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1. INTRODUCTION

The complexity 64 the geometries encountered in practical
fluid flow applications is such that a well defined need has
been identified for the treatment of complex shapes. This is

particularly the case of the numerical simulation of
three—-dimensionnal flows in turbomachinery components.
Historically one can trace such approaches to the conformal
mapping techniqgues or. more recently to algebraic

transformation technigques. However a truly modern methodology
for the handling of arbritray three—-dimensional geometries in
a generalized approach, dates from the early seventies with
the work of Professor Joe F. Thompson on body—fitted grid
generation. Al though originally intended  for finite
differences methods, these grid generators apply equally well
to finite volumes and finite element methods.

Such coordinate systems are called body—~fitted or
body—conforming curvilinear grids. Their essential feature is
that yield coordinate curves which are aligned with the domain
boundaries. There are +two major advantages. The first is
that the numerical scheme for the governing equations are
carried out on a rectangular mesh. There results a simpler
and more accurate algorithm since boundaries coincide with
coordinate grids, and no interpolation is regquired. The
second advantage is that the geometric complexity, through the
transformation, is imbedded into the coefficients of the
governing equations. This allows the possibility of writting
generalized codes applicable to a variety of different
geometries. This results in & great saving in the code
development effort.



2. BASIC CONCEPTS

2.1  WHAT IS A BGRID

Fresented simply, a grid is a method to organize a domain
for calculation purposes. This is achieved by the
mathematical concept of parametrization. That is the mapping
of the physical domain unto a parameter space which is
rectangular by construction. In this manner there is a unique
association of pointe, curves or surfaces in the parameter
space with their images in the physical space.

" This results in a series of curves which span the entire
domain in an orderly fashion. Each curve is identified by one
value of a parameter (or more graphically each corresponds to
one line in parameter space). So that a given point in space
can be identified or more imaginatively, can be reached by
displacements along these curves. It is intuitively obvious
that the number of these, depends on the dimension of the
domain.

The parametrization allows also to identify the heighbors
of points or lines as required for computational purposes.

It is clear that a given domain can be organized in many
different ways, the simplest being the cartesian system. Other
possibilities come to mind such as the classical polar,
cylindrical, or spherical coordinate systems. All of these
provide a means of associating (or mapping) a point in space
to a set of parameters. : '

Yy L
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Fig. la Cartesian coordinate gri&
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Fig. ib Polar coordinate gfid

From experience we know that the choice of & coordinate
system is related to the geometry of the problem. So that
there is a need to have a set of relations between the
physical space and the chosen parametrization. For some very
simple geometries (cylindrical, toroidal etc) there exist such
relations in analytical forms. However , for most
applications, this is not possible and the curvilinear system
must be generated numerically. In that case, one no longer
has a system of coordinate curves which span the physical
domain, but rather a set of points or nodes which approximate
these. These nodes are ordered accordzng to a corresponding
lattice in & computational space.

One can think of & discrete grid as the set of nodes resulting
from the intersection of curvilinear curves of different
families.
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Figs 2 Discrete grid

It i=s seen that the discretization of the physical domain can
be as fine as desitred by increasing the number of nodes. The,
organization of the nodes is achieved by their numbering



according to the parametrization so that the neighbors of a
given point are immediately known.

2.2 CURVILINEAR BRIDS

The basic characteristic of a curvilinear coordinate
system is to have the coordinate curves (or surfaces) conform
to (or align with) the boundaries. The degree of conformity
varies from exact at the boundaries where these must coincide,
to some global alignment in the interior of the region. To

fix ideas more precisely, the annular domain between two
concentric circles is used.
A
eA
1 D ]
A B

Fig. 3 Polar curvilinear grid

An appropriate coordinate system for this problem is the
familiar polar coordinate system. The mapping between the
physical coordinates "(x,y) and the curvilinear coordinates
{(r,9) can be expressed by analytical expressions

¥ = r cos 6
Yy = 1r sin ©

By varying one of the two parameters while keeping the other
constant generates two sets of coordinate curves. These are
respectively concentric circles and radial lines which conform
to the boundaries. Furthermore, for the value of the
parameter r = ry, the line AE maps into the radial line A‘'R’.
Similarly, the other 1lines BC, CD and DA vyield coordinate
curves E'C°y, C'D’ and D'A’ which coincide exactly with the
boundaries of the physical domain.

This idea can be extended to general configurations in
2-D and 3-D where complex shapes in physical space can be
mapped into rectangles in the parameter space. This latter is
usually called the computational space.
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Fig. 4 Mapping from physical to computational space

For example, to generate a curvilinear coordinate system "for
the domain in Fig. 4, one seeks a functional relationship
between the physical space (x,y) and the parameter space (%,n)

» = £(L,1n)
y = g(t,n)

The difference with the previous example and other familiar
systems is that for complex boundaries the functions € and g
cannot be expressed analytically. It is required that f and g
map ‘lines- of constant T into curves which conform to the
boundaries AB and CD and similarly, that lines of constant 1
map into curves which conform to the other set of boundaries
BE'C” and A'D’. Furthermore, it is required that f and g map
AR  (n=ni) exactly into A'B’ and similarly +or the other
boundaries.

It is finally required that the correspondence between a
point (x,y) and its image (¥,n) and vice—-versa be unique. The
result is a set of curves in physical space which for the
first family verify

Eix,y) = B« where t1 2 %y & Em

and for the second family

.

nix,y) = ns where n:2 £ Ns & Nn

The values (Ti1,tm) and (Ni.,N~) define the range of the
parameters t, and ns respectively and correspond to the
boundary curves. The values of ti and nyg vary monotonically
within this range. :
The actual values of these depend on the chosen
parametrization and are in a sense arbitrary. One reasonnable
choice is to normalize the parameters giving

Q Te 21
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Another possibility and perhaps better suited to programming
considerations is to use a parametrication based on the
integer values of the nodes, giving

1 £ %,
1

L m
L Ns &N

and

Essentially, the concept of curvilinear grids can be cast

in the form of a boundary value problem. An analogy is
presented to illustrate this. One can imagine a membrane (for
2D problems) of rectangular form with a cartesian grid laid
upon it. This membrane is placed upon the physical domain and
stretched so that the boundaries match. The membrane is then

pegged at the boundary nodes. The original grid on the
membrane is deformed and yields a curvilinear grid.

This analogy is eésily extended to 3D by replacing the

membrane by block of "foam" and the remainder of the procedure
is identical.

2.3 GRID CONFIGURATIONS (TOPDLOBY)

In the transformed space the region is bounded by pairs
of opposite boundaries. In two dimensions these are two pairs
of line segments, whereas in three dimensions these are three
pairs of planar segments. The coordinate curves join
corresponding nodes in a given pair of boundaries.

In the physical space, the domain is also bounded by
boundaries but their grouping in pairs is not unique and in
some degree is arbitrary. S8ince the sense of the grid is
dictated by this grouping, the manner in which the
correspondence between boundaries in physical and parameter
space is realized, determines the grid topology.

These concepts will be presented in an orderly fashion
proceeding from simple to more complex configurations. These
are simply connected regions, multiply-connected regions and
composite grids.

Simply connected Regions

The first step in the grid design is to identify the four
boundary curves that map into the corresponding sides of the
rectangular domain. For the various examples used so far this
is obvious. I+ however, a discontinuity exists along one of
these, then there exist several ways to logically connect the
boundaries. To illustrate one may consider an L-shaped
domain, such as a rear-facing step.

In the fist configuration shown in Fig. Sa, the grouping is as
follows. EBoundary ABCD is grouped with FE and boundary AF with
DE. This results in grid lines with run from AF to DE for the
first family and from ABCD to FE Ffor the second family.



Although there are two discontinuities, points E and C, these
do not appear in the grid. This can be appreciated +from the
analogy presented in the previous section and will be more
formally established through the basic smoothing properties of
the grid equations in latter sections.
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Fig. Sa OGrid topology I

A second possibility is to pair ABC with FED and AF with CD. A
similar discussion applies.
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Fig. Sb ©Grid topology 11I

Composite grids

Yet another possibility is to have a composite grid
generated by dividing the domain into two (or more) simple
subdomains. Then within each of these a distinct grid is
generated. In the present example the subdomains could be
ABBF and GCDE or ABHEF and BCDH if two subdomains are used.
The following three subdomains could have also been used ABGF,
BHEG and BCDH. Such composite grids must then be matched
along some common boundaries.
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Figs. Sc Grid topology 111
A number of properties can be required. First, it is
required that the grid 1lines be continuous, that 1is the

connecting boundaries are defined with the same nodes. This
is to avoid the situation illustrated in Fig. 6.
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Fig. 6 Discontinuous coordinate curves

Then it can be reqguired that the grid curves

bave continuous
slopes.

This is to avoid the case illustrated in Fig. 7.

—
N

Fig. 7 Slope discontinuous grid

These few examples illustrate the need to relate the grid
design to the problem at hand. Clearly the grid in Fig.
should be used for a problem of the flow over a step,
the grid in Fig. Sb is best for the +flow

Sa
whereas
around a sguare



corner.

The necessity For grid continuity is also dependent on
the problem but more so on the method of solution used to
solve the problem. For example, in finite element techniques
one could use discontinuous grids. Finite volume methods will
work with discontinuous first derivative whereas most finite
difference scheme require C! continuity for the grid.

~Another interesting configuration arises when the
physical boundary is closed and continuous such as a duct with
& tircular gross section. There are no natural points at
which to brealk this boundary so as to group opposite side into
pairs. One then must break it at arbitrary points, equally
spaced {unless there is some other prevailling approach) A, B,

C and D.
T ¢ 4D | C
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Fig, B ©Grid for a domain with continuous boundary

°

The grid curves will join sides AB to DC for the first family
and AD to BC for the second family. This creates a special
node or control volume with two sides having the same slope at
these break points. The treatment of this node requires
special care since the Jacobian of the transformation
vanishes.



Multiply connected reqgions

In some applications, obstacles are encountered in the
domain. This leads to several solutions which depend on the
physics of the problem. If there are identifiable pointe
(corners) on the obstacle, a composite grid approach can be
useful. For example, with four such points the configuration
below is appropriate.

; A

N \

—-
-1

Fig. 9 Multiply cohnectéd domain with several "“corners"

If there are two identifiable "corners" one might decide on
the following two subdomaines

Y\ A

! 1 L —
X

Fig. 10 Multiply connected domain with two "corners"

0f course the notion of corner points may be extended. These
need not necessarily coincide with slope discontinuities but
some special feature of the physical problem. Examples that
come to mind are stagnation or flow separation points.

For these composite grids, the remarks of the previous
section on grid continuity apply.
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Finally, if only one corner point. is identified the
problem can be made simply-connected by the introduction of a
fictitious boundary or branch cut as illustrated below

Fig. 11 Branch cut

2.4 APPLICATIONS TO TURBOMACHINERY

The presentation of the subject of grid generation has

been carried out so far in rather general terms. At  this
point these concepts and ideas will be discussed in the
particular context of turbomachines. Ferhaps the most
apptropriate application of curvilinear grid is the

transformation of the blade—-to—-blade- channel. The design of
a good grid is a rather challenging task which can lead to a
multitude of solutions according to the problem and the
particular numerical scheme intended. '

To concentrate on the aspects of grid generation, only
the two-dimensional geometries are discussed at this point.
Extensions to three dimensions are relatively straight
forward.

Several types of grids are presented and these are
related to the previous discussion on grid configuration. The
physical domain in guestion is the following: a region with
an obstacle, a blade profile.

This domain can be thought of as a surface of revolution,
a cylinder say, which intersects the solid blades in a number

of profiles. When this suwface is developed one obtains the
classical blade row which is a periodic repetition of one
single blade~to-blade channel. For the subsequent flow

simulation, it is necessary to place the inlet and outlet
boundaries upstream and downstream, of the leading and
trailing edges of the profile, respectively. This leads to
the reguirement of permeable, fictitious boundaries which are
periodic. It is the manner by which these are defined that
determines the grid configuration.



H - grid

In this type of grid two "corner" points are identified
on the obstacle, i.e. the profile. These are the leading and

trailing edges. From both of these two periodic (permeable)
boundaries are extended in the upstream direction and
downstream directions to the inlet and outlet sections

respectively.

Fig. 12 Domain topology for an H—-grid

These are usually straight lines whose angles are arbitrary
but should preferably be related to some flow characteristic
such as the inlet or outlet flow directions.

Bimilarly, their lengths should be related to some
characteristic dimension of the domain such as the chord of
the profile to allow for adequate imposition of boundary
ronditions at inlet/outlet sections.

So we have a simply connected region bounded by four
sides, two of which possess discontinuities. Following the
procedure outlined in the previous section, these are paired
as follows: the inlet with the outlet and the suction side
with the pressure side. The resulting grid yields one family
of coordinate curves which are roughly aligned with the flow
streamlines, and the other are in a roughly normal direction.
It should be noted that the upstream and downstream periodic

boundaries are identical and are matched. Consequently
the inlet and outlet sections must be vertical for this type
of grid. As it will be seen later this can, in some highly

cambered profiles, lead to poor grids. This can be remedied
by other types of grids.
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This type of grid 1is gquite similar to the H - variety
except for the position of the inlet/outlet, which can now be
placed in any orientation. The consequence of this is that
the upper and lower periodic boundaries no longer match
identically.

Fig. 13 Domain topology for an I-grid

. The resulting grid has a tamily of coordinate
curves running from the inlet to the outlet in roughly the
stream direction. The main difference with the H - grid is

that a coordinate curve may run from a periodic boundary to a
solid boundary as shown in Fig. 14.

Fig. 14 Region periodicity

The grid boundaries in the H - configuration are line
periodic whereas now it is an entire region which is periodic.
This does not pose any particular problem at the grid
generation level but is important when treating boundary
conditions in the subsequent flow simulation.
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Essentially one may think of an I - grid as an H - grid
where the nodes are allowed to slide <freely along the
boundaries from the solid to the periodic parts and
vice-versa. With the result that for highly cambered
profiles, the stream—wise coordinate curves tend to fit the

body more closely, particularly in the leading edge region
where H — grid tend to be poor.

C —agrid

One common characteristic of both previous grids is that
in the vicinity of a concave discontinuity such as the leading
edge the grid lines along this boundary tend to be distributed
away from that boundary. This is not desirable since one
would like to concentrate coordinate curves towards the wall
in these regions. A new type of grid, called the C - grid, is

presented. The domain ig constructed with only one corner
point which is the trailing edge. The boundaries are made up
of the -profile itsels and other imaginary permeable

boundaries. The first of these is a line or curve extending
downetream of the leading edge and making & cut into the
domain.

Fig. 15 Domain construction for a C-grid

The other boundary is in the form of the letter C and wraps
around the profile or obstacle. This curve starts from the
exit of the domain in the upstream direction, around the



leading edge into the inlet of the domain and finally
downstream to the exit but on the opposite side of the cut.
This curve may be quite arbitrary from the point of view of
grid design. However, for the solution of the flow eguations,
it is necessary to exercise some care so that the boundary
conditions may be imposed in some meaningfull way. This leads
to the division of the curve into three parts. Two periodic
curves BC and ED which run midway through the blade-to-blade
channel

Fig. 16 C-grid with line periodicity

These then Jjoin an inlet curve CD with matching slopes at
points C and D. This last curve is arbitrary but must be such
that inflow conditions can be applied along it. Along the cut
there are in fact two curves AH and FG. This may be straight.
or curved and possibly could match the periodic curves BC or
ED. Finally it is noted that these are not necessarily of
egual lengths.

For this ‘configuration the pairing of boundaries is as
follows: AE with FE, and BCDE with AHGF. This results in two
families of coordinate curves; one running C-like from outlet
around the leading edge to outlet, the other in a gquasi-radial
fashion +from the profile and cut, to the periodic boundary or
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outermost "C". The mapping of this domain in the transformed
space is shown in Fig. 17.

. A

B ¢ o E
lﬁ__ -

A H G F -

Fig. 17 Application of a C-grid to computational space

A variation on this configuration arises when the outlet
boundaries AR and EF are not along the same vertical line.

Fig. 18 C-grid with region periodicity

The periodic boundaries are no longer line periodic but rather
region periodic in a similar fashion to the passage from H -
to I - grids.
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8 - grid

The final type of grid is obtained when no corner point
is identified. The domain may be thought of as a band around
the profile. The domain is bounded by a closed curve made up
of Ffour partsy an inlet and ocutlet and two periodic curves.
In this instance again this requirement is for the imposition
of boundary conditions for the flow equations.

Fig. 19 Domain construction for an O-grid

One aleo requires an additional fictitious boundary which

cuts the domain from the leading edge. The solid profile
boundary FG is paired with the closed boundary ABCDE to yield
the +irst family of coordinate curves. These run Ffrom the

profile in a guasi-radial fashion toward to the 0 - curve.
The fictitious boundary along the cut is multivalued and is
matched with itself, GH with FE. This results in the second
family of grid curves which form closed curves. These vary
monotonically +from the profile to the outermost 0O - curve
which they match identically. In most cases special care will
be exercised at the cut EF/6H to insure continuwity and slope
continuity of the coordinate curves. The segments AR and DC

are curve — periodic. The mapping in the computational
space is shown in Fig. 20.
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Fig. 20 Appl.icétion of O—grid to computational space
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3. ORID EQUATIONS

S.1 ELLIFTIC SYSTEMS

The basic ideas and concepts of curvilinear
body-conforming grids have been presented in a rather
qualitative fashion. The specific manner to actually obtains
such grids is now presented.

The generation of & curvilinear coordinate system
consists in evaluating, in the interior of a given physical
domain, the location of the curvilinear coordinates. For a
two-dimensional problem these are two families of curves along
which one coordinate is constant while the other varies
monotonically. Similarly, for.a three-dimensional problem, the
curvilinear coordinates are three families of surfaces along
which one coordinate is constant while the other two vary.
Upon each of these constant coordinate surfaces there lie two
families of curves which represent a two-variable problem

Fig. 21 ©Orid generation aé.a boundary value problem

When one member of each family is made +to coincide with an
appropriate side of the physical domain, the resulting system
is called boundary - fitted or boundary - conforming. For a
given four-sided physical domain, there are therefore four
known coordinate curves: the first and last of each family.
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Likewise in a three-dimensional problem, there are six known
coordinates surfaces.

Several approaches can be applied to the problem of
generating the internal coordinate lines (or surfaces). One
very simple method is to interpolate between the boundaries.
This consists in interpolating the coordinate values of
corresponding nodes on a pair of opposite boundaries. This
however, can lead to difficulties with certain geometries

i) coordinate lines leave the domain
ii) coordinate lines overlap

iii) discontinuities in the boundaries can propagate
within the domain

Fig. 22 Example of non-elliptic grid

These can be avoided by exploiting the well known extremum
principles which characterize elliptic systems. More
specifically, such systems will guarantee that the values of
each of the coordinates families will vary monotonically from
a minimum on one face to a maximum on the opposite face since
extremum can only be attained omn the boundaries. Also such
systems xhibit smoothing properties that prevent the
propagation and/or presence of discontinuities in the grid.

These essential features for coordinate grides, however,
require the solution of a system of partial differential
equation. To introduce these elliptic system, the following
analogy is proposed; given a physical domain bounded by four
sides.



T
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Fig. 23 Boundary conditions for the first family of grid
lines

One poses that a family of body-fitted coordinate system could
be generated by solving the temperature field with two
opposite sides thermally insulated and the other pair at a
given temperature differential. The solution of the resulting
temperature field yields a family of constant temperature
lines which are body-fitted coordinates. Similarly by
interchanging the pair of sides which are insulated and those
at a temperature differential, one can generate the second
family of coordinate lines.

PALLEREAANERRRRRARANANAY

ANBAANAANARRRRRRSRANY

Fig. 24 PBoundary conditions for the second family of grid
lines
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Let us denote the first family of coordinate curves by <« and
the second by . By the above analogy, the T coordinates are
lines of constant temperature in the problem corresponding to
the +irst set of boundary condition Fig. 23. These can be
obtained by solving the following problem characterised by the
heat conduction of Laplace’'s Equation.
v o =0
Similarly the set of 1 coordinate is obtained by solving the
above problem with the second set of boundary conditions
Fig. 24.
vZ n =0

Thus we have now cast or formulated the generation of
body—conforming coordinates as the solution of a system of two
Laplace’'s equations. Being elliptic these will vield
solutions (i.e. coordinate curves) that verity the
requirements of :

i} wunicity (i.e. no overlapping)

ii) smoothness
More formally, the curvilinear coordinates t*
with t*r = v and T* = 7
are generated by the system

v2 Et = O i= 1,2 (1)

subject to the boundary conditions:

i
- 1) +or the first pair of . Bt = El(x,y)
boundaries

2
t2 = E1 = cst

i

Bt = (%,y)

_ m
2

t2 = ¥ = cst
M
1

2) for the second pair Li= Ei = cst

of boundaries



t* = % = cst
n
2
= = T (X,Y)
n
The functions: ¥*(x,y) represent the shape of the boundaries,
i 1
and the constants Ei, Eq, «se the values of the parameter

along these boundaries.

dimensions
curves

The extension to three
replacing the coordinate
adding a thivrd family.

is immediate by
by coordinate surfaces and

S.2 TRANSFORMATION RELATIONS

The solution of Eq. (1) can only be carried out
numerically for general arbitrary shapes. It is not pratical
to solve the problem as formulated since the Laplacian would
have to be discretized in the Cartesian domain. This,
ironically, would require a grid which is precisely the
objective of the problem. Thus one last step in the
formulation of the grid generation problem is invert the
dependent and independent variables. So instead of
seeking the coordinate curves as functions cartesian
variables

to
"that
of the

Tt (XJ)

the solution 1is carried out in the curvilinear space and the

physical variables are cast as functions of the curvilinear
coordinates or transformed space

Xy (£9)
This change of variable is carried out and the Laplace

equations are
chain rule of

The system of

rewritten in the transformed domain. Using the
calculus
2 s  at’
o J  on,
i ot i
Egq. (1) becomes, for two variables
2
- ] x£
i
L ul ? = 0 L= 1,2 (2)
=1 i=1 J
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where He & % N = Y
ox 2 o 2
g = ) (_1_)
11 1
o% o%
on 2 oy 2
g,_‘2 = (—) (——) (3)
ox ox oy oy
g B e c— + _— e—
12 2 1 2
ot o% ot ot

/
22 °

el
]
/=]

=g 7/ (4)
9 9,,/9 |

- /
912 9

[1a)
U]

and

det (g )
i)

U's]
L]

Similarly, for three dimensional space, the system of Eq.
(1) becomes

2
- - o x,Q
wt 2 1 ’
L B g . - = 0 L= 1,3 )
i=1 j=1
at ot
where %, = %, %2 =y and )z = 2z
®x 2 y 2 ez 2
g = ( ) ( ) 4+ (—)
11
=43 ot et
ox 2 y 2 ez 2
g = (—=) + (—) + (=) (&)
22 2
ot ot ot
X 2 y 2 ez 2
g, = (—) (=)  + (=)
I3 3 3



ox ox oy oy oz oz
and g = —_— — + — e +
12 1 2 1 2 1 2
33 o% . ot ot =23 ot
oK oxn o o oz ‘ oz
g T e e + LA A + —_— — (7)
i3 1 3 1 3 i 3
ot ot ot ot ot ot
J ox z
o Sy dy ez ez
23 2 3 2 3 2 3
ot o% ot o% ot oL
The inverse of the g*? are obtained from
G ( )2
S | g2'2 933 g23
G = { )2
2~ %1 933 7 93
G_ = ¢ )2 (8)
3 %11 922 7 92
G = -
4 g13 g23 g12 933
GB_ = -
S g12 g23 913 g22
G = -
6 g12 913 gil 923
giving
i1 5 /
g 1 g
22 5 7
g > 9
33
g = B6_/¢g )
3
12 5/
g 4 a
13
g =06_/g
)
23 5 /
g 6 9

where g = det (g ).
1)



26

S.% APPLICATIONS TO TURBOMACHINERY

The grid equations developed in the previous section are
completely general and applicable to any two or three
dimensional problem. These can be rewritten in a more
explicit and more widely accepted notation of the field of
turbomachinery. The variables t* in the transformed space
become n,t and F for i =1, 2 and 3 respectively. In the
physical space the variables x, y and = are replaced by Z, ¢
and R.

In two dimensions, the transformation between the
physical space (¢, Z) of a blade-to-blade region into the
computational or transformed space (t, m) is accomplished by
the elliptic system of Eq.(2) rewritten with the appropriate
notation. This becomes - :

(T + Yo - 2B¢ = 0
nn TT nt

®xZ + YI - 2BZ =0
nn TT nT

where : : . (10)

Y = ¢ + 2

J=g¢ 27 -¢ 2 .
nT T

This is completed with a set of conditions imposed on the
domain boundary . This is made up of four sides denoted by
My Mz, Mx and Ma and coincide with n = 1. for My, 0 = n= for

Mz, T = Ty for N's and © = 1z for Ca.
@ 'Fx(ﬂ; ,’C)'
= along ",
Z 'Fa('ﬂa_ ,T)
@ Q1 {N=,T)
= along Mz

. A gz('ﬂz,'l')
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@ h;('ﬂ,'t;) (1)
= along s

Z hz('ﬂ,’f;)

¢ 91 (N, T=)
= along Ma

y4 q=(n, =)

Similarly, for three dimensional applications, the system
of Egqg. (5) can be rewritten explicitly in the cylindrical
coordinates notation, as

} X i
a r + a r + a_r + 2a r + 2a r + 2a r - —= 0
i1 % 2 nn 3 Tt 4 Em S nr 6 <% r
a o + a ¢ + a ¢ + 2a & + 2a ¢ + 2a ¢ = Q
1 TR 2. nn F Tx < 4 & S nv 6 %
(12)
a + a Z + a Z + 2a Z + 2a Z + 2a Z = QO
1 ¥ 2 nn A o 4 tn S nt 6 T
1 2
where a =%t + —F + §
i r 2 ¢
r
2 . i 2 .
a = o
2 nr 2 n¢ n
r
2 i 2 2
a =T * — T + T
3 r 2 ¢ 4
r
t + ! t + &
a = —_—
4 rnr 2 ¢n¢ _nz
r
t (13)
a_ = T + — T + T
S nr v 2 ¢ o nz z



4. NUMERICAL SOLUTIONS

4.1 DISCRETIZATION

The solution to the system of Egs (2) or (35) can be
carried out for general boundary conditions only by numerical
methods. The equations are coupled and highly non-linear and
there exist a number of very efficient and reliable numerical
schemes for such systems. These can be quite complex but for
the purposes of this presentation only the simplest methods
need to be discussed to illustrate the basic principles.

The overall approach consist of two steps i) the
differential equations are discretized and ii) the resulting
set of algebraic equations are solved by numerical techniques.
These. are essentially iterative methods based on the
relaxation procedures. The first step is to discretize the
transformed domain into a mesh. Since the actual values &%
are irrelevant to the resulting grid, one can without loss of
generality, assume any range of values Ffor each coordinate
family. This could be a&a variation +rom O to 1 or more
appropriately for numerical applications, from 1 to the number
of nodes. Typically, these are different for each coordinate
family and we will denote these by my n and 1 for the &, n and
v directions. For a function £, we will denote by the indices
i and 3 (in 2-D) and i, j and k (in 3-D) the values at the
grid nodes in the computational or parameter space. Thus the
discretized values of the dependent variables T or n will be
represented by

v, = (i - 1)ar 1

p—\
[
L)
3

or (14)

1) (i — 1)an 1 £ 34n

3
where the increments at, Afn, etc are the range of the
corresponding variables discretized into equal intervals, i.e.
AT = (Tm — T2)/(m — 1)
The value of a function at a node (i,j) is

fi,49 = FlTay Ny) (15)

The extension of this notation to three dimensions is
immediate.

The next step is to discretize the system of elliptic
- differential equations. This is carried out by replacing the
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derivatives appearing in these equations by the appropriate
finite difference approximations. Since both first and second -
derivatives appeatr, it is natural to use centered differences
which yield second order accuray for both.

af ¥ - f

aT 24T
£, - . .

of 1,3+1 143-1
en 2470

2 f . o= 2F + £ .
o f i+1,3 143 i-1,43

2 . 2 ;
ot AT (16)
2 £ TR
o f i,3+1 i41 1,31

2 2
on an

2 PP SUPURNIL I ST I 5
o ¥ W  1¥1,5+1 i+1,j-1 i-i,i+1 i-1,3-1
aTon . faTAn

Substituting the expressions of Egq. 16 into the elliptic
system of Eqg. 2) and analogous exptressions for three
dimensions into Eq. (5) vyields an eqguivalent algebraic
eguation for each node of the computational space. When this
is done for all nodes of the domain an algebraic system is
obtained. Likte its differential counterpart this is highly
nonlinear because the coefficients g*< depend on the solution.

_ There #xist many technigues to solve such systems
numerically. Essentially these are iterative in the sense
that the soclution is approached asymptotically by improving a
given initial solution in a step by step procedure. Without
going into a formal and lengthy comparison of the numerous
methods available, the successive overrelaxation scheme is
proposed. This is based on an informal evaluation as well as
what appears to be a consensus of the users in this field. It
is felt that such schemes are accurate, robust and easy to
program and that they give very efficient overall codes.



4.2 NUMERICAL SCHEMES

The discussion of the numerical scheme for the solution
of the grid equations will be carried out with the euxplicit
form of the these in the (¢,Z) coordinate referential. This
is to keep the presentation at a specific level knowing that
generalisations and extensions are simple when the basic
approach is well understood. So, using the expressions of
Egs. (16) and replacing the derivatives in the elliptic system
of Egs. (10), one obtains equivalent algebraic equations Ffor
every node (i,3) of the computational space. One of these is
for the tangential coordinate ¢, 4t :

"y - 24+ ¢ 1+ Y'Le - 20 + ¢

i+1,3 i,] i-1,3 ig43+1 i,J i,3-1
- 2 Le - ¢ - ¢ + ¢ 1 =0
P i+1,3+1 i—-1,3+1 i+1,3-1 i-1,5-1
(17)
and the second is for the axial coordinate Z @
i43
«'[Z . =27 +2 - 1+Y'rz | =27 +2Z . 1
- i+1,35 1,3 i=-1,43 i,3+1 143 i,3~1
(18)
- 2B . T L . -7 vz . =0

i+1,3+1 i—143+1 i+1,3-1 i-1,5-1

where
: 2 2 2 2

" = (e = - ) + (I - Z . ) Y/ (2a8T) *(an) )

i,3+1 14,31 14341 1,31

2 2 2 2
Y= (g R 2 D+ (2 -7 ) /7 ((280)  *(AaT) )
‘ i+l,3 i-1,3 i+l,3 i-1,3
o= (g - ¢ ) (¢ - ) o+ (Z - Z )
B i+, i-1,3 igd+1 i,3-1 i+i,3 i-1,3
2 2
(z = Z . )Y/ (2Aan) * (247T) ).
1,341 ig3—-1

When applied to every node, this vyields a system of
non—-linear coupled equations which must be solved iteratively.
At each step of this procedure the coefficients of Eqgs. (17)
and (18) are frozen and updated after new values of the
unknowns are obtained. Essentially two approaches have been
used for this class of problems

i) Successive—overrel axation

iiY The alternating-direction-implicit schemes



In the latter approach the elliptic problem is transformed
into a parabolic problem by the addition of a transient term.
This can be thought of as an artificial time and each time
step may be associated to an iteration of the SOR method. So
both methods are similar and the only criteria should be the
rate of convergence and ease of programming. The choice was
made on an intuitive basis and experience gathered by the
present authors on prior applications of both of these methods
but more importantly it is the method that lends itself best
to improvements. It is felt that a scheme based on relaxation
will 'yvield a more efficient overall scheme. These can be
classified as: '

i) Point SOR
ii) Line SOR
Foint SOR

The simplest scheme is the point 8S0OR. The defined
correction approach was used where provisional values of the
variables are computed by sweeping the computational domain in
a lexicographic order. In the calculation of these
provisional values one uses corrected values and old values as
these appear in the computational molecule illustrated in Fig.

e
A

A4 4
N N/ At >4
Faal Fanl Fan
\Y 4 N/ A"~ 4
72N A
A" " A v v
S A
K
i-1 i i«

Fig. 25 Foint SOR

The relations are derived by expressing Egs. (17)-(18) in the
variables ¢ and Z at (i,J) in discrete form.

- + - +
o Lo = R 3+ Y'le =20 4+ ¢
i+1, i, i-1,3 i,3+1 1,3 ig,d-1
(19
- 2Ly - ¢ - ¢+ + ¢+ 1l =
P i+l,3+1 i-1,43+1 i+1,3-1 i-1,3-1
and
- + —_ +
ow'LZ, - 2L+ 7, 1+« Y'LZ, -2Z, + Z. @ 1
i+l,3 1,3 i-1,3 1,3+ 143 i,J-1



+ +
- 2pLZ : - Z, L, — L . + 7 . ,1 =0
i+1,3+1 i=-1,3+1 i+1l,5-1 i-1,5~1

Where ¢ and Z are old values, ¢* and Z* are corrected
values, and ¢ and Z are provisional values. An old value is
corrected by the provisional value and a relaxation factor, w,

as follows

-+ -—
¢ = + w(g—¢)
¢ (21)
+ -
Z = 7 + w(Z-2)
Thus one obtains for the provisional values
6 . =¢ _+CF_ /v
ij ij ij
(22)
Z =1  +CZ /uw
ij ij ij
where the corrections are defined as
o
CF. . =9¢ -4
i3 ij ij
(23)
4
cz =2 -1
ij ij ij
Substituting Eq. 22 into Egs. (192 and (20) one obtains
200 +Y ")
- CF = RF,  + «'CF. .~ B (CF .= CF, .
w i i3 i=1,] i-1,3-1 i+l,j-1
(24)
+ Y'CF, |
is3-1
20"+ ")
— (CZ = RZ + x'CZ. - B (CZ. - . .
@ i3 143 i~-1,3 i-1,4-1 i+1,3-1
(25)
+\1IOCZ' ]
i,3~1
The residuals are
RF, . = o' (& - RS X
i3 i+l,3 i,3 i-1,3
+ Y (e, =26+ @)
igzJ+1 i, i,3-1
(26)
- 2B (¢ - @ =

¢ b + )
i+l, §+1 i-1,+1  Tiet, -1 ¢ %ien, -1
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an identical expression for RI,,s is readily obtained by
replacing ¢ by Z in Eq. 26.

With an initial solution, the values of ¢ and Z at each
node (i,Jj) are successively corrected using Egs. (24) and
(25), sweeping the domain as indicated in Fig. 25.

Notes: In the actual program the values of An and At in the
expressions in Eqgs. (17)-(1B) and (24)-(28) are set
identically to unity

The coefficients o'y, B’ and y’ involve the values of
the variables ¢ and Z. These can be frozen during one
domain sweep or updated as they become available in
the relaxation process.,

Block SOR

In block relaxation, all the nodes in a given linear
column are solved implicitly at once. This vields a
tridiagonal system of equations which is easily solved.
Solving n points implicitly requires about the same

computation effort as solving n times one point explicitly.
The advantage lies in the fact that boundary conditions which
appear as the end points of an implicit block of equations are
felt immediately throughout the line. In an explicit scheme
it requires about as many sweeps as there are points in the
line for the information at the boundary to propagate within
the domain. This makes implicit relaxation much more
efficient. The correction algorithm is now described for
sweeps implicit in either of the two coordinate directions.

SOR Implicit by row

The configuration for a typical row relaxation implicit

along a T = const coordinate line is shown in Fig. 26.
f‘L VN W 4 0
A ZANEA™ “ANN ¥ A~ v
j+l D
.\‘J / N/ N

Fig. 26 Rlock relaxation



the

m’[;
i+1,3

- 28 'Cg
. i+l, j+1

- 2

Defining
provisional values,

the status of the neighboring
- +
L L o+ Y le - . * o4
i3 i-1,3 i,3+1 1,
* 0
- ¢ il + ¢ =
i—-1,3+1 i+1,5—-1 i-1,5-1
a corrected value in terms of
Egs. (21) and (22), one

The difference equations,
unknown

Eqgs.

(17)-(18)

34

are written for
points along the row taking into account, as for
point relaxation,
corrected or old.

points,

i.e.

(27)

the old and

obtains

correction equations for the tangential coordinate:

W

= -RF,

i-1,73

2@ +Y ")

W

- Y'CF,

i,3-1

+ 2p'LCF

CF
i,J

+

and for the axial coordinate:

o
— CZ
(%)

= —-RZ
where

(24)

i-1,3]

the

‘CZ, |
i,J~1

and each equation

2 +Y ")

W

+ 28 ' (CZ. X
i+1,3-1

residuals
Equations (28) and (29) differ +from
(25,

» '3 +
i,J

RFg .,

involves
tridiagonal systems are aobtained:

three

i+l

i+l,j-1

i+l

CF
2

»J

CF .

»J

Cz, L)
i—-1,5-1

their

unknowns.

T

o

[] e LIS

Uu

and RZ, ,4 are defined by Eq.
counterpart,

in point relaxation in that they are implicit
following

he

M

n—1

the

(28)

(29)

26.

Egs.



gz c 1 [ez, ]
2 2 2
A_ E_ C_ Cz_
-:)- \:'. é- w.‘)
A ‘B t. CZ. =
i. i. i. i
A B: C cz
n-1 n—1 n-1 n—1
- - o o
and
A = a'/w
i
B o= -2’ = Y')/w
i
C =o' /w
i
b =-RF, - Y'CF 6 - 2B ' LCF .
i i,3 i43-1 i+l,i-1
pb = -RZ - Y'CZ - 2B°'LCZ .
i i,3 i,3-1 i+lg4-1
and the boundary conditions are:
CFy, = CFn = 0
CZy, = CZ, = 0
Solution of the systems of Egs. (30)

corrections for an entire row which are

corresponding column of ¢'s and Z°'s.

used

[ pp ]
DD
DD (31)
i
DD
n-1
L. ol
(32)
- CF, L3
i-1,3-1
- CZ, :
i-1,3-1
and (31) vields
to modify the



SOR Implicit by column

Figure
sweep implicit along the n

27 illustrates the configuration for a relaxation

=

constant coordinate direction.

o )\
T\
P S 1Y
T
Do
I 3
. h
S VAN v
i-1 i i+l

Fig. 27 Block relaxation

The

difference equations are written for every node.

given column and this yields,

- +
o« (g - R )
i+1,3 i.3 i-1,J
( +
- 2 4 J) — " —
B i+1,3+1 i—-1,3+1
and
- +
o' LZ =2z + 7 3
i+1,3 i,3 i=-1,3
fa
- 2p'LZ . -z, . -
i+1l,3+1 i-1,45+1

along a
* Y6, —26 +e )
i,3+1 143 i,3-1
(33)
* )
L'g + @ =
i+1,3-1 i-1,3-1
+Y'rZ, -2z +2Z 1
i,J+1 1,3 ig3-1
(34)
+ A
Z . Z, . =
i+1,43-1 i=-143-1

From which as. previously one obtains the correction equations

\l, ((x'+Y") \ll'

—CF - ———CF _+—CF _  =-RF

W igs3-1 18] i,.,3 W ig3+1 ig3

- o« 'CF + 2B (CF . - . L) (35
i-143 i-1,3+1 i-1,4-1

and

\{ L4 z(u'_‘_\ll 4 ) \‘I L4 .

— CZ - — L  + — CZ = -RZ

w i,3—1 tw i43 w ig3+1 1,3

- o’'CZ + 2p " (CZ. . - CZ. . (36)
i=1,3 i-1,4+1 i-1,3-1

where the residuals are defined in Eq. 26.
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Tridiagonal systems equivalent to those of Egs. (30) and
(31) for column relaxation are obtained and one proceeds 1in
similar tashion for both types of procedures.

Direction of relaxation sweep

For a given relaration scheme the marching direction
affects the rate of convergence. If the coefficients of the
derivatives in the coordinates 1 and © are of the same order
of magnitude, then the equation will exhibit no preferred
marching direction and it is best to use symmetric relaxation.
In general, the marching direction should be chosen to
coincide ' with the direction of propagation of physical
information. 1In this respect the boundary conditions and
their types should be taken into account.

If such directions are not readily apparent from either
the physics of the problem or when the weighting of the nodes
(i.e. the coefficients) changes in the domain then sweeps
should be carried out in alternating directions. This will
speed up the convergence when the marching direction coincides
locally with that of information propagation, and will have a
neutral effect otherwise.

This is a two—-step procedure. First with a column (y)
implicit scheme the entire field is relaxed marching in _the
positive x—direction. This is followed by a row (x) implicit
relaxation marching in the positive y—-direction.



4.3 OGRID CONTROL

The shape and the distribution of the curvilinear
coordinates which result from the solution of the Laplace
system, Eq. (1), depend essentially on the shape of the
boundaries: Refore proceeding with the methods to control
these, a discussion of the gqualitative behaviour of the
Laplace system is presented.

At a boundary or in its vicinity, the coincident
coordinate curve or curves, say the n — family for example may
be either concave or convex. In the first instance, then we
have

nanO

so that n,, must be negative if the Laplacian is to be
verified. Since 1, is the spacing of n - lines, then this
condition is interpreted as the concentration of this family

of coordinates.
'1~t1
]

1
\
311

\\\\\\\\\\
LT

Fig. 28 Concentration of grid lipes in the vicinity of
concave boundary

So in this example of a concave boundary, the spacing of n -
lines decreases as one moves away from the boundary. The same
reasoning vyields that for &a convex boundary, the spacing
increases, that is the grid lines tend to concentrate towards
the boundary.

Another illustration of effect of the boundaries on the
grid lines is the following.
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Fig. 29 Concentration of grid lines towards domain boundaries

The nodes on two opposite boundaries are non-uniformally
distributed. The need for doing this is obvious for problems
where gradients of properties are present. Unfortunately, the
resulting grid is not what is expected.

This behaviour. can also be deduced <+rom physical
analogies such as those presented in Section 3.1. @and it is
seen that as such, the Laplace system possesses generally good
charactéristics but some drawbacks such as described above.
Namely, that in areas of concave or convex boundaries, the
distribution of grid lines usually goes the opposite way that
one would like and that the grid spacing cannot be controlled
simply by moving boundary nodes.

So there is a need to devise in the present grid
generation method, a mechanism to control the distribution of
grid lines. This is necessary to correct the above
situwations, but more generally to have a simple way to
influence the grid. This can be achieved by adding a forcing
term to the Laplace equation, thus generalizing the elliptic
system to Foisson eguations.

V2R = Py i=1,2, 3 (X7)
Using such forcing terms, F., one can achieve any desired
result. However it is not possible a priori to predict the
nature and the level of the effect of a given forcing
function. To acquire such expertise requires a tertain

experience which comes with trial and error. One can however
arrive at certain guide line to enable one to predict trends
qualitatively.
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Line concentration ‘

There are many ways that one may want to control a grid.
These naturally depend on the application. The one that comes
immediately to mind is the concentration of grid lines towards
a boundary. For purposes of presentation and to introduce the
matter in a most natural way, this will be done in a rather
simple minded approach first. It will be formalized
subsequently once the concept has been understood.

It is a two step procedure whereby the transformed domain
Lt is mapped into an intermediate domain

B4 = £(E)

In this mapping each variable is mapped separately according
to the desired concentration . As an example in two
dimensions, the physical domain is first transformed by
Laplace’ body—fitted system of equatipn.

(Z, @) —> (¥, )

Then, this intermediate domain is transformed into the
computational domain by means of the following relations

¥ = ¥(n)
and (38)
- o= R ()
The segquence
(Z, ¢) —> (¥, E)i———> {(ny, T

ig illustrated in Fig. 30.

This has the advantage of clearly separating the effects of
concentration on each coordinate direction.
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N

Fig. 30 Successive coordinate transformation

Chaining these transformation yields for the system of
Eg. 1 the following Poisson equation for the n-coordinate

¥
2
v 1= 2“ o« (39)
<
J v
n
and for the t-coordinate A
T .
2 TT
v T = - ¥ (40)
J7E
ST
where ¥, %t and their derivatives represent the respective

concentration of the coordinate curves. When comparing Egs.
(39) and (40) with the proposed Poisson system, Eq. (37)
setting E* = n and =% = v, the form of the forcing terms F,
and F= become the right hand sides of Egs (39) and (40).

50 that it is possible to interpret this procedure as
equivalent to adding a forcing function to the original
Laplace’'s equation. This can be thought as a force applied to
each coordinate curve and the result is a displacement in the
appropriate direction. Having established that such compound
transformations can be reduced to the addition of a forcing
term, one then has an infinity of possibilities corresponding
to different choices of the function ¥(n) and the respective
functions for the other directions.
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Se. APPLICATION TO A CASCADE ROW

The approach presented in the previous chapter for a
general grid problem will now be applied to a two—-dimensional
blade-to-blade grid generation.

The First step is to invert the system of Eqs. (39) and
(40) to bring the FPoisson system to the form of Eqgs. (2) or
Eqs (10). The equations will now be written explicitly using

Tt =71
E2 =
and the forcing terms
Py = &
Pz = R
The result is
2 2 t
J @ wn J R T )
oL + Y - 2B¢ + (—— - —) ¢ + ( - ¥ ) ¢ =0
nn TT nT ¥ ¥ n |3 3 T
n n T T
(41)
2 2 E
J @ wnn J R Tt N
oz + YZ - 2BZ + (— — o —) Z + ( - Y Y Z =0
nn T nt ¥ ¥ n 3 |3 T
n n T T
(42)
The boundary conditions are:
@ fl(nl,i(r))
= ) along I
z fz(nl,E(T)) i
] g, (n_,&(x))
1 2
= along I (43)
Z g (n_,t(t)) 2
2 2
& h - {yin),t )
1\!"'1$1
= along IM_
3

Zz h_ (y(n) 4t )
z‘lfﬂsl



-r
~?

@ g (yin),t_)
i 2

= ] along I
Z q2(w(n),T2) _ 4
« =g + Z Y = ¢ 42
T T n n
B=o o + I 1Z Jd=¢ Z -¢ Z
n T n T n T T 1N

: The functions f, ... etc represent the shape of the
boundaries 'y except that now the nodes are distributed along
these according to the concentration relationships ¥ and t of
Egs. (38).

It is noted that Eqs. (41) and (42) differ Ffrom their
Laplace counterpart, Egs. (10) by the presence of two terms
which represent the effect of coordinate 1line concentration.
It is also noted that each of these terms is made up of two
parts. The forcing term a¥,.n/¥, due to 1line concentration,
and an additional general forcing term J2@/¥,. This latter is
quite arbitrary and can be set to zero if no other
manipulation. of the grid is desired. It will be kept in the
following developments for generality’‘s sake.

The numerical solution is obtained by discretizing the
computational domain into m and n equal intervals of length an
and at. As before, these are arbitrary and in the actual
computation, they are set idenmtically equal to unity.
Replacing the first and second derivatives in Eqs. (41) and
(42) by second order accurate differences of Eqgs. (1&) yields
an equivalent algebraic system. This is for the tangential
coordinate:

' Ca - 2 + @ J + Y'le, - 2 + o

i+l,J i,3 i-1,3 i,3+1 i,3 'i,J-l
- 2B Lo - - ¢ + @ (44)
B i+1,3+1 i-1,3+1 i+l,3-1 i-1,3-1
+ Q' (g - ) + R'Le - 1 =0
i+1,3 i-1,3 ig3+1 i,3-1
and for the axial coordinates:
o' LZ, L= 2z  + I 1+ YLz, -2Z +Z 1
i+1l,3 143 i=-1,3 i,3+1 1,3 i43-1
, (45)
- 2pLZ . -z . - 7 . + 7 :
i+1,j+1 1~1,3+1 i+l,35-1 i-1,3-1
+ @°(Z - Z )+ RLZ. - 7 1 =0

i+l i-1,3 i,3+1 i,i-1
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where

2 2 2 2
o’ = ((g -¢. ) + (Z - Z ) /((2AT) *(An) )

1,3+1 1,31 i,3+1 i,3-1
2 2 2 2
Y= ((¢ Bl B D+ (7 .- Z. 7 (2an) *®(AaT) )

i+, 3 i-1,3 i+1,3 i-1,3
o= ((g - @ ) (g - @ Yy o+ (Z - Z )
a i+1,3 i-1,3 i,j+1 i,i—-1 i+1,3 i-1,3

2 2
(Z - Z . )T/ L2an) ® (2aT) ).

These eguations are similar to the system of Eqs. (17)
and (i8) except for the presence of the forcing terms &° and
R’. They are also solved by iterative schemes such as point
or block SOR. The details are identical to those described in
the previous chapter so only the end results for column and
row SOR will given.

2
J @ Wnn i
e = —_— - (an) o’ — / 2AnN
v ¥
n n
2
IR Fe ]
R = — - (AT) Y —— / 2AT
t t
T T J

SOR implicit by Column

The tridiagonal system (equivalent to the system of Eqgs.
(28) and (29)) is for the tangential coordinate:

(o =G ) 200 +Y ") (oo " +E ")
———CF _ - T————CF & ——CF
w i-1,3 w ig43 [A] i+l,3
(47)
= -RF = - Y'CF_ | - 28 'LCF . - CF, . .31 + R'CF, |
1,3 1,31 i+1,3-1 i-1,3-1 i,3—1
and for the axial coordinate
(o'~ ) 2(x'+Y ") (o "+E7)
— CZ, - —CZ 4 — CZ, .
W i-1,3 W 14 . W i+143
(48)
= —-RZ - Y¥Y'CZ - 2B (CZ, - CZ ) + R'CZ,

i.3 i,3-1 i+1,5-1 i-1,35-1 iyd-1



where
RF = o’ (¢ - 2¢ Y P
1y i s J i.3 i=-1,43
+ Y (e - 2¢ + ¢
ig3+1 i43 i,3-1
.-._"‘_B' h - . - ¢ . .
i+1,3+1 i-1,3+1 i+l,i-1 i-1,3-1
+ @ (¢ - ) + RO(g -¢ )
i+l,] i-1,3 i,j+1 i,3-1
(49)
RZ = a'(Z. -2 + I )+ X'z =27 +Z )
143 i+1,3 i43 i-140 i40+1 i,J3 i43-1
- 2B (Z . -z . - I . - Z L)
i+l 9+1 i=1,3+1 1+1,J—1 i-1,4-1
+ 0°(Z. -7 )+ R(Z, -z )
i+1,3 i-1,3 14,941 0 i,3-1

These can then be cast in the usual tridiagonal form.
For the circumferential coordinate:

[ & c 1 [ cr ! B 1
2 2 2 2
A E C CF D
3. 3. 3. 3 3
. . . . = | . (50)
" a "B C. - CF D
1. 1. 1. 1 1
‘A ‘B t CF D
n—1 n—1 n—1 n—-1 n-1i
L. o L . L. ad
and for the axial coordinate:
B: c 1 T ez ) [ DD ]
2 2
A E C Cz DD
t e 3. 35: & 3
‘A "B C cz = | bD (51)
l. 1. 1. 1 1
‘A "B C y4 DD
i n-1 n—-1 n—1 i n—1 J | n-—1 |
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where
A = (' —B")/w.
i
E = -2~ Y')/w
i .
C = (' +Q)/w
i (S52)
D = -RF. - Y'CF_ - 2B LCF. . = CF. .
i i,3 i4,3-1 i+l,3-1 i-1,3-1
bpb = -RZ,£ A - Y'CZ - 2R 'LCZ . - CZ ) ]
i i43 i,3-1 , i+1,3-1 i-1, -1

The Systems of Egs. (50) and (S51) are subject to the
boundary conditions

0
€CZ =CZ =0

Again it is noted that by setting the forcing terms 8% and R#¥
to zero, the systems of Egs. (30), (31) and (32) is recovered.

Some practical results will now be shown for a typical
cascade. The grid control is illustrated in Fig. 31. The
coordinate curves are concentrated towards the 1leading and
trailing edges as well as towards the pressure and suction
sides of the profile. The specific distribution function used
is a cubic polynomial of the form -

y = (1-C) == + C x

where vy is ¥ or t {(depending on whether the concentration is
in the axial or tangential direction and % is 1 or T. This
type of function is particularly useful and the grid control
is realised through a single parameter C. Fig. 32 shows this
for several values of this parameter.
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X‘
C=1.5
C=1.2—
~C =1.0
C=0.0
= _ >

v

Fig. 32a Concentration function

Fig. 32b Concentration pattern
The resulting grids for various values of C in both
coordinate directions shown in Figs. 33-37.
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it

Fig. 33 ‘65x17 grid with no concentration,Ci=1, C2=1

Fig. 34 6&0x17 grid with maximum concentration in the
bl ade-to-blade direction and minimum
concentration in the streamwise direction,
Ci=1.5, C2=1.2



Fig.

35 65x17 grid with medium concentration in both
directions, Ci=1.3, C2=1.2

LIl

Fig. 36 &Il17 grid with Ci=1.5, C2=1.4
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in

Fig. 37 &5%17 grid with Ci=1.85, C2=1.4



&, THREE DIMENSIONAL APPLICATIONS

The procedure for generating body-fitted ogrids for
three-dimensional applications is similar to that described
for cascades. This elliptic system for the parameter space
iz written explicitly in cylindrical coordinates since this is

. the most appropriate for turbomachinery applications. This
gives for t* =%, t® = n and ¥ = 7, and %' = r, %% = ¢ and
uE = =

i i
t + - F 4 - + I = p
rr oo 2 o =z
r (53)
+ 1 + 1 + =
qrr r nr 2 ‘g ﬁzz
r
i 1
T + - T 4 — 7 + = R
ri- ror 2 o podrd
s

Inverting this system to bring it to the form of Eq. (5 is
laborious but vields

m
3
+
bl
3
+
i}
B
+
I
b 1]
+
b3
o
]
+
b
1]
]
I
R

a & + a_ ¢ + a_4 + 28 @ + 2a ¢ + 2a @
lﬁEE 2 nn N ol o 4 N S nT 6 T™n

a = + & _z + a_z + 2a = + Za_z + Za =
1 E¥ 2 nn . & TT 4 & S nt 6 1%
+ Fz_ + Bz + Rz =0
% T T
where
22 + : Ez + Eq
a = —
1 NS 2 @
r

8]
-
3 -t
r l
=
L&



]
tJ

2 i 2 2
a_ =T + — T + 7T
3 r 2 @ = (55)
-
3 + . + X
a = Jui—
4 l‘"nl‘" 2 ¢n¢ ¢n4
r
+ 1 +
a_ = T — T T
5 nr‘ r 2 n«!‘ @ qz s
r
T+ ! + 3
a =T —_— T T
6 ror 2 9@ z =
r
The domain is bounded by the surfaces M1, M2, +os Mo

which correspond to coordinate surfaces for which ¥, n and <
are constant as illustrated in Fig (38).

o ¥

>

Fig. 38 Mapping of physical domain into logical space
in Z-D application :
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The problem then reduces to solving Egs. (57) sublject to
Dirichlet boundary conditions which specify the shape of
these boundaries in the following manner.

r ¥1(E1,n,r)

_¢ = 42(El,n,r) &long P1

18]

Cf (% T)
= isns

r (% T)
91 zqns

@ = gz(Ez,n,r) along PE

18

g_ (% _sn,T)

r—
L

e g a8 b))
L

r " r
r h (% T )
i « Ny 6
g = h (¢,n,T ) along I
q . > [ o a 3
= hs(agﬂ,‘tb)

These functions represent the bounding surfaces My ... Mg
which for a typical turbine are illustrated in Fig. 39.



Fig. 39 Illustration of boundary surfaces for a
turbomachinery application :

This is carried out numerically by discretizing the
computational domain into equal intervals in all three
directions. Then using central differences, Eq. (S4) is
replaced. by an equivalent set of algebraic equations, one for
each coordinate. :

Thus at each node (i,j.k) of the computational domain one
obtains three such equations. For illustration, the eqgquation
for the R coordinate is given in full.

a’' (R, i - 2R + R, )
1 i+1l,34k 1,34k i=-1,3.k
+ a (R 1. - 2R ‘ + R 1 L)
2 i, : i : i,3-1,k
xJ ’ sJs ¢ J s (57)
+ a (R - 2R + R
I 1l4Jek+l ig43.k ig34k=1
+ 2a' (R, . - K . - R, ) + R ) )
4 i+1,3+1,k i=-1,3+1,k i+l,3-1,k i=-1,3-1,k
+ Z2a (R, - R, . - R, + R,
S i,3+1,k+1 i43-1,k+1 i,3+1,k-1 143-1,k-1
+ Z2a (R, . - R, : - R, . + R, .
& i+1l,3,k+l i-1,34k+1 i+l,3,k-1 i=1,3,k—1
1
- m—— PR . - R, L)+ B(R, - R, .
i+l,3.k i-1,i.k 1,3+l k i,i-1,k

1.3,k



o
w

+ R (R - R ) = 0
i,39k+1 i439k-1

Similar equations for ¢, and Z can be obtained by the
appropriate substitutions. It is noted that we started this
procedure with the Poisson system and these include the
forcing terms which are dencoted F', 0’ and R’.

Using a point SOR scheme, exupressed in correction form yields
(for the R coordinate)

e
—{a’' + &’ + a/)CR., = = CR, . ta'=P’) + CR,_ | (a ' -
w 1 2 3 1,34k i=1l,3.k 1 1,31,k 2
+ CR | 1(a_:—R’) ,
i i~ 3
e (58)
+ 28’ (CR - ) —CR . )
4 i-1,3-1,k i+l,3-1,k
+ 2a’' (CR. -CR_ )
S 1,_]"1,"':"1 153_15“:"’1
+ 28’ (CR, . -CR . . ) + RR. |
1) i-1,3,k-1 i+1l,3,k—1 1,3,k
where the residual is
RR, . = a'(k. . 2R +R
i,3.k 1 i+1l,43,k i4.3.k i-1,i.k
+ a’' (R - 2R + R,
2 i4i+1,k i,dq0k i,3-1,k
(59)
+ a’ (R, - 2R + R
S dlg,Jak+1 1434k i,34k—1
+ Z2a’ (R, . - R. ) - R, ) + R . )
4 i+1,.3+1,k i-1,3+1,k i+l43=-1,k i-1,3-1,k
+ 2a’' (R - R - R, + R )
S 1,3+l ,k+1 i,3-1,k+1 ig,j+1,k—1 ig4d-1,k-1
+ 2a' (R, . - K. . - R . + R . )
6 i+l,3,.k+1 i-1,3,k+1 i+l,3,k-1 i-14,34.k-1
1
- ——+ F AR . - R, AR 2 & R 4 = S - KR, )
R i+l,3.k i-1,3.k i,3+1,k i,3-1,k
1,30k
+ B (R, - R

i,34k+1 isdek—1



Using similar expressions for the axial and circumferential
coordinates one can successively correct the coordinate values
using

R+ = =R, + CR_
ia.34k p R B £ ig434k
(60)
ot =g, + Co
i,34k 1,34k i,d4k
v =L + CZ
i,3,k i,34k i,3,k
These eqguations were coded and applied to several
three-dimensional shapes. The resulting grids are shown in
Figs 40 to 4%5. The convergence of thise scheme can be

eaccelerated by using a multigrid technique [11].

Fig. 40 Axonometric projection of grid for Stanitz’ elbow



Grid pattern on blade—to—-blade and‘hub surfaces

41
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Fig. 44 Grid surfaces of T—-constant coordinate



Fig. 45 ©Grid surfaces of n—constant coordinate
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7. COMPUTER AIDED GRID DESIGN

7.1 CONTEXT

In this chapter the role of agrid generation will be
placed in  the context of computer integrated manufactwing
(CIM) of turbomachinery. The overall process of turbine
design comprises three steps which are the hydraulic or
aerodynamic design, the mechanical design and finally the
manufacturing process. In the present work, the emphasis is
on the hydraulic or aerodynamic design. This is further
subdivided into four parts:

i) ogeometric modelling
ii) computational modelling

iii) simulation or cbmputational fluid dynamics

and iv) Fflow (solution) visualization and analysis
cim
HYDRAULIC MECHANICAL
DESIGN DESIGN MANUFACTURING
GEOMETRIC COMPUTATIONAL SOLUTION
MODELLING MODELLING SIMULATION VISUALIZATION
(design) . (grid) ) AND ANALYSIS

Fig. 46 Context of Computer aided grid design

The subject of grid generation falls in the second part
that is computational modelling. It is a somewhat broader
topic than simply the grid generation. It includes the
aspects of management, manipulation and display of {(geometric)
information. This reflects the role played by the computer
and its peripheral equipment. It is a triviality to say that
the methods described in the previous chapters could not be
realized without modern computing facilities. And by this, we
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do not merely mean the numerical solution of the grid
equations, we mean the handling of the enormous gquantities of
data reqguired and produced by this type of application. This
data is geometric and is an ordered collection of points which
represent the surfaces and volumes of the computational
domains in two or three dimensional space.

It is fair to say that without computer assistance at a
saophisticated level none but the simplest examples could be
carried out. For grid generation techniques to become a truly
functional tool in CFD it must be embedded into interactive
software packages which manage the data  flow from the
component geometry to the simulation codes. Such packages
should fulfill the following functions:

1. The creation and the modification of a model; the
- desidgner can "edit" the model by means of commands
which operate on basic entities such as a point, a
profile, or one of the parts making up the turbine
(the blade, the hub or the shroud).

2. The refinement of the model by the distribution of
points over each profile defining the blade, and then
by the interpolation of new intermediate profiles
between the hub and the shroud.

Z. The construction of surfaces delimiting the
blade—-to-blade channel boundaries (the calculation
domain). .

4, The calculation of &« body—-fitted coordinate system,
inside the channel, by the solution of the system of
differential equations described in Chapter 3.

Figure 47 illustrates how the information flows among these
steps.

7.2 MODELLING

The objective of the modelling process is to create &
geometric representation of the various objects under
consideration so that they can be manipulated and displaved.
In the present application these are the turbine and the
computational domain.

A turbine, a compressor or a pump is composed of three
main elements: the blades, the hub and the shroud. Since the
blades are all identical, the definition of. only one is
sufficient for the geometric description of a turbine.

The graphic entity corresponding to the body of the
machine is, of cowrse, a volume. But, for the
hydraulic/aerodynamic design, the interior surfaces (that are
in contact with fluid) are of more interest than the body of

]



the turbine itself. That is why, rather than considering the
three elements of the turbines as solids or volumes, we
characterize them by the surfaces that they are bounded by.
The blade, defined between the hub and the shroud can
therefore be represented by a surface folded upon itself in a
three-dimensionnal space, while the hub and the shroud are
described by surfaces of revolution.

Editor
\ points, curves
surfaces .
/ Profiles / Blade,
Refinement hub and shroud

surfaces

New profiles, \

hub and shroud

=0

Comput domain
definition ¢

\
Surfaces
/ Blade-to-blade
Mesh channel

calcuiations boundaries

Body-fitted
curvilinear
grid .
Fig. 47 Geometric and computational modelling
The blade surface is in turn characterized by two sets of
lines: the first, traversihg from the bhub to the shroud, and
the second set, going around the blade. These two families of
curves form a grid where the intersection of one line of =&
tamily with that of another, results in a node. It is these
points that serve as a base for defining the blade by means of
interpolation, with the use of parametrized cubic splines.

The surfaces of revolution characterizing the hub and the
shroud are defined by a curve in a given plane and an axis of
revolution. This curve is defined by Ffitting a 22D
parametrired cubic spline through the coordinates of known
points.

The second .type of object, the computational domain, is
not physical in ' nature but purely geometric.
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For the present application, it is a closed volume called &
"blade~to—blade chanpel". and the set of surfaces that bound
thig channel will be referred in this work as the "shell",
This shell consists of the pressure side and the suction side
of two consecutive blades, four ruled surfaces, the inlet and
outlet planes. the hub, and the shroud, &s shown in Figs. 39
and 48,

ruled surfaces

‘blade

blade

inlet
mhdgmhun

Fig., 48 Definition of computational domain or "shell"

Finally, the last object ig the grid itself, which is &
callection of ordered points.

The entire modelling process can be carried out in one of

three different coordinate systems: cartesian (M,Y,2),
cylindrical (rywy,z) and toroidal (Ry0,8). A certain
zimilarity in their use is established, if it is recognized
that for =&ll systems, the three coordinates indicate

respectively the hub to shroud, blade to blade, and inlet to
outlet directions.

Taking advantage of this convention all operations are
performed in & general manner, on coordinates one, two and
three, that is in the computational space. Internal to the
modules the actual physical system in not considered. Rather,
it is the user who interprets the results appropriately,
according to the coordinate system that the choses to use
(Fig. 49); a displacement in the direction of one of the
coordinate can hence be considered as & rotation or as a
translation (depending on whether the coordinate is an angle
or . notl. The application of certain functions may at times
szem disconcerting in certain referentials, but do however
appear natuwal enough once their mechanisms are understood.
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DESIGNER

<IN

Cartesian Cylindrical Toroidal
(x,y,2) (r.©,2) (R.©, ¢)

USER

(X1, X2, Xa)

X2: blade-to-blade
‘Xa: Stream wise

PROGRAM MODULES

l
I
|
Xs: hub-to-shroud }
|
METRIC |

|

3D VISUALIZATION

USER

Fig. 49 Coordinate Systems-

7.5 MODEL BUILDING

The building of a model for the blade, the hub and shroud
ie carried out using a graphics editor. The building blocks
are basic geometric entities such as points, lines, profiles
etc and & number of commands to perform certain operations.

The graphic editor is & menu driven interactive proaram.
The first level of menus permits the choice of the basic
graphic entity (point, curve, or surface) to work with, and
" other general functions such as the display window management.
The submernus, at the second level, contain the functions that
are related to & particular entity. These functions may vary,
depending on the current modelled element and the projection
used.. I+, at any level, parameters or options have to be
chosen, these will be requested as & final level of input,
while offering a default value. All user’'s input are entered
gither directly from the keyboard, or with the use of the
cursor (for selecting a particular menu command or option, as
well as specifying a position on the screen). Moreover, as &

necessary characteristic in an interactive program, all
responses from the user are validated and various error
messages are provided. Figure S0 shows a typical screen

display where the main menu and a submenu are present on the
screen, along with & profile being processed.



[coMPUTATIONAL PROJET CASTOR t?/ﬂl/t‘
INIT. PARAN, MODELISATION “COMPUTATIONAL® 2:35:30
SPECIFIER .
CONSTRUIRE coq,
MATLLER
>VISURLISER
$PEC, CRARC

EDITION DES LOIS

EXEC JoUl} [AIDE |NON |DEF | oPT [aDD [WULY |aXE | %y |PAK |Z0ON [PLANCHE |1MP |FICH |COORD

NIVEAD =9 (1) ?

MODE T’ ENTREE = CLAVIER

Fig. S0 Typicél screen display of the graphic editor

The available functions fall into three categories:
1. Those performed on a surface:

. recalling either the entire model ‘s geometry, or only
part of it from a file (down to a surface level: the
hub, the shroud, the entire blade, or only part of it).

. saving the entire model ‘s geometry in & file.

. reordering of profiles, that is modifyiné the blade
suwface. This can be done automatically by ‘“sorting"
the profiles using the first coordinate of their first
point, and hence, ordering them according to their
relative "height".

2. Those performed on a curve (profile, hub or shroud):
. translation.
. rotation (around the origin or & specific point).
. s8scaling f{(centered on the origin or a specific point).

. addition of profiles by duplicating them.

. deletion of profiles.
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Z. Those performed on a point (with the aid of the graphic
cursor) s :

creation and insertion between other levels of & new
profile; points are entered on the screen  on &
constant coordinate surface.

», modification of either profiles or curves representing
the bub and the shroud, by adding, deleting,
displacing, duplicating, permuting, or renumbering the
points that define them.

With the help of this modeler, one can create various
type of turbomachines as shown in Fig. 51.

7.4 DOMAIN CONSTRUCTION

The computational domain, or shell, has been defined
previously. It uses the geometry data of the blade, hub and
shroud plus additional information concerning the inlet and
outlet as well as the periodic boundaries.

- It is constructed in two steps:

1. the 1limits of the ruled surfaces are defined by extending
lines from the leading (trailing) edge of profiles on the
hub  and shrouds. These lines lie on the surface of the
hub and the shroud, going from the blade to the inlet
{exit) planes. The angle and length of these lines are
given by the user. Points are then distributed along the
lines . according to & concentration parameter, also given
by the user. ’

2. by entering the number of blades of the turbine, the user
indirectly provides the blade-to-blade channel distance
i.2. the width of the shell. The concentration and the
number of points in the blade—-to-blade direction are given
by the user.
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Fig.

Sla Wire frame representation of modelled turbines
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Fig. %ib Solid representation of modelled turbines
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Finally, using the shape of the shell as the six surfaces
Piy, P2y «v. Me described in Fig. T8 the grid equations are
solved using the techniques described in Chapter & This vields
a mapping of the computational space to the physical domain of
the blade-to-blade channel as illustrated in Fig. S2.

€

Fig. 52 Automatic mesh generation

The results of such computations can be displaved
graphically and manipulated (rotations, zoom, etc) one or
several coordinate surfaces at a time using a module whose
typical output is shown in Fig. &3,
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READ - |FLOW ILLUSTRATION TOOL CHLOE 2.8
BUILD
REMOVE

*#UIENW
EDIT~BATCH
GRAPH

PLOTER
FULL~SCREEN
*ROTATION
PERSPECTIV
200M
PANNING
COLOR
LINE TYPE
SHOH~NOSHOH
HILN FOR MH

X=-AXI1S
*Y-AXIS
Z2-AX1S

ENTER ANGLE

RESTORE | ZOOM | SAVE VIEW | ROTATE | SAVE STRC | TRANSLATE | STOP

Fig. 53 Visualization module

7.5 DIALOGUE AND DISPLAY

The grid generation methodology described in this work
has been formulated rumerically and cast as & set of
techniques imbedded in software programs. These are
interfaced with the user by interactive processors which
handle, through a series of dynamic menus, the modelling of
the turbine, the computational domain and the grid generation.

The display and medification of three—dimensionnal
objects, on a graphic terminal having only two dimensions,
undoubtedly entails some limitations. The visualization of
=D objects by means of various projections is thus necessary
and these succeed in rendering rather completely the true
geometry characteristics of these objects. The inverse
communication, that is from the designer to the program, is
more difficult, because the dialogue is restricted by physical
devices such as the flat screen or the cursor. These do not
allow for the passage of all the geometrical data that one
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would desire: only two dimensions can be input to the program
at one time, due tc the absence of true depth at the screen.

Thus, to develop an acceptable method of communication,
one must judiciously combine the use of the available devices,
with that of a particular projection.

One can easily project the blade profiles on three
different surfaces, each corresponding to a constant value of
each coordinate (orthogonal projection). This type of
projection, because of the speed and ease with which it can be
Cimplemented, was retained. This stems from the fact that one
of the coordinates is simply dropped while displaying the
other two. The creation and modification of profiles is
therefore easily made possible, since the screen’s swface
corresponds to the developed surface containing two of the
profile’'s dimensions.

A typical screen for the geometric modelling is shown in
Fig. 30 which shows how Certain pertinent information is
always displayed within the screen’s graphic frame:
. profile number

. coordinate dyad indicating the current projection

. file name

The options available duripg display mode are:
. choice of a projection to display a profile.

. .choice of the displayed element (pointer), as well as
of the interval of profiles to display along with the
chosen element, and the presence or not of the hub and
the shroud.

. modification of the display window by translations,
scaling (zoom), specifying two new corner points (new

frame), or allowing the program to automatically
calculate one, slightly larger than the cwrent
element.

. display of &ll profiles at one time in a
three—dimensional cartesian referential, for a better
grasp of the turbomachine’'s actual shape (with

possibilities of rotating the model with respect to
either one of the three cartesian axes). This is done
simply by transforming, if necessary, the current
referential in & cartesian one.

. choice of the symbol size (i.e. the point’'s
identifier).



. possibility of refreshing the display when too much
obsolete data appears on the screen, or simply to
visualize the result of & modification to an element.

There are two levels of display. The Ffirst uses line
drawing for quick display of models and grids. A second mode
provides a more sophisticated image with hidden line removal,
color, shading transparency. This is achieved using a
translator to the MOVIE.BYU software:

The overall display structure is shown in Fig. 54.

MODELLING SYSTEM

intermnal
display
module

¥ : i

Transiator « Basic visualization

MOVIE BYU
DISPLAY SYSTEM

!

° More elaborate visualization
- Hidden lines ’
- Color, highlights
- Transparency

Fig. ©4 Data structure for graphic display
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