.,
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[74, 85, 171]). However, for long-term simulations and to capture the correct dynamics of
violent free-surface flows (esp. with body forces), consideration of the deviation of velocity
in the continuity and momentum equations becomes essential [123]. Here, in the context
of the MPS method, we re-derive the additional terms (implemented by Sun et al. [3] in
the SPH framework) to include the effects of the particle-shifting velocity in the governing
equations. The particle shifting velocity, δv̂i, is defined as the corrected particle shifting
vector (Eq. (5.18)) divided by the time step, i.e.:

δv̂i = δri/∆t. (5.29)

In Lagrangian derivatives of any arbitrary value (or vector), f , this velocity deviation mod-
ifying the transport velocity, v + δv̂, appears as an extra term, ∇f.δv̂ [3, 144]. Considering
the particle number density and the momentum velocity, this term reads:

∇n.δv̂ = ∇. (nδv̂)− n∇. (δv̂)

∇v.δv̂ = ∇. (v⊗ δv̂)− v∇. (δv̂)
(5.30)

rewriting the governing equations of the EWC-MPS method (including the modified diffusive
terms and the shear force) to:



1
ni

Dni
Dt

= −〈∇. (v + δv̂)〉i + 1
ni
〈∇. (nδv̂)〉i +Dm

i

Dvi
Dt

= − 1
ρi
〈∇p〉i + Fi + 1

ρi
〈∇.τ 〉i + 〈∇. (v⊗ δv̂)〉i − vi 〈∇.(δv̂)〉i

Dri
Dt

= vi + δv̂.

(5.31)

To estimate the additional terms, we should consider the mass and momentum conservation
properties of the system [3]. The terms containing the velocity deviation are estimated by
the following operators in the new system of equations:



1
ni
〈∇. (nδv̂)〉i = d

n2
0

N∑
i 6=j

(njδv̂j + niδv̂i) .
eij
rij
Wij

〈∇. (v⊗ δv̂)〉i = d

n0

N∑
i 6=j

(vj ⊗ δv̂j + vi ⊗ δv̂i) .
eij
rij
Wij

vi 〈∇. (δv̂)〉i = vi
d

n0

N∑
i 6=j

δv̂j − δv̂i
rij

.eijWij.

(5.32)
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We approximate the first additional term inserted in the continuity equation, i.e.,∇. (nδv̂), by
the antisymmetric divergence operator and setting 1/ni = 1/n0 to preserve the total mass as∑
i
ni
n0
〈∇. (nδv̂)〉i Vi = 0 [3]. Note that the transport velocity inside the divergence equation

of the continuity equation contains the second additional term, −n∇. (δv̂). Similarly, for
the momentum equation, we approximate the first additional term, ∇. (v⊗ δv̂), with the
antisymmetric divergence in order to conserve the linear momentum of the system. Unlike
the SPH model by Adami et al. [144] (further generalized by Zhang et al. [163]), we include
the divergence of the velocity deviation (i.e., the second additional term, −v∇. (δv̂)) within
the momentum equation. Although the approximated form of this additional term violates
the momentum conservation law, it should be noted that the energy conservation of the
system is not satisfied by the PS techniques [74, 130]. With the additional terms, the new
formulation (5.31) aims to dissipate/eliminate the excessive energy inserted into the system
by shifting the fluid particles.

Coupling the additional δv̂-terms in the governing equations with the new particle classi-
fication algorithm and the shifting vector (summarized in Figure 5.3), we introduce a new
form of the CPS approach identified as CPS∗. This algorithm updates the velocity and
particle number density fields by the discretized form of Eq. (5.31) after dispositioning the
particles with δri, given by Eq. (5.18) and (5.28). As originally pointed out by Jandaghian
and Shakibaeinia [123], in problems with highly dynamic flow deformations, the fluid parti-
cles at the free-surface region are still vulnerable to particle-clustering, leading to unphysical
fluid fragmentations (as their particle-shifting vector is canceled in the normal direction to
the free surface). Similar to Jandaghian and Shakibaeinia [123], to improve the numerical
stability of the free surface and the external particles, we append the DPC approach to the
CPS∗ method. This hybrid technique, denoted as CPS∗+DPC, applies a corrected particle-
shifting vector with the additional δv̂-terms over the fluid domain, while implementing the
DPC method only among the free-surface, free-surface boundary, and splashed particles (i.e.,
i, j ∈ F ∪ BF ∪ E in Eqs. (5.13) & (5.14)). It should be noted that the DPC would act as
the only particle regularization technique of the particles with null particle-shifting in these
regions (where i ∈ E or (αi, βi) = (0, 0) by Eqs. (5.25) & (5.27)).

Figure 5.4 represents the numerical implementation of the new CPS*+DPC technique. We
summarize the proposed enhancements of the CPS*+DPC scheme as follows:

• The new particle classification scheme:

- recognizes the internal regions where unphysical volume expansion occurs (i ∈ X),

- identifies the fluid particles at the vicinity of the wall with the proposed non-local
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normal vectors (i ∈ Bw),

- detects the fluid particles at the intersections of the free-surface region and the vicinity
of the wall (i ∈ (F ∪ BF) ∩ Bw), and

- calculates the curvature of the interfaces by Eq. (5.26).

• The new particle-shifting formulation (Eq. (5.18)):

- ignores the solid boundary particles in the shifting process of the fluid particles
(Eq.(5.17)),

- cancels the shifting vectors of the particles with the unphysical volume expansion (i ∈
X→ δri = 0),

- through the binary multipliers, αi and βi, imposes some restricting conditions to the
magnitude and/or direction of the particle shifting vector in the free-surface boundary
and the vicinity of the wall, and the regions with extreme flow curvatures (Eqs.(5.24)-
(5.27)), and

- limits the magnitude of the shifting vector according to the particle’s velocity and the
spatial resolution (Eq. (5.28)).

• The additional diffusive terms due to the particle-shifting transport velocity (i.e., the
δv̂-terms), which are re-derived in the context of the MPS method (Eq.(5.32)), update
the velocity, position, and density of the particles based on the governing equations
(5.31).

• The new DPC formulation, coupled with the CPS∗ algorithm, acts as the particle
regularization technique of the particles within the free-surface regions and splashed
particles (i.e., i, j ∈ F ∪ BF ∪ E) through equations (5.13) & (5.14).
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• Determine the particle shifting velocity: 𝛿 ො𝐯𝑖 = ൗδ𝐫𝑖
∆𝑡

• Calculate the transport-velocity: 𝛿𝐯𝑖 = ∇. 𝐯⊗ δො𝐯 𝑖 − 𝐯𝑖 ∇. (δො𝐯) 𝑖 ∆t

• Update the velocity and position: ൝
𝐯𝑖
′ = 𝐯𝑖 + 𝛿𝐯𝑖

𝐫𝑖
′ = 𝐫𝑖

′ + 𝛿𝐯𝑖∆𝑡

• Calculate the density variation: 𝛿𝑛𝑖 = 𝑛𝑖 Τ1 𝑛0 ∇. 𝑛𝛿 ො𝐯 𝑖 − ∇. (𝛿 ො𝐯) 𝑖 ∆𝑡
• Update the particle number density: 𝑛𝑖 = 𝑛𝑖 + 𝛿𝑛𝑖

CPS*+DPC {

}

𝐹𝑜𝑟 ∀𝑖 ∈ 𝛺𝑓:

• Apply the DPC technique among the free-surface, the free-surface boundary, and the 

external particles (𝑖, 𝑗 ∈ 𝔽 ∪ 𝔹F ∪ 𝔼 in Eqs. (13) & (14))

• Define the category of the particle (based on the new particle classification algorithm, Figure 2)

• Calculate the corrected particle shifting vector: 𝛿𝐫𝑖 (Eqs. (18) & (28))

• Update the position: 𝐫𝑖
′ = 𝐫𝑖 + δ𝐫𝑖

• Estimate and include the additional 𝛿 ො𝐯𝑖-terms in the governing equations (Eqs. (31) & (32):

Figure 5.4 The sequential steps of the CPS∗+DPC algorithm as a hybrid particle regular-
ization approach. The new particle classification algorithm is represented in Figure 5.3, and
the corrected particle-shifting vector is given by Eqs. (5.18) & (5.28).

5.4.3 Initial and solid boundary conditions

Here, we apply the initial hydrostatic pressure to all the particles at t = 0 based on their initial
position with respect to the free surface and considering the gravitational force as g = 9.81
m/s2 in the negative y-direction. The inverse form of the EOS (i.e., n0

i = n0 (p0
i /B0 + 1)1/γ, in

which B0 = c2
0ρ0/γ), calculates the initial particle number density, n0

i , which will be updated
by the continuity equation.

The solid boundary particles consist of the wall and ghost particles (see [123]). The position
of these particles remains fixed with respect to each other constructing the rigid walls. In this
study, to simulate fluid-wall interactions, we adopt either the dynamic boundary condition
[67] or the generalized wall boundary condition [172]. In these models, the pressure of the fluid
particles approaching the wall increases through the continuity equation (i.e., in Eq. (5.4)
considering the true velocity of the reservoir, vw, for the neighbor boundary particles). To
implement the free-slip boundary condition for violent flow simulations, both models ignore
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the solid boundary particles in the fluid particle shear force calculations [62,158].

Regarding the pressure of the wall particles, these boundary models implement different for-
mulations. In the dynamic boundary condition, the continuity equation updates the density
of the wall particles (with an adjusted wall velocity), and the equation of state calculates
their pressure. Furthermore, the divergence of the velocity ignores the presence of ghost
particles in the fluid and wall particle continuity equations. In the generalized wall boundary
condition, the fluid particles’ pressure at the vicinity of the wall is smoothed on the wall
particles by including the gravity force and the wall’s accelerations [172]. Then, the inverse
form of the equation of state determines the wall’s particle number density. However, in both
methods, we directly assign the pressure of the nearest wall particle to the ghost particles.

5.4.4 Time integration scheme

We employ the second-order symplectic algorithm [11] for the temporal integration of the
equations. This algorithm updates the interaction forces, the pressure field, and the par-
ticles’ positions by dividing each time step, ∆t, into two calculation stages with ∆t/2 (see
Appendix 5.6). The viscosity of particles is recalculated at the beginning of each stage by
estimating the gradient of velocity and the magnitude of the strain rate tensor. The adopted
particle regularization techniques are implemented only in the second stage of the scheme
before calculating the new particle number density and pressure fields (Figure 5.24). Thus,
to determine the transport velocity and regulate the particles’ positions, ∆t is substituted
by ∆t/2 in Figure 5.4 and Eq. (5.14) for the CPS∗ and DPC techniques, respectively.

To determine the invariant time step of the integration scheme, ∆t, we employ the Courant–
Friedrichs–Lewy (CFL) stability condition as:

∆t = CCFL
l0
c0

(5.33)

in which CCFL is the CFL coefficient and the artificial sound speed, c0, is a problem-dependent
parameter determined based on the expected Mach number [47, 173]. One should note that
in the problems studied as the violent and impact flows, even with the turbulence viscosity
included in the shear stress calculations, the acoustic and the kinetic constraints remain
dominant for determining the time step of the explicit model [173]. The solution algorithm
is implemented on a parallel accelerated code run on the Graphical Processing Unit (GPU)
using Compute Unified Device Architecture (CUDA) parallel programming language based
on C++ (see Appendix 5.6 for more details).
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5.5 Numerical results and discussions

In this study, we simulate challenging violent free-surface flow benchmark cases to evaluate
the role of the proposed enhancements. The cases include the two-dimensional (2D) water
dam-break and three-dimensional (3D) sloshing and obstacle impact problems.

5.5.1 2D water dam-break

This benchmark case has been the focus of numerous particle methods (e.g., [25,75,164,174]).
Capturing these complex flows, dominated by water-water and water-solid impacts, requires
robust particle regularization techniques to eliminate possible numerical instabilities while
conserving the total momentum and energy of the system [3].
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Figure 5.5 Initial configuration and pressure contour of the 2D water dam-break based on
the experimental setup by Lobovský et al. [4]. The dash-dot line is the expected free surface
of the fluid flow filling the width of the tank at the final equilibrium state.

We set up the initial configuration of the dam break based on the physical model by Lobovský
et al. [4] (shown in Figure 5.5). With the initial height of the water column, H, and the initial
particle distance, l0, located on the Cartesian lattice, the spatial resolution is identified as
R = H/l0 (where in this study R = 60, 100, and 200, which correspond to 11,840, 27,696, and
95,312 total numbers of particles, respectively). We simulate the time evolution of the dam
break for 10 seconds and define the non-dimensional time as T = t

√
g/H. Based on the kinetic

energy pressure constraint (for specifying the artificial sound speed of the weakly compressible
model) and the maximum expected velocity, which is given as ‖v‖max = 2.0

√
gH, we set the

sound speed to 100 m/s, limiting the Mach number to 0.049 (see [175]). In all the cases, the
CCFL coefficient is equal to 0.5, except in the model without the regularization technique, in
which CCFL = 0.25. We employ the dynamic boundary condition to simulate the interaction
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forces between the fluid and the rigid walls. In the DPC scheme, the maximum and minimum
pressures of Eq. (5.15) are given as 2.3ρgH (based on the analytical solution discussed in [175])
and ρgl0, respectively. In the case of the standard PC method being implemented, we set
the constants of Eq. (5.12), ε = 0.5 and θ = 0.9. In this problem, we normalize the global
energies (Ep: the potential energy, Ek: the kinetic energy, Em: the mechanical energy, and
QPC : the total kinetic energy dissipated by the DPC technique, for which the formulations
are given in Appendix 5.6) by ∆EFin

m = E∞m − E0
m, in which E0

m is the initial mechanical
energy (equal to E0

p) and E∞m is the final mechanical energy of the system (equal to the final
expected potential energy with the water phase filling the width of the tank and reaching
the equilibrium state).

Concerning the short-term evolution of the flow (T < 8), we first validate the numerical (i.e.,
from the models with either the DPC or the CPS∗+DPC techniques or with no regularization
technique) versus the experimental results of [4]. Figure 5.6 compares the time history of
the local pressure signal at point S1 and the propagation of the wave on the horizontal
bed. To measure the local pressure, the pressure of the fluid particles inside the support
radius, set to 1.6l0 from the sensor, are linearly averaged every 0.004 s without kernel-
smoothing or any data-filtering (i.e., pS1 = ∑Ns

1 pj/Ns, as Ns is the number of fluid particles,
j, where ‖rj − rS1‖ ≤ 1.6l0). For both parameters, the results of the simulations followed the
same trends as the experimental measurements. Incompatibilities between the experimental
and numerical results originate from the weak compressibility of the flow, ignoring the air
phase, and the implemented solid boundary model. The numerical stability of the test case
without the regularization technique can be evaluated from Figure 5.7. In this model, the
particle-clustering becomes dominant with the progress of the impact events (i.e., as the
wave impacts the front wall at T ' 2.5, a plunging jet forms and impinges the free surface
at T ' 6.06). Numerical instability due to extreme inter-particle penetration terminated the
simulation at T ' 9.0 (as the unphysical inter-particle forces ejected the clustered particles
outside the predefined computational domain). Furthermore, as shown in the zoomed-in
sections of Figure 5.7, unphysical fluid fragmentations exist, especially in the flow regions
with highly dynamic deformations. Eliminating these numerical issues, which hinder long-
term simulations of violent flows and affect flow evolutions, requires a great emphasis on the
adoption of rigorous particle regularization techniques.



91

0

1

2

3

0 0.5 1 1.5 2 2.5
0

1

2

3

4

2 3 4 5 6 7
𝑇

𝑝
/𝜌
𝑔
𝐻

a
t 

S
1

𝑇

(𝑥
−
𝐵
)/
𝐻

Front wallExperiment

CPS∗+DPC

DPC

no regularization
(R=100)

Experiment

CPS∗+DPC

DPC

no regularization

(R=100)

0

3

6

2.5 2.75 3

Figure 5.6 Numerical results of the models (R = H/l0 = 100) with the CPS∗+DPC, DPC,
and without regularization techniques versus the experimental results of Lobovský et al. [4]:
the time history of averaged local water pressure, p, at S1 (left) and the wave propagation
(right).

Figure 5.7 The dam break problem without the particle regularization techniques (R = 200).
The dash-dot line is the expected free surface of the fluid flow filling the width of the tank
at the final equilibrium state.

In this part, we investigate the role of the proposed DPC regarding the stability and en-
ergy evolution of the system. Figure 5.8 depicts that both the DPC and PC techniques
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guarantee the long-term simulation of the dam break by resolving the numerical stabilities.
However, the model with the PC method still suffers from noisy pressure fields, which may
lead to inaccurate flow predictions. In contrast, the DPC technique effectively reduces the
high-frequency pressure fluctuations (specifically illustrated in the zoomed-in sections of Fig-
ure 5.8). Regarding the energy variations of the fluid phase, Figure 5.9 shows that both the
PC and DPC methods reached the final expected equilibrium state (i.e., ∆Ep/∆EFin

m = −1)
without any manipulation of the potential energy. The kinetic, potential, and mechanical
energies of these models followed almost identical patterns during the impact events (be-
tween T = 2.5 and 17.5), since their formulations did not affect the total linear momentum
of the system. Moreover, in comparison to the model without regularization (which is stable
till T ' 9.0), both the PC and DPC techniques represent similar energy profile evolutions.
However, the DPC dissipates the kinetic energy almost two times as much as the standard
PC technique. This confirms that the DPC ensures numerical stability without changing the
overall energy of the system, while acts as an efficient artificial viscosity formulated by the
pairwise and dynamic repulsive and collision terms. Furthermore, Figure 5.9 depicts that
with the higher spatial resolutions (R = 60, 100, and 200), the heat produced by the DPC,
i.e., QPC , reduces which confirms the numerical convergence of the model (especially during
the violent dam break flow).
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Figure 5.9 Time history of the kinetic, ∆Ek, potential, ∆Ep, and mechanical, ∆Em, energies
of the dam break test case with the DPC vs PC methods (left graph). The total kinetic
energy dissipation by the PC techniques (accumulated over time) is denoted as QPC . The
right graph represents the particle convergence of the 2D dam-break simulation as the total
energy dissipation reduces with increasing the spatial resolution, R = H/l0.

In the next step, we study the effectiveness of the corrected particle-shifting algorithms in
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Figure 5.8 Time evolution of the dam break problem with the standard PC (left column)
and the DPC (right column) techniques (R = 200). The color contour represents the non-
dimensional pressure field at T = t

√
g/H = 3.28, 5.70, 6.91, 9.83, and 17.47 (from the top

row to the bottom row, respectively). The dash-dot line is the expected free surface of the
fluid flow filling the width of the tank at the final equilibrium state.
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capturing the flow and energy evolutions. As shown in the right column of Figure 5.10, the
CPS∗+DPC algorithm simulates the evolution of the dam break without unphysical volume
expansion; however, the same model without the additional δv-terms expands the volume of
the fluid phase, particularly when T & 8.0 (Figure 5.10, left column). To further clarify the
role of the δv̂-terms, Figure 5.11 compares the energy profiles of the CPS∗+DPC method
(with and without the δv̂-terms) versus the original CPS+PC [123]. It shows that the
continuous application of particle-shifting with the original CPS+PC increases the potential
energy of the system considerably after T & 8.0. Even limiting the magnitude of the shifting
vector (by Eq. (5.28)) in the original CPS+PC does not reduce the accumulation of errors,
which leads to inaccurate estimation of the mechanical energy in a long-term simulation.
The new CPS scheme without the δv̂-terms decreases these errors by canceling the shifting
vectors of the expanded particles (i.e., i ∈ X → δri = 0). The consistent CPS∗+DPC
method completely dissipates the excess energy inserted into the system noting that the
potential energy converges to the final expected value (i.e., no volume expansion occurs).
Moreover, by increasing the spatial resolution, the CPS∗+DPC formulations represent slightly
fewer errors in predicting the final potential energy. Nevertheless, as shown in Figure 5.11,
the kinetic energy is noticeably dissipated with the CPS∗+DPC technique (between T =
6.0 and 17.5). This shows that although implementation of the δv̂-terms is required for
long-term simulations (to avoid unphysical volume expansion), these terms can affect the
kinetic energy and therefore the mechanical behavior of the 2D dam-break flow during impact
events. We should also note that the additional terms might only be essential for the weakly
compressible models and can be neglected for a fully incompressible model (subjected to
further investigations).
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Figure 5.10 Time evolution of the dam break problem simulated by the CPS∗+DPC technique
with and without the δv̂-terms (represented in the right and left columns, respectively). The
resolution is set to R = 200 and the expanded regions, i.e., i ∈ X, are identified with the
yellow particles. The dash-dot line is the expected free surface of the fluid flow filling the
width of the tank at the final equilibrium state.
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Figure 5.11 The evolution of energy components (Ep: the potential energy (top left), Ek:
the kinetic energy (top right), and Em: the mechanical energy (bottom left) (defined by
Eq. (5.37)) of the 2D dam-break problem with different CPS techniques and resolutions.
The bottom right graph shows the convergence of the potential energy to the expected final
state (i.e., ∆Ep/∆EFin

m = −1) by increasing the spatial resolution, R = H/l0.

Figure 5.12 demonstrates that the EWC-MPS with the proposed stabilization techniques
ensures the long-term-simulations of these complex flows and represents noise-free pressure
fields. However, we observe that the CPS∗+DPC method slightly alters the flow evolution
(particularly at T = 8.98) by excessive dissipation of the kinetic and potential energies (also
shown in Figure 5.11). Meanwhile, the model with the DPC technique predicts the flow
and pressure evolutions without the numerical instabilities or affecting the evolutions of the
global energies. One should also note that in the CPS∗+DPC technique although the PS
vector is neglected for the splashed particles and where (αi, βi) = (0, 0) (through Eqs. (5.25)
& (5.27)), the DPC technique is effectively ensuring the numerical stability in these regions
(e.g., see the corners of the fluid domain of the dam-break problem in Figure 5.3).
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Figure 5.12 Time evolution of the dam break problem with the CPS∗+DPC (left column)
and the DPC (right column) techniques (R = 200). The color contour represents the non-
dimensional pressure field. The dash-dot line is the expected free surface of the fluid flow
filling the width of the tank at the final equilibrium state.
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5.5.2 3D water sloshing in a rectangular reservoir

Here we simulate 3D water sloshing in a rectangular reservoir that moves with a harmonic
motion in the longitudinal direction. Under the gravitational force and with this motion’s
frequency being close to the natural frequency of water, a violent flow consisting of bore
breaks and impact events forms within the tank [168]. This highly non-linear free-surface
flow has been modeled by particle methods to show their effectiveness in dealing with such
complex features (e.g., [5, 55,164,168]).

We set up the numerical model based on the physical model by Rafiee et al. [5]. A horizontal
channel with dimensions L×D×W (in the x-, y-, and z-directions, where L = 1.3, D = 0.9,
andW = 0.1 m) is partially filled with water with an initial height ofH = 0.2D (Figure 5.13).
To validate the results with the experimental measurements, we extract the local pressure
(every 0.004 seconds) on the side-wall of the channel at points P1, P2, and P3 as identified in
Figure 5.13 (with the same formulation used in the 2D dam-break test case). The numerical
results are represented for 8 seconds of the simulations. The frequency, f , and amplitude, A0,
of the harmonic motion are set to 0.496 s−1 and 0.1 m, respectively. Sinusoidal excitation
updates the positions and velocities of the solid boundary particles (i ∈ Ωs) in the x-direction
as ri = r0

i +{A0 sin (2πf0t) , 0, 0} and vi = {2πA0f0 cos (2πf0t) , 0, 0} at the midpoint and the
end of each time step. Furthermore, we assign the initial hydrostatic pressure and the velocity
as equal to v0

i = {2πA0f0, 0, 0} for all the particles at t = 0. In this problem, we implement
the generalized wall boundary condition from Adami et al. [172], which includes the gravity
force, g, and the acceleration of the rigid walls, awi =

{
−4A0 (πf0)2 sin (2πf0t) , 0, 0

}
, in the

pressure calculation for the wall particles. We define the spatial resolution of the simulations
as R = L/l0 set to 100, 200 and 260, which corresponds to the total numbers of 90,972,
365,464 and 661,952 particles located on the cubic lattice. For all the test cases CCFL = 0.25

Table 5.1 Calculation time per iteration (i.e., titer. = Total calculation time/Total number of
time steps) of the 2D water dam-break problem with different spatial resolutions, R. The
last row of the table represents the rate of increase in the calculation time obtained by the
CPS∗+DPC versus the DPC technique. The GPU accelerated code is run on an NVIDIA
V100 Volta GPU device.

R = H/l0 60 100 200
Number of fluid particles, Ωf 7,200 20,000 80,000

Calculation time per iteration, titer. (sec.) DPC 7.42E-03 8.49E-03 2.04E-02
CPS∗+DPC 8.69E-03 1.01E-02 2.41E-02

[titer.(CPS∗ + DPC)/titer.(DPC)− 1]× 100 17.11 18.96 18.13
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and c0 = 50 m/s, the maximum expected velocity, given as ‖v‖max = 2.0
√
gH, limits the

Mach number to 0.053 [175]. The maximum and minimum pressures of the DPC technique
(in Eq. (5.15)) are determined as 15 kPa (according to the experimental measurements in [5])
and ρgl0, respectively.

Figure 5.13 Initial configuration and pressure field of the 3D water sloshing problem. The
locations of the three pressure sensors (P1, P2, and P3, which in the physical model by
Rafiee et al. [5] correspond to sensors P180, P078, and P136, respectively) are specified on
the side view of the reservoir. Section A-A and Section B-B, identified on the top view of
the reservoir, are used to represent the numerical results.

Figure 5.14 plots the numerical local pressure at points P1, P2, and P3 versus the experi-
mental results of [5]. The time evolutions of the pressure profiles with either the DPC or the
CPS∗+DPC techniques are in good agreement with those from the experimental measure-
ments. In the physical model, the air pockets entrapped as the flow impacts the wall avoid
a sudden increase in local pressure; however, the single-phase numerical models, by ignoring
the air phase, neglect the cushioning effects [5, 164, 168]. This issue results in a discrepancy
between the numerical and experimental measurements, manifested as overestimations of
the numerical pressure when the wave reaches the sidewall at t = 2.5, 4.5, and 6.5 seconds
(Figure 5.14).
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Figure 5.15 illustrates the flow evolution and pressure fields, comparing the simulations with
the CPS∗+DPC and DPC where R = 260. Both models show identical flow evolutions
while ensuring long-term numerical stability by resolving the particle-clustering problem.
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Moreover, with the modified diffusive term, the simulations represent smooth pressure fields.
In Figure 5.16, the new CPS∗+DPC technique with the implemented δv̂-terms preserves
the overall volume of the fluid phase (shown in the right column); nevertheless, the same
model without the additional δv̂-terms leads to unphysical volume expansion after a few
cycles (see left column). Figure 5.17 represents the new dynamic particle classification in
the 3D configuration of the fluid flow. With this algorithm, the CPS∗+DPC technique deals
dynamically with the extreme flow curvatures (including the corners) and the intersection of
the particles detected as the free-surface boundary and the wall boundary particles.

The temporal evolutions of the global energies of the system are illustrated in Figure 5.18,
where the non-dimensional time is given as T = t

√
g/L. Here, the components of energy,

i.e., ∆E and QPC (see Appendix 5.6), are normalized by the initial mechanical energy, E0
m =

E0
p + E0

k . We observe that CPS∗+DPC without the δv̂-terms increases the potential energy
over time (also shown in the left column of Figure 5.16). On the other hand, implementing
the δv̂-terms dissipates the excessive potential energy and predicts less kinetic energy versus
the DPC technique. Furthermore, the results show that with a higher spatial resolution
(R = 200 and 260), the heat produced by the DPC technique, i.e., QPC , decreases.

Moreover, Table 5.2 represents the calculation time per iteration (titer.) of the 3D simulations
with the three spatial resolutions using an NVIDIA V100 Volta GPU device for solving
the main temporal loop of the algorithm. Comparing the calculation time per iteration
demonstrates that the CPS∗+DPC algorithm increases the calculation cost by ∼20%. This
result highlights that the DPC technique while being as effective as the CPS∗+DPC technique
with less energy dissipation is simple to numerically implement since does not involve the
time-consuming conditional operations of the CPS∗+DPC algorithm (required for the particle
classifications and approximating the additional terms).

Table 5.2 Calculation time per iteration (i.e., titer. = Total calculation time/Total number of
time steps) of the 3D water sloshing problem with different spatial resolutions, R. The last
row of the table represents the rate of increase of the calculation time with the CPS∗+DPC
versus the DPC technique. The GPU accelerated code is run on an NVIDIA V100 Volta
GPU device.

R = L/l0 100 200 260
Number of fluid particles, Ωf 11,700 81,000 187,200

Calculation time per iteration, titer. (sec.) DPC 5.83E-02 1.33E-01 3.67E-01
CPS∗+DPC 6.68E-02 1.66E-01 4.47E-01

[titer.(CPS∗ + DPC)/titer.(DPC)− 1]× 100 14.58 24.81 21.79
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Figure 5.15 Flow evolutions and the pressure field of the water sloshing problem (at Section
A-A) simulated by the model with the CPS∗+DPC (left column) and the DPC (right column)
techniques, where R = 260.
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Figure 5.16 Time evolution of the 3D water sloshing problem (at Section A-A) using the
CPS∗+DPC techniques with and without the additional δv̂-terms (represented in the right
and the left columns, respectively). The resolution is set to R = 200, and the expanded
regions, i.e., i ∈ X, are identified with the yellow particles.
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Figure 5.17 Particle classification and normal vectors of the 3D sloshing problem at Section
A-A and Section B-B with the CPS∗+DPC technique and R = 200.

5.5.3 3D water dam-break against a rigid obstacle

In this test case, under the gravitational force, a column of water collapses and impacts a
rigid cuboid obstacle. Particle methods have widely simulated this problem as a benchmark
case for studying violent flows and fluid-structure interactions (e.g., [62, 167,168,176–178]).

We employ the experimental model from Kleefsman et al. [6] to set up and validate the
numerical simulations. Figure 5.19 illustrates the initial configuration of the problem, the
location of points P1 and P2, and the vertical lines H1 and H2 used for probing the local
pressure and the depth of the water, respectively. With the spatial resolution given as
R = H/l0 = 55, the simulation contains 1,044,444 particles, including the fluid and solid
boundary particles located on the cubical lattice. In this benchmark case, the generalized
wall boundary model from Adami et al. [172] simulates the interaction forces between the fluid
and the rigid bodies. The CFL coefficient and the Mach number are equal to 0.5 and 0.046,
respectively, with the sound speed set to 100 m/s and ‖v‖max = 2.0

√
gH. Like the dam-

break test case, the maximum and minimum background pressures of the DPC formulation
are determined as 2.3ρgH and ρgl0, respectively.

The numerical results of the proposed model with either the DPC or CPS∗+DPC represent
trends almost similar to the experimental measurements (Figure 5.20). The depth of water
at the H1 and H2 lines (extracted every 0.05 seconds for three spatial resolutions, R =
13.75, 27.5, and 55) shows that the flow evolutions are comparable with the experimental
profiles. However, the absence of the air phase and its cushioning effects in the numerical
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δv̂-terms) techniques, where R = 200. The non-dimensional time, T , is given as t

√
g/L, and

the energy variations, ∆E = Et−E0, are normalized by the initial mechanical energy of the
system, E0

m = E0
p + E0

k .
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Figure 5.19 Initial configuration of the 3D water dam-break against the rigid obstacle, based
on the physical model by Kleefsman et al. [6]. The pressure sensors, P1 and P2, are located
on the side wall of the obstacle, and the vertical water heights in the y-direction at H1 and
H2 are probed. Section A-A, shown on the top view of the channel, is used to represent the
numerical results.

simulation introduces some discrepancies between the measurements, particularly during the
main impact events (i.e., 1.75 . T = t

√
g/H . 8.5). This issue results in oscillatory impact

pressures at points P1 and P2 (extracted every 0.004 seconds) and leads to a delay in the
second wave that impacts the obstacle at T ≈ 20.0. These incompatibilities between the
numerical and experimental results are also noticeable in the measurements of other single-
phase particle methods, e.g., [176, 177]. However, the results confirm that with increasing
the spatial resolution the pressure fluctuations considerably decrease showing the numerical
convergence of the 3D model (Figure 5.20).

Figure 5.21 compares the flow evolution with the DPC versus the CPS∗+PC techniques. We
observe that the proposed EWC-MPS method, by resolving the numerical instabilities, can
capture the complex flow deformations of this benchmark case. As the wave impacts at the
rigid step, the flow splashes up and two jets form on the horizontal bed and impact the vertical
wall of the reservoir; the flow, while overtopping the obstacle, collides with the returning jets
and forms plunging waves [167,168]. Furthermore, Figure 5.22 shows that the diffusive model
represents regular pressure fields at Section A-A during the impact events. The evolution
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√
g/H and R = H/l0, respectively.

of the energy components of the system, normalized by ∆EFin
m = E∞m − E0

m, is plotted
in Figure 5.23. Both particle regularization techniques introduce less energy dissipation by
increasing the spatial resolution, confirming the numerical convergence of the 3D simulations.
Also, similar to the previous test case, the DPC technique is slightly less dissipative than
the CPS∗+DPC formulations. Overall, the evolution of the global energies obtained by both
techniques is almost identical (with R = 55), and they eventually reach the expected potential
energy at T ≈ 25 (i.e., ∆Ep/∆EFin

m = −1).
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Figure 5.21 Flow evolution and particles’ velocity magnitude for the 3D water dam-break
with the rigid obstacle simulated by the model with the CPS∗+DPC (left column) and DPC
(right column) techniques, where T = t

√
g/H and R = 55.
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Figure 5.22 Non-dimensional pressure field of the 3D water dam-break with the rigid obstacle
(at Section A-A) during the main impact events simulated by the model with the CPS∗+DPC
(left column) and DPC (right column) techniques, where T = t

√
g/H and R = 55.
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Figure 5.23 Temporal changes of the energy components of the 3D water dam-break with the
obstacle: The top left and right graphs represent the numerical convergence of the 3D model
with the DPC and CPS∗+DPC techniques (with various spatial resolutions), respectively.
The bottom graph compares the energy evolutions with DPC versus CPS∗+DPC.
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5.6 Conclusion

We developed and validated the three-dimensional EWC-MPS method for simulating violent
free-surface flows. In a conservative framework of governing equations, we introduced several
enhancement techniques that are shown to be essential for dealing with fluid-fluid and fluid-
solid impact events. To include the turbulence shear force, we adopted the SPS scheme
with a higher-order gradient operator to estimate the magnitude of the strain rate tensor.
Furthermore, we employed a convergent form of the diffusive term in the context of the MPS
formulations to reduce high-frequency pressure noises and kernel truncation errors at the
boundaries.

We evaluated and compared the impact of the two particle regularization techniques, particle
shifting (PS) and pairwise particle collisions (PC), on the accuracy, stability, and convergence
of the model. We found that the corrected-PS (in its original form proposed in [123] as
CPS+PC) is more effective in reducing the unphysical pressure noises but has a problem with
volume conservation in simulating violent free-surface flows (i.e., it expands the volume and
deviates the system’s potential energy). To resolve the issues with these two regularization
techniques, we proposed a dynamic pairwise particle collision and a consistent form of the
corrected particle-shifting techniques, denoted as DPC and CPS∗+DPC, respectively. The
new DPC technique benefits from a dynamic formulation that deals with different states
of inter-particle penetration. Unlike the particle-shifting approaches, the DPC is simple
to numerically implement, as it does not require any particle classification or free-surface
detection. The CPS∗+DPC technique consists of a new particle classification algorithm and
a modified shifting vector coupled with additional δv̂-terms. Moreover, this hybrid approach
implements the DPC technique among free-surface and splashed particles in order to avoid
unphysical fluid fragmentations.

The overall results confirm the effectiveness and necessity of adopting the proposed regu-
larization techniques for dealing with extreme flow deformations of free-surface violent flows
where the potential energy is dominant, and several impact events occur. Both regular-
ization techniques represent accurate flow evolutions of the benchmark cases and eliminate
particle-clustering over the fluid domain. Although these techniques require some parameter
adjustments, the robustness of both implementations is well demonstrated. The DPC tech-
nique, while ensuring numerical stability, results in a smoother pressure field in comparison
to the standard PC method. We have shown that the new particle classification algorithm
can dynamically detect large domain curvatures and expanded regions required for adjusting
the direction and/or magnitude of the particle-shifting vector. The proposed CPS∗+DPC
technique predicts the final expected potential energy; however, the same model without the
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δv̂-terms still leads to a volume expansion manifested as an increase in the global potential
energy of the violent free-surface flow. In all three benchmark cases, the evolution of the en-
ergy components showed that the DPC technique is a low-dissipative approach and reduces
the calculation costs of the 2D and 3D simulations compared to the CPS∗+DPC algorithm
that requires the particle classifications and approximating the δv̂-terms.

The EWC-MPS method developed and validated in this study can be extended to multiphase
flow problems with high-density ratios and complex mechanical behaviors. The robust regu-
larization techniques, along with the modified diffusive term which act independently from the
density discontinuity and empirical coefficients, make the method a powerful computational
tool for large-scale hydro-environmental and industrial applications. It is also worthwhile to
investigate the role of the current developments within the framework of fully incompressible
MPS and SPH methods. To do so, further enhancements may include implementing strate-
gies for optimizing the parallel programming (e.g., [177,179]), acquiring advanced turbulence
formulations (e.g., [180]), and consistent solid boundary models (e.g., [174,181]).

Appendix A. The symplectic scheme with the diffusive terms

The second-order symplectic time integration scheme divides the time step into two stages
of calculation [11]. In the first stage, the position, velocity, and particle number density of
the particles are updated at the midpoint, t+ ∆t/2, as follows:



rt+∆t/2
i = rti + ∆t

2 vti

vt+∆t/2
i = vti + ∆t

2

[
− 1
ρi
〈∇p〉i + Fi + 1

ρi
〈∇.τ 〉i

]t

n
t+∆t/2
i = nti + nti

∆t
2 [−〈∇.v〉i +Dm

i ]t

(5.34)

with the midpoint density, the equation of state (5.3) gives the midpoint pressure, pt+∆t/2
i . In

the second stage, with the midpoint values, the right-hand side of the momentum equation
estimates the new velocity, and then the new position of the particles is updated at t + ∆t,
according to: 

vt+∆t
i = vti + ∆t

[
− 1
ρi
〈∇p〉i + Fi + 1

ρi
〈∇.τ 〉i

]t+∆t/2

rt+∆t
i = r∆t/2

i + ∆t
2 vt+∆t

i .

(5.35)



113

Thus, the scheme updates the particle number density (and consequently the pressure, pt+∆t
i )

as follows:
nt+∆t
i = n

t+∆t/2
i + n

t+∆t/2
i

∆t
2
[
−〈∇.v〉t+∆t

i +D
mt+∆t/2
i

]
(5.36)

in which the particle number density at the mid-point is used in the 〈∇.v〉t+∆t
i term.

The solution algorithm is implemented on a GPU accelerated code (Figure 5.24). The initial-
ization of the simulation and saving data for the post-processing jobs run on the Computer
Processing Unit (CPU) as the host part of the code. Nevertheless, the main temporal loop,
including the neighbor search algorithm and the particle regularization techniques, run on
the Graphical Processing Unit (GPU) as the device section. The subroutines of this loop are
written with the Compute Unified Device Architecture (CUDA) parallel programming lan-
guage based on C++. This allows the numerical model to use the massive parallelization on
the GPU to process a large number of particles simultaneously [177]. Figure 5.24 summarizes
the numerical implementation of the solution algorithm.
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Figure 5.24 Flowchart of the solution algorithm based on the symplectic time integration
scheme. The main temporal loop of the calculation is implemented on a GPU device with
CUDA C++ parallel programming.

Appendix B. The energy components of the system

By plotting the time evolution of the global energies of the system, we investigate the effect
of the particle regularization techniques on the overall mechanical behavior of the system.
For this purpose, we calculate the global kinetic energy, Ek, the global potential energy, Ep,
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and the global mechanical energy, Em, at each time step, t, as follows:

Et
k = ρld0

2
∑
i∈Ωf
‖v‖2

i , Et
p = −ρld0

∑
i∈Ωf

g.ri, Et
m = Et

k + Et
p, (5.37)

where ρld0 is the constant mass of the fluid particles. The variation of the energies with
respect to their initial values, E0, is given as ∆E = Et − E0. Furthermore, the total kinetic
energy dissipated by the particle collision technique during the simulation time is calculated
by:

Qt
PC =

t∑
t=0

(E ′k − Ek)
t (5.38)

in which Ek and E ′k are the global kinetic energies before and after updating the velocity of
the particles at each time step, respectively.
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6.1 Abstract

This paper proposes and validates two new particle regularization techniques for the Smoothed
Particle Hydrodynamics (SPH) numerical method to improve its stability and accuracy for
free surface flow simulations. We introduce a general form of the Dynamic pair-wise Particle
Collision (DPC) regularization technique that we recently proposed in the context of the
Moving Particle Semi-implicit (MPS) method in [124]. The DPC coupled with the standard
Particle Shifting (PS) technique has given rise to a hybrid approach that we propose to alle-
viate particle clustering issues in the free-surface and splashed regions. We validate the pro-
posed techniques to four benchmark cases: (i) the oscillating droplet, (ii) the two-dimensional
water dam-break, (iii) the two-dimensional water sloshing, and (iv) the three-dimensional wa-
ter dam break against a rigid obstacle. We evaluate their impacts on the stability, accuracy
and the conservation properties of the test cases. The qualitative and quantitative analysis of
the results shows that despite its simplicity, the DPC technique is more effective in reducing
the spatial disorder and capturing the impact events compared with the standard and the
newly improved hybrid PS methods. Although the hybrid PS technique improves particle
distribution at the free surface, it still suffers from the inconsistent implementation of the PS
equation which unphysically increases the fluid volume and violates the conservation of po-
tential energy in the long-term simulations. Overall, the conservative DPC algorithm proves
to be a simple and efficient alternative regularization technique for simulating such highly
dynamic free-surface flows. (Figure 6.1)
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Figure 6.1 The graphical abstract

6.2 Introduction

Continuum-based mesh-free particle methods, such as the Smoothed Particle Hydrodynam-
ics (SPH) [26] and Moving Particle Semi-implicit (MPS) [25] methods, have remarkable
capabilities for simulating highly dynamic free-surface and interfacial flows (e.g., for solving
multiphysics problems in industry [39,40] and in hydro-environmental fields [27, 126]). Nev-
ertheless, due to their Lagrangian nature, they are prone to non-uniform particle distribution
and unphysical spurious pressure noises that compromise their accuracy and stability. To
deal with these issues some of the past studies have proposed higher-order approximation
operators (e.g., [126, 137]) or added the numerical diffusion terms to the continuity [54, 123]
and momentum [61] equations. But even with these improvements, the particle methods can
still suffer from particle distribution anomalies. Therefore, another group of enhancement
techniques works on the regularization of the particle distribution, among which, the particle
shifting (PS) technique [50, 55], the pair-wise particle collision (PC) method [56, 75], and
the transport-velocity formulation [144,163] are common approaches developed for SPH and
MPS methods.

In the SPH framework, Xu et al. [55] proposed the PS method, which moves particles to
the area less populated, avoiding therefore inter-particle penetrations. Lind et al. [50] and
Skillen et al. [73] adapted PS to free-surface flows involving body-water impacts. Further,
Khayyer et al. [74] proposed the optimized PS method which cancels the normal component
of PS at the free-surface and its neighborhood. The pair-wise particle collision technique,
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which is based on the collision of physical solid or gas particles, was first time formulated
within the context of the incompressible MPS by Lee et al. [56] (for free-surface flows) and
for the weakly compressible MPS by Shakibaeinia and Jin [75] (for multiphase flows).

Without special treatments of free-surface particles and considering the effects of the shifting
transport-velocity, the PS algorithms (particularly implemented in the weakly compressible
models) have shown to affect the mechanical behavior of the complex flows where the po-
tential energy is dominant and several breaking events occur [3, 64]. By applying PS, the
potential energy of the system increases as observed by unphysical volume expansions dis-
cussed in [124] and [64]. In SPH, Sun et al. [3] derived additional diffusive terms (added
to the continuity and momentum equations) and implemented restricted boundary condi-
tions to resolve the excessive potential energy due to continuous activation of PS. In MPS,
Jandaghian et al. [124] proposed a consistent form of a corrected PS method by including
the additional transport-velocity terms and implementing special boundary treatments (for
large flow curvatures and by excluding the solid boundary particles). Sun et al. [3] and
Jandaghian et al. [124] showed that their developed PS algorithms, applied to weakly com-
pressible particles methods, renders the latter free from unphysical volume expansions and
numerical results divergence.

More recently, Lyu and Sun [182] enhanced the SPH method by introducing a corrective
cohesive force to tackle the volume-non-conservative issue of the original shifting equation.
Antuono et al. [183] considered the consistent form of PS within an arbitrary Lagrangian-
Eulerian SPH framework (presented by Oger et al. [155]) improving the stability of the
developed model by adopting artificial diffusion terms. Antuono et al. [184] coupled a Large-
Eddy Simulation SPH (LES-SPH) method with the consistent PS and the Tensile Instability
Control (TIC) scheme (proposed by Sun et al. [85]) for simulating high Reynolds number
problems. Also, Lyu et al. [185] appended the PS formulation to the TIC method to surmount
the tensile instability issue due to strong negative pressures in fluid-structure interactions
with SPH. Marrone et al. [186] evaluated the dissipation mechanism in sloshing problems
through the developed LES-SPH model with the enhanced particle stabilization techniques.
Other research works, e.g., [187–189], have successfully validated SPH models supplied with
PS and artificial diffusion terms to study violent sloshing problems and dam-breaking flows
with complex breaking waves. Further, Wen et al. [190] adopted the multiphase particle
collision model to ensure numerical stability of their developed incompressible MPS method
for simulating violent multiphase flows.

Jandaghian et al. [124] developed a new version of the particle collision technique within
their enhanced weakly compressible MPS method for simulating violent free-surface flows.
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They validated that the proposed algorithm, denoted as the Dynamic pair-wise Particle
Collision (DPC) technique, captures the impact events of such complex flows and eliminates
particle pairing instability over the fluid domain. Moreover, they confirmed that DPC is a
simple technique characterized by low-dissipation with cheap computation costs and is more
effective and efficient than the consistent form of PS. This technique employs a dynamic pair-
wise repulsive force and a variable coefficient of restitution for the collision term for dealing
with different conditions of inter-particle penetrations. They showed that for the case of
MPS, unlike the widely used Particle Shifting (PS) method, the DPC transport-velocity
equation conserves the linear momentum of the system. Moreover, the DPC technique is
more straightforward as it is free from the complexities of interface treatments.

This paper aims at developing the DPS technique for the weakly compressible SPH method
to demonstrate its role in the accuracy and stability of the highly dynamic free-surface
flow modeling. It also represents and evaluates a hybrid PS-DPC technique. We re-derive
the general form of the DPC algorithm in the SPH framework for multiphysics problems
(Section 8.4.3). We append DPC to the standard form of the PS equation (as a hybrid
technique) to resolve the particle clustering issue present on the free-surface and external
particles while exempting the model from complex free-surface treatments (Section 6.3.2).
We implement these techniques in the GPU-accelerated subroutines of the open-source code
DualSPHysics (see [67] and [179]). We simulate four benchmark cases: (i) the oscillating
droplet under a conservative force field, (ii) the two-dimensional (2D) water dam-break, (iii)
the 2D water sloshing in a tank, and (iv) the three-dimensional (3D) water dam break against
a rigid obstacle (Section 6.4). By qualitative and quantitative validations, we evaluate the
convergence and consistency of SPH with the DPC technique compared to the existing and
newly developed PS algorithms.

6.3 SPH methodology

In SPH, the Lagrangian form of the Navier-Stokes equations represent the physical laws of
the fluid flows [35]. The numerical method discretizes the governing equations over the entire
computational domain, Ω, into moving particles (or simply particles) categorized as the fluid
particles, Ωf , and the solid boundary particles, Ωb (i.e., Ω = Ωf ∪ Ωb). The approximation
operator, 〈�〉, forms the continuity and momentum equations, respectively, to:

Dρi
Dt = −ρi〈∇·v〉i (6.1)
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and
ρi

Dvi
Dt = −〈∇p〉i + 〈∇· τ〉i + ρiFi, (6.2)

in which the material time derivative, D(�)/Dt, updates the density, ρi, and velocity, vi, of
the generic particle, i ∈ Ωf . In the momentum equation (6.2), the pressure, the total shear
stress tensor, and the body force per unit volume, are denoted as pi, τi, and ρiFi respectively.
The fluid particle carries the material and flow properties as its local position, ri, moves by

Dri
Dt = vi. (6.3)

Considering the fluid phase as a weakly compressible and barotropic fluid, the equation of
state,

pi = B0

((
ρi
ρ0

)γ
− 1

)
, (6.4)

explicitly updates pi where the fluid bulk modulus is B0 = c2
sρ0/γ. The reference density

of the fluid and the polytropic index are denoted as ρ0 and γ = 7, respectively. With
the numerical speed of sound, cs, being much greater than the maximum expected velocity,
‖v‖max, this model restricts the density variations, e.g., with cs > 10‖v‖max, the Mach
number, Ma 6 0.1, and the density variation would be limited to less than %1.

In the variationally consistent framework, the SPH formulation estimates the divergence of
velocity, 〈∇·v〉i, and the gradient of pressure, 〈∇p〉i, terms as follows [179]:


〈∇·v〉i =

∑
j

mj

ρj
vji· ∇iWij

〈∇p〉i =
∑
j

mj

ρj
(pi + pj)∇iWij

(6.5)

in which Wij = W (rij , kh) is the smoothing kernel function, mi denotes the constant mass of
the particle, and (�)ij = (�)i−(�)j. The neighbor particle, j ∈ Ω, is within the support domain
of W with the influence radius of kh, i.e., the inter-particle distance, rij = ‖ri − rj‖ ≤ kh

(where k is a positive real number and the smoothing length, h = 2dp, dp being the ini-
tial particle distance). The gradient of kernel, ∇iWij = (rij/rij)(∂Wij/∂rij) noting that
∂Wij/∂rij ≤ 0 [35,42]. The shear force in (6.2), i.e., 〈∇· τ〉i, includes the momentum dissipa-
tion due to the laminar flow regime and the turbulence effects. Adopting the Laplacian and
the variationally consistent approximation operators, respectively, for the laminar viscosity



121

and the turbulence dissipation terms, gives [67,179]:

〈∇ · τ〉i =
∑
j

mj
4ρiν0rij · ∇iWij

(ρi + ρj)(r2
ij + η2)vij +

∑
j

mj

ρj

(
τ∗i + τ∗j

)
· ∇iWij . (6.6)

in which ν0 is the reference kinematic viscosity of the fluid and η = 0.01h is a small value
added to avoid the singularity issue. The large eddy simulation sub-particle scale model
(SPS), using the Favre averaging for the weakly compressible model, determines the turbu-
lence stress tensor, τ∗i , as follows [37,191]:

τ∗i = 2νtiρi
(

Si −
1
3tr(Si)I

)
− 2

3ρiCI∆
2|Si|2I (6.7)

in which Si is the strain rate tensor, I is the identity matrix, νti = (Cs∆)2|Si| is the eddy
viscosity, and CI = 0.00066. The Smagorinsky coefficient, Cs = 0.12, and the filter width,
∆ (which is as a constant proportional to dp) determine the mixing length-scale of the SPS
turbulence model. The magnitude of the strain rate tensor, denoted as |Si|, reads

√
2Sαβi Sαβi

(in Einstein notation where Sαβi is an element of Si considering α and β as the coordinate
directions).

Appending an artificial density diffusion term to the right-hand side of the continuity equation
(6.1) has been an effective and essential solution (see the δ-SPH method of Molteni and
Colagrossi [54] and the enhanced MPS method of Jandaghian and Shakibaeinia [123]) to
eliminate high-frequency pressure noises of the weakly compressible models. In the weakly
compressible SPH formulation, the general form of the density diffusion term, Di, is written
as follows:

Di = δhcs
∑
j∈Ωf

mj

ρj
ψij · ∇iWij (6.8)

where the preset non-dimensional coefficient, δ, adjusts the magnitude of this numerical
correction. The standard form of the density diffusion term is given by [54]:

ψij = 2(ρj − ρi)
rji

(r2
ij + η2) . (6.9)

This term causes the density field close to the boundaries to diverge from the hydrostatic
solution [66, 126]. To improve the pressure estimation at the vicinity of the solid boundary,
Fourtakas et al. [69], proposed a new form of (6.9) by replacing the total density with the
dynamic density as:

ψij = 2(ρji − ρHij ) rji

(r2
ij + η2) . (6.10)
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The hydrostatic pressure difference, pHij = ρ0g· rji , gives the hydrostatic density difference,
ρHij , through the inverse form of the equation of state as [69]:

ρHij = ρ0

 γ

√√√√1 +
pHij
B0
− 1

 , (6.11)

with g being the gravitational acceleration set to {0, 0,−g = −9.81m.s−2}T .

To solve the governing equations (6.1-6.4), we adopt in this study the second-order symplectic
scheme in which the explicit model dynamically updates the time steps of calculation, ∆t,
based on the Courant–Friedrichs–Lewy (CFL) stability conditions (see [179]). We employ the
modified Dynamic Boundary Condition (mDBC) method implemented by English et al. [192]
for solid boundaries.

6.3.1 Dynamic Particle Collision (DPC) technique for SPH

The pair-wise particle collision method (originally implemented in MPS by Lee et al. [56]
and Shakibaeinia and Jin [75]) regularizes the particle distribution based on the momentum
transfer between a pair of colliding particles. Jandaghian et al. [124] proposed a new version
of this technique, denoted as the Dynamic pair-wise Particle Collision (DPC) technique, by
adopting dynamic form of the collision and repulsive terms to improve the pressure field.
Here, we represent the DPC formulation in the framework of the weakly compressible SPH
method. Considering mass, mi, and volume, Vi = mi/ρi, of particles, the general form of the
DPC transport-velocity equation, vDPC

i , reads:

δvDPC
i =

∑
j∈Ωf

κij
2mj

mi +mj
vcoll

ij + ∆t
ρi

∑
j∈Ωf

φij
2Vj

Vi + Vj

pbij
r2

ij + η2 rij , (6.12)

in which

(vcoll
ij , φij) =


( vij ·rij
r2

ij+η2 rji , 0), for vij · rij < 0

(0, 1) Otherwise
, (6.13)

and in single fluid phase simulations mi = mj. The DPC transport-velocity equation consists
of the collision and repulsive terms (i.e., the first and second terms at its right-hand side,
respectively). It deals with different states of inter-particle penetration and uses a variable
coefficient of restitution, κij , and the dynamic background pressure, pbij [124] (see Figure
6.2). When a pair of particles overlap and approach each other (i.e., when rij < dp and
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vij · rij < 0) the collision term reduces their normal collision velocity, vcoll
ij , and the binary

multiplier φij = 0. Otherwise, when vij · rij ≥ 0 and still the inter-particle penetration
occurs, by setting φij = 1 and vcoll

ij = 0, the model activates the repulsive force (derived from
the pressure gradient term without any smoothing procedure). The dynamic background
pressure of the repulsive term is limited to the expected maximum and minimum pressures
of the test case (denoted as pmax and pmin, respectively) and is written as [124]:


pbij = p̃ijχij

p̃ij = max (min (λ |pi + pj| , λpmax) , pmin)
(6.14)

where λ is a non-dimensional adjusting parameter (set to 0.1). DPC dynamically determines
the variable coefficients, χij and κij , through:

χij =

√√√√ w(rij , dp)
w(0.5dp, dp) and κij =


χij 0.5 ≤ rij/dp < 1

1 rij/dp < 0.5
, (6.15)

respectively. These coefficients control the strength of the repulsive and collision terms as
functions of the inter-particle distance via the non-dimensional part of the Wendland kernel
given as:

w(rij , dp) = (1− rij

dp
)4(4rij

dp
+ 1), 0 ≤ rij < dp (6.16)

(where for rij ≥ dp, w(rij , dp) = 0). Eventually, DPC updates the velocity and position of
the fluid particles by 

v′i = vi + δvDPC
i

r′i = ri + ∆tδvDPC
i

. (6.17)

We should highlight that the DPC formulations (6.12-6.15) keep the velocity corrections
small by implementing pair-wise particle interactions and the dynamic coefficients. There-
fore, DPC avoids excessive manipulation of the mechanical properties of the flow (including
the mass and volume of particles) without the need for the additional diffusion terms due
to the non-Lagrangian velocity changes (derived based on the Leibniz–Reynolds transport
theorem in the consistent PS formulations (e.g., [3, 124]) and the Arbitrary Lagrangian Eu-
lerian (ALE) schemes coupled with the PS equation (e.g., [155, 183])). Unlike standard PS
methods that shift fluid particles to the area with less concentration (e.g., [50, 130]), DPC
conserves the linear momentum of the two colliding particles by being an anti-symmetric
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formulation and considering a constant mass for the particles [124]. Furthermore, DPC im-
plements the regularization process of the fluid particles without any boundary treatments
eliminating the complexities of the free surface and normal vectors detection. In section 6.4,
simulating benchmark cases, we evaluate the evolution of system’s global energy to confirm
the negligible effects of the DPC transport-velocity equation on the overall flow properties.
The implementation of DPC in DualSPHysics is represented in 6.5.
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Figure 6.2 The general form of the DPC transport-velocity formulation, δvDPC
i , (6.12) consists

of the dynamic collision and repulsive terms for dealing with different states of inter-particle
penetration where rij < dp

6.3.2 Particle shifting algorithm coupled with DPC: cPS

The standard Particle Shifting (PS) technique, implemented in DualSPHysics, regularizes
the distribution of fluid particles (i ∈ Ωf ) using the Fickian-based formulation (proposed by
Lind et al. [50] and Skillen et al. [73]):

δrPS
i = −DF

i 〈∇C〉i (6.18)

where the particle shifting vector, δrPS
i , has the same direction as the gradient of the local

particle concentration, 〈∇C〉i, estimated as:

〈∇C〉i =
∑
j∈Ω

mj

ρj
∇iWij . (6.19)

A variable Fickian diffusion coefficient, DF
i = Ah∆t‖vi‖, controls the intensity of shift-

ing based on the Von Neumann stability analysis and the CFL condition [73]. The non-
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dimensional constant, A, is suggested to be set between 1-6 [73]. One should note that DF
i

is a function of the variable time step and the local velocity magnitude (unlike the other
PS formulations that employ constant DF using the maximum expected velocity of the test
case, e.g., in [123, 130]). Also, the model limits the magnitude of δrPS

i in each coordinate
directions to 0.1dp. Accordingly, this PS algorithm, through the variable Fickian diffusion
coefficient and limiting the magnitude of shifting, aims at avoiding excessive movement of
particles [179].

Inside the free-surface region, the kernel truncation causes (6.18) to introduce false diffusion
of particles toward and beyond the interface [50, 130]. Thus, special treatments of (6.18)
become necessary to control particle shifting at the free-surface and its vicinity. This in-
cludes detecting the free-surface particles and modifying/canceling the shifting normal to
the interface. Accuracy of the particle shifting corrections greatly depends on the efficiency
of the particle detection algorithm and the estimated normal vectors (especially in violent
free-surface flows) [130]. With inaccurate estimation of normal vectors and canceling the
component of PS normal to the interface, the highly dynamic flows would be susceptible to
particle clustering at the interface [123].

The standard PS method, for single-phase flow simulations, simply adjusts the magnitude
of shifting by multiplying δrPS

i by a correction coefficient, ACi. It also neglects the shifting
of the particles with extreme kernel truncation (i.e., δrPS

i = 0 for ACi < 0). The correction
coefficient is defined as ACi = (〈∇· r〉i − AFST )/(dim.− AFST ) in which

〈∇· r〉i =
∑
j∈Ω

mj

ρj
rji· ∇iWij , (6.20)

and the free-surface threshold coefficient, AFST , is a preset value less that the domain dimen-
sion, dim. = 2 or 3 for the two- and three-dimensional simulations, respectively [167, 193].
We refer to the equations (6.18-6.20) as the standard PS formulation (which exists in Dual-
SPHysics).

To improve particle distribution in the free-surface region and ensure numerical instability,
Jandaghian et al. [123,124] coupled the PS formulation with the particle collision technique
within the context of MPS method. Here, similar to the work of Jandaghian et al. [123], we
couple the standard PS equation with the DPC technique, represented in section (8.4.3). In
this hybrid method, hereinafter denoted as cPS, the PS equation (6.18) is directly applied
to the internal particles, while the DPC transport-velocity term (6.12) regularizes the distri-
bution of particles detected inside the free-surface region or as splashed particles. We first
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classify the fluid particles into two categories identified by a binary multiplier, bi, given as:

bi =


1 If ACi < 0 or Ni < 0.75N0

0 Otherwise
. (6.21)

in which Ni, and N0 are the number of neighbor particles and the expected number of
neighbor particles in an isotropic particle distribution, respectively. If bi = 0 the model
considers the fluid particle as an internal particle; if bi = 1 the particle belongs to the free-
surface region or the splashed (i.e., external) particles’ category due to the extreme kernel
truncation and insufficient number of neighbor particles (see Figure 6.3). Considering k = 2
in the smoothing functions, we estimate N0 = 52 and 260 for the 2D and 3D simulations,
respectively. Employing the binary multiplier (6.21) and the DPC term (6.12), we implement
the cPS equation as:

δrcPS
i∈Ωf = (1− bi)ACiδrPS

i + bi∆tδvDPC
i (6.22)

which finally updates the position and velocity of the fluid particles through


r′i = ri + δrcPS
i

v′i = vi + biδvDPC
i

. (6.23)

We implement cPS only in the correction stage of the time integration scheme (compatible
with the DPC implementation shown in Figure 6.2). This coupling of PS with DPC exempts
the model from complex free-surface treatments which would involve time-consuming oper-
ations (required for estimating the normal vectors and the renormalization tensor), noting
that DPC improves the particle clustering issue in the free-surface and splashed regions (i.e.,
where bi = 1). Figure 6.3 summarizes the cPS algorithm. It should be highlighted that
the proposed cPS method still lacks the consistent particle shifting algorithms developed by
implementing additional diffusion/cohesion terms to encounter the volume-non-conservation
issue of the standard PS models (e.g., see [3, 124,182]).
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The cPS algorithm
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Figure 6.3 The coupled Particle Shifting formulation (6.22). bi, δrPS
i , and δvDPC

i are given
through equations (6.21), (6.18), and (6.12), respectively.

6.4 Numerical simulations

We simulate challenging benchmark cases to investigate the stability and accuracy of the
weakly compressible SPH method supplied with the proposed particle regularization tech-
niques. We choose numerical cases in which violent free-surface flows and the potential forces
are dominant. Through a comprehensive evaluations of the numerical results, we discuss the
effectiveness and efficiency of the proposed models for capturing the impact events and long-
term modeling of highly dynamic flows. For all the simulations, we adopt the fifth-order
Wendland kernel and set k = 2. In the symplectic time integration scheme the CFL coeffi-
cient is set to 0.2. In the PS formulation, we use the recommended values of the shifting coef-
ficients, i.e., A = 2 and AFST = 1.5 and 2.75 for the 2D and 3D problems, respectively [179].
To quantitatively study the effectiveness of the particle regularization techniques, we calcu-
late and plot the spatial particle disorder, denoted as λi (which its formulations are proposed
by Antuono et al. [7]). By averaging λi over the internal fluid particle (i.e., for bi = 0 given
by (6.21)) the global value of the spatial particle disorder, Λ, is estimated [7]. Moreover, the
evolution of global energy is identified as ∆E = Et−E0 (where Et and E0 refer to the global
energy at t and the initial condition); the global potential, kinetic, and mechanical energies,
are denoted as Ep, Ek, and Em, respectively (see [124] for their general formulation). Videos
of the simulations are provided in the supplementary material of the online version of this
article.

Herein, we denote the weakly compressible SPH model (Section (6.3)) coupled either with
the proposed DPC formulation (Section (8.4.3)), the cPS algorithm (Section (6.3.2)), or the
standard PS method as DPC, cPS, or PS, respectively.
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We represent flow characteristics and numerical properties of the test cases as follows:

1. Oscillating droplet under a conservative force field: This numerical test case is a periodic
free-surface flow. By long-term simulations of this benchmark case, we can directly
investigate the conservative properties of the particle method considering that no solid
boundary exists and the fluid is inviscid [130, 160]. A conservative central body force,
Fi = −A2

0ri, periodically stretches an initially circular droplet, with the radius of d0,
along the x and z-directions (Figure 6.4-a). The flow frequency, 1/T ' A0/4.827, and
the constant parameter A0 = 1.5 (1/s) control the time evolution of this free-surface
flow. We distribute the particles on the Cartesian lattice where d0 = 0.5 (m) and assign
the initial condition based on the theoretical solution by Monaghan and Rafiee [11] (i.e.,
pi = ρ0A

2
0(d2

0−‖ri‖2) and vi = {A0, 0,−A0}ri at t = 0). Moreover, we set cs = 15A0d0

and ρ0 = 1000 (kg/m3) and identify the spatial resolution of the test case by R = d0/dp.
To avoid high-frequency pressure noises, we only activate the density diffusion term of
Molteni and Colagrossi [54] (6.9) with δ = 0.1 (without the artificial viscosity term as
ν0 = 0). We assign the initial maximum and minimum pressures at the center and the
free-surface of the droplet to pmax = 2ρ0A

2
0d

2
0 and pmin = (ρ0A

2
0(d2

0 − (d0 − 0.5dp)2) in
the DPC repulsive term (6.14), respectively.

2. 2D dam break: This problem has become a popular benchmark case for showing the
robustness of the enhanced particle methods capable of simulating highly dynamic free-
surface flows (e.g., [50,54,124,182,194]). It involves complex fluid-fluid and fluid-solid
impacts that challenge the standard SPH methods for dealing with their associated
numerical issues. Here, we simulate the experimental case by Lobovský et al. [4] in
which the height and width of the water column are H = 0.6 (m) and B = 2H,
respectively, and the length of channel is 5.366H (in the x-direction) (Figure 6.4-b).
The initial hydrostatic pressure is assigned to the particles and the sound speed is
set to c0 = 10

√
gH where the gravitational acceleration is g = 9.81 (m/s2) in the

negative z-direction. Unless specified, the model implements the laminar viscosity and
the SPS equations (6.6) where ν0 = 10−6 (m2/s) and ρ0 = 1000 (kg/m3) for water.
We activate the density diffusion model of Fourtakas et al. [69] (6.10) and set δ = 0.1.
The non-dimensional time and the spatial resolution of the model are identified by,
T = t

√
(g/H) and R = H/dp, respectively. For simulating the solid walls, we adopt the

modified Dynamic Boundary Condition (mDBC) introduced by [192]. Similar to [124],
we assign pmax = 2.3ρgH and pmin = ρgdp in the DPC formulation (6.14). The impact
load on the front wall, the probe location S, is locally averaged to be compared with
the experimental measurements.
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3. Water sloshing: Accurate estimation of the sloshing loads are essential for optimum
design of fluid storage tanks and vessels [195]. The movement of the solid boundary
with the presence of the gravitational acceleration, g, forms plunging waves and lateral
water impacts. Here, we simulate the water sloshing in a rectangular reservoir identical
to the experimental case of Souto-Iglesias [195]. In this test case, the tank rotates
periodically under a sinusoidal excitation with the rotation center at the middle point
of the bottom side and the frequency of 1/T (Figure 6.4-c). We simulate this test case
as a 2D and single phase problem. The tank length and height, Lb and Hb, are 0.90 and
0.508 (m), respectively. Water fills the width of the reservoir with the initial height,
H = 0.093 (m). The model assigns the initial hydrostatic pressure to the particles
and sets c0 = 30

√
gH. The density and kinematic viscosity of the water are set to

ρ = 1000 (kg/m3) and ν0 = 10−6 (m2/s), respectively. The SPS model calculates
the shear forces in the numerical model. The density diffusion term of Fourtakas et
al. [69] (6.10) is implemented with δ = 0.1. We adopt a single spatial resolution for
all the simulations where dp = 0.002 (m). The mDBC model updates the pressure
of the solid boundary particles. In (6.14), we set pmax = 15 (kPa) and pmin = ρgdp

based on the expected maximum pressure from the experimental data and the minimum
hydrostatistic pressure on the free-surface. We extract the local averaged pressure at
the location of the pressure sensor, S, (identified on Figure 6.4-c) to validate the lateral
impact with those from the experiment.

4. 3D dam break against a rigid obstacle: In this test case, the water column collapses
under the gravitational force, g, on the horizontal bed and impacts a rigid cuboid ob-
stacle. Plunging jets form and fluid-solid interactions occur as water flows over the
obstacle and impacts the front-wall of the reservoir. The 3D configuration of this free-
surface violent flow challenges the developed particle method in capturing its highly
dynamic deformations and impact events (e.g., [124,164,167,192]). Figure 6.4-d shows
the initial hydrostatic pressure and the geometrical properties of the problem. The
reservoir, water column and obstacle dimensions are chosen according to the exper-
imental setup of Kleefsman et al. [6] employed for validating the flow evolution and
impact loads. The vertical lines probed for the fluid heights are at H1 :(x = 0.992,
y = 0.5) and H2 :(x = 2.638, y = 0.5) and the local pressure is extracted on the
front-vertical face of the obstacle at P1 :(x = 0.8245, y = 0.471, z = 0.021) and P2 :
(x = 0.8245, y = 0.471, z = 0.101) points (units in meter). The initial height of
the water column is H = 0.55 (m) in the z-direction. The non-dimensional time is
denoted as, T = t

√
(g/H) and the sound speed is set to c0 = 20

√
gH. Similar to

the previous test cases, we implement the Laminar+SPS model (6.6) (with ρ = 1000
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(kg/m3) and ν0 = 10−6 (m2/s)), the diffusion term of Fourtakas et al. [69] (6.10) (with
δ = 0.1), and the mDBC solid boundary model. In the dynamic background pressure
(6.14), we adopt pmax = 2.3ρgH and pmin = ρgdp. Simulating this 3D problem with
various spatial resolutions (R = H/dp = 27.5, 55, and 110), we specifically investigate
the efficiency and computational performance of the new numerical implementations in
DualSPHysics.

Figure 6.4 Initial state and pressure field of the numerical test cases: (a) the oscillating
droplet, (b) 2D water dam break, (c) 2D water sloshing, and (d) 3D dam break against an
obstacle

6.4.1 Oscillating droplet under a conservative force field

We validate the numerical simulations of this periodic free-surface flow versus its theoretical
solution (represented in [11]). Figure 6.5 illustrates the pressure fields and flow evolutions sim-
ulated with the PS, cPS, and DPC techniques, where the spatial resolution, R = d0/dp = 200.
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Thanks to the density diffusion term, the pressure field is smooth over the fluid domain. How-
ever, the particle clustering issue at the free-surface region is notable with PS (as PS ignores
the fluid particles with ACi < 0). On the other hand, cPS improves particle distribution at
the free-surface and its vicinity by applying DPC between the detected free-surface parti-
cles. Comparing the flow evolution with the analytical free-surface (indicated with the black
dashed lines) manifests the unphysical volume expansion due to the inconsistent implemen-
tation of the particle shifting (particularly at t/T = 6.50 and 8.75); however, with cPS the
volume expansion slightly reduces. The DPC method not only represents uniform parti-
cle distribution at the free-surface region ensuring the numerical stability, but also predicts
accurate evolution of the oscillating droplet.

We plot the time evolution of semi-axes, a and b, and their theoretical profiles to quantify the
accuracy of the simulated flow. Figure 6.6-a shows that the shifting formulation leads to over
overestimation of a/d0 and b/d0, while the model with DPC gives more accurate evolution
of the semi-axes. Theoretically, we expect the numerical model to conserve the total volume
satisfying ab/d2

0 = 1 condition. Figure 6.6-b shows that DPC successfully conserves the total
volume with less than ∼1 % error. The naive implementation of PS diverges this value (i.e.,
the volume expands by ∼8 % after 12 cycles); nevertheless, the free-surface stability achieved
by cPS reduces this error to less than 3 %.

In Figure 6.7, we evaluate the time evolution of the global energies, ∆E. Figure 6.7-a
shows that DPC predicts more accurate evolution of the potential energy in comparison to
PS that increases fluid volume over the simulation time. We observe that the minimum
of potential energy evolution in each cycle, min(∆Ep/E0

p), (which should ideally be zero)
diverges with PS by more than 8 % error after 12 cycles, but cPS reduces the error to only
∼4 % (Figure 6.7-b). On the other hand, DPC shows convergence behaviors as it keeps
min(∆Ep/E0

p) to less than 1 %. The global mechanical energy theoretically should remain
identical to its initial value (i.e., ideally ∆Em = 0). However, the numerical dissipation of
the weakly compressible SPH algorithm (especially with implementing the density diffusion
term) reduces the mechanical energy over the simulation (i.e., numerically ∆Em < 0). Figure
6.7-c & d plot the mechanical energy evolution of the models with different spatial resolutions
(R = 50, 100, 200, and 400). Figure 6.7-d confirms that with DPC and cPS the mechanical
energy converges toward its theoretical value as the spatial resolution increases. In contrast,
PS results in positive values of mechanical energy evolution, i.e., ∆Em > 0 (by inserting
unphysival potential energy into the system). Also, PS does not establish a clear convergence
behavior by increasing R (Figure 6.7-c). The normalized root mean square error (i.e., L2)
of the kinetic, potential, and mechanical energies are plotted in Figure 6.7, graphs (e), (f),
and (g), respectively. In comparison to PS and cPS, the numerical error of the potential and
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kinetic energies significantly reducs by DPC. Yet, DPC and cPS result in almost identical
order of convergence (1.0-1.2). Moreover, the PS affecting the global energies of the flow
affects the convergence order reducing by one order of magnitude to 0.1-0.5.

Here, we evaluate the local spatial particle disorder, λi, and its global value Λ (represented by
Antuono et al. [7]) comparing the effectiveness of the particle regularization techniques. The
results show that the shifting formulation implemented in PS and cPS reduces Λ (averaged
over t/T = 10−12) from 0.115, obtained by the case with no particle regularization technique,
to 0.084 and 0.079, respectively (Figure 6.8). The improvement of particle distribution at
the free-surface region with cPS is well illustrated in the zoom-in snapshots. It should be
highlighted that DPC successfully represents more regular particle distribution (Λ = 0.054)
compared to the shifting technique.
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Figure 6.6 Oscillating droplet: the time evolutions of a and b by the SPH + PS, cPS or DPC
techniques compared with the theoretical solution in (a). Graph (b) illustrates the divergence
of model with the PS method due to the unphysical volume expansion
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Figure 6.5 Oscillating droplet: non-dimensional pressure fields by the SPH with either PS,
cPS, or DPC techniques from top to bottom rows, respectively (R = d0/dp = 200). The
free-surface of the droplet is compared with the theoretical solution (the black dashed lines)
at t/T = 4.25, 6.50, and 8.75.



134

-1.2

-0.4

0.4

1.2

10 10.5 11 11.5 12 -0.16

-0.08

0

0 2 4 6 8 10 12

0

0.02

0.04

∆𝐸𝑘

𝐸𝑘
0

∆𝐸𝑝

𝐸𝑝
0

𝑡/𝑇

0.001

0.01

0.1

1

0.001 0.01

𝐿
2
(

൘
∆
𝐸
𝑘
𝐸
𝑘0
)

𝑑𝑝 (𝑚) 0.001 0.01

𝐿
2
(

൘
∆
𝐸
𝑚
𝐸
𝑚0
)

𝑑𝑝 (𝑚)0.001 0.01

𝐿
2
(

൘
∆
𝐸
𝑝

𝐸
𝑝0
)

𝑑𝑝 (𝑚)

𝑡/𝑇

0

∆𝐸𝑚

𝐸𝑚
0

∆𝐸𝑚

𝐸𝑚
0

-1.2

-0.4

0.4

1.2

0 2 4 6 8 10 12

-0.04

0.08
(b) 

min
∆𝐸𝑝

𝐸𝑝
0

(𝑅 = 200)

(a)

(e)  (f)  (g)  

(a) (𝑅 = 200)

PS:     O(0.48)
cPS: O(1.17) 
DPC:  O(1.20)

PS:     O(0.43)
cPS: O(1.05) 
DPC:  O(1.17)

PS:     O(0.10)
cPS:  O(1.15) 
DPC:  O(1.03)

PS
cPS
DPC

(d)

(c) PS
𝑅 = 50
𝑅 = 100
𝑅 = 200
𝑅 = 400

cPS DPC
𝑅 = 50
𝑅 = 100
𝑅 = 200
𝑅 = 400

∆𝐸𝑘

𝐸𝑘
0

0

𝑡/𝑇

∆𝐸𝑝

𝐸𝑝
0

(𝑅 = 200)

Theoretical
PS
cPS
DPC
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Figure 6.8 Oscillating droplet: the spatial particle disorder, λi for the models with no particle
regularization, PS, cPS, and DPC. The time evolution of the global particle disorder, Λ, is
plotted in the graph for the different test cases. The spatial particle disorder formulation is
implemented based on the work of Antuono et al. [7].
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6.4.2 2D water dam break

We validate the numerical simulation of the 2D dam break versus the experimental results
of Lobovský [4] and evaluate the role of the particle regularization techniques. Figure 6.9
shows that DPC and cPS (with the spatial resolution, R = H/dp = 200) accurately estimate
the impact load at the pressure measurement point, S, and the wave propagation on the
horizontal bed, xf , compared with the experimental results. The discrepancies between the
numerical and experimental measurements are related to the air-cushioning effects neglected
in the single fluid phase simulations and the solid boundary conditions [167]. We should
highlight that the local pressure extracted every 0.02 seconds may not reflect the high-
frequency pressure fluctuations due to the weak compressibility of the fluid phase.

Figure 6.10 represents the flow evolution and the non-dimensional pressure field simulated
by cPS and DPC. The overall flow evolution with both approaches are almost identical,
however, we observe that DPC reduces pressure fluctuations during highly dynamic flows
and impact events at T = 7.60 and 8.90. To illustrate the efficiency of the regularization
techniques, we display snapshots of the plunging wave at T = 6.31 (Figure 6.11). The results
shown confirm the effectiveness of DPC embedded into the PS method through equations
(6.22) and (6.23) (i.e., the cPS method) for improving the particle distribution at the impact
and free-surface regions compared with PS. Moreover, DPC (i.e, equation (6.12)) applied
among all the fluid particles results in more uniform particle distribution without involving
any boundary treatments (Figure 6.11).

To quantify the improvements, we compare the local spatial particle disorder and the time
evolution of its global value, i.e., λi and Λ, respectively, simulated by PS, cPS, and DPC
(Figure 6.12). cPS reduces spatial particle disorder at the vicinity of the free-surface com-
pared to PS; yet, both PS and cPS manifest irregular particle distribution at the impact
location as λ > 0.2. DPC proves to be capable of reducing the spatial particle disorder where
the wave impacts the free-surface and pressure suddenly increases (Figure 6.12-a). Also, the
global particle disorder with DPC is considerably less than the models with PS and cPS,
especially during the violent flow of the dam beak (Figure 6.12-b); with DPC, Λ remains less
than 0.06, while with cPS and PS, Λ exceeds 0.11 at T = 8.

Next, we study the conservation of the fluid volume and the global energy evolution of
the simulations. In a volume conservative model, the local value of 〈∇· r〉i is expected
to remain equal to the space dimension of the test case (i.e., for this 2D case, we expect
〈∇· r〉i ∼= 2). Figure 6.13 manifests the unrealistic volume expansion of the fluid phase due
to the shifting of the internal particles (as 〈∇· r〉i < 1.75 in some regions at T = 8.90 and
over the entire fluid domain, at T = 40.44); DPC does not suffer from this numerical issue
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(noting that 〈∇· r〉i > 1.8 over the main fluid domain). We also observe that the unphysical
volume expansion diverges the hydrostatic pressure expected in the late stages of the flow (at
T = 40.44 shown in Figure 6.13). Furthermore, we plot the energy evolution of the system
normalized by ∆Efin

m = E0
p − E∞p in Figure 6.14 (where E0

p is the initial potential energy
and E∞p is the final expected potential energy with the fluid flow reaching the equilibrium
state in the rectangular tank). For both cPS and DPC, increasing R reduces the dissipation
of the mechanical energy during the main impact events showing the numerical convergence
of the results (Figure 6.14-a & b). DPC estimates accurate evolution of the global energy
(i.e., ∆Ep/∆Efin

m
∼= −0.975 as ideally should reach -1.0). The energy evolution with DPC is

almost identical to the results of the model with no particle regularization (Figure 6.14-c);
thus, DPC effectively improves the particle distribution without manipulating the global flow
properties. In contrast, the unphysical volume expansion with the particle shifting (in either
PS or cPS forms) increases the potential energy of the system not reaching the expected
value (i.e., ∆Ep/∆Efin

m
∼= −0.875 and −0.85 with cPS and PS, respectively). Particularly

during the violent flow deformations (i.e., T ∼= 8− 10), the standard PS excessively increases
the global mechanical energy of the system (shown in the zoomed view of graph (c) in Figure
6.14).

To investigate the role of the shear force term in the pressure and flow evolution, we compare
the results of the dam-break case simulated by cPS and DPC (with R = 200) considering dif-
ferent viscosity models, i.e., the Laminar+SPS model (equation (6.6)), the artificial viscosity
term (see [179]), and with no viscosity (as if water is an inviscid fluid). A non-dimensional
coefficient, α, adjusts the intensity of the artificial viscosity [61, 179]. We implement the
artificial viscosity term by setting α to 0.01 and considering the slip boundary condition at
the solid walls. To simulate water as an inviscid fluid, α is set to 0.0. As illustrated in
Figure 6.15- (a) and (b), in all the cases, the pressure field is smooth, and the free surface
match quite well with the reference solution (the dashed red line reported by Greco et al. [8]
using a Boundary Element Method (BEM)) at T = 5.95. Figure 6.15- (c) and (d) show
that the averaged local pressure of all the viscosity models evolves similarly during the im-
pact events and is compatible with the experimental measurement (the dashed black line
from [4]). These results confirm that the smoothness of the pressure field and the evolution
of the estimated impact load (with the adopted density diffusion term (6.8) and the cPS
or DPC technique) are almost independent of the viscosity formulation. Moreover, Figure
6.15- (e) and (f) indicate that the Laminar+SPS formulation (in the form implemented in
DualSPHysics) dissipates slightly less mechanical energy in comparison with the artificial
viscosity term. Accordingly, we choose the Laminar+SPS model for the shear force calcula-
tion to evaluate the effect of particle regularization techniques on the system’s conservation
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properties without incorporating energy dissipation of the artificial term.

6.4.3 2D water sloshing in a tank

Here, we present and discuss the numerical simulations of the 2D water sloshing and its lateral
water impacts. The time history of the impact loads at the location of the pressure sensor,
S, is compared with the experimental measurements by [9]. Figure 6.16 shows that while
PS and cPS slightly overestimate the local averaged pressure (at t/T ∼= 2.6, 3.7, 4.75), DPC
predicts more accurate impact loads with less pressure noises. The remaining incompatibility
between the numerical and experimental results is due to the fact that the single phase
simulation ignores the air-cushioning effects. Also, the periodic rotation of the solid walls
may affect the accuracy of the estimated impact load increasing local pressure fluctuations
observed in Figure 6.16 [192]. Figure 6.17 illustrates snapshots of the flow evolution (taken
from the experiment represented by [9]) and the non-dimensional pressure fields with PS,
cPS, and DPC. Although all the models capture the overall flow evolution, yet, DPC results
in isotropic and more compact particle distributions during the lateral impacts (see the
zoom-in sections of Figure 6.17). With the extreme kernel truncation at the free surface,
the standard approximation operators diverge the pressure and velocity fields affecting the
dynamic free-surface boundary condition [196]. The numerical errors due to the incomplete
kernel support with no special treatment of PS near the free surface lead to dominant particle
clustering. DPC and cPS improve the particle distribution in this region; nevertheless, to
further resolve the accumulation of particles at the free-surface vicinity, one can implement
high-order discretization operators (e.g., the high-order density diffusion terms [66,126]) and
virtual background nodes (e.g., the virtual particle technique by Duan et al. [197] and the
Background Mesh scheme by You et al. [196]).

To quantify the effectiveness of the models, we represent the estimated value of 〈∇· r〉i and
the local spatial disorder of particles, λi (in Figure 6.18). DPC retains 〈∇· r〉i > 1.8 (which is
expected te be ∼= 2); due to the unphysical volume expansion by PS and cPS, 〈∇· r〉i < 1.75
becomes dominant over the entire fluid domain. Moreover, DPC improves uniform particle
distribution in comparison to PS and cPS by which λi increases to more than 0.2 where the
lateral impact occurs at t = 7.50 seconds. We also observe that, with PS and cPS, the volume
expansion and the extreme particle clustering issue within the interior domain of the flow
make conditions (6.21) incapable of accurately detecting the boundary and splashed particles
(noting that in some internal regions λi is incorrectly set to zero).

Next, we plot the time evolution of the global particle disorder, Λ, and the global potential
energy, Ep, in Fig 6.19-a and b, respectively. The potential energy is normalized by its initial
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Figure 6.9 Dam break: the local averaged pressure on the front wall, at S, (left) and the wave
propagation on the horizontal bed, xf , (right) with R = H/dp = 200. Numerical results are
extracted every 0.02 seconds.

Figure 6.10 Dam break: flow evolutions and non-dimensional pressure fields with cPS and
DPC (the left and right columns, respectively) with R = 200
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Figure 6.11 Dam break: the particle distribution and the non-dimensional pressure field as
the wave impacts the free-surface at T = 6.31 (simulated by PS, cPS and DPC techniques
where R = 200)

global value, E0
p . After 5 cycles of rotation, Λ increase to more that 0.11 by PS and cPS,

while DPC keeps Λ less than 0.07 showing more regular particle distribution over the entire
domain. We again observe that, unlike DPC, PS and cPS diverge the minimum potential
energy of the system in the long-term simulation of this violent free-surface flow. This
divergence of potential energy, manifested as the unphysical volume expansion, originates
from the inconsistent implementation of the shifting equation (i.e., without considering the
additional diffusion/cohesion terms of the particle shifting transport-velocity [3, 124,182]).

6.4.4 3D water dam-break against a rigid obstacle

In Figure 6.20, by plotting the extracted numerical results against the experimental mea-
surements (by [6]), we show that the implemented models predict the fluid flow evolutions
and the impact loads on the rigid obstacle. The temporal evolution of the fluid heights over
H1 and H2 lines and the local pressures on P1 and P2 points (with PS, cPS, and DPC,
where the spatial resolution, R = H/dp = 55) are compatible with the experimental results.
Similar to the other single fluid phase simulations (e.g., [124,189,192]), a delay occurs in the
impact load of the returning wave (at T ∼= 20).

Figure 6.21 illustrates the violent free-surface deformations and the magnitude of the velocity
field as the water flow impacts the obstacle (at T ∼= 2.5), and further, climbs up the front wall
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Figure 6.12 Dam break: (a) the local spatial particle disorder, λi, at T = 6.31 and (b) the
evolution of its global value, Λ, with PS, cPS, and DPC techniques where R = 200

of the reservoir (at T = 5.06). The standard PS cannot eliminate fluid fragmentation due to
highly dynamic flow deformations (shown in the zoomed view of the splashed flow); however,
cPS and DPC simulate more uniform flow evolution. Figure 6.22 displays the pressure field
at the middle-section of the tank (where y = 0.5 (m)) simulated by cPS and DPC. During the
formation of the submerged waves, DPC shows slightly less pressure noises (e.g., at T = 5.06
and 8.45). Moreover, the inconsistent PS models (in the PS and cPS forms) clearly result in
the volume-non-conservation issue as 〈∇· r〉i < 2.87 in the internal regions of the fluid flow
(shown in Figure 6.23, at T = 7.45 and T = 33.79). The divergence of 〈∇· r〉i highlights
that employing a variable shifting coefficient (DF

i ) and limiting the magnitude of the shifting
vector are numerically insufficient for avoiding the unphysical volume expansion by the PS
equation. This places emphasis on the implementation of the consistent PS algorithm (i.e.,
adopting the additional diffusive terms due to the shifting transport-velocity and the special
free-surface treatments, e.g. in [124,130]) being essential for the long-term simulation of such
complex free-surface flow. On the other hand, the results confirm that DPC, with being
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Figure 6.13 Dam break: 〈∇· r〉i and the non-dimensional pressure field at T = 8.90 and the
final stage, T = 40.44, with cPS and DPC where R = 200. The dash-dot line is the expected
fluid height at the final equilibrium state.

exempted from the complex boundary treatments and a conservative formulation, avoids
numerical instabilities eliminating the particle clustering issue and representing smoother
pressure fields.

Figure 6.24 compares the time evolution of system’s global energies. Increasing the spatial
resolution reduces the energy dissipation during the impact events showing the numerical
convergence of the simulations with either cPS or DPC (Figure 6.24-a & b). Figure 6.24-c
compares the energy evolutions where R = 110. While DPC predicts the expected final
potential energy (i.e., ∆Ep/∆Efin

m
∼= −0.975 as ideally should reach -1.0) the increase in

the potential energy by PS (which starts from T ∼= 7.5 and remains over the simulation)
evidences its inability for dealing with complex flow deformations.

Finally, we evaluate the efficiency of the new implementations in DualSPHysics by compar-
ing the simulation runtime with different regularization techniques (Tables 6.2 and 6.3). The
runtime per physical second and per iteration are denoted as ts and titer ., respectively. We
simulate all the test cases using an NVIDIA Tesla V100 PCIe device (see the GPU specifi-
cations in Table 6.1). In this 3D problem, the number of fluid particles would be (79, 380),
(652, 212), and (5, 314, 295) where R = 27.5, 55, and 110, respectively. In Tables 6.2 and 6.3,
(t(.)/tPS(.) − 1) × 100 gives the speed-up of runtime (in percent) with respect to the original



143

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

∆
𝐸
/∆
𝐸
𝑚𝐹
𝑖𝑛

𝑇 𝑇

DPC :    ∆𝐸𝑚 ∆𝐸𝑘 ∆𝐸𝑝
R=200 

R=100 

R=60 

cPS :    ∆𝐸𝑚 ∆𝐸𝑘 ∆𝐸𝑝
R=200 

R=100 

R=60 

(a) (b)

-0.9

-0.85

-0.8

35 37.5 40

-0.15

-0.1

-0.05

0

6 8

-1

-0.95

-0.9

35 37.5 40

-0.15

-0.1

-0.05

0

6 8

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40

(c)

𝑇

∆
𝐸
/∆
𝐸
𝑚𝐹
𝑖𝑛

R=200 ∆𝐸𝑚 ∆𝐸𝑘 ∆𝐸𝑝
No regularization

PS

cPS

DPC

-1

-0.95

-0.9

-0.85

-0.8

35 37.5 40-0.45

-0.35

-0.25

-0.15

-0.05

8 10

Figure 6.14 Dam break: evolution of the global energies by cPS and DPC with different
spatial resolutions, R, plotted in graphs (a) and (b), respectively. Graph (c) compares the
energy evolution of the model with no particle regularization with the profiles of PS, cPS,
and DPC where R = 200.

model that implements the standard PS technique. Table 6.2 shows that the implemented
modifications (associated with the DPC and cPS formulations) increase the simulation run-
time per iteration, titer ., by 2-6.5 %. Nevertheless, the numerical stability achieved by the
proposed regularization techniques allows the model to adopt larger time steps as the total
runtime, ts, reduces by 2.5-4.5 % and 6-8.5 % by cPS and DPC, respectively. The time step of
calculation is updated after every time step according to the CFL condition as a function of
the maximum viscous diffusion and acceleration of particles [179]. DPC eliminates unphysical
high values of particle acceleration (at the impact events where pressure increases suddenly
and inter-particle penetration occurs), and therefore, reduces the number of iterations over
the simulation. Overall, this reduction of simulation runtime (especially with DPC) justifies
the implementation of effective particle regularization techniques not only for improving the
numerical stability and accuracy, but also for increasing the efficiency of the computations.

6.5 Concluding remarks

In this study, we introduced effective particle regularization techniques within the framework
of the weakly compressible SPH method for the long-term simulation of violent free-surface
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Figure 6.15 Dam break: flow evolution and the non-dimensional pressure fields (a, b), the
impact load, p, at S (c, d), and the energy evolution, ∆E, (e, f) with different viscosity models,
i.e., the laminar+SPS model, the artificial viscosity term (α = 0.01), and the inviscid fluid
(α = 0), simulated by cPS and DPC where R = 200. The dashed red line in (a) and (b) is
the free surface at T = 5.95 predicted by the BEM solver from [8]. The dashed black line in
(c) and (d) is the experimental measurement of the impact load from [4].

Table 6.1 GPU specifications

NVIDIA Tesla V100 PCIe
CUDA compatibility 7.0

CUDA cores 5120
Multiprocessors 80

Global memory (MB) 16160
GPU Maximum clock rate (MHz) 1380

Memory clock rate (MHz) 877
Memory bus width (bits) 4096
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Figure 6.16 Water sloshing: the local averaged pressure obtained by PS, cPS, and DPC
(dp = 0.002 (m)) compared with the experimental measurements at the probe location, S,
reported by Souto-Iglesias et al. [9]. Numerical results are extracted every 0.01 seconds.

Table 6.2 3D dam break: the simulation runtime per iteration denoted as titer .. In this 3D
problem, the number of fluid particles would be (79, 380), (652, 212), and (5, 314, 295) where
R = 27.5, 55, and 110, respectively.

Model
titer ./10−3 (seconds) (titer ./t

PS
iter . − 1)× 100

R = 27.5 R = 55 R = 110 R = 27.5 R = 55 R = 110
Standard PS 7.79 31.94 213.35 0 0 0
cPS 8.20 32.52 224.52 +5.16 +1.83 +5.24
DPC 7.98 32.59 227.13 +2.40 +2.06 +6.46

Table 6.3 3D dam break: the simulation runtime per physical second denoted as ts. In this
3D problem, the number of fluid particles would be (79, 380), (652, 212), and (5, 314, 295)
where R = 27.5, 55, and 110, respectively. cPS and DPC reduce the runtime by 2.5-4.5 and
6-8.5 %, receptively.

Model
ts (seconds) (ts/tPSs − 1)× 100

R = 27.5 R = 55 R = 110 R = 27.5 R = 55 R = 110
Standard PS 53.76 471.84 7326.52 0 0 0
cPS 52.38 442.88 7008.10 -2.58 -6.14 -4.35
DPC 50.57 431.54 6859.17 -5.93 -8.54 -6.38
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Figure 6.17 Water sloshing: the flow evolutions and the non-dimensional pressure fields with
PS, cPS, and DPC (dp = 0.002 (m)) compared with snapshots of the experiment on the
top-row (taken from [9])
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Figure 6.18 Water sloshing: 〈∇· r〉i and the local spatial particle disorder, λi at t = 7.50
seconds where dp = 0.002 (m)
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Figure 6.20 3D dam break: the fluid height at H1 and H2, and the local pressure at P1
and P2 by PS, cPS, and DPC (where R = H/dp = 55) validated with the experimental
measurements by Kleefsman et al. [6]. Numerical results are extracted every 0.1 seconds.
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Figure 6.21 3D dam break: the flow evolution and the magnitude of velocity by PS, cPS, and
DPC (the top, middle and bottom rows, respectively) at T = 2.53 and 5.06, with R = 110.
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Figure 6.22 3D dam break: non-dimensional pressure field at the middle-section of the reser-
voir, y = 0.5 (m), by cPS and DPC (the left and right columns, respectively) at T = 2.53,
5.06, and 8.45, with R = 110.
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Figure 6.24 3D dam break: evolution of the energy components by cPS and DPC with
different spatial resolutions ((a) and (b) graphs, respectively). Graph (c) compares the
energy evolution by PS, cPS, and DPC where R = 110.

flows. We represented the dynamic pair-wise particle collision technique (DPC) (originally
proposed by [124] for the MPS method) and a particle shifting equation coupled with the
DPC method (cPS). We implemented these regularization techniques in the DualSPHysics
software and simulated four benchmark cases. We validated the numerical simulations with
the theoretical solution and the available experimental measurements analyzing the accuracy
and convergence of the numerical model. Overall, the qualitative and quantitative results
confirmed that the shifting equation (in both the PS and cPS forms) affects the conservation
of volume in the long-term simulation of the violent free-surface flows. On the other hand,
DPC not only represents more regular particle distribution ensuring numerical stability, but
also accurately predicts global evolutions of the system conserving the linear momentum.

We summarize the key remarks of this study as follows:

• SPH with DPC predicts stable and accurate flow evolution for long-term simulations
of free-surface flows.

• DPC improves the particle clustering at the free-surface regions and where impact
events occur.
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• DPC respects the linear momentum conservation of the system, while PS affects the
global potential energy and unphysically expands the fluid volume.

• Numerical results of SPH with DPC converge to the theoretical and expected solutions,
however, with PS the convergence behavior of the model would be affected.

• The numerical stability achieved by DPC allows the SPH model to adopt larger time
steps compared to the PS formulation implemented in DualSPHysics (reducing the
simulation runtime by 6-8.5 %).

We should highlight that the more recent improvements to PS formulation (e.g., the works
of Jandaghian et al. [124] in MPS and Sun et al. [3] and Hong-Guan and Sun [182] in SPH)
resolve its numerical issues manifested as the unphysical volume expansion and the particle
clustering at the free surface regions. However, the proposed DPC (as a more effective and
efficient alternative technique to the standard PS and the cPS method studied in the present
work) is exempted from complex boundary treatments, additional diffusive terms, and their
associated computational costs.

Future research works may include validating and improving the DPC technique for dealing
with the tensile instability issues (i.e., strong negative pressures) in viscous flows with high
Reynolds number (like viscous flow past a bluff body). Moreover, it is worthwhile to extend
the DPC formulation for simulating high-density ratio multiphase flows.

Appendix A. Implementation of DPC in DualSPHysics

We implement the DPC formulations within the GPU-accelerated subroutines of the Dual-
SPHysics software (v5.0.4). In the initialization stage of the model, the preset parameters
of DPC are loaded into the program. In the main temporal loop of calculation, we define
a device function, denoted as DynamicParticleCollision(), that implements the DPC term
(6.12) using the Compute Unified Device Architecture (CUDA) C++ parallel programming
language (Figure 6.25). This function is nested inside the existing device function that con-
tains the for loop responsible for calculating the interaction forces by calling the neighboring
particles and loading their variables. The output of the DPC function is ∆tδvDPCi which
updates the velocity and position vectors of the fluid particles in the second stage (i.e., the
correction step) of the symplectic algorithm. We changed the present global and device sub-
routines considering that the developed model can still execute the existing PS method; the
user can choose to substitute the PS execution with the DPC technique. One should note
that since DPC does not require free-surface detection and is implemented in the current
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framework of the GPU-accelerated code (without additional for loop for the calculations),
we expect the efficiency of the application to remain intact.

DualSPHysics
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Data transfer 

(host to device)
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& interactions
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Figure 6.25 Implementation of the DPC formulation within the GPU-accelerated framework
of DualSPHysics. The DPC transport-velocity equation, δvDPC

i , is given by (6.12).
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CHAPTER 7 ARTICLE 4: ENHANCED WEAKLY-COMPRESSIBLE MPS
METHOD FOR IMMERSED GRANULAR FLOWS
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1Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Canada
Advances in Water Resources

7.1 Abstract

We develop and validate a three-dimensional particle method based on an Enhanced Weakly-
Compressible MPS approach for modeling immersed dense granular flows. For this purpose,
we adopt a unified and generalized rheological model, using a regularized visco-inertial rhe-
ology, for all regimes of multiphase granular flow. Moreover, we propose a new consistent
formulation to estimate the effective pressure of the solid skeleton based on the continuity
equation of the pore-water. To improve the accuracy of the multiphase particle methods,
especially near boundaries and interfaces, we introduce a modified high-order diffusive term
by employing the convergent form of the Laplacian operator. The effectiveness of the new
diffusive term is particularly demonstrated by modeling the hydrostatic pressure of two fluid
phases. Further, coupling the generalized rheology model with the flow equations, we in-
vestigate the gravity-driven granular flows in the immersed granular collapse and slide in
three dimensions. As a part of this study, we represent the experiment on the immersed
granular collapse to validate the model. The evolution and runout length of the granular
bulk are compared with those from experiments confirming good compatibility. Overall, the
qualitative and quantitative results justify the proposed developments shown to be essential
for predicting different states of the immersed granular flows. (Figure 7.1)

7.2 Introduction

Multiphase flow of solid grains interacting with fluid exists in many hydro-environmental
systems such as sediment erosions, debris flows, and submarine avalanches [17, 198]. These
so-called multiphase granular flows can have devastating socio-economic impacts [199, 200].
The experimental measurements and numerical models are the engineers’ tools to understand
the complex physics of these problems to optimize the engineering designs and mitigate
related hazards. The numerical models have advantages in eliminating the expenses and
surmounting the limits of the experimental researches. However, dealing with the highly
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Figure 7.1 The graphical abstract

dynamic interfacial flows including mixing processes of the solid gains and fluid phase requires
advanced rheology models and numerical developments [17,20]. The conventional mesh-based
Eulerian approaches struggle to simulate the complicated deformations and fragmentations
of interfacial flows [22,33]. Meanwhile, mesh-free Lagrangian methods have been shown to be
effective for simulating such problems including complex interactions of fluids and sediments
(e.g., [201–205]). Discrete-based mesh-free models (e.g., the Discrete Element Method) are
known to be accurate models for in-depth analysis while are computationally expensive [20].
In contrast, the continuum-based mesh-free particle methods at the macroscopic level (or
simply particle methods, such as Moving Particle Semi-implicit (MPS) and Smoothed Particle
Hydrodynamic (SPH) methods) homogenize the bulk volume of the mixture into moving
particles being scalable and hence more computationally affordable. In these models, the
Lagrangian form of governing equations coupled with the constitutive laws calculates the
interaction forces as the moving particles are the material points simulating the advection
process.

Particle methods, due to their Lagrangian nature, have demonstrated promising capabilities
in solving scientific and engineering problems [59]. SPH and MPS, as the two most pop-
ular particle methods (initially proposed by Gingold and Monaghan [26] and Koshizuka et
al. [25,46], respectively) have been widely applied and developed for simulating complex fluid
flow targeting hydro-environmental problems (e.g., [88, 178,202,204,206,207]). These meth-
ods share many algorithms and techniques and produce similar results in many cases [43,178].
However, MPS as a kernel-derivative-free method has more flexibility in the choice of the ker-
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nel function and resolves the instability issues that arise from the derivative of the kernel
function in the inter-particle force terms of the original SPH formulations [44, 45]. Fur-
thermore, MPS uses the non-dimensional particle number density (as a substitute for the
real density), which naturally addresses the density discontinuities at the phase interfaces of
multiphase simulations [41].

Shakibaeinia and Jin [47] proposed the Weakly Compressible version of the MPS method
(denoted as WC-MPS) by solving the equation of state instead of the Poisson equation for
updating the pressure field. Shakibaeinia and Jin [29, 75, 108] have extended and validated
the WC-MPS method for incompressible and multiphase problems in various hydrodynamic
conditions. Furthermore, this method has been the focus of many research studies for simu-
lating complex flows (e.g., [146,208–210]) and specifically developed for the dry and saturated
granular flows (e.g., [112, 118, 119, 211, 212]). Jandaghian and Shakibaeinia [123] enhanced
the WC-MPS method by introducing a conservative system of equations supplied with the
diffusive term and the corrected particle shifting technique. Recently, Jandaghian et al. [124]
developed the particle regularization techniques of this so-called Enhanced WC-MPS (EWC-
MPS) model for capturing the non-linear behavior of violent free-surface problems. In this
study, the EWC-MPS method is coupled with the rheological models and further improved
and validated for simulating the multiphase granular flows.

Many empirical and numerical studies have been devoted to introducing general and reliable
constitutive equations for capturing the different regimes of the granular flows (i.e., the free-
fall, inertial, and viscous regimes) [17,99] (e.g., [20,100,213]). Particularly, for the immersed
and dense granular flows, representing a versatile model for understanding the underlying
physics of the mixture is more challenging since both inertial and viscous regimes may con-
trol the mechanical behavior of the flow [100]. Furthermore, in these rheology models, an
accurate estimation of the normal-stress (i.e., the effective pressure) within the solid-skeleton
is essential for detecting the yielded and non-yielded flow regions. With this regard, the
commonly used hydrostatic assumption (for calculating the pore-water pressure) includes
the complexity and limitations of detecting interfaces and ignores the hydrodynamic aspects
of the granular flows in the rheology equation. Moreover, the unphysical pressure noises
(as the common problem of particle methods [66]) arising from the numerical and approxi-
mation errors can significantly affect the accuracy of the results. Resolving these modeling
issues requires developing a unified framework for the immersed granular flow rheology model
(e.g., [20,100,101]) and implementing higher-order operators (e.g., [66,146]), the particle reg-
ularization techniques (e.g., [64, 130]), and the artificial diffusive terms (e.g., [66, 153]) for
ensuring the stability and accuracy of the numerical simulations.
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The rheology models in the continuum-based methods consider non-Newtonian behaviors for
the dense granular flows [17]. Bingham types viscoplastic models (the Bingham-plastic and
the Herschel-Bulkley models) have been frequently utilized and validated in particle methods
(e.g., [29,109,115,116,134]). More recently, the local µ (I) rheology (proposed by Job et al. [99]
and Forterre and Pouliquen [102]) as a function of the flow and material properties has drawn
attention for the dry and submerged problems (e.g., [104,112,119]). For immersed conditions
of the dense granular flows, different non-Newtonian models are developed according to the
experimental and numerical results (e.g., see [17, 92, 93, 100, 101]. Guazzelli and Pouliquen
[17] presented a comprehensive review of the rheology of concentrated granular suspensions.
Regarding the immersed granular flow in the low Stokes limit, Boyer et al. [101] conducted
a series of (pressure-imposed shearing) experiments to represent unified rheology. Amarsid
et al. [100] with some dimensional analysis and simulating the inertial and viscous regimes
of the mixture (by a coupled molecular dynamics-lattice Boltzmann method) introduced a
unified rheology model for capturing the dry and immersed granular flows. Baumgarten and
Kamrin [20] combined the former models in a single formulation to simulate the granular flows
using a two-phase model. In the context of particle methods, Rodriguez-Paz and Bonet [107]
employed the Generalized Visco-plastic Fluid (GVF) model proposed by Chen et al. [117] as
a semiempirical model to calculate the total shear stress of the debris flow with a corrected
SPH method. Hosseini et al. [214] modeled single-phase non-Newtonian fluid flows using the
power-law, Bingham-Plastic, and Herschel-Bulkley constitutive models with an explicit SPH
approach. Nabian and Farhadi [105] utilized the Bingham and the GVF rheological models to
simulate the granular multiphase flows in an incompressible MPS scheme. To eliminate the
numerical problem of pressure-dependent erosion at the interface, Khanpour et al. [106] and
Zubeldia et al. [115] employed the Shields criterion in the weakly compressible SPH framework
to determine the sediment erosion threshold, while the constitutive model determines the
effective viscosity of the sublayer sediment phase based on Bingham viscoplastic models. In
the WC-MPS framework, Shakibaeinia and Jin [108] simulated the two-phase mobile-bed
dam break including the non-linear behavior of the granular material by the GVF model.
Nodoushan and Shakibaeinia [118] employed the regularized form of the local µ(I) rheology
to model the submerged and dry granular collapses. Further, Tajnesaie and Shakibaeinia
[112] developed the same model to simulate the granular landslide in a two-dimensional
configuration and compared the results with the Heschel-Bulkley model. Recently, Ke et
al. [119] investigated the role of the µ(I) rheology for the dry granular slide and dam-break
via the standard WC-MPS method.

The sediment rheology model is pressure-dependent and requires determining the granular ef-
fective pressure within the mixture phase for calculating the effective viscosity. The two-phase



159

mixture models (which solve separate sets of equations for each granular and fluid phase)
calculate the effective pressure within the solid phase directly (e.g., [20,215,216]). However,
the single-phase multi-density/multi-viscosity models require a supplementary approach to
estimate the pore-water pressure of the mixture phase. In particle methods, different ap-
proaches are proposed for determining the effective pressure within the granular material.
The majority of the SPH and MPS models (e.g., [105, 113, 116, 120]) assume the lithostatic
condition for the fluid and/or sediment phases to predict the pore-water pressure neglecting
the hydrodynamics of the mixture flow. Ghaïtanellis et al. [114] appended an additional
equation to the sediment model to calculate the soil-skeleton stress independently via solv-
ing the Laplacian of the effective pressure accompanied by the boundary conditions of the
model. In general, these approaches involve the free-surface and interface detections limiting
the capability of the particle method for dealing with highly deformed multiphase flows. To
avoid this issue, Fourtakas and Rogers [109] and Zubeldia et al. [115] employed a modified
equation of state (EOS) of the WC-SPH model by using the density of the saturated sediment
to estimate the pore-water pressure. However, since their model considers different reference
pressure within the EOS (for the total and pore-water pressure), the pressure oscillations due
to the slight compressibility affect the sediment model overestimating the viscosity for the
submerged conditions [114].

Since in the MPS/SPH methods, the kernel truncates at the free surface of the fluid and in the
vicinity of the solid boundary, the standard diffusive term added to the continuity equation
diverges the density field. This leads to unphysical pressure prediction affecting the overall
mechanical behavior of the fluid flow (particularly in the long-term simulations). In the case of
granular flows, where the constitutive equation and yield/flow behavior are highly sensitive to
the pressure field and its vibrations, such unphysical divergence can largely affect the results.
In general, by adding a numerical diffusion term to the continuity equation (e.g., in the
δ-SPH [54, 66] and the EWC-MPS methods [123]) the high-frequency pressure fluctuations
have been eliminated; however, dealing with the density discontinuity at the interfaces of
multiphase problems still requires special treatments. To overcome these numerical issues,
Sun et al. [70] applied the diffusive term by the convergent form of the Laplacian operator
(originally proposed by Antuono et al. [66] for the single fluid phase problems), for the
multiphase problems restricting the diffusive term between the fluid particles within the
same phase. In this case, the renormalization matrix and the first-order density gradient
operators are also limited to the same phase particles. Similarly, Zheng and Chen [72]
proposed the convergent formulation for the diffusive term in the multiphase SPH model
employing the oscillation of density increment instead of the density variable. Krimi et
al. [158] proposed another form of the diffusive term for the multiphase WC-SPH method for
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dealing with the density discontinuity at the interface. However, the proposed term violates
the mass conservation and ignores the higher-order spatial terms required for reducing the
kernel truncation errors at the free-surface and in the vicinity of the solid boundary. Fourtakas
et al. [69] introduced a new form of the diffusive term (for the single fluid phase problems) by
substituting the dynamic density with the total density in the original formulation of Molteni
and Colagrossi [54]. They showed that the new diffusive term by removing the hydrostatic
density from the total density improves the pressure estimation close to the boundaries (only
for problems where the gravitational force is dominant [69]). Nevertheless, it should be noted
that the proposed diffusive term (unlike the diffusive term proposed by Antuono et al. [66]
with the higher-order gradient) violates the conservation of mass considering that it is not
an antisymmetric equation (see [65]).

In this paper, we aim to develop a robust and accurate EWC-MPS method for predicting
the evolution of the immersed granular flows concerning its different regimes. This model
benefits from the enhancement techniques required for the stability and accuracy of such fluid
flow. Besides, the particle number density updated via the continuity and diffusive equations
deals with the density discontinuity issues which affect the pressure field. Here, we extend
the developments to three-dimensional and multiphase problems. Developing a generalized
rheology model, we adopt and regularize the visco-inertial rheology model to capture the
inertial and viscous regimes through a single formulation. Moreover, based on the continuity
equation of the pore-water phase as a barotropic fluid, we propose a consistent formulation to
eliminate the complexity for detecting the interface, meanwhile, include the dynamics of the
fluid flow within the effective pressure estimation. In the proposed model, we implement the
Sub-Particle Scale (SPS) turbulent model for the fluid phase and the higher-order velocity
gradient operator. To improve the accuracy of the numerical model, we modify the diffusive
term in the context of MPS for dealing with multiphase problems including the pressure-
dependent shear models. The new diffusive term aims to alleviate the kernel truncation and
density discontinuity issues of the multiphase problems and remove the unphysical pressure
noises. To include the physical effects of the removable gate in the initial stage of the fluid
flow, we implement virtual gates imposing the shear and pressure interactions. First, a
simple hydrostatic pressure is modeled to show the effectiveness of the modified diffusive
term. Further, we simulate and validate challenging benchmark cases of the granular flows:
the immersed granular collapse and landslide. The mixture behavior in the former is identified
by the viscous and inertial regimes whilst in the latter, the inertial regime is dominant due
to the extreme flow deformation. To validate the immersed granular collapse, we conduct
a complementary experiment representing the evolution and runout length of the deposit.
The submerged and deformable landslide is validated by the available experimental results.
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We investigate and fully characterize the flow regimes of these problems and evaluate the
effectiveness of the proposed developments for capturing the complex mechanical behavior of
such multiphase flows.

7.3 Governing Equations and Constitutive laws

7.3.1 Basic assumptions

The immersed granular flows consist of a mixture of solid grains and viscous fluid (i.e.,
water). In this study, the mixture of solid grains and interstitial/pore-water is considered
as a single continuum. Further, the constitutive laws represent the ambient water (Ωw) as
a Newtonian and the mixture (Ωm) as non-Newtonian fluid phases (see Figure 7.2). The
mathematical models correspond to the mechanical behavior of the fluid phases and their
interactions. Based on the following assumptions we derive the generic mathematical and
numerical frameworks of the fluid domain:

1. The mixture of solid grains and water is a non-colloidal and non-Brownian suspension,

2. The water and mixture phases are barotropic fluids,

3. No mass exchange and heat transfer occur between the fluid phases,

4. Terzaghi’s stress principle specifies the effective pressure of the sediment skeleton

With the first assumption, we employ the local rheology model that characterizes the granular
flow with the volume fraction of the solid grains and the bulk friction coefficient considering
the gravitational and shear forces [20,100]. The second assumption allows the mathematical
model to update the pressure of the fluid phases as a function of the density variations [100].
Considering the third assumption and neglecting the compressibility of the pore-water and
the solid skeleton of the grains signify that the volume fraction of the granular phase remains
invariant. Further, the single-phase and continuum-based models ignore the relative velocity
between the interstitial fluid and solid grain. The fourth assumption is used to estimate the
normal stress between the solid grains required for the rheological properties of the mixture.

In this paper, the subscripts, w, g, m, f , and pw denote the flow and material properties of
water, the solid grains, the mixture of solid grains and water, the overall fluid domain (as the
union of the water and mixture phases, i.e., Ωf = Ωw∪Ωm), and the pore-water, respectively
(see Figure 7.2). Also, 0 as a superscript (or subscript) of the flow properties stands for the
initial condition (or the reference) values.
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7.3.2 Flow equations

The Navier-Stokes governing equations in the Lagrangian framework describe the continuum
flows as [169]:



Dρ

Dt
= −ρ∇.v

ρ
Dv
Dt

= −∇p+∇.τ+ρF

Dr
Dt

= v

(7.1)

in which the pressure, the shear, and the body forces per unit volume (∇p, ∇.τ , and ρF,
respectively) determine the acceleration (Dv/Dt) of a fluid with a density of ρ. The velocity
vector and its divergence (i.e., v and −∇.v: the mass volume expansion rate) updates the
position (r) and the rate of change of the density (Dρ/Dt), respectively. In the weakly
compressible fluid models, the equation of state as a function of the material density calculates
the mechanical pressure (i.e., p = f(ρ)).

The rheology models account for the viscous forces within the multiphase fluid flows. The
general form of the rheology models considers the shear stress as a linear or non-linear function
of the strain rate tensor, E, and its principal invariants (the first, second, and third principal
invariants; IE=∇.v = 0 , IIE = 1/2E : E and IIIE, respectively) based on the Reiner-Rivlin
equation for an incompressible mixture flow [117]. Assuming the shear stress independent of
IIIE and E2 terms, represents the shear stress tensor as follows [117]:

τ (E) =2ηE (7.2)

where η is the effective (or apparent) dynamic viscosity of the fluid phase. This effective
viscosity includes the shear behaviors of the fluid flow considering the rate of deformation
and the material and hydrodynamic properties. For both Newtonian and non-Newtonian
fluids, the incompressibility assumption (i.e., ∇.v = 0) sets E equal to the deviatoric part
of the rate of deformation, E′ (where E = 0.5

[
(∇v) + (∇v)T

]
and the superscript T stands

for the transpose of the matrix).

In the momentum equation, the divergence of the shear stress includes the viscous forces
through the system of equations (7.1). Considering the incompressibility condition and
neglecting the gradient of dynamic viscosity over the domain (i.e., ∇η = 0, even at the
interfaces) simplifies the viscous force to [108,112]:
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∇.τ=η∇2v. (7.3)

This force stands for the shear behaviors of both Newtonian and non-Newtonian fluids. For
Newtonian and incompressible fluids, a linear relationship exists between its true viscosity
and the strain rate tensor. In the case of the granular flows, the solid grains immersed in
Newtonian fluids (like water with the true viscosity of µw) increases the viscosity of the fluid
as µw(1 + 5/2φ) by the volume fraction, φ [17, 20]. Moreover, the turbulence eddy viscosity,
νt, (based on the Large Eddy Simulation model [148]) can be added to include the turbulence
effects within the effective dynamic viscosity of the water as follows:

ηw = µw(1 + 5
2φ) + ρwνt. (7.4)

We calculate the turbulence eddy viscosity with νt = (Cs∆l)2√4IIE in which ∆l is the
mixing length and the Smagorinsky coefficient, Cs, is set to 0.12. For non-Newtonian fluids,
ideally, the rheology model should be capable of capturing the mechanical behaviors such as
the shear-thinning, the shear-thickening, and the flow threshold. The experimental studies
show that granular flows contain these non-linear behaviors [92]. Accordingly, the continuum-
based models consider the granular flows as non-Newtonian and incompressible fluids where
the rheology model includes their shear behaviors through the effective viscosity.

7.3.3 A regularized visco-inertial model

Here, we employ the rheology model proposed by Baumgarten and Kamrin [20] combining
Boyer et al. [101] and Amarsid et al. [100] models to simulate the viscous and inertial regimes
of the granular flows within a single formulation. As analyzed by Amarsid et al. [100], in this
model the non-dimensional numbers controlling the flow behaviors are the inertial number,
I, the viscous number, Iv, and the mixed number, Im, defined as follows:

Im =
√
I2 + 2Iv, I = |γ̇| dg

√
ρg
pg
, Iv = µw |γ̇|

pg
(7.5)

where dg and ρg are the mean diameter and the true density of the solid grains, respectively.
The normal stress between the solid grains, pg, is the effective pressure of the solid skeleton,
peff , in the immersed condition. The magnitude of the shear rate, |γ̇|, is equal to

√
4IIE for

an incompressible fluid. The general form of the viscosity model, hereinafter denoted as the
visco-inertial model, is given by [20]:
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µ (Iv, Im, φ) = µ1 + ∆µ
(b/Im) + 1 + 5

2

(
φIv
aIm

)
(7.6)

in which ∆µ = µ2 − µ1 and φ is the volume fraction of the solid grains. The material
parameters (a and b) including the upper and lower limits of the friction coefficient (µ2 and
µ1, respectively) can be specified by fitting the numerical and experimental results in the
steady-state shearing flows [20]. In the context of this model, the Stokes number defined as
St = I2/Iv determines the regimes of the granular flows. If St → ∞, the inertial number
is dominant, i.e., Im ≈ I, and by setting b = I0 and µf = 0 Eq. (7.6) reproduces the µ(I)
rheology implemented for the dry granular flows (I0 being an empirical coefficient of the
rheology). Baumgarten and Kamrin [20] showed that for St → 0 (where Im ≈

√
2Iv) Eq.

(7.6) fits with the data collected from the viscosity models and experimental measurements
represented by Chang and Powell [217], Stickel and Powell [92], and Boyer et al. [101] for
the inertial and viscous regimes. These empirical models govern the dense granular flows
suggesting I . 0.2, Iv . 0.1, Im . 0.6 and 0 ≤ St <∞ conditions [20].

Considering the visco-inertial model the effective viscosity for the incompressible mixture,
ηm, forms to:

ηm = µ (Iv, Im, φ) pg
|γ̇|

. (7.7)

To use Eq. (7.7) within the viscous force equation (7.3), the singularity issue (as |γ̇| → 0)
should be resolved by employing the regularization techniques [104]. Here, we utilize a
combination of the Bercovier and Engelman [218] regularization formulation and the simple
regularization model represented by Frigaard and Nouar [219] within the term containing the
yield stress, |τy| = µ1pg, and the post-failure terms (i.e., the second and third terms on the
right-hand side of Eq. (7.6)). Therefore, by substituting the dimensionless numbers (7.5)
into µ (Iv, Im, φ), we obtain the effective viscosity formulation as follows:

ηm = |τy|√
|γ̇|2 + λ2

r

+ ∆µ pg(
b
√
pg/

√
d2
gρg + 2µw/(|γ̇|+ λr)

)
+ |γ̇|

+5φ
2a

 µw
√
pg√

|γ̇|2d2
gρg + 2µw |γ̇|+ λ2

r

 (7.8)

in which the regularization parameter, λr, is a small value to avoid the singularity and
the normal stress is assumed to remain positive over the mixture phase (i.e., λr � 1 and
pg > 0) (see Appendix A.). To specify the yield stress for the non-cohesive granular material
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with the internal friction angle, θ, we employ the Drucker-Prager yield criteria as |τy| =
µ1pg = 2

√
3sinθ pg/(3− sinθ ). In Eq. (7.8) (unlike the Bingham types and the generalized

viscoplastic models) the post-failure terms contain the material and flow properties within
a single formulation for the dry and immersed conditions. Moreover, when |γ̇| is strictly
zero the regularized effective viscosity is definite (unlike the Papanastasiou regularization
technique [104]), and no further consideration is required.

7.3.4 Consistent effective pressure

For the immersed granular flows, the effective pressure of the sediment skeleton plays a
key role in the constitutive model (Eq. (7.8)). To capture the mechanical behavior of the
highly dynamic multiphase granular flows, the rheology model should predict a dynamic pore-
water pressure. Applying the lithostatic condition not only requires detecting the interfaces
beforehand but also ignores the dynamics of the mixture’s motion for estimating the effective
pressure. This has limited the capability of the well-developed particle methods (e.g., [111,
112,114,220]) for dealing with highly deformed interfaces in the immersed granular flows.

Here, we propose a consistent approach based on the mass conservation law of the pore-water
(within the mixture phase) to calculate the effective pressure dynamically. For this purpose,
we employ the main assumptions already considered in the single-phase continuum-based
models for the fully submerged granular flows (the assumptions I-IV in Section 7.3.1).

The continuity equation governing the partial density of the pore-water, ρpw = (1− φ)ρw, is
given as:

1
ρpw

Dwρpw
Dt

+ 1
VM

DwVM
Dt

= 0 (7.9)

where Dw( .)/Dt is the material time derivative on the water phase [221]. The second term
of this equation stands for the rate of volume expansion and can be substituted by the
divergence of the velocity field, ∇.vpw (as VM being the volume of the material particle).
Eq. (7.9) specifies the evolution of the true water density of the mixture phase, ρw, (as a
barotropic fluid) for calculating the pore-water pressure [20]. Since the single-phase models
treat the mixture of grains and pore-water as a single continuum, the fluid flow within
the solid skeleton is neglected. Accordingly, we can assume that the volume fraction remains
invariant (i.e., φ = constant) and the pore-water phase follows the same velocity and position
as the mixture phase (i.e., vpw = v and Dw( .)/Dt = D( .)/Dt). Therefore, we summarize
the general form of the constitutive relation for the pore-water pressure within the immersed
granular phase as follows:
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1
ρw

Dρw
Dt

+ 1
VM

DVM
Dt

= 0

ppw = f (ρw) .
(7.10)

By solving equation (7.10), we supply the continuum-based model with a direct method to
update the pore-water pressure field within the mixture phase (without the need for detecting
interfaces). With the initial hydrostatic condition for the density and pressure fields, the
spatial divergence of the velocity field (∇.v) determines the evolution of ρw. Eventually,
Terzaghi’s effective stress and the equation of state for the mixture and pore-water phases
determine the effective pressure, peff = p − ppw. It should be highlighted that the rheology
model only utilizes the effective pressure to calculate the effective viscosity and the mixture
inertial numbers through Eq. (7.8). Meanwhile, the velocity field of the mixture phase (v)
along with the bulk properties of the fluid flow (p and ρ) are calculated via the system of
equations represented as the multiphase model in Eq. (7.1).

7.4 Numerical Model

7.4.1 The discrete system

The continuum-based models homogenize the representative volume of the water and solid
grains into continuous fluid phases. The approximation procedure of the particle methods
discretizes the fluid domain into moving calculation points carrying the material and flow
properties (Figure 7.2). The approximation operator, 〈〉, (for the quantities and derivatives of
the flow variables) represents the discretize particle system [34,35]. In the conservative WC-
MPS method [123] the right-hand sides of the differential equations (7.1) are approximated
for a generic particle i as follows:



Dni
Dt

= −ni〈∇.v〉i

ρi
Dvi
Dt

= −〈∇p〉i +
〈
η∇2v

〉
i
+ ρiFi

Dri
Dt

= vi

(7.11)

where the particle number density, ni, is updated via the continuity equation, and η is the
dynamic viscosity. The density of particles is constant in the momentum equation (ρi = ρ0i :
the true density of fluid particles) while the pressure is updated by the equation of state
given as:
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pi = B0

((
ni
n0

)γ
− 1

)
(7.12)

where γ = 7 [47]. For the multiphase fluid flows the fluid bulk modulus, B0, is set to be
identical over the domain as B0 = c2

0ρ0 /γ where c0 and ρ0 are the artificial sound speed
and the true density of the reference fluid phase, respectively [36]. With c0 ≥ 10‖v‖max
(where ‖v‖max is the maximum expected velocity of the problem), the Mach number remains
less than 0.1 limiting the compressibility of the fluid to 1 %. It is worthy to mention that
this MPS method for multiphase fluid flows resolves the discontinuity issue occurring at the
interfaces via using the particle number density (as the substitute for the density variable
like [41]) and the identical bulk modulus for all the fluid phases.

In the approximation procedure, the kernel function (W ) smooths the differential operators of
equations (7.11) over the particles (Figure 7.2). The normalization factor, n0, (as a constant
value over the computational domain) is the kernel summation of the fluid particles over
their neighbor particles (N) at the initial state of particles (l0) and away from boundaries
(i.e., n0 = ∑N

i 6=jW (rij, re) at t = 0, as rij = |rj − ri| ≤ re, and re being the influence radius
of the kernel function set to 3.1l0). With considering the conjugate form of the gradient
and divergence operators in the context of MPS formulations, we derive the approximation
operators of the fluid flow variables as follows:



〈∇.v〉i=
d

n0

N∑
i 6=j

(
nj
ni

) vij
rij
.eijWij

〈∇p〉i = d

n0

N∑
i 6=j

(
ni
pj
nj

+ nj
pi
ni

)
eij
rij
Wij

〈
η∇2v

〉
i
=

2d
n0

N∑
i 6=j

ηij
vij
r2
ij

Wij

(7.13)

in which Wij = W (rij, re) and d (= 1, 2, 3) is the number of space dimensions. The
rational kernel function [46] is used in all the simulations. The pressure force vectors lie
on the unit direction vectors between particle i and j (eij = rij/rij) conserving the linear
and angular momentum of the system. While Laplacian of the velocity vector with the
direction of vij = vj − vi only conserves the linear momentum. One should note that in
the absence of shear stresses and external forces, the approximated form of the governing
equations conserves the total energy of the system, E (i.e., dE/dt = 0.0). In our model, the
harmonic mean determines the effective dynamic viscosity acting between particles i and j
as ηij = 2ηiηj/(ηi + ηj) [75].
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To ensure the numerical stability and eliminate the particle clustering (i.e., the tensile insta-
bility), we implement the Corrected Particle Shifting algorithm (the CPS technique proposed
in the EWC-MPS method [123]) regularizing their position vector by the corrected particle
shifting vector, δri, as r′

i = ri+δri. The proposed CPS is applicable to the three-dimensional
problems without any adjustment regarding the implemented free-surface detection algorithm
and the interface treatments. This approach utilizes the summation of the kernel function
(i.e., the particle concentration defined as ∑N

i 6=jWij/n0) and hence, acts independently from
the material properties of the fluid phases in the multiphase problems. In this study, the
particle shifting coefficient is set to 0.04l20. Further, we limit the magnitude of the shifting
vector as δri = min {0.25 ‖vi‖∆t, 0.2l0, ‖δri‖} δri/‖δri‖, to reduce the energy manipulation
that may occur by the convection of material and flow properties of the fluid particles where
the potential energy is dominant.

Figure 7.2 The homogenized water and mixture phases are treated as Newtonian and non-
Newtonian fluids, respectively. The computational domain is discretized with moving parti-
cles representing the water (Ωw), mixture (Ωm), and solid boundary (Ωs) particles.
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7.4.2 Modified diffusive term

Jandaghian and Shakibaeinia [123] introduced the diffusive term in the WC-MPS method
to eliminate high-frequency pressure fluctuations. By adding the diffusive term, Di, to the
right-hand side of the continuity equation, this numerical correction has proved to be effective
and essential for obtaining a smooth pressure field in particle methods (e.g., [54, 123]).

Nevertheless, the standard form of the diffusive terms (proposed by Molteni and Cola-
grossi [54] for WC-SPH, and Jandaghian and Shakibaeinia [123] for WC-MPS) unphysically
diverges the pressure field at the free-surface as the kernel function truncates [66]. The same
issue exists in the vicinity of the solid boundary particles where the inner product of the
normal vector to the solid wall and the gravitational force is non-zero (i.e., ns.g 6= 0). In this
case, the density of the fluid particles close to the solid boundary particles decreases affecting
the overall pressure field in the long-term simulations. This divergence occurs as the solid
boundary particles are excluded from the diffusive term of the fluid particles required for
conserving the total mass of the fluid phase. Particularly, for problems where the mechanical
behavior of the fluid flow depends on the pressure parameter implementing a convergent dif-
fusive term over the fluid domain becomes essential (e.g., for calculating the effective viscosity
of the sediment phase in this study). Moreover, in the multiphase problems, the diffusive
term (as a function of the density in the standard delta-SPH) requires special treatment at
the interface of the fluid phases due to the discontinuity of the density field. By only apply-
ing the diffusive term among the same phase particles (e.g., in [70, 109]) the kernel function
truncates at the interface diverging the density field. Although the higher-order gradient
formulation reduces the associated errors, for highly deformable interfacial flows this is still
incompetent.

Here, we represent a modified diffusive term in the context of the WC-MPS method to
surmount the numerical issues arising from the kernel truncations at the boundaries. To
do so, we employ the convergent form of Laplacian and Taylor’s expansion series based on
the work of Antuono et al. [66]. Further, utilizing the particle number density, ni, gives an
independent diffusive term with respect to the density discontinuities at the interfaces of
multiphase problems. The general form of the modified diffusive term denoted by Dm

i , is
given as:

Dm
i = δMPS

∆tc2
0

n0

〈
∇2n

〉
i

(7.14)

where the time step of calculation (∆t), the reference sound speed, and the normalization
factor (c0 and n0, respectively) and the non-dimensional coefficient (0 < δMPS ≤ 1) deter-
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mine the intensity of the numerical correction [123]. To supply the model with the global-
convergent equation for Laplacian of the particle number density, we consider:

〈
∇2n

〉
i
=

2d
n0

N∑
i 6=j

ψij
Wij

r2
ij

(7.15)

where based on Taylor’s series, ψij is given by:

ψij = (nj − ni)−
1
2
[
〈∇n〉Ci + 〈∇n〉Cj .rij (7.16)

recovering the convergence all over the fluid domain [66]. The gradient of ni in the MPS
formulations is approximated via:

〈∇n〉Ci = d

n0

N∑
i 6=j

nj − ni
rij

(Cieij)Wij (7.17)

in which the corrective matrix, Ci, increases the operator’s order of accuracy and is as
follows [123]:

Ci=
 d

n0

n∑
i 6=j

rij
rij
⊗ eijWij

−1

(7.18)

while i and j ∈ Ωf and ⊗ is the outer product of two vectors. Eventually, the modified
diffusive term denoted as Dm

i , forms to:

Dm
i =

(
δMPS

∆tc2
0

n0

)
2d
n0

N∑
i 6=j

[
(nj − ni)−

1
2
[
〈∇n〉Ci + 〈∇n〉Cj .rij

]
Wij

r2
ij

(7.19)

limited among the fluid particles (i.e., i and j ∈ Ωf ). Therefore, by adding this term to the
continuity equation proposed in the enhanced WC-MPS model, we obtain:

1
ni

Dni
Dt

= −〈∇.v〉i+Dm
i (7.20)

for updating the particle number density field in the multiphase problems. The modified
diffusive term acts independently from the density discontinuity at the fluid interfaces and
benefits from the continuous particle number density field. This is possible as the identical
bulk modulus (B0 = ρ0c

2
0/ γ) and the normalization factor are used to define the particle

number density and calculate the pressure fields in all the fluid phases. Further, this diffusive
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model conserves the total mass of the system (i.e., ∑i niD
m
i Vi = 0 as Vi is the volume of

the particle) in multiphase test cases. The implementation and effectiveness of the modified
diffusive term are specifically discussed in section 7.5.1. Recently, Jandaghian et al. [124]
adapted this diffusive term (Eq. (7.19)) for simulating and validating violent free-surface
flows.

7.4.3 A generalized rheology model for immersed granular flows

The numerical model calculates the effective viscosity of each fluid particle concerning its
material properties and flow variables. Here, we propose a generalized rheology model to
couple with the EWC-MPS method by implementing the regularized visco-inertial rheology
model along with the consistent effective pressure. The regularized visco-inertial model (Eq.
(7.8)) determines the effective viscosity of the fluid particles containing the granular material,
i ∈ Ωm, through:

ηi = |τy|i√
|γ̇|i

2 + λ2
r

+ ∆µ pgi(
b
√
pgi/

√
d2
gρg + 2µw/(|γ̇|i + λr)

)
+ |γ̇|i

+5〈φ〉i
2a

 µw
√
pgi√

|γ̇|i
2d2
gρg + 2µw|γ̇|i + λ2

r

 (7.21)

in which the normal stress between the solid grains, pgi, (wherein the immersed condition
pgi = peff i) gives the yield stress as |τy|i = µ1pgi and |γ̇|i =

√
4IIEi. In this study we choose

λr = 0.001 to avoid the singularity issue. The constitutive model for Newtonian fluid (Eq.
(7.4)) updates the effective viscosity of the water particles, i ∈ Ωw, (as a function of the shear
rate magnitude, |γ̇|i, and the smoothed volume fraction, 〈φ〉i) by:

ηi = µw

(
1 + 5

2 〈φ〉i
)

+ ρ0w(Csre)2|γ̇|i (7.22)

where µw = 0.001 Pa.s , ρ0w = 1000 kg/m3 for water and the smoothing length, re, is
considered as the mixing length for the turbulence Sub-Particle Scale model with Cs =
0.12 (See [148, 180]). Here, we have ignored the implementation of Favre-averaging for the
turbulence viscosity calculations (see [191]) by neglecting the weak compressibility of the
fluid model. The numerical model estimates the volume fraction over the fluid particles as
follows:

〈φ〉i =
∑N
i 6=j φjWij∑N
i 6=jWij

(7.23)
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considering that for ∀i ∈ Ωw, φi = 0 and for ∀i ∈ Ωm, φi = φ, φ being the volume fraction of
the solid grains. It should be noted that the local volume fraction of the fluid particles, φi,
remains invariant during the simulation, although its approximated value varies in the im-
mersed problems as the interface deforms. Overall, the terms containing 〈φ〉i in the rheology
model aim to include the effects of the suspended granular materials through the effective
viscosities at the interface (where 〈φ〉i for i ∈ Ωm decreases, while for i ∈ Ωw increases) [20].
Moreover, we set |τy|i∈Ωm = 0 if 〈φ〉i becomes less that 0.25φ.

We employ the corrective matrix, Ci, (Eq. (7.18)) to increase the order of accuracy for
estimating the velocity gradient, through:

〈∇v〉Ci =
d

n0

N∑
i 6=j

vij
rij

(Cieij)Wij (7.24)

used to calculate the second invariant of the strain rate tensor, IIEi = 0.5Ei:Ei, (where
Ei = 0.5(〈∇v〉Ci + 〈∇v〉Ci

T )).

To implement the consistent effective pressure (proposed in section 7.3.4), we consider the
rate of volume expansion of the particles (i.e., V −1

iDV i/Dt) by the velocity divergence and
the diffusive term as 〈∇.v〉i−Dm

i to update the true density of the pore-water. Hence,
we discretize the system of equations (7.10) in the Lagrangian framework for the mixture
particles as follows:


1
ρwi

Dρwi
Dt

= −〈∇.v〉i+Dm
i , i ∈ Ωm

ppwi = B0

((
ρwi
ρ0w

)γ
− 1

) (7.25)

assuming invariant pore-water porosity for the particles. Note that the right-hand-sight of the
continuity equation of (7.25) is already estimated for updating the particle number density
field through Eq. (7.20). With Terzaghi’s effective stress, peff i = pi − ppwi, and the equation
of state (7.12) (for pi and ppwi as the functions of ni = n0ρi/ρ0m and the identical B0 where
the true density of the mixture phase, ρ0m = (1− φ) ρ0w + φρg), the general form of the
effective pressure reduces to:

peff i = B0

[(
ni
n0

)γ
−
(
ρwi
ρ0w

)γ]
, i ∈ Ωm. (7.26)

The proposed model not only calculates the effective pressure dynamically but also removes
the need for tracking the interfaces without additional calculation costs. It is worthy to
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note that since the presented model updates pi and ppwi with an identical bulk modulus,
the pressure oscillations due to the slight compressibility of the numerical model are filtered
out from the effective pressure calculation. Otherwise, using different reference pressures
in the equation of state (or the hydrostatic assumption for the pore-water pressure) affects
the stable viscosity field required for capturing the mechanical behavior of the submerged
granular flows (since this introduces the low-frequency oscillations into the effective pressure
field).

7.4.4 Virtual moving gates

In experimental setups of the immersed granular flows (including the gravity/flow driven
problems), a physical gate contains the fluid phases at the initial stage. Different mechanisms
have been implemented for removing the gate to release the mixture (or fluid) phase and form
the granular flow (e.g., a sluice gate is lifted or withdrawn into a bottom cavity of the channel
(see [91] and [222])). The gate as a moving object interacts with the fluid and granular phases
through the pressure and friction forces. These interactions may have impacts on the initial
stage of the flow as the gate is being removed (depending on the thickness and the roughness
of the gate and the material properties of the fluid phases). Including the physical effects of
the gate (associated with its high true velocity) within the numerical simulations has been a
challenge in terms of stability and accuracy of the model. Therefore, the numerical models
mostly ignore the presence of the gate and its influence on the initial condition of the fluid
flows (e.g., [98, 114,134]).

Here, we employ virtual moving gates to include the effects of the removable gate in the
governing equations of the fluid particles while ignoring its physical thickness. Representing
the thickness of the physical gate requires the use of extremely small particles affecting the
computational efficiency. We explain the implementation of the virtual gate method through
a simple example in which a gate separates the fluid phases as being lifted in the y-direction
(Figure 7.3). We model the virtual gates by two sets of virtual particles with the particle
distance of l0 arranged in three layers (parallel to the centerline of the gate). The virtual
particles at the left side interact with the fluid at the right side of the gate and vice versa.
Each set of virtual particles (which are fixed with respect to each other) represents a virtual
gate denoted as VG1 and VG2 delimiting the two regions of the channel (i.e., the left and
right sides of the gate’s centerline). These virtual gates are faced on the interface of the two
regions identified as R1 and R2 (see Figure 7.3). The true velocity of the gate, vg, updates
the vertical position (yg) of the virtual gates and R1 and R2 regions. It should be noted that
the fluid particles within R1 (or R2) only interact with the virtual particles of VG1 (or VG2)
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at the other side of the centerline while ignoring the fluid particles within R2 (or R1) and
the virtual particles of VG2 (or VG1). Further, VG1 and VG2 neglect the presence of each
other and the solid boundary particles.

Regarding the flow properties of the virtual particles, we update their pressure via the gen-
eralized wall boundary condition by Adami et al. [172] smoothing the fluid particles’ pres-
sure on the virtual particle as pi = ∑N

i 6=j pjWij/
∑N
i 6=jWij where i ∈ VG1 (or VG2) and

j ∈ R1 (or R2). The velocity and viscosity of the virtual particles included in the continuity
and momentum equations of the fluid particles need to be adjusted based on the spatial res-
olution and the expected initial stage of the case study (e.g., see Table 7.4). However, they
are moved with the true velocity of the gate, vg. Hence, the pressure of the virtual particles
repels the fluid particles from passing the centerline (to the other region) and their assigned
velocity and viscosity simulate the friction between the gate and the fluid particles.

Figure 7.3 The virtual moving gates implemented for modeling the effects of the physical
gate in the numerical simulations.
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7.4.5 Initial and boundary conditions

The continuity equation in the EWC-MPS method enables assigning the initial pressure to the
particles. Considering the theoretical solution of a problem (including the initial velocity,
v0
i , position, r0

i , and the boundary conditions) the initial pressure of the fluid particles,
p0
i , can be calculated. Then, the inverse form of the equation of state gives the initial

particle number density of the particles through n0
i = n0 (p0

i /B0 + 1)1/γ. In this study, we
assign the initial hydrostatic pressure to the fluid particles (without changing their positions).
Subtracting the equivalent hydrostatic water pressure, p0

pwi
, from the total initial pressure of

the mixture particles, p0
i , determines the initial effective pressure of the mixture particles as

p0
eff i = p0

i − p0
pwi

. With the inverse form of the equation of state, we assign the initial true
water density of the mixture particles, ρ0

wi, corresponding to the initial pore-water pressure.

We employ the fixed dynamic boundary condition for treating the wall and ghost particles
denoted as the solid boundary particles, Ωs (based on the work of Crespo et al. [67]). Fig-
ure 7.2 represents the classification of the particles including the fluid and solid boundary
particles. In the dynamic boundary condition implemented in this study, the pressure of the
closest wall particle is assigned to the ghost particles. Further, in the governing equations
of the fluid particles, the velocity of the fluid particle interacting with the solid boundary is
assigned to the ghost particles whereas the wall particles have zero velocity (Table 7.1). To
update the particle number density of the wall particle via the continuity equation (without
the diffusive term), the velocity of all the boundary particles remains zero. For approximat-
ing the gradient of the velocity of the fluid particles, 〈∇v〉i, we assign the fluid’s velocity to
the wall/ghost particles to avoid large amounts of IIEi (i.e., i ∈ Ωf , j ∈ Ωs and rij ≤ re →
vj = vi in Eq. (7.24)) (see Table 7.1).

At the vicinity of the solid boundary or the virtual gates, we assign the particle number
density and a fraction of effective viscosity of the fluid particles, given by γsηi, to the wall
and ghost particles (i.e., i ∈ Ωf , j ∈ (Ωs or VG1 (or VG2)) and rij ≤ re → ηj = γsηi and
nj = ni in Eq. (7.11)). The constant and dimensionless coefficient 0 ≤ γs ≤ 1 adjusts
the friction magnitude between the fluid and wall particles based on the problem specifics.
Furthermore, the volume fraction of the fluid particles close to the solid boundaries is given
to its neighbor boundary/virtual gate particles (i.e., i ∈ Ωf , j ∈ (Ωs or VG1 (or VG2)) and
rij ≤ re → φj = φi in Eq. (7.23)). Regarding the particle stabilization technique, the
CPS technique involves the solid boundary particles for determining the free surface regions
and the shifting vector by assigning the particle concentration of the closest wall particle
(calculated like the fluid particles) to the neighbor ghost particles.
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Table 7.1 The strategies for the diffusive term to simulate the steady reservoir filled with the
two fluid phases as ρL/ρH = 0.5.

i ∈ Ωf , j ∈ Ωs = (Ωsw ∪ Ωsg) and rij ≤ re

〈∇.v〉i,
〈
∇2v

〉
i

{
vj = 0 j ∈ Ωsw

vj = vi j ∈ Ωsg

〈∇v〉i vj = vi j ∈ Ωs

7.4.6 Solution algorithm

The symplectic time integration algorithm by Monaghan and Rafiee [11] solves the discrete
system of equations as a second-order and explicit scheme (see Appendix 7.6). In addition
to the Courant-Friedrichs-Lewy stability condition, the shear force due to the maximum
viscosity controls the time steps of the calculation (∆t) as follows [223]:

∆t = min
{
CCFL

l0
c0
, 0.125ρml

2
0

ηmax

}
. (7.27)

In this study, we set the CCFL coefficient to 0.5 for all the simulations; however, for sim-
ulating the granular flows, the diffusion stability condition is dominant and the maximum
viscosity, ηmax, enforces the shear force condition for the numerical stability of the time in-
tegration scheme. To accelerate the computations, we implement the numerical model in
parallel frameworks with Compute Unified Device Architecture (CUDA) C++ programming
language using the massive parallelism of the Graphical Processing Unit (GPU) devices (see
Appendix 7.6 for more details). This speeds up simulating three-dimensional problems with
high shear stresses studied in the present work. It should be highlighted that the develop-
ments proposed and validated in this paper are independent of the programming language
and the parallel algorithms used and can be directly extended to other continuum-based
particle methods.

7.5 Results and discussions

We implement the proposed developments in the three-dimensional model of the EWC-MPS
method to capture the complex mechanical properties of the multiphase granular flows. First,
we validate and discuss the role of the modified diffusive term by simulating the hydrostatic
pressure in a simple multiphase problem. Further, we study the gravity-driven immersed
granular flows through the granular collapse and landslide benchmark cases. We represent
a set of experimental results for validating the granular collapse test case in the submerged
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conditions. While for the immersed granular landslides, we validate the numerical simulations
by the work of Pilvar et al. [10].

7.5.1 Hydrostatic pressure for two fluid phases

We simulate the hydrostatic pressure in a multiphase test case ( [134, 164]), to show the
effectiveness of the modified diffusive term. In this problem a steady reservoir is filled with
two inviscid and immiscible fluids as the lighter phase (with the density ρL = 1000 kg/m3)
is on the top of the heavier phase (with the density ρH = 2000 kg/m3), ρL/ρH = 0.5. Each
fluid phase has 0.1 m height subjected to the constant gravitational force, g= {0,−gy, 0},
where gy = 9.81 m/s2. The particles are initially located on a hexagonal lattice with the
spatial resolution defined as R = H/l0(Figure 7.4). The Symplectic time integration scheme
with CCFL = 0.5 solves the governing equations for 10 seconds of simulation. Considering
the lighter fluid as the reference phase, the reference sound speed and the bulk modulus are
set to c0 = 10

√
2gyH and B0 = ρLc

2
0/γ, respectively. δMPS is set to 0.1 for all the test

cases and the particle shifting technique is deactivated. The initial pressure, p0
i , of the fluid

particles are calculated based on the initial hydrostatic condition. Then, the inverse form of
the equation of state determines the initial particle number density field, n0

i (Figure 7.4).

Concerning the different formulations for ψij in the diffusive term (Eq. (7.15)), we define
three strategies to simulate this multiphase problem (the test cases 1A, 1B, and 1C in Table
7.2). The results show that the standard form of the diffusive term causes the pressure field
to diverge at the free-surface and the vicinity of the bottom wall (Figure 7.5-1A). The ker-
nel truncation at these regions locally manipulates the particle number density field leading
to unstable pressure fields in the long-term simulation of the problem. Further, case 1A
shows that this diffusive term overestimates pressure at the interface of the fluid phases.
By employing the convergent form of Laplacian operator without the higher-order gradient
formulation, i.e., with 〈∇n〉i (case 1B), the particle number density field still diverges close
to the bottom wall. Nevertheless, the numerical pressure at the interface is compatible with
the theoretical result and the overall pressure field becomes stable after t = 3 s. In case 1C,
the proposed diffusive term with the higher-order gradient (i.e., 〈∇n〉ci) is implemented in
the convergent form of Laplacian operator acting between all the fluid particles (Eq. (7.19)).
This diffusive term solves the kernel truncation issue at the free surface and the vicinity of
the wall. Comparing case 1B vs 1C in Figure 7.5 exhibits the key role the first-order gradient
plays in the accuracy of the pressure approximation as the kernel function truncates. Figure
7.6 illustrates the uniform particle distribution and the smooth pressure field obtained by
the three cases at t = 10 s. However, implementing the standard diffusive term underesti-
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mates the pressure at the vicinity of the bottom wall in the long-term simulation (Figure
7.6-1A). Overall, the results confirm that the modified diffusive term as a function of the
particle number density and without being limited to the same phase particles (unlike the
multiphase SPH models e.g., [70]), estimates accurate pressure field over the fluid domain
while is independent of the accuracy of the corrective matrix (Eq. (7.18)) at the interface of
the fluid phases.

To quantify the improvement achieved by the modified diffusive term (similar to the work of
Fourtakas et al. [69]), we conduct the particle convergence study considering different spatial
resolutions set as R = 50, 100, and 200. With the theoretical solution of this problem, we
estimate the Normalized Root Mean Square Error (NRMSE) of the pressure, the magnitude
of velocity, and the total kinetic energy of fluid particles (Ek). Figure 7.7 compares the
theoretical hydrostatic pressure with the extracted numerical pressure at x = 0.1 m and
t = 10 s of the cases 1A and 1C (where the errors are normalized by the maximum analytical
pressure of the corresponding fluid phase). Although the NRMSE of the model with the
standard diffusive term reduces by increasing the resolution, the pressure in the vicinity
of the bottom wall still diverges considerably in the long-term simulation (as for Case 1A
with R = 200, NRMSE = 1.87%). However, the modified diffusive term decreases the
NRMSE significantly by the order of one magnitude as the numerical pressure converges
to the analytical pressure across the fluid phase (as for Case 1C with R = 200, NRMSE
= 0.154%). Figure 7.8 illustrates the velocity profile in the middle section (at t = 10 s)
and the temporal evolution of the total kinetic energy (where the errors of ‖v‖ and Ek

are normalized by
√
gyH and the total potential energy (which in this problem is 45.05 (J)),

respectively). The NRMSE of the velocity and the total kinetic energy are negligible for both
1A and 1C cases (i.e., NRMSE < 0.01%); nevertheless, with the modified diffusive term, the
velocity field convergence to the theoretical velocity of zero with fewer numerical errors. It
should be noted that the initial hexagonal distribution of the particles has eliminated the
initial particle rearrangement and its associated noises that occur with the cartesian particle
distribution in the initial time steps of the simulation (see [123]). In Figure 7.9, we plot the
NRMSE of the total kinetic energy and the pressure with the different resolutions using the
logarithmic scale to identify the order of convergence. For the total kinetic energy, the order
of convergence is estimated as 1.56 and 1.69, for 1A and 1C, respectively, showing satisfactory
results as it slightly increases with implementing the modified diffusive term. The divergence
of the pressure in the vicinity of the wall with the standard diffusive term affects the order
of convergence of this variable as is approximately less than one (i.e., Case 1A: O(0.74));
whereas, with the modified diffusive term, i.e., Case 1C, the order of convergence increases
considerably to O(1.35) , confirming the effectiveness of the model in predicting accurate
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pressure field.

7.5.2 Immersed granular collapse

The immersed granular collapse has been widely modeled for understanding the mechanical
properties of the granular flows in various hydrodynamic conditions (e.g., [19, 90, 91, 224]).
Capturing the different states of the granular flow in this problem: the viscous and/or inertial
regimes, has been a great challenge for numerical models (e.g., [20, 113, 225–227]). Here, by
simulating this gravity-driven test case, we investigate the role of the modified diffusive term,
the regularized visco-inertial model, and the consistent effective pressure. We validate the
three-dimensional numerical model (developed in the context of the EWC-MPS method) by
the experimental results conducted and presented as a part of the present work. Figure 7.10
illustrates the initial setup and geometrical properties of the physical and numerical models.

We conducted the experiment in a steady and horizontal channel of the rectangular cross-
section (Wb × Lb) with a sluice gate located at x = L0. As the gate opens (with vg = 1 m/s
in the y-direction), the column of the mixture collapses under the gravitational force (with
g= {0,−gy, 0} and gy = 9.81 m/s2) propagating on the smooth bottom wall of the channel.
With the aspect ratio of the granular column equal to one (i.e., H0/L0 = 1), the final deposit
is expected to form a triangular shape where the final height becomes less than the initial
height [91]. Table 7.3 contains the material properties of the spherical glass beads with a
mean diameter of 0.0008 m and ρg = 2470 kg/m3 fully submerged in ambient water with
ρ0w = 1000 kg/m3 and µw = 0.001 Pa.s. We neglect Brownian effects as the grains are
large enough (i.e., as dg > 100 µm). The physical properties used in the effective viscosity
equation correspond to the rheology model Baumgarten and Kamrin [20] validated by the
experimental data. We recorded the evolution of the collapse from the sidewall of the reservoir
to extract the interface profiles and the spreading (runout) length of the granular deposit.
Depending on the material properties of the fluid phase and the solid grains, the viscous
and/or inertial regimes occur in the immersed granular collapse [90, 93]. Considering the

Table 7.2 The strategies for the diffusive term to simulate the steady reservoir filled with the
two fluid phases as ρL/ρH = 0.5.

Strategy ψij in Laplacian operator of the diffusive term (Eq. (7.15))
Case 1A ψij = (nj − ni) i, j ∈ all the fluid particles
Case 1B ψij = (nj − ni)− 0.5

[
〈∇n〉i + 〈∇n〉j

]
· rij i, j ∈ all the fluid particles

Case 1C ψij = (nj − ni)− 0.5
[
〈∇n〉Ci + 〈∇n〉Cj

]
· rij i, j ∈ all the fluid particles
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Figure 7.4 The initial configuration of the steady reservoir (gy = 9.81 m/s2) filled with the
two fluid phases (R = H/l0 = 100). The lighter phase with ρL is considered as the reference
phase for calculating the bulk modulus, B0. The hexagonal lattice is used for the initial
uniform distribution of the particles.

Figure 7.5 The position of the fluid particles (yi) vs their numerical pressure (pi, without
any data averaging or filtering) at t = 10.0 s (All the fluid particles are plotted in the graph
for cases 1A, 1B, and 1C defined in Table 7.2 with R = 100). The zoom-in plots show fluid
particles at the free-surface, the interface, and the vicinity of the bottom wall.
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Figure 7.6 Pressure field of the cases 1A, 1B, and 1C at t = 10.0 s. The particles are initially
located on the hexagonal configuration and R = 100.

Figure 7.7 The theoretical versus the extracted numerical pressure (averaged at x = 0.1 m
and t = 10 s). The NRMSE of the pressure profiles for the cases 1A and 1C with the different
spatial resolutions, R = H/l0 = 50, 100, and 200, are represented.
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Figure 7.8 The velocity profiles (averaged at x = 0.1 m and t = 10 s) and the evolution of
the total kinetic energy of the system with R = 50. The NRMSE for the cases 1A and 1C
are represented.

Figure 7.9 The NRMSE of the pressure profiles and the total kinetic energy (in the log-log
plot) for the cases 1A and 1C representing the order of convergence of the numerical results.
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dimensionless numbers: the Stokes number, St, (here is defined as the ratio of the viscous
timescale to the free-fall timescale) and the grain-water density ratio, r =

(
ρg/ρ0w

)0.5
, the

immersed granular collapse in the present study falls within the viscous-inertial regime (as
St = 5.4 and r = 1.6) [90].

In the numerical model, we discretize the computational domain with the initial particle
distance, l0.The total particle count, presented in Table 7.4, consists of the water, mixture,
solid boundary, and virtual gates particles. To ensure the incompressibility of the fluid model,
we set the reference sound speed to 24 m/s. We should note that in this problem the viscous
force limits the time steps of the calculation through Eq. (7.27) (as ηmax = 1000 Pa.s). We
implement the particle packing algorithm to eliminate the noise arising from the transition
of the initial cubic particle distribution to the low-energy configuration (similar to [228]).
The new position of the fluid particles are used to calculate n0 (by averaging the kernel
summation over the interior fluid particles) and initialize the main simulations (i.e., apply
the initial hydrostatic condition) (Figure 7.10-b). The virtual particle, j, representing the
moving gate interacts with the fluid particle, i, within R1 or R2 regions (in Figure 7.10-b)
through the governing equations. Although the virtual particles are moved with the true
velocity of the physical gate (vg = 1 m/s), their virtual velocity included in the momentum
and continuity equations of the fluid particles is adjusted according to Table 7.4 for different
spatial resolutions (e.g., with l0 = 0.003 m for ∀i ∈ VG1 or VG2→vi = {0.0,+0.2, 0.0}).
Also, for the shear force between the fluid particles, i, and the virtual and wall particles, j,
the dimensionless coefficient of the viscosity, γs, is given in Table 7.4 (e.g., with l0 = 0.003 m,
ηj = 0.2ηi). We extract the numerical results from the middle and sidewall sections of the
channel (specified in Figure 7.10) to represent them in two-dimensional (x-y) graphs. We
define five different strategies for simulating the immersed granular collapse concerning the
implementation of the diffusive term, the effective pressure, and the rheology model (Table
7.5). The test case 2A contains all the developments proposed in the present work and can be
denoted as the reference numerical model. In the diffusive term, δMPS = 0.6 for all the test
cases except 2B. To detect the free-surface particles and for the stability of the model, the
CPS technique is activated. Table 7.6 identifies the timesteps in which the comparison of the
experimental and numerical results is carried out. The nondimensional time scale, T, is given
by t

√
gy/H0 (H0 being the initial height of the granular column). We consider the reference

time, T0 = 0.0, as the immersed granular column commences to collapse on the bottom wall
of the channel (shown in Figure 7.12). While the gate is being opened and still L = L0 (L
is the length of granular deposit on the bottom wall in the x-direction), we re-initialize the
true density of water within the mixture particles, ρwi, assuming the hydrostatic condition
for the pore-water pressure.
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We represent the three-dimensional configuration of the immersed granular collapse (Case
2A with l0 = 0.003 m) in Figure 7.11: the viscosity field (in the logarithmic scale) and the
effective pressure within the mixture particles at T4 and T6, respectively, and the pressure
field of the water particles at T8 (see the results in the supplementary materials for movies
of the experiment and the numerical simulations). The physical effects of the virtual gate
implemented at the initial stages of the granular flow are well illustrated in the movies. Also,
the fixed solid boundary particles include the shear force between the walls of the channel
and the fluid particles in the numerical simulations. This allows the 3D model to capture the
effects of the reservoir’s corners on the overall evolution of the granular deposit. Due to the
confinement of the granular phase at the two corners, the maximum viscosity occurs forming
the curve-shape surface of the mixture on the back wall, also observed in the experiments
(Figure 7.11- a & d). It should be highlighted that the two-dimensional models are incapable
of capturing this aspect of the granular collapse [111].

Plotting the interface profiles of the experimental results (the left column of Figure 7.12)
on the sidewall sections of the numerical simulation of Case 2A with l0 = 0.003 m (in
the right column of Figure 7.21), we compare the time evolution of the granular collapse.
The rapid opening of the vertical gate creates vortices suspending the solid grains in water
at the initial stage (Figure 7.12-T0). This makes digitizing the interface profiles of the
experiment difficult and slightly affects the deformation of the granular phase in the early
stages (at T2). Furthermore, since the virtual gate neglects the physical thickness of the gate
(which is 0.005 m in the experiment), the shear stress causing the suspension of the grains
is partially simulated via the numerical model. However, comparing the interface profiles in
the following steps of the granular collapse shows good compatibility between the numerical
and experimental results.

Next, we investigate the effect of the initial particle distance (or size) on the time evolutions
of the mixture phase. In the case of granular flows, the choice of the particle distance is not
only controlled by the convergence of the numerical technique but also by the validity of the
continuum assumption. Considering the continuum assumption in the governing equations,
the smallest numerical elements (here the particles) must be much larger than the diameter of
the physical elements (here the solid grains and pore water) [17,122]. With the particle and
grain sizes being close (i.e., l0 ≈ dg), the mixture particles would contain a limited number of
solid grains violating the continuum assumption of the numerical model [114]. On the other
hand, the representative elementary volume should be much smaller than the characteris-
tic length of the problem to mathematically represent its vicinity in the calculations [122].
Therefore, the initial particle spacing should satisfy both conditions simultaneously; other-
wise, either the rheology model, defined for a continuous effective fluid, becomes invalid or
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the approximation errors increase, affecting the mechanical behavior of the mixture phase.
To determine the optimum particle size of the model, we simulate the immersed granular
collapse with different spatial resolutions (l0 = 0.004, 0.0035, 0.003, 0.002, 0.0015 m with
the adjusted boundary conditions given by Table 7.4). Figure 7.13 compares the dimension-
less interface profiles of the numerical simulations with those from the experiment at the
sidewall of the reservoir (at T2, T6, and the final stage). The results of case 2A with l0 =
0.004 and 0.0035 m show considerable incompatibilities between the numerical and exper-
imental profiles. This apparent discrepancy can be explained by the large initial particle
distance (with regards to the problem characteristic length) which increases the approxima-
tion errors and leads to inaccurate interaction forces between the solid boundaries and fluid
particles. Nevertheless, the interface profiles with l0 ≤ 0.003 m are in good agreement with
the experimental profiles; whereas, the case l0 = 0.0015 m shows slightly more deformation
of the granular collapse at T6. Furthermore, we plot the normalized runout distances (i.e.,
L/L0 − 1) in the left graph of Figure 7.14. A clear discrepancy between the experimental
and numerical runout distances of the immersed granular collapse with l0 = 0.004 and 0.0035
m exists, while the runout lengths of cases with the smaller particle sizes, particularly with
l0 = 0.003 and 0.002 m, are consistent with the experimental measurement. Although the
case with l0 = 0.0015 m (considering the adjusted boundary conditions (Table 7.4)) predicts
the final stage of the granular deposit, it overestimates the runout length during the collapse
(i.e., T2 ≤ T ≤ T7).

To quantify the accuracy of the results, we compute the Root Mean Squared Error (RMSE) of
the normalized runout distances and plot them against the non-dimensional ratio of l0/dg (in
the right graph of Figure 7.14). The table presented in Figure 7.14 shows the number of solid
gains that each mixture particle represents, Ng, (in 3D) and the corresponding errors of the
normalized runout length. For coarse particle sizes (i.e., l0 = 0.004 and 0.0035 m), the RMS
Errors are considerable (equal to 0.4972 and 0.1597, respectively). By decreasing the parti-
cle size to 0.003 and 0.002 m the errors significantly reduce (RMSE = 0.0509 and 0.0499,
respectively) confirming the good agreement between the numerical and experimental results
and the convergence of the model; however, with the smallest particle size of l0 = 0.0015 m,
the RMSE increases to 0.0963. This illustrates that when the mixture particle contains a
limited number of solid grains (for l0 = 1.875dg, Ng = 8 in the 3D problem) may violate the
continuum assumption of the granular mass leading the rheology model to become incapable
of capturing the accurate evolutions of the granular mass (in this case, overestimating the
deformations). Through a similar study, Ghaïtanellis et al. [114] obtained equivalent out-
comes showing the overestimation of sediment erosion with l0 < 2dg and concluded that the
minimum error is achieved by l0 ≈ 3dg. That is due to the fact that with smaller particle sizes
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the macroscopic scale would reach the size of the discrete elements of the system, and thus,
it would no longer be the representative elementary volume of the continuum model [114].
Overall, the interface profiles and the spreading length of the case 2A (with l0 = 0.003 and
0.002 m) are consistent with the experimental measurements as the model predicts the evo-
lution of the immersed granular collapse with the RMSE of the normalized runout distance
≈0.05. Accordingly, we choose l0 = 0.003 m (where l0 = 3.75dg) for the following simulations
of the immersed granular flows represented in this paper.

In Table 7.7 we can compare the calculation time per iteration (i.e., per time step) of the
simulations concerning the number of fluid particles and the different particle sizes. An
NVIDIA V100 Volta GPU device is used for running the parallel part of the code written
by CUDA C++ parallel programming language (see Appendix 7.6). Since the results in
Table 7.7 cannot be used for discussing the efficiency of the GPU implementation and also
considering the scope of the current work, we postpone investigating the performance analysis
and the scalability of the GPU-accelerated code to future works.

Role of diffusive term

Here, we study the role of the diffusive term in simulating the immersed granular collapse.
The modified diffusive term included in the continuity equation presents a uniform pres-
sure field (Figure 7.15-2A). Without the diffusive term, the high-frequency pressure noises
affect the mechanical behavior of the granular collapse (Figure 7.15- case 2B). This leads
to unphysical deformation of the granular flow by overestimating the effective viscosity as
incompatibility exists between the experimental interface profiles and the numerical results
of case 2B (Figure 7.15 and Figure 7.16- case 2B). However, the modified diffusive term shows
a uniform viscosity field required for capturing the shear properties of the granular flow (Fig-
ure 7.16- case 2A). The results emphasize implementing the diffusive term as an effective
numerical correction approach for eliminating the high-frequency pressure fluctuations that
exist in the numerical model.

Moreover, we compare the modified diffusive term with the standard diffusive term where
ψij = nj − ni (i.e., case 2A vs case 2C). We plot the mixture particles position against
their total numerical pressure (i.e., yi − pi) (Figure 7.17). While the standard diffusive term

Table 7.3 The material properties of the glass beads as the saturated granular phase

Material Properties dg(m) ρg(kg/m3) θ(degree) ∆µ a b φ

Glass beads 0.0008 2470 22 1.03 1.23 0.30 0.64
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Table 7.4 Calculation and boundary conditions of the immersed granular collapse with dif-
ferent particle sizes, l0

l0 (m) 0.004 0.0035 0.003 0.002 0.0015
Total number of particles 62,808 91,812 171,582 418,008 919,176
True velocity of the virtual gates, vg (m/s) 1.0 1.0 1.0 1.0 1.0
Velocity of the virtual gates in the govern-
ing equations of the fluid particles (m/s)

0.1 0.15 0.2 0.2 0.3

The non-dimensional coefficient, γs, for ad-
justing the viscosity of the boundary and
virtual particles

0.1 0.15 0.2 0.3 0.6

Table 7.5 The numerical test cases of the immersed granular collapse concerning the rheology
model, the diffusive term, and the effective pressure equation.

Case Rheology
model

ψij in the diffusive term Effective pressure, peff.

2A Regularized
µ (Iv, Im, φ)

ψij = (nj − ni)− 0.5
[
〈∇n〉Ci + 〈∇n〉Cj

]
· rij Consistent peff.

2B Regularized
µ (Iv, Im, φ)

Without diffusive term (as if δMPS = 0.0) Consistent peff.

2C Regularized
µ (Iv, Im, φ)

ψij = (nj − ni) Consistent peff.

2D Regularized
µ (I)

ψij = (nj − ni)− 0.5
[
〈∇n〉Ci + 〈∇n〉Cj

]
· rij Consistent peff.

2E Regularized
µ (Iv, Im, φ)

ψij = (nj − ni)− 0.5
[
〈∇n〉Ci + 〈∇n〉Cj

]
· rij Hydrostatic assumption

for ppw

Table 7.6 Time steps of the extracted data from the experimental and numerical simulations,
T = t

√
gy/H0

Labels T0 T2 T4 T6 T8 T14 (Final)
Time (s) 0.00 0.17 0.33 0.49 0.65 1.16
T 0.00 1.98 3.96 5.89 7.81 13.93
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Figure 7.10 The three-dimensional configuration and the initial setup of the physical (a) and
numerical (b) models
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Figure 7.11 The immersed granular collapse via the three-dimensional numerical model based
on the enhanced weakly-compressible MPS method (Case 2A- l0 = 0.003 m). See the sup-
plementary results as the movies of the experiment and the numerical simulations.
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Figure 7.12 The temporal evolution of the immersed granular collapse; the experimental vs
numerical results (Case 2A- l0 = 0.003 m) at the sidewall section.
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reduces the total pressure in the vicinity of the bottom wall, the modified diffusive term
eliminates the kernel truncation errors and represents a stable pressure field at the final
stage of the collapse. It should be noted that the standard diffusive term manipulates the
pressure (particularly in the vicinity of the wall) and hence, affects the mechanical properties
of the immersed granular collapse where the effective pressure plays an essential role in the
constitutive law.

Role of effective viscosity

We implemented the regularized visco-inertial rheology model to capture the viscous and
inertial regimes of the immersed granular flows through a single formulation. Figure 7.18
indicates that the non-dimensional numbers (Iv, I and Im defined in Eq. (7.5) and St = I2/Iv)
are within the limit defined for validating the visco-inertial model. The viscous number
remains below 0.01 value, while the inertial number, I, is dominant in the yielded region
controlling the post-failure terms of the effective viscosity (i.e., the second and third terms
in the right-hand side of Eq. (7.6)). The range of the Stokes number (which varies from
zero to ≈ 40 over the simulation) acknowledges the visco-inertial regime expected from this
granular flow considering the material and flow characteristics. Furthermore, Figure 7.19
shows that the approximated volume fraction of the mixture particles, 〈φ〉i from Eq. (7.23),
reduces at the interface applying the effects of the suspension of the solid grains in their
rheology model. The proposed model for the effective viscosity of the water particles (Eq.
(7.22)) includes the turbulent properties of the fluid flow and the volume fraction of the solid
grains at the interface. These effects are essential to be considered in the constitutive law
as the dynamic viscosity of water particles increases considerably (≈ 30 times the reference
viscosity of water, µw, in the highly deformed regions) impacting on the mechanical behavior
of the granular flow (Figure 7.19).

Furthermore, we compare the µ (Iv, Im, φ) model with the µ(I) rheology (validated in [112,
135]) considering the same yield stress terms. The inertial number of the µ(I) rheology is a
function of the drag coefficient, Cd, and water density (I = |γ̇| dg

√
ρ0wCd/peff) and is included

in the post-failure term of case 2D as follows [104]:

ηi = |τy|i√
|γ̇|i

2 + λ2
r

+ ∆µ peff i

I0
√

peff i
d2
gρ0wCd

+ |γ̇|i + λr
(7.28)

where I0 = b and Cd = 0.47 for i ∈ Ωm (the other calculation and boundary conditions of
case 2D are identical to case 2A) (see Appendix 7.6 for more details regarding the regularized
µ(I) rheology). The viscosity field of the mixture particles (in the logarithmic scale) obtained
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via the rheology models is plotted in Figure 7.20. Thanks to the diffusive term implemented,
cases 2A and 2D represent smooth viscosity fields. Comparing the interface profiles with the
experimental results shows that the µ(I) rheology reproduces almost similar evolution of the
granular collapse. This indicates that the yield stress term (as a function of the effective
pressure and the strain rate magnitude) is dominant in the rheology of the granular collapse.
However, the result shows that the µ(I) model underestimates the post-failure viscosity as the
granular phase collapses, leading to incompatibility between the normalized runout distance
of case 2D and the experimental result (Figure 7.22). While including the mixed number
(Im) and the term containing the volume fraction (φ) within the regularized visco-inertial
model (Eq. (7.21) implemented in case 2A) simulates an accurate spreading length of the
granular deposit.

Role of effective pressure

In the next step, we evaluate the role of the consistent effective pressure in the rheology of
the immersed granular collapse. To do so, we employ the hydrostatic assumption for the
pore-water pressure in test case 2E and compare the results with case 2A which contains the
proposed equation (7.26). In case 2E with the same calculation and boundary conditions
as case 2A, the hydrostatic assumption calculates the pore-water pressure according to the
spatial position of the mixture particle and the free-surface of the water phase (i.e., peffi =
pi− ρ0wgy(hwi− yi) where hwi is the height of water column in which the mixture particle is
located and yi is the position of the mixture particle from the bottom wall of the channel).
Figure 7.21 compares the effective pressure fields of case 2A vs case 2E. The results show that
the consistent effective pressure by including the hydrodynamics properties of the mixture
particles within the rheology model predicts accurate evolutions of the mixture phase forming
the granular deposit. However, in case 2E, the hydrostatic assumption overestimates the
effective pressure at the yielded regions increasing the viscosity. This may result from the
low-frequency oscillation of the pressure inserted in the effective pressure estimation. Hence,
the evolution of the granular collapse simulated by case 2E becomes inconsistent with the
experimental results (Figure 7.21). Particularly, the runout distance of case 2E versus the
other test cases and the experimental results confirms the overestimation of effective pressure
affecting the granular flow (Figure 7.22).

7.5.3 Immersed granular landslide

Simulating the immersed granular landslide deals with complex mechanical behaviors con-
cerning the mixture of solid grains and water due to the highly dynamic granular flow. This
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Figure 7.13 Time evolutions of the non-dimensional interface profiles of the immersed
granular collapse; the experimental results vs the numerical simulations (Case 2A with
l0 = 0.004, 0.0035, 0.003, 0.002, 0.0015 m at the sidewall section and T2, T6, and the
final stage).

characteristic of the granular landslide challenges the numerical models for capturing and
predicting its evolution. Several experimental and numerical studies have focused on the
landslides to represent a practical tool for predicting the mixture flow and generated waves
(e.g., [10,93,222,229–232]). Particle methods have been widely applied for dealing with such
a problem (e.g., [112,134,200,206,212,233,234]). Here, to show the effectiveness of the pro-
posed developments, we simulate the immersed granular landslide in the three-dimensional
configuration via the EWC-MPS method. We set up the numerical model based on the
physical model of test case S7 in [10] (Figure 7.23). In this multiphase problem, the triangle
heap of the solid grains (with lg× hg dimensions and the same material properties presented
in Table 7.3) is submerged within ambient water on an inclined plane with a slope angle
of 45-degree. As the physical gate is lifted (with vg =1 m/s), the granular bulk (as the
mixture phase) slides on the smooth wall under the gravitational forces (g). Meanwhile, the
drag force induced by water suspends the solid grains forming vortices rolling the mixture
phase [10].
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Figure 7.14 Normalized run-out distances (L/L0-1) (left-graph) and the RMS Errors of
(L/L0-1) (right-graph and the inset table) of the immersed granular collapse (Case 2A
with l0= 0.004, 0.0035, 0.003, 0.002, 0.0015 m). The mean diameter of the solid grains is
dg = 0.0008 m and Ng is the number of solid grains that the macroscopic scale of the particle
method (i.e., a mixture particle) represents in the 3D problem (with φ = 0.64).

Figure 7.15 The pressure field of the fluid particles at the sidewall section; Case 2A vs Case
2B (l0 = 0.003 m). The black squares correspond to the interface profiles of the experimental
results. The long-dashed lines represent the interface of the water and the mixture particles
in the numerical model.
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Figure 7.16 The viscosity field of the mixture particles at the middle section; Case 2A vs Case
2B (l0 = 0.003 m). The water particles detected as the free-surface particles are identified.

Figure 7.17 The total pressure of the mixture particles concerning their vertical position
(pi − yi) at the final stage of the simulation, t = 1.60 second; Case 2A vs Case 2C (l0 =
0.003 m)



196

Table 7.7 Calculation time per iteration for simulating Case 2A with different resolutions
using NVIDIA V100 Volta GPU device

l0 (m) 0.004 0.0035 0.003 0.002 0.0015
Number of fluid particles 39,375 47,012 92,400 315,000 739,200
Time per iteration (s) 0.051 0.098 0.143 0.349 0.851

With three different strategies defined in Table 7.8, we simulate the immersed granular land-
slide in which the particles with the initial spacing of 0.003 m discretize the computational
domain. The corresponding particle count including the solid boundaries and virtual gates is
895,912. The output of the particle packing method is considered as the initial distribution
of particles for calculating the averaged n0 of the internal particles and applying the initial
hydrostatic pressure (Figure 7.23). The nondimensional time scale is set to T = t

√
gy/H0

, H0 being the initial height of the granular phase from the bottom wall equal to 0.22 m.
We extract the numerical results (from the middle and sidewall sections of the channel) to
validate with the experimental measurements at the time steps given in Table 7.9. The sound
speed within the bulk modulus is set to 24 m/s and ηmax = 400 Pa.s. In all the test cases in
this section, we implement the CPS method as the particle regularization technique and the
modified diffusive term (Eq. (7.19)) with δMPS = 0.6. In analogy to the previous test case,
the virtual moving particles representing the physical gate are moved with the true velocity
of 1.0 m/s in the y-direction, while their velocity parameter included in the governing equa-
tions of the fluid particles is set to 0.2vg. To simulate the semi-slip boundary condition, we
reduce the viscosity of the wall (or the virtual) particle, j, interacting with the fluid particle,
i, to 0.1 of the effective viscosity of the fluid particle (i.e., ηj = 0.1ηi as if γs = 0.1). As the
virtual gate is being opened and until the runout length, L, remains almost equal to lg (i.e.,
until T0 shown in Figure 7.24-a) the model reinitializes the pore-water density imposing the
hydrostatic condition.

We represent the three-dimensional results of the immersed granular landslide (case 3A) in
Figure 7.24: the initial stage at T0, the approximated volume fraction and the velocity of
the mixture particles at T3 and T4, respectively, and the final stage of the granular landslide
(see the supplementary results for the movies of the simulated granular slide). With the free-
surface detection algorithm (implemented as a part of the CPS technique) the generated wave
formed by the submerged landslide is identified. Figure 7.24-b shows that the approximated
volume fraction reduces at the interface due to the inter-phase shear forces suspending the
mixture particles and forming circulations within the fluid flow. The bulk of the mixture
with an average velocity of around 0.5 m/s approaches the slope toe at T4 and the mixture
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particles come to rest on the bottom wall at t = 1.49 seconds (Figure 7.24-c & d). However,
few mixture particles remain suspended within the water phase (as the viscous forces damp
the kinetic energy and balance their weight).

To validate the developed three-dimensional model, we extract the numerical results from a
viewpoint almost identical to the position of the camera used in the experiment (which is
perpendicular to the sidewall and above the bottom wall of the channel). We represent the
evolution of the submerged granular landslide simulated by case 3A and the scaled snapshots
taken from the multimedia file of the experiment (provided in [10]) in the right and left
columns of Figure 7.25, respectively. Plotting the outlines of the mixture particles (the
continuous green lines) on the corresponding snapshots of the experiment, we compare the
overall deformation of the landslide. In the experiment, as the gate opens the rapid fluid flow
suspends the solid grains in the water expanding the volume of the mixture (i.e., reducing
the local mass). The numerical model needs to simulate the water flow between the solid
gains (as a deformable porous media) to capture this mixing process. Since the governing
equations (Eq. (7.11)) do not simulate the mass exchange between the fluid particles, the
current model overlooks the volume expansion observed at the initial stages of the landslide.
Particularly at T2, the evolution of the mixture becomes incompatible with the experimental
profile. This occurs as the numerical model initially overestimates the velocity of the mixture
particles with the constant mass. However, we should note that the overall deformations of
the landslide simulated by the proposed model are comparable to the experimental figures
(Figure 7.25). Further, the results show that the constitutive laws implemented (through
equations (7.21) and (7.22)) indirectly include the interphase drag force creating vortices
and suspending the mixture particles from the interface (for T > T2). Figure 7.26 illustrates
the velocity vectors representing the counterclockwise circulation of the fluid flow as the
mixture particles approach the slope toe (at T4).

Moreover, we observe that the normalized runout distance of case 3A is in good agreement
with the experimental measurement (almost identical to the experimental profile), particu-
larly for T≤ T6, where the main evolution of the landslide occurs (Figure 7.27). Nevertheless,
the particles separated from the granular bulk remain suspended for T≥ T7, while in the
experiment the solid grains settle increasing the runout distance in the x-direction. Treating
the mixture as an effective fluid in the single-phase formulations (represented by the mix-
ture particles) might cause this discrepancy between the numerical and experimental runout
distances at the late stages.

The non-dimensional numbers governing the visco-inertial model are represented in Figure
7.28. While the viscous number remains below 0.015, the inertial number surpasses the limit
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suggested for the rheology model. However, the mixed number in the main body of the
mixture phase is below its maximum limit (i.e., Im . 0.6). The local Stokes number varies
between 0 and 100 over the mixture phase indicating the different states of the immersed
granular flow captured by the regularized visco-inertial model. We implement the local
µ(I) rheology (based on the inertial number given by Eq. (7.28)) in case 3B and achieved
almost identical results to case 3A. Comparing the runout distances of case 3A with 3B (in
Figure 7.27) confirms that both rheology models predict the same evolution of the granular
since the inertial regime is dominant in this landslide (unlike the immersed granular collapse
test case). Figure 7.29 shows that in regions where the separation from the granular bulk
occurs the approximated volume fraction of the mixture particles reduces to almost half of the
reference volume fraction of the mixture phase (φ). Further, considering the turbulence model
within the dynamic viscosity of the water particles, is shown to be effective and essential
for simulating the interphase forces (as ηi/µw increases considerably in the region with the
high strain rate magnitudes). It should be noted that the free-surface detection algorithm
implemented within the CPS technique represents the generated wave by the landslide in
Figure 7.29 at T2, T4, and T6.

In test case 3C, we implement the hydrostatic pore-water pressure to update the effective
pressure within the mixture particles. The evolution of the landslide simulated by case 3A
and 3C are compared in Figure 7.30 (at T3). Like the granular collapse test case (2E),
the hydrostatic assumption in case 3C overestimates the viscosity field (by neglecting the
hydrodynamic aspects of the fluid flow). In the case of 3A, with the consistent effective
pressure included in the rheology model, the fluidity expected in the mixture is well captured.
Particularly, the runout length of case 3C compared with the experimental and the other test
cases (in Figure 7.27) indicates the overestimation of the effective pressure via the hydrostatic
assumption for the pore-water pressure. Moreover, Figure 7.30 shows the effectiveness of the
modified diffusive term for estimating a smooth pressure field (i.e., by eliminating the high-
frequency pressure noises) over the fluid domain.

Table 7.8 The numerical test cases of the immersed granular landslide

Case Rheology model Effective pressure
3A Regularized µ (Iv, Im, φ) Consistent effective pressure
3B Regularized µ (I) Consistent effective pressure
3C Regularized µ (Iv, Im, φ) With the hydrostatic assumption for ppw
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Table 7.9 Time steps of the extracted data from the numerical simulations, T = t
√
gy/H0

Labels T0 T1 T2 T3 T4 T5 T6 T8
Time (s) 0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.20
T 0 1 2 3 4 5 6 8

7.6 Conclusion

We represented a developed single-phase particle method based on the EWC-MPS method ca-
pable of simulating mechanical behaviors of the immersed granular flows. This multi-viscosity
multi-density system proved to be effective and essential for simulating the interactions be-
tween water and mixture phases. We developed the rheology model via the regularized
visco-inertial model, the consistent effective pressure, and higher-order operators for the ve-
locity gradient and the diffusive term in the context of multiphase problems. Further, we
included the turbulent viscosity and the linear effects of the suspension at the interface within
the constitutive laws.

We showed the effectiveness of the modified diffusive term by predicting the hydrostatic pres-
sure in a two-dimensional steady tank filled with two fluid phases. The convergence study
that we conducted for this benchmark case confirmed that the modified diffusive term sig-
nificantly reduces the numerical errors and increases the order of convergence of the results
by eliminating the kernel truncation errors and thus, predicting accurate particle number
density near the boundaries. We simulated the three-dimensional gravity-driven granular
collapse and the deformable landslide to verify and validate the multiphase model. The
results represented the capability of the proposed developments in capturing the complex
flow deformation including the viscous and inertial regimes. Further, the modified diffusive
term proved to be essential for removing the noisy pressure field and obtain an accurate vis-
cosity prediction. The regularized visco-inertial rheology model consists of non-dimensional
numbers and the approximated volume fraction of the mixture particles simulated the time
evolution and the dominant flow regimes of the immersed granular problems. Furthermore,
utilizing the proposed constitutive relation for calculating the pore-water pressure, not only
exempts the model from the complexity of detecting the interface but also results in an
accurate and stable viscosity field. Although the single-phase and continuum-based model
is still incapable of modeling the fluid flow between the solid grains, the developed model
represents promising outcomes in simulating the suspension process and forming the flow
circulations within the mixture and water phases. Overall, the compatibility between the
numerical results and the presented experimental measurements confirmed the robustness
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of the proposed developments for studying the underlying physics of the immersed granular
flows.

The model we have developed in this study can be employed for validating the generated
waves by the transitional and submerged landslides in large-scale problems. This may require
conducting three-dimensional experiments of the granular flows in various hydrodynamic
conditions and with different granular materials (e.g., [230, 232]). It is also worthwhile to
investigate the GPU implementation of this work for demonstrating the efficiency of the 3D
code in simulating large-scale problems. Moreover, the non-local rheology models [235] can
be coupled with the governing equations to study the nonlocal effects of the granular shear
properties in the multiphase flows. Meanwhile, the EWC-MPS method of this work can
be extensible to the two-phase mixture models [20, 98] capable of simulating the fluid flow
through the solid grains to include the role of saturation degree in the rheology model.

Appendix A. Derivation of the regularized rheology equations

Here, we derive the regularized constitutive equations of the visco-inertial rheology,
µ (Iv, Im, φ), and the µ (I) rheology used in the simulations (in the form of equations (7.21)
and (7.28), respectively). Both rheology models diverge as the magnitude of the strain rate
tensor vanishes (i.e., |γ̇| = 0). The regularization techniques have been represented to resolve
this singularity issue in the computational models (see [104]).

For the visco-inertial rheology equation (7.6), we employ Eq. (7.7) to write the effective
viscosity of the mixture phase, ηm, as follows:

ηm = µ1pg
|γ̇|

+ ∆µpg
(b/Im) |γ̇|+ |γ̇| + 5φ

2a

(
Ivpg
Im |γ̇|

)
(7.29)

which contains the yield stress (the first term on the right-hand side, denoted as Term− 1)
and the post-failure (the second and third terms denoted as Term− 2 and 3) terms. In our
proposed rheology model, the Bercovier and Engleman [218] formulation regularizes the yield
stress term given as:

Term− 1 : |τy|√
|γ̇|2 + λ2

r

(7.30)

in which |τy| = µ1pg and λr being the regularization parameter set as λr � 1. With inserting
the non-dimensional numbers (7.5) and some mathematical simplifications, we can rewrite
the second term, as:
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Term− 2 : ∆µpg
b
√
pg√

d2
gρg+ 2µw

|γ̇|

+ |γ̇|
. (7.31)

Using the simple model for the regularization (represented in Frigaard and Nouar [219]) of
the 2µf/|γ̇| term, and by noting that pg > 0, the second term reduces to:

Term− 2 : ∆µpg
b
√
pg√

d2
gρg+ 2µw

|γ̇|+λr

+ |γ̇|
. (7.32)

The third term by substituting the non-dimensional numbers (7.5) into the equation is given
as follows:

Term− 3 : 5φ
2a

 µw
√
pg√

|γ̇|2d2
gρg + 2µw |γ̇|

 (7.33)

and considering the Bercovier and Engleman [218] regularization equation, reads:

Term− 3 : 5φ
2a

 µw
√
pg√

|γ̇|2d2
gρg + 2µw |γ̇|+ λ2

r

 . (7.34)

Eventually, substituting the terms (7.30), (7.31), (7.32), and (7.34) into Eq. (7.29), the
regularized visco-inertial model would be the following equation:

ηm = |τy|√
|γ̇|2 + λ2

r

+ ∆µ pg(
b
√
pg/

√
d2
gρg + 2µw/(|γ̇|+ λr)

)
+ |γ̇|

5φ
2a

 µw
√
pg√

|γ̇|2d2
gρg + 2µw |γ̇|+ λ2

r

 (7.35)

used as Eq. (7.21) in the numerical model.

For the µ(I) rheology model, proposed by Jop et al. [99] as:

µ (I) = µ1 + ∆µ
(I0/I) + 1 (7.36)

the effective dynamic viscosity of the mixture phase given by Eq. (7.7) would be:
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ηm = µ (I) pg
|γ̇|

= µ1pg
|γ̇|

+ ∆µpg
(I0/I) |γ̇|+ |γ̇| (7.37)

where the yield stress term can be regularized similar to Eq. (7.30). By substituting the
inertial number of the immersed granular flows (i.e., I = |γ̇| dg

√
ρ0wCd/peff) [93,112] and the

simple model for regularizing the post-failure term, the regularized µ(I) rheology equation is
represented as follows [104]:

ηm = |τy|√
|γ̇|2 + λ2

r

+ ∆µ pg
I0
√

pg
d2
gρ0wCd

+ |γ̇|+ λr
(7.38)

which in the numerical model is implemented as Eq. (7.28).

Appendix B. The solution algorithm based on the symplectic scheme

In this paper, we employed the explicit second-order symplectic scheme represented by Mon-
aghan and Rafiee [11] as the time integration algorithm. This time integrator solves the
governing equations and applies the boundary conditions in two stages of calculations identi-
fied in Figure 7.31. The first stage calculates the flow properties at the mid-point, t+ ∆t/2.
With the mid-point values, the second stage updates the velocity field, and therefore the
position and the particle number density fields, at t + ∆t. In this stage, the divergence of
the velocity (Eq. (7.13)) and the modified diffusive term (Eq. (7.19)) are functions of the
particle number density at the mid-point, i.e., nt+∆t/2.

The numerical model consists of subroutines run on the Computer Processing Unit (CPU)
or the Graphical Processing Unit (GPU) (as the host and device parts of the code, respec-
tively). We adopted CUDA C++ as the parallel programming language to utilize the massive
parallelism of the GPU’s threads. The host section of the code initializes the model (i.e.,
allocates memories, reads the geometry file, and transfers data from the host to the GPU’s
memories) and saves the data for the post-processing tasks. The device section implements
the neighbor search algorithm (see [47]) and the main temporal loop of solving the governing
equations (i.e., Eq. (7.11), (7.12)) supplied with the modified diffusive term (Eq. (7.20)) and
the corrected particle shifting technique (see [123]) (Figure 7.31). In the temporal loop of
the calculation, the viscosity field, ηi, is calculated at the beginning of the first and second
half of each time step. Moreover, the particle stabilization technique only regulates the fluid
particles in the second stage of the scheme in advance of estimating the particle number
density field. Also, the properties of the solid boundary and the virtual gates are updated at
the end of each stage of the scheme.
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Figure 7.18 The non-dimensional numbers of the visco-inertial rheology model (Iv, I and Im
defined in Eq. (7.5) and St) at the middle section of the channel (Case 2A- l0 = 0.003 m)
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Figure 7.19 The approximated volume fraction of the mixture particles, 〈φ〉i, and the nondi-
mensional scale of the water particles’ effective viscosity, ηi/µw, at the middle section (Case
2A- l0 = 0.003 m)

Figure 7.20 The dynamic viscosity field of the mixture particles at the sidewall section; Case
2A vs Case 2D (l0 = 0.003 m). The black squares represent the interface profiles of the
experimental results.
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Figure 7.21 The effective pressure within the mixture particles at the sidewall section; Case
2A vs Case 2E (l0 = 0.003 m). The black squares represent the interface profiles of the
experimental results.

Figure 7.22 The normalized runout distance at the sidewall section; Case 2A vs Case 2D and
Case 2E (l0 = 0.003 m)
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Figure 7.23 The immersed granular landslide; the initial setup of the numerical model and
the virtual gates.
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Figure 7.24 The three-dimensional numerical results of the immersed granular landslide at
the middle section of the channel with a 45-degree slope (Case 3A)
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Figure 7.25 The immersed granular landslide; The 3D numerical results of case 3A (from
the sidewall view) versus the experimental results of test case S7 extracted from [10] (The
orange dash line represents the initial stage of the granular phase (at T0) and the green
lines plotted on the scaled snapshots correspond to the outline of the mixture phase in the
numerical simulation at each time step. The dark blue particles are the free-surface particles
detected by the CPS algorithm).
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Figure 7.26 The velocity contour and vectors of the submerged landslide at the middle section
of the channel at T4 showing the circulation formed by the drag force in the fluid flow (Case
3A)

Figure 7.27 The normalized runout distance of the immersed granular landslide; the numerical
versus the experimental results (Test case S7 in [10] with a 45-degree slope, smooth surfaces,
and glass beads)
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Figure 7.28 The non-dimensional numbers of the visco-inertial rheology model (Iv, Im and
St defined by Eq. (7.5)) at the middle section of the channel (Case 3A)
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Figure 7.29 The approximated volume fraction of the mixture particles, 〈φ〉i, and the nondi-
mensional scale of the water particles’ effective viscosity, ηi/µw, at the middle section (Case
3A)

Figure 7.30 The role of the effective pressure in the evolution of the immersed granular
landslide; Case 3A vs 3C at the middle section of the channel at T3.



212

Figure 7.31 Solution algorithm based on the explicit second-order symplectic time integrator
by Monaghan and Rafiee [11]. The host part of the code, run on the CPU, initializes the
model, and prints the results, while the main temporal loop and the neighbor search algorithm
(within the gray box) are run on the GPU.
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8.1 Abstract

Granular dynamics driven by fluid flow is ubiquitous in many industrial and natural processes,
such as fluvial and coastal sediment transport. Yet, their complex multiphysics nature chal-
lenges the accuracy and efficiency of numerical models. Here, we study the dynamics of
rapid fluid-driven granular erosion through a mesh-free particle method based on the en-
hanced weakly-compressible Moving Particle Semi-implicit (MPS) method. To that end, we
develop and validate a new multi-resolution multiphase MPS formulation for the consistent
and conservative form of the governing equations, including particle stabilization techniques.
First, we discuss the numerical accuracy and convergence of the proposed approximation
operators through two numerical benchmark cases: the multi-viscosity Poiseuille flow and
the multi-density hydrostatic pressure. Then, coupling the developed model with a general-
ized rheology equation, we investigate the water dam-break waves over movable beds. The
particle convergence study confirms that the proposed multi-resolution formulation predicts
the analytical solutions with acceptable accuracy and order of convergence. Validating the
multiphase granular flow reveals that the mechanical behavior of this fluid-driven problem is
highly sensitive to the water-sediment density ratio; the bed with lighter grains experiences
extreme erosion and interface deformations. For the bed with a heavier material but different
geometrical setups, the surge speed and the transport layer thickness remain almost identical
(away from the gate). Furthermore, while the multi-resolution model accurately estimates
the global sediment dynamics, the single-resolution model underestimates the flow evolution.
Overall, the qualitative and quantitative analysis of results emphasizes the importance of
multi-scale multi-density interactions in fluid-driven modeling.

8.2 Introduction

Many hydro-environmental and geotechnical problems involve the multiphase flow of granular
material, like sediment, immersed in a fluid, like water (Figure 8.1-a). In such multiphysics
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systems, the granular phase demonstrates dynamic solid- and fluid-like behaviors induced by
gravity and the ambient fluid flow (e.g., in the cases of submarine landslides [10,19,90,91,94]
and fluvial and coastal sediment transport [1,18,236]). Particularly, rapid shearing flows over
granular beds cause large interfacial deformations leading to the erosion, suspension, and
deposition of grains [17]. The complex and simultaneous presence of the quasi-static, dense-
flow, and kinetic (suspended) regimes [16] makes the accurate prediction of such immersed
granular flows challenging. This paper studies the fluid-driven granular dynamics through a
consistent numerical method.

Discrete-based and continuum-based methods have been widely developed for simulating im-
mersed granular flows. While discrete-based methods, such as the Discrete Element Method
(DEM) [21], provide an in-depth grain-scale understanding of the granular behavior, they are
computationally expensive for practical problems that involve a large volume of materials.
On the other hand, the continuum-based numerical methods homogenize the assembly of
solid grains (or the mixture of solid granules and interstitial fluid) into a body of contin-
uum at the macroscopic level (Figure 8.1-b). Thus, they are scalable and computationally
affordable for large-scale modeling. Such methods employ a rheology model to estimate the
mechanical behavior of the granular continuum [17].

Mesh-based continuum methods have been developed for various granular simulations [96,
103]. However, due to their mesh dependency, they require particular treatments to deal with
highly dynamic interfaces [22, 23]. In contrast, mesh-free Lagrangian continuum methods,
or simply particle methods, discretize the continuum using moving particles without any
connectivity (Figure 8.1-c). This feature of particle methods introduces them as reliable
numerical approaches for handling interfacial deformations, and hence, suitable for highly
dynamic granular flows [27–29]. The Material Point Method (MPM) [24], the Moving Particle
Semi-implicit (MPS) method [25], and the Smoothed Particles Hydrodynamics (SPH) method
[26] are some of the most widely adopted continuum particle methods. We establish the
numerical method of this study based on the MPS formulation.

SPH and MPS have gone through significant developments to improve their accuracy and
stability for highly dynamic and multiphase flows [74,75,124,125,164,184,197]. Shakibaeinia
and Jin [47] introduced the weakly compressible MPS method (WC-MPS). Jandaghian and
Shakibaeinia [123] and Jandaghian et al. [124] enhanced the accuracy and stability of the
WC-MPS method by proposing artificial diffusive terms and particle regularization tech-
niques. SPH and MPS, coupled with various rheological equations, have simulated im-
mersed granular flows; the adopted constitutive laws include the Bingham plastic formu-
lation [105–107], the Herschel-Bulkley model [107, 108], the Herschel-Bulkley-Papanastasiou
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model [109], the regularized µ(I) equation by Jop et al. [99] [110–113], and the elastic-
viscoplastic model [114]. Moreover, to improve the prediction of the incipient motion of
the granular particles, some methods employed an additional yielding threshold based on
Shields’ erosion criterion [106, 115, 116]. Recently, Jandaghian et al. [126] proposed a gener-
alized constitutive law to simulate three-dimensional immersed granular collapses and slides.
They introduced the regularized form of the visco-inertial rheology model by Baumgarten
and Kamrin [20] and the consistent effective pressure term for rapid granular deformation
considering non-hydrostatic pore-water pressure and without shear stress threshold. While
the previous advanced particle methods have mostly focused on the gravity-driven granular
flows, a few have attempted to simulate the fluid-driven cases.

The continuum-based models treat the dense multiphase granular flow system using either
single-continuum or two-continuum models [16, 17]. The single-continuum models consider
the solid grains and interstitial (pore) fluid as a single uniform dense mixture. The mixture
interacts with the ambient fluid phase directly through one set of governing equations. The
two-continuum models simulate the relative motion of the interstitial fluid and the solid
grains and solve separate sets of governing equations (including inter-phase forces) [17,95]. In
both approaches, the numerical element representing the continuum (i.e., the representative
elementary volume, V , in Figure 8.1-b) must be large enough to contain a sufficient number
of solid grains. Otherwise, the continuum assumption and the constitutive law would become
invalid [17,121,126]. On the other hand, the numerical element should be small enough (with
respect to the characteristic length-scale of the problem) to mathematically represent its
vicinity and minimize the numerical approximation errors [114,122,126]. The computational
model shall respect these two conflicting constraints in determining the spatial resolution
of the discretized domain. Moreover, to capture highly dynamic and high Reynolds number
fluid flows, the numerical solution requires a higher spatial resolution for the fluid phase (e.g.,
V/4) than that of the granular (or mixture). Accordingly, one can conceive a multi-resolution
approach for simulating the fluid-driven granular flows (Figure 8.1-c & d).

Several multi-resolution SPH and MPS methods have been developed for improving numerical
accuracy and capturing more accurate flow/solid deformations over a refined computational
domain. They implement dynamic particle splitting and merging [76–78], adaptive particle
refinement [79–81], overlapping methods [82, 83], and volume adaptive scheme [84]. Such
multi-resolution methods are employed for various single-phase and multiphase flows (e.g.,
[76, 85, 86]) and fluid-structure interactions [70, 87–89]. Nevertheless, no multi-resolution
particle method has been reported for multiphase granular flows.

In the present study, we propose a consistent multi-resolution particle method, based on
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Figure 8.1 (a): The multiphysics system containing water and submerged solid grains. (b):
The representative volumes of water and mixture phases homogenized into the representative
elementary volume, V , in the single-continuum model. (c): The particle discretization in the
single- or multi-resolution particle method. (d): The discretized computational domain with
different spatial resolutions for the water and mixture particles.

the enhanced WC-MPS formulation (by Jandaghian and Shakibaeinia [123] and Jandaghian
et al. [124, 126]), to investigate the mechanical behavior of immersed granular dynamics
primarily driven by rapid fluid flow. We derive new approximation operators respecting the
conservative properties of the multi-scale multiphase system. We present the novel multi-
resolution MPS method in section 8.4. To ensure numerical stability and avoid unphysical
oscillations (which can largely affect the granular yield behavior), we adapt the modified
diffusive term [126] and the Dynamic Particle Collision (DPC) technique [124] to the newly
developed multi-resolution framework. Further, we couple the developed MPS method with
the generalized rheology model by Jandaghian et al. [126] supplied with a suspension equation
for rapid and immersed granular flows (section 8.4.4). First, we validate the numerical model
to two multiphase benchmark cases, i.e., the multi-viscosity Poiseuille flow and the multi-
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density hydrostatic pressure, quantifying the numerical accuracy and convergence of the
multi-resolution formulation (section 8.5.1). Next, by simulating water dam-break waves
on erodible sediment beds, we provide a comprehensive study on the dynamics of rapid
sediment erosion induced by a sudden collapse of a water column (section 8.5.2). Validating
the numerical solutions with the available experimental data [12, 13], we present internal
flow properties and the global mechanical behavior of this fluid-driven problem. We also
parameterize the rheology and analyze the phenomenology of sediment dynamics concerning
different bed materials and initial configurations of the test case. Comparing the results of the
single- and multi-resolution MPS simulations, we evaluate the role of multi-scale interactions
in capturing the flow evolution.

8.3 Equations of motion

Here, the system of granular material and the ambient fluid is considered as a multiphase
continuum, which in a Lagrangian framework is described by the continuity equation:

Dρ
Dt = −ρ∇ · v, (8.1)

the momentum equation:
Dv
Dt = ∇ ·T

ρ
+ F, (8.2)

and the advection equation:
Dr
Dt = v, (8.3)

calculating the time evolution (D(.)/Dt) of the fluid density, ρ, velocity, v, and position, r,
respectively [169]. The total stress tensor, T, consists of the pressure scalar value, p, and
the shear stress tensor, t, as T = −pI + t (I being the identity matrix) and ρF is the body
force per unit volume. Considering the barotropic fluids, the equation of state calculates
the pressure, i.e., p = f(ρ). For incompressible fluid flows and by neglecting the gradient of
dynamic viscosity, η, over the fluid domain (i.e., considering ∇ · v ≈ 0 and ∇η ≈ 0), the
divergence of the stress tensor reduces to:

∇ ·T = −∇p+ η∇2v (8.4)

which is valid for Newtonian and non-Newtonian mechanical behaviors. Constitutive laws
determine η as a function of hydrodynamic and material characteristics [17]. For water, we
include a simple turbulence model (based on the Large Eddy Simulations) in the shear force
calculations. We treat the mixture phase as a non-Newtonian fluid through the visco-inertial
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rheology model (proposed by Baumgarten and Kamrin [20], and then represented in the
regularized form by Jandaghian et al. [126]).

8.4 A consistent multi-resolution multiphase MPS method

8.4.1 Integral and summation interpolants

In continuum-based particle methods, the approximation operator transforms the integral
representation of functions into the summation interpolant. By discretizing the computa-
tional domain, Ω, moving calculation points (or simply particles) carry flow and material
properties [35]. Here, we adopt the general integral formulation of the MPS method to
derive the summation operator of the multi-resolution model.

MPS integral representation of an arbitrary function, f(r), reads [46]:

f(r) =
∫

Ω f(r′)W (‖r′ − r‖, re)dr′∫
Ω W (‖r′ − r‖, re)dr′

(8.5)

where dr′ is a differential volume element. The positive non-dimensional weighting function,
W , (so-called the kernel) with a compact support smooths f over the influence radius, re.
MPS introduces a normalization factor, denoted by n0, into the equations which corresponds
to the reference physical fluid density, ρ0, and the mass of volume element, m, via:

n0 = ρ0

m

∫
Ω
W (‖r′ − r‖, re)dr

′
. (8.6)

Nevertheless, n0 only depends on the type of kernel and the ratio of re to the size of spatial
discretization, l0 (i.e., k = re/l0) [43]. With considering a constant k for the multi-resolution
model, we employ (8.6) to rewrite (8.5) as:

f(r) = 1
n0

∫
Ω
f(r′)W (‖r′ − r‖, re)kd

red
dr′ (8.7)

in which d is the number of space dimensions and m/ρ0 = (re/k)d.

The original MPS formulation derives the summation operator of the integral representation
(8.7) by considering identical smoothing length and spatial resolution for the entire fluid
domain. Here, we propose a new formulation for the kernel, W̃ , to account for multi-resolution
particle interactions through the general form of approximation operator:

〈f〉i = 1
n0

N∑
i 6=j

fjW̃ (rij , reij , V0j) (8.8)



219

for a target particle, i ∈ Ω, surrounded by N number of neighbour particles, identified as
j ∈ Ω, where rij = ‖rj − ri‖ ≤ rei. The modified kernel, which is non-dimensional, would be:

W̃ij = W̃ (rij , reij , V0j) = W (rij , reij)V0jk
d

redij
, (8.9)

in which V0i, being the reference volume of particle, is equal to (l0i)d for incompressible fluid
flows (as l0i stands for the initial particle spacing of i). To respect the symmetric feature of
the smoothing procedure in the governing equations (see section 9 and Figure 8.2), we have
substituted re with reij = (rei + rej)/2 (similar to the formulations used by [130] and [77]).
The new definition of kernel (8.9) includes the various sizes and smoothing lengths of particles
within the approximation operator required for considering the multi-resolution interactions
(where V0i 6= V0j); while in the same resolution interactions (where V0i = V0j), (8.9) automat-
ically reduces to its original shape as W̃ij = W (rij , rei). By neglecting the kernel truncations
at the interfaces and away from boundaries, n0 keeps its standard definition as the summa-
tion of kernel at the initial uniform distribution of particles, i.e., n0 = max∑N

i 6=jW (rij , rei)
at t = 0. Thus, it can be identified as a global constant for all the particle sizes and their
interactions (as k = rei/l0i is invariable over Ω). In this study, we set k = 3.1 and use the
third-order polynomial spiky kernel function [47] for all the approximation operators.

8.4.2 The discrete system of flow equations

In particle methods, the moving particles are the representative elementary volume of the
ambient water phase, Ωw, or the mixture of pore water and solid grains, Ωm, or the solid
walls, Ωs, forming the computational domain, Ω (where Ωw ∪ Ωm would be the fluid phase,
Ωf , and Ω = Ωf ∪ Ωs). Using the summation operator for a target particle i ∈ Ωf , the flow
equations read:



1
ni

Dni
Dt = −〈∇ · v〉i +Dm

i

Dvi
Dt = − 1

ρi
〈∇p〉i + 1

ρi
〈η∇2v〉i + Fi

Dri
Dt = vi,

(8.10)

in which ni is the non-dimensional particle number density (given as n0ρi/ρ0i) and inde-
pendent of the density discontinuity at the interfaces [126]. In this model, the momentum
equation considers the density of particle, ρi, to be equal to the reference density of the fluid
phase respecting the original form of the incompressible MPS method (i.e., in the momentum
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equation: ρi = ρ0i where for i ∈ Ωw → ρ0i = ρ0w and i ∈ Ωm → ρ0i = ρ0m = ρ0w(1−φ0)+φ0ρg

as φ0 and ρg are the reference volume fraction and the true density of the solid grains, re-
spectively).

For the multi-resolution multi-phase MPS model, we use the kernel (8.9) to discretize the
right-hand side terms of (8.10) based on the conservative WC-MPS formulation [123]:



〈∇ · v〉i = d

n0

N∑
i 6=j

(
nj
ni

) vj − vi
rij

· eijW̃ij

〈∇p〉i = d

n0

N∑
i 6=j

(
ni
pj
nj

+ nj
pi
ni

)
eij

rij
W̃ij

〈η∇2v〉i = 2d
n0

N∑
i 6=j

ηij
vj − vi
r2

ij
W̃ij .

(8.11)

eij = rij/rij is the unit direction vector and the harmonic mean of the dynamic effective
viscosity of i and j (i.e., ηi and ηj) gives ηij = 2ηiηj/(ηi + ηj). With the new kernel function
the interaction of particles with various size and density remains anti-symmetric within the
governing equations; thus, the conjugate gradient and divergence operators ensure the con-
servation of the total energy (in the absence of shear and external forces) (see [49] and [123])
(Figure 8.2).

Considering the barotropic fluid as a weakly compressible phase, we employ the equation of
state to calculate the pressure by Shakibaeinia and Jin [47]:

pi = B0

((
ni
n0

)γ
− 1

)
(8.12)

where the bulk modulus, B0 = c0
2ρ0/γ and γ = 7 are constant for all the fluid phases as ρ0

and c0 are the true density and the artificial sound speed of the reference phase, respectively
(here, we consider water as the reference phase, thus, ρ0 = ρ0w and c0 = c0w). To limit
the compressibility to less than 1%, the reference sound speed should satisfy c0 ≥ 10‖v‖max
condition by which the Mach number is kept less than 0.1 (‖v‖max being the maximum
expected velocity magnitude).

Next, we adapt the modified diffusive term by Jandaghian et al. [124] to the multi-resolution
framework with the new kernel (8.9) as follows:

Dm
i =

(
δMPS

∆tc2
0

n0

)
2d
n0

N∑
i 6=j

[
(nj − ni)−

1
2[〈∇n〉ci + 〈∇n〉cj] · rij

]
W̃ij

r2
ij

(8.13)
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Figure 8.2 Kernel function of the MPS method for the multi-resolution particle interactions.
d is the space dimension equal to 2 and 3 for the two- and three-dimensional simulations,
respectively. k determines the smoothing length of the kernel, rei, and is set to 3.1 regardless
of the particle size, l0i.

in which 〈∇n〉ci is the high-order gradient operator of ni estimated by:

〈∇n〉ci = d

n0

N∑
i 6=j

nj − ni
rij

(Cieij)W̃ij , (8.14)

and the correction matrix, Ci, is given as:

Ci =
 d

n0

N∑
i 6=j

rj − ri
rij

⊗ eijW̃ij

−1

. (8.15)

where⊗ stands for the outer product of vectors. The non-dimensional coefficient, 0 < δMPS ≤
1, the calculation time step, ∆t, and c0 adjust the magnitude of this numerical correction.
The diffusive term obeys the mass conservation law, if ∑i niViD

m
i = 0 (as Vi = n0V0i/ni

from (8.6)); with i, j ∈ Ωf in (8.13-8.15), the diffusive term would be an anti-symmetric
formulation which conserves the total mass of the multi-resolution multiphase system.

8.4.3 Dynamic particle collision for multi-scale multiphase interactions

Here, we implement the Dynamic pair-wise Particle Collision (DPC) method (proposed by
Jandaghian et al. [124]) as the particle regularization technique which ensures the numerical
stability by eliminating particle clustering and high-frequency pressure noises. Considering
the velocity variation of two particles colliding with different masses and volumes, we develop
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the DPC formulation for the multi-resolution multi-phase interactions as:

δvi =
 N∑
i 6=j

κij
2m0j

m0i +m0j
vcoll

ij −
∆t
ρ0i

N∑
i 6=j

αij
2V0j

V0i + V0j

pbij
rij

eij

 (8.16)

where i, j ∈ Ωf and m0i = ρ0iV0i. The collision velocity, vcoll
ij , and the binary multiplier, αij,

are given by:

(vcoll
ij , αij) =


((vij · eij)eij , 0) , for vij · eij < 0

(0, 1) otherwise
(8.17)

and the dynamic background pressure, pbij, is defined as pbij = p̃ijχij where p̃ij =
max (min (λ |pi + pj| , λpmax) , pmin), and, χij =

(
W (rij , l0ij)/W (0.5l0ij , l0ij)

)0.5
. The non-

dimensional variable, χij , is a function of the kernel with the smoothing length set to
l0ij = (l0i + l0j)/2 (where for rij ≥ l0ij → χij = 0). The preset maximum and minimum
pressure of the test case (pmax and pmin respectively) and the non-dimensional constant, λ,
specify the strength of the repulsive term. For the collision term, the variable coefficient, κij ,
dynamically sets the coefficient of restitution as a function of rij via:

κij =


χij 0.5l0ij ≤ rij < l0ij

1 rij < 0.5l0ij .
(8.18)

Eventually, δvi from (8.16) updates the velocity and position of particles within the solution
algorithm (i.e., we have v′i = vi + δvi and r′i = ri + δvi∆t ). The proposed DPC through
equations (8.16-8.18) conserves the linear momentum of the multi-resolution multi-phase
particle interactions (i.e., with i, j ∈ Ωf then ∑

im0iδvi = 0). In this study, we use the
Wendland kernel for χij and set λ = 0.2 [124].

8.4.4 Generalized rheology model

We employ the generalized rheology model of Jandaghian et al. [126] for calculating the
effective viscosity of the water and mixture particles. For water as a Newtonian fluid with
the true viscosity, µw, the effective viscosity increases by the presence of solid grains (i.e.,
with the approximated volume fraction, 〈φ〉i) and including the turbulence effect:

i ∈ Ωw → ηi = µw

(
1 + 5

2〈φ〉i
)

+ ρ0wνti. (8.19)
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as the eddy viscosity is given by νti = (Csrei)2|γ̇|i and the Smagorinsky constant coefficient is
set to Cs = 0.12. The pressure-imposed rheology treats the mixture of water and solid grains
as a non-Newtonian fluid through the mixture effective viscosity formulated by ηi = µipgi/|γ̇|i
in which pgi is the solid grains’ normal stress (i.e., the effective pressure), µi is the friction
coefficient, and |γ̇|i is the magnitude of strain rate tensor [17]. With the visco-inertial model
of Baumgarten and Kamrin [20] (as the friction coefficient) and the regularized formulation
(for avoiding the singularity issue when |γ̇|i = 0), [126] represented the effective viscosity of
the mixture particles as:

i ∈ Ωm → ηi = τyi√
|γ̇|2i + λ2

r

+ (µ2 − µ1)pgi
b
√
pgi/

√
d2
gρg + 2µw/(|γ̇|i + λr) + |γ̇|i

+5〈φ〉i
2a

 µw
√
pgi√

|γ̇|2i d2
gρg + 2µw|γ̇|i + λ2

r

 (8.20)

where a and b are material constants. The upper and lower limits of the solid grains’ friction
are denoted as µ2 and µ1 = tan(θ), respectively. ρg, dg, and θ stand for the true density,
the mean diameter, and the internal friction angle of the solid grains, respectively. The yield
stress, τy, is given by the Drucker-Prager yield criteria as τyi = 2

√
3sin(θ)pgi/(3 − sin(θ))

noting that pgi > 0. The regularization parameter, λr, is set to 0.001. For incompressible
fluid flows, |γ̇|i =

√
4IIEi, as the strain rate tensor, Ei = 0.5[〈∇v〉ci + (〈∇v〉ci)t] and its

second principal invariant, IIEi = 0.5Ei : Ei. For the derivation of (8.20) readers are referred
to [126]. We estimate the gradient of velocity and the volume fraction of the water and
mixture particles through:

〈∇v〉ci = d

n0

N∑
i 6=j

vj − vi
rij

(Cieij)W̃ij (8.21)

and

〈φ〉i =
∑N
j φjW̃ij∑N
j W̃ij

, (8.22)

respectively, noting that for j ∈ Ωw → φj = 0 and j ∈ Ωm → φj = φ0.

The non-dimensional parameters, i.e., the inertial number, Ii = |γ̇|idg
√
ρg/pgi, the viscous

number, Iνi = µw|γ̇|i/pgi, and the mixed number, Im =
√
I2 + 2Iν govern the visco-inertial

rheology model [100,101]. This model is validated against the experimental data of immersed
granular flows where Im ≤ 0.6 [20]. In rapid fluid-driven granular erosion, mixture particles
at the interface are subjected to high shear forces leading to their suspension with low volume
concentration. In the dilute and semi-dilute conditions, the dynamic viscosity turns to be a
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function of the volume fraction and independent of the shear rate magnitude [17]. Thus, to
incorporate the role of suspension effects, we calculate the effective viscosity of the mixture
particles where 〈φ〉i/φ0 < 0.5 or Imi > 0.6 through the suspension equation of [237]:

ηi = µw exp
(

2.5〈φ〉i
1− 39

64〈φ〉i

)
. (8.23)

Coupling the visco-inertial formulation with the Vand’s equation aims at simulating the
suspension process of mixture particles. Previously, Zubeldia et al. [115] and Fourtakas and
Rogers [109] used this equation with the Herschel-Bulkley-Papanastasiou constitutive model
for sediment dynamics modeling in SPH. One should not that our implemented constitutive
model treats the different regimes of the immersed granular flow through the failure and post-
failure terms and the suspension equation without any shear stress threshold (e.g., Shield’s
erosion criterion in [106,115]) to distinguish the yielded particles from the un-yielded ones.

Moreover, we implement the consistent effective pressure, peff.i , proposed by Jandaghian et
al. [126] to estimate pgi of the immersed granular flow where for i ∈ Ωm, pgi = peff.i and,

peff.i = B0

[(
ni
n0

)γ
−
(
ρwi
ρ0w

)γ]
(8.24)

in which the density of the pore-water, ρwi, is updated by its continuity equation derived for
the single-phase continuum model as follows:

1
ρwi

Dρwi
Dt = −〈∇ · v〉i +Dm

i . (8.25)

The right-hand side of (8.25) is identical to the right-hand side of the continuity equation
used for updating ni (in (8.10)).

8.4.5 Boundary conditions and solution algorithm

In the numerical model, the fixed boundary particles (i ∈ Ωs) simulate the solid walls. The
fluid particles interact with the solid boundary particles through the governing equations
(8.11) [126]. To update the pressure of the wall boundary particles (pi), we implement the
dynamic solid boundary condition by Crespo et al. [67]. The pressure of the closest wall
particle is assigned to the ghost particles. The velocity of the solid boundary particles, vi,
is considered to be zero in the continuity equation of fluid particles. In the shear force
calculations, the velocity assigned to the solid boundary particles applies slip or no-slip
boundary conditions. For viscous flow simulations, we consider the viscosity of the fluid
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particle for the boundary particle (i.e., ηj∈Ωs = ηi∈Ωf in 〈η∇2v〉i).

For solving the governing equations, we implement the second-order and explict symplectic
time integration scheme (represented by Jandaghian et al. [126]). The time step of calculation,
∆t, is given based on the the Courant–Friedrichs–Lewy (CFL) stability condition and the
shear force corresponding to the density, the spatial resolution and the dynamic viscosity of
each phase (i.e., Ωw and Ωm) as follows:

∆t = min
{
CCFL

l0
c0
, Cv

ρ0l0
2

ηmax

}
Ωw,m

, (8.26)

in which CCFL and Cv are non-dimensional coefficients of the time steps (identical for both
phases) and ηmax is the maximum expected dynamic viscosity. Considering Ωw as the refer-
ence phase for the bulk module (in (8.12)), we set the sound speed of the second phase as
c0m = c0w

√
ρ0w/ρ0m.

8.5 Results and discussions

The reliability of water-sediment dynamics modeling depends on the accuracy of the approx-
imated governing equations and their capability in capturing the multiphysics flow proper-
ties. To investigate the consistency of the proposed multi-resolution MPS formulation, we
begin with studying the numerical accuracy and convergence of two benchmark cases, i.e.,
the multi-viscosity Poiseuille flow and the hydrostatic pressure of two fluid phases (section
8.5.1). Then, we investigate and validate rapid fluid-driven granular erosion through simu-
lating dam break waves over movable beds (section 8.5.2). A movie containing the numerical
simulations and results is provided as the supplementary data of this paper.

8.5.1 Numerical accuracy and convergence of the multi-resolution MPS
model

Here, we evaluate the numerical accuracy of the multi-resolution operator in estimating
the shear force by modeling the multi-viscosity Poiseuille flow. Further, we simulate the
hydrostatic pressure of two fluid phases to investigate the new conservative form of governing
equations in the multi-resolution configuration. Figure 8.3 represents the initial setup of the
test cases and their parameters.
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Figure 8.3 Initial configuration of the numerical simulations: (a) the multi-viscosity Poiseuille
flow, and (b) the hydrostatic pressure for two fluid phases.

Multi-viscosity Poiseuille flow

This benchmark case has been widely simulated for studying the numerical accuracy and
convergence characteristics of particle methods [75,114,238]. Two fluid phases, with different
viscosity, flow between two stationary and parallel plates under a constant body force applied
as a gradient of pressure, ρ0Fy = −∇py, in the positive y-direction (shown in Figure 8.3-a).
The fluid phases, denoted as Ω1 and Ω2, fill the channel with identical width (equal to L/2)
and density, i.e., ρ1 = ρ2 = ρ0 = 1000 kg.m−3. We set the viscosity ratio, M = η2/η1, to
25, 50, and 100 with the dynamic viscosity of the second phase, η2, set to 100 Pa.s. No-slip
boundary condition determines the velocity of the fixed solid boundary particles interacting
with the fluid particles (i.e., vj = −vi for i ∈ Ωf = (Ω2∪Ω1) and j ∈ Ωs). Periodic boundary
condition eliminates kernel truncation at the top and bottom boundaries (i.e., at y/L = 0
and 1). The particle size of the fluid phase with the greater viscosity (i.e, l02) determines the
spatial resolution of the problem by R = L/l02. The fluid phase with the smaller viscosity
value (i.e, Ω1) has the higher spatial resolution where the particle size ratio, defined as
q = l02/l01, is set to 2 and 4. The maximum analytical velocity, Umax, occurs at the midpoint
of Ω2 (i.e., at x/L = 0.75) and the analytical velocity at the interface (i.e., at x/L = 0.5)
is denoted as U0. The non-dimensional time, T , is given by tU0/L and equation (8.26)
determines the calculation time steps with CCFL/c0 = 0.05 s/m, Cv = 0.25, and η2 = 100
Pa.s. We estimate the normalized root-mean-square-error of the velocity magnitude through
L2(‖v‖) = [Umax]−1

√
1/Ntp

∑
∀i∈Ωf [‖v‖i − ‖v‖

at xi
analytical ]2 in which Ntp is the total number of
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fluid particles. Comparing the analytical solution of the velocity field (represented by Cao et
al. [239]) with the results of the single- and multi-resolution simulations, we investigate the
numerical accuracy of the model solely related to the shear force operator.

Figure 8.4 illustrates and plots the velocity of the fluid particles for different M and q, at
T = 100 and with R = 40. The single- and multi-resolution simulations predict accurate
results as the estimated velocity converges to the analytical velocity profiles. With q = 4,
small incompatibility between the numerical and analytical results appears at the interface
(i.e., at x/L = 0.5) and where the maximum velocity occurs (i.e., at x/L = 0.75). This
discrepancy originates from the adopted assumption that considers the normalization factor
(i.e., n0) to remain valid at the interface (even where q 6= 1). Also, the approximation term
has no renormalization matrix for ensuring the first-order accuracy of the estimated velocity
field.

Next, we perform a particle convergence study of the numerical results compared with the
analytical velocity profiles. We estimate and plot L2(‖v‖) over the simulation time, T =
0 − 100, and with different spatial resolutions (where R = 8, 10, 16, 20, 40, and 80) (Figure
8.5). With both single- and multi-resolution simulations, L2(‖v‖) reduces as the spatial
resolution increases (shown in Figure 8.5-a for M = 50). We plot L2(‖v‖) against the
averaged particle size (i.e., (l01 + l02)/2) in the log-log graphs of Figure 8.5-b; the plots
display that the accuracy of results is independent from the viscosity ratio M (e.g., with
q = 2 and R = 40, L2(‖v‖) is 1.15, 1.17, and 1.13 %, for M = 25, 50, and 100, respectively).
On the other hand, the multi-resolution simulations affect the estimation of velocity profiles
and the order of convergence by increasing the numerical errors (e.g., for M = 100 and
R = 80, L2(‖v‖) for q = 1 increases from 0.5 % to 0.9 and 1.3 % by q = 2 and q = 4,
respectively). However, adopting higher spatial resolutions decreases the errors with an
order of convergence greater than one. Considering that the shear force calculation (i.e.,
〈η∇2v〉) does not benefit from any high-order approximation operators, overall, the errors
by the multi-resolution implementations remain in an acceptable range (i.e., L2(‖v‖) ≤ 2%
for R ≥ 20).

Hydrostatic pressure

In this 2D benchmark case, two inviscid and immiscible fluids with identical heights fill a
steady tank subjected to a constant gravitational force, g = (0,−9.81m/s2)t [126, 164]. The
lighter phase (Ω1 with the density of ρ1 = 1000 kg.m−3) is on the top of the heavier phase
(Ω2) with the density ratio of ρ2/ρ1 = 2 (shown in Figure 8.3-b). The total fluid height, H,
and the initial particle size of phase 2, l02, determine the spatial resolution as R = H/l02.
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Figure 8.4 Poiseuille flow: velocity of fluid particles (∀i ∈ Ωf ) at T = tU0/L = 100 with
M = 25, 50, and 100, simulated by the single-resolution (q = l02/l01 = 1) and multi-
resolution (q = 2, 4) MPS models. The spatial resolution of the second fluid phase (Ω2)
is R = L/l02 = 40. The solid black lines represent the analytical velocity profiles. The
magnitude of velocity is normalized by U0.
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Figure 8.5 Poiseuille flow: (a) L2(‖v‖) over the simulation time for M = 50 with different
spatial resolutions (R), and (b) the numerical errors and order of convergence (O(.)) for
M = 25, 50, and 100, simulated by the single- and multi-resolution MPS models. In (b),
L2(‖v‖) is averaged over T = 90− 100 identified as the gray regions in (a).
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We set c0, ρ0, and CCFL to 20 m/s, ρ1, and 0.5, respectively. We activate the diffusive term
(8.13) with δMPS = 0.2 while deactivate the DPC technique. The fluid particles (i ∈ Ωf =
Ω1 ∪ Ω2) are initially located on a Cartesian lattice; the particle distribution of each phase
is packed separately before starting the main simulations (similar to the packing algorithm
proposed by Colagrossi et al. [228]). The model assigns the initial hydrostatic pressure and
the corresponding particle number density to the packed fluid particles [126]. We simulate
this test case for 10 seconds where the non-dimensional time, T , is given by t

√
‖g‖/H. The

particle size ratio is denoted by q = l02/l01 where q = 1 and q = 2, 4 refer to the single-
and multi-resolution simulations, respectively. To validate the numerical results (compared
with the theoretical hydrostatic pressure), we extract the local pressure, pe, linearly averaged
over the fluid particles within an influence radius of 1.5l02 from the extraction points (e)
evenly distributed at x = 0.05, 0.10, and 0.15 m with ∆ye = 0.005 m (identified as the
delta markers in Figure 8.3-b). The normalized root-mean-square-error of the pressure is
calculated by L2(p) = [pmax ]−1

√
1/Ne

∑
e[pat yee − pat yetheoretical ]2 in which Ne is the total number

of extraction points. The numerical error is normalized by the maximum theoretical pressure
corresponding to each fluid phase, i.e., if ye > H/2 then pmax = 0.5Hρ1‖g‖ and if ye < H/2
then pmax = 0.5H(ρ1 + ρ2)‖g‖. Through this benchmark case, we investigate the accuracy of
the multi-density model in predicting hydrostatic pressure.

Figure 8.6 represents the particle distributions and pressure fields with R = 100 and q = 1, 2,
and 4 at t = 10 s. Stable and uniform particle distribution exists at the interface of the
multi-resolution simulations (where q = 2, 4); the implemented diffusive term ensures smooth
pressure fields over the entire fluid domain. We plot the local numerical pressures to compare
with the hydrostatic pressure profile. The graphs show good agreement between the numerical
results and the theoretical pressure for all three cases.

To quantify the accuracy and the convergence order of the results, we calculate the normalized
root-mean-square-error of the pressure parameter (L2(p)) for different spatial resolutions (i.e.,
R = 20, 50, 100, and 200). The numerical error is normalized by the maximum theoretical
pressure corresponding to each fluid phase. The particle rearrangement (due to the assigned
pressure field and the initial particle distribution at the interface) oscillates the estimated
error at the initial time steps until the simulation reaches a stable condition (for T > 40)
(Figure 8.7-a). The numerical errors of the single- and multi-resolution simulations reduce as
we increase the spatial resolution of each fluid phase. We represent L2(p) against (l01 + l02)/2
in a log-log plot in Figure 8.7-b. Thanks to the conservative form of the approximation
operators (i.e., 〈∇ · v〉 and 〈∇p〉) and the effective diffusive term (8.13), the accuracy of
numerical results proves to be independent of q where R ≥ 100 (noting that L2(p) becomes
negligible, i.e., L2(p) ≤ 0.5 %). Moreover, the particle convergence study confirms that
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the accuracy of multi-resolution simulations (q = 2, 4) improves at the expected rate by
increasing R, as the order of convergence remains equal to ∼ 1.

8.5.2 Dam break waves on erodible granular beds

We simulate the water dam break over movable beds as a benchmark case of rapid fluid-
driven granular dynamics. First, we specify the main properties of this problem and the
numerical model configurations. We conduct a sensitivity analysis concerning the constant
material parameters (i.e., µ2, a, and b in the post-failure terms of the visco-inertial rheology
equation) and the suspension equation (8.23). We validate the results of the proposed multi-
resolution MPS model against the available experimental data representing the simulated
flow properties and discussing the phenomenology of the sediment erosion. Also, we evaluate
the role of multi-scale water-sediment interactions within the continuum-based modeling of
such multiphysics problem.

Problem characteristics and configurations

We configure the two-dimensional numerical model based on the experimental setup of [12]
(shown in Figure 8.8). In this problem, a column of water collapses under the gravitational
force, g = (0,−9.81m/s2)t, on sediment beds fully submerged in water. The non-cohesive
sediment material consists of either coarse sand grains or Polyvinyl Chloride (PVC) pellets
[12]; table 8.1 represents their reference material properties assigned in the rheology equations
(8.20-8.23). The material constants of water are its reference density, ρ0w = 1000 kg.m−3,
and true viscosity, µw = 0.001 Pa.s. The flume’s length is 2L = 6.00. Considering different
levels of sediment on the left side of the gate, ∆Hb, different geometrical configurations exist
by ∆Hb = 0.0, −0.05, and 0.10, identified as cases A, B, and C, respectively. The upstream
water level with respect to the downstream sediment level, H, is equal to 0.35 m and identical
for all three experimental setups. The gate, located at the middle of the flume, i.e., at x = 0.0,
is being lowered down with the nominal speed of ∼ 5 m/s (in the negative y-direction) [12].

In continuum-based modeling of granular material, the particle size/distance must be large
enough to represent a sufficient number of grains so that the continuum assumption and
hence the constitutive law remain valid [17]. Based on the sensitivity analysis conducted by
Jandaghian et al. [126] and Ghaïtanellis et al. [114] for the sediment dynamics problems, we
fix the initial inter-particle distance of mixture particles, l0m, to 0.005 m and 0.01 m for the
sand and PVC bed materials, respectively, which correspond to ' 2.7dg (see Figure 8.8). We
define the particle size ratio, q, as the ratio of l0m to the initial inter-particle distance of water
particles, l0w, i.e., q = l0m/l0w. A packed particle distribution is used for initializing the main
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Figure 8.6 Hydrostatic pressure: particle distributions and pressure fields (with R = H/l02 =
100) at t = 10 s (represented in the top and the middle rows, respectively). The local
pressures extracted at x = 0.1 m are plotted against the theoretical hydrostatic pressure (in
the bottom row).
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Figure 8.7 Hydrostatic pressure: (a) L2(p) over the simulation time with different spatial
resolutions (R), and (b) the numerical errors and order of convergence, simulated by the
single- and multi-resolution MPS models. In (b), L2(p) is averaged over T = 60−70 identified
as the gray regions in (a). The local numerical pressures are averaged on the extraction points
(i.e., at x = 0.05, 0.10, and 0.15 m, shown in Figure 8.3-b).

simulations. Hydrostatic pressure determines the initial density and the effective pressure
of the fluid particles at t = 0 s [126]. Considering the third-order polynomial spiky kernel
of Shakibaeinia and Jin [47] and k = 3.1 for the approximation operators, the reference
normalization factor n0 = 2.2414 (which is independent of the spatial resolution of each
phase). To solve the governing equations, we set CCFL and Cv to 0.5 and 0.125, respectively,
and the reference sound speed, c0, to 40 m/s. The diffusive term (with δMPS = 0.6) and the
DPC technique are implemented within all the simulations. In this test case, the viscous force
is dominant, thus, the maximum viscosity, i.e., ηmax of the mixture phase, determines the
time steps of the calculations through equation (8.26) (which we have set to 4000 and 6000
Pa.s for the sand and PVC cases, respectively). To simulate the physical gate, we implement
the virtual gate (VG) technique proposed by Jandaghian et al. [126].

We characterize the dynamics of the immersed granular flow by the interface data (i.e.,



234

the water free-surface, the dense sediment transport layer, and the bed level), the temporal
evolution of the eroded area, Ae, the first moment of the eroded area, xcAe (where xc is the
geometric center of Ae), and the wavefront position, xf (from the experimental data provided
by Spinewine and Zech [12] and Spinewine and Capart [13] identified on Figure 8.8-b). We
extract the numerical results at time steps identical to the experimental data before the
wave reaching the end of the flume (which is at t = 0.25, 0.5, 0.75, 1.00, and 1.25 seconds
for the sand case and t = 0.25, 0.5, 0.75, 1.00, 1.25 and 1.50 seconds for the PVC case).
The non-dimensional time T is given by t

√
‖g‖/H. We normalize Ae and xcAe by their

corresponding reference values, i.e., (Ae)fexp. and (xcAe)fexp. (which refer to the final data from
the experiment at t = 1.25 s for sand and at t = 1.50 s for PVC), respectively. To detect the
simulated eroded area, we employ a velocity threshold (for both water and mixture particles
as ‖v‖i∈Ωf & 0.25 [114]) and a minimum volume fraction value (for water particles in the
vicinity of the eroded mixture particles as 〈φ〉i∈Ωw/φ0 ≥ 0.10− 0.3 depending on the particle
size). Fluid particles that satisfy the two conditions are identified as the eroded particles
(i ∈ Ωed). Through validating the simulated flow properties, we justify the thresholds set
in the detection conditions. The numerical error of the sediment erosion parameters at T is
given by Er(·) = [(·)at T

numerical − (·)at T
experimental ][(·)fexp. or L]−1 normalized by the corresponding

reference value. We estimate the global normalized root-mean-square-error, i.e., L2(·), by√
1/Nt

∑NT
1 [Er(·)]2 where NT is the number of calculation steps (equal to 5 and 6 for sand

and PVC, respectively).

A sensitivity analysis of the rheology parameters

The rheology model dynamically estimates the effective viscosity of the fluid particles as
functions of the flow and material properties. Spinewine and Zech [12] reported the reference
material parameters of the sand and PVC bed materials (table 8.1); however, the constant
parameters in the post-failure terms of the implemented visco-inertial model (i.e., µ2, a,
and b) remain unknown and should be calibrated. Here, we analysis the sensitivity of the
numerical results of case A to the rheology constants (considering the suggested values in
[20], [98] and [240]). Also, we quantify the role of the suspension equation (8.23) in the overall

Table 8.1 Material properties of coarse sand grains and PVC pellets.

Sediment ρg (kg.m−3) θ (degree) dg (mm) φ µ2 a b
Sand 2683 30 1.82 0.53 0.84 1.23 0.3
PVC 1580 38 3.9 0.58 1.00 1.23 0.3
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Figure 8.8 Water dam break, under the gravitational force, g = (0,−9.81m/s2)t, on movable
beds. (a) The initial configuration of the two-dimensional numerical simulations, and (b)
the experimental data by Spinewine and Zech [12]. Considering different levels of sediment
on the left side of the gate, ∆Hb, we simulate cases A, B, and C (denoted as (a), (b), and (d)
in the experiments, respectively). The fluid particles (i ∈ Ωf = Ωw ∪ Ωm) are packed before
the initialization of the main simulations.

mechanical behavior of the sediment erosion.

To conduct the sensitivity analysis, we plot the temporal evolution of Ae, xcAe, and xf

simulated by the single-resolution MPS model (q = 1) where µ2, a, and b vary as shown in
Figures 8.9 and 8.10 (for the sand and PVC cases, respectively). Each parameter changes
while the other two parameters are equal to their reference values given in table 8.1. The
graphs show that the bed-load evolution with different parameters of the post-failure terms
remains almost alike. Table 8.2 and 8.3 represent L2 of each scenario and compare them
with the errors of the reference model (given in the first rows of the tables). For both bed
materials, L2 varies by less than ∼ 3%. Thus, the sensitivity analysis confirms that the
estimated sediment erosion is almost independent of the variation of the parameters, µ2, a,
and b in the specified ranges.

Furthermore, we simulate case A-PVC (where q = 1, 2, 4) with and without implementing
the suspension equation (8.23) in the rheology model. Table 8.4 shows that L2(xf ) is al-
most identical for both conditions. Adding the suspension term slightly reduces L2(Ae) and
L2(xcAe) by ∼ 1 − 4 %, nevertheless, the suspension term does not manipulate the overall
sediment dynamics estimated by the single- and multi-resolution models.

The considerable incompatibility between the numerical simulations and the experimental
measurements (shown in the graphs of Figures 8.9 and 8.10 and quantified in table 8.4) man-
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ifests the incapability of the single-resolution model in capturing accurate flow evolution. The
continuum-based numerical model ignores some physical properties of the water-sediment
mixing process associated with multi-scale interactions and volume fraction variations. No
inter-particle mass exchange occurs in the numerical simulations; therefore, the model ne-
glects the microscopic fluid flow around and between solid grains and the effects of density
changes in the rheology model.

Flow properties and interface data

In this section, we present and validate the dam-break waves over erodible beds simulated by
the multi-resolution MPS method (where q = 4). By reporting the longitudinal and vertical
flow properties, we discuss the global flow evolution and the non-linear mechanical behavior
of this rapid fluid-driven problem. The velocity magnitude, ‖v‖, the effective viscosity (as
log10(η)), the approximated volume fractions (i.e., 〈φ〉 normalized by the reference volume
fraction of the mixture phase, φ0), and the mixed number, Im, of cases A-Sand, A-PVC, B-
Sand, and C-Sand (at t = 0.5 and t = 1.0 seconds) are illustrated in Figures 8.11, 8.12, 8.13,
and 8.14, respectively. The figures include snapshots of the experiments and the interface
data plotted over the numerical results. Except for the close-up plots/snapshots (i.e., the
inset figures with the black dash line boarder), the vertical scale of the images is stretched
by a factor of 1.5 to ease visualization of the profiles and flow evolution.

The numerical solution provides in-depth details of the water-sediment dam-break flows. As
the top edge of the vertical gate reaches the bed level (t = 0 s), the water column collapses on
the water-saturated sediment bed driving a thin layer of bed-load toward the downstream.
After the sudden vertical collapse, the wave propagates horizontally on the movable bed (con-
sidering that the wavefront position advances a distance of 3H in the positive x-direction in
less than 0.5 seconds). The flow velocity increases uniformly from upstream to downstream;

Table 8.2 The normalized root-mean-square error (L2) of Ae, xcAe, and xf of case A-Sand
with values for material properties in the rheology model (a, b, and µ2) and where q = 1.

µ2 a b L2(Ae)% L2(xcAe)% L2(xf )%
0.84 1.23 0.3 32.01 25.52 9.88

(0.71, 1.0) 1.23 0.3 (29.99,32.39) (24.78,25.91) (10.01,10.20)
0.84 (0.71, 0.97) 0.3 (31.54,31.77) (26.63,26.60) (9.84,9.85)
0.84 1.23 (0.1, 0.2) (33.31,31.58) (26.86,26.62) (10.04,9.72)
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Figure 8.9 Sensitivity analysis of the fluid-driven granular flow (case A-Sand) to the rheology
parameters (a, b, and µ2) through the single-resolution MPS model (q = 1). The experimental
profiles of the eroded area, Ae, the first moment of the eroded area, xcAe, and the wavefront
position, xf , are extracted from the interface data by Spinewine and Zech [12].

Table 8.3 The normalized root-mean-square error (L2) of Ae, xcAe, and xf of case A-PVC
with different material properties in the rheology model (a, b, and µ2) and where q = 1.

µ2 a b L2(Ae)% L2(xcAe)% L2(xf )%
1.00 1.23 0.3 35.41 25.06 5.08

(0.84, 1.39) 1.23 0.3 (33.89,36.52) (24.01,24.88) (4.67,4.83)
1.00 (0.71, 0.97) 0.3 (34.18,35.35) (23.67,22.90) (4.63,3.99)
1.00 1.23 (0.1, 0.2) (36.49,35.02) (23.95,23.60) (4.89,4.58)
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Figure 8.10 Sensitivity analysis of the fluid-driven granular flow (case A-PVC) to the rheology
parameters (a, b, and µ2) through the single-resolution MPS model (q = 1). The experimental
profiles are extracted from the interface data by Spinewine and Zech [12].

Table 8.4 The normalized root-mean-square-error (L2) of Ae, xcAe, and xf with q = 1, 2,
and 4 for case A-PVC with and without the suspension equation (8.23).

Case A-PVC L2(Ae)% L2(xcAe)% L2(xf )%
q 1 2 4 1 2 4 1 2 4
With the suspension
equation

35.41 30.64 13.77 25.06 14.76 2.23 5.08 1.29 1.39

Without the suspen-
sion equation

35.83 32.86 16.05 24.81 18.00 3.24 6.01 2.11 1.38
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the dam-break surge exceeds a maximum velocity of 2.5 m/s forming rapid erosional bores
at the interface and the head of the wave (as shown in the close-up plots). For all cases the
surge celerity develops similarly (independent from the initial configurations and/or the sedi-
ment materials). Furthermore, the effective viscosity field (plotted as log10(η)) illustrates the
yielded and un-yielded regions estimated by the regularized rheology formulation. Inside the
bed, high shear forces rapidly reduce the flow velocity towards the bottom of the flume (i.e., in
the negative y-direction). The spatial variation of volume fraction at the interface manifests
the mixing of water and mixture particles. From upstream to downstream, the longitudinal
concentration of mixture particles increases over the bed-load layer; close to the downstream
wavefront, the suspended mixture particles fill the entire flow depth (well-observed in case
A with the PVC bed material) [13]. In the implemented model, the approximated volume
fraction is included in the shear force calculations through the effective viscosity terms. The
mixed number of the rheology model, Im, as a function of the strain rate magnitude and the
effective pressure, clearly distinguishes the suspended mixture particles (where Im & 0.6) for
which the suspension equation (8.23) updates the effective viscosity.

The overall longitudinal flow evolution, including water free-surface, the sediment transport
layer thickness, and the bed boundary, are in reasonable agreement with the experimental
interface data. In all cases, the high wave velocity, causing highly dynamic sediment erosion,
creates irregular free-surface profiles (as rotated S-like shapes which are particularly visible at
t = 0.5 s). As the wave progresses on the horizontal beds (shown at t = 1.0 s), the free-surface
curvature reduces and better agreement exists between the numerical and experimental mea-
surements. In the flat-bed cases (A-sand and A-PVC), the sudden vertical surge forms a
scour hole at the near-dam region (i.e., the gate’s location) partially captured by the numer-
ical simulations. Also, the calculated wavefront positions of these two cases match quite well
with the experimental profiles at t = 0.5 and 1.0 s. In the case with a forward-facing step of
the saturated sediment material (i.e., B-sand where ∆Hb = −0.05 m), the un-yielded bed is
comparable with the measured bed profile, even at the near-dam region (at x = 0). However,
the bed boundary of the case with the backward-facing step (i.e., C-sand where ∆Hb = +0.10
m) does not match with the experimental profile close to the gate’s location; this issue also
affects the prediction of the water free-surface with stronger curvatures (at x = {−0.25,+0.5}
m) and underestimates the wavefront position (at t = 1.00 s). The observed discrepancies
can be attributed to the complex non-linear flow behaviors and turbulence effects at the front
of the wave which lead to non-monotonous interface profiles and non-equilibrium sediment
transport [18]. The continuum-based particle method struggles to accurately capture the
instantaneous and local flow curvatures (especially at t = 0.5 s near the wavefront of case
B-PVC and the gate’s location of case D-sand). We should note that the adopted numerical
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formulation is incapable of directly simulating the dilatation and compaction effects on the
immersed granular flows. Further, the virtual gates (see [126]) ignore the gate’s physical
thickness, and therefore, the associated initial disturbance of its movement. Nevertheless,
the developed model simulates the overall flow evolution, wave celerity, and sediment erosion
processes of the dam break problem comparable with the experimental measurements and
snapshots.

Next, we validate the internal flow properties of the numerical simulation of case A-PVC
against the available experimental measurements represented by Spinewine and Capart [13]
(Figures 8.15 and 8.16). Spinewine and Capart [13] used a particle tracking analysis to
measure the vertical velocity profiles, uexp., at 40 cross-sections evenly distributed between
x = −0.95 and +2.95 m with ∆x = 0.10 m. We extract the numerical velocity, unum., by
linearly averaging the velocity magnitude of fluid particles at the vicinity of the extraction
points with ∆y = 0.01 m on the same vertical cross-sections. Figure 8.15 plots the fluid
particles (classified as the eroded and not eroded particles, i.e., i ∈ Ωed and i /∈ Ωed , respec-
tively), the extracted numerical velocity as x + 0.05unum., and the experimental velocity as
x+ 0.05uexp., at t = 0.6, 1.0, and 1.4 seconds. The numerical model simulates the non-linear
velocity profiles with smooth variations at the top and base of the sediment transport layer;
the velocity profiles in the water layer remain uniform with maximum magnitudes at the
free-surface. At t = 1.4 s, the model slightly underestimates the velocity near the wavefront
(x ' 2.5). Nevertheless, the estimated velocity matches the experimental profiles quite well
over the entire fluid domain. Moreover, we extract and compare the local granular concentra-
tion, c, and the sediment transport intensity defined as the product of c and u (i.e., c and cu,
respectively). Spinewine and Capart [13] reported the corresponding experimental measure-
ments limited to the granular layer at 13 laser-instrumented vertical cross-sections between
x = 0.05 and 1.5 m. To estimate cnum., we linearly average the approximated volume fraction
of the particles, 〈φ〉i∈Ωf , at the extraction points. One should note that the experimental
measurements are missing at x ≥ 1.25 m and t = 0.6 s (unlike the velocity profiles reported
by the particle tracking analysis in Figure 8.15). We plot x+0.1c and x+0.15cu over the fluid
particles in the left and right graphs of Figure 8.16, respectively. The granular concentration
keeps its maximum value (φ0) in the granular layer while reducing across the bed-load layer
toward the free surface. At the top interface of the transport layer, the granular concentration
drops and further vanishes in the absence of the mixture particles. In spite of some minor
discrepancies, the estimated numerical profiles are in good agreement with the experimental
measurements; the validation confirms that the numerical model can predict the non-linear
profiles with smooth variations across the bed-load layer. We should also highlight that the
compatibility between the numerical and experimental profiles justifies conditions we have
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Figure 8.11 Dam break waves over the flat erodible bed (case A-Sand). The first row shows
the snapshots and the interface data from the experiments by Spinewine and Zech [12]. The
results of the multi-resolution MPS model (with q = 4) (i.e., the velocity magnitude, ‖v‖,
the log of the effective viscosity, log10(η), the approximated volume fraction, 〈φ〉/φ0, and the
mixed number of the rheology model, Im) are represented at t = 0.5 and 1.0 seconds. The
experimental interface data (the black squares) are plotted on the numerical results. Except
for the close-up plots/snapshots, the vertical scale is stretched by a factor of 1.5.
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Figure 8.12 Dam break waves over the flat erodible bed (case A-PVC). The first row shows
the snapshots and the interface data from the experiments by Spinewine and Zech [12]. The
experimental interface data (the black squares) are plotted on the numerical results (where
q = 4). Except for the close-up plots/snapshots, the vertical scale is stretched by a factor of
1.5.
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Figure 8.13 Dam break waves over the erodible bed (case B-Sand). The first row shows the
snapshots and the interface data from the experiments by Spinewine and Zech [12]. The
experimental interface data (the black squares) are plotted on the numerical results (where
q = 4). Except for the close-up plots/snapshots, the vertical scale is stretched by a factor of
1.5.
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Figure 8.14 Dam break waves over the erodible bed (case C-Sand). The first row shows the
snapshots and the interface data from the experiments by Spinewine and Zech [12]. The
experimental interface data (the black squares) are plotted on the numerical results. Except
for the close-up plots/snapshots, the vertical scale is stretched by a factor of 1.5.
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adopted to detect the eroded area (through which we study the phenomenology of sediment
erosion and quantify the numerical validations).

Phenomenology of the sediment erosion: Ae, xcAe, and xf

To overview the phenomenology of the dam break waves over movable beds, we compare the
sediment dynamics of the different configurations. Figure 8.17 shows the wave propagation
of cases A-sand, A-PVC, B-sand, and C-sand on the horizontal beds at t = 1.25 s. The
figure contains experimental snapshots and the interface data of the test cases. Further, we
plot the temporal evolution of the global erosion variables, Ae and xcAe, and the wavefront
position, xf , in Figure 8.18, and represent the associated numerical errors in table 8.5.

Qualitatively, the numerical simulations provide comparable flow evolution and predict the
thickness of the transport layer at the center of the wave in all four cases. The base of the
transport layer is well-captured; however, near the gate’s location, the rapid flow involves
complex interface deformations affecting the numerical predictions. As discussed earlier, this
incompatibility is more noticeable for case C-sand with the backward-facing step. Comparing
case A-PVC with the other configurations illustrates the sensitivity of sediment erosion to
the density ratio (i.e., ρm/ρw). The thickness of the transport layer increases significantly
for case A-PVC as the wave can mobilize more mixture particles. On the other hand, with
the sand material (i.e., with the heavier grains, but with a smaller fiction angle) in cases
A, B, and C, the transport layer is thinner; thus, the wave can progress further on the
horizontal bed with less sediment erosion toward the downstream [13,18]. While the wavefront
position of case A-PVC matches well with the interface data, the numerical simulation slightly
underestimates the wave propagation speed of cases with the sand beds (regardless of their
initial configuration).

To quantitatively study the sediment dynamics, Figure 8.18 provides an overall overview of
the sediment erosion concerning different configurations and bed materials. The graphs of
Figure 8.18 show that the multi-resolution MPS model predicts the global behavior of the
sediment erosion and wave prorogation. Particularly, we observe that xcAe, and xf of all four
cases are in very good agreement with the experimental data. For the light PVC material,
sediment erosion increases significantly as Ae of A-PVC is almost 2.5 times greater than Ae
of A-sand (at t = 1.25 s). For case C-sand, the wave interaction with the backward-facing
step increases the sediment erosion by ∼ 30 percents in comparison with cases A-sand and
B-sand. With the step-like discontinuity of cases B and C, the results are less satisfactory
considering that the numerical model underestimates the sediment erosion at t = 0.5 and 0.75
s. Table 8.5 represents the numerical errors of the sediment erosion parameters, L2. L2(xf )
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Figure 8.15 Vertical velocity profiles of dam break waves over the flat erodible bed (case A-
PVC) in comparison with the experimental data at t = 0.6, 1.0, and 1.4 seconds. The local
numerical velocity, x+ 0.05unum., is identified by the delta markers and the color map. The
experimental data, x+ 0.05uexp. (shown as the black x markers) are extracted from the work
of Spinewine and Capart [13]. Except for the close-up plots, the vertical scale is stretched
by a factor of 4.
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Figure 8.16 Vertical profiles of the granular concentration, c, and sediment transport intensity,
cu, of case A-PVC at t = 0.6 seconds (on the left and right graphs, respectively). The
numerical results of the multi-resolution model (q = 4) are compared with the experimental
measurements by Spinewine and Capart [13] (plotted as the delta and the black x markers,
respectively). The vertical scale is stretched by a factor of 1.5.

and L2(xcAe) remain less than 10 percents manifesting the acceptable accuracy of numerical
model in simulating the flow evolution on the movable beds. The results show that with
the step-like discontinuities, L2(Ae) increases by ∼ 10 percents (from ∼ 8.5 for case A-sand
to ∼ 19.7 and ∼ 14.7 percents). We attribute the numerical errors to the neglected role
of granular dilatation and compaction in the adopted single-phase rheology model. This
issue indirectly ignores the turbulence suspension effects of the microscopic pore water flow
between solid grains within the numerical simulations [13]. Nevertheless, the multi-resolution
MPS model proves to be capable of predicting the global behavior of the fluid-driven granular
dynamics with reasonable numerical accuracy.

Table 8.5 The normalized root-mean-square error (L2) of Ae, xcAe, and xf of cases A-Sand,
A-PVC, B-Sand, and C-Sand simulated by the multi-resolution MPS model (q = 4).

Case L2(Ae)% L2(xcAe)% L2(xf )%
A-Sand 8.49 8.20 2.40
A-PVC 13.77 2.23 1.39
B-Sand 19.66 8.09 3.67
C-Sand 14.68 8.54 6.79
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Figure 8.17 Flow evolution and the eroded region, i ∈ Ωed , of case A, B, and C, at t = 1.25
s, simulated by the multi-resolution MPS model (q = 4) compared with the experimental
snapshots and interface data (the black squares) from the work of Spinewine and Zech [12].
The vertical scale is stretched by a factor of 5.0.
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Figure 8.18 Temporal evolution of Ae, xcAe, and xf of cases A-Sand, A-PVC, B-Sand, and D-
Sand with the multi-resolution MPS model (q = 4) compared with the experimental profiles
(extracted from the interface data reported by Spinewine and Zech [12]). Ae and xcAe are
normalized by the corresponding reference values of case A-Sand (denoted as (Ae)fexp.:A−Sand

and (xcAe)fexp.:A−Sand , respectively).

Role of multi-scale simulations

Here, we discuss the role of multi-scale interactions in sediment erosion modeling. To do so,
we compare the interface data of case A simulated by the single- and multi-resolution models.
Figures 8.19 and 8.20 represent the eroded region (i ∈ Ωed) of case A with the sand and PVC
bed materials, respectively. In these figures, except for the close-up plots, the vertical scale is
stretched by a factor of 5.0. Flow evolution of the water and mixture particles (at t = 0.75 and
1.25 seconds) shows that the single-resolution model (q = 1) underestimates the wavefront
position. This discrepancy between the numerical and experimental results is more noticeable
for the sand case with a higher density ratio. On the other hand, the multi-resolution models
(q = 2, 4) predict more flow deformations at the interface, increasing erosion of the mixture
particles. Although the continuum-based modeling still misses some physical aspects of
sediment erosion (i.e., the pore water flow between the solid grains and the associated changes
in the volume fraction of the mixture particles), the multi-resolution particle interactions
allow the numerical model to capture more accurate flow evolution related to the multi-scale
feature of water-sediment dynamics.
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To quantify the numerical validations, we plot the temporal evolution of Ae, xcAe, and xf

and compare them with the experimental data (Figure 8.21). The profiles manifest im-
provements in estimating the sediment erosion by the multi-resolution model (with q = 4),
while the single-resolution model underestimates the granular flow evolution. The remaining
incompatibility between the numerical and experimental profiles (especially for the eroded
area of case A-PVC at T & 3) originate from complex water-sediment mixing processes at
the interface that the continuum-based particle method is incapable of simulating. Table
8.6 represents the normalized root-mean-square-error, L2(·) of the sediment erosion param-
eters. The quantified results show a significant reduction in the numerical errors by the
multi-resolution simulations (by a factor of ∼ 2 − 4) with respect to the single-resolution
results. Moreover, to compare the global mechanical behavior of the sediment flow, we plot
the global kinetic energy of the mixture particles (Ek = 0.5∑ ρ0il0i

2‖v‖i2 for ∀i ∈ Ωm) which
is independent of the conditions used for detecting the eroded area (Figure 8.22). For case
A, Ek of the multi-resolution model (where q = 4) is two to three times greater than Ek of
the single-resolution model (where q = 1) for both bed materials. Overall, we observe that
the developed multi-resolution model considerably reduces the errors of the single-resolution
simulations by estimating more sediment erosion at the interface.

8.6 Conclusion

We investigated the mechanical behavior of fluid-driven granular dynamics through a consis-
tent multi-resolution particle method. We developed a conservative form of governing equa-
tions (based on the enhanced weakly-compressible MPS method) to incorporate multi-scale
water-sediment interactions within the continuum-based numerical modeling. Simulating two
benchmark cases (i.e., the multi-viscosity Poiseuille flow and the multi-density hydrostatic
pressure problems), we studied the accuracy and convergence of the numerical results with
the single- and multi-resolution models. As for the fluid-driven granular erosion, we adopted
the generalized rheology equation to model the two-dimensional dam-break waves on erodible

Table 8.6 The normalized root-mean-square-error (L2) of Ae, xcAe, and xf with q = 1, 2,
and 4 for case A with sand and PVC.

Case A L2(Ae)% L2(xcAe)% L2(xf )%
q 1 2 4 1 2 4 1 2 4

Sand 32.01 20.10 8.49 25.52 13.47 8.20 9.88 4.33 2.40
PVC 35.41 30.64 13.77 25.06 14.76 2.23 5.08 1.29 1.39
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Figure 8.19 Flow evolution and the detected eroded region, i ∈ Ωed , for case A-sand with
the single-resolution (q = 1) and multi-resolution (q = 2, 4) MPS models compared with the
experimental interface data (the black squares) from [12]. Except for the close-up plots, the
vertical scale is stretched by a factor of 5.0.
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Figure 8.20 Flow evolution and the detected eroded region, i ∈ Ωed , for case A-PVC with
the single-resolution (q = 1) and multi-resolution (q = 2, 4) MPS models compared with the
experimental interface data (the black squares) from [12]. Except for the close-up plots, the
vertical scale is stretched by a factor of 5.0.
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Figure 8.21 Temporal evolution of the eroded area, Ae, the first moment of the eroded area,
xcAe, and the wavefront position, xf , with the single-resolution (q = 1) and multi-resolution
(q = 2, 4) MPS models for case A with sand and PVC compared with the experimental
measurements by Spinewine and Zech [12].
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254

sediment beds. We presented and discussed the mechanical behavior of this benchmark case
for various configurations (i.e., with the flat-bed and the step-like discontinuities) and bed
materials (i.e., the sand and PVC granules). We analyzed the sensitivity of sediment dynam-
ics to the added suspension equation and the constant material parameters of the rheology
model. Through comprehensive numerical validations, we studied the flow evolution and
mechanical properties of the sediment erosion induced by the rapid water waves. Moreover,
we compared the numerical results of the single- and multi-resolution simulations to evaluate
the role of multi-scale interactions in capturing the global behavior of this benchmark case.

The particle convergence study on the two numerical benchmark cases confirms that the pro-
posed multi-resolution formulation predicts the analytical results with acceptable accuracy.
For the multi-viscosity Poiseuille flow, the multi-resolution shear force respects the conver-
gence behavior of the numerical model and keeps the errors of the velocity profiles to less
than 2 %. For the multi-density hydrostatic pressure, the conservative governing equations
ensure the accuracy and stability of the results with errors less than 0.5 %. In both cases,
increasing the spatial resolution, the numerical results converge to the analytical profiles with
the convergence order greater than one.

For the dam break waves on movable beds, the developed numerical model provides in-depth
details of the water-sediment mixing processes and the global behavior of sediment dynamics.
The nonlinear vertical velocity and granular concentration profiles of the flat-bed with PVC
are well estimated. Simulating different geometrical setups with the sand and PVC granules
clarifies that the sediment dynamic greatly depends on the mobility of the bed materials, i.e.,
the density ratio, ρm/ρw (supporting the theoretical analysis by Spinewine and Capart [13]
and Fraccarollo and Capart [18]). In the flat-bed configuration, the eroded sediment and
the thickness of the transport layer increase with the light PVC material (by a factor of
∼ 2.5) compared with the case with the sand grains. The step-like discontinuities lead to
complex bed-load evolution close to the gate’s location and slightly increase the mobility
of the bed material at the initial stages of erosion. Regardless of the initial configuration,
in cases with sand, the wave propagates on the horizontal bed with almost identical bed-
load layer thickness and speed. In general, the multi-resolution MPS method proves to
be capable of simulating the complex sediment erosion at the interface and the wavefront
position. Despite the local discrepancies, the interface data and the flow evolution match
well with the experimental measurements. Moreover, we observe that the multi-resolution
model captures more interface deformations in comparison with the single-resolution model
that underestimates sediment erosion. The results presented highlight the importance of
multi-scale multiphase water-sediment interactions in numerical simulations of such a rapid
fluid-driven problem.
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It is worthwhile to employ the developed particle method for studying complex multi-
directional granular flows with applications to industrial and hydro-environmental problems.
The proposed multi-resolution formulations can be extended to two-phase mixture models
(e.g., [20, 98]) to investigate the effects of dilatation and compaction on the mechanical be-
havior of immersed granular flows. Furthermore, the multi-resolution MPS method can be
further validated to high-density ratio problems and coupled with dynamic particle merging
and splitting techniques to simulate violent free-surface flows [124, 164] and fluid-structure
interactions [88,89].
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CHAPTER 9 GENERAL DISCUSSION

This research project developed consistent particle methods for simulating violent free-surface
and granular flows involved in hydro-environmental and geotechnical problems. Quantita-
tive and qualitative analysis of the numerical results (compared with the analytical solutions
and available experimental measurements) proved the effectiveness and efficiency of the pro-
posed enhancements. The new conservative form of the WC-MPS method supplied with
several particle stabilization techniques ensures accurate and stable simulations of highly
dynamic free-surface flows. Furthermore, the generalized rheology model captures different
flow regimes of immersed granular flows driven by gravity and fluid flows. The consistent
multi-resolution particle method provided in-depth details and the global evolution of rapid
fluid-driven granular dynamics.

We proposed the conservative WC-MPS method by deriving its continuity-based version
and the new anti-symmetric approximation operators. We introduced several enhancement
techniques to enhance the stability, accuracy and convergence order of the conservative WC-
MPS method. In the context of this Enhanced WC-MPS, the density diffusive term plays
the key role in eliminating unphysical high-frequency pressure noises. The modified diffu-
sive term (with the convergent and high-order derivatives) resolved the divergent behavior
of the standard term at the interfaces. The proposed particle shifting techniques with the
special boundary treatments (i.e., the corrected particle shifting technique (CPS+PC) and
its consistent form (CPS∗+DPC)) effectively improved particle uniformity of the fluid par-
ticles. In the proposed CPS∗+DPC technique, the diffusive terms of the particle shifting
transport-velocity surmount the non-conservative-volume issue of the standard PS methods
(including CPS). The dynamic pair-wise particle collision technique (DPC) resolved the par-
ticle clustering issue and the associated pressure noises through its dynamic and conservative
collision and repulsive terms. Numerical validations of violent free-surface flows confirmed
the important role of the particle regularization techniques in assuring numerical stability and
capturing the impact events and loads of such problems. In the SPH framework, we re-derived
the DPC formulation and implemented the hybrid PS technique (i.e., the cPS method) to
study the accuracy and stability of the simulations by the different particle regularization
techniques. In both EWC-MPS and WC-SPH, the DPC technique, with dynamic formu-
lations, less energy dissipation, and without boundary treatments, produced more isotropic
particle distributions and accurate evolution of the system’s global energy. Overall, the
proposed stabilization techniques are proven to be essential for the long-term stability of
violent free-surface flows involving breaking waves, fluid-fluid and fluid-solid impacts, and
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large free-surface deformations.

Furthermore, we developed the multiphase EWC-MPS formulations to simulate and inves-
tigate the mechanical behavior of complex immersed granular flows. To model the dense
and immersed granular phase as a non-Newtonian mixture, we regularized the visco-inertial
rheology equation and proposed a consistent approach for estimating the effective pressure
of the mixture phase. Coupling this generalized rheology model with the enhanced parti-
cle method, provided us with a robust numerical model for studying the flow evolution and
mechanical properties of challenging gravity- and fluid-driven benchmark cases. Thanks to
the modified diffusive term the smoothness of pressure field eliminates unphysical mechan-
ical behavior of the mixture flow. The numerical validations against the experimental data
showed that the regularized rheology model captures the quasi-static and dense-flow regimes
of the rapid granular flows through its dynamic yield and post-failure terms. In addition, the
consistent effective pressure (by including the flow dynamics of the mixture in the rheology
model) proved to be an essential and efficient formulation for capturing highly deformable
and immersed granular flows.

We showed that in the continuum modeling of granular flows, the maximum spatial resolution
of the discrete system can be bounded by the continuum assumption of the mixture phase. To
resolve this limitation, we introduced a novel multi-resolution particle method for simulating
granular flows. In this approach, the particle method adopts a higher spatial resolution
for the fluid phase than that of the mixture. The new approximation operators respect
the conservative feature of multi-scale particle interactions. The consistent multi-resolution
method (including the generalized rheology model and the stabilization techniques) validated
the internal flow properties and the mechanical evolution of dam-break waves on movable
beds. The multi-resolution simulations highlighted the importance of multi-scale multiphase
water-sediment interactions in numerical studies of such a rapid fluid-driven problem.
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CHAPTER 10 CONCLUSION AND RECOMMENDATIONS

All in all, this research project has provided consistent particle methods and algorithms for
simulating and investigating violent free-surface flows and granular dynamics. The numerical
stability, accuracy, and convergence of the enhanced particle methods confirm the efficiency
and effectiveness of the developed stabilization techniques and rheology formulations. We
conclude that the enhancements of this study are essential for investigating the complex
mechanical behavior of rapid free-surface and immersed granular flows involved in various
hydro-environmental and engineering problems. Such an understanding of the multiphysics
simulations can advance the decision-making processes involved in the related hazard man-
agement activities.

The particle methods of this study can be employed and further extended for real-size hydro-
environmental and industrial applications. To that end, the numerical model requires further
developments and validations to resolve its current limitations. The multiphase governing
equations and the proposed diffusive terms are validated for the density ratio corresponding to
the immersed granular flows. On the particle regularization techniques, the pair-wise particle
collision technique requires special developments and further validations to be capable of
resolving the tensile instability issue (e.g., [185]). To simulate internal and free-surface flows
with inflow/outflow boundary conditions, the GPU-accelerated model does not include open
boundary implementations (e.g., [162]). Also, the solid boundary model still lacks consistent
formulations for dealing with surfaces with large curvatures and sharp corners (e.g., [69]).
Currently, the initial geometry and parameters of the problem are loaded from an input
text file which can be generalized for complex applications. The GPU-accelerated model is
developed to execute the simulations on a single GPU device which limits its performance.

10.1 Future research

Future works may include extending and validating the governing equations for high-density
ratio multiphase flows (like air-water flows) and fluid-structure interactions (like deformable
elements and ice-water dynamics). One can implement the fourth-order time integration
schemes (e.g., the Runge-Kutta algorithm [130]) to improve the accuracy of the numerical
solutions. Implementing a general solid boundary model (like the polygon models) is es-
sential for simulating problems with large-scale and complex topography. To improve the
efficiency of the GPU-accelerated code, one may adopt optimization strategies like the par-
ticle sorting algorithms and multi-GPU parallel programming. The multi-resolution MPS
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method can be supplied with dynamic splitting and merging techniques (like [77, 84]) for
various multiphysics problems (including fluid-structure interactions and floating bodies).
Moreover, the multiphase MPS method coupled with the generalized rheology model can be
extended to the two-continuum mixture models simulating inter-phase mass exchanges and
the mixture’s density variations. This would allow us to study the role of granular dilatation
and compaction in the mechanical properties of immersed granular flows.
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