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l. INTRODUCTION

The completity o-f the geometries encountered in practical
fluid flow applications is such that a well de-fined need has

been identi+ied -for the treatment o-f comple>; shapes. This is
particularly the case o-f the numerical simulation o-f
three-dimensionnal -flows in turbomachinery componente.

Historically ans can trace such approaches to the conformai

mapping techniques or more recently ta algebraiC
trans-formation techniques. However a truly modem methodology
•for the handling o-f arbritray three-dimensional geometries in
a généralized approach, dates from the early seventies with
the work o-f Pro-f essor Joe F. Thompson on body—fitted grid

génération. Although originally intended for finite
di-f-ferences methods, thèse grid generators apply equally me 11

to -finite volumes and finite élément methods.

Such coordinate système are cal led body—fitted or

body-con-forming curvilinear grids. Their essential feature is

that yield coordinate curves which are aligned with the demain

boundaries. There are two major advantages. The -first is

that the numerical scheme -for the governing équations are
carried out on a rectangular mesh. There résulte a simpler
and more accurate algorithm since boundaries coincide with

coordinate grids, and no interpolation is required. The

second advantage is that the géométrie complexity, through the
transformation, is imbedded into the coefficients o-f thé

governing équations. This allows the possibility o-f writting

generalized codes applicable to a variety o+ différent
geometries. This résulte in a great saving in the code
development e-f-fort.



2. BASIC CONCEPTS

2.l WHAT IS A BRID

Présentée! simply, a grid is a method to organize a domain

-for calculât!on purposes. This is achieved by the
mathematical concept o-f parametrisation. That is the mapping
o-f the physical damai n unto a parameter space which is

rectangular by construction. In this manner there is a unique

association o-f points, curves or sur-faces in the parameter

space with their images in the physical space.

This résulte in a séries o+ curves which span the entire
demain in an orderly -fashion. Each curve is identi-fied by one

value o-f a parameter (or more graphically each corresponds to

one line in parameter space). So that a given point in space
can be identified or more imaginatively, can be reached by

displacements along thèse curves. It is intuitively obvious

that the number o+ thèse, dépends on the dimension of the
dom&in.

The parametrisation allows also to identi-fy the neighbors
o-f points or lines as required -for computational purposes.

11 is clear that a given demain can be organized in many
dif-ferent ways, the simplest being the cartesian System. Other

possibilities come to mind such as the classical polar,
cylindrical, or spherical coordinate Systems. Al l o-F thèse

provide a means o-f associating (or mapping) a point in space

to a set of parameters.

/_
>

•»
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Fig. la Cartesian coordinate grid
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Fig. Ib Polar coordinate grid

From expérience ne know that the choice o-f a coordinate
system is relatéd t& the geometry of the problem. Sa that
there is a need to have a set o-f relations between the

physical space and the chosen parametrisation. For some very

simple geometries (cylindrical, toroidal etc) there exist such
relations in analytical -forms. However, for most

applications, this is not possible anct the curvilinear System
must. be generated numerically. In that case, one no longer
has a System o-f coordinate curves which span the physical

damai n, but rather a set o-f points or nodes which'approximate

thèse. Thèse nodes are ordered according to a corresponding
lattice in a computational space.

One can think o-f a discrète grid as the set o-f nodes resulting
from the intersection o+ curvilinear curves o+ différent
•f ami lies.

^ A '

•• ••

Fig. 2 Discrète grid

It is seen that the discretization o-F the physical ctomain can
be as -fine as desired by increasing the number o'f nodes. The.
organisation o-f the nodes is achieved by their numbering



according to the parametrization so that the neighbors o-f a

given point are immediately known.

2.2 CURVILINEAR QRIDS

The basic characteristie oi a curvilinear coordinate
System is ta have the coordinate curves (or sur-faces) con-form
to (or align with) the boundaries. The degree o-f con-formity

varies from exact at the boundaries where thèse must coincide,
to some global alignment in the interior o-f the région. To

fix ideas more precisely, the annular dcMnain between two
concentric circl-es is used.

e

D G

B

Fi g. 3 Polar curvilinear grid

this problem is the
mapping between the

coordinates

An appropriate coordinate System for
familier polar coordinate System. The

physical coordinates (x,y) and the curvilinear
(r,6) can be expressed by analytical expressions

y. = r cos 6

y = r si n Q

By varying one o-f the two parameters while keeping the other

constant générâtes two sets o-f coordinate curves. Thèse are

respectively concentric circles and radiai lines which confonn
ta the boundaries. Furthermore, for the value o-f the

parameter r = r i. the line AB maps into the radiai line A'B'.

Similarly, the other linés BC, CD and DA yiel d coordinate
curves B'C', C'D' and D'A' which coincide e>;actly with the

boundaries o-f the physical domain.

This idea can be e>;tended ta général configurations in

2-D and 3-D where complex shapes in physical space can be

mapped into rectangles in the parameter space. This latter is

usu&lly cal led the computational space.
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Fig. 4 Mapping from physiçal ta computational space

For e;';ample, to gêner ate a
the domain in Fig. 4,

between the physical space

curvilinear coordinate System for
one seeks a -functional relationship

<x,y) and the parameter space CE.,T^)

>; = -F (T., T))

y » gd,Ti>

The di-f+erence with the previous e^ample and other +a«niliar

système is that -for complex bounclaries the -functions -f and g
cannât be e>;pressed analytical ly. It is required that f and g
map "lines- o-f constant 'Ç into curves which con+orm to the

boundaries AB and CD and similarly, that lines o-f constant T|

map into curves which con-form to the other set of boundaries
D'. Furthermore, it is required that i and g map
exact l y into A'B' and similarly -for the other

B'C' and A

AB (•n=rii)

boundaries.

It is -finally required that the correspondence between a

point <!-;,y) and ils image (Ï.,TI) and vice-versa be unique. The
result isa set o-f curves in physical space which -for the
•first -family veri+y

î(^,y) = ïi

and -for the second -f ami l y

where î; ^ i ï..

Ti<>;,y) = r\ j where T)i ^ T^j ^ r\^

The

The values ("Çi,^,

parameters U and
boundary curves.
within this range.
The actual values o-f

parametrisation and are in
choice is to normalise the

) and (r)t.,r)r>) define the range o+ the
•qj respectively and correspond to the

values o-f t.*. and r\j vary monotonicall y

thèse dépend
a sense arbitrary.

parameters giving

0 < -S.^ <1 l

0 ^ TI.» ^ l

on the chosen

One reasonnable



Another possibility and perhaps better suited ta programming

considérations is to use a parametrization based on the

integer values of the nodes, giving

l ^ ^i im
and l :s, T)j ^. n

Essentially, the concept of curvilinear grids can be cast

in the form o-f a boundary value problem. An analogy is

présentée! to illustrate this. One can imagine s. membrane (for
2D problème) o-f rectangular form with a cartesian grid laid

upon it. This membrane is placed upon the physical damai n and
stretched sa that the boundaries match. The membrane is then

pegged at the boundary nodes. The original grid on the
membrane is deformed and yields a curvilinear grid.

This analogy is easily extended to 3D by replacing the
membrane by block o-f "foam" and the remainder o-f the procédure

i s identical.

2.3 BRID CONFIGURATIONS (TOPOLOBY)

In the trans-formed space the région is bounded by pairs

o-f opposite boundaries. In two dimensions thèse are two pairs
o-f line segments, whereas in three dimensions thèse are three

pairs o-f planar segments.. The coordinate curves join

corresponding noctes in a given pair of boundaries.

In the physical space, the demain is al sa bounded by
boundaries but their grouping in pairs is not unique and in
some degree is arbitrary. Since the sense of the grid is

dictated by this grouping, the manner in which the
correspondence between boundaries in physical and parameter

space is realised, détermines the grid topology.

Thèse concepts wi11 be presented in an orderly -fashion

proceeding -from simple to more çomple>! configurations. Thèse

are simply connected régions, multiply-connected régions and

composite grids.

Simplv connected Régions

The -first step in the grid design is to identi-fy the -four
boundary curves that map into the corresponding si des of the

rectangular domain. For the various examples used so far this

is obvious. I-f however, a discontinuity e>;ists along one of
thèse, then there es-îist several ways ta logically connect the

boundaries. Ta illustrate one may consider an L-shaped

domain, such as a rear—facing step.

In the -fist configuration shown in Fig. 5a, the grouping is as
-fol lows. Boundary ABCD is grouped with FE and boundary AF with
DE. This résulte in grid lines with run -from AF ta DE -for the

•first -family and -From ABCD to FE for the second -family.



Although there are two discontinuities, points B and C, thèse
do not appear in the grid. This can be appreciated •from the
analogy présentée! in the previous section and will be more
-formally established through the basic smoothing properties o-f
the grid équations in latter sections.

////////////////////////

////////////////
B C

Fi g. Sa Brid topology l

A second possibility is to pair ABC with FED and AF with CD. A
similar discussion applies.

///////////////////////////

B"

Fi g. Sb Grid topology II

Composite arids

Yet another possibility
generated by dividing the
subdomains. Then within each

generated. In the présent

is ta have a composite grid
domain into two (or more) simple
o-f thèse a distinct grid is
ex ample the subdomains could be

ABGF and 6CDE or ABHEF and BCDH if two subdomains are used.
The -following three subdomains could have also been used ABGF,

BHEG and BCDH. Such composite grids
along some common boundaries.

must then be matched
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H

B
H

Fig. 5c Grid tapology III

A number o-f properties can be required. First, it is

required that the grid linés be continuous, that is the
connecting boundaries are de-fined with the same nodes. This
is ta avoid the situation illustrated in Fi g. 6.

^//' f

Fi g. 6 Discontinuous coordinate curves

Then it can be required that the grid curves have continuous

slopes. This is ta avoid the case illustrated in Fig. 7.

Fi g. 7 Slope discontinuous grid

Thèse -few examples illustrate the need to relate the grid

design ta the problem at hand. Clearly the grid in Fig. 5a
should be used for a problem of the flow over a step, whereas

the grid in Fi g. 5b is best -for the flow around a square



corner.

The necessity -for grid continuity is also dépendent on

the problem but more so on the method o-f solution used to
solve the problpm. For example, in -fi ni te élément techniques
one could use discontinuous grids. Finite volume methods will
work with di scontinuous -first derivative whereas most -finite
di-f+erence scheme require C1 continuity -for the grid.

Another interesting con-figuration arises when the

physical boundary is close.d and continuous such as a duct with

a circular cross section. There are no natural points at
which to break this boundary sa as ta group opposite si de into

pairs. One then must break it at arbitrary points, equally
spaced (unless there is some other prevailling approach) A, B,
C and D.

4 e

B

Fig. B Grid -for a domain with continuous boundary

The grid curves will join sides AB to DC for the first family
and AD to BC for the second -family. This créâtes a spécial

node or control volume with two si des having the same slope at

thèse break points. The treatment o-f this node requires

spécial care since the Jacobian o-f the trans+ormation

vanishes.
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Mû 11 i pl y e onnec-ted régions

In some applications, obstacles are encountered in the

damain. This leads ta several solutions which dépend on the
physics o-f the problem. I-f there are identi-fiable points

(comers) on the obstacle, a composite grid approach can be
use-ful. For example, with -four such points the configuration

below is apprapriate.

l

-^

/
Fi g. 9 Multiply connectée) demain with several "comers"

If there are two identifiable "corners" one might décide on

the -following two subdomains

t

l t

Fig. 10 Nultiply connected domain with two "corners"

Of course the notion o-f corner points may be e;;tended. Thèse
neéd nat necessarily caincide with slope discontinuities but

some spécial -feature o-f the physical problem. Examples that

come ta mind are stagnation or flow séparation points.

For thèse composite grids, the remarks o-f the previous

section on grid continuity apply.



Finally, ii only one corner

problem can be made simply-connected
fictitious boundary or branch eut as

11

point is identi-fied the
by the introduction of a
illustrated below

Fi g. 11 Branch eut

2^4 APPLICATIONS TO TURBQMACHINERY

The présentation
been carried out sa -far

point thèse concepts

parti cular context o-f

o-f the subject of grid génération has

in rather général terms. At this
and ideas wi11 be discussed in the
turbomachines. Perhaps the most

appropriate application of curvilinear grid is the
transformation o-f the blade-to-blade- channel. The design o-f

a good grid is a rather challenging task which can lead to a
multitude o-f solutions according ta the problem and the

particular numerical scheme intended.

To concentrate on the aspects o-f grid génération, only
the two-dimensional geometries are discussed at this point.
E>;tensions to three dimensions are relatively straight
farward.

Several types of grids are presented and thèse are
related to the previous discussion on grid configuration. The

physical demain in question is the followings a région with
an obstacle, a blade profile.

This demain can be thought of as a surface o-f révolution,
a cylinder say, which intersects the solid blades in a number

D+ profiles. When this surface is developed one obtains the
classical blade row which is a periodic répétition o-f one

single blade-to-blade channel. For the subsequent flow

simulation, it is necessary ta place the inlet and outlet

boundaries upstream and downstream, o-f the leading and

trailing edges of the profile, respectively. This leads to
the requirement o-f permeable, -fictitious boundaries which are
periodic. It is the manner by which thèse are defined that

détermines the grid con-figuration.
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H - arid

In this type o-f grid two "corner" points are identifiée!

on the obstacle, i.e. the profile. Thèse are the leading and
trailing edges. From both o-f thèse two périodie (permeable)

baundaries are eï;tended in the upstream direction and
downstream directions to the inlet and outlet sections

respect!vely.

Fig. 12 Demain topology for an H-grid

Thèse are usually straight linés whose angles are arbitrary
but should preferably be related ta some ilow characteristic

such as the ini et or outlet flow directions.

Similarly, their lengths should be related to some
characteristic dimension of the demain such as the chord o-f

the pro-file to allow for adéquate imposition of boundary
conditions at inlet/outlet sections.

Sa we have a simply connectée! région bounded by four

sides, two o-f which possess discontinuities. FDllowing the

procédure outlined in the previous section, thèse are paired
as •follows; the inlet with the outlet and the suction sids

with the pressure side. The resulting grid yields one family
o-f coordinate curves which are roughly aligned with the flow

streamlines, and the other are in a roughly normal direction.

It should be noted that the upstream and downstream périodie
boundaries are identical and are matched. Consequently

the inlet and outlet sections must be vertical -for this type
o-f grid. As it will be seen later this can, in some highly

cambered profiles, lead to poor grids. This can be remédiée)

by other types o-f grids.



13

l - qrid

This
Oicept for
placed in

the upper

type o-f grid is quite similar ta the H - variety
the position o-f the inlet/outlet, which can now be

any orientation. The conséquence o-f this is that
and lower periodic boundaries no longer match

identically.

Fig. 13 Demain topology -for an I—grid

The resulting grid bas a family o-f coordinate
curves running from the inlet to the outlet in roughly the
stream direction. The main di-f-ference with the H — grid is

that a coordinate curve may run from a périodie boundary -ta a

solid boundary as shown in Fig. 14.

Fig. 14 Région periodicity

The grid boundaries

periodic whereas now it is

This does not pose any
génération level but is

in the H - configuration are l i ne

an entire région which is periodic.

particular problem at the grid
important, when treating boundary

conditions in the subsequent flow simulation.
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Essentially one may think of an l - grid as an H — grid

wheré the nodes are allowed ta si ide -f réel y along the
boundaries from the solid ta the periodic parts and

vice-versa. With the result that for highly cambered

profiles, the stream-wise coordinate curves tend ta fit the

body more closely, particularly in the leading edge région
where H - grid tend ta be poor.

C - orid

One common characteristie o-f both previous grids is that
in the vicinity o-f a concave discontinuity such as the leading

edge the grid lines along this boundary tend to be distributed
away -from that boundary. This is not desirable since one

would like to concentrate coordinate curves towards the wall
in thèse régions. A new type o-f grid, called the C - grid, is

présentée!. The demain is constructed with only one corner
point which is the trailing edge. The boundaries are made up
o-f the profile itsel-f and other imaginary permeable

boundaries. The first o-f thèse i s a l i ne or curve e>;tending
downstream o-f the leading edge and making a eut into the

damai n.

Fig. 15 Demain construction -for a C-grid

The other boundary is in the -form o-f the letter C and wraps

around the pro-file or obstacle. This curve starts fram the
e;<it o-f the domain in the upstream direction, around the
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leading edge into the inlet o-f the domain and -finally

downstream to the e;-; i t but on the opposite si de o-f the eut.
This curve may be quite arbitrary -froiri the point o-f view of

grid design. However, -for the solution o-f the -flow équations,
it is necessary to e>;ercise some care so that the boundary

conditions may be imposed in some meaning-full way. This leads
to the division o+ the curve into three parts. Two periodic
curves BC and ED which run midway through the blade-to-blade

channel

Fig. 16 C-grid with line periodicity

Thèse then join an inlet curve CD with matching slopes at
points C and D. This last curve is arbitrary but must be such

that inflow conditions can be applied along it. Along the eut
•there are in fact two curves AH and FG. This may be straight

or curved and possibly could match the périodie curves BC or

ED. Final l y it is noted that thèse are not necessarily of
equal lengths.

For this configuration the pairing o-f boundaries is as

•f al lows; AB with FE, and BCDE with AHBF. This results in two
•families o-f coordinate curves; one running C-like •from outlet

around the leading edge ta outlet, the other in a quasi-radial
fashion -from the pro-file and eut, to the périodie boundary or
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outer.most "C". The mapping o-f this domain in the trans-formed

space is shown in Fig. 17.

A H G Fi?

Fi g. 17 Application of a C-grid ta computational space

A variation on this configuration arises when the outlet

boundaries AB and EF are not along the same vertical l i ne.

Fig. 18 C-grid with région periodicity

The periodic boundaries are no longer line periodic but rather
région periodic in a similar fashion to the passage from H -
to l - grids.
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a - grid

The -final type o-f grid is obtained when no corner point
is identi-fied. The damai n may be thought o-f as a band around

the pro-file. The domain is bounded by a closed curve made up
o-f +our parts; an inlet and outlet and two periodic curves.
In this instance again this requirement is -for the imposition

of boundary conditions for the -flow équations.

B

Fi g. 19 Domain construction -for an 0-grid

Dne also requires an additional -fictitious boundary which

cuts the demain -from the leading edge. The solid profile

boundary FG is paired with the closed boundàry ABCDE to yiel d
the -first -f ami l y of coordinate curves. Thèse run -from the
profile in a quasi-radiai -fashion toward to the 0 - curve.
The fictitious boundary along the eut is multivalued and is

itsel-f, SU with FE. This results in the second

curves which -form closed curves. Thèse vary

•from the profile to the outermost 0 - curve
which they match identically. In most cases spécial care wi11
be e;<ercised at the eut EF/GH •to insure continuity and slope
continuity o+ the coordinate curves. The segments AB and DC

matched with
•family of grid

monotonicall y

are curve - périodie.

space is shown in Fi g. 20

The mapping in the computational
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G i»

Fi g. 20 Appl.ication o-f 0-grid ta computational space
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3. 8RID EQUATIONS

3.l ELLIPTIC SYSTEMS

The basic ideas and concepts of curvilinear

body-con-forming grids have been presented in a rather
qualitative -fashion. The speci-fic manner ta actually obtains

such grids is now presented.

The génération

consists in evaluating,
demain, the location
two-dimensional problem

which one coordinate
monotonically. Similarly,
curvilinear coordinates

o-f a curvilinear coordinate system
in the interior o-f a given physical

o-f the curvilinear coordinates. For a

thèse are two families o-f curves along
is constant while the other varies

for* a three-dimensional problem, the
are three families o-F sur-faces along

which one coordinate is constant while the other two vary.

Upon each o-f thèse constant coordinate surfaces there lie two
•f ami lies o-f curves which represent s. two-variable prablem

Fig. Grid génération as a boundary value problem

When one member o-f each -family is made ta coincide with an
appropriate side o-f the physical domain, the resulting System

is cal l ed boundary - -fitted or boundary - con+orming. For a
given four-sided physical demain, there are -there-fore four
known coordinate curvess the first and last o-f each -family.



20

Likewise in a three-dimensional problem, there are six known
coordinates surfaces.

Several approaches can be applied to the problem o+
generating the internai coordinate lines (or sur-faces) . une

very simple method is to interpolate between the boundaries.
This consiste in interpolating -the coordinate values o-f

corresponding nodes on a pair o-f opposite boundaries. Thie
however, can lead ta di-f-ficulti es with certain geometries

i) coordinate Unes leave the domain

ii) coordinate linés overlap

iii) discontinuities in the bqundaries can propagate
within the domain

Fig. 22 Example of non-elliptic grid

Thèse can be avoided by exploiting the well known èKtremum

principles which characterize elliptic Systems. More
speci-fical l y, such Systems will guarantee that the values of

each o-f the coordinates f ami lies will vary monotonically from

a minimum on one -face to a maximum on the opposite face since
extremum can only be attained on the boundaries. Also such

Systems e;;hibit smoothing properties that prevent the

propagation and/or présence o-f discontinuities in the grid.

Thèse essential features -for coordinate grids, however,
require the solution o-f a System of partial di+ferential

équation. Ta introduce thèse elliptic System, the following

analogy is proposed; given a physical domain bounded by four
sides.
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Fig. 23 Boundary conditions for the first family o-f grid
l i nés

One poses that a family of body-fitted coordinate System could

be generated by solving the température -field with two

opposite sides thermally insulated and the other pair at a
given température di-fferential. The solution of the resulting

température -fi el d yields a -f ami l y o+ constant température
lines which are body-fitted coordinates. Similarly by

interchanging the pair o-f si des which are insulated and those

at a température differential, one can generate the second
family of coordinate lines.

l
^

'^\

Fi g. 24 Baundary conditions for the second f ami l y o-f
l i nés

grid
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Let us denote the first f amily of coordinate curves by T and

the second by -q. By the above analogy, the T coordinates are
linés of constant température in the problem corresponding ta
the -first set o-f boundary condition Fi g. 23. Thèse can be
obtained by solving the -following problem characterised by the
heat conduction o-f Laplace's Equation.

V= T = 0

Similarly the set of •q coordinate is obtained by solving the
above problem with the second set of boundary conditions

Fi g. 24.

V2 T\ = 0

Thus we have now cast or formulated the génération o+
bo'dy-conforming coordinates as the solution o-f a System o-f two
Laplace's équations. Being elliptic thèse will yield

solutions (i.e. coordinate curves) that veri-fy the
requirements o-f

i) unicity (i.e. no overlapping)

ii) smoothness

More -formai ly, the curvilinear coordinates f.*'

with ît = T and ia = T|

are generated by the System

Va V = 0 i » 1,2 (l)

subject to the boundary conditionss

l) for the first pair of

boundaries

2) for the second pair

o'f boundaries

^

i2

^

îa

î1

•ça

= ^

.2

l
m

.2

m

-\

.2

n

~ (H, y)

s

(X

=s

(>;

est

,y>

est

est

,y>
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î- = est
n

Ç2 = •Ç-(K,y)
n

The functions: ïl'(>;,y) represent the shape o-f the boundaries,
i _i

and the constants ï, , ï_, ... the values of the parameter

along thèse boundaries.

The e;;tension to three dimensions is immédiate by

replacing the coordinate curves by coordinate surfaces and
adding a third +amily.

3.2 TRANSFORMATION RELATIONS

The solution o+ Eq. (l) can only be carried out
numerically for général arbitrary shapes. It is not pratical
to solve the problem as -formulated since the Laplacian would

have ta be discretized in the Cartesian domain. This,

ironically, would require a grid which is precisely the
objective of the problem. Thus one last step in the
•formulation of the grid génération problem is to invert the

dépendent and independent variables. Sa that instead of

seeking the coordinate curves as functions o-f the cartesian
variables

^ (Xj)

the solution is carried out in the curvilinear space and the

physical variables are cast as functions of the curvilinear

coordinates or trans+ormed space

Kt (î-*)

This change o-f variable is carried out and the Laplace

équations are rewritten in the trans-formed domain. Using the
chain rule o-f calculus

.j

The system o+ Eq. (l)

ô

Qy.

ôî'

Qy.
i ôl~ - "i

becomes, for two variables

2
E
J=l

2
E
1=1

ij
X

J&

ô^ 3Î
0 .Si 1,2 (2)
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where x a. = >; >;a = y

.3x .2 .ôy .2
g.. = <——)- + (——)
'11 -_1 __1

3Î- Bî'

,ÔK .2 .9y .2
g— = <—>~ + <—)~ (3)
"22 __2 __2

ôî~ 3î~

ôx ôy. ôy ôy

12 __1 __2 __1 __2
3î- ô^- BT." 9^

and their inverses are obtained frodi

11
'22'

22
g~ = g /g (4)

12
g = - g,_/g12'

and

g = det (g. .)
U

Similarly, for three dimensional space, the system o-f Eq.
(l) becomes

.2
a-K

3 3 ij - 'S.
E, ,É, g-~ ——— =0 &. = 1,3 (5)
i=l j = l ~ i

at ôl

where >; i = >;, >;z = y and >;» a z

.ôx .2 .ôy .2 .ôz .2
g = <——)- + (——)- + (--—)
'11 __1 __1 __1

ôï~ Sï.~ el'

,ô>; .2 ,9y .2 .ôz .2
g— = <—)- + <—)- + <——)- <A)
'22 __2 __2 __2ai" 3ï- ôi'

,ôn ,2 ,ôy .2 ,ôz .2
g__ = <—)- + (——)- + <-^)
'33 __3 '__3 '__3

9T.- 3-E.- 9î'



and
12 __1 __2

BZ- ôf
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ô>; 9>; 3y By 9z ôz

ôî

ôy

9ï

ay

l

l

.2ôî'

ay

.3
3Ï

ôy

ÔX Ô>!

13 __1 __3
ai" si

3x ô>!
g,
23 __2 __3 __2 __3ai" ôî~ aç" aç

The inverse o-f the gtj are obtained from

2
G. as 9— 9— ~ (9__)'l '22 333 -323'

2
G_ = g_ g__ - <g,_>'2 311 '33 '°13'

91

âz

Bï

9z

9Ç

l

l

2

ôî

3s

ôî

3z

Bî

2

3

3

giving

B3 - "11 g22 - <912'~ •B>

B. cs g,_ g__ - g, _ g,'4 '13 '23 "12 "33

B_ = g,_ g__ ~ g,_ g'5 °12 323 "13 322

B. S8g._g._~g.. g,'6 "12 313 311 323

where g = det (g. .).
l J

11
g

22
g

33
g

12
g

13
g

23
g

= G /g

= 6 /g

= G-/g
3

= 6^/g

= G^/g

= B^/g

(9)
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3.3 APPLICATIONS TO TURBOMACHINERY

The grid équations developed in the previous section are

completely général and applicable to any two or three

dimensional problem. Thèse can be rewritten in a more
e;;plicit and more widely accepted notation o-f the field of
turbomachinery. The variables 'Ç1 in the transformed space

become -q,T and î, for i s= l, 2 and 3 respectively. In the

physical space the variables x, y and s are replaced by Z, <?
and R.

In two dimensions, the trans-formation between the
physical space «', Z) of a blade-to—blade région inta the

computational or trans-formed space (T, T}) is accomplished by
the elliptic System o-f Eq.<2) rewritten with the appropriate
notation. This becomes

O(.(T' + Ytf' - 2^?i = 0
TIT] TT TIT

(X.Z + YZ - 2|3Z = 0
•qri TT r|T

where (10)

2 _2
(x. = <' + Z

T T

2 _2
Y » 4>~ + Z~

T TI

p = <' <- + z z
T| T T| T

J •= <' Z - <- Z
r\ T T T(

This is complétée! with a set of conditions imposed on the
domain boundary P. This is made up o-f four si des denoted by

r'i, Pa» r'a and r^ and coincide with r\ = T|i for Pi., r| = rta •for
r'a» T = Ta. -for Ps and T = t-a -for P^..

</'

z

+1 (TH ,1-)

fa<r)i ,T)

along Ps.

<r'

z

Cl <T|z,T)

gz<ï1a,T>

along Va
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<' hi(T1,Ti) (11)

along F»
Z ha <-q, Ta.)

<' qi (T|,Ta)
= along P-»

Z qa<Tl,Ta)

Similarly, -for three dimensional applications, the system

o-f Eq. (5) can be rewritten explicitly in the cylindrical
coordinates.notation, as

l
a r + a r + a r + 2a r +2ar +2ar - — = 0
l 1.1. 2 rm 3 TT 4 ^TI 5 TJT 6 TÏ. r

a (T' + a_<- + a_<' + 2a <' + 2a(|i + 2a 4' '= 0
l ïi 2 T)T) 3 TT 4 ÎT) 5 -HT 6 TÇ

(12)

a Z_ + a_Z + a_Z + 2a Z + 2a Z + 2a Z = 0
l Î.'E, 2 rm 3 TT 4 î.r\ 5 TIT 6 TÎ

.2 l _2 _2
where a.=i +—î +i

l r 2 <' z
r

2122
a = n + — n +
"2 'r 2 ''0 "z

r

21 2 • 2
a_ = T + — T + T
'3 ~r 2 '<> "s

r

l
a, = -S r) + —^ -Ç^r). + i ï)
4 r r 2 4i '0 z z

r

(13)

a_ = -n T + — TI T + T) T
5 'r r 2 '<' <' '£ z

r

l
a. = T ï + —— T Ç + T' T,
6 r r 2 <" <' z z

r
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4. NUMERICAL SOLUTIONS

4.1 DISCRETIZATION

The solution to the System o-f Eqs (2) or (5) can be

carried ont for général boundary conditions only by numerical
mçthods. The équations are coupled and highl'y non-linear and
there e>;ist a number o-f very e-f'ficient and reliable numerical

schemes for such Systems. Thèse can be qui te complex but -for
the purposes o-f this présentation only the simplest méthode

need to be discussed to illustrate the basic principles.

The avérai l approach consist o-f two steps i) the
di-f-Ferenti al équations are discretized and ii) the resulting

set o-f algebraic équations are solved by numerical techniques.
Thèse are essentially iterative methods based on the

rela>;ation procédures. The -first step is ta discretize the
trans-formed demain into a mesh. Since the actual values '&*
are irrelevant ta the resulting grid, one can without lass of

générality, assume any range of values +or each coordinate
•f amily. This could be a variation -from 0 ta l or more

appropria-fcely -for numerical applications, -from l ta the number

o-f nodes. Typically, thèse are différent -for each coordinate
•f ami l y and we wi11 denote thèse by m, n and l for the 'Ç, T| and

T directions. For a -function f, we will denote by the indices

i and j (in 2-D) and i, j and k (in 3-D) the values at the
grid nodes in the computational or parameter space. Thus the

discret! sed values o-f the dépendent variables T or r\ will be

représentée! by

or

T = < i - l ) AT
l

T) . = (J - l ) AT]
j

l < i il m

l < J < n

(14)

where the increments AT, A'q, etc are the range o+ the

corresponding variables discretized into equal intervals, i.e.

AT = (TM - T»)/(m - l)

The value of a -function at a node (i,j) is

•^.j = -F<TI, TI.,) (15)

The e'/itension of this notation to three dimensions is

immédiate.

The next step is to discretise the System of elliptic
di-f-ferential équations. This is carried out by replacing the
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derivatives appearing in thèse équations by the apprapriate
•finite di-f+erence appro;-;i mat ions. Since both first and second

derivatives appear, it is natural ta use centered di-f+erences
which yield second order accuray -for both.

9f -f. . . --f

i+l,J i-l,J

ÔT 2AT

•f. . . - -f.

Q-f , i,j+l i,J-l

9-q 2AT^

.2_ f. . .-2-f. .+f

3 -F , i+l,j i,J i-l,j

2
AT- (16)

•f. . . - 2f. . + f

i,j+l i,J iiJ-1

2 2
ôr\ AT|

.2. f . . ..-+.. . . -•F. . . . + -F

Si , i+l,j+l i+l,j-l i-i,j+l i-l,j-l

ôfô-q 4ATAT|

Substituting the eKpressions o+ Eq. 16 into the elliptic
System o-f Eq. <2) and analogous eKpressions for three
dimensions into Eq. (5) yields an équivalent algebraic

équation -for each node o-f the computational space. When this
is done -f-or al l nodes o-f the damai n an algebraic System is

obtained. Li ke its dif-ferential counterpart this is highly
nonlinear because the coefficients glj dépend on the solution.

There es;ist many techniques to solve such système
numerically. Essentially thèse are iterative in the sense

that the solution is approached asymptotically by improving a
given initial solution in a step by step procédure. Without

gaing into a -formai and lengthy comparison o-f the numerous

methods available, the successive overrela;<ation scheme is
proposée). This is based on an informai évaluation as well as
what appears to be a consensus o-f the users in this field. It

is -f el t. that such schemes are accurate, robust and easy ta

program and that they give very e+ficient overall codes.
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4.2 NUMERICAL SCHEMES

The discussion o-f the numerical scheme -for the solution
o-f the grid équations wi11 be carried ont with the explicit

•form o-f the thèse in the <<',Z) coordinate re+erential. This
is to keep the présentation at a speci-fic level knowing that

généralisations and extensions are simple when the basic
approach is well understood. Sa, using the e>;pressions o-f

Eqs. (16) and replacing the derivatives in the elliptic System
o-f Eqs. (10), one obtains équivalent algebraic équations •for

every node (i,j> of the computational space. One o-f thèse is

for the tangential coordinate '/'<.. jî

a'E'/'. . - 2<' + <'. .3 + Y'C?> - 2f' .+ ?> 3
i+l,j i,j i-l,J i,j+i i,j i,j-l

- 2p' C^. , ..-.<'. . ..-<'.. ..+<'. . . .3 es 0
i+l,j+l i-l,j+l i+l,j-l i-l,j-l

(17)

and the second is -for the a.xial coordinate Z s
iiJ

oc'CZ: . . - 2Z. + Z. : .3 + Y'CZ. - 2Z + Z. .3
i+l,J i,J i-l,J - i,J+l iij i,J-l

(18)

-2p'CZ. . ..-Z. . ..-Z. ..+Z. ..3=0
i+l,j+l i-i,j+l i+l,j-l i-l,j-l

where

2 ._ _ 2 ._ .2 .2
oc- = (((d - <. )- + (Z. ., - Z. . .)~)/«2AT)- *(AT))-)

i,J+l i,J-l i,J+l i,J-l

2 ._ _ 2 ._ .2. .2.
Y' =«(?'.. . - <'. . .)- + (Z. , .- Z . . .)"/< (2Arp -*(AT>-)

i+1 ,j i-1 ,j i+1 ,j i-l,J

P'=(((T< .-<'. l .><<''. ..."<'. ..>+<Z., .-Z. , .)
i+l,j i-l,j i,j+l i,j-l i+l,j i-l,J

2 . _ .2
(Z. . . - Z. , ) )/«2A-q)-* (2AT)-).
i,j+l i,j-l

When applied -bo every node, this yields a System o-f

non-linear coupled équations which must be salved iteratively.
At each step o-f this procédure the coe-Fficients of Eqs. (17)
and (18) are frozen and updated a-fter new values o+ the

unknowns are obtained. Essentially two approaches have been
used -for this class o-f problems

i) Succ:essive-overrela;<ation

ii) The alternating-directian-implicit schemes
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In -the latter approach the elliptic problem is trans-formed

into a parabolic problem by the addition o-f s. transient term.
This can be thought of as an artificial time and each time
step may be associated ta an iteration of the SOR method. So
both methods are similar and the only criteria should be the

rate o-f convergence and ease of programming. The chai ce was
made on an intuitive basis and expérience gathered by the
présent authors on prior applications o+ both o-f thèse methods

but more importantly it is the method that lends itsel-f best
ta improvements. It is -felt that a scheme based on relaxation
will 'yield a more efficient overall scheme. Thèse can be
clsssified as:

i) Point SOR

i i) Line SOR

Poirrt^_SQR

The simplest scheme is the point SOR. The de-fined

correction approach was used where provisional values o+ the

variables are computed by sweeping the computational domain in

a lexicographic order. In the calculation o-f thèse
provisional values one uses corrected values and old values as
thèse appear in the computational molécule illustrated in Fig.

25.

J

J

A

t.

^

t.

1-1 i i+1

Fi g. 25 Point SOR

The relations are derived by expressing Eqs. (l7)-(18) in the
variables <> and Z at d,j) in discrète form.

+ - +
<x.'C<'; . - 2<-. .+ <' .3 + Y'C<>. - 2.4' .+ <!' 3

i+l,J ifj i-l,j i,j+l i,J i,j-l

+ +
- 2p ' [;<-._ ..-<'. . ...-<'.. . . + <». . . .3 « 0

i+l,j+l i-i,j+l i+l,j-l i-l,j-l

an d

a'CZ

(19)

2Z. .+Z. . .3+Y'CZ. . . -2Z. .+Z. . .3
i+l,J i,J i-l,j i,j+l i,j i,J-l

(20)
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+ +
-2p'CZ. . .,-Z. . ..-Z., .,+Z. , .,3=0

i+l,j+l i-l,j+l i+l,j-l i-l,j-l

Where <fi and Z are old values, <'"'• and Z'<" are carrected

values, and <' and Z are provisional values. An old value is

corrected by the provisional value and a rela>;ation -factor, (i),

as -fol l ows
+ -

<i = <ii + u(^-(r>)
(21)

Z »= Z + u(Z-Z)

Thus one obtains -for the provisional values

' E= <ff + CF /<i)
ij 'ij "' ij'

z. . = z. . + cz. ./u
ij iJ ij

where the corrections are de-fined as

+
CF = <> - <'
ij ij ij

(22)

(23)

cz. . = z. . - z
ij ij ij

Substituting Eq. 22 into Eqs. (19 and (20) one obtains

2(<x.'+Y'>
CF. .= RF. . + (X.-CF. , . - p' (CF. , . ,- CF. _ . ,)

u i,j i,j i-l,j ' i-l,j-l i+l,j-l

(24)
+ Y'CF.

i,j-l

2(<x.'+Y')
CZ. .= RZ . .+ <x.'CZ. , . - p'(CZ. . . ,- CZ. , . ,)

ûï i,j i,J i-l,J ' i-l,j-l i+l,j-l

(25)
+ Y'CZ

i,J-l

The residuals are

RF = oc' (<r< - 2^' . . + ^ . .)
i ,j i+1 ,j i ,j i-1 ,j

+ Y ' <<» - 2<&. + <r' )
i,J+1 i,J i,J-1

(26)

- 2(3' «'. , . , - <'. , . _ - <'. , . , + H'. , . . )
i+l,j+l 'i-l,j+l 'i+l,j-l 'i-l,j-l



an identical

replseing <' by
expression for
Z in Eq. 26.
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RZt.j is readily obtained by

node
klith an initial solution, the values o+ i' and Z

(i,j) are successively corrected using Eqs.

at each
(24) and

(25), sweeping the demain as indicated in Fig. 25.

Notes: In the actual program the values of AT| and AT in the
expressions in Eqs. (17)-(18) and (24)-(25) are set

identically to unity

The coe-f-ficients <x.', (3'

the variables <> and Z.
demain sweep or updated

the relaxation process.

and y' involve the values of
Thèse can be frosen during one
as they become available in

Blpck SOR

In
column
tridi agonal
Solving n
computation

block relaxation, al l the nodes in a given linear

are solved implicitly at once. This yields a
System o-f équations which is easily solved.

points implicitly requires about the same
e-f-fort as solving n times one point explicitly.

The advantage lies in the -fact that boundary condition.s which

appear as the end points of an implicit block of équations are
felt immédiately throughout the line. In an osplicit scheme
it requires about as many sweeps as there are points in the

line for the in-format-ion at the boundary to propagate within

the demain. This makes implicit -relaxation much more
efficient. The correction algorithm is now described for

sweeps implicit in either o+ the two coordinate directions.

SOR lmpli ci t by row

The configuration for a typical row relaxation implicit
along a T = const coordinate line is shown in Fig. 26.

Fi g. 26 Block rela;<ation
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The différence équations, Eqs. (17)-<18) are written for

the unknown points along the row taking into account, as -for

point rela>;ation, the status of the neighboring points, i.e.
corrected or old.

+
o(.'C<'. . . - 2<'. . + <'. . .3 + Y't:<r'. - 2^; + <r> 3

i+l,J iiJ i-l,j - i,j+l 'i»J i,j-l

(27)

+ +
- 2fî '[:<'._ ..-<'. . ...-*... . . + <'. . ..3=0

i+l,j+l i-l,j+l i+l,j-l i-l,j-l

De-fining a corrected value in terme of the old and

provisional values, Eqs. (21) and (22), one obtains the
correction équations for the tangential coardinates

tx.' __ 2(<x.'+Y'> __ <x.' __

— CF. . , - —-—— CF. . + — CF.
u i-l,j u i,j d) i+l,j

(28)

= -RF. . - Y'CF. . , + 2p'CCF. , ., - CF. . . ,3
i,j i,j-l ' i+l,j-l i-l,j-l

and for the a>;ial coordinatea

oc' __ 2(ot'+Y') __ o<.'

— cz. . . - ——— cz. . + — cz.
u i-l,j u ijj u i+l ,j

= -RZ. . - Y'CZ. . , + 2(3' <CZ. , . , - CZ. . . , )
i,j ' i,j-l ' i+l,j-l i-l,j-l

(29)

where the residuals RFi..^ and RZi.j are de-fined by Eq. 26.
Equations (28) and (29) di-f+er from their counterpart, Eqs.

(24) and (25), in point rela>;ation in that they are implicit
and each équation involves three unknowns. The •following
tridiagonal système are obtained:

B_

B
3. 3 • 3.
BU a

B ». •

A. ' B. 'C.

i. l. i

A - 'B . 'C

n-1 n-1 n-1

CF^

CF
3

•

CF.
i

u

CF
n-1

D_

D

D

D
'n-1

(30)
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sa.
B_

3.

A. ~B

l. l •

A . -B
n-1 -n-l n-1

cz.

cz_

cz

cz
-n-l

DD

DD
•

t»

DD.
]

•

DD
n-1

(31)

an d

A =

B =

Ot.' /ù)

-2(ix.

<x.' /u

Y ' ) /u (32)

D = -RF. . - Y'CF. . , - 2p'CCF._ . . -CF. , . ,3
i ' i,J ' - i,J-l ~" " i+l,J-l - i-l,j-l

DD. = -RZ. . - Y'CZ. . , -2p'CCZ. _ . , -CZ. , . ,3
i i,j i,j-l " i+l,j-l i-l,j-l

and the boundary conditions ares

CFi = CFr, « 0

CZi = CZr. «= 0

Solution o-f the Systems of Eqs. (30) and (31) yields
corrections for an entire row which are used to modi-fy the
corresponding column of <''s and Z's.



36

SQR Implici t by column

Figure 27 illustrâtes the con-figuration for a relaxation

sweep implicit along the T) = constant, coordinate direction.

^ ^ 0
^ ^ el)
^ • ^
^ ^ Q (t)

i-1 i i*l , ,

Fig. 27 Block relaxation

The di-f-ference équations are written for every node along a
given column and this yields,

<X.' <'/'. . - 2(T'. . + <'. . .) + Y'«'. . . - 2<>. . + <&. . .)

i+i,J i,J i-l,J i,J+l i,J i,J-l

- 2(3' <<r'. . ..-<'. . . . -C. . . . + *. . /> as 0
i+l,j+l ri-l,j+l ri+l,j-l ri-l,j-l

(33)

and

(X-'CZ 2Z + Z. . .3 + Y'CZ. . . - 2Z.- . + Z. .3
i+l,J i,J i-l,J i,J+l i,j i,j-l

(34)

-2p'CZ.. .,-Z., ..-Z.. .,+Z., .,3=0
i+l,j+l i-l,j+l i+l,j-l i~l,j-l

From which as.previously one obtains the correction équations

ï- CF.
u i,J-l

(oc'+Y') __ Y'

CF. .+ — CF. . . = -RF
u i,j u i,j+l i ,j

- oc'CF. , . + 2p'(CF. , ._ - CF. , . ,)
i-l,j ' i-lçj+1 i-l,j-l

(35)

and

Y
u

cz.
l

a.'CZ

»J -l

2

+

<<x.'+Y'

u

'

)
cz.

i »j
+

Y'

u

cz

cz.
i ,j+l

)

-RZ
ii J

-i-l,j -" --i-l,j+l --i-i,j-l
(36)

where the residuals are defined in Eq. 26.
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Tridiagonal Systems équivalent ta those o-f Eqs. (30) and

(31) for column relaKation are obtained and one proceeds in
similar fashion -for both types of procédures.

Pi rect i on of r e laKat, i_on_ _sweep

For a given rela^ation scheme the marching direction
affecte the rate o-f convergence. I+ the coefficients o-f the

derivatives in the coordinates r\ and T are o+ the same order
o-f magnitude, then the équation will exhibit no pre-ferred

marching direction and it is best ta use symmetric relaxation.
In général, the marching direction should be chosen to

coincide with the direction o-f propagation o-f physical
information. In this respect the boundary conditions and
their types should be taken into account.

If such directions are not readily apparent from either
the physics o-f the problem or when the weighting o-f the nodes

(i.e. the coefficients) changes in the domain then sweeps
should be carried oui in alternating directions. This wi11

speed up the convergence when the marching direction coincides
locally with that o-f in-formation propagation, and wi11 have a
neutral e-f-fect otherwise.

This is a two-step procédure. First with a column (y)
implicit scheme the entire -field is relaxed marching in the
positive ^-direction. Thls is •followed by a row (x) implicit
rela;;ation marching in the positive y—direction.
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The shape and the distribution o-f the
coardinates which result -from the solution o-f

System, Eq. <1>, dépend essentially on the
boundaries. Be-fore proceeding with the methods

curvilinear

the Laplace
shape o-f the
ta control

thèse, a discussion o-f the

Laplace System is présentée!.
qualitative behaviour of the

At a
coordinate
be either

have

boundary or in its vicinity, the coincident
curve or curves, say the T) - -f amily for example may
concave or convex. In the 4:irst instance, then we

l 0

besa that •Hy.y must be négative if the Laplacian is ta

veri-fied. Since r\y is the spacing of •H - lines, then this
condition is interprétée) as the concentration o-f this -family

of coordinates.

Fig. 28 Concentration o-f grid

concave boundary
lines in the vicinity of

So in this e^ample of a concave boundary, the spaclng of r| -
linés decreases as one moyes away from the boundary. The same
reasoning yields that -for a convex boundary, the spacing
increases, that is the grid linés tend to concentrate towards

the boundary.

Another illustration of
grid lines is the -following.

e+fect o-f the boundaries on the



Fig. 29 Concentration o-f grid lines towards domain boundaries

The nodes on two opposite boundaries are non-uni •formai l y
distributed. The need -for doing this is obvious -for problems

where gradients of properties are présent. Un+ortunately, the

resulting grid is not what is e>;pected.

This behaviour can also be deduced -from physical

analogies such as those presented in Section 3.1. And it is

seen that as such, the Laplace system possesses général l y good
charactéristics but some drawbacks such as described above.

Namely, that in areas o-f concave or conve>; boundaries, the

distribution o-f grid lines usually goes the opposite way that
one would like and that the grid spacing cannot be controlled
simply by moving boundary nodes.

So there is a need to devise in the présent grid
génération method, a mechanism to control the distribution of
grid linés. This is necessary to correct the above

situations, but more générally ta have a simple way ta

influence the grid. This can be achieved by adding a -forcing
term ta the Laplace équation, thus generalizing the elliptic
System to Poisson équations.

v^V = P* 2, 3 (37)

Using such -forcing terms. Ps. , one can achieve any desired

result. However it is not possible a priori to predict the
nature and the level o-f the e+fect of a given forcing
•function. To acquire such expertise requires a certain

expérience which comes with triai and error. One can however
arrive at certain guide line to enable one to predict trends

qualitatively.
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Line concentration ^

There are many ways that one may want ta control a grid.
Thèse naturally dépend on the application. The ane that comes
immediately to mind is the concentration o-f grid lines towards

a boundary. For purposes o'f présentation and ta introduce the
matter in a most natural way, this will be done in a rather
simple minded approach first. It wi 11 be -formalised

subsequently once the concept has been understood.

It is a two step procédure whereby the trans-formed domain
îi is mapped into an intermediate domain

T.* = -f <V )

In this mapping each variable is mapped separately according
to the desired concentration . As an example in two

dimensions, the physical domain is -first trans-formed by
Laplace' body-fitted System of equatipn.

(Z, 4') — > <^, i)

Then, this intermediate domain is trans-formed into the
computational demain by means oi the -following relations

Sf = y(Tp

and (38)

î = Ç(T)

The séquence

(Z, (P) —> (^, î) —> (T1, T)

is illustrated in Fig. 30.

This bas the advantage o-f clearly separating the e+fects o-f

concentration on each coordinate direction.
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Fi g. 30 Successive coordinate transformation

Chai ni ng thèse transformation yields -for the system o-f

Eq. l. the -following Poisson équation •for the ri-coordinate

v
_2 Ï1T1
y- n = — et

J Y
(39)

and -for the T-coordinate

2
V T

T-T

_2_J~î

(40)

where Ï, Ç and their derivatives represent the respective

concentration o-f the coordinate curves. When comparing Eqs.

(39) and (40) with the proposed Poisson system; Eq= (37)
setting î.1 = r\ and ïz = T, the -form of the forcing terms Ps.

and Ps become the right hand sides o+ Eqs (39) and <40).

Sa that it is possible to interpret this procédure as
équivalent ta adding a forcing •functlon ta the original

Laplace's équation. This can be thought as a -force applied to
each coordinate curve and the result is a displacement in the

appropriate direction. Having established that such compound
transformations can be reduced ta the addition o+ a forcing
term, one then has an in-finity o-f possibi l ities corresponding
ta différent choices o-f the function "f (r\) and the respective

functions -for the other directions.
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5. APPLICATION TO A CASCADE ROW

The approach présentée! in the previous chapter -for a
général grid problem wi11 now be applied ta a two-dimensional
blade-to-blade grid génération.

The -first step is to invert the System oi Eqs. (39) and
(40) to bring the Poisson System ta the -form of Eqs. (2) or

Eqs (10). The équations wi11 now be written explicitly using

V = T1

î2 = T

ft

and the -forcing terms

Ps. = G

Pa = R

The result is

.2_ ^ -2_ î
J Q 'rm. .J R TT.

ot.'/' + Y'/' - 2f3<' + (— - <x. ——) <r' + (^— - y-: — ) 4' = 0
r^r\ ~ TV ' T|T f <k r) î "& T

T| T| T T

(4l)

.2_ ^ _2_ •Ç
.J Q 'T)T|. _ .J R .. TT

OLZ + YZ - 2fâZ + (—— - a —) Z + (— - Y—> Z = 0
•r\r\ TT ' T|T ^ ^t •Hi ï T

ri T\ T T

(42)

The boundary conditions ares

<' -f, (ri, ,î (T) )

= „ _ ... along P
Z f^Cf|^(T}) --"'' • l

^ g <ï1 ,Î(T))

= _ ... along P_ (43)
Z g^Cq^,î(T)) ~—":' • 2

<' h, (<(/(rp ,T )'l 'v"'' ' 'l

along P.
h_(»|f('q),"c^) ~ 3



43

<fr q (^(TI) ,T )

along P
2 q^(Tp,t^ --- " ' 4

2 _2 .. 2 _2
o<.==(r-+Z Y=<'+Z

T T T] T|

p=(r'(r'+zz j=<(iZ-<iZ
•HT T) T T| T T •q

The -functions -f i ... etc. represent the shape o-f the

boundaries P± except that now the nodes are distributed along

thèse according to the concentration rel ationships ^ and "E, of

Eqs. (38).

It is noted that Eqs. (4l) and (42) dif+er -from their
Laplace counterpart, Eqs. (10) by the présence o+ two terms
which represent the e-ffect of coordinate line concentration.
It is al sa noted that each of thèse terms is made up of two

parts. The -forcing term (x.<'»i^/^r) due to line concentration,
and an additional général -forcing term Ja0./^^. This latter is

qui te arbitrary and can be set ta zéro i-f no other
manipulation o-f the grid is desired. It wi11 be kept in the
•fallowing developments -for général ity's sake.

The numerical solution is obtained by discretising the
computational domain into m and n equal intervals o-f length AT)

and AT. As be-fore, thèse are arbitrary and in the actual

computation, they are set identically equal ta unity.
Replacing the first and second derivatives in Eqs. (4l) and

(42) by second order accurate di-f-ferences o-f Eqs. < 16) yields

an équivalent algebraic System. This is for the tangential

coordinate:

(x.'C(& - 2(0 + ^ 3 + Y'C?i. . - 2^'. . + <'. . .3
i+l,J 'i,J i-l,J - i,j+l i,J i,J-l

' C '/' - <f> - <' + <i . . . 3 < 44 )
i+l,j+l i-l,j+l 'i+l,j-l i-l,j-l

+ Q'((il - 'Ï> ) + R't:«> - << 3=0
i+l ,j i-1,j i ,j+l i,j-l.

and for the a>;ial coordinatesi

ot.'CZ. . - 2Z . + Z. . .3 + Y'CZ. . . - 2Z. . + Z. . .3
i+l,j i,J i-l,J - i,j+l i,J i,J-l

(45)
-2|3'1:Z.. .,-Z. , ..-Z._ .,+Z. , .,3

i+l,j+l i-l,j+l i+.l,j-l i-l,j-l

+ Q'(Z. . - Z. . .) + R'CZ. . . - Z. ..3=0

i+l,j i-l,j i,j+l i,J-l
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where

(X. ' == ( «'
2 ._ _ .2 ..._ .2 . .2.

- <-, . .)~ + (Z. . . - Z. . . )-/( (2AT)~'*(AT1)-)
i,J+1 i,J-1 i ,J+1 i,J-1

2 ._ _ . 2 . . ._ .2 . .2.

Y' = <<<r'. . . - ff'. . .)- + (Z. . . - z. . .) /<(2A-n) * (AT) )
i+1 ,j i-1 ,j i+1 ,j i-1 ,j

p ' =<(?''.. . - <'. . . > «'. . . - <^'. . ->+ <z. , . - z. , . >
i+l,j i-l,j i,j+l i,j-l i+l,j i-l,J

2 ._ .2.
(Z. . . — Z. . . ) 5 / ( (2AT))-* (2Aï)-).

i,J+1 i,J-1 (46)

Thèse équations are similar ta the System o-f Eqs. (17)

and (18) except -for the présence o-f the -forcing terme (3 ' and

R'. They are also solved by iterative schemes such as point

or block SOR. The détails are identical to those described in
the previous chapter sa only the end résulte for column and
row SOR wil l given.

Q'

-2_ _ ^
<3-<3 . . 2 . "TITI

(ATp- (X.' —
*_ ^
TI T)

/ 2A-H

R'

-2_ _ l
J-R . . 2 ... 'TT
î-- t^~~i' r
T T

/ 2AT

SOR i mpli e i t by Colymn

The tridiagonal system (équivalent to the System of Eqs.
(28) and (29)) is for the tangential coordinatei

(OL'-Q')

(l)
CF

i-l,->

= -RF. . - Y'CF
i i J

2(ot'+Y') __ (oc'+0')
CF. . + ———— CF.

u i,j d) i+1,j

(47)

- 2p'CCF. , .. - CF. . . ,3 + R'CF.
i,j-l ' i+l,j-l i-l,j-l i,j-l

and for the a>;ial coordinate

(ot-'-Q-)

u
cz

2(<x.'+Y')

i-l,J

= -RZ . - Y'CZ
i i->

cz
(l) i ,J

(ot'+GT)

u
cz

i+l,J

(48)

- 2p'(CZ. , . , - CZ. , . ,) + R'CZ.
i,J-l ' i+l,j-l i-l,j-l i,.)-l
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where

RF = OL ' «'
i î-i

2(& + tf' )
i+1 ,J i ,J i-1 ,J

+ Y' «'. . _ - 2<'. .+(!». . ,)
i,J+1 i,J i,J-1

- 2p' (!T'. , ..-(('. . . . - ^'.. . . + <'. . . . >
i+l,j+l i-l,j+l i+l,j-l i-l,j-l

+ Q. ' (f i - <' ) + R ' < (f' - <' )
i+1 ,j i-1 ,j i ,j+l . i,j-l

RZ. .= <x.'(Z. . .- 2Z. .+ Z. . .) + Y'(Z. . .- 2Z. .+ Z
i,j i+l,J i,J i-1,j i,j+l i,J i,J-l

(49)

)

2P'<Z., . , -Z. , ,_ -Z._ . , -Z. , . ,)
i+l,j+l i-l,j+l i+l,j-l i-l,j-l

+ Q'(Z. . . - Z. . .) + R'<Z. . . - Z. . . )

i+l,j i-l,J i,J+l i»J-l

Thèse can then be cast in the usual tridiagonal -form.
For the circum-ferential coordinates

_••. ^>.

• a

A. ~ B. ~C.

i . i . i .

A 'B . 'C

n-1 n-1 n-1

CF

CF_
3

0

CF.
a

»

CF
n-1

D

D

'n-l

(50)

and for the a>;ial coordinateî

B_ C.2 -2

A_ B_ C_
• v»> N s»* a

A. ~B. 'C.

l • l . l •

A . 'B
n-1 ~n-l ~n-l

cz

cz_

cz

cz
~n-l

DD

DD
Il

a

DD.
l

•

DD
~n-l

(51)
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where

A. = (OL'-Q')/U
l

B. = -2 (oc'- Y')/u

i

C = ((X.'+Q')/U
i <52)

D. = -RF.
i i i->

Y ' CF
i,J-l

2p'CCF.
i+l,J-l

CF 3
i-l,J-l

DD. = -RZ
i i ,J

- Y'CZ. . , - 2p'CCZ
i,j-i -" --r+i,j-i

CZ . 3
ï-l,j-l

The système of Eqs. (50) and (51) are subject ta the
boundary conditions

CF. = CF = 0
l ~ n

cz cz = o
n

Again it is noted that by setting the forcing terms Q* and R*
ta zéro, the système o-f Eqs. (30), (31) and (32) is recovered.

Some practical results wi11 now be shown -for a typical

cascade. The grid control is illustrated in Fig. 31. The

coordinate curves are concentrated towards the leading and

trailing edges as well as towards the pressure and suction
sides o-f the pro-file. The spécifie distribution function used

is a cubic polynomial oi the form

y = (1-0 x3 + C x

where y is ¥ or ï (depending on whether the concentration is

in the a;-;ial or tangential direction and >; is r\ or T. This

type of function is particularly use+ul and the grid contrai
is realised through e singls parameter C. Fig. 32 shows this
•for several values o-f this parameter.
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Fig. 32* Concentration function

Fig. 32b Concentration pattern
The resulting grlds for various values o-f C in both

coordinate directions shown in Figs. 33-37.
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Fig. 33 65>;i7 grid with no concentration,C1=1, C2=l

Fi g. 34 65>',17 grid with
blade-to-blade

concentration in
Cl=1.5, C2=1.2

maximum concentration in the

direction and minimum
the streamwise direction,
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Fig. 35 65>;l7 grid with medium concentration in both
directions, Cl=1.5, C2=1.2

Fig. 36 65s.;17 grid with Cl=1.5, C2=1.4
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Fia. 37 65>;i7 grid with Cl=i.5, C2«sl.4
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6. THREE DIMENSIONAL APPLICATIONS

The procédure for generating body—fitted grids for

three-dimensional applications is similar to -fchat. described
for cascades. This elliptic System for the parameter space

is written e>;plicitly in cylindrical coordinates since this is

the most appropriate for turbpmachinery applications. This
gives -for îl = 'E,, ï;s = -q and î3 = T, .and >;1 = r, ;-;2 = <r' and

y 3 a: 2

l _ l
î +-Î + — î. . + î =P
rr r r 2 f'i' zs ,^

r - (53)

l l
"n ._ + - TL + ~: "n._. + Ï1__ = Q
'rr r r 2 '^'?'

r
£.£.

l l
T +-T-+—T +T =R
rr r r 2 <'<' 22

r

Inverting this System to bring it to the form o-f Eq. <5) is
laborious but, yields

(54)

ar+ar +ar +2ar + 2a r + 2a r _ - —
l îî 2 ri-q 3 TT 4 ÎT) 5 r)T 6 TÇ r

+ Pr + Qr + Rr = 0
î T| T

a ti>_ . + a_';i + a__^' + 2a_'/'_ + 2a_<' + 2a . 4''
l îï, 2 T)T) 3 TT 4 'E.TI 5 r)T 6 TTI

+ P?' + Q'/' + R'!'' = 0
î -n T

az +az +a2 +2as + 2s_2 + 2a . s
l îï. 2 rm 3 TT 4 î-n 5 T|T 6 TÎ

+ F-2 + Qz + Rs = 0
ï, -n T

where
2 l _2 _2

a. =ï- + —Ç^ +î'
l ,r 2 <' 2

r

2122
a_ = ri + — 'q + T)
"2 ''r 2 ''<' 'z
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a_ = T + — T + T
3 r 2 <' s

r
(55)

l
a. = î._Ti._ + —:Î,TI. + l -n
4 r 'r 2 <' '<' z 'z

r

a_ = T) T + —- T| T + •n T
5 'r r 2 '<' <•' 'z z

r

a.=TÎ +—TÎ +TÎ;
6 r r 2 <' <' s 2

r

The domain is bounded by the surfaces Pi, Pz, ... P^
which correspond ta coordinate surfaces -for which î,, T| and T
are constant as illustrated in Fig (38).

Fig. 38 Mapping o-f physical domain into logical space
in 3-D application
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The problem then reduces to solving Eqs. (53) subjeçt ta
Dirichlet boundary conditions which speci-fy the shape o-f

thèse boundaries in the following manner.

r

f

•F

•f
2

f3

<î

<î

(î

l

l

l

»'n»

»-n»

fiiïi

T)

T)

T)

along r

(56)

gi

g2

9-.

h
l

h.'2

h.
3

<^,T1,T>

<Î^,T1,T)

<î,

<î,

(î,

(î,

^,rt,T)

•n^ >

•n, T/ >

•HlT/ >

al

al

ong

on g

r.
2

r
6

Thèse functions represent the bounding surfaces Pi. ... r<;

which for a typical turbine are illustrated in Fig. 39.
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Fi g. 39 Illustration of boundary surfaces for a
turbomachinery app-lication

This is carried ont numerically by discretising the
computational domain into equal intervals in al l three
directions. Then using central différences, Eq. (54) is

replacée), by an équivalent set of algebraic équations, one -for
each coordinate.

Thus at each node (i,j,k) o+ the computational domain one
obtains three such équations. For illustration, the équation
•for the R coordinate is given in full.

a:<R. . . . - 2R. . . + R. . . . )

l i+1 ,j,k i ,j,k i-1,j ,k

+a_(R. . .. -2R. .. +R. . ..)
2 i,j+l,k i,j,k i,j-l,k

+ a_'-<R. . . . - 2R. . + R. . . . >

3 i,j,k+l i,J,k i,j,k-l

+2a:(R. .... -R. .... -R. .... +R. ....)

4 i+l,j+l,k i-l,j+l,k i+l,j-l,k i-l,j-l,k

+ 2a_(R. ... .-R. ... .-R. ... .+R. ... .)

5 i,j+l,k+l i,j-l,k+l i,j+l,k-l i,j-l,k-l

+ 2a:(R. . . . . - R. . . . ; - R. . . . . + R. . . . .)
6 i+-l,j,k+l i-l,j,k+J. i+l,j,k-l i-l,j.,k-l

(57)

+ F" <R. .. . . -R. . . .) + E!'(R. . . .- R. . . . >

R. . , i+l,j,k i-l,j,k • i,j+l,k i,j-l,k
i , j , k



R' (R. . . . - R. . . .)=0

i,j,k+1 i,j ,k-i

Similar équations for 4'', and Z can be obtained by the

appropriate substitutions. It is noted that we started this
procédure with the Poisson system and thèse include the
forcing terms which are denoted P', 0' and R'.

Using s. point SOR scheme, e>!pressed in correction -form yields
(for the R coordinate)

2 . .

(a: + a_ + a_)CR. , . = CR. . . . <a'-P') + CR. ... (a.l-GT) •
u l 2 3 i,J,k i-l.,j,k l i,j-l,k 2

+ CR. . . .(a^-R')
i,j,k-l 3

(58)

+ 2a'(CR. . . -CR. )
4 i-l,j-l,k i+l,j-l,k

+ 2a^(CR. ... -CR . )
5 i,j-l,k-l i,j-l,k+l

+ 2a:<CR. , . .-CR . . . ) + RR
6 i-l,j,k-l i+l,j,k-l i,J,k

where the residual is

RR. . . = a: (R. . . . - 2R. . . + R. . . . )

i,J,h l i+l,j,k i,J,k i-l,j,k

+ a^(R. . . - 2R. . . + R. . )
2 i,j+l,k i,J»t:: i,j-l,k

+ a_<R. . . . - 2R. . . + R. . . . )

3 i,j,k+l i,j,k i,j,k-l

+2a:(R. .... -R. . ...-R. .... +R. ..)

4 i+l,j+l,k i-l,j+l,k i+l,j-l,k i-l,j-l,k

+ 2a^(R. ... .-R. ... -R. . +R )

5 i,j+l,k+l i,j-l,k+l i,j+l,k-l i,j-l,k-l

+ 2a'<R . . - R. . . - R + R >
6 i+l,j,k+l i-i,j,k+l i+l,j,k-l i-l,j,k-l

l
+ P'<R- . . . - R. . .) + Q'(R. . . - R . . >

R. . , i+l,j,k i-l,j,k i,j+l,k i,j-l,k
i ^ j , k

+ Q'<R. . . . - R. . . >

i,j,k+1 i,J,k-l
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Using similar expressions -for the a;-;ial and circumferenti al

coordinates one can successively correct -fche coordinate values
using

R+
i , j , k

<r'+ .
i » J » ^

R. . . + CR
i , J , k i , j , k

<'. c<?'
(60)

i , J , h i , J , k

z+ . . = z. . . + cz
i , J , k i , j , k i , j , k

Thèse équations were coded and applied to several
three-dimensional shapes. The resulting grids are shown in

Figs 40 ta 45. The convergence of this scheme can be

accelerated by using a multigrid technique E 11.

Fig. 40 A>;onometric projection of grid -for Stanits ' elbow
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Fi g. 4l Grid pattern on blade-to-blade and hub surfaces

/ ' t ' .1 l f

M —t,—^—:—(.
,77 7 7 / / / /
°'/ / / / / / / / i
</ / ///////
'/ / .'' ////// .

Œï^^S%.^^w^
'.\\ \ \ \ l, '•. ^\\\\'.-.\'\ •>\ï-.^

•^^^^<'.\\\;../^\\\SlA;>;:^5i

Fig. 42 Grià pattem -for 3D blade-to-blade channel of a

Francis runner
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Fi r. 43 Grià surfaces o-f T-constan-b coordinate

Fia. 44 Grid surfaces of Ç-constant coordinate
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Fi g. 45 Grid surfaces of n-constant coordinate

si^^Sx
^\w\^^s\

:'»ç--»;'^3<i<.~'^'
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7. COMPUTER AIDED SRI D DESIGN

7.1 CONTEXT

In this chapter the
placed in the context
(CIN) of turbomachinery.

design comprises three

rôle o-f. grid génération wi 11 be
of computer integra-ted manufacturing

The avérai l process o-f turbine
steps which are the hydraulic or

aerodynamic design, the mechanical design and finally the

manufacturing process. In the présent work, the emphasis is
on the hydraulic or aerodynamic design. This is further
subdivided into -four parts;

*

i) géométrie modelling

ii) computational modelling

iii) simulation or computational f lui d dynamics

and iv) -flow (solLftion) Visual ization and analysis

CIM

^
HYDRAUUC

DESIGN
MECHANICAL

DESIGN

GEOMETRIC
MODELLING

(design)

COMPUTATIONAL
MODELLINQ

(grid)
SIMULATION

MANUFACTURING

SOLUTION
VISUAU2ATION
AND ANALYSIS

Fi g. 46 Conte>;t o+ Computer aided grid design

The subject o+ grid génération -falls in the second part
that is computat.ional modelling. It is a somewhat broader

topic than simply the grid génération. It includes the
aspects o-f management, manipulation and display of (géométrie)
information. This reflects the rôle played by the computer
and ils peripheral equipment. It is a triviality to say that
the méthode described in the previous chapters could not be

realized without modem computing facilities. And by this, we
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do not merely mean the numerical solution of the grid

équations, we mean the handling o-f the enormous quantifies of

data required and produced by this type o-f application. This
data is géométrie and is an ordered collec'tion of points which

represent the surfaces and volumes of the computational
domains in two or three dimensional space.

It is f air to say that without computer assistance at a

sophist.icated level none but the simplest e>; amples could be

carried ont. For grid génération techniques ta become a truly
-functional tool in CFD it must be embedded into interactive

software packages which manage the data flow from the

component geometry to the simulation codes. Such packages
should fulfill the following functions;

l. The création and the modi-fication of a model ; the

désigner can "edit" the model by means of commands

which operate on basic entities such as a point, a
profile, or one o-f the parts making up the turbine
(the blade, the hub or the shroud).

2. The refinement of the model by the distribution o+
points over each profile defining the blade, and then
by the Interpolation of new intermediate profiles
between the hub and the shroud.

3. The construction o-f surfaces delimiting the
blade-to-blade channel boundaries (the calculation

demain)•

4. The calculât! on o-f a body-fitted coordinate System,
inside the channel, by the solution of the sys-fcem of

differential équations described in Chapter 3.

Figure 47 illustrâtes how the in-formation -flows among thèse

steps.

7.2 MODELLING

The objective o-f the modelling process is to create a

géométrie représentation o-f the various objects under

considération so that they can be manipulated and displayed.

In the présent application thèse are the turbine and the
computational domain.

A turbine, a compresser or a pump is composée! o-f three
main éléments: the blades, the hub and the shroud. Since the

blades are all identical, the définition of only one is
sufficient for the géométrie description of a turbine.

The graphic entity corresponding to the body of the
machine is, of course, a volume. But, -for the
hydraulic/aerodynamie design, the interior surfaces (that are
in contact with fluid) are o-f more interest than the body of
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the turbine itself. That is why, rather than considering the

three éléments of the turbines as solids or volumes, we

characterize them by the surfaces that they are bounded by.
The blade, défi ned be-tween the hub and the shroud can

therefore be represented by a surface folded upon itself in a

three-dimensionnal space, while the hub and the shroud are

described by surfaces of révolution.

Profiles / Blade,
hub and shroud

New profiles,
hub and shroud

Btade-to-btade

channet
boundaries

Body-fiUed
curvilinear

grid
Fi g. 47 Géométrie and computational modelling

The blade surface is in tum characterised by two sets of

l i nés; the -first, trav-ersing •from the hub to the shroud, and
the second set, going around the blade. Thèse two familles of

curves •fonn a grid where the intersection of one line o-f a
family with that o+ another, résulte in a node. It is thèse

points that serve as a base for defining the blade by means o-f
interpolation, with the use of parametrised cubic splinss.

The sur-faces o-f révolution characterizing the hub and the

shroud are défined by a curve in a given plane and an a>;is of

révolution. This curve is défined by fitting a 2D
parametrized cubic spline through the coordinates o-f known

points.

not

The second type

physical in
of object,

nature

the computational

but purely
domain, is

géométrie.
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For the présent application, it is a closed volume called a
"blede—to-blade channel". and the set of sur-faces that bound

this channel wi11 be referred in this work as the "shell".
This shel l consists o-f the pressure si de and the suction si de

ai. two consécutive blades, -four ruled surfaces, the inlet and
outlet planes,
an d 48.

the hub, and the shroud, as shown in Figs. 39

ruled surfaces

shroud

outtet
btade

inlet

ruled surfaces

Fig. 48 Définition o-f computational domain or "shell"

Finally, the last object is the grid itself, which is a
collection of ordered points.

The entire modellina process can be carried ont in one o-f

three di-f+erent coordinate systemss cartesian (>;,y,s),
cylindricsl (r,^',s) and toroi.dal <R,e,<'). A certain
similarity in their use is established, i-f it is r-ecognised

that for al l Systems, the three coordinates indicate

respectively the hub to shroud, blade to blade, and inlet to
outlet directions.

Taking advantage of this convention al l opérations are

performed in a général manner, on coordinates one, two and

three, that is in the computational space. Internai to the
modules the actual physical system in not considérée! • Rather„

it is the user who interpréta the résulte appropriately,
according ta the coordinate System that the choses ta use
(Fig. 49);; a displacement in the direction o-f one o-f the

coordinate can hence be cpnsidered as a rotation or as a

translation (depending on whether the coordinate is an angle

or not). The application o-f certain -functions may at times

seem di sconcerting in certain referenti.al s, but do however
appear natural enough once their mechanisms are understood.
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DESIGNER

Cartesian

(x. y. z)

(0
UJ

Q
0

llŒ
a.

r"

Cylindrical
(r. e. z)

Toroïdal
(R. e, <t>)

•-1

t

(Xi, X2. Xa)

xi: hub-to-shroud

xa: btade-to-blade
Xa: stream wise

METRIC

3D VISUAU2ATION

Fi g. 49 Coordinate Systems

7.3 MODEL BUILDING

The building o-f a model -for the blade, the hub and shroud

is carried out using a graphics editor. The building blocks
are basic géométrie entities such as points, lines, profiles

etc and a number o+ commands ta perform certain opérations.

The graphic éditer is a menu driven interactive program.

The -first level o-f .menus permits the choice of the basic

grsphic entity (point, curve, or surface) to work with, and
other général -functions such as the display window management.
The submenus, at the second level, contain the functions that

are related to a particular entity. Thèse functions may vary,

dépend!ng on the current modelled élément and the projection

used. If, at any level, parameters or options have ta be
chosen, thèse wi11 be requested as a -final level of input,

while of-fering s. de-fault value. Al l user's input are entered

either directly from the keyboard, or with the use of the
cursor (for selecting a particular menu comman.d or option, as

wel l as speci-fying a position on the screen). Mpreover, as a
necessary characteristic in an interactive program, al l

responses •from the user are validated and varions error
messages are provided. Figure 50 shows a typical screen

display where the main menu and a submenu are présent on the

screen, along with a profile being processed.
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PROJET COSTOR
NODELISOTIOM •COHPUTftTIONftL"

|1?/B1/8(
112:35:38

EXEC IQUI IftlDE INON IBEF IOPT IftBD IHULT IftXE IXY |PflN IZOON IPMNCNE IIMP IFICH ICOOM

NIUEftU =9 (l) ?

iHOPE Ï' ENTREE = CLftVIEIt

Fi g. 50 Typical screen display of the graphic éditer

The available -functions -fall into three catégories;

l. Those per-formed on a surface:

recalling either the entire model's geometry, or only

part o+ it from a file (down ta a surface levels the
hub, the shroud, the entire blade, or only part of it).
saving the entire model's geometry in a file.

reordering of profiles, that is modi-fying the blade
surface. This can be done automaticall y by "sorting"

the pro-files using the first coordinate of their first
point, and hence, ordering them according to their
relative "height".

2. Those performed on a curve (profile, hub or shroud)s

translation.

rotation (around the origin or a speci+ic point).

scaling (centered on the origin or a speci-fic point).

addition of profiles by duplicating them.

deletion of profiles.
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Those per-formed on a point (with the aid of the graphic
cursor):

création and insertion between other levels of a new
pro-file; points are entered on the screen on a
constant coordinate sur-face.

modification of either profiles or curves representing

the hub and the shroud, by adding, deleting,
displacing, duplicating, permuting, or renumbering the
points that de-fine them.

With the help o-f this modeler, one can create various
type of turbomachines as shown in Fig. 51.

7.4 DOMAIN CONSTRUCTigN

The computational domain, or shell, has been défined

previously. It uses the geometry data o-f the blade, hub and
shroud plus additional information concerning the inlet and
outlet as well as the periodic boundaries.

It is constructed in two stepss

l. the limite of the ruled surfaces are defined by e>;tending
lines -from the leading (trailing) edge o-f profiles on the

hub and shrouds. Thèse linés lie on the sur-face D+ the

hub and the shroud, going -from the blade ta the inlet
(e;-; i t) planes. The angle and length of thèse linés are

given by the user. Points are then distributed along the
linés . according to a concentration parameter, also given
by the user.

2. by entering the number o-f blades of ±he turbine, the user
indirectly provides the blade-to-blade channel distance

'i.e. the width of the shell. The concentration and the
number of points in the blade-to-blade direction are given

by the user.
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Fig. 51a Wire frame représentation o-f modelled turbines
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Fi g. Slb Soiià représentation of modellecf turbines
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Final l y, using the shape o-f the shell as the si>; sur-faces

r"i , rlz, ... P<s> described in Fig. 38 the grid équations are
solved using the techniques described in Chapter 6 This yields
a mapping of the computational space to the physical domain o-f
the blade-to-blade channel as illustrated in Fig. 52.

e,

4

/

/

/

/

Aft«F

Fi g. 52 Automatic mesh ganeration

The results of such computations can

graphically and manipulated (rotations, zoom,

several coordinate sur-faces at a time using

typical output is shown in Fi g. 53.

be displayed
etc) one or

a module whose
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Fi g. 53 Visualization module

7.5_DIAy3BUE AND DISPLAY

The grid génération methodology described in this work
has been -formulated riumerically and cast as a set of

techniques imbedded in software programs. Thèse are
inter-faced with the user by interactive processors which

handle, through a séries o-f dynamic menus, the modelling of

the turbine, the computational domain and the grid génération.

The display and modification of three-dimensiannal
objects, on a graphic terminal having only two dimensions,

undoubtedly entails some limitatians. The visualisation o-f
3-D objects by means of various projections is thus necessary

and thèse succeed in rendering rather completely the true
geometry characteristics of thèse objects. The inverse

communication, that is -From the désigner to the program, is
mare dif-ficult, because the dialogue is restricted by physical

devices such as the -fiât screen or the cursor. Thèse do not
allow for the passage of al l the geometrical data that one
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would désire: only two dimensions can be input to the program

at one? time, due to the absence o-f true depth at the screen.

Thus, to develop an acceptable method of communication,
one must judiciously combine the use o-f the avàilable devices,

with that of a particular projection.

One can easily project the blade pro-files on three
di-fferent surfaces, each corresponding ta a constant: value o-f
each coordinate- (orthogonal projection). This type of

projection, because of the speed and ease with which it can be

implemented, was reteined. This stems from the -fact that one
o-f the coordinates is simply dropped while displaying the
other two. The création and modification o-f profiles is

therefore easily made possible, since the screen's surface
CDrresponds to the developed surface containing two of the
profile's dimensions.

A typical screen for the géométrie modelling is shown in
Fig. 50 which shows how Certain pertinent information is
always displayed within the screen's graphic frame:

profile number
al-

coordinate dyad indicating the current projection

•file name

The options available during display mode ares

choice o-f a projection ta display a profile.

.choice o-f the displayed élément (pointer), as well as
o-f the interval of- profiles ta display along with the
chosen élément, and the présence or not o-f the hub and

the shraud.
modification o-f the display window

scaling (zoom), specifying two new
trame), or allowing "fche program

calculate one, slightly larger
élément.

by translations,

corner points (new
to automaticall y

than the current

display o-f al l profiles at one time in a
three-dimensional cartesian re-ferential , -for a better
grasp o-f the turbomachine's actual shape (with

possibilities of rotating the model with respect to
either one of the three cartesian axes). This is done

simply by trans-forming, if necessary, the current

referential in a cartesian one.

choice of
i denti-fier)

the symbol size (i.e. the point's



possibility of re+reshina the display when too much
absolete data appears on the screen, or simply to
visualise the result o-f a modi-fication to an élément.

There are two levels of display. The -first uses l i ne

drawing -for qui ck display of models and grids. A second mode
provides a more sophisticated image with hidden line removal,
col or, shading transparency. This is achieved using a

translater to the MOVIE.BYU software:

The avérai l display structure is shown in Fi g. 54.

MODELUNQ SYSTEM

Model

Comput
demain D J

€"-()

f...

Translater

ff

5
z:

MOVIEBYU
DISPLAY SYSTEM

^

/

Basic vtsualliaUon

T
More elaborate visualtzaUon
• Hiddenllnw
- Cotor, htghltghta
- Tranapamncy

Fi g. 54 Data structure for graphic display
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