
Titre:
Title:

Investigating User Interface Design Generation Techniques for
Designer Inspiration

Auteur:
Author:

Mohammad Amin Mozaffari

Date: 2022

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Mozaffari, M. A. (2022). Investigating User Interface Design Generation
Techniques for Designer Inspiration [Mémoire de maîtrise, Polytechnique
Montréal]. PolyPublie. https://publications.polymtl.ca/10221/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/10221/

Directeurs de
recherche:

Advisors:
Jinghui Cheng

Programme:
Program:

Génie informatique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/10221/
https://publications.polymtl.ca/10221/

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Investigating User Interface Design Generation Techniques for Designer
Inspiration

MOHAMMAD AMIN MOZAFFARI
Département de génie informatique et génie logiciel

Mémoire présenté en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées
Génie informatique

Février 2022

© Mohammad Amin Mozaffari, 2022.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Ce mémoire intitulé :

Investigating User Interface Design Generation Techniques for Designer
Inspiration

présenté par Mohammad Amin MOZAFFARI
en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

Maxime LAMOTHE, président
Jinghui CHENG, membre et directeur de recherche
Guillaume-Alexandre BILODEAU, membre

iii

DEDICATION

To Shaghayegh and My dear family
I am always proud to have you beside me

. . .

iv

ACKNOWLEDGEMENTS

I owe a great many thanks to a great many people who helped me during my journey in
Polytechnique Montreal.
First of all, I would like to express my deep sense of gratitude to my research director Prof.
Jinghui Cheng. Definitely, this study would not be completed without his support and
advice. Besides his kindness, he was always available to help in my study and answer all of
my questions. I am deeply thankful for him to have me in HCDLab.
Second of all, I would like to say, I am very fortunate to have such a family beside me. They
always have my back in any stressful situation which I face. I will never forget your supports,
especially in these two years.
Third of all, I would like to give my warmest thanks to the HCDLab members. I was not
lucky to talk and gather with them much often, because of the Covid-19, but I wish our
paths will cross again soon.
At the end, I express my gratitude to the jury members who reviewed this thesis.

v

RÉSUMÉ

L’inspiration est l’une des étapes essentielles du processus de conception. La créativité et
l’originalité du travail sont des facteurs importants qui dépendent fortement de l’étape de
l’inspiration. Les designers recherchent généralement des exemples existants avant de com-
mencer la conception pour avoir des idées sur les travaux récents et s’en inspirer respec-
tivement. Il existe un nombre limité d’outils ou de sites web pour répondre aux besoins
d’inspiration des designers d’interfaces utilisateur. De plus, ces outils peuvent causer cer-
tains problèmes de conception comme la dérive ou la fixation de la conception.

Nous proposons une approche basée sur StyleGAN pour résoudre ces problèmes. Le modèle
proposé est un Réseau Adversarial Génératif basé sur le style qui est capable de générer
un design d’interface utilisateur aléatoire ou un design d’interface utilisateur pertinent pour
l’image d’entrée. Nos résultats montrent que le modèle génère non seulement des designs per-
tinents mais aussi des images diverses. Comme nous le savons, ces deux facteurs (pertinence
et diversité) sont très importants pour l’inspiration. Dans notre étude auprès de praticiens
UI/UX évaluant la facilité d’utilisation et la performance de notre modèle, nos participants
ont déclaré que ce modèle pourrait être une alternative viable aux outils d’inspiration actuels
ou aux sites web pour les designers d’interface utilisateur.

Dans la deuxième étape de notre étude, nous avons étendu notre travail en détectant les
composants des images générées. La motivation de cette partie de l’étude est d’améliorer la
qualité des images générées et de faciliter les méthodes d’édition et d’automatisation de la
conception de l’interface utilisateur. Tout d’abord, nous avons entraîné Yolov5 en utilisant
le jeu de données VINS et nos résultats montrent que le modèle reconnaît la plupart des
composants des images complètes et des images générées. Cependant, certains composants
des images générées, comme l’image et l’icône, n’ont pas pu être détectés avec une précision
acceptable. Ensuite, en utilisant la technique d’apprentissage par transfert, nous avons affiné
le modèle préliminaire pour résoudre le problème de la détection des composants dans les
images générées. Les résultats montrent que nous avons atteint une performance satisfaisante
pour détecter les éléments de l’interface utilisateur dans les images générées.

vi

ABSTRACT

Inspiration is one of the substantial steps in the user interaction design process. The creativity
and originality of the design work are important factors that are highly dependent on the
inspiration step. Designers usually look for existing examples before starting the design to
be familiar with and get ideas from the recent works. However, there are a limited number
of tools exist to fulfill the user interface designers’ needs in inspiration. In addition, existing
design example retrieval techniques may cause design problems such as design drift or design
fixation.

We propose a StyleGAN-based approach to address these issues. The proposed technique is a
style-based Generative Adversarial Network that is able to generate a random user interface
design or a user interface design relevant to the input image. Our results show that the
technique not only generates the relevant designs but also diverse images. In our user study
with UI/UX practitioners evaluating the usability and the performance of our technique, our
participants stated that this technique could be a feasible alternative for the current design
example retrieval techniques for user interface designers.

As the second step of our study, we extended our work by detecting the components of the
generated user interface images. The motivation of this part of the study is to enhance
the quality of the generated images and to facilitate the ways of UI editing and design
automation. First, we trained Yolov5 using the VINS dataset and our results demonstrate
that the model recognizes most of the components of both full-fledged images and generated
images. However, some of the components in generated images like Image and Icon, could
not be detected with acceptable accuracy. Second, by using the transfer learning technique,
we fine-tuned the preliminary model to address the issue of detecting components in the
generated images. The results illustrated that we achieved a satisfactory performance to
detect the UI elements in the generated images.

vii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vi

TABLE OF CONTENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF SYMBOLS AND ACRONYMS . xiii

LIST OF APPENDICES . xiv

CHAPTER 1 INTRODUCTION 1
1.1 Problem Statement and Overall Objective 1
1.2 Research Questions . 2
1.3 Thesis Plan . 3

CHAPTER 2 LITERATURE REVIEW 4
2.1 Design Inspiration . 4
2.2 Managing UI Design Artifacts . 5
2.3 StyleGAN and its Application on UI Design 6
2.4 UI Components Detection . 7

CHAPTER 3 STYLEGAN-BASED APPROACH FOR DESIGN EXAM-
PLE GENERATION 9

3.1 Architecture of our StyleGAN-based approach 9
3.1.1 Component 1: Latent Code Search 9
3.1.2 Component 2: New Examples Synthesizer 10
3.1.3 Component 3: Representative Examples Selection 12

3.2 StyleGAN Training . 12

viii

3.2.1 Dataset . 12
3.2.2 Training process . 13

3.3 Quantitative Evaluation . 14
3.3.1 Data sampling . 15
3.3.2 Quantitative metrics . 15
3.3.3 Experimental design . 16
3.3.4 Results . 18

3.4 User Evaluation . 22
3.4.1 Methods . 22
3.4.2 Results . 25

3.5 Discussion . 27
3.5.1 Style-based generation provides design inspiration in different granu-

larity levels . 28
3.5.2 The visual quality of the generated image is an important factor for

inspiration . 28
3.5.3 A diverse and relevant training dataset would help generate more in-

sightful examples . 29
3.5.4 Combine generative models with other techniques 29

CHAPTER 4 COMPONENT DETECTION 31
4.1 Methodology . 32

4.1.1 Dataset . 32
4.1.2 Network architecture . 33
4.1.3 Metrics . 36

4.2 Results . 39
4.2.1 Training Yolov5 using the VINS dataset 39
4.2.2 Fine-tuning of the preliminary network using generated images 41
4.2.3 Testing the preliminary network on generated images 44

4.3 Discussion . 45

CHAPTER 5 CONCLUSION 47
5.1 Summary . 47
5.2 Limitations . 47
5.3 Future Directions . 48

REFERENCES . 49

ix

APPENDICES . 55

x

LIST OF TABLES

Table 3.1 Mean difference (row label minus column label) of the similarity
metric among the six conditions, by input complexity. 21

Table 3.2 Mean difference (row label minus column label) of the diversity met-
ric among the six conditions, by input complexity. 21

Table 3.3 Characteristics of participants in the user study 25
Table 4.1 The VINS dataset comprises UI images from six different sources . 32

xi

LIST OF FIGURES

Figure 3.1 Overview of the StyleGAN-based approach. The network takes a
preliminary design image as input then transforms it into a latent
code. The style of the original input is then merged with a set of
target latent codes to synthesize new examples. Image encoding and
clustering methods are then used to find the representative exam-
ples as output. While not illustrated in this diagram, the output of
the synthesized examples can be additionally used to search real UI
screenshots for inspiration. 10

Figure 3.2 The detailed architecture for merging styles of two latent codes using
StyleGAN. In this case, the target latent code is used for three style
input locations and the source latent code is used for the rest of the
style input locations. 11

Figure 3.3 Samples of UI screenshots removed because they only have one or
two unique component labels. Most of the screenshots with less than
three unique components contain splash screen, video screenshot,
full-screen image, and web view in their design, adding unnecessary
visual complexity. 13

Figure 3.4 The distribution of the number of unique component labels in the
UI screenshots in our dataset. 14

Figure 3.5 Sample of UI screenshots used in the evaluation study, ordered by
the number of unique component types. 16

Figure 3.6 The six conditions used in the experiment. The condition outputs
were then used to calculate the metrics and in user studies. 17

Figure 3.7 Samples of five outputs from each experimental condition for the
input image. Samples from Condition 3 are matched with those
from Condition 1, and samples from Condition 4 are matched with
those from Condition 2. 19

Figure 3.8 Distribution of the similarity and diversity metrics on the experi-
mental conditions. 19

Figure 3.9 Distribution of the similarity and diversity metrics on the experi-
mental conditions, analyzed by input complexity. 20

Figure 3.10 Directly generated examples involves noises but can provide useful
insights and suggestions. 22

xii

Figure 3.11 Searched examples based on generated images are cleaner and can
provide useful insights and suggestions. 23

Figure 3.12 Search results sometimes do not reflect the intention of the style-
based generation results. 24

Figure 4.1 There are several frequent components in UIs that our StyleGAN-
based approach is able generate, such as: Text, Drawer, Model, But-
ton, Icon and Edit Text . 31

Figure 4.2 The architecture of Yolov5 . 34
Figure 4.3 The network architecture of the convolutional layer 35
Figure 4.4 The network architecture of the C3 layer 35
Figure 4.5 The network architecture of the SPPF layer 36
Figure 4.6 Intersection over Union. The red bounded box represents the ground

truth and the green bounded box represents the detected object. . 37
Figure 4.7 Precision and recall during training Yolov5 with the VINS dataset . 39
Figure 4.8 Precision x Recall curve on the trained Yolov5 with the VINS dataset 40
Figure 4.9 Confusion Matrix of the trained Yolov5 with the VINS dataset . . 40
Figure 4.10 Prediction samples of the trained Yolov5 using the VINS dataset . 41
Figure 4.11 Precision and recall during fine-tuning of the preliminary network

using the generated images . 42
Figure 4.12 Precision x Recall curve of the fine-tuned Yolov5 using the generated

images . 43
Figure 4.13 Confusion Matrix of the fine-tuned Yolov5 using the generated images 43
Figure 4.14 Prediction samples of the fine-tuned Yolov5 44
Figure 4.15 Precision x Recall curve of testing the preliminary network (the

trained Yolov5 using the VINS dataset) on the generated images . 44
Figure 4.16 Confusion Matrix of testing the preliminary network (the trained

Yolov5 using the VINS dataset) on the generated images 45

xiii

LIST OF SYMBOLS AND ACRONYMS

UI User Interface
UX User Experience
GAN Generative adversarial network
IoU Intersection over union
FID Fréchet inception distance
IS Inception Score

xiv

LIST OF APPENDICES

Appendix A Samples of the user evaluation slides 55
Appendix B User study questions . 64

1

CHAPTER 1 INTRODUCTION

1.1 Problem Statement and Overall Objective

User interface (UI) design plays an important role to convey the designers’ and the developers’
goals to the users. UIs are one of the inseparable parts of developing mobile or desktop
applications and websites. As such, UI designers and developers often spend a significant
amount of time creating attractive user interface designs for the users.

Searching for user interface designs is a daily task for every UI designer. Studies show
that almost every designer looks for examples before starting the design process [1]. They
search for examples for a couple of reasons such as getting inspired to design their own
product and being updated about the recent designs on different platforms. UI designers
may face some challenges during the search for examples before starting their design process;
two prominent challenges that the designers experience are design fixation and design drift.
Design fixation [2] is defined as being biased to the examples that the designers have been
exposed to; this could diminish the originality and novelty of the final work. Design drift [3]
is defined as, by exposing many examples before starting the design work, designers may
shift the work from the original focus and forget about the initial goals and guidelines of
their work [4]. Hence, while inspiration is one of the essential and common steps to be
creative while keeping the originality of the design, it is not trivial work and requires careful
attention [5]. To aggravate the problem, there is limited tool support to facilitate the design
inspiration step while addressing design fixation and design drift.

In this study, we aim to take a step forward to explore techniques that can address the above-
mentioned problems in order to help designers in their design inspiration process. In order
to achieve these goals, we first propose a StyleGAN-based approach, a style-based generative
adversarial network, trained on a large-scale dataset of UI images to generate relevant and
diverse design examples. Traditional generative adversarial networks(GAN) are generative
models using deep learning methods [6] which comprise two sub-networks called the generator
and the discriminator. During the training phase of GANs, the generator tries to fool the
discriminator, which means the goal of the model is to try to generate a fake output and,
then the discriminator classifies it as a real one. StyleGan is driven from traditional GANs
by alternating a new generator architecture while keeping the discriminator [7]. Besides
traditional GANs capabilities, Style-Based Generative Adversarial Network (StyleGAN) is
not only able to generate high-quality images, but also it has control over the style of the
input image and can feed the style at different levels of the generation of the output. By using

2

the StyleGAN-based approach, we are able to generate new design examples with regards
to the existing preliminary designs that the designers work on; in other words, the model
can take one preliminary design from the designer, as well as other input UI images that
the designer wants to have their styles in the results, then the model can apply the styles at
different resolution levels. The outcome is a set of images related to the preliminary design,
while having the desired styles on them.

After developing and evaluating our StyleGAN-based approach with UI design practitioners,
we found that if we are able to enhance the quality of the generated images, the results would
be much more useful for designers. In this work, we aim to detect the UI components from
the generated images, with the goal of enhancing their qualities and laying the foundation for
them to be more useful in the designers’ works. Because in this way, we can modify or justify
the noisy or inappropriate components to make the whole design visually better. Enhancing
the quality of the images is not the only application of UIs components detection; there
are several other applications such as design automation [8], UI testing [9], code generation
[10, 11], and UI editing [12]. After searching for a proper object detector to address our
problem in detecting the UIs components, we decided to use Yolov5. Yolos’ object detectors
are well-known because of their accuracy and speed in detection.

1.2 Research Questions

When investigating and evaluating our work, we pose the following research questions:

RQ1: How do StyleGAN-based approaches compare with random examples and similarity-
based examples in quantitative metrics indicating the ability of inspiration support?

RQ2: How do UI/UX practitioners perceive the output of StyleGAN-based approaches in
comparison to random examples and similarity-based examples?

RQ3: How does Yolov5, trained with full-fledged UIs, perform on detecting the UI compo-
nents on generated images?

RQ4: How does fine-tuned Yolov5 with generated images perform on detecting the UI
components on generated images?

To answer RQ1 and RQ2, we developed the StyleGAN-based approach which extends the
StyleGAN architecture trained on a large-scale dataset including 58,040 screenshots of An-
droid applications. For evaluating our StyleGAN-based approach, we first proposed two
quantitative metrics for evaluating the ability of inspiration support of a set of UI images:
(1) similarity of the images to the input image and (2) diversity of the set of UI images. We

3

found that the StyleGAN-based approach methods provide much more diverse design exam-
ples than a similarity-based method, and they provide more similar examples to the input
image than a random example selection approach, indicating a balance between diversity and
relevance. Through a user study with five professional UI/UX practitioners, we found that
the participants perceived the StyleGAN-based approach methods as a viable way to gain
inspiration to modify a UI design. We believe that the ideas presented in the StyleGAN-
based approach will encourage and influence more research efforts towards the pragmatic use
of generative models in the creative, yet constraint, the task of user interface design.

To answer RQ3 and RQ4, we trained the Yolov5 model using the VINS dataset to detect
the elements of the UI. The VINS consists of 4800 images of UI screens. In the VINS
dataset, there are 257 images of wireframes and the rest are full-fledged UI screenshots on
different platforms: Android, iPhone, and websites. We found that the trained Yolov5 can
detect almost all of the components of existing UIs with high mean average precision (mAP).
This model also was able to detect some of the components of the generated images with
satisfactory accuracy compared to literature, except for a few component types such as Image
and Icon. So, we fine-tuned the model to improve the performance of detecting the elements
of the generated images. To this end, we manually annotated 200 generated UIs to fine-tune
the preliminary model for transfer learning. Our results show that not only can the final
model detect the UI elements of existing full-fledged UI images and wireframes but also the
elements of the generated images with an acceptable mAP.

1.3 Thesis Plan

The structure of the thesis is as follows. In Chapter 2, we review the literature related to our
study; it comprises four different parts, regarding each step of the study. In Chapter 3, we
describe the StyleGAN-based approach and the evaluation studies; particularly, we propose
the model’s architecture, describe the training phase, and explain the quantitative evaluation
and the user evaluation. In Chapter 4, we explain the UI component detection model and
compare the results of different conditions of training and testing. In Chapter 5, we bring a
summary of our work, discuss its limitations, and layout future directions.

4

CHAPTER 2 LITERATURE REVIEW

Our work is most closely related to previous studies that focused on (1) design inspiration,
(2) techniques for managing design artifacts, (3) generative machine learning models and
StyleGAN, and (4) UI components detection in particular. We briefly review each group of
literature in the following sections.

2.1 Design Inspiration

Thrash et al. [13, 14] were among the first who empirically studied inspiration as a psycho-
logical construct. They have identified that human inspiration is categorized by motivation
(i.e. goal-oriented self-initiation), evocation (i.e. an impulsive reaction to stimuli), and tran-
scendence (i.e. feeling of gaining superior ideas that are “more elegant or novel than those
generated willfully”).

The problem of inspiration has been then investigated in a wide design community, beyond
user interaction design. These previous studies were mostly conducted from the perspectives
of how designers get access to and use existing design artifacts. For example, focusing on
knitwear design, Eckert and Stacey [15] have identified that designers used a wide variety
of sources of inspiration, including artifacts with intriguing shapes, patterns, and colors, as
well as their own previous design, to not only concretize the otherwise abstract design ideas
but also to create “shortcuts” to help them recall and communicate using these visuospatial
“chunks;” i.e. inspirational sources served as “a language of design.”

In the HCI community, researchers have explored ways industrial and user interaction de-
signers get inspired by existing design artifacts. For example, Bonnardel [16] has identified
that, in the context of product design, “the emergence of new ideas results from analogy-
making.” From an in-depth interview study with web, graphic, and product designers, Her-
ring et al. [4] identified the common approaches they used and the challenges they faced
when they retrieve, store, and disseminate design examples. Based on a glossary of design
ideation methods, Gonçalves et al. [5] have also conducted a survey with students and pro-
fessional industrial designers to understand their sources and methods of inspiration. They
found that, compared to students, professional industrial designers adopted a wider variety
of inspirational approaches.

The literature has also identified several problems and issues about the common inspira-
tional methods. Notably, many studies have pointed to the fact that over-exposure to a

5

homogeneous set of design examples may result in “design fixation,” which will limit the
inspirational power of the examples and result in less creative ideas [3, 4, 17]. Particularly,
Marsh et al. [3] identified that exposure to a greater number of examples that share common
critical characteristics would increase the fixation issue. The timing of the example exposure
can affect the quantity and quality of ideas as well. For example, Siangliulue et al. [18] found
that receiving examples when their participants seemed to have run out of ideas have allowed
the participants to produce a larger number of ideas, whereas explicitly requesting examples
when needed have allowed the participants to produce more novel ideas. In this study, we
build on this body of literature to investigate techniques for supporting effective inspiration
in user interface design, while avoiding design fixation.

2.2 Managing UI Design Artifacts

While we are aware that there is abundant recent work focused on extracting UI elements,
including their hierarchical design information, from design artifacts such as mockups (e.g.
[19–24]), they are not directly related to our current work, which focuses on providing in-
spirational design examples. So we omit the detailed review of this body of literature here.
In this section, we focus on reviewing related work that investigates the management of UI
design artifacts for the purpose of design inspiration.

Towards this direction, some previous studies have focused on techniques that retrieve UI
design examples based on an input UI screenshot. For example, Lee et al. [25] have pro-
posed an “Adaptive Ideas” web design tool, which allows users to view examples similar to
their current design work. In their tool, the users could control the dimensions (including
background color, primary font, number of columns, and visual density) used to compare
design similarities. Similarly, Behrang et al. [26] proposed a technique that combined key-
word search and image-based search to retrieve apps (along with their code) with similar
screenshots as an input design. Hashimoto et al. [27] have also introduced a technique that
aims to help inexperienced designers retrieve similar design examples based on an input in
the form of sketch or wireframe. Ritchie et al. [28] have proposed a design exploration tool
that allows its users to query design examples by descriptive text including color keywords
or style terms; the tool can also search by style similarity.

The recent development of deep neural networks has enabled more powerful techniques for
similarity-based design example retrieval. For example, Huang et al. [29] introduced Swire,
a sketch-based neural network-driven technique for retrieving user interface designs. The
core component of Swire is a deep convolutional neural network (CNN) [30] that calculates
the “embedding” (i.e. a numerical representation) of a design artifact (e.g. a sketch or a

6

screenshot). Once trained, Swire could retrieve UI design artifacts that are similar to an
input sketch or screenshot. More recently, Bunian et al. [31] proposed VINS to retrieve the
most structurally similar UI screenshots to the input using object detection models to identify
the UI components of the UI screenshots or wireframes. Based on the components and their
layout, an image retrieval model helps to find similar UI screenshots in the reference dataset.

Notably, most previous studies relied on similarity when retrieving design artifacts, which
can result in design fixation and may hinder the creative design process. Our study addresses
this issue by focusing on a generative model-based style change approach that balances the
targeted and serendipitous aspects of design artifact retrieval for inspiration.

2.3 StyleGAN and its Application on UI Design

StyleGAN, or Style-Based Generative Adversarial Network [7], extends the traditional GAN [6]
architecture on a style-based generator model inspired by the style transfer literature. GANs
are generative models using deep learning methods. They typically include two sub-models
that are trained at the same time, i.e., a generator and a discriminator. Given an input vec-
tor, normally referred to as a latent code, the generator synthesizes an image that resembles
particular domain properties of the training dataset. Then a discriminator is used as a binary
classifier that predicts if an input image is synthesized by the generator or is from the original
training set. Through a back-propagation-based training process [32], the generator learns
to produce instances in the high dimensional feature space that are close to the distribution
of the original training dataset. Meanwhile, the discriminator learns to classify if an input
image is from the original training set or is synthesized by the generator. After training,
the generator is saved to generate new samples for the target domain and the discriminator
is generally discarded. GANs are often applied for image data and Convolutional Neural
Networks (CNNs) [30] are typically used as the generator and discriminator models.

Based on the GAN architecture, StyleGAN proposes a style-based generator that focuses
on explicitly transfered ‘styles’ on an input image at different resolution levels during the
synthesis process. Concretely, the input latent code is transformed first into an intermediate
vector. After an affine transformation and adaptive instance normalization (AdaIN) [33],
the intermediate vector controls the synthesis at each convolutional layer in the generator.
StyleGAN can also achieve style mixing by using two distinct latent codes controlling the
style at higher and lower convolutional layers respectively. This results in a synthesized image
with one latent code dominating its overall features and the other latent code contributing
mostly to the details of the image.

7

Since published, StyleGAN has obtained great attention given its capacity for generating
high-resolution and realistic-looking images. The improved version, StyleGAN2 [34] pro-
posed several notable changes to the original StyleGAN approach. By revising the generator
architecture and the model training procedure, StyleGAN2 effectively removes the blob-
like artifacts commonly found in the images generated by StyleGAN, overcomes the shift-
invariance issue during progressive image synthesis (from low resolution to high resolution),
and more reliably maps real images into the latent space. For a more detailed explanation
of the changes, we refer the interested readers to the work by Karras et al. [34]

The application of GAN for UI design is still in its infancy. The only previous work that used
generative models for providing UI examples is a very recent study done by Zhao et al. [35].
They developed a technique to generate UI structures and reused UI components collected
from existing mobile apps to fill in the generated structure in order to create UI examples.
While interesting, their study only focused on the quality of the generated UIs, in terms
of metrics such as color harmony and structure rationality. Additionally, their evaluation
was not done with professional designers who are familiar with real-life design practices.
Instead, we aim to understand the ability of the generative models in providing inspiration
and design support. Our techniques also address style-based design transformation, which is
not explored in the literature.

As we discussed earlier, StyleGAN has been improved since its publication. While our work
is based on the original StyleGAN, we expect the performance of the StyleGAN-based ap-
proach can be enhanced by using more advanced generative models, such as StyleGAN2. Our
contribution, however, is not on using the most recent models, but instead on illustrating
the potential of applying this line of work for a novel but important problem, i.e., generating
design examples with high diversity and relevance for effective inspiration.

2.4 UI Components Detection

Many object detection techniques have been proposed in different domains to detect the de-
sired objects. In the domain of user interface design, researchers also have been investigating
techniques that are able to detect the UI elements. Detection of UI components can be used
for different objectives in design areas such as UI testing, designing automation, searching
for UI, code generation, etc. There are a couple of recent works focused on the detection
of UI elements. Chen et al. [36] proposed a hybrid approach in which they split their work
to detect text components and non-text components. For detecting the text components,
they leveraged the EAST [37] detector which uses a deep learning approach. To detect the
non-texts elements, they used traditional computer vision techniques. Additionally, they

8

developed UIED [12], an online toolkit, to help users to change or edit UIs in an interac-
tive dashboard. Narayanan et al. [38] also proposed two models to detect the elements of
hand-drawn sketches: a Cascade RCNN model and the Yolov4 model. They compared the
mAP (mean Average Precision) of some models with the goal of UI elements detection of
hand-drawn sketches. Compared with the baseline Faster RCNN, they achieved a 38.7% im-
provement in mAP using the Cascade RCNN model, and almost 50% improvement by using
the Yolov4 model. As far as we know, we are the first researchers to try to generate UIs and
then detect their components. Generated UIs have different characteristics than full-fledged
UI images. They are usually more blurry with less clear borders around the UI components;
the generated ‘texts’ are also only visually similar to texts but are not written in any lan-
guage. We investigate the performance of object detection models trained to identify those
components.

9

CHAPTER 3 STYLEGAN-BASED APPROACH FOR DESIGN EXAMPLE
GENERATION

In this chapter, we explain our StyleGAN-based approach. As we mentioned above, Style
based generative adversarial network has more capabilities to produce new images than tra-
ditional GANs and also it gives. In the following, we will go through the architecture of
the model, describe the process of training the model, and evaluate the capabilities of our
StyleGAN-based approach. This chapter is based on a paper that is accepted in the 2022
ACM CHI Conference on Human Factors in Computing Systems.

3.1 Architecture of our StyleGAN-based approach

The interaction between the designer and our approach is initiated when the designer has a
preliminary design artifact (e.g., a UI mockup image) at hand, related to their design task.
The designer sends this image as an input to the StyleGAN-based system. The system will
first encode this image to a latent code (i.e., a high-dimension vector). This latent code will
then be used to merge with other latent codes, either randomly generated or obtained from
other UI images to synthesize a unique set of new example images. The most representative
example images will then be selected and displayed to the designer. Depending on the
configuration, the designer can also set to return the real UI screenshots from the database
that are most close to the generated results. As such, the architecture of our StyleGAN-
based approach is primarily comprised of three components to achieve its key functionality:
(1) a latent code search component, (2) a new examples synthesizer, and (3) a representative
examples selection component. The overall architecture is illustrated in Figure 3.1. Below,
we first describe each of the three major components of the architecture in detail. Then we
describe the process used to train the StyleGAN that supports these components.

3.1.1 Component 1: Latent Code Search

The New Examples Synthesizer component of the StyleGAN-based approach relies on a
condensed representation of images called latent codes, i.e., high dimensional vectors (512
dimensions in our case). The input images, therefore, need to be first encoded from their
original format to the latent space that corresponds to a trained StyleGAN model. This is
done through latent code searching, which is built upon the work of StyleGAN-Encoder [39]
and relies on a trained StyleGAN model. Concretely, a synthesized image imgs is first

10

Input
image

VGG-19

New Example
Synthesizer

StyleGAN

Synthesized
image

StyleGAN

Latent Code Search

Source
Latent
Code

Target Latent
Code 1, …, N

…

Synthesized
Example

Representative Example Selection

Selected
Synthesized

Images

Image
Clustering and

Quality
Ranking

Vector
initiated

as Random

VGG-19
Compare

and
Update

Figure 3.1 Overview of the StyleGAN-based approach. The network takes a preliminary
design image as input then transforms it into a latent code. The style of the original input
is then merged with a set of target latent codes to synthesize new examples. Image encoding
and clustering methods are then used to find the representative examples as output. While
not illustrated in this diagram, the output of the synthesized examples can be additionally
used to search real UI screenshots for inspiration.

generated from the trained StyleGAN model using a latent code z initialized with zeros in all
dimensions. Both imgs and the original image imgi is processed using a pre-trained VGG19
model [40], a deep convolutional neural network that is pretrained for the classification task
using the ImageNet database [41]. The output from VGG19 is then used to calculate the
perceptual difference loss between the original image and the synthesized image, using the
Learned Perceptual Image Patch Similarity (LPIPS) metric [42]. The LPIPS metric is used
then to update the latent code z through gradient descent. This process iterates until the
number of maximum iteration is reached or the loss stops to decrease. The latent code
obtained is then returned to represent the input image.

3.1.2 Component 2: New Examples Synthesizer

New Examples Synthesizer merges the style of the original image as source with a set of
target images or latent codes to produce a new set of examples. We use one source and one
target as an example to illustrate the process below (also see Figure 3.2). When multiple

11

AdaIN

Conv3X3

Upsampling

+
Affine

Scaling

AdaIN

Conv3X3

+
Affine

Scaling

Resolution 2^i x 2^i

Resolution 2^(i-1) x 2^(i-1)

Resolution 2^(i+1) x 2^(i+1)

…

Noise…

New Examples

Mapping
Network

Target !!

Source ""

Target "!

Source !" Mapping
Network

!"

!"

"#

"#

"#

!"

Synthesis Network

Figure 3.2 The detailed architecture for merging styles of two latent codes using StyleGAN.
In this case, the target latent code is used for three style input locations and the source latent
code is used for the rest of the style input locations.

target images are involved, they are treated in the same way. We use zs to represent the
source image latent code, which is obtained from the previous step. The target latent code
zt can be any vector from the latent space that will be merged with the source image; for
example, it can be a latent code obtained from a target image or a latent code that is directly
sampled from the latent space.

Both latent codes are first transformed into intermediate vectors ws and wt that have the
same number of dimensions as the original latent codes through a mapping network, i.e., an
8-layer feed-forward network. The two intermediate vectors ws and wt are then used in the
StyleGAN image synthesizer at different layers to control the degree and level of style mix
between the source and the target. In particular, as shown in Figure 3.2, each resolution level
during the image synthesis is comprised of two style inputs for the AdaIN operations [33],
which is an image style transfer algorithm. The synthesizer is configured to include eight
levels of image resolutions (i.e., from 8×8 to 1024×1024 in steps of powers of two), resulting
in a total of 16 locations of style inputs. We used the source vector ws as the default style
input for all the style input locations and replace the style input locations from locm to locn

with the target vector wt. The example shown in Figure 3.2 illustrates the case of using wt

12

for three style input locations from the resolution 2i×2i and 2(i+1)×2(i+1). We iterated locm

from 1 to 16 and locn from locm to 16 to obtain a total of 16 × (16 + 1)/2 = 136 merged
images for each pair of source and target inputs, which covers all possible granularity levels
of influence (e.g., from the structure to the details) of the target image to the source image.

3.1.3 Component 3: Representative Examples Selection

In the previous step, we synthesized a large number of new examples for each pair of inputs,
which can be overwhelming for the designers to examine. Moreover, since our style merging
process is very fine-grained, it also introduces redundancies in the set of synthesized examples.
In this component, we apply a clustering method to pick a smaller sample of representative
images from the set of generated images. In particular, we adopt the DBSCAN method [43]
to cluster the images, as it is independent of the number of clusters that prevents limited
clustering of the synthesized examples. DBSCAN uses perceptual similarity [42] calculated
between any two images from the synthesized example set. Image perceptual similarity
represents the perceptual distance which measures the similarity between two images in a
way that to be close to human judgment, which is why we decided to use a pre-trained
AlexNet [44] to calculate the metric. For clustering, we set the threshold ε as 0.9, i.e., the
maximum distance between two samples to be considered as neighbors of each other. Within
each cluster, we used the discriminator of the trained StyleGAN as a proxy to evaluate the
quality of each image. For each cluster, we selected the one with the highest quality according
to the discriminator as the representative example, indicating that the output is the closest
to the real UI screenshot images used in the training process.

3.2 StyleGAN Training

To use the capacity of StyleGAN in the context of UI design, we need to train the StyleGAN
model with a dataset of user interface design artifacts. In this section, we describe the dataset
we used and our training process of StyleGAN for our approach. The trained StyleGANmodel
was then used in the components described above.

3.2.1 Dataset

We used the Rico dataset [45] for StyleGAN training. It contains 66,261 unique UI screenshots
of Android apps and serves as one of the largest repositories of mobile app designs to date.
The dataset includes a diverse set of UI screenshots with varied complexity that contains
various types of UI components. In order to obtain a high-quality dataset for inspiration

13

Figure 3.3 Samples of UI screenshots removed because they only have one or two unique
component labels. Most of the screenshots with less than three unique components contain
splash screen, video screenshot, full-screen image, and web view in their design, adding
unnecessary visual complexity.

purposes, we removed UI screenshots that have only one or two unique component labels
from the Rico dataset. This is because we found in a manual inspection that the UIs with
less than three unique component types usually do not contain enough interaction elements to
support inspiration or benefit from our StyleGAN-based approach. They also often introduce
unnecessary visual complexity that only exists in singular instances (e.g., a splash screen,
video screenshot, advertisement, or full-screen image, see Figure 3.3) that affects the training
performance; in other words, these instances make it difficult for StyleGAN to generate
similar components and even if generated, the visual presentation of those components are
too uncommon to be useful for inspiration. We used the UI view hierarchy data in the Rico
dataset to calculate the number of unique component types in each screenshot. In total, we
removed 8,221 images that had only one or two unique component types, resulting in 58,040
images in the dataset. Figure 3.4 shows the distribution of the number of unique component
labels in the UI screenshots in the dataset. We then resized each image into 1024× 1024 for
the training process.

3.2.2 Training process

We built upon the official TensorFlow implementation of StyleGAN1 and used our prepro-
cessed dataset to train the model. While we did not perform a formal hyperparameter search,
we explored a few changes of hyperparameters reported in Karras et al. [7], including the
initial learning rates of the generator and the discriminator, the number of times the dis-
criminator is trained per generator iteration, and the number of minibatches to run before
adjusting the training parameters. We eventually used the following hyperparameters because
they achieved the best performance according to the Fréchet inception distance (FID) [46]

1https://github.com/NVlabs/stylegan

14

8530

12408

14012

10423

7142

3692

1379
389 66

0

2000

4000

6000

8000

10000

12000

14000

16000

3 4 5 6 7 8 9 10 11

N
um

be
r o

f i
m

ag
er

s

Number of unique labels

Figure 3.4 The distribution of the number of unique component labels in the UI screenshots
in our dataset.

in our exploration: for both the generator and the discriminator, the learning rate was set to
0.0015 for resolution levels equal or less than 128× 128, 0.002 for resolution levels 256× 256
and 512×512, and 0.003 for 1024×1024; the discriminator was trained at the same frequency
as the generator; and training parameters were adjusted after every four minibatches. Addi-
tionally, mirror data augmentation was not enabled during training due to the asymmetric
nature of UI images. We used a server that contained four NVidia V100SXM2 GPUs to train
the model. Training terminates when the FID value increases (i.e., the generation quality
deteriorates) for three consecutive iterations. The entire training process lasted 162 hours.
The best performance measured with FID was achieved at 42.91. Although this performance
is not ideal comparing to the typical face generation tasks, by manual inspection, we found
that the generated images can already represent certain layout features and visual details that
can help design inspiration. This difference in performance may be due to the extraordinary
complexity and diversity of screenshots of UI design. It is worth noting that our focus and
contribution in this paper are not to achieve a higher performance in the generative model.
Instead, we focus on evaluating the potential of this line of techniques for supporting the
challenging task of design inspiration, even with less-than-perfect image generation.

3.3 Quantitative Evaluation

We conducted an experiment that focused on evaluating the generative methods against two
other techniques that suggest design examples (i.e., random suggestion and similarity-based

15

suggestion). The evaluation is based on the scenario where a designer inputs a preliminary
interface design to the system and gets a set of suggested design examples for inspiration.
While we used two quantitative metrics (i.e., similarity and diversity) for measuring the abil-
ity of inspiration support of the system outputs, we also focus on discussing our observations
and insights on how the outputs might have contributed to the metrics.

3.3.1 Data sampling

To sample a diverse set of UI screenshots as inputs, we grouped the Rico dataset according
to the number of unique component types on the UIs. We considered the number of unique
component types as an indicator of the complexity of the UI, thus the complexity of the design
task. Our dataset contained UI screenshots that contain 3 to 11 unique component types,
resulting in nine unique groups (see Figure 3.4). We randomly selected three UI screenshots
from each unique component type count group, resulting in 27 screenshots as inputs in the
evaluation scenario; these images are shown in Figure 3.5. This strategy ensures the coverage
of different levels of complexity in the UI inputs, thus the coverage of the complexity of the
design task.

3.3.2 Quantitative metrics

We derived two metrics to measure the ability of inspiration support of a set of UI im-
ages. These metrics are inspired by previous work about inspiration in design [25, 47] and
collectively focused on both targeted and serendipitous inspiration. Both metrics rely on a
measure of distance between images, particularly a measure of perceptual distance that is
aimed to approximate human visual perception; this measure is the same as the one used in
the clustering task in the representative examples selection component of our approach (see
section 3.1.3).

In the following equations, E(D)
i (i = 1, 2, ..., n) denotes the ith output example image for an

input design D, O(D) = {E(D)
1 , E

(D)
2 , ...E(D)

n } denotes the set of output images for an input
D, and dist(A,B) denotes the perceptual distance between images A and B measured using
the technique described above. The two metrics we used are:

• Similarity of the suggested examples to the input design. This metric is double-sided.
A sufficient similarity may indicate the relevance of the suggested examples, which is
important to provide targeted inspiration. However, a high similarity indicates the
potential of design fixation. We use the mean similarity (i.e., the complement of the
perceptual distance) between the output images and the input image to evaluate the

16

3 4 5 6 7 8 9 10 11

Number of unique component types

Figure 3.5 Sample of UI screenshots used in the evaluation study, ordered by the number of
unique component types.

overall similarity of the output examples to an input design:

Rel(O(D)) = 1− 1
n

n∑
i=1

dist(D,E(D)
i)

• Diversity of the suggested examples indicates how different and varied the outputs
are, given an input design. It plays an important role in preventing fixation. We use
the mean pairwise distance among all output examples of an input design to evaluate
the diversity of the output set:

Div(O(D)) = 1
n(n− 1)/2

n∑
j=i

n∑
i=1

dist(E(D)
i , E

(D)
j)

3.3.3 Experimental design

In the experiment, we considered the following conditions for suggesting a set of images for
inspiration. Particularly, conditions 1, 2, 3, and 4 are four variants of the StyleGAN-based
method. Figure 3.6 summarizes these conditions.

Condition 1. In this condition, we used the trained StyleGAN model to merge the input

17

Input
image

GANSpiration

Random latent codes

Similar image search
based on perceptual

distance

Input
image

GANSpiration

Random UI screenshots

Similar image search
based on perceptual

distance

Latent code search

Condition 1 output Condition 3 output

Condition 2 output Condition 4 output

Similar image search
based on perceptual

distance
Input
image

Condition 6 outputCondition 5 output

Random UI
screenshots

Figure 3.6 The six conditions used in the experiment. The condition outputs were then used
to calculate the metrics and in user studies.

image with five random latent codes, each generated a set of examples according to the
StyleGAN-based architecture (see Section 3.1). We then combined these examples as the
output.

Condition 2. This condition is similar to Condition 1; however, instead of using five random
latent codes, we randomly selected five images from the prepossessed dataset and obtained
their latent codes for style merging. The examples generated from each merge were then
combined as the output. Conditions 1 and 2 are created to evaluate two different variants
for using directly generated images for inspiration.

Condition 3. In this condition, we first obtained the output of Condition 1. Then for
each initial output image, we searched for the most similar image, using the perceptual
distance described in section 3.3.2, from a dataset of real UI screenshots. Because of the
computational cost of this search, we used a smaller dataset created by Huang et al. [29]

18

as the search space; it contained 2201 high-quality UI screenshots sampled from the Rico
dataset. Real UI screenshots obtained from this search were then combined as the output.

Condition 4. This condition is similar to Condition 3 except that the initial output was
obtained from Condition 2 instead of Condition 1. Conditions 3 and 4 are created to examine
the effects of the realisticity of the design examples on inspiration.

Condition 5. In this condition, we randomly selected 25 images from the prepossessed
dataset as the output.

Condition 6. In this condition, we performed a search on a subset of Rico dataset created
by Huang et al. [29] to obtain the most similar images to the input image, based on the
perceptual distance described in section 3.3.2. The top 25 similar images were combined as
the output.

3.3.4 Results

Among all the sampled inputs, both Condition 1 and Condition 2 have resulted in an aver-
age of 19 output images (SD = 7.2 and 5.15, respectively). A comparison of samples of five
outputs from each experimental condition for one input image is shown in Figure 3.7. Fig-
ure 3.8 shows the distributions of the similarity and diversity metrics on the six conditions.
Kruskal-Wallis tests indicated statistically significant differences among the experimental
conditions with respect to both metrics (p < 0.001). We then conducted posthoc pairwise
analyses using the Mann-Whitney U test with Bonferroni correction to identify the conditions
that contributed to the difference; the Bonferroni correction was used to address multiple
comparisons. The posthoc analyses revealed the following results.

• The StyleGAN-based methods (Conditions 1, 2, 3, and 4) have resulted in significantly
lower similarity (p < 0.001) than Condition 6 (i.e., search-based approach). Conditions
3 and 4 (i.e., generation + search) also resulted in significantly higher similarity (p <
0.05), thus relevance, than random examples (Condition 5).

• While the StyleGAN-based methods (Conditions 1, 2, 3, and 4) have resulted in signif-
icantly lower diversity (p < 0.001) than Condition 5 (i.e., random examples), they have
also achieved significantly higher diversity (p < 0.01) than similarity-based approach
(Condition 6).

To understand how the complexity of the input UI design can influence the similarity and
diversity metrics of the six experiment conditions, we separated the 27 sampled inputs into

19

Input image

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6

Direct generation Generation + search Random Similarity search

Figure 3.7 Samples of five outputs from each experimental condition for the input image.
Samples from Condition 3 are matched with those from Condition 1, and samples from
Condition 4 are matched with those from Condition 2.

Cond.1 Cond.2 Cond.3 Cond.4 Cond.5 Cond.6
0.0

0.2

0.4

0.6

0.8

1.0

(a) similarity

Cond.1 Cond.2 Cond.3 Cond.4 Cond.5 Cond.6
0.0

0.2

0.4

0.6

0.8

1.0

(b) diversity

Figure 3.8 Distribution of the similarity and diversity metrics on the experimental conditions.

20

Cond.1 Cond.2 Cond.3 Cond.4 Cond.5 Cond.6
Low complexity inputs

0.0

0.2

0.4

0.6

0.8

1.0

Cond.1 Cond.2 Cond.3 Cond.4 Cond.5 Cond.6
Medium complexity inputs

0.0

0.2

0.4

0.6

0.8

1.0

Cond.1 Cond.2 Cond.3 Cond.4 Cond.5 Cond.6
High complexity inputs

0.0

0.2

0.4

0.6

0.8

1.0

(a) similarity by input complexity

Cond.1 Cond.2 Cond.3 Cond.4 Cond.5 Cond.6
Low complexity inputs

0.0

0.2

0.4

0.6

0.8

1.0

Cond.1 Cond.2 Cond.3 Cond.4 Cond.5 Cond.6
Medium complexity inputs

0.0

0.2

0.4

0.6

0.8

1.0

Cond.1 Cond.2 Cond.3 Cond.4 Cond.5 Cond.6
High complexity inputs

0.0

0.2

0.4

0.6

0.8

1.0

(b) diversity by input complexity

Figure 3.9 Distribution of the similarity and diversity metrics on the experimental conditions,
analyzed by input complexity.

three groups: (1) Low complexity inputs contain less than six unique component types. In
our sample, they often represent login screens, setting menu screens, or screens that commu-
nicate a single piece of information (see Figure 3.5). (2) Medium complexity inputs contain
between six to eight unique component types. In our sample, they often represent screens
that contain heterogeneous information (usually presented in lists or cards) or screens that
provides multiple options to users. (3) High complexity inputs contain more than eight unique
component types. In our sample, they often represent screens that contain complex inter-
action mechanisms, including tabs, multiple options on list items, maps or complex forms.
Figure 3.9 presents the distributions of the similarity and diversity metrics in each input
complexity group. Kruskal-Wallis tests indicated statistically significant differences among
the experimental conditions with respect to both metrics in all three groups (p < 0.05). Ta-
ble 3.1 and Table 3.2 present the posthoc analysis results based on pairwise Mann-Whitney U
tests with Bonferroni correction. Results indicated that certain conditions StyleGAN-based
conditions (particularly Conditions 1 and 2) achieved a significantly lower similarity than
Condition 6 (i.e., search-based approach) for low and high complexity inputs, but not in
medium complexity inputs. Additionally, for high complexity inputs, the StyleGAN-based
approach can achieve a similar level of diversity to random suggestions (Condition 5), and

21

significantly higher diversity than the search-based suggestions (Condition 6).

Table 3.1 Mean difference (row label minus column label) of the similarity metric among the
six conditions, by input complexity.

(a) Low complexity inputs
C.2 C.3 C.4 C.5 C.6

Cond.1 -0.01 -0.03 -0.04 0.03 *-0.17
Cond.2 -0.01 -0.03 0.04 *-0.15
Cond.3 -0.02 0.06 *-0.14
Cond.4 0.08 -0.12
Cond.5 **-0.20

(b) Medium complexity in-
puts

C.2 C.3 C.4 C.5 C.6

Cond.1 0.01 -0.03 -0.03 0.04 -0.14
Cond.2 -0.04 -0.03 0.04 -0.15
Cond.3 0.01 0.08 -0.11
Cond.4 0.07 -0.12
Cond.5 *-0.19

(c) High complexity inputs
C.2 C.3 C.4 C.5 C.6

Cond.1 0.00 -0.03 -0.04 0.01 **-0.17
Cond.2 -0.03 -0.04 0.01 **-0.17
Cond.3 -0.01 0.04 -0.14
Cond.4 0.05 -0.13
Cond.5 **-0.18

Using pairwise Mann-Whitney U test with Bonferroni correction: * p < 0.05, ** p < 0.01

Table 3.2 Mean difference (row label minus column label) of the diversity metric among the
six conditions, by input complexity.

(a) Low complexity inputs
C.2 C.3 C.4 C.5 C.6

Cond.1 0.01 0.06 0.07 **-0.09 **0.17
Cond.2 0.05 0.06 **-0.11 *0.15
Cond.3 0.01 **-0.16 0.10
Cond.4 **-0.17 0.09
Cond.5 **0.26

(b) Medium complexity in-
puts

C.2 C.3 C.4 C.5 C.6

Cond.1 0.00 0.05 0.04 **-0.07 0.15
Cond.2 0.06 0.04 **-0.07 0.15
Cond.3 -0.01 *-0.13 0.10
Cond.4 **-0.11 0.11
Cond.5 **0.22

(c) High complexity inputs
C.2 C.3 C.4 C.5 C.6

Cond.1 0.00 0.03 0.02 -0.06 *0.18
Cond.2 0.03 0.02 -0.06 *0.18
Cond.3 -0.01 -0.09 0.15
Cond.4 *-0.08 0.16
Cond.5 **0.24

Using pairwise Mann-Whitney U test with Bonferroni correction: * p < 0.05, ** p < 0.01

We manually inspected the outputs of the approaches used in the six experimental conditions
to identify their risks and potential to support design inspiration. We found the following
themes through our inspection.

• Conditions 1 and 2 (i.e., generation-only): Examples generated in these two conditions
resembled real UI screenshots, but contained a lot of blurry and noisy components.
However, some examples generated in these conditions contained interesting variations
and alternatives to the input UI. For example, Figure 3.10 shows that the directly
generated examples suggested alternatives on the color scheme, layout, and item details.

• Conditions 3 and 4 (i.e., generation + search): Examples generated in these two condi-
tions contained real images that addressed the noise issues in Conditions 1 and 2. Some
of the returned examples also contained interesting variations to the input image (see
Figure 3.11). However, some of the searched images do not reflect directly the intention
of the originally generated images. For example, in Figure 3.12, the generated example

22

seems to suggest a different color scheme and a layout change, but the search resulted
in somewhat irrelevant screens.

• Condition 6 (i.e., search-based approach): The outputs of this condition commonly
contained visually similar UI screenshots with the input, both in terms of color and
layout (see Figure 3.7, Condition 6).

Input image Examples created through direct generation

Color scheme
change and three-

column grid

Simple list Color scheme change
and enriched list with

more item details

Stock information
in a two-column grid

Figure 3.10 Directly generated examples involves noises but can provide useful insights and
suggestions.

3.4 User Evaluation

To understand the potential of our StyleGAN-based techniques from the perspective of profes-
sional UI/UX practitioners, we conducted a user study focusing on the practitioners’ opinions
on how well the results of our StyleGAN-based approach may help in their design practice.

3.4.1 Methods

The user studies were conducted in June and July 2021. In this section, we describe our par-
ticipants, the procedure of the study sessions, the materials used, and the analysis methods.
The user study protocol is approved by the ethics committee at [anonymous institution].

23

Input image Examples created through generation + search

Color scheme change Setting menu as
a drawer

Checkboxes instead
of toggles

Setting menu
with toggles

Figure 3.11 Searched examples based on generated images are cleaner and can provide useful
insights and suggestions.

Participants. We conducted the user study with five UI/UX professionals. The partici-
pants had varying levels of experience, ranging from one to ten years as either UX researcher
or UI/UX designer. They worked in different types of organizations, including two freelancers,
one in a small start-up company, one in a more established medium-sized company, and one
in a large multinational company. Table 3.3 summarizes the participants’ characteristics.

Procedure and material. The user studies were conducted online via the Zoom plat-
form. Each participation took about one hour to complete. Each study session began with a
semi-structured short interview in which the participants were asked about their professional
experiences and their experience of using design examples. We then presented one input UI
screenshot from the sample used in the quantitative evaluation (the one that is shown in
Figure 3.7) to the participants. We told the participants to consider a scenario in which they
want to get inspiration from examples to modify the design of this UI. This UI screenshot
contained 11 different types of components, representing a complicated design task. After
the participants familiarized themselves with this UI screenshot, we then presented the cor-
responding output images from all six conditions as the design examples, one after another;
a sample of these materials was shown in Figure 3.7. The participants were asked to examine
each set of the design examples and provide feedback on (1) their relevance to the design
task, (2) the diversity of the design examples, (3) the effectiveness of the design examples for
inspiration, and (4) general positive and negative perceptions of the examples. The order of

24

Input image Direct generation outputs

Color scheme change Rearranged layout

Textual screen

Route planner
with settings

Screen with tags

Corresponding generation + search outputs

Figure 3.12 Search results sometimes do not reflect the intention of the style-based generation
results.

25

Table 3.3 Characteristics of participants in the user study

ID Job title Organization
description

Years of
experience

Projects
contributed to

P1 UX researcher Freelancer 1 year 1 project

P2 UI/UX designer

A small-sized company developing
software solutions that allow the creation
of printable personalized products 8 years >10 projects

P3 UI designer

A medium-sized company
developing a cloud-based
computer-aided design (CAD) software 3 years 10 projects

P4 UI designer Freelancer 10 years >10 projects

P5 UX researcher A large multinational company developing
business management software 2 years 2 projects

these six conditions was randomized among the participants to mitigate the order effects; the
participants were also not aware of the condition numbers (i.e., the way in which the exam-
ples were generated) when examining the examples. After all six conditions were covered, we
described the techniques we used and asked the participants about their general perception
of the generated design examples. (See the appendices A and B for more detail)

Analysis. Two researchers watched recordings of all study sessions and took detailed notes
regarding the participants’ comments and reactions. These notes were then combined and
qualitatively analyzed to identify the common themes. During this analysis, we focused on
identifying the positive and negative aspects that the participants mentioned about the design
examples resulting from the four categories of the experimental conditions: direct style-based
generation of UI images (Conditions 1 and 2), style-based generation then search of real UI
examples (Conditions 3 and 4), random selection (Condition 5), and similarity-based search
(Condition 6).

3.4.2 Results

All of the participants indicated that they look for examples in their design projects. A
common reason that the participants search and examine examples is to learn from the
examples and borrow elements from them. For example, P3 mentioned “Every single time
when I need to design an interface, I will go to all these different reference websites. I always

26

start from there to see what a possible solution is out there. Because it saves my time not
to reinvent the wheel.” P2 talked about the granularity in which the design examples may
help, saying “Even for a specific project, every part of the project, I need to assess what
exists right now and what I can learn from what is already existing.” P4 also emphasized
the importance of examples by mentioning the efforts she often spends on it, saying “Every
project I have to search for examples for inspiration. I will spend lots of time on it.”

Perceptions on the directly generated examples (Conditions 1 and 2).

The negative aspects of these generated examples mentioned by the participants were most
concerned with the quality of the images and the noises included in the UI. For example,
P3 mentioned: “It looks a bit strange to me because all the UI elements are not real UI
elements. They just mimic the shapes. It doesn’t provide a lot of realistic details for me to
get a record for my design.” P5 also declared, “If there is not any noise in the images, it is a
good idea to have this technique.”

Some participants discussed the potential of the generated examples. For example, P2 men-
tioned: “The idea is pretty close to what I am looking for, overall, conceptually... Since they
are all pretty abstract, they are already helping me more, so that I can see the shapes and
stuff ... to think out of the box.” P3 said: “If it can generate a lot of good information online
that we don’t have time to look for, and it manages to make a merge of all the relevant
interface, I can use it as a reference to see the trend on color pallets and layouts.”

Perceptions on the examples created from generation and then search (Condi-
tions 3 and 4).

All but one of the participants agreed the examples can be effective for inspiration. For
example, P1 mentioned: “It is diverse, we have different designs... They are also relevant
since I can see some of the same patterns..” P5 also said, “These are effective for inspiration
for example images. Since they include both text and big image and different kinds of
components inside.” Participants also noticed some of the components in the images could
be inspiring. P4 mentioned, “Image number 14 at the top right there is an alert icon which
I can use in my design and Number 3 also has a search icon.” P3 stated, “There are some
images which have tabs, which I can use as references for the tab of the main image, and
also the toggle switch, radio buttons, ...”

The participant (P2) who thought the examples are not effective for inspiration was mainly
concerned about the overall design style. She mentioned: “It is all the same [Google] Material

27

Design style and nothing exciting – it is very similar to what I would work on already [in the
input image].” This comment pointed out the limitations of using UI screenshots from the
same platform for inspiration. Some participants also voiced other concerns related to our
current StyleGAN-based technique. For example, P3 mentioned that she wished to have the
examples contain more UI screenshots from the same page type and the same application
domain: “I did not find any image that included extended forms or any transportation
apps.” P1 and P4 also would like to see more recent and modern designs in the examples;
this comment, along with P2’s concerns, highlighted the important role of the dataset used
for generating the examples and searching for existing designs.

Perceptions on the randomly selected examples (Condition 5).

All participants were impressed by the obvious diversity of the examples. For example, P2
stated, “I like that the color schemes are getting different. It has different layouts from
different stuff.” However, they also noticed the randomness of the examples. P3 said, “There
are a lot of things that are not relevant here. Some of the examples are definitely noise.” P2
also said, “I do think that those layouts, that are different, are not related to the design I
am looking for.”

Perceptions on the examples selected from similarity-based search (Condition 6).

All participants agreed that the examples are similar to the source image, but not diverse
enough for inspiration. P3 said, “The first thing that I noticed is the similar color pallets
and elements.” P2 also said, “All of them are lists and have the same colors, not very helpful
but relevant.” P4 also mentioned, “Although the information is clear and easy to use, [the
examples are] too boring.”

Overall, the participants considered our StyleGAN-based approach, particularly the ones that
output full-fledged UI screenshots (i.e., conditions 3 and 4), as viable ways to gain inspiration
in their practical design workflows. For example, P1 indicated “This tool would help in the
competitive analysis part. If it has more trendy images it could be really helpful.” And P2
stated that “I could use this technique... to think out of the box.”

3.5 Discussion

In this study, we found that our StyleGAN-based approach are able to generate design
examples that are both diverse and relevant to the input image. Particularly, our approach

28

can help resolve the design fixation issue, which is common when similarity-based approaches
were applied for retrieving design examples in practice. The user evaluation also indicated
that our StyleGAN-based approach is able to help designers broaden their horizons and
get inspired. Participants generally preferred the StyleGAN-based outputs, particularly the
ones that suggests full-fledged UI screenshots based on the generated examples, over random
examples and similarity-based examples. In this section, we discuss the implications of our
study results for designing tools that leverage generative techniques such as StyleGAN for
design inspiration.

3.5.1 Style-based generation provides design inspiration in different granularity
levels

Our user study results indicated that the style-based generation techniques is able to provide
design inspiration on three levels: (1) the coarse level that provides ideas for layout or
structural changes, (2) the middle level that suggests component design alternatives, and (3)
the fine level that proposes different aesthetics such as color schemes. This is made possible
by the ability of StyleGAN to alter the input image based on different granularity levels (i.e.,
different spatial resolutions) of the target ‘style images’. In other words, the style images can
be used to alter either the structure or the details of the input image; and this is controllable
by the users of the system. The three aspects of inspiration were all appreciated by the
participants during the user study. The tool design that leverages the StyleGAN-based
approaches can incorporate these three levels of design inspiration. Particularly, a design
inspiration tool can indicate and explain the intention of the suggested examples by checking
the granularity level of the style image used for style merge. Based on this information, a
descriptive label of inspiration granularity can be assigned to each example. This way, if
the designers have a particular concern when searching for inspiration (e.g., need to find a
different layout but using the same color scheme), they would be able to better focus on such
examples. Additionally, it is also possible to give the designers control over the granularity
level of style merge.

3.5.2 The visual quality of the generated image is an important factor for in-
spiration

Our results revealed that the participants preferred full-fledged UI screenshots over di-
rectly generated images that typically include noises, although the direct generation and
the generation-then-search conditions achieved the same level in the diversity and relevance
metrics. While some participants were impressed that the directly generated images look

29

like a UI, our results indicated that the visual quality of the generated images does affect
how well the designers perceive the examples. In this study, we retrieved the most visually
similar UI screenshots to the directly generated images to address this issue. However, our
manual inspection revealed that the search results based on the generated images do not
always match the intention of the directly generated results. To further resolve these issues,
techniques for identifying components on generated images could be investigated. With such
techniques, the quality of the individual components can be improved to make the generated
images look more similar to real ones. Further, if components were identified, the directly
generated images can be converted to wireframes in order to provide layout or structural
suggestions. Color schemes of the components can also be matched to the input image to
provide direct alternatives.

3.5.3 A diverse and relevant training dataset would help generate more insight-
ful examples

Our study relies on the Rico dataset, which is created in 2017. Some of our participants
voiced that the examples retrieved do not reflect the most recent design trends, thus limit
the inspirational power of the examples. This result indicates that the dataset used for
training the generative model, as well as the dataset used for retrieving real UI screenshots,
are important factors to consider. Potential solutions to this problem include using only
the newest apps in the dataset and collecting datasets from the most recent design sharing
platforms (e.g., dribbble.com). Additionally, using a merged dataset including UI screenshots
from different platforms (e.g., Android, iOS, desktop app, web app, etc.) with different design
frameworks/systems [48] would help avoid platform or framework-specific design stereotypes.

3.5.4 Combine generative models with other techniques

In our experimental design, conditions 3 and 4 (i.e., generation + search) are our first at-
tempts to combine the pure generative approach with other techniques to provide examples
for effective inspiration. These attempts can be further enriched and expanded. Particularly,
our participants seemed to desire examples from the same application domain (e.g., route
planning) and/or focusing on the same type of page (e.g., configuration page) as the input UI
page. Thus, it could be useful to perform the style-merging generation using the style images
from the same application domain and/or page type as the input image. Moreover, combin-
ing the generative technique with textual thematic specifications that describe characteristics
of the desired examples (e.g., the ones similar to [28]) would give designers more control over
the returned examples and support a more effective inspiration. Finally, techniques that

30

can highlight interesting areas in the examples related to the suggested alternatives to the
input image would also facilitate a more efficient exploration for serendipitous and targeted
inspiration.

31

CHAPTER 4 COMPONENT DETECTION

After developing the StyleGAN-based approach, we extended our work by enabling the de-
tection of the UI components in UI images, particularly generated UI images. The detection
of the components could be the first step of enhancing the quality of the generated UI images
as well as some full-fledged UI images that need to be redesigned. In addition, by having a
good component detector, we would be able to develop a tool that uses our StyleGAN-based
approach to support UI editing and design automation.

Regarding the results of our generative model, we found that the network is able to generate
most of the frequent UI components such as Texts, Icons, Drawers, Modals, and EditTexts
(see Figure 4.1). The weakness of the generator is generating components that included an
image. Since there are lots of different images in the dataset which are not even similar in
terms of size, shape, color, and content, it makes learning difficult for the model. Precisely,
the network is not trained on enough similar images to learn and generate them effectively.
Our preliminary investigation on a few pre-trained UI component detection models show that
the previous studies are not able to detect all the components of the generated UI images.
We trained, fine-tuned, and evaluated Yolov5 to overcome this problem.

Figure 4.1 There are several frequent components in UIs that our StyleGAN-based approach
is able generate, such as: Text, Drawer, Model, Button, Icon and Edit Text

32

4.1 Methodology

We aimed to retrain the pre-trained Yolov5 to detect the components of the UI images,
including images generated by our StyleGAN-based approach. Since our generation approach
can generate most of the components recognizable as full-fledged UI’s components (see Figure
4.1), we decided to divide our work into two parts. First, we trained the Yolov5 model
on a dataset including full-fledged UI images to detect those recognizable components of
the generated images. Second, we fine-tuned the model of the first step to detect unclear
components of the generated images like Images and Icons. .

4.1.1 Dataset

VINS dataset

We used VINS dataset1 to train our network. The VINS dataset contains 4800 UI designs.
Table 4.1 shows the structure of the VINS dataset. The VINS dataset also includes informa-
tion about the location and label of the UI components in each image. In total, the dataset
comprises 20 types of labels, including EditText, Image, Modal, Toolbar, Switch, Icon, Bot-
tom_Navigation, Drawer, TextButton, Map, BackgroundImage, Card, CheckBox, Spinner,
Text, UpperTaskBar, Multi_Tab, CheckedTextView, PageIndicator, and Advertisement.

Table 4.1 The VINS dataset comprises UI images from six different sources

VINS dataset
Source Number of images

Android screen(from Rico dataset) 2000
New Android screens 740

Iphone screens 1200
UI designs(from websites) 603

Wireframes UIs 257

Generated images

We generated our images using StyleGAN2 which is trained on the same dataset as we used
to train the StyleGAN-based approach. We used the second version of StyleGAN since our
preliminary experiments shown that its performance evaluated by FID was better than the
first version. The FID score of the final model was 28.69. The Frechet Inception Distance

1https://github.com/sbunian/VINS

33

(FID) score proposed by [49] shows how good the generated images are; a lower FID score
indicates a smaller difference between the generated images and real ones. After obtaining
the trained model, we randomly generated 2000 images using the model. Then we manually
chose 200 images from the 2000 images to annotate and used them for the fine-tuning part
of our work; manually choosing the images allowed us to obtain a sample that contained a
diverse set of UI components and layouts. We used the labels that exist in the VINS dataset
for annotating the generated images. The annotation was done with the Makesense2 online
tool.

4.1.2 Network architecture

Based on our objectives, we selected Yolov5, which is one of the most recent and accurate
object detectors, for detecting the UI elements [50]. It has a much smaller weight file than
other models and thus runs faster. The biggest improvement of Yolov5 compared to Yolov4
is related to mosaic data augmentation and auto-learning bounding box anchors. Like other
object detectors, Yolov5 comprises three main parts: Backbone, Neck, and Head. Figure 4.2
summarizes the architecture of Yolov5. In the Yolov5 network architecture, three important
modules are used, we describe them in detail below.

Modules

There are three different modules that are used in the Yolov5 architecture. In this section,
we are going to explain each module.

Conv : Conv is a 2d convolutional layer that will be applied over the input. Four parameters
for the input of the Conv layer are included: the number of input channels, the number
of output channels, filter or kernel size, and step size of the stride. After applying con-
volution a 2d BatachNormalization with Sigmoid liner Unit (SiLU) activation function
will be applied to get the final output of the Conv layer. See Figure 4.3

C3 : C3 layer is a CSP net with three convolutional layers and a Bottleneck module. Figure
4.4 shows the C3’s architecture. The CSP Net was proposed by Wang et al. [51] to
reduce inference computations compared to the previous work. The results show that
CSP Net is able to reduce 20% of computations on the ImageNet dataset. CSP Net is
one of the well-performed backbones which could be used in networks for classification
or object detection. CSP Net split the input into two parts. The first part goes through

2https://www.makesense.ai/

34

Figure 4.2 The architecture of Yolov5

the network and the next layers to concatenate with the feature maps. And the second
part goes to the Partial transition layer to be concatenated with the output of the
previous block. On the other hand, the bottleneck layers have fewer neurons compared
to their previous layers. So their role in a network is to have a good representation of
the input while compressing feature maps and reducing the dimensionality.

35

Figure 4.3 The network architecture of the convolutional layer

Figure 4.4 The network architecture of the C3 layer

36

SPPF (Spatial Pyramid Pooling-Fast) : SPPnet enables the CNN to take input with
arbitrary size. Traditional CNNs require a fixed input size. However, by using the SPP
pooling layer we can eliminate this restriction. Results show that besides this benefit,
it can speed up the detection and classification tasks [52]. SPPF is a customization of
the SPPnet; its structure is shown in Figure 4.5.

Figure 4.5 The network architecture of the SPPF layer

4.1.3 Metrics

In this section, we describe several principal metrics that are used in model evaluation. One
of the most important metrics in object detection is mean average precision (mAP), which is
calculated by using precision and recall. As all the metrics that are being used in this study
are the ones that are used in the field of object detection, we are going to define them in this

37

context for further illustration, since they might be interpreted or used differently in other
domains.

TP (True Positive): A correct detection of one particular ground truth. A ground truth
in our context includes two elements: (1) the particular location and dimension of a
component and (2) the label of the component.

FP (False Positive): An incorrect detection of one particular ground truth. It could be a
detection of an object that does not exist or wrongly detect a ground truth.

FN (False Negative): A failure to detect an existing ground truth.

TN (True Negative): It is not being used in the object detection context. Since there are
unlimited areas and bounding boxes exist in the image which are correctly not detected.

IoU (Intersection over Union): The identification of a correct or incorrect detection of
ground truth for calculating TP, FP and FN in our context rely on the concept of
Intersection over Union (IoU). IoU is determined by dividing the overlapping area over
the union areas of the detected object and the ground truth. Figure 4.6 explains the
IoU calculation. Generally, by specifying threshold t, a correct detection against a
ground truth is achieved if IoU ≥ t and a correct label is classified. In this study, we
set the threshold t to 0.6 according to literature.

Figure 4.6 Intersection over Union. The red bounded box represents the ground truth and
the green bounded box represents the detected object.

Precision: Precision is defined as the number of relevant objects which the model can detect.
More accurately, it is equal to the number of TP divided by the number of TP + FP
which is all the detections. So it measures the percentage of the correct detections
among all detections.

Recall: Recall shows us, how is the model in terms of correctly detecting the objects among
all the existing ground truths. It is calculated using the number of TP divided by TP
+ FN.

38

Precision = TP

TP + FP
Recall = TP

TP + FN

To have a good object detector we have to try to increase the Precision and Recall along
with each other. A higher Precision means the model detects all objects correctly; the
highest number of Precision is equal to 1 when FP = 0 which means there is no wrong
detection among all the detected objects. While the model tries to increase Precision,
the Recall has to increase as well. If this does not happen, it means the model probably
can detect some particular objects and is not generalizable enough. So the higher Recall
shows the model is able to truly detect more ground truths of the image. The highest
value of Recall is equal to 1 when FN = 0, which means there is no existing object that
is not detected by the model, and also all the detections are correct. Since precision
and recall are basic and also important for evaluating an object detector, the Precision
x Recall curve is one of the informative plots to see the performance of a detector; it
shows the trade-off between the two metrics.

mAP (Mean Average Precision): Generally, the area under the Precision x Recall curve
(AUC) shows how well a detector can achieve a balanced performance on these two
metrics.Since the Precision x Recall curve is usually a zigzag, measuring the AUC can
be complicated. So we use another metric to estimate AUC, called Average Precision.
We use n-point interpolation to measure the AP. The N-point interpolation approach
to calculate the AP is described below :

APn = 1
n

∑
R∈{0, 1

n−1 , 2
n−1 ,..., n−1

n−1}

Pinterp(R)

where :

Pinterp(R) = max
R̃:R̃≥R

P (R̃)

Pinterp(R) returns the maximum precision in which the corresponding recall value is
greater than the R. After we calculate the AP for each class of the dataset, we can
measure the mean of Average Precision (mAP) using :

mAP = 1
N

N∑
i

APi

in which APi is the average precision of the ith class and N is the total number of classes

39

of the ground truths in the dataset.

4.2 Results

As we discussed before, the component detection part of our research has two steps. We are
going to explain our results in the three following sections, respectively:

4.2.1 Training Yolov5 using the VINS dataset

The training set of our dataset contained 4339 images and the test set was comprised of 468
images.The pre-trained Yolov5 is retrained for 150 epochs. It took about 2 hours and 50
minutes to be completed. For the hyperparameters, the optimizer was Adam with a learning
rate of 0.01. As the author of the Yolov5 recommended [50], we keep the default values of
the other parameters.

During the training and testing of the model, we calculated the metrics to evaluate the model.
Figure 4.7 shows that the precision and recall of the model were high throughout the training.
As Figure 4.8 shows, the mAP of the network in the confidence level of 50% is about 0.803.
Additionally, as we can see in the Precision x Recall curve (Figure 4.8), the precision and
recall of each class are high at the same time, which shows the model not only predicts the
components correctly but also detects most of the ground truths for each class.

Figure 4.7 Precision and recall during training Yolov5 with the VINS dataset

40

Figure 4.8 Precision x Recall curve on the trained Yolov5 with the VINS dataset

Figure 4.9 Confusion Matrix of the trained Yolov5 with the VINS dataset

41

We also plotted the confusion matrix (Figure 4.9) to explore which components that were
better detected than others. As the matrix shows, five components (i.e., Checkbox, Remem-
ber,Multi_Tab, Advertisement, and Map) are not included in the test data set. Apart from
those, about 70% of the components are predicted with an accuracy higher than 90%; these
components included Card, TextButton, PageIndicator, Text, etc. Several components (e.g.,
Bottom_Navigation and Spinner) were not predicted at all. And components like Toolbar
and UpperTaskBar are predicted but with lower accuracy. The reason for it is that there
is a limited amount of these components in the dataset, so the model could not learn the
structure of these elements well. In the confusion matrix, the background FN class represents
those objects which Yolov5 has failed to detect and the background FP class represents those
objects that were detected incorrectly.

In Figure 4.10 we bring some samples of the images in the test set. The ground truths of the
images with their corresponding labels are shown on the left side. And the right-side image
shows the predicted components with their corresponding confidence level.

Ground truths Predicted Components

Figure 4.10 Prediction samples of the trained Yolov5 using the VINS dataset

4.2.2 Fine-tuning of the preliminary network using generated images

After training the Yolov5 model with the VINS dataset, we used the Transfer learning tech-
nique to fine-tune the model in order for it to better detect the UI images generated with
our StyleGAN-based approach. Transfer learning [53] addresses our problem of having a

42

smaller annotated dataset of generated UI images. Particularly, following the recommen-
dation of [50], we froze the backbone of the Yolov5 pre-trained from the previous step and
retrain the neck and head of the network for 30 epochs. We randomly split the 200 generated
images that we annotated into 149 training images and 51 test images. The training took
about 2.5 minutes to be completed. As Figure 4.11 shows, the precision and the recall both
increased during training. It means the network can detect more ground truths over the
epochs. The highest precision achieved was about 0.87 and the highest recall was 0.44. The
mAP of all the classes is about 0.57 (see Figure 4.12), which is acceptable according to our
limitation of preparing a more accurate dataset.

Figure 4.11 Precision and recall during fine-tuning of the preliminary network using the
generated images

One of the main reasons for applying transfer learning is learning to detect the less clear
component. Based on Figure 4.13, the confusion matrix shows the detector can detect the
Image and the Icon components with more than 85% accuracy. However, there is a high false
negative in many classes. This may be due to the limited number of training and testing
data points in the annotated dataset.

Figure 4.14 illustrates the generated images with their ground truths on the right side, and
the corresponding predictions of those ground truths are shown on the left-side image. As
we can see in some of the predictions, the Text Button components are detected as Text +
Icon. These errors are counted as FPs but semantically they are not wrong completely and
are the result of the limited number of training images.

43

Figure 4.12 Precision x Recall curve of the fine-tuned Yolov5 using the generated images

Figure 4.13 Confusion Matrix of the fine-tuned Yolov5 using the generated images

44

Ground truths Predicted Components

Figure 4.14 Prediction samples of the fine-tuned Yolov5

4.2.3 Testing the preliminary network on generated images

To better understand the effects of fine-tuning, we tested the preliminary model, which is
trained only on the VINS dataset, on the same test set of section 4.2.2. The results show
that the mAP is improved by almost 35% after fine-tuning the network. Figure 4.15 shows,
the mAP of all classes is about 23%.

Figure 4.15 Precision x Recall curve of testing the preliminary network (the trained Yolov5
using the VINS dataset) on the generated images

45

As the confusion matrix (Figure 4.16) shows, Images and Icons are predicted with 32% and
53% of accuracy before fine-tuning. After fine-tuning, these values are increased to 89% and
86%, respectively. There are also improvements in the detection of Texts and EditText after
fine-tuning (accuracy improved from 0.70 to 0.95 and from 0.0 to 0.5, respectively).

Figure 4.16 Confusion Matrix of testing the preliminary network (the trained Yolov5 using
the VINS dataset) on the generated images

4.3 Discussion

Our results indicate that the Yolov5 model is able to achieve satisfactory performance on
detecting UI components in both full-fledged images and generated images. For detecting
the images which are not generated by the computer, the model achieved 0.80 mAP and
overall precision of 98%. In comparison to the other works, Narayanan et al. [38] achieved
0.74 mAP by Cascade RCNN and 0.79 mAP by Yolov4 in detecting hand-drawn sketches;
while focusing on a different detection task, our approach achieved a similar performance.
Additionally, to compare with Chen et al.’s model [36] in detecting UI elements, we set the
IoU threshold value to 0.9 which was used by Chen et al. and tested on our data; our model
achieved 82% of precision and 53% of recall, which is 33% higher than Chen et al. model in
precision and 2% lower in recall. To detect the components of the generated images, to our

46

knowledge, we are the first researchers who try to generate UI images and then detect their
components. We targeted some components of generated UIs which have higher priority to be
detected such as Images, Icons, and Texts. Based on our results, the Yolov5 model, fine-tuned
with generated images, can detect those components with high accuracy and precision.

47

CHAPTER 5 CONCLUSION

5.1 Summary

We initiated our work concerning the inspiration of the UI/UX designers. Based on previous
works and our experience, searching for examples before starting the design process is an
ordinary but challenging step for every designer. Being inspired by the related works while
avoiding to stuck in design drifts and design fixation is one of the most intricate parts of UI
design.

To address this issue, we first proposed the StyleGAN-based approach which aims to bal-
ance both targeted and serendipitous inspiration in the user interface design practice. The
evaluation studies highlighted the capacity of the StyleGAN-based approach in generating
examples that are both relevant to the designers’ work at hand and diverse for avoiding design
fixation. Professional UI/UX practitioners appreciated such techniques as viable support in
their day-to-day design practice. Our results also revealed possible improvements and design
implications when a generative technique is used for supporting design inspiration. This part
of our work demonstrates the potential of applying style-based generative machine learning
techniques in the challenging context of design inspiration and creativity support. It opens a
new direction and paves the road for future efforts in using advanced intelligent technology
for supporting the creative, but at the same time constraint, design practice.

Based on the results of our StyleGAN-based approach, we extended our study to better sup-
port the inspiration part of the designers’ work. Particularly, by detecting the UIs elements,
we can give designers more ways to manipulate the UIs, either full-fledged ones or generated
ones. As a result, we trained and evaluated the Yolov5 model to detect the UI elements.
Our results show that the model can detect the UI elements on both full-fledged UI design
images and generated images (with fine-tuning), with acceptable accuracy and precision.

5.2 Limitations

First, as mentioned before, the dataset we used for the StyleGAN-based approach (i.e., the
Rico dataset) was published about five years ago and only included screenshots of Android
applications. Although it is a large dataset that is frequently used in studies involving UI
design artifacts, we do not know the inspirational power of our StyleGAN-based approach if a
newer dataset or a dataset on another platform was used. We recognize that building a large-
scale UI dataset is a non-trivial task. Even with the old dataset, our study demonstrated the

48

potential of our approach in supporting both serendipitous and targeted inspirations.

Second, our user study only included five participants. This is partially due to the challenges
we experienced in recruiting participants during the pandemic. Although an in-person study
might better facilitate the exploration of design examples, we were also only able to conduct
remote studies with the participants. Additionally, while the evaluation is based on a realistic
scenario, it only included one input UI and may not be able to incorporate all the real-world
inspirational challenges related to UI design. However, our participants were all professional
practitioners and represented diverse UI/UX-related experiences. With their professional
experiences, they also reflected on their practice when examining the examples during the
user study, providing a real-world perspective.

Third, since our StyleGAN-based approach is a novel approach to generate UIs using deep
learning, and to the best of our knowledge, there is no generative model to generate a UI from
scratch without using other pre-designed works, we needed to create an annotated dataset
by ourselves. Csreating a dataset needs lots of effort and time to be accurate. Since we had
limited time, we could create an annotated dataset with only 200 generated images. If we
were able to annotate more images, we may be able to achieve better results for the model.

5.3 Future Directions

There are a couple of future directions for our study. First, during developing our StyleGAN-
based approach, StyleGan2 was released [34], which has some improvements when compared
to StyleGan1. One of the future works could be building the StyleGAN-based approach on
StyleGan2 to see whether the results of the generator would be better.

Second, since designs are changing constantly, and designers always try to bring new ideas
and use them into their designs, the other direction could be providing a large-scale new
dataset of mobile (Android/IOS) or desktop applications’ UIs. As we mentioned, the current
datasets are out of date, so it could directly affect the results of our models. So having an
updated dataset can potentially improve the results and usability of our research.

Finally, since our results demonstrate that our proposed models are able to detect the com-
ponents with high accuracy, the next direction can be to make an end-to-end automated
design-support system. Using the proposed generative model, we can generate the UIs, de-
tect their components, and by rearranging the components or using the existing pre-designed
components. In other words, we would have an automated toolkit that can support the entire
design process of a new UI regarding the users’ needs.

49

REFERENCES

[1] S. R. Herring et al., “TweetSpiration,” in Proceedings of the 2011 annual
conference extended abstracts on Human factors in computing systems - CHI EA
’11. New York, New York, USA: ACM Press, 2011, p. 2311. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1979742.1979923

[2] D. G. Jansson and S. M. Smith, “Design fixation,” Design Studies, vol. 12, no. 1,
pp. 3–11, 1991. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
0142694X9190003F

[3] R. L. Marsh, J. D. Landau, and J. L. Hicks, “How examples may (and may not)
constrain creativity,” Memory & Cognition, vol. 24, no. 5, pp. 669–680, sep 1996.
[Online]. Available: http://www.springerlink.com/index/10.3758/BF03201091

[4] S. R. Herring et al., “Getting Inspired! Understanding How and Why Examples are
Used in Creative Design Practice,” in Proceedings of the 27th international conference
on Human factors in computing systems - CHI 09. New York, New York, USA: ACM
Press, 2009, p. 87. [Online]. Available: http://dl.acm.org/citation.cfm?id=1518701.
1518717http://dl.acm.org/citation.cfm?doid=1518701.1518717

[5] M. Gonçalves, C. Cardoso, and P. Badke-Schaub, “What inspires designers? Preferences
on inspirational approaches during idea generation,” Design Studies, vol. 35, no. 1,
pp. 29–53, 2014. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0142694X13000744

[6] I. J. Goodfellow et al., “Generative adversarial nets,” in Proceedings of the 27th Interna-
tional Conference on Neural Information Processing Systems - Volume 2. Cambridge,
MA, USA: MIT Press, 2014, pp. 2672–2680.

[7] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative
adversarial networks,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE Computer Society, 2019, pp. 4396–4405.

[8] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: Using gui screenshots for
search and automation,” in Proceedings of the 22nd Annual ACM Symposium
on User Interface Software and Technology, ser. UIST ’09. New York, NY,
USA: Association for Computing Machinery, 2009, p. 183–192. [Online]. Available:
https://doi.org/10.1145/1622176.1622213

http://portal.acm.org/citation.cfm?doid=1979742.1979923
https://www.sciencedirect.com/science/article/pii/0142694X9190003F
https://www.sciencedirect.com/science/article/pii/0142694X9190003F
http://www.springerlink.com/index/10.3758/BF03201091
http://dl.acm.org/citation.cfm?id=1518701.1518717 http://dl.acm.org/citation.cfm?doid=1518701.1518717
http://dl.acm.org/citation.cfm?id=1518701.1518717 http://dl.acm.org/citation.cfm?doid=1518701.1518717
http://linkinghub.elsevier.com/retrieve/pii/S0142694X13000744
http://linkinghub.elsevier.com/retrieve/pii/S0142694X13000744
https://doi.org/10.1145/1622176.1622213

50

[9] T. D. White, G. Fraser, and G. J. Brown, “Improving random gui testing
with image-based widget detection,” ser. ISSTA 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 307–317. [Online]. Available:
https://doi.org/10.1145/3293882.3330551

[10] D. de Souza Baulé et al., “Automatic code generation from sketches of mobile
applications in end-user development using deep learning,” CoRR, vol. abs/2103.05704,
2021. [Online]. Available: https://arxiv.org/abs/2103.05704

[11] T. Beltramelli, “pix2code: Generating code from a graphical user interface screenshot,”
CoRR, vol. abs/1705.07962, 2017. [Online]. Available: http://arxiv.org/abs/1705.07962

[12] M. Xie et al., “Uied: A hybrid tool for gui element detection,” in Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2020. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1655–1659. [Online]. Available:
https://doi.org/10.1145/3368089.3417940

[13] T. M. Thrash and A. J. Elliot, “Inspiration as a Psychological Construct,” Journal of
Personality and Social Psychology, vol. 84, no. 4, pp. 871–889, 2003.

[14] T. M. Thrash et al., “The psychology of inspiration,” Social and Personality Psychology
Compass, vol. 8, no. 9, pp. 495–510, 2014.

[15] C. Eckert and M. Stacey, “Sources of inspiration: a language of design,” Design Studies,
vol. 21, no. 5, pp. 523–538, 2000.

[16] N. Bonnardel, “Creativity in design activities,” in Proceedings of the third conference on
Creativity & cognition - C&C ’99. New York, New York, USA: ACM Press, 1999, pp.
158–165. [Online]. Available: http://portal.acm.org/citation.cfm?doid=317561.317589

[17] D. G. Jansson and S. M. Smith, “Design fixation,” Design Studies, vol. 12, no. 1, pp.
3–11, 1991.

[18] P. Siangliulue et al., “Providing Timely Examples Improves the Quantity and Quality
of Generated Ideas,” in Proceedings of the 2015 ACM SIGCHI Conference on Creativity
and Cognition - C&C ’15. New York, New York, USA: ACM Press, 2015, pp. 83–92.

[19] C. Chen et al., “From ui design image to gui skeleton: A neural machine translator
to bootstrap mobile gui implementation,” in Proceedings of the 40th International

https://doi.org/10.1145/3293882.3330551
https://arxiv.org/abs/2103.05704
http://arxiv.org/abs/1705.07962
https://doi.org/10.1145/3368089.3417940
http://portal.acm.org/citation.cfm?doid=317561.317589

51

Conference on Software Engineering, ser. ICSE ’18. New York, NY, USA: ACM, 2018,
pp. 665–676. [Online]. Available: http://doi.acm.org/10.1145/3180155.3180240

[20] T. Beltramelli, “Pix2code: Generating code from a graphical user interface screenshot,”
in Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, ser. EICS ’18. New York, NY, USA: ACM, 2018, pp. 3:1–3:6. [Online].
Available: http://doi.acm.org/10.1145/3220134.3220135

[21] A. Swearngin et al., “Rewire,” in Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems - CHI ’18. New York, New York, USA: ACM Press,
2018, pp. 1–12.

[22] K. Moran et al., “Machine learning-based prototyping of graphical user interfaces for
mobile apps,” IEEE Transactions on Software Engineering, vol. 46, no. 2, pp. 196–221,
2020.

[23] M. Xie et al., “Uied: A hybrid tool for gui element detection,” in Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2020. New York, NY, USA: ACM, 2020, pp. 1655–1659. [Online]. Available:
https://doi.org/10.1145/3368089.3417940

[24] C. Chen et al., “From ui design image to gui skeleton: A neural machine translator
to bootstrap mobile gui implementation,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. New York, NY, USA: ACM, 2018,
pp. 665–676. [Online]. Available: https://doi.org/10.1145/3180155.3180240

[25] B. Lee et al., “Designing with interactive example galleries,” in Proceedings of the 28th
international conference on Human factors in computing systems - CHI ’10. New York,
New York, USA: ACM Press, 2010, p. 2257.

[26] F. Behrang, S. P. Reiss, and A. Orso, “GUIfetch,” in Proceedings of the 5th
International Conference on Mobile Software Engineering and Systems - MOBILESoft
’18. New York, New York, USA: ACM Press, 2018, pp. 236–246. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3197231.3197244

[27] Y. Hashimoto and T. Igarashi, “Retrieving web page layouts using sketches to support
example-based web design,” in Proceedings of 2nd Eurographics Workshop on Sketch-
Based Interfaces and Modeling, 2005.

http://doi.acm.org/10.1145/3180155.3180240
http://doi.acm.org/10.1145/3220134.3220135
https://doi.org/10.1145/3368089.3417940
https://doi.org/10.1145/3180155.3180240
http://dl.acm.org/citation.cfm?doid=3197231.3197244

52

[28] D. Ritchie, A. A. Kejriwal, and S. R. Klemmer, “d.tour: style-based exploration of
design example galleries,” in Proceedings of the 24th annual ACM symposium on User
interface software and technology - UIST ’11. New York, New York, USA: ACM Press,
2011, p. 165.

[29] F. Huang, J. F. Canny, and J. Nichols, “Swire: Sketch-based user interface retrieval,”
in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems,
ser. CHI ’19. New York, NY, USA: ACM, 2019, pp. 104:1–104:10. [Online]. Available:
http://doi.acm.org/10.1145/3290605.3300334

[30] Y. LeCun and Y. Bengio, Convolutional Networks for Images, Speech, and Time Series.
Cambridge, MA, USA: MIT Press, 1998, pp. 255–258.

[31] S. Bunian et al., “Vins: Visual search for mobile user interface design,”
in Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, ser. CHI ’21. New York, NY, USA: ACM, 2021. [Online]. Available:
https://doi.org/10.1145/3411764.3445762

[32] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[33] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive instance
normalization,” in Proceedings of the IEEE International Conference on Computer Vi-
sion, 2017, pp. 1501–1510.

[34] T. Karras et al., “Analyzing and improving the image quality of stylegan,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los
Alamitos, CA, USA: IEEE Computer Society, 2020, pp. 8107–8116.

[35] T. Zhao et al., “Guigan: Learning to generate gui designs using generative adversarial
networks,” in 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 748–760.

[36] J. Chen et al., “Object detection for graphical user interface: Old fashioned or deep
learning or a combination?” CoRR, vol. abs/2008.05132, 2020. [Online]. Available:
https://arxiv.org/abs/2008.05132

[37] X. Zhou et al., “East: An efficient and accurate scene text detector,” 04 2017.

[38] N. Narayanan, N. N. A. Balaji, and K. Jaganathan, “Deep learning for ui element
detection: Drawnui 2020.”

http://doi.acm.org/10.1145/3290605.3300334
https://doi.org/10.1145/3411764.3445762
https://arxiv.org/abs/2008.05132

53

[39] D. Nikitko, “Stylegan-encoder,” https://github.com/Puzer/stylegan-encoder, 2019.

[40] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” in 3rd International Conference on Learning Representations, ICLR, 2015.

[41] J. Deng et al., “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE
Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[42] R. Zhang et al., “The unreasonable effectiveness of deep features as a perceptual
metric,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Jun 2018. [Online]. Available: http://dx.doi.org/10.1109/cvpr.2018.00068

[43] D. Birant and A. Kut, “St-dbscan: An algorithm for clustering spatial–temporal data,”
Data & knowledge engineering, vol. 60, no. 1, pp. 208–221, 2007.

[44] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” Neural Information Processing Systems, vol. 25, 01 2012.

[45] B. Deka et al., “Rico: A mobile app dataset for building data-driven design applications,”
in Proceedings of the 30th Annual Symposium on User Interface Software and Technology,
2017.

[46] M. Heusel et al., “Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” in Proceedings of the 31st International Conference on Neural Information
Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017, pp. 6629–6640.

[47] S. R. Herring, B. R. Jones, and B. P. Bailey, “Idea generation techniques among cre-
ative professionals,” Proceedings of the 42nd Annual Hawaii International Conference
on System Sciences, HICSS, pp. 1–10, 2009.

[48] D. Mounter et al., Design Systems Handbook. InVision, 2019.

[49] M. Heusel et al., “Gans trained by a two time-scale update rule converge
to a nash equilibrium,” CoRR, vol. abs/1706.08500, 2017. [Online]. Available:
http://arxiv.org/abs/1706.08500

[50] G. Jocher et al., “ultralytics/yolov5: v3.1 - Bug Fixes and Performance Improvements,”
Oct. 2020. [Online]. Available: https://doi.org/10.5281/zenodo.4154370

[51] C.-Y. Wang et al., “Cspnet: A new backbone that can enhance learning capability of
cnn,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2020, pp. 390–391.

https://github.com/Puzer/stylegan-encoder
http://dx.doi.org/10.1109/cvpr.2018.00068
http://arxiv.org/abs/1706.08500
https://doi.org/10.5281/zenodo.4154370

54

[52] K. He et al., “Spatial pyramid pooling in deep convolutional networks for
visual recognition,” CoRR, vol. abs/1406.4729, 2014. [Online]. Available: http:
//arxiv.org/abs/1406.4729

[53] F. Zhuang et al., “A comprehensive survey on transfer learning,” Proceedings of the
IEEE, vol. 109, no. 1, pp. 43–76, 2021.

http://arxiv.org/abs/1406.4729
http://arxiv.org/abs/1406.4729

55

APPENDIX A SAMPLES OF THE USER EVALUATION SLIDES

Source Image

56

Exp 1-0

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25

57

Exp 1-1

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25

58

Exp 2-1.1

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25

59

Exp 2-2

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25

60

Exp 2-3

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25

61

Exp 2-4

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25

62

Exp 3-1.2

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26

63

64

APPENDIX B USER STUDY QUESTIONS

These questions were asked before the beginning of the study :

• How long have you been working as a user experience designer?

• How many design projects have you contributed to?

• What are the biggest challenges do you consider during your design practice?

• How often do you search for examples before starting your design process (for inspiration
purposes)?

For each set of images which is related to each condition of the study, we asked practitioners
the following questions :

• What are the two things you like about the examples generated for the preliminary
design?

• What are the two things you dislike about the examples generated for the preliminary
design?

• How relevant are the design examples with regard to the preliminary design?

• How diverse are the design examples with regard to the preliminary design?

• How effective do you think these design examples can inspire the designer to improve
the preliminary design?

At the end of the session, we asked designers more general questions about their feeling and
comments about our work :

• In general, how do you think about the generated design examples?

• Supposed that someone has developed a design tool that uses this technique, how well
will this tool be integrated in your design workflow?

• Based on all designs which I showed you, which one is more effective for inspiration?
wireframes or images(real UIs and generated ones)?

• Do you have any final comments or questions?

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Problem Statement and Overall Objective
	1.2 Research Questions
	1.3 Thesis Plan

	2 LITERATURE REVIEW
	2.1 Design Inspiration
	2.2 Managing UI Design Artifacts
	2.3 StyleGAN and its Application on UI Design
	2.4 UI Components Detection

	3 STYLEGAN-BASED APPROACH FOR DESIGN EXAMPLE GENERATION
	3.1 Architecture of our StyleGAN-based approach
	3.1.1 Component 1: Latent Code Search
	3.1.2 Component 2: New Examples Synthesizer
	3.1.3 Component 3: Representative Examples Selection

	3.2 StyleGAN Training
	3.2.1 Dataset
	3.2.2 Training process

	3.3 Quantitative Evaluation
	3.3.1 Data sampling
	3.3.2 Quantitative metrics
	3.3.3 Experimental design
	3.3.4 Results

	3.4 User Evaluation
	3.4.1 Methods
	3.4.2 Results

	3.5 Discussion
	3.5.1 Style-based generation provides design inspiration in different granularity levels
	3.5.2 The visual quality of the generated image is an important factor for inspiration
	3.5.3 A diverse and relevant training dataset would help generate more insightful examples
	3.5.4 Combine generative models with other techniques

	4 COMPONENT DETECTION
	4.1 Methodology
	4.1.1 Dataset
	4.1.2 Network architecture
	4.1.3 Metrics

	4.2 Results
	4.2.1 Training Yolov5 using the VINS dataset
	4.2.2 Fine-tuning of the preliminary network using generated images
	4.2.3 Testing the preliminary network on generated images

	4.3 Discussion

	5 CONCLUSION
	5.1 Summary
	5.2 Limitations
	5.3 Future Directions

	REFERENCES
	APPENDICES

