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RÉSUMÉ 

Les aubes des moteurs aéronautiques fonctionnent dans des environnements à haute température 

et à haute pression. Par conséquent, elles sont susceptibles d'être endommagées et déformées par 

rapport à leurs formes géométriques de conception au fil du temps. Comme les aubes sont 

fabriquées dans des matériaux coûteux et difficiles à découper qui nécessitent des coûts de 

production élevés, la réparation des aubes endommagées est d'un grand intérêt pour l'industrie de 

la maintenance, de la réparation et de la révision afin de prolonger la durée de vie des aubes. Les 

systèmes de balayage optique 3D, qui fournissent un nuage de points à haute densité de la pièce à 

inspecter, sont largement utilisés pour l'inspection des aubes. Compte tenu du nuage de points 

numérisés en 3D d'une aube endommagée, l'inspection du profil de surface et de la section 

spécifique, ainsi que la construction du volume de réparation dans les régions où il manque du 

matériau, constituent un défi et sont considérées comme des sujets de recherche actifs. En pratique, 

les méthodes existantes pour l'inspection et la construction du volume de réparation des aubes 

endommagées souffrent d'un manque de précision et dépendent des interactions avec l'utilisateur. 

Cette thèse présente un cadre de calcul pour inspecter les aubes endommagées et construire la 

géométrie du volume de réparation en utilisant des données de nuages de points scannés en 3D et 

le modèle CAO original. Un algorithme d'alignement rigide entre le scanner et la CAO (scan-to-

CAD registration) est proposé pour faire correspondre automatiquement les points de données des 

régions non endommagées du nuage de points scanné avec le modèle CAO. Une nouvelle méthode 

de recherche de correspondance est présentée pour l'évaluation de la fiabilité des paires 

correspondantes dans laquelle la dissimilarité géométrique de chaque paire correspondante est 

mesurée par une évaluation groupe à groupe des propriétés géométriques du voisinage local de 

chaque point mesuré et de son point le plus proche sur le modèle CAO. Comme les aubes sont 
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inspectées par sections, une fois que le système de coordonnées de mesure est transformé en 

système de coordonnées de conception à l'aide de l'enregistrement rigide, un schéma de 

reconstruction du profil de l'aile entièrement automatique est développé pour l'évaluation de l'erreur 

géométrique spécifique à la section des profils de l'aile dans les régions non endommagées. Étant 

donné que les points de données 2D sectionnels projetés à partir de données de nuages de points 

scannés en 3D sur le plan de section ne sont pas organisés et sont dispersés, une approche de 

reconstruction du profil de l'aile en trois étapes est présentée afin d'éclaircir automatiquement les 

points de données sectionnels dispersés en utilisant une technique récursive de moindres carrés 

locaux pondérés, de générer un polygone de profil fiable à partir des données éclaircies pour 

ordonner l'ensemble de données, et d'ajuster une courbe B-spline non périodique fermée sur les 

données ordonnées. Enfin, une nouvelle approche est conçue pour construire un jumeau numérique 

sans dommage de la lame défectueuse afin de le comparer aux données de balayage et de générer 

la représentation géométrique du volume de réparation. Le jumeau numérique sans dommage est 

construit par le biais d'un schéma d'enregistrement non-rigide CAD-to-scan pour déformer 

progressivement le modèle CAD vers les régions non endommagées des données de scan tout en 

préservant la rigidité locale des données autant que possible. 
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ABSTRACT 

Aero-engine blades operate in high temperature and pressure environments; and consequently, they 

are likely to be damaged and deformed from their design geometric shapes over time. Since blades 

are made of expensive and difficult-to-cut materials requiring high production costs, 

remanufacturing of damaged blades is of great interest for the maintenance, repair, and overhaul 

industry to extend the service life of blades. Optical 3D scanning systems, due to providing a high-

density point cloud of the part to be inspected, are widely used for blade inspection. Given 3D 

scanned point cloud of a damaged blade, surface profile and section-specific inspection and 

construction of repair volume in material-missing regions are challenging and are considered active 

topics of research. In practice, the existing methods for inspection and repair volume construction 

of damaged blades suffer from the lack of accuracy and rely on user interactions. 

This thesis presents a computational framework to inspect the damaged blades and construct the 

repair volume geometry using 3D scanned point cloud data and original CAD model. A fine-tuned 

scan-to-CAD rigid alignment algorithm is proposed to automatically best-match the data points of 

the undamaged regions of the scanned point cloud with the CAD model. A novel correspondence 

search method is presented for reliability assessment of the corresponding pairs in which the 

geometric dissimilarity of each corresponding pair is measured through a group-to-group 

evaluation of geometric properties of the local neighborhood of each measured point and its closest 

point on the CAD model. Since blades are inspected in sections, once the measurement coordinate 

system is transformed into the design coordinate system using the rigid registration, a fully 

automatic airfoil profile reconstruction scheme is developed for section-specific geometric error 

evaluation of the airfoil profiles in undamaged regions. Due to the fact that the sectional 2D data 

points projected from 3D scanned point cloud data onto the section plane are unorganized and 
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scattered, a three-step airfoil profile reconstruction approach is presented to automatically thin the 

scattered sectional data points using a recursive weighted local least squares technique, generate a 

reliable profile polygon from thinned data to order the dataset, and fit a closed nonperiodic B-spline 

curve on the ordered data. Finally, a new approach is devised to construct a damage-free digital 

twin of the defective blade to compare with scan data and generate the repair volume geometric 

representation. The damage-free digital twin is constructed through a CAD-to-scan non-rigid 

registration scheme to gradually deform the CAD model towards the undamaged regions of the 

scan data while preserving the local rigidity of data as much as possible. 



ix 

 

 

TABLE OF CONTENTS 

DEDICATION .............................................................................................................................. III 

ACKNOWLEDGEMENTS .......................................................................................................... IV 

RÉSUMÉ ........................................................................................................................................ V 

ABSTRACT .................................................................................................................................VII 

TABLE OF CONTENTS .............................................................................................................. IX 

LIST OF TABLES .......................................................................................................................XII 

LIST OF FIGURES .................................................................................................................... XIII 

LIST OF ABBREVIATIONS AND SYMBOLS.................................................................... XVIII 

 INTRODUCTION ............................................................................................... 1 

1.1 Background Information and Motivation ......................................................................... 1 

1.2 3D Scanning-based Inspection of Damaged Blades ........................................................ 3 

1.3 Remanufacturing of Damaged Blades .............................................................................. 8 

1.4 Research Objectives ....................................................................................................... 10 

1.5 Thesis Scope ................................................................................................................... 12 

1.6 Thesis Structure .............................................................................................................. 13 

 LITERATURE REVIEW .................................................................................. 14 

2.1 Scan-to-CAD Rigid Registration of Damaged Blades ................................................... 14 

2.2 Airfoil Profile Reconstruction from Unorganized Sectional Data Points ...................... 19 

2.3 Repair Volume Construction .......................................................................................... 23 

 ARTICLE 1: ACCURATE REGISTRATION OF POINT CLOUDS OF 

DAMAGED AEROENGINE BLADES ....................................................................................... 27 

3.1 Abstract .......................................................................................................................... 27 

3.2 Introduction .................................................................................................................... 28 



x 

 

 

3.3 Proposed Methodology .................................................................................................. 36 

3.3.1 Overview of the proposed fine-tuned alignment .................................................... 37 

3.3.2 Curvature estimation and local neighborhood ....................................................... 39 

3.3.3 Hausdorff distance computation ............................................................................. 40 

3.3.4 Correspondence search algorithm .......................................................................... 41 

3.4 Implementation Results and Discussion ........................................................................ 44 

3.4.1 Alignment results for the point clouds of the damaged blades without noise........ 48 

3.4.2 Alignment results for the noisy point clouds of the damaged blades ..................... 52 

3.5 Conclusion ...................................................................................................................... 54 

 ARTICLE 2: AIRFOIL PROFILE RECONSTRUCTION FROM 

UNORGANIZED NOISY POINT CLOUD DATA ..................................................................... 56 

4.1 Abstract .......................................................................................................................... 56 

4.2 Introduction .................................................................................................................... 57 

4.3 Proposed Methodology .................................................................................................. 64 

4.3.1 Preliminaries ........................................................................................................... 64 

4.3.2 Thinning ................................................................................................................. 65 

4.3.3 Ordering ................................................................................................................. 73 

4.4 Results and Discussion ................................................................................................... 80 

4.4.1 Simulated input data ............................................................................................... 80 

4.4.2 Profile error evaluation ........................................................................................... 83 

4.5 Conclusions .................................................................................................................... 91 

 ARTICLE 3: CONSTRUCTION OF DAMAGE-FREE DIGITAL TWIN OF 

DAMAGED AERO-ENGINE BLADES FOR REPAIR VOLUME GENERATION IN 

REMANUFACTURING ............................................................................................................... 93 



xi 

 

 

5.1 Abstract .......................................................................................................................... 93 

5.2 Introduction .................................................................................................................... 94 

5.3 Related Works ................................................................................................................ 98 

5.4 Proposed Methodology ................................................................................................ 102 

5.4.1 Preliminaries ......................................................................................................... 102 

5.4.2 Elimination of data points of damaged regions .................................................... 103 

5.4.3 CAD-to-SCAN non-rigid matching ..................................................................... 107 

5.5 Results and Discussions ............................................................................................... 119 

5.5.1 Damage-free digital twin constructed based on the ideal point cloud (without noise) 

of simulated damaged blade ................................................................................................. 121 

5.5.2 Damage-free digital twin constructed based on the noisy point cloud of simulated 

damaged blade ...................................................................................................................... 125 

5.5.3 Damage-free digital twin of a scanned damaged blade ........................................ 127 

5.6 Conclusions .................................................................................................................. 131 

 GENERAL DISCUSSION .............................................................................. 133 

 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS .................... 137 

7.1 Conclusions .................................................................................................................. 137 

7.2 Future Work ................................................................................................................. 140 

REFERENCES ............................................................................................................................ 142 

APPENDIX ................................................................................................................................. 151 

  



xii 

 

 

LIST OF TABLES 

Table 3.1 Global RMSE of the point clouds of the damaged blades from the CAD model after each 

step of the proposed alignment scheme, and the actual (reference) global RMSE, and the 

percentage deviation of the global RMSE after each step relative to the actual global RMSE.

 ................................................................................................................................................ 51 

Table 4.1 Range of noise level and point spacing of the generated synthetic point cloud data. .... 82 

Table 4.2 Computation time of the proposed algorithm for the case shown in Figure 4.11. ......... 84 

Table 4.3 Maximum deviation (in mm) of the reconstructed airfoil profile from the actual profile 

for different levels of noise and point spacing. ...................................................................... 86 

Table 4.4 Maximum deviation of the computed centroid location (mm) from its reference location 

for different levels of noise and point spacings. ..................................................................... 89 

Table 4.5 Maximum deviation of the calculated orientation angle (deg.) from its reference value 

for different levels of noise and point spacings. ..................................................................... 90 

Table 5.1 Deviation of the actual damage-free blade (Figure 5.9(c)) from the original CAD model 

(Figure 5.9(a)) and from the constructed damage-free digital twin (Figure 5.10(a)). .......... 123 

Table 5.2 RMSE of the original CAD profile and the airfoil profiles of generated damage-free 

digital twin models from the actual damage-free profile at Z=90 mm. ............................... 124 

Table 5.3 Computation time for the construction of the damage-free digital twin models shown in 

Figure 5.11(a) and (b) using the proposed CAD-to-scan non-rigid registration. ................. 124 

Table 5.4 Deviation of the actual damage-free blade (Figure 5.10(c)) from the original CAD model 

(Figure 5.10(a)) and from the constructed damage-free digital twin (Figure 5.12(a)). ........ 126 

Table 5.5 RMSE of the original CAD profile and the generated airfoil profiles of damage-free 

digital twin models based on the synthetic noisy point cloud from the actual damage-free 

profile at Z=90 mm. ............................................................................................................. 127 

Table 5.6 Deviation of the data points of undamaged regions of the scanned point cloud from the 

CAD model (after scan-to-CAD rigid registration) and from damage-free digital twin model 

(after proposed non-rigid registration). ................................................................................ 130 



xiii 

 

 

LIST OF FIGURES 

Figure 1.1 Workflow of blade inspection and repair. ...................................................................... 1 

Figure 1.2 Initial position and orientation of the scan data relative to the CAD model................... 4 

Figure 1.3 Noisy and scattered set of 2D data points projected from 3D scanned point cloud onto 

the sectional plane Ω. ............................................................................................................... 7 

Figure 1.4 A damaged blade with the geometric shapes deviated from the original CAD geometry 

on the undamaged regions. ....................................................................................................... 9 

Figure 1.5 Proposed computational framework of 3D scanning-based virtual inspection and repair 

of damaged blades. ................................................................................................................. 12 

Figure 3.1 Outline of 3D scanning-based computer-aided inspection of a damaged blade. .......... 29 

Figure 3.2 Alignment of the point cloud of a damaged profile and its nominal model: (a) result after 

coarse alignment, (b) result after fine alignment via the standard ICP algorithm, and (c) result 

after the ideal registration process. ......................................................................................... 33 

Figure 3.3 Flowchart of the proposed fine-tuned alignment algorithm. ........................................ 38 

Figure 3.4(a) Geometric dissimilarity (𝐺𝐷) of the corresponding pairs in ascending order, and (b) 

𝐺𝐷 value of corresponding pairs versus the scaled data point index. Points and values 

belonging to damaged and undamaged regions are shown in red and blue, respectively. ..... 44 

Figure 3.5(a) Nominal CAD model, (b) error colormap of the simulated point cloud (without noise) 

of the first damaged blade, and (c) error colormap of the simulated point cloud (without noise) 

of the second damaged blade. ................................................................................................ 46 

Figure 3.6 Actual sectional RMSE values of the simulated point cloud (without noise) of (a) the 

first damaged blade, and (b) the second damaged blade. ....................................................... 48 

Figure 3.7  Deviation of post-alignment RMSE of sectional data points (without noise) from actual 

value for (a) the first damaged blade, and (b) the second damaged blade. ............................ 49 

Figure 3.8 Removed data points (in black) after the last iteration of the fine-tuned alignment for (a) 

the first blade, and (b) the second blade. ................................................................................ 52 



xiv 

 

 

Figure 3.9 Average of absolute deviations of post-alignment sectional RMSEs from actual sectional 

RMSEs for different levels of noise: (a) first damaged blade, and (b) second damaged blade.

 ................................................................................................................................................ 53 

Figure 4.1 Outline of 3D scanning-based airfoil inspection. The framework proposed for airfoil 

profile reconstruction is shown inside the orange dashed-line frame. ................................... 59 

Figure 4.2 Flowchart of the proposed thinning process. ................................................................ 67 

Figure 4.3 Illustration of weight factor computation. (a) For each sectional data point 𝑠𝑖 and its 

normal vector 𝑁𝑠𝑖, (b) all neighboring points are projected to the line l at point 𝑠𝑖. The line l 

is parallel to the normal vector 𝑁𝑠𝑖. (c) The weight factor of point 𝑠𝑖 is determined based on 

the distance of the point to its projected neighboring points cluster on the line l. ................. 68 

Figure 4.4 Projections and normal directions of point 𝑠𝑖 after local curve fitting to the query point 

𝑠𝑖 and r sectional points whose adaptive fitting domain include the point 𝑠𝑖. Thus, we have 

r+1 projected coordinates (shown in green) and normal directions for point 𝑠𝑖. ................... 72 

Figure 4.5 Normal map filtering: (a) After local curve fitting to point 𝑠𝑖 and r sectional points 

whose fitting domain include point 𝑠𝑖, there are several projected coordinates and normal 

directions for 𝑠𝑖. (b) These coordinates and vectors are mapped into a unit circle whose center 

is the mean of the projected coordinates. (c) The center of the circle is the filtered thinned 

value of point 𝑠𝑖 (denoted by 𝑝𝑖) for which the overall normal vector is 𝑁𝑝𝑖. ..................... 72 

Figure 4.6 Flowchart of the proposed profile polygon reconstruction procedure for ordering thinned 

data points. ............................................................................................................................. 74 

Figure 4.7 Profile polygon generation: (a) Using the normal vector of thinned points obtained by 

normal map filtering, each point 𝑝𝑖 is connected to its adjoined points in two sides of the 

normal direction. (b), (c) and (d) show cases of imperfect nodes (𝑝1 ∗ to 𝑝8 ∗) after profile 

polygon reconstruction. These nodes should be modified to get a reliable profile polygon. . 75 

Figure 4.8 Imperfect nodes modification: (a) For edges of the imperfect node 𝑝𝑖 ∗ the angular 

deviations 𝜃𝑖1, 𝜃𝑖2 and 𝜃𝑖3 are computed. (b) Then, in each region H and H′, constructed by 

the normal vector 𝑁𝑝𝑖 ∗, the edge with the smallest angular deviation value is selected as a 

valid edge (edges 𝑝𝑖 ∗, 𝑞1 and 𝑝𝑖 ∗, 𝑞3), and (c) the redundant edge 𝑝𝑖 ∗, 𝑞2 is removed. (d) In 



xv 

 

 

the profile polygon, if there is any node (𝑞2) with only one edge, the node and its 

corresponding edge are removed from the polygon. .............................................................. 78 

Figure 4.9 Modification of imperfect nodes of Figure 4.7. ............................................................ 78 

Figure 4.10(a) Nominal CAD model of the blade, (b) error colormap of the simulated in-service 

blade, and (c) synthetic point cloud with a noise level of 0.015 mm and point spacing of 0.1 

mm. ......................................................................................................................................... 81 

Figure 4.11 Actual and reconstructed airfoil profiles and sectional data points at the leading edge 

(LE), trailing edge (TE), suction side (SS), and pressure side (PS) of the outermost airfoil 

section of the blade (i.e., the deformed region of the blade). The noise level and point spacing 

of the point cloud data are 0.015 mm and 0.1 mm, respectively. The unit of the plots is mm.

 ................................................................................................................................................ 84 

Figure 4.12 Deviation of the reconstructed airfoil profile from the actual airfoil profile for different 

levels of noise and point spacings. Each displayed value is the mean of profile deviations in 

innermost, intermediate, and outermost airfoil sections. The error bars represent the standard 

deviation of profile errors. The unit of noise levels is mm. ................................................... 85 

Figure 4.13 Deviation of the computed centroid location from its reference location for different 

levels of noise and point spacings. Each displayed value is the mean of deviations and error 

bars represent the standard deviations. The unit of noise levels is mm. ................................ 88 

Figure 4.14 Deviation of the calculated orientation angle from its reference value for different 

levels of noise and point spacings. Each displayed value is the mean of deviations and error 

bars represent the standard deviations. The unit of noise levels is mm. ................................ 89 

Figure 5.1 Outline of 3D scanning-based repair volume generation for damaged blades. ............ 96 

Figure 5.2 Flowchart of the region growing segmentation algorithm for detecting the data points 

of the damaged regions. ....................................................................................................... 106 

Figure 5.3(a) Geometric error (𝐺𝑒) colormap of the point cloud of a simulated damaged blade with 

respect to its nominal CAD model, (b) 𝐺𝑒 values of the seed points versus the data point index 

when expanding the damaged region depicted with dashed-border rectangle through region 



xvi 

 

 

growing algorithm, and (c) the damaged region detected and removed from the point cloud 

data. ...................................................................................................................................... 107 

Figure 5.4 Closest point-to-point correspondence search procedure. Each CAD data point is then 

moved towards a corresponding measurement data point using a locally affine transformation 

matrix 𝑇𝑖. .............................................................................................................................. 109 

Figure 5.5 Incorrect correspondences between CAD data points (blue) belonging to repair volume 

region and scan data (green). ................................................................................................ 110 

Figure 5.6 Finding the corresponding point of the CAD point 𝑞𝑖 using the point-to-surface 

correspondence search: The closest measured data point (𝑝𝑖) to the point 𝑞𝑖 is found, and a 

quadric surface is fitted to the local neighboring points of 𝑝𝑖. Then, the nearest point on the 

local surface (𝑝𝑖 ∗) to the point 𝑞𝑖 is selected as the corresponding point of 𝑞𝑖. ................. 111 

Figure 5.7(a) Airfoil profile of a blade and its medial axis, and (b) the 3D mesh surface generated 

from the sectional medial axes points of CAD model. ........................................................ 112 

Figure 5.8 Flowchart of the proposed non-rigid registration method to construct the damage-free 

digital twin. ........................................................................................................................... 116 

Figure 5.9(a) Root mean squares of weighted error (𝑅𝑀𝑆𝑤𝑒) of matching points in each iteration 

of the algorithm, and (b) norm of the difference between transformation matrices of two 

successive iterations. ............................................................................................................ 118 

Figure 5.10(a) Nominal CAD model, (b) error colormap of the simulated point cloud (without 

noise) of the damaged blade, and (c) error colormap of point cloud of its actual damage-free 

blade. .................................................................................................................................... 120 

Figure 5.11(a) Error colormap (with respect to original CAD model) of the damage-free digital 

twin constructed based on the noiseless point cloud of the simulated defective blade, obtained 

by non-rigid registration process using (a) point-to-surface correspondence search (ps) and (b) 

closest point-to-point correspondence search (pp); (c) comparison between actual damage-

free profile and airfoil profiles of damage-free digital twin (DT) models, CAD profile, and 

actual damaged profile at Z = 90 mm. ................................................................................. 122 



xvii 

 

 

Figure 5.12(a) Error colormap (with respect to original CAD model) of the damage-free digital 

twin constructed based on the synthetic noisy point cloud of the simulated defective blade, 

obtained by non-rigid registration using (a) point-to-surface correspondence search (ps) and 

(b) closest point-to-point correspondence search (pp); (c) comparison between actual damage-

free profile and airfoil profiles of damage-free digital twin (DT) models, CAD profile, and 

actual damaged profile at Z = 90 mm. ................................................................................. 126 

Figure 5.13(a) The damaged blade being scanned by the structured-light scanner, (b) the scanned 

point cloud of the damaged blade (the decimated point cloud data is shown for the sake of 

better visualization), and (c) the nominal CAD model of the blade. ................................... 128 

Figure 5.14(a) Deviation of the scan data from original CAD model after fine-tuned scan-to-CAD 

rigid fine-tuned registration of [28], (b) deviation of the damage-free digital twin from original 

CAD model after CAD-to-scan non-rigid registration, and (c) repair volumes representation 

in triangulated mesh form obtained by a Boolean difference between damage-free digital twin 

and scan data. ....................................................................................................................... 130 

Figure 7.1 Workflow of the developed computational framework for 3D scanning-based virtual 

inspection and repair volume generation of damaged blades (based on the research objectives).

 .............................................................................................................................................. 138 

 



xviii 

 

 

LIST OF ABBREVIATIONS AND SYMBOLS 

List of abbreviations 

CAD Computer-Aided Design 

CAI Computer Aided Inspection 

CMM Coordinate Measuring Machine 

CNC Computer Numerical Control 

CSG Constructive Solid Geometry 

DCS Design Coordinate System 

DED Directed Energy Deposition 

DMD Direct Material Deposition 

DT Digital Twin 

GD Geometric dissimilarity 

HNN-crust Half nearest neighbor-crust 

ICP Iterative Closest Point 

k-NN k-Nearest neighbors 

LE Leading Edge 

MRO Maintenance, Repair, and Overhaul 

MCS Measurement Coordinate System 

MLS Moving Least-Squares 

MPE Maximum Permissible Error 

NN-crust Nearest neighbor-crust 

NURBS Non-Uniform Rational B-Spline 

PCA Principal Component Analysis 

PCS Prominent Cross Section 

PS Pressure Side 

RE Reverse Engineering 

RMSE Root Mean Square Error 

RWLLS Recursive Weighted Local Least Squares 

TE Trailing Edge 



xix 

 

 

SO Sub-Objective 

SS Suction Side 

SVD Singular Value Decomposition 

TC Territory Claiming 

 

List of symbols: Chapters 3 

c Quadric surface coefficients 

𝐶𝑃𝑘 Cut-off point 

𝐶𝐻𝐷̅̅ ̅̅ ̅̅  Average Gaussian curvature Hausdorff distance 

E, F, G Coefficients of the first fundamental form 

E Objective function 

𝐸𝐻𝐷̅̅ ̅̅ ̅̅  Average Euclidean Hausdorff distance 

GD Geometric dissimilarity 

𝐻𝐷̅̅ ̅̅  Average Hausdorff distance 

IDX Data point index 

𝐾 Gaussian curvature 

L, M, N Coefficients of the second fundamental form 

𝑀𝑐 Covariance matrix 

𝑁𝑃 Number of points in scan data 

𝑁𝐶𝐻𝐷̅̅ ̅̅ ̅̅  Normalized average Gaussian curvature Hausdorff distance 

𝑁𝐸𝐻𝐷̅̅ ̅̅ ̅̅  Normalized average Euclidean Hausdorff distance 

N(p) Local neighborhood of point p 

O Centroid of point cloud data 

P Scanned point cloud data 

p Measured data point 

q CAD data point 

R Rotation matrix 

S(x, y, z) Quadric surface 



xx 

 

 

SIDX Scaled data point index 

T Translation vector 

x, y, z Coordinates of a point 

 

List of symbols: Chapter 4 

c Quadric polynomial coefficients 

𝐶s WLLS fitted curves on the query point s and its neighboring point 

�̅�(𝑠) Neighborhood distance of the point 𝑠 

�̅�(𝑠) Neighborhood inner distance of the point 𝑠 

e Edge of profile polygon 

E Profile polygon edge set 

𝑓(𝑥) Quadratic polynomial 

H Neighborhood region 

I Imperfect nodes set 

𝐾 neighboring points for local curve fitting (Chapter 5) 

l Line at sectional point 𝑠 parallel to the sectional normal vector 𝑁s
⃗⃗⃗⃗  

N Number of points in scan data 

�⃗⃗�  Normal vector 

𝑁𝑝 Normal vector set of thinned sectional data points 

NB(𝜐) Local neighborhood of point 𝜐  

NB′(s) The projection of the 3D data points in NB(𝑠) 

n Number of data points projected on the sectional plane 

𝑂𝐹 Outlier Factor 

p Filtered thinned coordinate of scattered sectional point 

𝑝∗ Imperfect node 

P Thin 2D point cloud data 

q Node corresponding to incident edge of an imperfect node 

𝑞𝑘 Data point in the local quadric polynomial fitting domain 



xxi 

 

 

r Number of sectional data points whose fitting domain contain query point 𝑠 

𝑅∗ Angular deviation range for an imperfect node 

s Cross-sectional 2D data point 

�⃗�  Tangent vector 

u Standard uncertainty of data 

𝜐 Measured data point 

V Scanned point cloud data 

w Weight value 

𝜃 Angular deviation of the edge of an imperfect node from underlying curve 

𝜃∗ Angular deviation set of an imperfect node 

σ Standard deviation 

𝒩 Sectional normal vector set 

𝒮 2D scattered sectional dataset 

 

List of symbols: Chapter 5 

D Number of CAD points with the same corresponding point on scan data 

𝐷𝑒 Euclidean distance 

E Non-rigid registration objection function 

𝐸𝑑 Distance minimization term of the objective function 

𝐸𝑠 Stiffness term of the objective function 

𝐺𝑒 Geometric error 

m Number of data points sampled from CAD model 

n Number of data points of scanned point cloud 

�⃗�  Normal vector 

NB(p) Local neighborhood of point p 

𝑁𝐷𝑒 Normalized Euclidean distance 

ℕ𝑃 Scan normal vector set 

ℕ𝑄 CAD normal vector set 



xxii 

 

 

𝑁𝜃𝑒  Normalized Normal vector angular difference 

𝑝 Measured data point 

P Scanned point cloud data 

pp Point-to-point correspondence search 

ps Point-to-surface correspondence search 

𝑝∗ 
The nearest point on the local surface fitted to neighboring points of 𝑝 to the 

CAD point 𝑞 

𝑞 CAD data point 

𝑄 Sampled CAD model point cloud data 

r Stiffness weight coefficient 

{𝑅𝑑} Damaged region points 

𝑅𝑀𝑆𝑤𝑒 Root mean square of weighted error of matching points 

{𝑆} Seed points 

𝑇 Transformation matrix 

TC Territory Claiming  

thr Threshold of region growing segmentation algorithm 

w Weight value of a corresponding pair 

𝛼 Stiffness weight value  

𝜃𝑒 Normal vector angular difference 

𝛿1 Threshold of the inner loop of the non-rigid registration algorithm 

𝛿2 Termination threshold of the non-rigid registration algorithm 

 

 

  



1 

  INTRODUCTION 

1.1 Background Information and Motivation 

Aero-engine blades are designed for efficient energy conversion and operation in intense 

conditions. They are usually made of expensive difficult-to-cut materials requiring high 

manufacturing costs and produced under extremely tight design tolerances to ensure their 

functionality. Due to operation in harsh environments, blades are susceptible to fatigue crack, 

creep, corrosion, etc. which may lead to geometric deformations and material-missing damages on 

the blade surface. Any deviation of the airfoil profile from its design specifications can adversely 

affect the performance and efficiency of the aero-engine blade. Thus, blades must be inspected 

during their service life to check for their conformance to the specified tolerances. Accurate 

inspection of in-service blades is crucial to make a reliable decision on acceptance, rejection, or 

repair of inspected blades (Figure 1.1).  

Due to significant costs associated with the replacement of new parts, remanufacturing of damaged 

blades is of great interest for the maintenance, repair, and overhaul (MRO) industry to extend the 

service life of blades [1]. Around 40 % of MRO costs of an airplane are spent on aeroengine 

regeneration, mainly remanufacturing of the damaged blades [2]. The damaged blades must be 

inspected accurately to reduce the high scrap rate of the blades and figure out an effective strategy 

for remanufacturing the repairable blades. 

Data Acquisition Inspection Decision RemanufacturingBlade

No Need for 

Repair

Scrap 

Repair 

 

Figure 1.1 Workflow of blade inspection and repair. 
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To perform accurate inspection and remanufacturing of a damaged blade, MRO sectors should be 

able to address the following two main questions: 

1. How to check for the geometric variations of the damaged blade (i.e., out of tolerance with 

respect to surface profile tolerance and section-specific tolerances of the blade)? 

2. How to generate an accurate representation of repair volume geometry for additive and 

subtractive restoration of the repairable blade? 

As illustrated in Figure 1.1, for inspection of a blade, it is required to collect the inspection data 

from the blade surface. Traditionally, contact probes on a coordinate measuring machine (CMM) 

have been used for data acquisition. Although these sensors are known to be very accurate, they 

are relatively slow and need complicated inspection path planning. Inspection is a crucial task 

during different lifecycle phases of a blade from manufacturing to end-of-life stages. Therefore, a 

high-speed inspection process is preferred for maintenance, repair, and overhaul application to 

collect inspection data from the free-form surface of a blade in a short period of time. 

Nowadays, blade manufacturers and MRO industry mostly prefer using non-contact optical 

scanners for inspection data acquisition. The 3D laser scanning systems (e.g., structured light 

scanners) provide hundreds of thousands of data points from the inspected part in a short period of 

time (i.e., just a few seconds) [3]. Although the digitized data mostly are not as accurate as the data 

of touch trigger probes, application of the non-contact measurement systems is increasing to 

quickly capture the free-form geometry of blades in the form of point cloud data. 

The motivation of this research is to enhance the accuracy and automation in damaged aero-engine 

blades inspection and remanufacturing with the 3D scanned point cloud data captured from the 

damaged blade surface. 
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1.2 3D Scanning-based Inspection of Damaged Blades 

As blades are the critical parts of an aero-engine, blade inspection is a crucial task in order to verify 

the conformity of the measured blade to the specified tolerances and ensure efficient energy 

conversion. The blade tolerances are typically specified and evaluated in sections. In general, there 

are three types of geometric tolerances and dimensions for section-specific evaluation of the blades: 

blade position and orientation tolerances (i.e., three-dimensional tolerances [4]), blade dimensions, 

and profile tolerance [5]. Blade orientation means the angular relationship of the airfoil to the 

attachment plane and orientation tolerance is defined as the permitted angular deviation of the 

airfoil profile from its basic orientation [5, 6]. Position tolerance is also defined as the allowable 

deviation between practical and theoretical positions of the stacking point (i.e., centroid). Blade 

dimensions evaluated for airfoil inspection are airfoil thickness dimensions, chord length, 

minimum radius along the leading and trailing edges, etc. Profile tolerance is used to identify the 

form error of the airfoil profile and defined as the permitted deviation of the measured profile from 

the theoretical airfoil profile. In the case of in-service and damaged blades where the blade surface 

includes significant geometric deformations and/or material-missing defects, evaluation of section-

specific deviations of undamaged airfoil profiles from design specifications is an essential step 

before repair volume computation and remanufacturing process tool-path planning. In addition, the 

airfoil profiles should be inspected after additive and subtractive restoration to validate the 

conformance of the airfoil profiles in deposited regions to the specified tolerances. 

By emerging the optical 3D scanning systems, this technology has become of great interest for data 

capturing and geometric inspection of complicated free-form surfaces of airfoil blades. The first 

problem in the 3D scanning-based inspection of a damaged blade is that the collected point cloud 

of the damaged blade surface is not located in the same coordinate frame with the CAD model for 
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any surface profile and section-specific inspection. Scan data lie in the measurement coordinate 

system (MCS) and the CAD model is located in the design coordinate system (DCS) (Figure 1.2). 

To address this challenge, the measured point cloud of the damaged blade must be transformed 

into the design coordinate system using a rigid body transformation. This operation is called either 

registration, or alignment, or localization in the context of Computer-Aided Inspection (CAI) [7]. 

All these three terms (i.e., registration, alignment, and localization) refer to the same process and 

are used interchangeably. The main goal in the rigid registration process is to bring the scan data 

in a common coordinate system with the nominal CAD model so that the two surfaces can be 

compared as well as the section-specific geometric errors of the airfoils can be evaluated.  

 

Figure 1.2 Initial position and orientation of the scan data relative to the CAD model. 
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Iterative closest point (ICP) [8] is one of the most popular computational methods for the 

localization of free-form surfaces. The ICP algorithm iteratively minimizes the sum of the squared 

distances between the scanned data points and their closest points on the CAD model using a rigid 

body transformation to best match two datasets. The original ICP algorithm and other purely 

Euclidean distance-based least-squares minimization approaches are precise when aligning two 

identical geometric shapes. Therefore, when the scanned point cloud of a damaged blade is aligned 

to its CAD model using the original ICP algorithm, due to significant geometric nonconformities 

between scan data and the CAD model in defective areas, the registration process can be affected 

by the unreliable correspondences defined in damaged regions. In practice, the original ICP 

algorithm attempts to best-match the whole point cloud of the damaged blade (i.e., material-missing 

regions and undamaged areas) to the CAD model to globally minimize the least-squares objective 

function. This computation introduces averaging-out errors in rigid alignment of the damaged blade 

where the estimated errors between two datasets at the damaged regions become smaller than the 

actual errors, and the estimated errors at the undamaged regions become larger than the actual 

errors. It should be noted that the averaging-out error values depend on the size and the geometry 

of damages on the scanned damaged blade. When the number of unreliable corresponding pairs 

belonging to the damaged regions is larger and/or the distance between the unreliable 

corresponding pairs is greater, the averaging-out error values become larger. In order to avoid the 

averaging-out errors resulted from the original ICP algorithm, there is a definite need to detect and 

eliminate the corresponding pairs belonging to damaged regions from the scan-to-CAD rigid 

registration process. In addition to the geometric nonconformities between two datasets, the noise 

level of the measurement data can affect the scan-to-CAD rigid registration outcomes. Thus, the 

registration algorithm should be robust in the presence of different noise levels. 



6 

 

 

The second problem in quality inspection of damaged blades is to reconstruct the airfoil profile 

from unordered projected 2D sectional data points for section-specific geometric error evaluation. 

Once the scanned point cloud of the damaged blade is registered to the CAD model and both 

datasets are in the design coordinate system (DCS), a smooth airfoil profile should be reliably 

reconstructed from section-specific inspection data points to check conformance of the airfoil 

profile to the specified tolerances [6]. Due to the fact that the scanned point cloud is a set of 

unorganized noisy points all over the blade surface rather than at the pre-specified sections, the 2D 

cross-sectional data points for pre-specified sections are extracted from the 3D point cloud data 

through the projection of nearby data points onto the sectional plane [9, 10]. In general, the airfoil 

profile is approximated using a nonperiodic B-spline closed-curve fitting method. In order to fit a 

B-spline curve to the sectional data points, it is a need to compute parameter values for 2D data 

points. However, for the projected set of data points from the 3D scanned point cloud, the order of 

points is unknown for parametrization (Figure 1.3). Khameneifar and Feng [9] ordered the sectional 

data points of a 3D scanned point cloud of a newly manufactured blade based on the corresponding 

closest points on the CAD model. As Figure 1.3 illustrates, due to the considerable deformations 

on the surface of in-service blades or undamaged regions of damaged blades, the projected 

sectional points from 3D scanned point cloud are completely unorganized and scattered so that it 

would not be possible to order sectional data points through closest corresponding points search on 

the CAD profile.  

In addition to the underlying geometry of the sectional data points, there are mainly two other 

factors affecting the performance of airfoil profile reconstruction methods i.e., measurement noise 

level and point density. As the real scanned point cloud contains measurement noise, the accuracy 

of the reconstructed airfoil profile could be affected by any level of noise. The point cloud density 
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is also important when reconstructing the airfoil profile from a 2D sectional dataset. For a small 

number of sectional data points, the reconstructed airfoil profile may not be able to capture the 

actual underlying geometry of the blade; and consequently, the section-specific geometric error 

evaluation of the airfoil profile becomes error-prone. On the other hand, for a large number of 

sectional data points, the computational efficiency of the airfoil profile reconstruction will reduce.  

The fundamental challenge for section-specific geometric error evaluation of damaged blades is to 

develop a fully automatic methodology to reconstruct the airfoil profile from the scattered 2D 

sectional data set with high performance in the presence of different measurement noise and point 

density.  

 

Figure 1.3 Noisy and scattered set of 2D data points projected from 3D scanned 

point cloud onto the sectional plane Ω. 
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1.3 Remanufacturing of Damaged Blades 

In this study, remanufacturing is defined as restoring the defective aeroengine blade to a like-new 

condition so that the geometric shape of the repaired blade is preserved within specified tolerances. 

The development of Hybrid manufacturing provides an effective technical approach for 

remanufacturing damaged blades in which additive manufacturing (i.e., DED) is employed to fill 

up the material-missing regions and subtractive manufacturing (i.e., CNC machining and grinding) 

is utilized to regenerate the original geometric shape of the airfoil profiles in deposited areas.  

Accurate repair volume construction is the key to guarantee an accurate toolpath generation for 

reliable additive and subtractive processes. Once the 3D scanned point cloud of the damaged blade 

is registered to its CAD model, the geometric representation of the repair volume would be 

constructed for remanufacturing of the repairable defective blade. In practice, the repair volume is 

generated by performing a Boolean operation to extract the difference between the scan data of the 

damaged blade and its nominal model i.e., original CAD model [11, 12] or scan data of an unused 

blade [13]. However, as illustrated in Figure 1.4, under extreme working conditions, the geometric 

shapes of aero-engine blades in undamaged regions deviate from the original geometry so that the 

CAD model or intact blade point cloud no longer represents the current geometric shape of the 

defective blade. Thus, employing the original CAD model or intact blade point cloud for Boolean 

operation causes inaccurate repair volume generation and consequently, considerable discontinuity 

at the interface of the repaired area and unrepaired regions of the blade. Here, the fundamental 

challenge is how to take the deformations of the undamaged regions to account in repair volume 

construction.  
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Figure 1.4 A damaged blade with the geometric shapes deviated from the original 

CAD geometry on the undamaged regions. 

To address the original CAD-based repair volume construction problem, some researchers have 

tried to deform the original CAD airfoil profiles based on the sectional profile information obtained 

from scan data of the defective blade, and then construct the repaired region geometry through 

interpolation or extrapolation of modified CAD airfoil profiles [14, 15]. As another solution, 

reverse engineering (RE)-based methodologies are utilized to construct the geometry of blade 

surface in damaged regions. In the RE-based methods, the airfoil profiles are reconstructed in 

undamaged regions of the scan data of defective blade; and then, the repair surface geometry in the 

material missing region is generated through sweeping a surface across the defective region using 

the measured airfoil profiles and a guide curve [16, 17].  

Employing only a limited number of sectional data in undamaged regions of the defective blade 

for constructing the blade surface in the material missing area or deforming the original CAD 

model may lead to incorrect repair volume geometric representation. In addition, interpolation or 

extrapolation of cross-section curves for damage region reconstruction is an error-prone process. 

Geometric deviation 

Geometric deviation 

Material-missing 

regions 
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Thus, there is a definite need to devise an accurate methodology to construct the geometric 

representation of the repair volume while providing a smooth continuity between repaired and 

unrepaired regions. Employing the whole scan data instead of only a limited number of sectional 

data is also essential to generate a reliable repair surface geometry in the material missing region 

of the damaged blade.  

1.4 Research Objectives 

The overall objective of this research is to create a computational framework of virtual inspection 

and repair that can automatically check the conformance of the airfoil profile to the specified 

tolerances and yield the geometric representation of the repair volume from a 3D scanned point 

cloud of the damaged blade (Figure 1.5).  

Once the blade is scanned and the point cloud data is captured for inspection of the damaged blade, 

the 3D scanned point cloud is not located in the same coordinate frame with the CAD model. Due 

to the fact that the rigid body transformation obtained by original ICP-based registration methods 

may be affected by geometric nonconformities between scan data and CAD model, the data points 

of the damaged regions should be eliminated from the registration process. Thus, as an early 

research concentration, the first sub-objective of this thesis is:  

First sub-objective (SO1): Develop an accurate scan-to-CAD rigid registration scheme to 

automatically align the point cloud of damaged aero-engine blades with the CAD model.  

Since the airfoil blades tolerances are typically specified and evaluated in sections, it is essential to 

ensure correct reconstruction of the airfoil profile from unorganized and noisy 2D data points 

projected from 3D scanned point cloud data onto the section plane. Therefore, for the second sub-

objective of this research, we focus on: 
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Second sub-objective (SO2): Devise a fully automatic methodology to reconstruct the airfoil 

profile from unorganized 2D sectional data points for section-specific geometric error evaluation 

in undamaged regions of the defective blade. 

The reliable and accurate construction of the geometric representation of the repair volume in 

material missing regions of the damaged blade is the key to generate the repair tool-paths to deposit 

correct geometry on damaged regions via the DED technique and regenerate the original geometric 

shape of the airfoil profiles in deposited areas by adaptive machining process. The repair volume 

is constructed through a Boolean difference between the scan data and a defect-free reference 

model of the damaged blade. Thus, the third sub-objective of this thesis is: 

Third sub-objective (SO3): Develop a method to generate a damage-free digital twin of the 

defective blade to ensure accurate and reliable construction of the repair volume geometric 

representation of the damaged areas (i.e., material-missing regions). 

As illustrated in Figure 1.5, integrating these three sub-objectives as a computational framework 

enables to virtually inspect damaged blades and generate the repair volume for MRO applications. 
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Figure 1.5 Proposed computational framework of 3D scanning-based virtual inspection and 

repair of damaged blades. 

1.5 Thesis Scope 

This research seeks to develop a computational framework for virtual inspection and repair volume 

generation of damaged aero-engine blades. Numerical and experimental case studies have been 

conducted to validate the proposed framework. In this thesis, the input to the computational 

framework is a smooth and simplified scan data of simulated damaged blade which is not 

contaminated by outliers particularly at the high-curvature features i.e., trailing edge and leading 

edge. However, for the experimental case studies, the raw scan data of the blade (contaminated by 

outliers at the high-curvature features) is given as input of the computational framework.  

Also, it is assumed that the measurement uncertainty of 3D scanned point cloud data is given. 

It should be noted that all algorithms and functions of the virtual inspection and repair framework 

are implemented using MATLAB software. 
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1.6 Thesis Structure 

Following the present introduction, Chapter 2 reviews the relevant work in the literature on 

damaged aeroengine blades inspection and repair volume construction methodologies. As 

discussed earlier, for section-specific inspection of a damaged blade it is essential to bring the 

measured point cloud in a common coordinate system with the nominal CAD model using an 

alignment approach. Thus, Chapter 3 is dedicated to introduce a new fully-automated method for 

scan-to-CAD rigid registration of the measured point cloud to the nominal CAD model. In addition, 

the performance of the proposed method is evaluated in the presence of various noise levels and 

compared with that of existing approaches. The performance of the rigid registration method 

proposed in Chapter 3 is examined for an experimental case study with the real scan data and 

presented in Appendix A. In Chapter 4, a novel method is proposed to automatically reconstruct 

the airfoil profile from unorganized noisy sectional data points of the measured blade for section-

specific geometric errors evaluation of profile in undamaged areas. The performance of the 

proposed airfoil profile reconstruction approach is also evaluated for different typical levels of 

measurement noise and density of 3D scanned point cloud data. Chapter 5 presents a new approach 

to construct a damage-free model of the defective blade for repair volume geometric representation. 

A CAD-to-scan non-rigid registration technique is proposed to deform the CAD model to best-

match to the scanned point cloud in undamaged regions. Finally, the conclusion of this thesis and 

the proposed future works are presented in Chapter 6.  
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 LITERATURE REVIEW 

This chapter reviews the relevant works in the literature. Each section discusses the existing 

methodologies on each sub-objective of this research work. Section 2.1 presents the existing 

methods for rigid registration of scanned point cloud of the damaged blade to its nominal model 

(SO1: scan-to-CAD rigid registration). Section 2.2 reviews the related works on how to reconstruct 

a smooth 2D curve from unorganized noisy sectional data points for airfoil profile tolerance 

analysis with respect to the CAD model (SO2: section-specific geometric error evaluation of airfoil 

profiles). Finally, Section 2.3 discusses the existing methods for the generation of the blade surface 

geometry in defective regions (i.e., material missing areas) to yield the repair volume geometric 

representation (SO3: damage-free digital twin construction). 

2.1 Scan-to-CAD Rigid Registration of Damaged Blades 

Initially, the collected point cloud of a blade lies in the measurement coordinate system (MCS) 

which is different from the design coordinate system (DCS). For any surface profile or section-

specific inspection of the damaged blades, it is essential to align these two coordinate frames. 

Registration is defined as to bring the measured point cloud in a common coordinate system with 

the nominal CAD model. In practice, the rigid registration methods for matching the scanned point 

cloud to its CAD model can be divided into three main categories i.e., feature-based methods, ICP-

based methods, and other methods. 

Feature-based alignment methods extract the geometric features from the collected data and CAD 

model to transform measurement coordinate system into design coordinate system using these 

features. The “3-2-1” approach (or six-point principle method) is a commonly used feature-based 

method to establish a reference frame for the part using regular features (e.g. planner surfaces and 
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cylindrical features). At first, three points are measured from the first datum to determine a plane; 

then, two points are measured from the second datum to establish the second plane perpendicular 

to the first datum plane; and finally, one point is measured from the last datum perpendicular to the 

first two datum planes [18, 19]. 

Hsu et al. [5, 18] proposed an iterative algorithm based on 3-2-1 alignment approach to establish 

the coordinate system. They developed an iterative coordinate setup process to decrease the 

measuring time and improve the accuracy of the process. Makem et al. [20, 21] proposed a virtual 

inspection system to evaluate the dimensions and geometrical parameters of a blade model. They 

extracted six points on the blade surface (three points on concave surface, two points on the central 

axis of cylindrical feature at end of blade, and one point located on the root block) to match the 

finite element model of a forged blade to its nominal model via 3-2-1 approach. In some 

applications, high precision fixtures are used for rigid alignment of free-form geometry of blades 

[17, 22, 23]. Because of the simple geometry of fixture features (e.g. ball, plane, sphere, etc.), it is 

relatively easy and straightforward to obtain the homogeneous transformation matrix and bring the 

measurement coordinate system into the CAD coordinate system. Fixtures normally require 

precision manufacturing for both mating surfaces as well as the reference features located by a 

precision fixture for registration of the part to be inspected [24]. 

Despite the fact that feature-based approaches are simple and computationally efficient, these 

methods would not be able to provide an accurate matching result when registration of free-form 

surfaces such as aero-engine blades [20]. Feature-based registration approaches usually are applied 

as the rough matching step for ICP-based or other rigid registration methods [25, 26]. 

Iterative closest point (ICP) [8] is one of the most popular computational methods for the 

localization of free-form surfaces. The ICP algorithm iteratively minimizes the sum of the squared 
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distances between the scanned data points and their closest points on the CAD model using a rigid 

body transformation to best-match two datasets.  

Since the ICP-based algorithms employ the closest point concept for establishing the 

correspondence between the two sets, its convergence depends on the initial pose of the two. If the 

two sets are significantly misaligned, the original ICP may converge towards local minima instead 

of global minimum [27]. Generally, the ICP-based registration of scanned point cloud can be 

divided into two steps: coarse and fine registration. The purpose of coarse registration is to find a 

proper initial estimation of the rigid transformation between two datasets and bring both sets close 

to each other before ICP registration [28]. Practically, the rough registration could be carried out 

through various matching methodologies such as geometric features matching [25, 29-33], 

statistics methods [28, 34, 35], heuristic algorithms [36] and etc. Some researchers have tried to 

extract the blade features like center points of the trailing edge and the leading edge of airfoil 

sections, the maximum inscribed circle and maximum thickness of airfoil sections, chord line of 

airfoil sections, and etc. for coarse registration. Blade features usually are extracted manually on 

the airfoil sections [30] or 3D scanned point cloud [29]. Others have conducted the coarse 

registration by aligning the intrinsic features of the underlying surface shape of the point cloud data 

extracted through shape analysis with the Delaunay triangulation [37], or through feature points 

picked based on shape descriptor values [33, 38]. Principal component analysis (PCA), as a 

statistical technique, is used to estimate the principal axes of the two datasets for rough alignment 

[39]. The PCA-based coarse alignment brings the two datasets close to each other by translating 

the scan data to a position where it shares the same centroid with its nominal model and then 

rotating it to align its principal axes with those of the nominal model [28, 35]. The Genetic 
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algorithm also has been applied for rough matching of the scanned point cloud a blade to its 

nominal model [36]. 

After initially matching two geometric representations using an appropriate coarse registration, the 

ICP algorithm iteratively best-matches the whole point cloud to the CAD model. The main idea 

behind applying the ICP algorithm is to iteratively minimize the sum of the squared distances 

between measured data points and their corresponding points on the CAD model. A rigid body 

transformation, comprising a translation vector T and a rotation matrix R, is applied to match every 

measured point 𝑝𝑖 with its corresponding point 𝑞𝑖 on the CAD model by minimizing a least-squares 

objective function [8]. A closed form solution for the minimization of the point-to-point error 

metric can be obtained using the singular value decomposition [40] which has been described in 

Appendix A. In addition to point-to-point minimization of the ICP algorithm, point-to-plane [41] 

and point-to-surface [42] minimization strategies are used by variants of the ICP algorithm for rigid 

body transformation computation [38]. Various studies have tried to remove the effects of outliers 

from ICP-based registration through the M-estimation principle [43] and signal-to-noise ratio 

parameter [35, 44].   

Optimization methods and heuristic algorithms are other widely used approaches for rigid 

registration of scanned point cloud to CAD model such as the quasi-Newton optimization algorithm 

[45], fruit fly optimization algorithm [46, 47], Genetic algorithm [48, 49], and improved Wale 

optimization algorithm [50]. 

When registration of damaged blades, the original ICP algorithm attempts to best-match the whole 

scan data with its nominal model both in damaged and undamaged regions to globally minimize 

the least-squares objective function. Due to the fact that the least-squares minimization approaches 

are precise for registration of two identical geometric shapes, any nonconformities between the 
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scanned point cloud and CAD model leads to averaging-out the individual distances between 

corresponding pairs for the sake of minimizing the objective function. As a result, the approximated 

errors at the material-missing areas become smaller than the actual errors, and the estimated errors 

at the non-defective regions become larger than the actual errors. Recently, various studies have 

been carried out to eliminate the alignment averaging-out errors through the elimination of data 

points of damaged regions from the registration process. Zhang et al. [13] and Liu et al. [51, 52] 

extracted the airfoil sections in the non-defective regions of the polygonal mesh model of the 

scanned damaged blade to align the point cloud data and nominal model. They employed the 

geometric features of extracted cross-sectional data, i.e., convex hull centroid and the centroid of 

minimal area bounding-box, for best-matching the two datasets. Calculation of the centroid 

location from the polygonal model is likely to be subject to area bias and centroid miscalculation 

[6]. In the related work, Li et al. [29] proposed a modified ICP algorithm to align the scan data with 

the nominal model based on the curvature and distance of each measured data point from its 

corresponding closest point on the nominal model. The point-to-point evaluation of geometric 

features of corresponding pairs makes the algorithm sensitive to noise. The performance of the 

methods presented in [13, 29, 51] depends on the user-defined thresholds. In addition, these 

methods require manual settings for the alignment of two geometric representations. 

The literature review conducted on existing rigid registration of damaged blades reveals that there 

is still a gap towards reducing the least-squares minimization averaging-out errors, automating the 

rigid alignment, and enhancing the robustness of the registration algorithm in the presence of noise.  

The scan-to-CAD rigid alignment methodology in this thesis thus aims to automatically best-match 

the point cloud of the damaged blade with its CAD model while avoiding the averaging-out errors 

resulted from corresponding pairs of damaged regions. The proposed algorithm starts with a rough 
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matching to initially estimate the transformation between the collected dataset and the CAD model 

and bring two datasets sufficiently close to each. Then, the original ICP is developed for fine 

alignment of the whole scanned point cloud (i.e., damaged and undamaged regions) to the CAD. 

This thesis proposes a new fine-tuned alignment scheme integrating into coarse and fine 

registrations in order to remove the averaging-out errors resulted from the original ICP through 

best-matching only the reliable data points of undamaged regions with the CAD model. The fine-

tuned registration algorithm applies a novel correspondence search to detect the unreliable 

measured data points belonging to the defective regions and their corresponding points on the CAD 

model based on the geometric properties of the local neighborhood of points. Hausdorff distance 

is utilized for a group-to-group geometric dissimilarity evaluation of each corresponding pair in 

terms of Euclidean distance and curvature. The devised correspondence search algorithm combines 

the Euclidean Hausdorff distance and curvature Hausdorff distance to define the geometric 

dissimilarity function and automatically computes the geometric dissimilarity threshold value 

based on the data itself in order to identify and remove the unreliable corresponding pairs from the 

alignment process without the need for user-defined parameters. 

2.2 Airfoil Profile Reconstruction from Unorganized Sectional Data Points 

Reconstruction of airfoil profile from unorganized scattered sectional data points is a fundamental 

task in the 3D scanning-based section-specific inspection of the aeroengine blades to check the 

conformance of the airfoil profile to the specified tolerances [6]. 

Existing solutions for smooth curve reconstruction from a noisy and unorganized 2D point cloud 

can be classified into three main categories: global nonlinear optimization approaches to fit a B-

spline curve, heuristic algorithms, and skeleton extracting-based approaches.  
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In the first category, a B-spline curve is fitted to the scattered 2D data points through solving a 

nonlinear optimization problem in which the parameter value at each point, number and location 

of the control points, and knot vector are the unknowns of the problem. The iterative least-squares 

minimization methods usually are applied to solve the non-linear optimization problem [53, 54]. 

The prevalent method for solving this problem is to separately optimize the parameter values and 

control points. In each iteration of the curve estimation algorithm, the parameter values are 

determined by projecting each sectional data point onto the B-spline curve, and then, the location 

of control points of the fitted curve is computed by minimizing the least-squares objective function 

for the known parameter values [53, 55]. Some researchers have also tried to find the optimal 

solution for parameters and control points simultaneously using Gauss-Newton method [56] and 

L-BFGS optimization method [57]. 

The non-linear optimization algorithms will converge properly only if a suitable initial curve 

sufficiently close to the target shape is given [58, 59]. Moreover, due to sensitivity of the curve 

reconstruction result to outliers, it is essential to remove the outliers from the scattered set of data 

points. 

As another solution, the heuristic algorithms are utilized to approximate a B-spline curve from 2D 

scattered data points. These algorithms (e.g., genetic algorithm [60], Simulated Annealing [61], 

and bat algorithm [62]) usually compute the optimal values of unknown variables required for B-

spline curve fitting i.e., parameter values of each data point, control points, and B-spline knots. 

These methods are computationally expensive and can be affected by noise and outliers. 

Instead of solving the global nonlinear optimization problem or applying heuristic algorithms, 

some research works in literature have tried to address the curve reconstructing on the scattered 

data points through refinement (skeletonize) of the unorganized 2D datasets and fitting an 
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appropriate B-spline on the refined data points. The moving least-squares (MLS) method is one of 

the useful approaches for smoothing and curve approximation from scattered data points [63]. Lee 

[64] applied a variant of MLS technique to iteratively project each unorganized data point on the 

fitted curve to its neighborhood. The support domain size is specified based on covariance analysis 

of noisy data points to prevent the adverse effects of unwanted points in the local curve fitting. The 

algorithm expands the support domain gradually to get a suitable radius for which the correlation 

of data points within the support domain is larger than a pre-specified value. The presented method 

by Lee [64] requires several user-defined parameters and thresholds which makes this method far 

from being fully automatic.  

Cheng et al. [65] filtered out the noise from the 2D data points using a clustering approach and 

estimating new points close to the underlying geometry. The new data points are decimated and 

employed to construct the output polygonal curve using NN-crust [66] algorithm. Ohrhallinger et 

al. [67] employed the Fitconnect [68] method to reconstruct connectivity between noisy points 

using HNN-crust algorithm [69], and then the ordered consistent local fits are denoised by blending 

them together. Some other methods mainly crust and β-skeleton [70] have also been employed in 

the literature to generate the polygonal curve from 2D unorganized data. In general, the sampling 

density is an influential parameter on the polygon reconstruction from 2D datasets, which is defined 

based on the local feature size of data [70]. 

Lin et al. [71] reconstructed the curve from the 2D unorganized data points using an interval B-

spline curve. In their method, 2D data points are clustered into a rectangle sequence to determine 

the order of the data points which implies the shape of the point cloud. Then, the quasi-centric point 

sequence and the boundary curves of the point set are computed based on which a centric interval 

B-spline curve is generated as the final reconstructed curve. 
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Wang et al. [72] constructed a quadtree of 2D data points and smoothed the grid-like boundaries 

of the quadtree using a modified Laplacian method, and then extracted the skeleton of the point set 

through the Voronoi diagram of the smoothed boundaries. Rupniewski [73] selected a number of 

balls centered at the noisy point set and iteratively reduced their number while moving towards the 

original curve with a minimum density. Then the rest of the sparse data points can be ordered for 

polygonal path generation. 

All the skeleton extracting-based approaches need user interactions for selecting several parameters 

and thresholds which should be assigned properly to obtain reliable results. Therefore, the user-

defined parameters make the existing methods not readily available for airfoil profile 

reconstruction for computer-aided inspection of blades. In this application, automation is crucial. 

In summary, the existing methods for curve reconstruction from noisy and unorganized 2D data 

points require some manual interactions and user-defined information such as an initial curve (aka 

active curve) in non-linear optimization methods or thresholds and parameter values in heuristic 

algorithms and skeleton extracting-based approaches. The value of these parameters highly 

depends on the profile geometry, noise, and density of the point set and should be adjusted for 

different case studies to get reliable results.  In addition, there is no benchmark to help find a 

reliable set of parameter values and thresholds by trial and error for different datasets. Since 

automation is crucial in the computer-aided inspection of in-service and damaged blades, there is 

a definite need for the development of a new approach for fully automatic reconstruction of airfoil 

profile from unorganized noisy 2D sectional data points for section-specific geometric error 

evaluation. 
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This thesis aims to devise a fully-automated approach for reconstructing the airfoil profiles from 

unorganized and noisy sectional data points via thinning of the data points, ordering of thinned 

data, and fitting a smooth B-spline curve to ordered data points. 

2.3 Repair Volume Construction 

According to the review of the existing literature, repair volume in material-missing regions of 

damaged blades can be constructed by performing a Boolean difference between the scanned point 

cloud and a reference model which should represent the actual underlying geometry of the 

undamaged regions of the defective blade. The existing solutions for constructing the reference 

model can be classified into three categories: employing the original CAD model (or scan data of 

an intact blade), modifying the CAD model by utilizing the sectional profile information obtained 

from scan data, or applying reverse engineering-(RE) based methodologies to construct the 

reference model using the measured airfoil profiles.  

The common approach to yield the repair volume of the material-missing region is to perform a 

Boolean difference between the scanned point cloud of the damaged blade and its original CAD 

model or scan data of an unused blade. Various representations of the CAD model and scanned 

point cloud of the damaged blade are usually applied for Boolean operation such as point cloud 

data [11], mesh model [51], voxel model [74], B-rep model [12] and etc. The 3D scanned point 

cloud of an intact blade also can be applied for comparison with the point cloud of the damaged 

blade [13, 52]. Some studies also attempted to construct the repair volume through the cross-

sectional comparison between the damaged blade and CAD model. Liu et al. [51] proposed a shape-

adaption algorithm to compare the polygonal cross-sections of the damaged blade with those of the 

nominal model to detect the defect segments, and then trim the nominal CAD model using the 

fracture surface to construct the repair volume. Zhang et al. applied single-dexel modeling [13, 75] 
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and tri-dexel modeling [52] for damage detection and repair volume construction by comparing the 

intersection of casting rays with the nominal model and damaged blade model. Although the 

original CAD model and scan data of an unused blade are facile and easy-to-use models for 

comparison with the measured data of the damaged blade, the generated repair volume geometry 

in material-missing zones will not provide smooth and reliable continuity with unrepaired regions. 

Due to extreme working conditions, the geometric shapes of aero-engine blades significantly 

deviate and therefore CAD model or unused blade point cloud no longer represents the actual 

geometric shape of the defective blade. In addition, the captured data from the intact blade surface 

are contaminated by measurement noise and outliers. 

In order to address the mentioned errors resulted from original CAD-based repair volume 

construction, some studies have tried to utilize the sectional profile information in undamaged 

regions close to the martial-missing areas to transform the deformations on the damaged blade onto 

the CAD model. These research works aimed to deform the CAD airfoil profiles corresponding to 

the undamaged regions of the defective blades in order to match these profiles to the measured 

sectional data; and then, interpolate or extrapolate the deformed CAD airfoil profiles to generate 

the actual geometric representation of defective blade in the material-missing region [14, 15, 76]. 

Praniewicz et al. [14] proposed an adaptive repair strategy in which the mean lines of the CAD 

profiles are manipulated to match to the corresponding mean lines on the measured profiles 

belonging to undamaged regions in order to get the deformation rules between two airfoil profiles 

(i.e., CAD profile and measured profile). Then, the CAD profile geometry within the damaged 

region is obtained via interpolation of the previous transformations to alter the final profile of the 

nominal model. Wu et al. [76] defined a fitting function based on the material mechanic 

deformations (i.e., bending and torsional deformations) of blades under the aerodynamic loads to 
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fit the mapping relationship between the blade section curve deformation and blade height. The 

spline interpolation method is utilized to provide a transition between the undamaged and repaired 

regions of the welded blade. Yan et al. [15] combined the rigid registration with an offset factor in 

the normal direction of each point to calculate the rigid and deformation transformations between 

cross-section curves of the CAD model and measured data in undamaged regions. The geometric 

shapes of material-missing region are reconstructed through interpolating or extrapolating the 

airfoil profiles. Employing only several numbers of 2D measured airfoil profiles of the damaged 

blade to project the deformations onto the CAD airfoil profiles is not accurate enough for repair 

volume generation. Also, the accuracy of 2D cross-section airfoil profiles constructed using 

measurement data can significantly affect the reliability of constructed surface in the material 

missing area. Finally, interpolation or extrapolation of cross-section curves for surface 

reconstruction is a challenging and error-prone process which may not provide a reliable transition 

between repaired and unrepaired regions mainly for blade tip damages. 

In the third category of methods, the geometric representation of repair volume is generated via 

scan data and independent from the original CAD model. In this approach, the repair surface 

geometry is created using RE-based methodologies in which the measured airfoil profiles lying 

immediately outside the damaged area are swept over the defective region. Gao et al. [77] and 

Yilmaz et al. [17] constructed the repair surface geometry by sweeping the measured airfoil profiles 

over the damaged region via a guide curve. Li et al. [29], Wilson et al. [16], and Piya et al. [78] 

extracted the Prominent Cross Sections (PCS) from the mesh model of the damaged blade and 

exported them into the CATIA to construct the blade surface. They computed the repair volume 

through a Boolean difference between the RE-based constructed surface and the mesh surface of 

the scanned damaged blade. Although RE-based methods do not need the CAD model for repair 
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volume generation, the results of these methods can be affected by the quality of reconstructed 

airfoil profiles from the sectional data. In addition, RE-based methods utilize only a limited number 

of measured airfoil profiles in undamaged regions to generate a defect-free model of the defective 

blade, which is not accurate enough to yield the repair volume geometric representation. Finally, 

since only the airfoil profiles in top and bottom sides of material missing regions (not the data 

points in the vicinity of the damage zone) are employed for surface reconstruction, the constructed 

repair volume geometry cannot provide a smooth geometric transition at the interface of the 

constructed repair patch and surface of the damaged blade model.  

In summary, all of the existing methods for repair volume generation employ the original CAD 

model or only a limited number of sectional profile information of scan data to construct the repair 

surface, which may lead to an inaccurate repair volume generation with unsmooth continuity at 

boundaries of the repaired region with unrepaired areas. This thesis aims to devise a novel 

methodology in which, instead of the limited number of sectional data, the whole scanned data 

points in undamaged regions of the defective blade are utilized to construct a damage-free digital 

twin of the defective blade for repair volume construction. A CAD-to-scan non-rigid registration 

algorithm is developed to gradually deform the CAD model to match with the scanned data while 

maintaining the local rigidity as much as possible.  
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3.1 Abstract  

This paper presents a novel method for aligning the scanned point clouds of damaged blades with 

their nominal CAD model. To inspect a damaged blade, the blade surface is scanned and the scan 

data in the form of a point cloud is compared to the nominal CAD model of the blade. To be able 

to compare the scanned point cloud and the CAD model, they must be brought to a common 

coordinate system via a registration algorithm. The geometric nonconformity between the scanned 

damaged blade and its nominal model stemmed from the damaged regions can affect the 

registration (alignment) outcome. The alignment errors then cause wrong inspection results. To 

prevent this from happening, the data points from the damaged regions have to be removed from 

the alignment calculations. The proposed registration method in this work can accurately and 

automatically eliminate the unreliable scanned data points of the damaged regions from the 

registration process. The main feature is a correspondence search technique based on the geometric 

properties of the local neighborhood of points. By combining the average curvature Hausdorff 

distance and average Euclidean Hausdorff distance, a metric is defined to locally measure the 

dissimilarities between the scan data and the nominal model and progressively remove the 

identified unreliable data points of the damaged regions with each iteration of the fine-tuned 
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alignment algorithm. Implementation results have demonstrated that the proposed method is 

accurate and robust to noise with superior performance in comparison with the existing methods.  

3.2 Introduction 

Aero-engine blades are likely to be damaged during aircraft flights, as they operate in harsh 

environments. Since they are expensive parts, the blades are repaired to be used again [79]. A 

crucial factor in the remanufacturing of damaged blades is that the repaired blade must preserve its 

original geometric shape within certain tolerances specified on the nominal model in order to 

achieve the efficiency as high as the newly manufactured one [80]. In general, the blade 

remanufacturing process starts with optical 3D scanning of the damaged blade to capture the 

geometry of the blade in the form of point cloud data. The reason for using optical 3D scanners 

(e.g., structured light scanners) is that these non-contact data acquisition techniques yield high-

density point clouds (of at least hundreds of thousands of points) in a short period of time (i.e., just 

a few seconds) [3, 81]. Once the blade is scanned and the point cloud data is captured, very often 

the blade’s point cloud is compared with the nominal CAD model of the blade in order to inspect 

the part, detect the defects, and construct the repair volume for repairing the defective regions 

through direct metal deposition (DMD) or hybrid remanufacturing consisting of DMD and 

machining processes [17, 75]. 

During the inspection of the damaged blades, in addition to the detection of defects, the inspection 

process checks for the geometric variations of the blade at the undamaged regions, namely out of 

tolerance with respect to the surface profile tolerance and the section-specific tolerances of the 

blade [9, 82-84], which helps to decide whether the blade is repairable or is scrap and should be 

replaced with a new part [79]. Figure 3.1 shows an outline of 3D scanning-based computer-aided 

inspection of a damaged blade.  



29 

 

 

Figure 3.1 Outline of 3D scanning-based computer-aided inspection of a damaged blade. 

The 3D scanned point cloud data of the damaged blade must be compared to the nominal CAD 

model of the blade for inspection. The first problem faced in the inspection is that the point cloud 

data from 3D scanning is not located in the same coordinate frame with the CAD model. The CAD 

model is in the design coordinate system (DCS), while the scanned point cloud is in the 

measurement coordinate system (MCS), which has an arbitrary relative position and orientation 

with respect to the DCS, as shown in Figure 3.1. A registration algorithm brings the measured point 

cloud in a common coordinate system with the nominal CAD model so that the two surfaces can 

be compared and a colormap representing the geometric errors of the part with respect to the CAD 

model can be generated (Figure 3.1). In the context of CAD-based inspection, registration 

algorithms are also called alignment or localization algorithms [7]. All these three terms 

(registration, alignment, localization) refer to the same process and are used interchangeably. The 

registration of point clouds of damaged blades is challenging and by no means a trivial task, 

because of the significant geometric nonconformity between the nominal CAD model and the 
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measured point cloud in damaged regions. Accurate registration between the nominal CAD model 

and the scanned point cloud of the damaged blades is the key to guarantee an accurate geometric 

inspection, while the registration results can be significantly affected by the defects, depending on 

the location, size, and geometry of the damages on the blade surface. 

The Iterative Closest Point (ICP) algorithm [8] and its variants [41, 42] are the most widely used 

methods for the registration of the scanned point cloud data of freeform surfaces including turbine 

blades [29, 35, 38, 85] and will be particularly addressed in this work. The ICP algorithm involves 

least-squares minimization, where the objective function (E) is defined as follows: 
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where R is a rotation matrix, 𝑻 is a translation vector, 𝑝𝑖 is any point of the scanned point cloud 

data and 𝑞𝑖 is its corresponding point on the CAD model. 𝑁𝑃 is the number of points in the point 

cloud. In essence, the ICP algorithm iteratively minimizes the combined squared distances between 

the measured data points and their closest points (in Euclidean distance sense) on the nominal 

model using a rigid body transformation comprising a translation and a rotation of measured points 

[8]. While the original ICP method [8] used the distance between a point in one set and its 

corresponding point on the other set, Chen and Medioni [41] utilized the distance between a point 

and the computed tangent plane at its corresponding point. Mitra et al. [42] utilized the distance 

between a point and the approximated local quadric surface at its corresponding point. It is known 

that any of these binary correspondence assignments are affected by noise and outliers in the point 

cloud data [86, 87]. Various studies have tried to exclude the outlier data points from the 

registration procedure using the least median squares regression estimation [43, 88], the M-

estimation principle [89], or through heuristic techniques [90]. 
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Since the ICP-based algorithms employ the closest point concept for establishing the 

correspondence between the two sets (i.e., data points set and the nominal model), its convergence 

depends on the initial alignment of the two. If the two sets are significantly misaligned, the 

convergence of the ICP algorithm cannot be guaranteed, since it may fall into the trap of a local 

solution [27]. For this reason, it is necessary to bring the two sets close to each other in a step 

known as coarse alignment. Some of the previous works [29-31, 91] have manually extracted and 

employed certain geometric features for the coarse alignment of the scanned point cloud and the 

CAD model. For example, the blade features like center points of the trailing edge and the leading 

edge of airfoil sections, chord line of airfoil sections, etc. can be extracted and used for the coarse 

alignment. Others have achieved the coarse alignment by aligning the intrinsic features of the 

underlying surface shape of the point cloud data extracted through shape analysis with the 

Delaunay Triangulation [37], or through feature points picked based on shape descriptor values 

[38, 92]. The reliable extraction of feature points from noisy point clouds is not a trivial task and 

remains a topic of further research. 

Principal component analysis (PCA) has been demonstrated to be an effective solution to the 

problem of coarse alignment of the point cloud data in blade inspection (i.e., for the specific 

geometry of the airfoil blades) [35]. This statistical technique estimates the principal axes of a 

dataset. In the PCA method, it is assumed that the origin is at the centroid of the dataset and the 

three principal axes are the three eigenvectors of the covariance matrix 
c

M  calculated as follows 

[39]: 
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where 𝑝𝑖 is the ith point of the dataset P, 𝑁𝑃 is the number of data points, and O is the centroid of 

the dataset P. The PCA-based coarse alignment brings the two datasets close to each other by 

translating the scan data to a position where it shares the same centroid with its nominal model and 

then rotating it to align its principal axes with those of the nominal model. 

Once the two geometric representations are reasonably close, the ICP algorithm carries out the fine 

alignment. Least-squares minimization of the ICP method exhibits a high sensitivity to geometric 

nonconformities between the two geometric representations to be aligned. Therefore, when it 

comes to the alignment of the scanned point cloud of a damaged blade to its nominal CAD model, 

the measured data points of damaged regions affect the alignment results of the ICP. In each 

iteration of standard ICP, the algorithm attempts to best-match the data points in both damaged and 

non-defective (undamaged) regions with the corresponding points of the nominal model and 

globally minimize the least-squares objective function. This computation leads to averaging out 

the individual distances between corresponding pairs for the sake of minimizing the objective 

function. As a result, the estimated errors at the damaged regions become smaller than the actual 

errors, and the estimated errors at the undamaged regions become larger than the actual errors. 

Figure 3.2 shows the alignment between the point cloud data of the airfoil profile of a damaged 

blade and its nominal model to demonstrate the averaging-out errors. This figure illustrates the 

problem on a 2D profile for the sake of better visualization; nonetheless, the same situation of 

averaging-out errors occurs in 3D.  

Figure 3.2(a) depicts the coarse alignment result where the point cloud data gets sufficiently close 

to the nominal model. Registration results after the fine alignment using the standard ICP and ideal 

fine alignment are respectively shown in Figure 3.2(b) and 3.2(c). As it can be seen, employing the 

standard ICP algorithm for fine registration results in averaging-out errors in the alignment process 
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leading to smaller estimated errors than the actual ones in the damaged region and larger errors 

than actual in the undamaged regions [29], while an ideal alignment method should avoid these 

errors by best-matching only the measured data points of non-defective regions with the nominal 

CAD model.  

 

Figure 3.2 Alignment of the point cloud of a damaged profile and its nominal model: (a) result 

after coarse alignment, (b) result after fine alignment via the standard ICP algorithm, and (c) 

result after the ideal registration process. 
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In a related work, Li et al. [29] have discussed the above-mentioned problem of registration using 

the standard ICP and proposed a modified ICP algorithm to best-match the point cloud of a 

damaged part and its nominal model. Their proposed correspondence search approach is based on 

the evaluation of the curvature and distance of each measured point from its corresponding closest 

point on the nominal model. Their method uses two thresholds associated with the curvature 

constraint and the distance constraint that must be manually defined by the user. The performance 

of this method depends on the user-defined thresholds for curvature and distance constraints. In 

general, the point-to-point correspondence makes the algorithm more sensitive to the datasets 

variations. Zhang et al. [13] proposed a method based on the comparison of the cross-sectional 

overlapping area. They extracted an airfoil section in the non-defective region by the intersection 

of the polygonal mesh model of the scanned blade with a sectional plane, then aligned the scanned 

model and the nominal model by translating the dataset to a position where the former shares the 

same position of the convex hull centroid of the extracted cross-section with the latter. Once 

translated the dataset, they rotated the dataset around the convex hull centroid to achieve the 

optimum angle that maximizes the overlapping area between the damaged model cross-section and 

the nominal model cross-section. Similar to Zhang et al. [13], Liu et al. [51] used the cross-sectional 

overlapping area-based technique but with the multi feature-fitting method in which several cross-

sections were used for the registration process instead of only one cross-section. Their algorithm 

computes the centroid of the polygonized cross-sectional contour and the centroid of the minimal 

area bounding-box as the features of each cross-section, and then best matches the feature points 

of cross-sections of the two models (i.e., scan data and its nominal model). Calculation of the 

centroid location of the airfoil section based on the polygonal model is likely to be subject to an 

error caused by biased area calculations [6]. In addition to area bias, measurement noise can also 
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contribute to the errors of the centroid calculation [6]. Besides, these methods require manually 

setting the position of the planes that intersect the models in the undamaged regions.  

In summary, the existing methods for alignment of point clouds of damaged blades either apply a 

point-to-point correspondence search approach to find the relationship between the scanned point 

cloud and the nominal model, which makes the correspondence search sensitive to the variations 

of the datasets, or they involve several intermediate calculations of airfoil sections features based 

on polygonal models, which introduces the aforementioned errors to the overall alignment 

procedure. In addition, the existing methods are not fully automatic approaches, as they require 

user-defined thresholds or other parameters that must be set manually.  

This paper addresses the mentioned averaging-out errors resulted from the original ICP algorithm 

and proposes a novel fine-tuned alignment method to avoid these errors. The idea behind the 

proposed method is to incorporate measures of geometric dissimilarity in the correspondence 

search method in order to detect and remove the data points belonging to the damaged regions of 

the damaged blade and their corresponding points on the nominal model in order to avoid the 

averaging-out issue. Two main features of the proposed method are as follows:  

 The proposed correspondence search algorithm uses two metrics, namely curvature Hausdorff 

distance and Euclidean Hausdorff distance, in the local neighborhood of the corresponding 

pairs in order to remove each dissimilar pair (the query point and its corresponding point on 

the CAD model) from the alignment process. A directionally-balanced local neighborhood is 

established around each query point of the point cloud by the Territory Claiming (TC) 

algorithm [93], as further explained in Section 3.3.2, and then the group-to-group dissimilarity 

evaluation of the points in the local neighborhood identifies the dissimilar pair. The philosophy 

behind the proposed group-to-group dissimilarity evaluation is that one point by itself does not 
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help much for capturing the geometric variations, but when we gather a group of points (the 

query point and the points in its local neighborhood), they can capture the variations of the 

underlying surface more reliably. This significantly improves the capability of detecting and 

removing the unreliable pairs of points from the alignment process. 

 The proposed method is fully automatic, as the algorithm automatically computes the required 

cut-off point based on the data itself in order to identify and remove the points from damaged 

regions without the need for any user-defined parameter. We explain the cut-off point 

identification approach in Section 3.3.4. 

3.3 Proposed Methodology  

The overall alignment procedure includes three main steps to be taken in the following order: 1) 

coarse alignment using the PCA method [39], 2) fine alignment via the standard ICP algorithm [8], 

and 3) fine-tuned alignment proposed in this paper. As explained earlier, in the coarse alignment 

step, PCA is employed to bring the scanned point cloud data sufficiently close to the CAD model. 

Then, in the next step, the standard ICP algorithm iteratively tries to align the point cloud data and 

the CAD model. Up to the end of this second step, the alignment procedure is the same as the ones 

traditionally used, as it was discussed in the introduction section. Although the ICP algorithm 

provides a relatively close alignment between the two sets, averaging-out errors prevent it from 

yielding accurate results (Case studies of Section 3.4 present the results of ICP fine alignment and 

compare it to the registration results after the proposed fine-tuned alignment). Therefore, the 

particularly important fine-tuned alignment step is proposed in this paper to remove the alignment 

averaging-out errors through the elimination of data points of damaged regions from the 

registration process and best-matching only the reliable data points of undamaged regions with the 
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CAD model in an iterative way. Section 3.3.1 gives an overview of the proposed fine-tuned 

alignment method, and the details of the algorithm are explained in the next subsections. 

3.3.1 Overview of the proposed fine-tuned alignment 

The fine-tuned alignment algorithm mainly includes two steps: correspondence search and 

transformation (i.e., translation and rotation matrices) calculation. A flowchart of the proposed 

fine-tuned alignment algorithm is shown in Figure 3.3. The inputs to the fine-tuned alignment 

algorithm are as follows:  

- The measured point cloud data aligned with the CAD model through the standard ICP.  

- The point-sampled CAD model hereinafter called CAD model data. The algorithm obtains this 

point cloud by uniform sampling of the nominal CAD model (i.e., the NURBS surface) with 

the average point spacing of the sampled CAD model point cloud data equal to the measured 

point cloud data. The reason for keeping the same average point spacing for the two datasets is 

to analyze the same surface area on both the nominal surface and the underlying surface of the 

scan data for the subsequent curvature and distance analysis. 

- The local neighborhood and the Gaussian curvature at each data point of the measured point 

cloud and the CAD model data. This will be explained in detail in Section 3.3.2. 
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Figure 3.3 Flowchart of the proposed fine-tuned alignment algorithm. 

Correspondence search is the key to identifying the unreliable pairs in order to remove them and 

improve the accuracy of the alignment process. To detect and eliminate the dissimilar pairs in the 

damaged areas, it is necessary to analyze the local geometric properties in the vicinity of points. 

The proposed algorithm compares the geometric properties of the local neighborhood of each 

measured data point with those of its nearest point on the CAD model to compute the geometric 

dissimilarity between the pair. Using this approach, a group-to-group evaluation of geometric 

properties is applied to assess the reliability of each pair. Hausdorff distance is utilized to compute 

the closeness between the local neighborhood of each measured data point and that of its closest 

point on the CAD model in terms of Euclidean distance and curvature. We use curvature because 

it is the intrinsic geometric property of a surface that can represent changes of the surface shape, is 
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independent of the global coordinate frame, and is invariant to the rigid body transformation. 

Euclidean distance computes the positional distance and the curvature distance calculates the 

changes of the surface shape of the underlying local surface between each measured point and its 

corresponding closest point on the CAD model. By combining the curvature Hausdorff distance 

(CHD) and Euclidean Hausdorff distance (EHD), a geometric dissimilarity function is defined to 

measure the closeness between scanned point cloud data and the CAD model. Using the proposed 

geometric dissimilarity function for correspondence search, unreliable pairs with high geometric 

dissimilarity values are eliminated from the registration process; and consequently, averaging-out 

errors resulted from the original ICP algorithm are removed.  

Once the reliable points are kept, the algorithm computes the rigid body transformation consisting 

of the rotation R and the translation T that minimizes the sum of the squared error between the 

corresponding closest points of the two datasets, just like in the original ICP as in Equation (3.1). 

Then, the computed rotation and translation are applied to the points to be registered. The proposed 

fine-tuned alignment algorithm employs a similar stopping criterion as in the original ICP based 

on the global root mean square error of matching points. The algorithm terminates the iteration 

when the change in the root mean square error between the current iteration and the last iteration 

falls below a threshold [8]. 

3.3.2 Curvature estimation and local neighborhood 

We estimate surface curvatures via local quadric surface fitting, which is considered as one of the 

accurate and robust techniques for curvature estimation, especially when dealing with noisy point 

clouds [94]. For each point 𝑝𝑖 and its local neighborhood, the underlying surface can be 

approximated by fitting, in a least-squares sense, the generic quadric surface of Equation (3.3) to 

the neighboring points of 𝑝𝑖. 
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The fitted quadric surface can be used to estimate the surface curvatures at point 𝑝𝑖. The closest 

point 𝑝0 on the quadric surface S to the point 𝑝𝑖 is calculated; the surface curvatures are computed 

for the surface S at 𝑝0 and assigned back to the point 𝑝𝑖. The Gaussian curvature K of the quadric 

surface S at point 𝑝0 is calculated by Equation (3.4): 
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(3.4) 

where E, F, and G are the coefficients of the first fundamental form, and L, M, and N are the 

coefficients of the second fundamental form at 𝑝0 [95]. For further details on curvature estimation, 

readers are referred to [94]. 

In practice, the accuracy of the estimated curvatures directly depends on the computed local 

neighborhood of points around the point of interest, especially in the case of noisy point clouds 

because of the uneven distribution of data points. It is important to establish a balanced 

neighborhood of points for unbiased local quadric surface fitting and curvature estimation [94]. In 

the present study, the Territory Claiming (TC) algorithm is applied for establishing the local 

neighborhood of each point for both curvature estimation and the calculation of Hausdorff 

distances. The TC algorithm yields a local neighborhood that covers the entire local surface around 

the query point in a directionally-balanced way and is robust towards noise [93]. 

3.3.3 Hausdorff distance computation 

The Hausdorff distance is a mathematical metric to measure how far two sets are from each other. 

We employ the average Hausdorff distance to check closeness between the local neighborhoods of 

corresponding pairs. Average Hausdorff distance is more stable with respect to outliers, thus better 
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shows the geometric relationships between two sets than maximal Hausdorff distance in the 

presence of noise [96, 97]. The average Hausdorff distance ( ( , )HD A B ) between two sets A and B is 

calculated by Equation (3.5) [97]: 

min min
( , ) b B a Aa A b B

a b b a
HD A B

A B

  
  




 

 

(3.5) 

where | . | denotes the cardinality of a set, and || . || denotes the distance between elements of the 

sets (i.e., points), which can be determined by various distance definitions. This formulation is 

applicable for the computation of closeness between two datasets in terms of any geometric 

parameters such as Euclidean distance, curvature, etc.  

For each measured point 𝑝 and its corresponding closest point 𝑞 on the CAD model, the average 

Hausdorff distance is computed between neighboring points 𝑁(𝑝𝑖) of measured point 𝑝 and 

neighboring points 𝑁(𝑞) of point 𝑞. With the objective of detecting the geometric nonconformities 

in the damaged regions, the Gaussian curvature Hausdorff distance can detect the shape changes 

between local neighborhoods of the corresponding pairs of the scan data and the CAD model, while 

the Euclidean Hausdorff distance compares them based on positional distance. Therefore, both 

average Gaussian curvature Hausdorff distance (𝐶𝐻𝐷̅̅ ̅̅ ̅̅ ) and average Euclidean Hausdorff distance 

(𝐸𝐻𝐷̅̅ ̅̅ ̅̅ ) are computed for correspondence search between the scanned point cloud data and the 

nominal model. 

3.3.4 Correspondence search algorithm 

In the proposed correspondence search algorithm, a combination of 𝐶𝐻𝐷̅̅ ̅̅ ̅̅  and 𝐸𝐻𝐷̅̅ ̅̅ ̅̅  is applied for 

evaluation of dissimilarity between the local neighborhoods of each corresponding pair. This 

algorithm employs a dissimilarity deduction approach to eliminate the unreliable pairs from the 
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alignment process. The algorithm includes the following steps as shown in the flowchart of Figure 

3.3: 

Step 1: In the kth iteration of the fine-tuned alignment algorithm, for each measured point 𝑝 find 

the closest point 𝑞 on the CAD model. 

Step 2: For each corresponding pair (𝑝, 𝑞), calculate the average curvature Hausdorff distance 

𝐶𝐻𝐷̅̅ ̅̅ ̅̅ (𝑁(𝑝),𝑁(𝑞)) and average Euclidean Hausdorff distance 𝐸𝐻𝐷̅̅ ̅̅ ̅̅ (𝑁(𝑝),𝑁(𝑞)) between 

neighboring points of 𝑝 and 𝑞 (i.e., 𝑁(𝑝) and 𝑁(𝑞)).   

Step 3: Normalize 𝐶𝐻𝐷̅̅ ̅̅ ̅̅  and 𝐸𝐻𝐷̅̅ ̅̅ ̅̅  values using min-max normalization method of Equation (3.6): 

( ( ), ( )) min( )
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max( ) min( )
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(3.6) 

This normalization scales 𝐶𝐻𝐷̅̅ ̅̅ ̅̅  and 𝐸𝐻𝐷̅̅ ̅̅ ̅̅  values into the interval [0, 1] and makes the two variables 

unitless.  

Step 4: Calculate the geometric dissimilarity 𝐺𝐷(𝑝, 𝑞) between each corresponding pair (𝑝, 𝑞). The 

proposed measure of geometric dissimilarity, defined by Equation (3.7), combines the normalized 

average curvature Hausdorff distance ( ( ), ( ))NCHD N p N q and the normalized average Euclidean 

Hausdorff distance ( ( ), ( ))NEHD N p N q .  

( , ) ( ( ), ( )) ( ( ), ( ))GD p q NCHD N p N q NEHD N p N q   (3.7) 

Step 5: Compute the cut-off point 𝐶𝑃𝑘 based on the GD values of all the corresponding pairs. If 

𝐺𝐷(𝑝, 𝑞) < 𝐶𝑃𝑘 is satisfied, point 𝑝 is considered to be in the undamaged region, and the 
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corresponding pair (𝑝, 𝑞) is retained. If the condition 𝐺𝐷(𝑝, 𝑞) < 𝐶𝑃𝑘 is not met for a point 𝑝, then 

the algorithm concludes that the point belongs to a damaged region as it has a relatively large 

dissimilarity, thus the algorithm removes the data point and its corresponding point. 

To calculate the cut-off point, 𝐶𝑃𝑘, in each iteration of the fine-tuned alignment algorithm, after 

computation of the geometric dissimilarity for all corresponding pairs, first the algorithm sequences 

the data points in ascending order of GD values. The GD versus the data point index (shown in 

Figure 3.4(a)) is a rotated L-curve. The corner of the L-curve separates the plot into two parts: a 

part that mainly includes data points with relatively large GD values belonging to damaged regions 

(shown in red in Figure 3.4) and a part that predominantly includes the points from undamaged 

regions with relatively small GD values (shown in blue in Figure 3.4). We thus propose to calculate 

the corner of the L-curve and set its corresponding GD value as the 𝐶𝑃𝑘 value. To calculate the 

corner of the L-curve, the algorithm finds the point on the L-curve with the minimum distance from 

the point 𝑃𝑘, shown in Figure 3.4(b). Since the data points indices have a broad range of values, to 

ensure that the computation of corner point is independent of the index scale, it is required to scale 

the data point index range into the interval [min(𝐺𝐷), max(𝐺𝐷)] to have both data point indices 

and 𝐺𝐷 in the same range of values as shown in Figure 3.4(b).  

The min-max normalization method of Equation (3.8) is used to obtain the values of the scaled data 

point index (SIDX):  

( min( )(max( ) min( ))
min( )

max( ) min( )

IDX IDX GD GD
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X
D

D D

 
 


 

(3.8) 

where IDX is the data point index. Employing the scaled data point indices and sorted 𝐺𝐷 values, 

the point 𝑃𝑘 is defined as [max (SIDX), min (𝐺𝐷)].  
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Figure 3.4(a) Geometric dissimilarity (𝐺𝐷) of the corresponding pairs in ascending order, and 

(b) 𝐺𝐷 value of corresponding pairs versus the scaled data point index. Points and values 

belonging to damaged and undamaged regions are shown in red and blue, respectively. 

3.4 Implementation Results and Discussion 

Numerical case studies have been conducted to validate the proposed alignment method and 

compare it with existing approaches. For such validation and comparison, we use synthetic point 

cloud data generated by sampling simulated damaged blades. This is because actual deviation 

values between the simulated damaged blades and their nominal CAD model are known that can 

be used as the benchmark against which the registration outcomes can be compared.  

The blade CAD model was created with the overall dimensions of the blade roughly corresponding 

to a cuboid of 45 mm in length, 15 mm in width, and 105 mm in height. To follow a typical blade 

surface design, a twist of 25 degrees from the blade bottom to tip was introduced by incrementally 

twisting the airfoil sections from the bottommost to the topmost section. To simulate the damaged 

blade surface, a systematic error was first superimposed onto the nominal blade surface, then 

certain defects were added on the surface. The systematic error was of a sinusoidal variation with 

the random amplitudes between 0.010 and 0.035 mm, which was superimposed onto the airfoil 
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sections of the CAD model in the direction of the profile normal to emulate the combination of the 

typical manufacturing errors on the blade surface and the form deviations of the used blade during 

its service. It should be noted that these form deviations are different from the defects of the 

damaged blade. Next, geometric defects were added to the airfoil sections to simulate damages on 

the blade tip at the trailing edge as well as the pressure side of the blade surface. Using the NURBS 

surface interpolation of the airfoil sections data points, a simulated damaged blade surface was 

created for which the deviations from the CAD model are known and can be used as a reference. 

Then, the simulated damaged blade surface was randomly sampled to generate an ideal point cloud 

(without noise). Figure 3.5(a) shows the nominal CAD model. Figure 3.5(b) and 3.5(c) show the 

point clouds sampled from the two simulated damaged blades with their error colormap (based on 

the absolute deviations) with respect to the nominal CAD model. The point clouds of Figure 3.5(b) 

and 3.5(c) contain 61,165 points and 61,964 points, respectively. As can be seen in Figure 3.5(b) 

and 3.5(c), the simulated damaged blades contain voids and tip damage, which are common 

material-missing type damages on the damaged blades of aircraft engines. In order to investigate 

the effect of damage size on the results, we made the damaged regions of the second simulated 

damaged blade (Figure 3.5(c)) larger than the first simulated damaged blade (Figure 3.5(b)).  

Real scanned point cloud data contain measurement noise. Therefore, the synthetic point clouds 

should also include the measurement noise for resembling the real scanned point cloud data. In 

order to generate noisy point clouds of the damaged blades, Gaussian deviates with different levels 

of known standard deviation (with the distribution’s mean at zero for all cases) were superimposed 

onto the ideal point cloud in random directions. Using this approach, noisy point clouds with the 

standard deviation of noise equal to 0.01, 0.02, 0.03, 0.04 and 0.05 mm were generated (10 sets for 
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each level of noise). The specified noise level was decided based on the recent studies on the 

metrological performance of 3D scanners, in particular, structured light scanners [98]. 

The origin of the CAD coordinate system is at the centroid of the bottommost airfoil section (at 

Z=0) as can be seen in Figure 3.5(a).  To introduce the initial misalignment to the synthetic point 

clouds, the point clouds were moved to an arbitrary position and orientation with respect to the 

CAD model via a rigid body transformation (i.e., with translation and rotation). The initial 

misalignment, position (𝑋0, 𝑌0, 𝑍0) and orientation (𝜃𝑥, 𝜃𝑦, 𝜃𝑧), of the synthetic point cloud data is 

set as (𝑋0, 𝑌0, 𝑍0) = (-20, -20, 20) mm and (𝜃𝑥, 𝜃𝑦, 𝜃𝑧) = (0.2, -0.3, 0.5) radian. 

 

Figure 3.5(a) Nominal CAD model, (b) error colormap of the simulated point cloud (without 

noise) of the first damaged blade, and (c) error colormap of the simulated point cloud (without 

noise) of the second damaged blade. 
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Here, we compare the alignment results of the proposed method with those of the existing methods, 

namely the standard ICP algorithm [8], Zhang et al.’s method [13], Liu et al.’s method [51], and 

Li et al.’s method [29]. The standard ICP-based alignment method contains two main steps: rough 

and fine alignment. PCA method and the original ICP algorithm have been used, respectively, for 

rough and fine matching, as in [35]. The point-to-point error metric was utilized for the definition 

of the least-squares objective function to be minimized. The iteration is terminated when the change 

of the registration global error falls below the specified threshold 𝜇 = 10−6.The registration global 

error is defined as the root mean square error (RMSE) of scanned point cloud data from the nominal 

model after alignment. The thresholds used in each of the existing methods are the values 

recommended in the related references. 

To locally investigate the alignment errors, the point cloud data are sectioned by 20 equidistant 

sectional planes from bottom (Z=5 mm) to top (Z=100 mm) of the blades and the alignment errors 

are analyzed for nearby data points of each sectional plane. Sectional planes are parallel to the XY-

plane of the design coordinate system (nominal CAD model) and the data points in 0.1 mm distance 

from each sectional plane are specified as sectional data. The actual sectional error is defined as 

the root mean square error (RMSE) of sectional data points from the nominal model when both the 

sampled point cloud of the damaged blade and the CAD model are in the design coordinate system 

(before adding the initial misalignment to the data) as illustrated in Figure 3.5(b) and 3.5(c). Figure 

3.6(a) and 3.6(b) show the actual sectional RMSE values for 20 sets of sectional data points of the 

first and the second simulated damaged blades of Figure 3.5(b) and 3.5(c), respectively. After 

alignment, the RMSE of the same sectional data points of the point cloud from the nominal model 

is calculated and compared to the actual sectional RMSE values. The deviation between the two is 

attributed to the alignment error. 
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Figure 3.6 Actual sectional RMSE values of the simulated point cloud (without noise) of (a) the 

first damaged blade, and (b) the second damaged blade. 

3.4.1 Alignment results for the point clouds of the damaged blades without 

noise 

Figure 3.7(a) and 3.7(b) plot the deviation of the post-alignment sectional RMSE values from the 

actual sectional RMSEs for the point clouds (without noise) of the first simulated damaged blade 

(Figure 3.5(b)) and the second simulated damaged blade (Figure 3.5(c)), respectively. The results 

of the proposed method and the other four techniques are shown in the figure. It should be noted 

that the deviation is calculated as the post-alignment sectional RMSE minus the actual sectional 

RMSE for the sectional data points corresponding to each sectional plane. This way the deviation 

is a signed value, which can better show the averaging-out error.  
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Figure 3.7  Deviation of post-alignment RMSE of sectional data points (without noise) from 

actual value for (a) the first damaged blade, and (b) the second damaged blade. 

As can be seen in the plots of Figure 3.7, the post-alignment sectional RMSE values of the original 

(standard) ICP method in damaged regions are smaller than the actual RMSE values and in 

undamaged regions are larger than the actual RMSE values. As discussed earlier, the standard ICP 

algorithm globally minimizes the least-squares objective function, which causes these averaging-

out errors. This effect is even more noticeable for the second simulated damaged blade containing 

larger damages, as the post-alignment sectional RMSEs of original ICP significantly deviate from 

the actual sectional RMSEs (Figure 3.7(b)). In essence, the averaging-out errors increase as the size 

of damages on the blade surface increases. In the case of original ICP, the maximum deviations for 

the first damaged blade in the defective and non-defective regions are respectively 0.009 mm (15th 

sectional plane) and 0.022 mm (19th sectional plane), while for the second damaged blade, 

maximum deviations in the defective and non-defective regions are respectively 0.101 mm (10th 

sectional plane) and 0.164 mm (17th sectional plane). 
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The post-alignment sectional RMSEs of Zhang et al.’s [13] and Liu et al.’s [51] methods, also, have 

relatively large deviations from actual sectional RMSEs. The deviations of the post-alignment 

sectional RMSE values of Li et al.’s [29] method from actual ones are small for the first damaged 

blade (where the maximum deviation is 0.003 mm), while deviations are considerable for the 

second damaged blade with larger damages (where the maximum deviation is 0.066 mm). It should 

be noted that the performance of Li et al.’s [29] method for eliminating the unreliable data points 

highly depends on the selected user-defined thresholds for the curvature and distance constraints.    

For the proposed method, the post-alignment sectional RMSE values are very close to the actual 

sectional RMSE values. Maximum deviations of the sectional RMSE values after the proposed 

alignment from the actual sectional RMSE values are 0.002 mm and 0.015 mm for the first and the 

second damaged blades, respectively. Table 3.1 indicates the global RMSE of simulated point 

clouds of damaged blades (without noise) from CAD model after each step of the proposed 

alignment scheme, namely after PCA, after Original ICP, and after the fine-tuned alignment. In 

addition, the percentage deviation of the global alignment RMSE after each step relative to the 

actual global RMSE is also indicated in Table 3.1. The actual global RMSE is specified by 

computing the root mean square error (RMSE) of the synthetic point cloud of the damaged blade 

from the CAD model when both are in the design coordinate system (before adding the initial 

misalignment to the data). An ideal registration method should result in the same global RMSE as 

the actual one. As expected, at the end of the second step (after the original ICP), the averaging-

out errors cause the post-alignment global RMSE to be smaller than the actual global RMSE. After 

applying the fine-tuned alignment, only the reliable corresponding pairs of undamaged regions 

contribute to the registration process resulting in removing the averaging-out errors. The global 

RMSE after fine-tuned alignment nearly matches the actual global RMSE with only 0.0001 mm 
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(0.06 %) and 0.0041 mm (0.83 %) deviation in the case of the first blade and the second blade, 

respectively. Figure 3.8(a) and 3.8(b) illustrate the removed data points (in black) at the end of the 

last iteration of the fine-tuned alignment for the first and the second damaged blades, respectively. 

Using the fine-tuned alignment, more than 99% of data points of the damaged regions are removed 

from the synthetic point clouds of both damaged blades. As can be seen in the figure, some data 

points of the undamaged regions are also removed as unreliable points, which do not affect the 

accuracy of the alignment process as the removed undamaged points are a tiny portion of the whole 

data points of undamaged regions (1.6% and 0.7% of the points of undamaged regions in the case 

of the first and the second blade, respectively). 

Table 3.1 Global RMSE of the point clouds of the damaged blades from the CAD model after each 

step of the proposed alignment scheme, and the actual (reference) global RMSE, and the percentage 

deviation of the global RMSE after each step relative to the actual global RMSE. 

 

 

Global RMSE (mm)  Deviation from Actual (%) 

Actual PCA ICP Fine-tuned  PCA ICP Fine-tuned 

1st blade 0.1798 0.4455 0.1568 0.1797  147.78 12.79 0.06 

2nd blade 0.4967 0.6379 0.4620 0.4926  28.43 6.99 0.83 
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Figure 3.8 Removed data points (in black) after the last iteration of the fine-tuned alignment for 

(a) the first blade, and (b) the second blade. 

3.4.2 Alignment results for the noisy point clouds of the damaged blades 

Next, we evaluated the performance of the proposed method in the presence of noise and compared 

it to that of the existing methods. We used the generated synthetic noisy point clouds (10 sets for 

each level of noise as described earlier) for this evaluation. Figure 3.9(a) and 3.9(b) show the 

average of absolute deviations of post-alignment sectional RMSE values (of all 20 sections) from 

the actual sectional RMSEs for each method for different levels of noise (of 0.01, 0.02, 0.03, 0.04 

and 0.05 mm noise), respectively for the first and the second damaged blades. For each alignment 

method, we have calculated the average of absolute deviations (average of 20 absolute values 

corresponding to the 20 sections) for each of the 10 synthetic noisy datasets of a specific level of 

noise and have reported the average of the 10 numbers in Figure 3.9 for each level of noise. We 

also added the case without noise (with 0 mm noise) to the plots for comparison of the results with 

noise and without noise. 
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Figure 3.9 Average of absolute deviations of post-alignment sectional RMSEs from actual 

sectional RMSEs for different levels of noise: (a) first damaged blade, and (b) second damaged 

blade. 

As seen in the plots of Figure 3.9, Zhang et al.’s [13] and Liu et al.’s [51] methods are the most 

sensitive to noise, as the alignment sectional RMSE values in these methods are more deviated from 

the actual sectional RMSE values than the other methods. This was expected because, in the 

presence of noise, the mesh reconstructed from the point cloud data becomes more distorted, which 

leads to centroid miscalculation, as the centroid is calculated based on the reconstructed polygonal 

model. The results of Figure 3.9(a) for the first damaged blade indicate that the measurement noise 

affects the performance of the original ICP algorithm, which is in agreement with the findings of 

the previous works on ICP [99]. Using the original ICP algorithm, the correspondence search is 

affected by noise, which causes the post-alignment sectional RMSE values to become more 

deviated from the actual ones as the noise level increases. However, this effect is not noticeable in 

the plot of Figure 3.9(b) for the second damaged blade since the larger size of the damages makes 

the averaging-out errors much larger than the effect of noise, therefore the effect of noise is 
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negligible in that case in comparison with the averaging-out errors. The average of absolute 

deviations from the actual sectional RMSE values for the proposed fine-tuned alignment method is 

the smallest of all methods for all the tested synthetic point clouds of different levels of noise. 

Compared to Li et al.’s [29] method, for the first damaged blade, the proposed method results in 

an incremental improvement for the case without noise and for the low-noise data. The 

improvement becomes more significant when higher levels of noise are present in the point cloud 

data. For the second damaged blade containing larger damages, the proposed method yields 

significantly better results even in comparison with Li et al.’s [29] method.  

The results of aligning the noisy point clouds with the nominal model using different methods 

demonstrated that the performance of the proposed fine-tuned alignment is superior over the other 

existing methods in the presence of noise as it was equally the case without noise.  

3.5 Conclusion  

An accurate and automatic method for alignment of the 3D scanned point clouds of damaged blades 

to the nominal CAD model has been presented in this paper. While most studies in the literature 

employ the iterative closest point (ICP) algorithm for alignment, the ICP-based algorithms suffer 

from averaging-out errors resulted from geometrical nonconformities between the measured point 

cloud in damaged regions and the CAD model. Because an ICP-based algorithm globally 

minimizes the distance of the data points of both damaged and undamaged regions from their 

corresponding closest points on the nominal model. Consequently, the estimated errors at the 

damaged and undamaged regions become, respectively, smaller and larger than the actual errors, 

which leads to wrong inspection results and mistaken repair process planning. The presented work 

addresses the problem of averaging-out errors and proposes an effective method to avoid them. 

The essential contribution of the proposed method lies at reliably eliminating the points of the 
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damaged regions from the alignment process. By combining the average curvature Hausdorff 

distance and average Euclidean Hausdorff distance, a metric is defined to evaluate the geometric 

dissimilarity of the local neighborhood of corresponding pairs. Employing a dissimilarity 

deduction approach, the corresponding pairs with high geometric dissimilarity are gradually 

removed from the alignment process. The implementation results from various case studies of 

synthetic point clouds of simulated damaged aero-engine blades have demonstrated the 

effectiveness of the proposed method in eliminating the alignment averaging-out errors by 

removing unreliable corresponding pairs. The proposed method is deemed a more accurate 

approach for alignment of point clouds of damaged blades than the other existing methods. 
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4.1 Abstract 

Airfoil blades are typically inspected in sections to verify their conformance to the geometric 

tolerances specified on their nominal design. To maintain the accuracy of geometric error 

evaluation, in particular, for the position and orientation errors of the airfoil sections, sectional 

airfoil profiles should be reconstructed from the inspection data points. This paper presents a new 

method to automatically reconstruct the airfoil profile from unorganized noisy sectional data points 

of 3D scanned blades. A three-step airfoil profile reconstruction approach is presented. First, the 

algorithm thins the scattered set of sectional data points by projecting them onto the local curves 

fitted to them. For this purpose, a recursive weighted local least squares scheme is proposed to fit 

local curves within the measurement uncertainty constraint of inspection data. Then, to order the 

thinned set of data points, the profile polygon is generated and imperfect nodes are modified by 

evaluation of the angular deviation of edges. Finally, a closed non-periodic B-spline curve is fitted 

to the thinned and ordered set of data points to construct the smooth airfoil profile. A series of case 

studies have been carried out to demonstrate the effectiveness of the proposed airfoil profile 

reconstruction method. Implementation results have demonstrated that the proposed method is 

accurate and robust to noise. In addition to blade inspection, other applications such as repair and 

adaptive machining of aero-engine blades can equally benefit from the proposed method for 

automatic airfoil profile reconstruction. 
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4.2 Introduction 

Aero-engine blades are designed for efficient energy conversion and operation in intense 

conditions. These blades need to be manufactured under extremely tight tolerances. Once 

manufactured, the blades must be precisely inspected to verify their conformance to the specified 

tolerances [5]. In addition, in-service blades are susceptible to geometric deformations due to 

operation in harsh environments. Any deviation of the airfoil profile from its design specifications 

can adversely affect the performance and efficiency of the aero-engine. Therefore, in-service blades 

must also be accurately inspected during the maintenance, repair and overhaul (MRO) operations 

to check for their conformance to the specified tolerances. In addition to being used as a means of 

acceptance or rejection of the inspected part, the correct representation of geometric error 

distribution on the blade also provides the fundamental feedback for improving the associated 

manufacturing process. Accurate blade inspection is equally crucial for the MRO application for 

finding an effective strategy for the remanufacturing of repairable blades [1].  

The blade tolerances are typically specified and evaluated in sections [5, 6]. Inspection data points 

are thus acquired for pre-specified sections during the data acquisition phase of inspection. 

Traditionally, contact probes on a coordinate measuring machine (CMM) were used for data 

acquisition. The CMM data acquisition is though relatively slow and needs complicated inspection 

planning [19]. Nowadays, blade manufacturers and the MRO industry mostly prefer using optical 

3D scanners, since it is a much faster way of acquiring inspection data. 3D scanners provide 

hundreds of thousands of data points from the inspected part in a short period of time [3]. However, 

the point cloud collected by optical 3D scanning is a set of unorganized noisy points all over the 

blade surface rather than at the pre-specified sections. The cross-sectional 2D coordinate 

measurement data points for pre-specified sections are therefore extracted from the 3D point cloud 



58 

 

data through the projection of nearby data points onto the sectional plane [9, 10]. Figure 4.1(a), (b), 

and (c) respectively show an airfoil blade, its 3D scanned point cloud data, and the cross-sectional 

2D data points extracted via projection. 

Before projection, the 3D scanned point cloud (as shown in Figure 4.1(b) for instance) has passed 

several pre-processing steps including smoothing and outlier removal, as well as registration. The 

raw scanned point cloud data of a blade is often contaminated by outliers (i.e., points with very 

high levels of noise) at the high-curvature features (i.e., leading and trailing edges) due to 

undesirable reflections in the scanning process [100]. An appropriate point cloud smoothing 

process is applied to reduce noises and remove outliers from the point cloud data while preserving 

the underlying geometry of the blade surface. Li et al. [101] proposed an adaptive bilateral 

smoothing method, which can effectively smooth the scanned point cloud of a blade and preserve 

high-curvature features. Li et al. [81] also proposed a clustering-based method for simplification 

(i.e., removing redundant points) of the blade point clouds. In both studies, in order to keep the 

underlying geometry of high-curvature regions (i.e., leading and trailing edges) and avoid the 

volume shrinkage, the information entropy in k-nearest neighbors (k-NN) is defined to get a balance 

between point smoothing and preserving the geometry using respectively two factors namely 

surface-smoothing factor and feature-preserving factor.  
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Figure 4.1 Outline of 3D scanning-based airfoil inspection. The framework proposed for airfoil 

profile reconstruction is shown inside the orange dashed-line frame. 

Initially, the scan data lies in the measurement coordinate system (MCS), which is different from 

the design coordinate system (DCS) in which the CAD model lies. For inspection, it is required to 

bring the scanned point cloud data to a common coordinate system with the CAD model using an 

appropriate registration (aka alignment, localization, or matching) method. Traditionally, the 

iterative closest point (ICP) algorithm [8] and its variants [42] are the most widely used methods 

for registration of the scanned point cloud data of free-form surfaces including turbine blades. Li 

et al. [102] proposed a novel registration method to address the incorrect registration outcome due 

to missing points and uneven-density regions of the scanned point cloud data of blades. Their 

proposed algorithm successfully calculates the shape matching parameters using a weighted 

variance-minimization objective function. Xie et al. [103, 104] studied the convergence of the 

proposed variance-minimization matching (VMM) technique and presented a series of experiments 

to verify the performance of this very interesting method. In the case of damaged blades in repair 
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and re-manufacturing applications, there is an extra challenge in registration arising from the 

geometric nonconformity between point cloud data of scanned damaged blade and its nominal 

CAD model. Ghorbani and Khameneifar [28] proposed a method for the alignment of damaged 

blades by using a correspondence search technique based on the geometric properties of the local 

neighborhood of points to remove the effect of the damaged regions from the registration outcome. 

In the present work, it is assumed that the scanned point cloud data is already registered to the CAD 

model, therefore lies in the design coordinate system. Sectional planes intersecting scanned point 

cloud data (as shown in Figure 4.1(b)) are specified in the design coordinate system of the CAD 

model. The 3D points are projected onto the pre-specified sectional planes to obtain the cross-

sectional 2D coordinate measurement data points. 

To ensure accurate evaluation of position and orientation tolerances of airfoil sections, the smooth 

airfoil profile should be reliably reconstructed from section-specific inspection data points [6]. 

Given that scanned data is subject to measurement uncertainty, actual sectional airfoil profiles of a 

blade can never be exactly generated from the data points. Nevertheless, the profile can be reliably 

approximated using a closed-curve fitting method, which directly targets airfoil profile 

reconstruction. In a related work, Khameneifar and Feng [84] have proposed a method for 

reconstructing the airfoil profile from 2D data points obtained by CMM measurement. A closed 

non-periodic B-spline curve is used in [84] to represent the reconstructed airfoil profile due to its 

versatility in closed curve approximation. B-spline is a sophisticated tool widely used by the 

scientific and industrial community for approximating airfoil profiles from CMM data points [23, 

31, 105-107]. Fitting a B-spline curve to data points requires parameterization of the points (i.e., 

computing the parameter value for each point) [108]. In order to be able to parameterize the points, 

the point sequence should be readily available or to be determined. The difference between the 
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conventional 2D point set of CMM measurement and the projected set of the 3D scanned blade is 

that there is a sequence in the CMM data points, which makes it readily available for parameterizing 

the points for curve reconstruction. However, for the projected set of data points from the 3D 

scanned point cloud, the order of points is unknown and should be defined. Otherwise, it would 

not be possible to parameterize them for the subsequent curve fitting. The unorganized (unordered) 

set of projected data points is also scattered as can be seen in Figure 4.1(c), which makes the point 

ordering a challenge. 

A prevalent method for 2D curve reconstruction from a given set of points is to fit a B-spline curve 

to the points by solving a global nonlinear optimization problem in which the algorithm starts with 

an initial B-spline curve (aka active curve) and then tries to iteratively minimize the error between 

the fitted curve and data points [53, 54, 109]. The optimization algorithms will converge properly 

only if a suitable initial curve sufficiently close to the target shape is given. Also, the final curve 

reconstruction result is sensitive to outliers, which makes pre-processing of the scattered set of data 

points essential to identify and remove the outliers. 

Some studies have tried to smooth and skeletonize the unorganized set of data points and then fit 

an appropriate curve on smoothed and skeletonized data [65, 71, 72]. Cheng et al. [65] proposed 

an algorithm to reconstruct the polygonal closed curves from 2D noisy samples in which the noise 

of samples is filtered out using a clustering approach and estimating new points close to the 

underlying geometry, and then, new data points are decimated to avoid jagged polygonal curve. 

They employed NN-crust [66] algorithm to construct the output polygonal curve. In addition to the 

NN-crust method, some other methods mainly crust and β-skeleton [70] and HNN-crust [69] have 

been employed in the literature to generate the polygonal curve from 2D unorganized data. In 

general, the sampling density is an influential parameter on the polygon reconstruction from 2D 
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datasets, which is defined based on the local feature size of data [70]. Lin et al. [71] reconstructed 

the curves from the planar unorganized point cloud using an interval B-spline curve. In their 

method, the curve order implied in the shape of the point cloud is determined by clustering the data 

points into a rectangle sequence. Then, the quasi-centric point sequence and the boundary curves 

of the point set are computed based on which a centric interval B-spline curve is generated as the 

final reconstructed curve. Wang et al. [72] generated the quadtree of the point set and smoothed 

the grid-like boundaries of the quadtree using a modified Laplacian method, then extracted the 

skeleton of the point set through the Voronoi diagram of the smoothed boundaries. All these 

methods need user interactions for selecting several parameters and thresholds in order to yield 

suitable results, therefore they are not fully automatic. 

The moving least squares (MLS) method is another approach for smoothing and curve 

approximation from scattered data points [63]. The basic idea of MLS is to estimate the local 

underlying geometry of each point through a simple curve fitting to the neighboring points within 

the support domain of the point of interest and move the point onto the approximated curve. MLS 

technique is widely used for curve and surface reconstruction [64, 110-112]. Alexa et al. [111] and 

Fleishman et al. [112] employed the MLS method to model the surfaces with sharp features. The 

accuracy of MLS approximation significantly depends on the shape and size of the support domain, 

especially when the distribution of data points is not uniform, which is the case for scattered and 

noisy datasets. It is essential to eliminate the influence of outliers and measurement noise on local 

curve approximation to get reliable results. Lee [64] proposed an improved MLS technique to 

reconstruct a curve from the 2D unorganized data points in which the size of the support domain 

is specified based on covariance analysis of data points in order to prevent the adverse effects of 

unwanted points in the local curve fitting. Starting from a small radius of the support domain, the 
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algorithm expands the region to get a suitable radius for which the correlation of data points within 

the support domain is larger than a pre-specified value. Then, using the MLS scheme, the 2D data 

points are iteratively thinned in order to satisfy a user-defined approximation error. It should be 

noted that the presented method by Lee [64] requires several user-defined parameters and 

thresholds that should be assigned properly to obtain reliable results. These parameter values to 

adjust highly depend on the profile geometry, noise, and density of the point set and the problem 

is that there is no benchmark to help find a reliable set of parameter values and thresholds by trial 

and error for different datasets. Therefore, the user-defined parameters make the existing methods 

not readily available for our application of airfoil profile reconstruction for computer-aided 

inspection of blades. In this application, automation is crucial. 

The motivation of the present work is to propose an airfoil profile reconstruction method in which 

the projected noisy sectional data points (Figure 4.1(c)) are automatically thinned and ordered, and 

then the smooth profile is approximated by the B-spline curve fitted to them, as shown in Figure 

4.1(d-f). The three steps of the proposed framework are outlined as follows: 

1. Thinning: The aim of thinning is to reduce the sectional point cloud to a thin curve-like set of 

points that is locally close to the skeleton of the airfoil profile. We propose a recursive weighted 

local least squares (RWLLS) method to fit a curve on an adaptive local neighborhood of each 

sectional point and project the point onto the curve. In the present work, the fitting error of the 

fitted curve is deemed equivalent to the measurement uncertainty of the inspection data points. 

A progressive fitting domain growing scheme is proposed to generate the fitted local curve that 

meets the measurement uncertainty constraint. This scheme ensures the consistency of the local 

curve-fitting while enabling automation of the thinning process. The algorithm eliminates the 

effects of outliers using a weighting function. Another feature of the proposed approach is the 
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normal map filtering to ensure the consistency of the normal vectors of the points of the thinned 

dataset that are used in the next step for ordering the points. 

2. Ordering: The ordering of data points is done by establishing the connectivity between the 

points of the thinned dataset. Using the normal at each point derived from the normal map 

filtering procedure, an initial profile polygon is generated. Then, the imperfect nodes are 

modified by the evaluation of the angular deviation of edges at each node. This procedure 

removes unreliable points and their corresponding edges from the profile polygon. 

3. Smooth profile reconstruction using B-splines: Once the thinned and ordered set of data points 

is obtained, the smooth airfoil profile is generated by fitting a closed nonperiodic B-spline curve 

using the algorithm proposed in [84]. 

We demonstrate that the proposed three-step method can automatically reconstruct an accurate 

airfoil profile from the unorganized set of sectional data points with the typical levels of 

measurement noise and density of 3D scanned point cloud data. 

4.3 Proposed Methodology 

We explain the proposed profile reconstruction method in detail in subsections 4.3.2 and 4.3.3, but 

before that, we briefly explain the data borrowed from the previous steps of point cloud processing 

in subsection 4.3.1. 

4.3.1 Preliminaries 

The main input to the profile reconstruction algorithm is 𝒮 = {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛}, the set of 2D 

section-specific points (Figure 4.1(c)) obtained from the 3D point cloud data 𝑉 =

{𝜐1, 𝜐2, 𝜐3, … , 𝜐𝑁} via projection [9]. The dataset V is supposed to be a cleaned point cloud data 

obtained by performing pre-processing for outlier removal and denoising at the leading and trailing 
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edges. We borrow some information about the local underlying geometry of the point cloud 

through the local neighboring points of the original point 𝜐𝑖 and the normal vector at the point 𝜐𝑖. 

This information will be used in the next step to thin the projected dataset in the way that conforms 

to the underlying local geometry of the 3D point cloud. The local neighborhood (i.e., the set of 

neighboring points) NB(𝜐𝑖) of each original point 𝜐𝑖 of the 3D point cloud is established using the 

Territory Claiming (TC) algorithm [93]. The TC algorithm yields a directionally-balanced local 

neighborhood around the query point. Then, the normal vector 𝑁𝜐𝑖
⃗⃗ ⃗⃗  ⃗ at 𝜐𝑖 is computed through local 

quadric surface fitting to the neighboring points. The normal vector estimation procedure is as 

follows: A generic quadric surface is fitted to the neighboring points of 𝜐𝑖, the closest point 𝜐𝑖0 on 

the quadric surface to the point 𝜐𝑖 is found, the normal vector of the quadric surface at point 𝜐𝑖0 is 

calculated, and finally, the calculated normal vector is assigned back to the point 𝜐𝑖 [94]. For further 

details on local quadric surface estimation, readers are referred to [93]. The sectional normal vector 

set  𝒩𝒮 = {𝑁𝑠1
⃗⃗⃗⃗⃗⃗ , 𝑁𝑠2

⃗⃗⃗⃗⃗⃗ , 𝑁𝑠3
⃗⃗⃗⃗⃗⃗ , … , 𝑁𝑠𝑛

⃗⃗ ⃗⃗ ⃗⃗ } is then computed by the linear projection of the normal vector of 

each projected data point onto the sectional plane. For each sectional data point 𝑠𝑖 (which has been 

the point 𝜐𝑖 before projection onto the plane), those points of the neighboring points NB(𝜐𝑖) that 

are projected onto the sectional plane are grouped to form the sectional neighborhood NB(𝑠𝑖) of 

the point 𝑠𝑖. 

4.3.2 Thinning 

In this work, the concept of weighted local least squares (WLLS) is used to fit a simple curve to 

the data points in the local neighborhood of each point 𝑠𝑖 ∈ 𝒮 as the approximant of the local 

underlying geometry, and then thin the 2D scattered point cloud by moving the point 𝑠𝑖 in the 

direction of the sectional normal vector  𝑁𝑠𝑖
⃗⃗ ⃗⃗  ⃗ ∈ 𝒩𝒮 to a new position on this estimated curve. We 

propose a recursive weighted local least squares (RWLLS) technique, in which an adaptive fitting 



66 

 

domain is employed whose size is progressively increased to get a fitted curve with high conformity 

to the underlying geometry. Also, we propose a new weighting function to reduce the influence of 

noise and outliers on the curve fitting results. In the proposed method, at first, a curve is fitted on 

the minimum possible neighboring points (depending on the degree of the fitted polynomial), and 

then, the fitting domain (the number of neighboring points) gradually increases to approximate the 

underlying curve with more points. The curve fitting procedure is terminated when the fitted 

residuals meet the stopping threshold. 

Figure 4.2 shows the flowchart of the proposed approach for thinning the sectional data points. The 

thinning process contains three main steps: 1) weighting of data points; 2) RWLLS curve fitting to 

the neighborhood of each point; 3) points projection to get the thinned dataset and normal map 

filtering to obtain a reliable normal vector at each point to use in the ordering step. 

4.3.2.1 Weighting function computation 

The presence of measurement noise and outliers in the sectional data points can make the locally 

fitted least-squares curve on the points of fitting domain deviate from the underlying geometry of 

the airfoil profile. We propose a new weighting function to reduce the influence of measurement 

noise and outliers on the curve fitting results. A weight factor is assigned to each sectional data 

point 𝑠𝑖 based on the distance of the point to its sectional neighborhood NB(𝑠𝑖) in the direction of 

normal 𝑁𝑠𝑖
⃗⃗ ⃗⃗  ⃗. At first, the sectional neighboring points NB(𝑠𝑖) are projected onto the line l at point 

𝑠𝑖 which is parallel to the sectional normal vector 𝑁𝑠𝑖
⃗⃗ ⃗⃗  ⃗, as shown in Figure 4.3. If the projection of 

data points in NB(𝑠𝑖) onto the line l is depicted by NB′(𝑠𝑖), the neighborhood distance of the point 

𝑠𝑖 is defined as the average Euclidean distance of 𝑠𝑖 to point cluster NB′(𝑠𝑖) on the line l as follows: 
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Figure 4.2 Flowchart of the proposed thinning process. 
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Figure 4.3 Illustration of weight factor computation. (a) For each sectional data point 𝑠𝑖 and its 

normal vector 𝑁𝑠𝑖
⃗⃗ ⃗⃗  ⃗, (b) all neighboring points are projected to the line l at point 𝑠𝑖. The line l is 

parallel to the normal vector 𝑁𝑠𝑖
⃗⃗ ⃗⃗  ⃗. (c) The weight factor of point 𝑠𝑖 is determined based on the 

distance of the point to its projected neighboring points cluster on the line l. 

Then, the neighborhood inner distance is computed as the average distance between the sectional 

neighboring points of 𝑠𝑖 in NB′(𝑠𝑖): 
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Finally, using the neighborhood distance �̅�(𝑠𝑖) and neighborhood inner distance �̅�(𝑠𝑖) the outlier 

factor 𝑂𝐹(𝑠𝑖) value for point 𝑠𝑖 is computed as: 
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If we regard the neighborhood of the point 𝑠𝑖 roughly as local underlying geometry, the 𝑂𝐹(𝑠𝑖) 

indicates how far the point 𝑠𝑖 lies outside its local underlying geometry. The larger the 𝑂𝐹(𝑠𝑖) is, 

the point 𝑠𝑖 is more of an outlier. An exponential weighting function 𝑤(𝑠𝑖) is introduced to give 

weight to each sectional point based on its deviation from the local underlying geometry: 
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where 𝜎𝑜𝑢𝑡 is the standard deviation of outlier factor values of all points of the dataset 𝒮. 𝑤(𝑠𝑖) is 

a value between 0 and 1. For a point 𝑠𝑖 that is farther from the skeleton of the point set, the value 

of 𝑤(𝑠𝑖) is closer to 0. Employing this weighting function, the local curve fitting results will not 

be affected by outliers within the fitting domain. 

4.3.2.2 Weighted local least squares (WLLS) approximation 

At each point 𝑠𝑖, we fit a quadratic polynomial 𝑓(𝑥) =  𝑐1 + 𝑐2𝑥 + 𝑐3𝑥
2 to the fitting domain of 

𝑠𝑖 consisting of its 𝐾 neighboring points {𝑞𝑘 = (𝑥𝑘, 𝑦𝑘)|𝑘 = 1,… , 𝐾}∈ 𝒮 by finding the 

coefficients {𝑐1, 𝑐2, 𝑐3} that minimize the following summation of weighted residuals [113, 114]: 
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Note that the weight 𝑤(𝑞𝑘) of each neighboring point is already computed by Equation (4.4) in the 

previous step. The algorithm begins with the smallest fitting domain containing the minimum 

possible nearest neighbors (𝐾 = 3) to fit a local least squares curve on the data points, and then 

refines the model gradually by adding one neighboring point at a time. In order to guarantee that 

the adaptive fitting domain is extended in both sides of the sectional normal direction of the query 

point, the k-nearest neighbors of the point are divided into two subsets using the sectional normal 

vector, and new fitting points are picked equally from each subset in terms of distance to the query 

point. By extension of the fitting domain (adding a new data point) it is required to update the least 

squares estimators. In this paper, the recursive least squares scheme is adopted for updating the 

least squares estimators in the WLLS method after adding a new sectional data point to the local 
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curve fitting procedure. This increases the efficiency of the WLLS fitting process by avoiding more 

repetitive computations [115]. 

Considering that the scanned point cloud data is subject to measurement uncertainty, the actual 

point of each scanned data point is somewhere within a sphere centered at the measured point with 

the radius equal to the expanded uncertainty 3u (i.e., u is the standard uncertainty of the point cloud 

data) [9]. Having the data points and their associated set of uncertainty spheres directly projected 

onto the sectional plane, the sectional data points can be considered as points with a set of 

associated uncertainty circles centered at projected points with the radius equal to 3u. The value of 

standard uncertainty u is given. For details on the given uncertainty value, readers are referred to 

[4]. In order to comply with the known uncertainty value of the point cloud data, in this study, the 

algorithm stops to extend the fitting domain for WLLS curve fitting when the root mean square 

value (𝑅𝑀𝑆𝐸) of the fitted residuals for the K neighboring points of the fitting domain gets larger 

than the standard uncertainty u of point cloud: 

RMSE u
 (4.6) 

In essence, the 𝑅𝑀𝑆𝐸 value of the fitted residuals is equivalent to the standard deviation of 

normally-distributed fitted residuals. Therefore, as long as the 𝑅𝑀𝑆𝐸 of fitted residuals is smaller 

than the standard uncertainty of the data points, the fitted curve is a feasible solution because it lies 

within the uncertainty interval (uncertainty circles) of points. In each iteration, when the 𝑅𝑀𝑆𝐸 is 

smaller than standard uncertainty, the fitted curve is stored as the feasible curve 𝐶𝑠𝑖
 and the fitting 

domain is extended by adding a new neighboring point (i.e., the value of K increases to K+1). In 

the last iteration where the 𝑅𝑀𝑆𝐸 of the fitted curve gets larger than u, the algorithm picks the 

feasible curve (𝐶𝑠𝑖
) stored in the previous iteration as the local curve fitted to the neighboring points 
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of 𝑠𝑖 and terminates the local curve fitting process (see Figure 4.2). As a result, the number of data 

points, K, within the fitting domain of sectional points is not fixed and varies for each sectional 

data point depending on the noise distribution, point spacing, and underlying geometry in the 

vicinity of that point. 

4.3.2.3 Sectional data projection and normal map filtering 

Each sectional point 𝑠𝑖 is projected to its WLLS fitted curve in the normal direction. To ensure the 

smoothness of the resulting thinned dataset, it is required to make a connection between locally 

fitted curves. Besides, it is important to obtain a reliable normal vector at each point of the thinned 

dataset because the normal vector is used in the next step for ordering the data points and the 

consistency of normals affects the outcome of the ordering procedure. Thus, we generate a map of 

projections and normal directions based on all locally fitted curves containing the point of interest 

𝑠𝑖 within their fitting domain to make a connection between them and compute a final reliable 

normal vector at each point. 

For each point 𝑠𝑖, the projection point 𝑠𝑖
0 and the unit normal vector 𝑁𝑖

0⃗⃗ ⃗⃗  ⃗ is approximated through 

fitting a local curve to the neighboring points in its fitting domain. Also, the point 𝑠𝑖 could be 

included in the fitting domain of other sectional points for curve fitting. If the dataset 𝑄𝑠𝑖
=

{ 𝑠1𝑖, 𝑠2𝑖, … , 𝑠𝑗𝑖 , … , 𝑠𝑟𝑖} (𝑠𝑗𝑖 = {𝑠 | 𝑠 ∈ 𝒮, 𝑠𝑖 ∈ fitting domain of 𝑠𝑗  }) contains r sectional data 

points whose fitting domain contain the query point 𝑠𝑖, there exists a set of r+1 projection values 

𝑅𝑠𝑖
= {𝑠𝑖

0, 𝑠𝑖
1, 𝑠𝑖

2, … , 𝑠𝑖
𝑗
, … , 𝑠𝑖

𝑟 } and unit normal vectors 𝑁𝑠𝑖
= {𝑁𝑖

0⃗⃗ ⃗⃗  ⃗, 𝑁𝑖
1⃗⃗⃗⃗  ⃗, 𝑁𝑖

2⃗⃗ ⃗⃗  ⃗, … , 𝑁𝑖
𝑗⃗⃗⃗⃗  ⃗, … , 𝑁𝑖

𝑟⃗⃗⃗⃗  ⃗ } for the 

point 𝑠𝑖. Figure 4.4 shows WLLS fitted curves on the query point 𝑠𝑖 (𝐶𝑠𝑖
) as well as on its 

neighboring points whose fitting domain include 𝑠𝑖 (𝐶𝑠1𝑖
, 𝐶𝑠2𝑖

, … , 𝐶𝑠𝑟𝑖
 ). Figure 4.5(a) shows the 

projected coordinates and normal vectors for point 𝑠𝑖 resulted from the local curves fitted on 𝑠𝑖.    
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Figure 4.4 Projections and normal directions of point 𝑠𝑖 after local curve fitting to the query point 

𝑠𝑖 and r sectional points whose adaptive fitting domain include the point 𝑠𝑖. Thus, we have r+1 

projected coordinates (shown in green) and normal directions for point 𝑠𝑖. 

 

Figure 4.5 Normal map filtering: (a) After local curve fitting to point 𝑠𝑖 and r sectional points 

whose fitting domain include point 𝑠𝑖, there are several projected coordinates and normal 

directions for 𝑠𝑖. (b) These coordinates and vectors are mapped into a unit circle whose center is 

the mean of the projected coordinates. (c) The center of the circle is the filtered thinned value of 

point 𝑠𝑖 (denoted by 𝑝𝑖) for which the overall normal vector is 𝑁𝑝𝑖
⃗⃗⃗⃗⃗⃗ . 
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To obtain the filtered unit normal direction, the projected points and normal vectors are mapped 

into a unit circle, called the normal map, as shown in Figure 4.5(b). The center of normal map 

circle, 𝑝𝑖, which is the mean value of projected data points in 𝑅𝑠𝑖
 is considered as the filtered 

thinned coordinate of the point 𝑠𝑖: 

0

1
( )

( 1)

r
j

i i
j

p s
r 





 

(4.7) 

The overall normal direction 𝑁𝑝𝑖
⃗⃗⃗⃗⃗⃗  at the thinned point 𝑝𝑖, shown in Figure 4.5(c), is obtained 

iteratively by filtering the unit normal vectors in 𝑁𝑠𝑖
. In each iteration, two normal vectors with the 

minimum angular difference are replaced with their summation. Using this approach, all normal 

vectors in the reliable direction (with small angular differences) are summed resulting in a vector 

with a large amplitude so that the effect of unreliable normal vectors (with a large angular 

difference) on the results will be negligible. As a result of averaging of projections and normal map 

filtering, the smoothness of the thinned dataset and the normal vectors will be improved. 

4.3.3 Ordering 

Once the previous step generates a sufficiently thin point cloud data 𝑃 = {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛} and 

corresponding normal vectors 𝑁𝑝 = { 𝑁𝑝1
⃗⃗ ⃗⃗ ⃗⃗  , 𝑁𝑝2

⃗⃗ ⃗⃗ ⃗⃗  , 𝑁𝑝3
⃗⃗ ⃗⃗ ⃗⃗  , … , 𝑁𝑝𝑛

⃗⃗⃗⃗⃗⃗  ⃗ }, we can order the points by arranging 

the connectivity of the data points. The flowchart of Figure 4.6 shows the proposed ordering 

process of thinned point cloud data via profile polygon generation. Point cloud ordering includes 

two main steps: initial profile polygon reconstruction and imperfect nodes modification. 
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Figure 4.6 Flowchart of the proposed profile polygon reconstruction procedure for ordering 

thinned data points. 
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4.3.3.1 Initial profile polygon reconstruction 

The normal map filtering method gives us a robust set of normal vectors 𝑁𝑝 for thinned data points 

that can be effectively applied to establish directional connectivity between each point and its 

neighboring points. For each thinned data point 𝑝𝑖, the normal vector 𝑁𝑝𝑖
⃗⃗⃗⃗⃗⃗  divides the neighborhood 

into two regions H and H′. In each region, we take the nearest point to the query point 𝑝𝑖 as adjoined 

points of point 𝑝𝑖. Figure 4.7(a) shows the adjoined points (in blue) of the thinned data point 𝑝𝑖 (in 

red). Applying this procedure, the profile polygon is generated in which each point is connected to 

its adjoined points through two edges. Ideally, each node of the generated profile polygon should 

include exactly two incident edges. However, in practice, a few points away from the underlying 

geometry can lead to polygon loops. In this case, as can be seen in Figure 4.7(b-d), some polygon 

nodes, called imperfect nodes, contain more than two edges. To avoid polygon loops, it is essential 

to modify the connections of imperfect nodes and remove their corresponding redundant edges 

from the reconstructed profile polygon. 

 

Figure 4.7 Profile polygon generation: (a) Using the normal vector of thinned points obtained by 

normal map filtering, each point 𝑝𝑖 is connected to its adjoined points in two sides of the normal 

direction. (b), (c) and (d) show cases of imperfect nodes (𝑝1
∗ to 𝑝8

∗) after profile polygon 

reconstruction. These nodes should be modified to get a reliable profile polygon. 
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4.3.3.2 Imperfect nodes modification 

For the profile polygon formed by dataset 𝑃 = {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛} and the edge set  

𝐸 = {𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑚} (𝑚 ≥ 𝑛), the incident edge set 𝑒(𝑝𝑖) is the set of edges that the point 𝑝𝑖 

shares with other points: 𝑒(𝑝𝑖) = { 𝑒𝑖𝑗 = (𝑝𝑖, 𝑝𝑗)|𝑒𝑖𝑗 ∈ 𝐸, 𝑝𝑗 ∈ 𝑃, 𝑝𝑖 ∈ 𝑃}. The imperfect nodes 𝑝∗ 

are the vertices (nodes) with more than two incident edges: 𝐼 = {𝑝∗ | |𝑒(𝑝∗)| > 2, 𝑝∗ ∈ 𝑃}. 

To modify the connections of imperfect nodes, a parameter is specified to compute the deviation 

of incident edges of each imperfect node from the underlying curve and remove the edge(s) with a 

larger deviation. The angular deviation (𝜃𝑖𝑗) of each edge 𝑒𝑖𝑗 of the imperfect node 𝑝𝑖
∗ from the 

underlying curve is computed as the angle between the edge vector 𝑒𝑖𝑗⃗⃗ ⃗⃗  and the tangent vector (𝑇𝑝𝑖
∗⃗⃗ ⃗⃗  ⃗), 

which is perpendicular to the normal vector 𝑁𝑝𝑖
∗⃗⃗ ⃗⃗ ⃗⃗   : 
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(4.8) 

Therefore, for each imperfect node 𝑝𝑖
∗, there is a set 𝜃𝑖

∗ containing the angular deviation values for 

all edges in the edge set 𝑒(𝑝𝑖
∗). 

The algorithm gives priority to modifying the nodes with higher angular deviations. We compute 

the angular deviation range 𝑅𝑖
∗ for each imperfect node 𝑝𝑖

∗ as follows: 

* * *max( ) min( )i i iR   
 (4.9) 

Then, the imperfect nodes are sequenced in descending order of 𝑅𝑖
∗ values. That is, we first modify 

the imperfect nodes with higher 𝑅𝑖
∗ values and remove the edges with more deviation from 

underlying geometry as redundant edges. The node modification procedure is as follows: 
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1) In each region H and H′ around 𝑝𝑖
∗, constructed by the normal vector 𝑁𝑝𝑖

∗⃗⃗ ⃗⃗ ⃗⃗  , the edge with the 

smallest angular deviation value 𝜃𝑖𝑗 is selected as a valid edge and other edges are removed as 

redundant edges. 

2) If there is any node with only one edge, the node and its corresponding edge are considered as 

redundant elements and removed from the airfoil polygon.  

The algorithm continues to modify the nodes from the highest 𝑅𝑖
∗ value to the lowest one. Finally, 

the algorithm terminates modification when there is no imperfect node with more than two incident 

edges. 

Figure 4.8 illustrates the modification of the imperfect node 𝑝𝑖
∗ with 3 incident edges 

(𝑝𝑖
∗, 𝑞1), (𝑝𝑖

∗, 𝑞2) and (𝑝𝑖
∗, 𝑞3), namely 𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3. As can be seen in Figure 4.8(b) and Figure 

4.8(c), the edge (𝑝𝑖
∗, 𝑞1) in the region H and (𝑝𝑖

∗, 𝑞3) in the region H′ are selected as valid edges for 

node 𝑝𝑖
∗ and the edge (𝑝𝑖

∗, 𝑞2) is removed from the reconstructed polygon. By eliminating 

redundant edge (𝑝𝑖
∗, 𝑞2), the data point 𝑞2 contains only one edge; thus, the algorithm removes the 

point 𝑞2 and its corresponding edge (𝑞2, 𝑞3) from the airfoil profile polygon. 

Figure 4.9 shows the 3 cases of imperfect nodes and modification results for each of the nodes. It 

is seen that the proposed method can precisely remove the redundant points and their corresponding 

edges from the polygon dataset of the airfoil profile. 

After establishing the connectivity of the thinned dataset of points through the generated polygon, 

points that are excluded from the polygon are removed from the thinned dataset. The remaining 

points are the nodes of the polygon, which are readily ordered in a proper sequence.  
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Figure 4.8 Imperfect nodes modification: (a) For edges of the imperfect node 𝑝𝑖
∗ the angular 

deviations 𝜃𝑖1, 𝜃𝑖2 and 𝜃𝑖3 are computed. (b) Then, in each region H and H′, constructed by the 

normal vector 𝑁𝑝𝑖
∗⃗⃗ ⃗⃗ ⃗⃗  , the edge with the smallest angular deviation value is selected as a valid edge 

(edges (𝑝𝑖
∗, 𝑞1) and (𝑝𝑖

∗, 𝑞3)), and (c) the redundant edge (𝑝𝑖
∗, 𝑞2) is removed. (d) In the profile 

polygon, if there is any node (𝑞2) with only one edge, the node and its corresponding edge are 

removed from the polygon. 

 

 

Figure 4.9 Modification of imperfect nodes of Figure 4.7. 
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Finally, we generate the smooth airfoil profile from the ordered data points using the B-spline curve 

fitting method of Khameneifar and Feng [84]. Given the set of ordered data points, a C2-continuous 

closed non-periodic cubic B-spline curve is computed through curve approximation to best fit the 

data points while employing the smallest possible number of curve segments to avoid unwanted 

undulations. For a given number of curve segments, the B-spline curve fitting approach involves 

four main steps: (1) the start point is selected as the point with minimum curvature variance along 

the airfoil profile, (2) the parameter value for each data point is computed through chord length 

parameterization method [116] starting from the selected start point, (3) the knot vector is generated 

using the knot placement method by De Boor [117] to compute the B-spline basis functions, and 

(4) the least-squares minimization problem is solved to calculate the set of control points of the B-

spline curve. Once the control points are computed, the B-spline curve is obtained. The minimum 

possible number of control points to construct a closed cubic B-spline curve of C2 continuity is six, 

which means that at least three curve segments are needed to construct such a piecewise composite 

curve. Therefore, the progressive curve fitting algorithm starts with a curve composed of three 

segments (six control points). The resulting fitted curve is then checked against the feasibility 

condition. The feasibility condition is that the RMS of the fitted residuals must be smaller than the 

standard uncertainty of data points. If the feasibility condition is not met, one more curve segment 

(control point) is added and a new curve is fitted. This iteration continues until the feasibility 

condition is satisfied. For details on the applied B-spline curve fitting method, readers are referred 

to [84]. 
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4.4 Results and Discussion 

4.4.1 Simulated input data 

Numerical case studies have been conducted to validate the proposed method. For such validation, 

we use synthetic point cloud data generated by sampling a simulated in-service blade. This is 

because actual airfoil profiles of the simulated blade are known that can be used as the benchmark 

against which the airfoil profile reconstruction outcomes can be compared to assess the 

performance of the proposed algorithm. The blade CAD model was created with the overall 

dimensions of the blade roughly corresponding to a cuboid of 45 mm in length, 15 mm in width, 

and 105 mm in height. To follow a typical blade surface design, a twist of 25 degrees from the 

blade bottom to tip was introduced by incrementally twisting the airfoil sections from the 

bottommost to the topmost section. To simulate the in-service blade surface, certain form 

deviations were superimposed onto the nominal blade surface. First, a sinusoidal variation with the 

random amplitudes between 0 and 0.005 mm was superimposed onto the airfoil sections of the 

CAD model in the direction of the profile normal to emulate the combination of the typical 

manufacturing errors on the blade surface. Then, a sinusoidal variation with the amplitude of 0.09 

mm was added to a portion of the pressure and suction sides of the blade close to its tip to resemble 

a typical geometric deformation on a used blade during its service. Using the NURBS surface 

interpolation of the airfoil sections, the simulated in-service blade surface was created, which is 

then used as a reference. Figures 4.10(a) and 10(b) respectively show the nominal CAD model and 

the simulated in-service blade with its error colormap with respect to the nominal CAD model. 
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Figure 4.10(a) Nominal CAD model of the blade, (b) error colormap of the simulated in-service 

blade, and (c) synthetic point cloud with a noise level of 0.015 mm and point spacing of 0.1 mm. 

Next, the simulated in-service blade surface was randomly sampled to generate an ideal (noise-

free) point cloud. In practice, the scanned point cloud data contain measurement noise. Therefore, 

the synthetic point clouds should also include the measurement noise for simulating the real 

scanned point cloud data. In order to generate noisy point clouds of the simulated blade, Gaussian 

deviates with different levels of known standard deviation (with the distribution’s mean at zero for 

all cases) were superimposed onto the ideal point cloud in random directions. In the present work, 

the superimposed Gaussian deviates generate point clouds with the standard deviation of noise (i.e., 

standard uncertainty) from 0.01 mm to 0.03 mm, which is the typical range of noise observed on 

scanned point clouds according to the recent studies on the metrological performance of 3D 

scanners [98]. 

The density of the scanned point cloud data is another influential factor in the airfoil profile 

reconstruction results. In the present work, we generate noisy point clouds of the simulated blade 
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with various density levels. The average point spacing between the data points (aka resolution) is 

set from 0.1 to 0.2 mm, which is the typical range of resolution of point clouds obtained by optical 

3D scanners. Table 4.1 lists the noise levels and the point spacing values of the generated point 

clouds in this work. The proposed profile reconstruction method is tested on 250 sets of point cloud 

data with 5 various noise levels and 5 point spacing values (10 sets for each type). Figure 4.10(c) 

shows the synthetic point cloud of the blade with 0.015 mm standard deviation of noise and point 

spacing of 0.1 mm. 

To comprehensively evaluate the performance of the proposed method in both deformed and non-

deformed regions of the in-service blade, the airfoil profile is reconstructed for three profiles, 

namely the innermost, intermediate and outermost airfoil sections of the blade at Z = 7 mm, Z = 

52.5 mm, and Z = 98 mm, respectively. The actual airfoil profiles of the simulated blade are known 

for the three sections. 

For each of the 250 sets of point clouds (10 sets of each noise level and point density), the sectional 

data points for Z = 7 mm, Z = 52.5 mm, and Z = 98 mm sections were obtained by applying the 

method of [9] to project the nearby data points onto each specified sectional plane. Each set of 

acquired sectional data points is an input to the profile reconstruction algorithm. 

Table 4.1 Range of noise level and point spacing of the generated synthetic point cloud data. 

Parameter Range 

Noise level (mm) 0.01, 0.015, 0.02, 0.025, 0.03 

Point spacing (mm) 0.1, 0.125, 0.15, 0.175, 0.2 
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4.4.2 Profile error evaluation 

To assess the accuracy of the proposed profile reconstruction method, a comparison is made 

between the reconstructed airfoil profile and the actual profile. As an example, Figure 4.11 shows 

the profile reconstructed from sectional data points and the known actual profile at the leading edge 

(LE), trailing edge (TE), suction side (SS), and pressure side (PS) of the airfoil for the outermost 

airfoil section of the blade. The point cloud of Figure 4.11 was one of the point clouds with the 

point spacing of 0.1 mm and the noise level of 0.015 mm. As can be seen in the figure, the proposed 

method effectively removes the influence of outliers and noise on the profile reconstruction 

procedure and there is a high degree of conformity between the reconstructed airfoil profile and 

the actual one. The computation times of the three main steps of the proposed method namely 

thinning, ordering, and B-spline curve fitting procedures for reconstruction of the airfoil profile 

shown in Figure 4.11 are listed in Table 4.2. Test computations were carried out in MATLAB 

R2018a on a PC with a 3.6 GHz Intel Core i7-7700 processor and 32 GB of RAM without parallel 

computing. It is seen that the thinning process is the most time-consuming step of the algorithm 

because of the iterative weighted local least squares curve fitting procedure employed for each 

sectional data point. Figure 4.12 shows the deviation of the reconstructed airfoil profile from the 

corresponding actual profile for noise levels and point spacings listed in Table 4.1. Each plotted 

value in Figure 4.12 is the mean value of profile deviation in innermost, intermediate, and 

outermost airfoil sections (mean of 30 profile deviations). The error bars represent the standard 

deviation of profile errors. Table 4.3 presents the maximum deviation of the reconstructed profiles 

from their corresponding actual profiles for different levels of noise and point spacing.  
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Figure 4.11 Actual and reconstructed airfoil profiles and sectional data points at the leading edge 

(LE), trailing edge (TE), suction side (SS), and pressure side (PS) of the outermost airfoil section 

of the blade (i.e., the deformed region of the blade). The noise level and point spacing of the 

point cloud data are 0.015 mm and 0.1 mm, respectively. The unit of the plots is mm. 

 

Table 4.2 Computation time of the proposed algorithm for the case shown in Figure 4.11. 

No. of data points Thinning (s) Ordering (s) B-spline curve fitting (s) Total (s) 

1,685 34.28 0.24 1.83 36.35 
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Figure 4.12 Deviation of the reconstructed airfoil profile from the actual airfoil profile for 

different levels of noise and point spacings. Each displayed value is the mean of profile 

deviations in innermost, intermediate, and outermost airfoil sections. The error bars represent 

the standard deviation of profile errors. The unit of noise levels is mm. 

As expected, by increasing the noise level and point spacing the reconstructed airfoil profile 

deviates more from the actual profile. It should be noted that when the point spacing of the point 

cloud data is increased, farther points are projected onto the sectional plane and the projection 

uncertainty will increase [9]. Thus, projected sectional data points deviate more from the original 

underlying geometry. In addition to noise level and point density, the underlying geometry of the 

sectional data points is another key element affecting the accuracy of the reconstructed airfoil 

profile.  
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Table 4.3 Maximum deviation (in mm) of the reconstructed airfoil profile from the actual profile 

for different levels of noise and point spacing. 

Point spacing 

(mm) 

Noise level (mm) 

0.010 0.015 0.020 0.025 0.030 

0.100 0.016976 0.019402 0.041759 0.064732 0.073552 

0.125 0.019125 0.023564 0.046539 0.071692 0.080025 

0.150 0.022031 0.029395 0.051464 0.077300 0.087039 

0.175 0.025457 0.034121 0.058532 0.081763 0.096462 

0.200 0.030882 0.043750 0.075263 0.094395 0.110774 

Around the trailing edge and leading edge, where the curvature of the underlying geometry is high, 

both the weighted local least-squares fitting and normal map filtering results are more sensitive to 

the noise and point spacing of the point cloud data. For sparser and noisier sectional data, the fitted 

local curves in the high-curvature regions are less precise; and consequently, the normal vectors 

computed for normal map filtering at the high-curvature regions are less accurate than those of the 

less-curved regions. That is, the airfoil profile reconstructed by the proposed algorithm deviates 

more from the actual profile in the leading and trailing edges than the suction and pressure sides. 

As mentioned earlier, the accuracy of the reconstructed airfoil profile is particularly important in 

the evaluation of the position and orientation errors of airfoil sections. For evaluating the position 

error of each airfoil section, the centroid location of the reconstructed airfoil profile is calculated, 

because its deviation from the reference CAD centroid position will be compared to the specified 

position tolerance to decide whether the airfoil section is in-tolerance for the position tolerance. 

Then, the reconstructed profile is translated to share the same centroid with the CAD profile, and 

a rotation-only rigid body transformation best matches the reconstructed profile to the CAD profile 

to estimate the orientation of the airfoil profile, which is compared to the specified orientation 
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tolerance to decide whether the airfoil section conforms to the orientation tolerance. Details of the 

evaluation of position and orientation errors of airfoil sections can be found in [6]. 

The centroid location and the orientation angle of the airfoil profile were computed based on the 

reconstructed profiles for the aforementioned innermost, intermediate, and outermost airfoil 

sections and compared to their corresponding actual values known for the simulated blade. Figure 

4.13 and Figure 4.14, respectively, show the deviation of the estimated centroid location and 

orientation angle based on the reconstructed airfoil profile from their actual values for different 

levels of noise and point spacing. Again, the plotted values are the mean values of deviations for 

innermost, intermediate, and outermost sections (mean of 30 deviations) and error bars represent 

the standard deviations. 

It is seen in Figure 4.13 and Figure 4.14 that the evaluated centroid location and orientation angle 

become less reliable with higher noise levels and point spacings. The reliability of the estimated 

centroid location and the orientation angle is crucial for preventing false rejection (or acceptance) 

of geometrically acceptable (or unacceptable) blades as well as preventing incorrect modifications 

to the related manufacturing process or incorrect process planning for the repair of in-service 

blades. The maximum value of absolute error in the estimated centroid location and orientation 

angle should not be larger than the Maximum Permissible Error (MPE) in order for the estimated 

features to be considered reliable for the evaluation of the position and orientation tolerances. As 

a generally accepted rule-of-thumb in industry, the ratio of MPE to the tolerance value is 1:10. The 

specified position and orientation tolerances of the airfoil sections of the blade used in this study 

are 0.025 mm and 0.09 degrees respectively. Therefore, the MPE value of the estimated centroid 

location is 0.0025 mm, and the MPE value of the estimated orientation angle is 0.009 degrees. 

Tables 4.4 and 4.5, respectively, present the maximum error of the estimated centroid location and 
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orientation angle based on the reconstructed airfoil profile from their actual values for different 

levels of noise and point spacing. 

 

Figure 4.13 Deviation of the computed centroid location from its reference location for different 

levels of noise and point spacings. Each displayed value is the mean of deviations and error bars 

represent the standard deviations. The unit of noise levels is mm. 
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Figure 4.14 Deviation of the calculated orientation angle from its reference value for different 

levels of noise and point spacings. Each displayed value is the mean of deviations and error bars 

represent the standard deviations. The unit of noise levels is mm.  

Table 4.4 Maximum deviation of the computed centroid location (mm) from its reference location 

for different levels of noise and point spacings. 

Point spacing 

(mm) 

Noise level (mm) 

0.010 0.015 0.020 0.025 0.030 

0.100 0.000428 0.000753 0.001088 0.001594 0.001721 

0.125 0.000485 0.000810 0.001210 0.001685 0.001867 

0.150 0.000546 0.000951 0.001574 0.001992 0.002213 

0.175 0.000625 0.001127 0.001606 0.002285 0.002664 

0.200 0.000703 0.001356 0.001747 0.002518 0.003207 
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Table 4.5 Maximum deviation of the calculated orientation angle (deg.) from its reference value 

for different levels of noise and point spacings.  

Point spacing 

(mm) 

Noise level (mm) 

0.010 0.015 0.020 0.025 0.030 

0.100 0.001192 0.002037 0.003592 0.004732 0.007528 

0.125 0.001245 0.002713 0.004127 0.005602 0.008364 

0.150 0.001536 0.003615 0.004635 0.005718 0.008771 

0.175 0.001791 0.004244 0.006621 0.007310 0.011120 

0.200 0.002133 0.005614 0.007105 0.009162 0.014698 

By comparing the values of Tables 4.4 and 4.5 with the MPE values of the estimated centroid 

location and orientation angle, it is concluded that in this particular case study, for the noise levels 

equal to or less than 0.030 mm, reasonably dense point clouds with an average point spacing not 

larger than 0.150 mm (average point density not lower than 44 points/mm2) are appropriate and 

result in accurate reconstructed profile and satisfactory estimated features. The datasets with an 

average point spacing up to 0.175 mm (average point density not lower than 33 points/mm2) are 

permissible for the noise levels up to 0.025 mm, and the datasets with an average point spacing up 

to 0.200 mm (average point density not lower than 25 points/mm2) are permissible for the noise 

levels up to 0.020 mm. The use of the datasets with 0.025 mm noise level and 0.200 mm point 

spacing, as well as the datasets with 0.030 mm noise level and point spacing over and equal to 

0.175 mm must be avoided because for those datasets the maximum errors of both the estimated 

centroid location and orientation angle are larger than their corresponding MPE values.  

The results suggest that it is essential to employ sufficiently dense point cloud data with a 

reasonable level of noise to be able to guarantee the accuracy of profile reconstruction and feature 
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estimation. This further emphasizes the importance of pre-processing of point cloud data, 

especially for noise reduction, as well as other effective solutions like data fusion to improve the 

quality of acquired point cloud data in terms of noise and density. The current metrology-grade 3D 

scanners provide us with point cloud data in the range of density and noise that is deemed 

permissible for the case study presented in this paper. The minimum required density and 

maximum tolerable noise depend on the geometry.  

The presented numerical simulation scheme for validation can be likewise employed to find the 

limits of allowable point cloud density and noise for any other specific airfoil geometry based on 

maximum permissible errors. 

4.5 Conclusions 

An accurate and automatic method for airfoil profile reconstruction from unorganized noisy 

sectional data points of scanned blades has been presented in this paper. The essential contribution 

of the proposed method lies in automatically thinning the noisy set of sectional data points within 

the measurement uncertainty constraint of inspection data using a recursive weighted local least 

squares technique and generating a reliable profile polygon from thinned data to order the dataset 

with no user interaction. After thinning and ordering the unorganized set of sectional data points, 

the smooth airfoil profile was generated by fitting a closed nonperiodic B-spline curve on the 

ordered data. The implementation results from various case studies on synthetic point clouds of a 

simulated in-service blade have demonstrated the effectiveness of the proposed method in reliably 

thinning and ordering the sectional data and eliminating the adverse effects of outliers and noise 

on the reconstructed airfoil profile. The results have substantiated the accuracy and consistency of 

the proposed method for airfoil profile reconstruction from data points with the typical levels of 

noise and density of 3D scanned point clouds.  
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The proposed airfoil profile reconstruction method enables accurate estimation of the centroid 

location and orientation angle of airfoil sections, which has a high practical significance for 

precision inspection of aero-engine blades using non-contact 3D scanning techniques. Moreover, 

the application of the proposed airfoil profile reconstruction method is not limited to quality 

inspection, as it can be equally used in other applications that benefit from airfoil profile 

reconstruction, including repair and adaptive machining of aero-engine blades [14, 25, 118]. 
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5.1 Abstract 

Accurate repair volume generation from 3D scan data of damaged aero-engine blades is of great 

importance in additive or hybrid remanufacturing for restoring the blades to a like-new condition. 

In addition to material-missing damages, the blade’s surface also deforms due to working in harsh 

environments, which makes it deviate from the nominal design geometry. Therefore, the Boolean 

operation between the nominal CAD model and the scanned point cloud of the damaged blade does 

not yield an accurate repair volume. This paper presents a new methodology to construct an 

accurate damage-free digital twin model of the defective blades that contains the deformations of 

the blade’s undamaged regions. The Boolean difference between the scan data of the damaged 

blade and its damage-free digital twin yields the repair volume with a smooth geometric transition 

at the interface of the repair patch and unrepaired regions. At first, the data points of damaged 

regions of the blade surface are detected and eliminated from the scan through a region growing 

segmentation. Then, a CAD-to-scan non-rigid registration algorithm deforms the nominal CAD 

model of the blade to best match it to the scanned point cloud in the undamaged regions. The non-

rigid registration algorithm iteratively minimizes the distance between two datasets under the local 

rigidity constraint to avoid shrinkage and expansion of the deformed CAD model. A constrained 

point-to-surface weighted correspondence search method is proposed to reduce the influence of 
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noise and unreliable correspondences on the non-rigid registration. The results of numerical and 

experimental case studies have demonstrated that the proposed method is accurate and robust to 

noise, and it can be effectively applied to construct a damage-free digital twin model for repair 

volume generation. 

5.2 Introduction 

Operating in high temperature and pressure environments, aero-engine blades are likely to be 

damaged and deformed from their design geometric shapes over time. Since blades are made of 

expensive and difficult-to-cut materials requiring high financial cost of requisite manufacturing 

processes, the remanufacturing of damaged blades is of great interest for the maintenance, repair, 

and overhaul (MRO) industry to extend the service life of blades [1]. In general, the 

remanufacturing process starts with measuring the surface of the damaged blade using contact or 

non-contact measurement instruments to capture the geometry of the blade in the form of point 

cloud data. Non-contact data acquisition using optical 3D scanners is preferred, as 3D scanners can 

quickly capture high-density point clouds [3]. Once the damaged blade is scanned, the captured 

point cloud is often compared to the nominal model to extract the material-missing regions and 

obtain the repair volume for additive restoration using directed energy deposition (DED) process. 

A secondary CNC machining/grinding process is required to remove excess material remaining on 

the deposited blade [14]. The crucial factor in remanufacturing of damaged blades is that the 

repaired blade must preserve its original geometric shape within certain tolerances specified on the 

nominal model as well as provide a smooth continuity between repaired and unrepaired regions 

[119]. Due to extreme working conditions, in addition to material missing type damages, the 

geometric deformations happen on the surface of aero-engine blades in undamaged regions such 

as distortion, expansion, and contraction [15]. Thus, the nominal CAD model or the reverse 
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engineering-based (RE-based) model reconstructed from the scan data of an intact (newly-

manufactured) blade no longer represent the current geometric shape of the defective blade. To 

yield an accurate representation of the repair volume with a smooth continuity between repaired 

and unrepaired regions, it is essential to compare the 3D scanned point cloud of the defective blade 

with its damage-free digital twin. The damage-free digital twin of the defective blade is a 3D model 

of the current state of the blade without material-missing damages while containing the geometric 

deformations on the undamaged areas. 

Figure 5.1 shows the outline of 3D scanning-based repair volume generation for damaged aero-

engine blades in the presence of the nominal CAD model of the blade. A novel methodology is 

proposed in this paper to construct a damage-free digital twin of the damaged blade through CAD-

to-scan non-rigid registration. As illustrated in Figure 5.1, the framework proposed in this work for 

repair volume construction of damaged blades mainly includes three steps: 1) Scan-to-CAD rigid 

registration to bring the measurement data into a common coordinate system with the CAD model, 

2) CAD-to-scan non-rigid registration to gradually deform the CAD model to match with the 

scanned data and obtain a damage-free digital twin of the defective blade, and 3) Boolean operation 

between the constructed damage-free digital twin and the scan data to yield the parameterized 

geometric representation of the repair volume.  

Initially, as illustrated in Figure 5.1, the scanned point cloud data of the damaged blade and its 

nominal CAD model lie in two different coordinate systems namely measurement coordinate 

system (MCS) and design coordinate system (DCS). Before comparison of two datasets, a scan-to-

CAD rigid registration is required to bring the scan data to a common coordinate system with the 

CAD model. The Iterative Closest Point (ICP) algorithm [8] and its variants [38, 41] are widely 

used for the global rigid registration of the scanned point cloud data of blades [28, 29, 33]. 
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Figure 5.1 Outline of 3D scanning-based repair volume generation for damaged blades. 

ICP-based algorithms iteratively minimize the combined squared distances between the measured 

data points and their closest points on the nominal model using a rigid body transformation 

comprising a translation and a rotation of measured data points. When it comes to scan-to-CAD 

registration of damaged blades, the geometric nonconformity between two datasets in the damaged 

regions (mainly material-missing regions) causes averaging-out errors on ICP-based rigid 

registration results [28, 29]. Recently, Ghorbani and Khameneifar [28, 120] developed a fine-tuned 

registration methodology to iteratively eliminate the unreliable scanned data points of the damaged 

regions from the rigid scan-to-CAD registration process using a group-to-group evaluation of 
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Euclidean distance and curvature of the local neighborhood of each measured data point and its 

nearest point on the CAD model resulting in more accurate scan-to-CAD rigid registration of 

damaged blades. In the present work, the scanned point cloud data has been registered to the 

nominal CAD model using the rigid scan-to-CAD registration method proposed by the authors in 

[28]. Thus, both scan data of the damaged blade and CAD model lie in the design coordinate system 

(DCS) after the scan-to-CAD rigid registration.  

This paper aims to develop a novel methodology to construct a damage-free digital twin by 

accurately matching the CAD model with the scan data in the undamaged regions through 

incremental deformation of the CAD model towards the measured data. A stiffness term is applied 

in the objective function of the CAD-to-scan non-rigid registration algorithm to regularize the 

deformations of the CAD model to avoid shrinkage and expansion of the surface by preserving the 

local rigidity as much as possible. The main features of the proposed method for constructing the 

damage-free digital twin are outlined as follows: 

 Damaged regions’ data points elimination: a region growing segmentation method is employed 

to detect and remove the data points of material-missing areas of scanned point cloud data. We 

combine the Euclidean distance and normal vector angular difference to evaluate the geometric 

error between each measured data point and its nearest point on the CAD model and eliminate 

the measured data points with large geometric error under the proposed region growing 

segmentation framework. Since the scan data and the CAD model are aligned using the scan-

to-CAD rigid registration in the previous step, the data points of the damaged regions can be 

accurately detected and eliminated using this segmentation approach before performing non-

rigid registration. 
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 CAD-to-scan non-rigid registration: the aim of non-rigid registration is to project the 

deformations of the damaged blade surface onto the CAD model and get a damage-free digital 

twin of the defective blade. An accurate correspondence search method is developed to avoid 

the influence of unreliable corresponding pairs belonging to repair volume’s geometry on non-

rigid registration results. Instead of the closest point-to-point correspondence search, a point-

to-surface correspondence search procedure is employed to reduce the influence of 

measurement noise and avoid shrinkage and expansion of data points set by finding the 

corresponding point of each CAD point on the quadric surface fitted to the local neighborhood 

of its nearest measured data point. The influence of unreliable correspondences in material-

missing regions of the CAD model is eliminated through weighting of corresponding pairs and 

testing their reliability using medial axes mesh surface constraint. The non-rigid registration 

algorithm computes a transformation matrix for each CAD data point to match them with the 

measured data while preserving the local rigidity as much as possible. 

5.3 Related Works 

Traditionally, once the rigid scan-to-CAD registration is accomplished, a Boolean difference is 

performed between the scan data of the damaged blade and its nominal model to obtain the repair 

volume for additive restoration [12, 16, 29]. The original (nominal) CAD model [11, 12, 51, 74] or 

unused blade scanned data [13, 52] are used in the literature as nominal models for this Boolean 

operation. Zhang et al. [12] constructed the repair volume geometric model by a Boolean difference 

between the mesh model of the scanned damaged blade and the B-rep model of the original CAD 

model. Zheng et al. [11] generated the repair volume of the damage region through a distance-

based comparison between measured data points and the CAD model when the damaged blade was 

aligned with the CAD using a best-fitting method. Zhang et al. [74] employed a voxel model of the 
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measured damaged blade and the CAD model to extract the repair volume based on the constructive 

solid geometry (CSG) method. Zhao et al. [121] presented a non-layer-based additive 

manufacturing process called CNC accumulation for repair applications. They developed an in situ 

laser scanning system integrated with the CNC accumulation process to capture the geometric 

shape of damaged parts for related data processing, repair volume generation, and multi-axis tool 

path planning. They performed a Boolean difference between scanned surface mesh and CAD 

model to obtain the repair volume in triangulated mesh form for tool path planning.  Liu et al. [51] 

proposed a shape-adaption algorithm to compare the polygonal cross-sections of the damaged blade 

with those of the nominal model to detect the defective segments, and then accordingly trim the 

nominal CAD model to construct the repair volume. Zhang et al. applied single-dexel modeling 

[13, 75] and tri-dexel modeling [52] for damage detection and repair volume construction by 

comparing the intersection of casting rays with the scan data of the damaged blade and a similar 

unused blade. As mentioned earlier, due to extreme working conditions, the geometric shape of 

aero-engine blades deviates from the original geometry, and therefore the nominal CAD model or 

unused blade’s scanned point cloud are no longer appropriate for comparison with the damaged 

blade and generation of the geometric model of the repair volume.  

To address the mentioned challenge of the CAD-based repair volume construction process, some 

researchers employed sectional profile information of damaged blades to take the deformations of 

undamaged regions into account when extracting the repair volume for damaged regions of the 

defective blade. Praniewicz et al. [14] proposed an adaptive repair strategy in which the airfoil 

profiles of the CAD model are aligned and deformed to best-match the measured sectional data in 

undamaged regions, and then the CAD profile geometry within the damaged region is manipulated 

via interpolation of the previous transformations to alter the final profile of the nominal model. To 
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transform the deformations of the damaged blade onto the CAD model, the mean line of each CAD 

profile is manipulated to match the corresponding mean line of the measured profile. Wu et al. [76] 

analyzed the deformation mechanisms (i.e., bending and torsional deformations) of aero-engine 

blades under the aerodynamic loads to establish the relationship between the blade height and the 

cross-section curves deformation and utilized this relationship to transform the CAD model 

sections in order to obtain the airfoil profiles of the repair area. They used the spline interpolation 

method to provide a transition between undamaged and repaired regions of the welded blade. Yan 

et al. [15] combined the rigid registration with an offset factor in the normal direction of each point 

to iteratively align the cross-section curves of the CAD model and measured data in undamaged 

regions and deform the CAD cross-section via offsetting the data points. Then, the material-missing 

portions of the damaged blade are reconstructed through interpolating or extrapolating the airfoil 

profiles. The proposed methods in [14, 15, 76] have utilized several discrete 2D cross-section 

curves to capture the deformations of the blade surface. Using the cross-sectional data cannot 

provide complete information about the underlying geometry of the damaged blade and the 

reliability of the reconstructed surface in the damage region directly depends on the accuracy of 

constructed 2D cross-section airfoil profile. In addition, interpolation or extrapolation of cross-

section curves for damage region reconstruction is a challenging and error-prone process that may 

not provide a smooth transition between repaired and unrepaired regions mainly for blade tip 

damages where there is no reliable 2D cross-section for surface reconstruction. 

To construct the geometric representation of the repair volume, some researchers have tried to 

utilize the RE-based methodologies to create the blade surface in damaged regions using the point 

cloud data captured from the defective blade surface [16, 29]. In the RE-based approaches, the 

repair surface geometry in defective regions is obtained by sweeping the airfoil profiles generated 
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in undamaged regions and extrapolating over the defective areas. Li et al. [29], Wilson et al. [16], 

and Piya et al. [78] extracted the repair volume through a Boolean difference between the RE-based 

constructed surface of the damaged region and the mesh surface of the scanned damaged blade. 

Gao et al. [77] and Yilmaz et al. [17] applied the RE-based methodology to generate a defect-free 

model of the damaged blade and compared it with the scanned welded blade to capture the 

geometry of excessive material and generate machining toolpaths. Due to employing only a limited 

number of airfoil profiles in undamaged regions to generate a defect-free model of the defective 

blade, Boolean operation between RE-based constructed surface and the defective blade cannot 

yield an accurate representation of repair volume geometry on the damaged region. In addition, 

since only the airfoil profiles in top and bottom sides of damaged regions (not the data points in 

the vicinity of the damage zone) are employed for surface reconstruction, the constructed repair 

volume geometry cannot provide a smooth geometric transition at the interface of the repair patch 

and the undamaged surface of the blade.  

In a related work, Su et al. [122] proposed a method to construct the deformed blade model of 

scanned deposited blade to capture the geometry of the excess materials on repaired regions and 

restore the airfoil blade through machining process. They segmented the 3D scanned blade data 

points and nominal CAD model into four patches and proposed a non-rigid registration method to 

obtain the deformation rule between scanned point cloud data and nominal model in suction side 

and pressure side while maintaining local rigidity. Then, a reverse mapping is utilized to best match 

the vertices of the suction side and pressure side of the nominal model to those of the scan data. 

The deformed blade model is constructed by stitching the rest of the nominal model (i.e., leading 

edge, trailing edge, and the region belonging to the repair volume geometry) to the matched suction 

side and pressure side of the nominal model. They employed the point-to-point correspondence 
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search for non-rigid registration which can be affected by measurement noise. In addition, the 

proposed method in [122] is not applicable for repair volume construction of tip damages 

containing leading and trailing edges of the damaged blade. 

5.4 Proposed Methodology 

The proposed algorithms for the elimination of data points of damaged regions and CAD-to-scan 

non-rigid registration are explained in detail in Section 5.4.2 and 5.4.3, respectively, but before 

that, we briefly explain the data borrowed from the previous steps of point cloud processing in 

Section 5.4.1. 

5.4.1 Preliminaries 

The main inputs to the algorithm are the scanned point cloud 𝑃 = {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛} and CAD 

model data points 𝑄 = {𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑚} which both are in design coordinate system DCS after 

rigid scan-to-CAD registration. CAD model dataset is obtained by uniform sampling of the nominal 

CAD model (i.e., the NURBS surface) with the average point spacing of the sampled CAD model 

point cloud data equal to that of the measurement point cloud data. The scanned point cloud P is 

supposed to be cleaned point cloud data obtained by performing preprocessing for outlier removal 

and denoising at the leading edge and trailing edge. We borrow some information about the local 

underlying geometry of datasets P and 𝑄 through the local neighboring points of each data point. 

The Territory Claiming (TC) algorithm [93] is applied to establish the local neighborhood (NB) of 

each data point. TC algorithm yields a directionally-balanced local neighborhood around the query 

point [93, 94]. The normal vector sets of scanned point cloud ℕ𝑃
1 2 3

{ , , ,..., }
n

p p p pn n n n  and CAD 

model ℕ𝑄
1 2 3

{ , , ,..., }
m

q q q qn n n n , also, are applied for geometric error calculation between two 

datasets in Section 5.4.2. The normal vector at each data point is computed through local quadric 



103 

 

surface fitting to its neighboring points. The closest point on the fitted quadric surface to the point 

pi is calculated, and then the normal vector is computed for the surface at that point and assigned 

back to the point pi. This information will be used for the elimination of data points of damaged 

regions in Section 5.4.2 and the point-to-surface correspondence search in Section 5.4.3.1. 

5.4.2 Elimination of data points of damaged regions 

Since the proposed CAD-to-scan non-rigid registration algorithm deforms the CAD points set to 

match with their corresponding points on the measured point cloud, the presence of the data points 

of damaged regions in the non-rigid registration process results in wrongful corresponding pairs 

and deviation of the generated damage-free digital twin from the true geometric shape of the blade. 

To avoid the influence of the data points of damaged regions on the results, the scanned point cloud 

is segmented to identify the data points of defective regions (i.e., material-missing regions) and 

eliminate them from the CAD-to-scan non-rigid registration process. We employ a region growing 

segmentation method to divide the measured data into defective and non-defective regions using 

distance and normal vector comparison between each measured data point and its nearest point on 

the CAD model. After a scan-to-CAD rigid registration, both datasets are in DCS and the Euclidean 

distance of the measured data points from the CAD model in damaged regions is larger than the 

undamaged regions. Due to significant distortion of the damaged blade surface in the vicinity of 

the defective regions, employing a pure distance-based segmentation approach is not accurate 

enough to remove the data points of damaged regions, especially for the points close to the damage 

boundary. The normal vector direction of the measured data points is different from the CAD data 

points in the vicinity of the damage boundary. Therefore, in addition to distance, we also compare 

the normal direction of each measured data point 𝑝𝑖 with those of its nearest point on the CAD 

model 𝑞𝑖 to detect data points of damaged regions. Generally, in the damaged regions, the angular 
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difference between the normal vector of the fitted local quadric surface at 𝑝𝑖 , 
i
pn , and the normal 

vector of the fitted local quadric surface at  𝑞𝑖 , 
i
qn , is larger than that of the points of undamaged 

areas. We combine the Euclidean distance 𝐷𝑒(𝑝𝑖, 𝑞𝑖) and normal vector angular difference 

𝜃𝑒(𝑝𝑖, 𝑞𝑖) to evaluate the geometric error between points 𝑝𝑖 and 𝑞𝑖. The geometric error is defined 

as the summation of normalized Euclidean distance 𝑁𝐷𝑒(𝑝𝑖, 𝑞𝑖) and normalized angular difference 

between normal vectors 𝑁𝜃𝑒(𝑝𝑖, 𝑞𝑖) at 𝑝𝑖 and 𝑞𝑖 as follows: 
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The min-max normalization method is used to scale 𝜃𝑒 and 𝐷𝑒 into the interval [0, 1] and make 

them unitless [123]. 

Figure 5.2 shows the flowchart of the region growing segmentation algorithm. The algorithm starts 

with a seed point representing the damaged region and grows the set of data points until it covers 

the entire damaged area. The algorithm first sorts the measured data points P in descending order 

(ℤ) of the geometric error 𝐺𝑒 and the measured point ℤ(1) with the largest 𝐺𝑒 value and its 

neighboring points are added to the set {𝑆}. In each iteration, the algorithm picks the data point 𝑝𝑖 

with largest 𝐺𝑒 value from {𝑆} and compares the 𝐺𝑒(𝑝𝑖, 𝑞𝑖) value with the threshold value (thr). If 

𝐺𝑒(𝑝𝑖, 𝑞𝑖) > 𝑡ℎ𝑟, the point 𝑝𝑖 is added to the current damage region {𝑅𝑑} and its neighboring points 

𝑁𝐵(𝑝𝑖) are added to the set {𝑆}. The value of threshold thr is selected by trial and error approach 

in which the region growing segmentation method has been performed on several test cases 

containing different sizes, geometries, and locations of material-missing damages to provide a 
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reliable threshold value using which all damaged regions’ data points are detected and stored in the 

set {𝑅𝑑}. Figure 5.3(a) shows the geometric error 𝐺𝑒 colormap of the point cloud of a simulated 

damaged blade with respect to its CAD model. Figure 5.3(b) plots the 𝐺𝑒 values of the seed points 

versus the data point index in the tip damage zone using region growing algorithm. The tip damage 

zone is highlighted with a dashed-border rectangle in Figure 5.3(a). It is seen in Figure 5.3(b) that 

when the seed points grow to the undamaged region, the geometric error between the measured 

point and its closest point on CAD is reduced almost converging toward a fixed value. The region 

growing algorithm is terminated when the geometric error is smaller than a specified threshold 

value. Figure 5.3(c) depicts the data points of the damaged region obtained through the proposed 

region growing approach in the material-missing area highlighted with a dashed-border rectangle 

in Figure 5.3(a). All data points of the damaged regions of the defective blade are detected using 

the proposed region growing segmentation method and collected in dataset {𝑅}.  

By removing the data points of the damaged regions in {𝑅} from the scan data, we have a filtered 

point cloud of the defective blade in the design coordinate system (DCS) which includes only the 

undamaged regions' data points. The filtered scanned point cloud hereinafter called scanned point 

cloud data (or scan data), is used as a reference to deform the CAD model and construct the 

damage-free digital twin of the defective blade. 
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Figure 5.2 Flowchart of the region growing segmentation algorithm for detecting the data points 

of the damaged regions. 
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(a) (b) (c) 

Figure 5.3(a) Geometric error (𝐺𝑒) colormap of the point cloud of a simulated damaged blade 

with respect to its nominal CAD model, (b) 𝐺𝑒 values of the seed points versus the data point 

index when expanding the damaged region depicted with dashed-border rectangle through region 

growing algorithm, and (c) the damaged region detected and removed from the point cloud data. 

5.4.3 CAD-to-SCAN non-rigid matching 

To construct a damage-free digital twin of the defective blade and obtain repair volume, a CAD-

to-scan non-rigid registration methodology is proposed to specify the relationship between nominal 

model and scanned point cloud in undamaged regions where, due to harsh operation environment, 

the geometric shape of the aero-engine blade is different from the CAD model. The main idea 

behind the non-rigid registration is to find a transformation matrix for each corresponding pair in 

order to best match the CAD model to the scanned point cloud data while preserving the local 

rigidity. Figure 5.4 shows an intermediate step of the non-rigid registration in which the CAD data 

points move towards their corresponding points on the scanned point cloud using a locally affine 

transformation 𝑇𝑖. The algorithm mainly consists of two steps: correspondence search and 

transformation matrix computation for each CAD data point.  
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5.4.3.1 Correspondence search 

The accuracy of the non-rigid registration highly depends on the reliability of corresponding pairs. 

Although the data points of damaged regions are removed from the measurement data before non-

rigid registration, the correspondence search may face the following challenges: 

- Since the measured point cloud of the damaged blade is noisy and often contaminated by 

outliers at high-curvature features (i.e., leading edge and trailing edge), the point-to-point 

correspondence search is often not able to provide a reliable correspondence for accurate 

projection of the nominal model towards the true underlying geometry of the measurement 

data. Due to employing the closest point-to-point correspondence search, shrinkage and 

expansion of the nominal model may occur when matching the nominal model onto the scanned 

point cloud [122]. Figure 5.4 shows the correspondences of CAD points obtained by the closest 

point search on the scan data. It is seen that due to using the closest point correspondence search 

approach, the CAD data points 𝑞4 and 𝑞5 have the same closest corresponding point 𝑝6 on the 

scanned point cloud. As, later on, the transformation matrix deforms the CAD data points 

towards their corresponding points, using the closest point-to-point correspondence search, it 

may move more than one source point (CAD points) towards a scanned data point, leading to 

the shrinkage and expansion of the source dataset.  

- For the CAD data points belonging to the repair volume geometry, there is no reliable 

corresponding point on the scanned point cloud data. As can be seen in Figure 5.4, the CAD 

data points 𝑞6, 𝑞7 and 𝑞8 belong to repair volume patch for which there is no reliable 

correspondence on scanned point cloud; and consequently, the measured data points of the 

border of the damaged region are wrongfully selected as corresponding points (i.e., data points 

𝑝7 and 𝑝8). Also, depending on the location, size, and geometry of damaged regions on the 
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blade surface, the closest corresponding points of the CAD data points of repair volume patch 

may be incorrectly picked from the other side of the blade surface. Figure 5.5 presents the 

closest correspondences of the CAD points belonging to the repair volume patch on the pressure 

side of the blade. This figure illustrates the problem on a 2D profile for the sake of better 

visualization. As we can see in Figure 5.5, for the CAD points on the pressure side of the blade, 

the closest correspondences are introduced on the suction side of the scanned blade surface. 

Employing the incorrect correspondences for CAD data points belonging to repair volume 

geometry results in the collapse of these points onto wrong measured data points and an 

inaccurate damage-free digital twin construction. 

To address the errors resulting from the closest point-to-point correspondence search and eliminate 

the influences of corresponding pairs belonging to repair volume geometry on CAD-to-scan non-

rigid registration we propose the following point-to-surface weighted correspondence search 

approach with medial axis constraint. 
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Figure 5.4 Closest point-to-point correspondence search procedure. Each CAD data point is then moved 

towards a corresponding measurement data point using a locally affine transformation matrix 𝑇𝑖. 
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Figure 5.5 Incorrect correspondences between CAD data points (blue) belonging to repair 

volume region and scan data (green). 

1- Point-to-surface correspondence search: to avoid shrinking and expanding the set of data points 

and eliminate the effects of measurement noise and outliers on the results of the CAD-to-scan non-

rigid registration, we provide a unique correspondence for each CAD data point on the local 

underlying geometry of its closest point on the measurement dataset. As can be seen in Figure 5.6, 

for each CAD data point 𝑞𝑖, a quadric surface is fitted to the local neighborhood of its closest 

measured data point 𝑝𝑖 and the nearest point 𝑝𝑖
∗ on the local surface to the point 𝑞𝑖 is selected as 

the corresponding point. The proposed non-rigid registration method benefits from the point-to-

surface correspondence search method to reduce the influence of measurement noise on damage-

free digital twin construction and deform CAD points uniformly towards the underlying geometry 

of measured points which avoids shrinkage and expansion of CAD data points. 

2- Weighting of corresponding pairs: a weight function is defined to measure the reliability of each 

corresponding pair. For each CAD data point 𝑞𝑖 and its nearest measured data point 𝑝𝑖 on the 

scanned point cloud, the weight value 𝑤𝑖 is defined as:  

Repair volume area 
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where 𝐷𝑖 is the number of CAD data points whose closest point on the scan data is 𝑝𝑖. For example, 

in Figure 5.4, the value of 𝐷𝑖 for weight computation of CAD points 𝑞7, 𝑞8 and 𝑞9 is equal to 3, 

because these points share the measured point 𝑝8 as the nearest point on the scan data. Due to the 

fact that the calculated corresponding points for the CAD data points in the repair volume area are 

a few measured points lying on the border of damaged areas, 𝐷𝑖 value for the CAD data points in 

the repair volume area is large, therefore the weight value 𝑤𝑖 of the corresponding pairs in the 

repair volume areas of the CAD dataset is very small. Applying the weighting factor 𝑤𝑖 

significantly reduces the influence of unreliable corresponding pairs introduced in repair volume 

regions of the CAD model on non-rigid registration.  
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Figure 5.6 Finding the corresponding point of the CAD point 𝑞𝑖 using the point-to-surface 

correspondence search: The closest measured data point (𝑝𝑖) to the point 𝑞𝑖 is found, and a 

quadric surface is fitted to the local neighboring points of 𝑝𝑖. Then, the nearest point on the local 

surface (𝑝𝑖
∗) to the point 𝑞𝑖 is selected as the corresponding point of 𝑞𝑖. 
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3- Medial axis constraint: to avoid picking incorrect corresponding points for CAD points of repair 

volume geometry on the opposite side of the blade (see Figure 5.5), a mesh surface is generated 

using the sectional medial axes points to separate the suction side of the blade from its pressure 

side. Figure 5.7(a) shows the medial axis points of a 2D airfoil profile. We compute the medial axis 

points for several sectional airfoil profiles from the bottommost to the topmost section of the CAD 

model and create a mesh surface of the medial axes points as shown in Figure 5.7(b). Using the 

medial axis constraint, the point 𝑝𝑖
∗ (nearest point on the local surface fitted to neighboring points 

of 𝑝𝑖) is assigned as the corresponding point of CAD point 𝑞𝑖 if the line segment 𝑝𝑖 to 𝑞𝑖 does not 

intersect the medial axes mesh surface. 

The proposed correspondence search approach improves the accuracy of the subsequent non-rigid 

registration by removing the influence of incorrect corresponding pairs on transformation matrices 

computation. 

 

 

(a) (b) 

Figure 5.7(a) Airfoil profile of a blade and its medial axis, and (b) the 3D mesh 

surface generated from the sectional medial axes points of CAD model. 
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5.4.3.2 Transformation calculation 

If the CAD data points are given in homogenous coordinates 𝑞𝑖 = [x,y,z,1]T, an affine 3×4 

transformation matrix 𝑇𝑖 is defined for each CAD point 𝑞𝑖 to project it onto its corresponding point 

𝑝𝑖
∗. As mentioned earlier, point 𝑝𝑖

∗ is the nearest point on the local surface fitted to the neighboring 

points 𝑁𝐵(𝑝𝑖) where 𝑝𝑖 is the closest measured data point to the CAD point 𝑞𝑖. The objective 

function (𝐸𝑑(𝑇)) for minimizing the distance between CAD model Q and dataset 𝑃∗ is defined as 

follows [124]: 
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(5.4) 

The reliability of the correspondences is weighted by 𝑤𝑖. To regularize the local deformation of 

the CAD points and provide a smooth projection, a stiffness term 𝐸𝑠(𝑇) is added to the cost function 

[124]: 
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(5.5) 

This term regularizes the deformation of CAD point 𝑞𝑖 by penalizing the difference of the 

transformations of its neighboring points 𝑁𝐵(𝑞𝑖) under the Frobenius norm ‖. ‖𝐹 which is 

computed as the square root of the sum of the squares of the elements of matrix [ ]i iT T


 . Utilizing 

the uniformly-sampled dataset of CAD model and adding the stiffness term to the objective 

function are both crucial to a reliable deformation of the CAD data points with a high degree of 

accuracy and local rigidity towards the underlying geometry of their corresponding points on the 

scanned point cloud data. 
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The full distance minimization objective function E(T) is a weighted sum of 𝐸𝑑(𝑇) and 𝐸𝑠(𝑇)  

[124]: 

( ) ( )d sE(T) E T E T 
 (5.6) 

The parameter α, called the stiffness weight, influences the flexibility of the CAD model to 

accurately deform to match CAD data points to the scanned point cloud data. Since the cost 

function E(T) is a quadratic function, we can convert it into linear equations and directly solve the 

problem by setting the derivative of the cost function to 0. The objective function E(T) of Equation 

(5.6) is minimized under the non-rigid ICP framework [124]. 

Figure 5.8 shows the flowchart of the proposed non-rigid registration algorithm. The algorithm 

iteratively deforms the original (nominal) CAD model to match it to the scan data and get a damage-

free digital twin of the defective blade. As mentioned earlier in Section 5.4.2., the scan data inputted 

to the non-rigid registration algorithm is a filtered scanned point cloud after removing all data 

points of damaged regions. This algorithm includes two main loops. The outer loop updates the 

stiffness weight value α in Equation (5.6) to deform the CAD model from global deformations 

toward more localized deformations. When the α value is high, the algorithm transforms the CAD 

model towards the scan data to recover the global deformations between two datasets, and then 

successively lower stiffness weights are used to recover more localized deformations on the 

surface. The inner loop of the algorithm iteratively computes the transformation of each CAD data 

point for a fixed stiffness value α𝑘 to deform the CAD model gradually. In each iteration of the 

inner loop, the algorithm finds the nearest measured point 𝑝𝑖 to each CAD point 𝑞𝑖 to compute the 

weight value 𝑤𝑖, and then, fits a local quadric surface to neighboring points of the point 𝑝𝑖 in order 

to get the corresponding point 𝑝𝑖
∗ of the CAD point 𝑞𝑖. The optimal transformations of CAD data 
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points are determined for the corresponding pairs and fixed stiffness α𝑘 through minimization of 

the objective function E(T) of Equation (5.6). Due to stiffness term 𝐸𝑠 defined in the objective 

function, the CAD data points are not projected directly towards their corresponding points but 

they may be projected parallel along the scan data to provide smooth local deformations. In each 

iteration, the algorithm reduces the distance between CAD data points and their corresponding 

points on measurement data [124].We compute the root mean square of weighted error of matching 

points (𝑅𝑀𝑆𝑤𝑒) to measure the conformity between two datasets. Applying the 𝑅𝑀𝑆𝑤𝑒 eliminates 

the influence of unreliable corresponding pairs (with small weight value) introduced in the repair 

volume zone of the CAD model on measuring the conformity between two datasets; and 

consequently, we can check the conformity between two datasets in the undamaged regions. 
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Figure 5.8 Flowchart of the proposed non-rigid registration method to construct the damage-

free digital twin. 

Figure 5.9(a) shows the 𝑅𝑀𝑆𝑤𝑒 values in each iteration of the proposed CAD-to-scan non-rigid 

registration algorithm. The inner loop (with a fix α𝑘 value) is repeated until the algorithm converges 

to a stable state where the change between 𝑅𝑀𝑆𝑤𝑒 values of two successive iterations falls below 
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a threshold 𝛿1. Then, the stiffness weight value α𝑘 is lowered to continue the non-rigid registration 

process. For example, as can be seen in Figure 5.9(a), when the algorithm meets the threshold 𝛿1 

for stiffness weight value α0, the outer loop lowers the weight value to α1 and repeats the search 

for optimal transformation matrices through minimization of the objective function E(T) of 

Equation (5.6) in the inner loop. In order to enhance the efficiency and accuracy of the non-rigid 

registration process, the algorithm starts with a large stiffness weight value 𝛼0 and incrementally 

decreases its value using the following relationship: 

0.( )kk r 
 (5.7) 

where 𝛼𝑘 is the stiffness weight value of the kth iteration of the outer loop and r (with a value 

between 0 and 1) is the stiffness weight coefficient. This relation provides a gradual relaxation of 

the stiffness term of the objective function during non-rigid registration and avoids high 

computation time. In the initial iterations of the algorithm, the difference between successive 

stiffness weight values is large while in the last iterations where the stiffness weight values are low, 

the difference between successive weight values is small. For lower 𝛼𝑘 values where the stiffness 

term of the objective function is more relaxed, the distance between the CAD model and 

measurement point cloud is very small; therefore, the values of transformation matrix 𝑇 become 

smaller and the CAD model is deformed slightly. Figure 5.9(b) depicts the Euclidean norm of the 

difference between transformation matrices of two successive iterations (‖𝑇𝑗 − 𝑇𝑗−1‖) of the 

proposed non-rigid registration algorithm. It is seen that the difference between two successive 

transformation matrices is gradually reduced to reach a small value. In the present work, the non-

rigid registration algorithm terminates when the norm of the difference between transformation 

matrices of two successive iterations is smaller than a threshold 𝛿2.  
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(a) (b) 

Figure 5.9(a) Root mean squares of weighted error (𝑅𝑀𝑆𝑤𝑒) of matching points in each 

iteration of the algorithm, and (b) norm of the difference between transformation matrices of 

two successive iterations. 

5.4.3.3 Parameters 

In the proposed non-rigid registration algorithm, there are a few parameters for which values must 

be specified: initial stiffness weight value 𝛼0; stiffness weight coefficient r; inner loop threshold 

𝛿1 and algorithm termination threshold 𝛿2. The stiffness weight values depend on the blade’s 

geometry and the deformations on the undamaged regions of the defective blade, as well as the 

density of the point cloud data. Initial stiffness weight 𝛼0 should be chosen such that at the 

beginning of the algorithm only the large deformations are covered. In this work, we start with a 

high 𝛼0 to guarantee the accuracy of the results, although it may cause high computation time. The 

stiffness weight coefficient r applied in Equation (5.7) provides the required relaxation for the 

stiffness term of the objective function. r is a value between 0 and 1. If there is a high value of r, 

the algorithm may take more time to converge. The selection of inner loop threshold 𝛿1 and 

algorithm termination threshold 𝛿2 are related to geometric nonconformities between CAD and 

scanned point cloud in undamaged regions and the level of measurement noise. If there are big 
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nonconformities and high measurement noise, the values of 𝛿1 and 𝛿2 should be larger. Based on 

a number of experiments, we apply the following settings in our implementation: 𝛼0 ∈ [100 −

400]; 𝑟 ∈ [0.75 − 0.95]; 𝛿1 = [1 − 10] × 10−6; 𝛿2 ∈ [1 − 5] × 10−3. 

5.5 Results and Discussions 

Numerical and experimental case studies have been conducted to validate the proposed non-rigid 

registration method. For the numerical case studies, synthetic point cloud data are generated by 

sampling a simulated damaged blade for which the actual geometry of the simulated blade is known 

that can be used as the benchmark against which the CAD-to-scan non-rigid registration outcomes 

(i.e., damage-free digital twin) can be compared to assess the performance of the proposed 

algorithm. The blade CAD model was created with the overall dimensions of the blade roughly 

corresponding to a cuboid of 45 mm in length, 15 mm in width, and 105 mm in height. To follow 

a typical blade surface design, a twist of 25 degrees from the blade bottom to tip was introduced 

by incrementally twisting the airfoil sections from the bottommost to the topmost section. To 

simulate the deformed blade surface, certain form deviations were superimposed onto the nominal 

blade surface. First, a sinusoidal variation with the random amplitudes between 0 and 0.005 mm 

was superimposed onto the airfoil sections of the CAD model in the direction of the profile normal 

to emulate the combination of the typical manufacturing errors on the blade surface. Then, a 

sinusoidal variation with an amplitude between 0.04 and 0.08 mm was added to the pressure and 

suction sides of some airfoil sections of the blade to resemble a typical geometric deformation on 

a used blade during its operation. Next, geometric defects were added to the airfoil sections to 

simulate damages (material-missing regions) on the blade tip at the trailing edge as well as the 

pressure side of the blade surface. Using the NURBS surface interpolation of the airfoil sections, 

the simulated defective blade surface was created, which is then used as a reference. Figure 5.10 
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shows the nominal CAD model, as well as the simulated defective blade and simulated (actual) 

damage-free blade with their error colormaps with respect to the nominal CAD model. Since the 

maximum deformation of the actual damage-free blade (Figure 5.10(c)) with respect to the original 

CAD model is almost 0.1 mm, the error colormap range in Figure 5.10(b) is also capped at the 

same range (i.e., [0, 0.1] mm) for the sake of better visualization. 

Then, the simulated damaged blade surface was randomly sampled to generate an ideal (noise-free) 

point cloud. In practice, the scanned point cloud data contains measurement noise. Therefore, the 

synthetic point clouds should also include the measurement noise for simulating the real scanned 

point cloud data. In order to generate noisy point clouds of the simulated blade, Gaussian deviates 

with 0.01 mm standard deviation (with the distribution’s mean at zero) were superimposed onto 

the ideal point cloud in random directions.  

   

(a) (b) (c) 

Figure 5.10(a) Nominal CAD model, (b) error colormap of the simulated point cloud (without 

noise) of the damaged blade, and (c) error colormap of point cloud of its actual damage-free 

blade. 
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5.5.1 Damage-free digital twin constructed based on the ideal point cloud (without noise) of 

simulated damaged blade 

Figure 5.11(a) shows the error colormap (with respect to the original CAD model) of the 

constructed damage-free digital twin based on the ideal point cloud (without noise) of the simulated 

defective blade. Table 5.1 presents the deviation of the actual damage-free blade (Figure 5.10(c)) 

from the original CAD model (Figure 5.10(a)) and deformed CAD model (Figure 5.11(a)), i.e., 

constructed damage-free digital twin. As can be seen in Table 5.1, the average deviation of the 

actual damage-free blade from the CAD model and the generated damage-free digital twin model 

is 0.0223 mm and 0.0021 mm, respectively; that is, the proposed non-rigid registration method 

removes more than 90% of geometric nonconformities between the actual damage-free blade and 

original CAD model. Figure 5.11(b) shows the error colormap of damage-free digital twin obtained 

by non-rigid registration using closest point-to-point correspondence search instead of point-to-

surface corresponding search. It is seen that the constructed damage-free digital twin by point-to-

point correspondence search contains considerable shrinkage and expansion on the undamaged 

region’s surface. To evaluate the performance of the proposed non-rigid registration method on the 

geometry of material-missing regions, the airfoil profiles of the generated damage-free digital twin 

models (in Figure 5.11(a) and (b)) are reconstructed for sectional data points of material-missing 

regions. In the present work, the adaptive curvilinear projection method presented in [9] was 

employed to get the sectional data points from 3D point cloud data, and then the airfoil profile 

reconstruction method of [125] was utilized to generate a smooth airfoil profile from 2D sectional 

data points. Figure 5.11(c) depicts the airfoil profiles reconstructed from sectional data points of 

the generated damage-free digital twin models, original CAD profile, actual damaged profile, and 

actual damage-free profile. The actual damaged profile and actual damage-free profile are 

reconstructed respectively from the sectional data points of the simulated damaged blade (Figure 
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5.10(b)) and simulated damage-free blade (Figure 5.10(c)). The airfoil profiles are reconstructed 

from sectional data points at Z = 90 mm belonging to a material missing region (tip damage) of the 

simulated damaged blade. 

  

 

(a) (b) 

 

 Figure 5.11(a) Error colormap (with respect to 

original CAD model) of the damage-free digital twin 

constructed based on the noiseless point cloud of the 

simulated defective blade, obtained by non-rigid 

registration process using (a) point-to-surface 

correspondence search (ps) and (b) closest point-to-

point correspondence search (pp); (c) comparison 

between actual damage-free profile and airfoil profiles 

of damage-free digital twin (DT) models, CAD 

profile, and actual damaged profile at Z = 90 mm. 

(c) 
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Table 5.1 Deviation of the actual damage-free blade (Figure 5.9(c)) from the original CAD model 

(Figure 5.9(a)) and from the constructed damage-free digital twin (Figure 5.10(a)). 

 
Deviation from 

CAD  

Deviation from damage-free 

digital twin  

Improvement 

(%) 

Average error (mm) 0.0223 0.0021 90.93 % 

Table 5.2 lists the deviation (root mean square error RMSE) of the original CAD profile and 

reconstructed profiles of the generated damage-free digital twin models from the actual damage-

free profile at Z = 90 mm. As can be seen in Figure 5.11(c) and Table 5.2, there is a significant 

profile error (0.0618 mm) between CAD profile and actual damage-free profile which is resulted 

from the distortion of the simulated damaged blade. The profiles of the damage-free digital twin 

models have small RMS errors of 0.0067 mm (for closest point-to-point correspondence search) 

and 0.0041 mm (for point-to-surface correspondence search). The airfoil profile errors also 

demonstrate the superior performance of the point-to-surface correspondence search (ps) in non-

rigid registration process over the closest point-to-point (pp) method, since the RMSE of the profile 

of the damage-free digital twin obtained by point-to-surface correspondence search from the actual 

profile is 0.0026 mm less than RMSE of the profile of the one obtained through point-to-point 

correspondence search. Figure 5.11(c) shows that there is a shrinkage in high-curvature features 

(i.e., trailing edge) of the damage-free digital twin obtained through closest point-to-point 

correspondence search (pp) which may lead to an inaccurate repair volume computation and 

unsmooth (jagged) transition between repaired and unrepaired regions. The CAD-to-scan non-rigid 

registration results demonstrated the effectiveness of the proposed method for accurate deformation 

of the CAD model to match it to the point cloud of the simulated damaged blade. 
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The computations required for the CAD-to-scan non-rigid registration were carried out in 

MATLAB R2018a on a PC with a 3.6 GHz Intel Core i7-7700 processor and 32 GB of RAM 

without parallel computing. The computation times for the construction of the damage-free digital 

twin models depicted in Figure 5.11(a) and (b) are listed in Table 5.3. The point clouds of Figure 

5.11(a) and (b) contain 258,520 points. As can be seen in the table, the point-to-point 

correspondence search takes less time for damage-free digital twin construction than the point-to-

surface correspondence search approach. Using the point-to-surface correspondence search, 

instead of finding the closest point on the scanned dataset as the corresponding point, the algorithm 

computes the nearest point to the CAD point on the local quadric surface fitted to the local 

neighboring points of the closest point on the scan data as the corresponding point. Therefore, the 

point-to-surface correspondence search is computationally more expensive than the point-to-point 

correspondence search. Also, computation time of the region growing segmentation approach for 

detection of the damaged regions’ data points of the damaged blade in Figure 5.11(b) is 54 seconds. 

Table 5.2 RMSE of the original CAD profile and the airfoil profiles of generated damage-free 

digital twin models from the actual damage-free profile at Z=90 mm. 

 
CAD 

profile 

Damage-free digital twin profile 

(point-to-point correspondence search) 

Damage-free digital twin profile 

(point-to-surface correspondence search) 

RMSE 

(mm) 
0.0618 0.0067 0.0041 

Table 5.3 Computation time for the construction of the damage-free digital twin models shown in 

Figure 5.11(a) and (b) using the proposed CAD-to-scan non-rigid registration. 

No. of 

iterations 

Digital twin construction with point-

to-point correspondence search (min) 

Digital twin construction with point-to-

surface correspondence search (min) 

62 37.53 43.86 
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5.5.2 Damage-free digital twin constructed based on the noisy point cloud of simulated 

damaged blade 

Here, we evaluate the performance of the proposed method in the presence of measurement noise. 

The synthetic noisy point cloud with 0.01 mm level of noise is inputted to the non-rigid registration 

algorithm. Figure 5.12(a) shows the error colormap of the damage-free digital twin of the noisy 

point cloud of the simulated defective blade with respect to the original CAD model after non-rigid 

registration by point-to-surface correspondence search. As can be seen in Table 5.4, the average 

deviation of the actual damage-free blade from generated damage-free digital twin is 0.008 mm, 

which means the proposed methodology has eliminated more than 64% of geometric 

nonconformities between the actual damage-free blade and original CAD model through non-rigid 

registration of CAD model to the noisy point cloud of the defective blade. Figure 5.12(b) depicts 

the error colormap of damage-free digital twin of the noisy point cloud of the simulated defective 

blade obtained by the closest point-to-point correspondence search. It is seen that the closest point-

to-point correspondence search approach is more affected by noise in both damaged and 

undamaged regions than the point-to-surface correspondence search method. Because of unreliable 

correspondences created by the closest point-to-point search, there is a considerable shrinkage and 

expansion on the damage-free digital twin model of Figure 5.12(b). Figure 5.12(c) shows the airfoil 

profiles reconstructed from sectional data points of the generated damage-free digital twin of the 

noisy point cloud of the defective blade and compares them with the CAD profile, actual damaged 

profile, and actual damage-free profile at Z=90 mm. According to the results depicted in Table 5.5, 

the RMSE of the reconstructed profiles of the damage-free digital twin models obtained by closest 

point-to-point and point-to-surface correspondence search from the actual damage-free profile are 

respectively 0.009 mm and 0.006 mm which are significantly smaller than the CAD profile 

deviation (i.e., 0.0681 mm).  
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(a) (b) 

 

 Figure 5.12(a) Error colormap (with respect to 

original CAD model) of the damage-free digital twin 

constructed based on the synthetic noisy point cloud 

of the simulated defective blade, obtained by non-rigid 

registration using (a) point-to-surface correspondence 

search (ps) and (b) closest point-to-point 

correspondence search (pp); (c) comparison between 

actual damage-free profile and airfoil profiles of 

damage-free digital twin (DT) models, CAD profile, 

and actual damaged profile at Z = 90 mm. 

(c) 

 

Table 5.4 Deviation of the actual damage-free blade (Figure 5.10(c)) from the original CAD model 

(Figure 5.10(a)) and from the constructed damage-free digital twin (Figure 5.12(a)). 

 
Deviation from 

CAD 

Deviation from damage-free 

digital twin 
Improvement (%) 

Average error (mm) 0.0223 0.0080 64.29 % 
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Table 5.5 RMSE of the original CAD profile and the generated airfoil profiles of damage-free 

digital twin models based on the synthetic noisy point cloud from the actual damage-free profile at 

Z=90 mm. 

 
CAD 

profile 

Damage-free digital twin profile 

(point-to-point correspondence search) 

Damage-free digital twin profile 

(point-to-surface correspondence search) 

RMSE 

(mm) 
0.0618 0.0090 0.0060 

These results also show that the non-rigid registration by point-to-surface correspondence search 

has a superior performance over the closest point-to-point correspondence search in the presence 

of noise. The RMSE of the profile of the damage-free digital twin obtained by point-to-surface (ps) 

correspondence search from the actual damage-free profile is 0.003 mm smaller than that of the 

damage-free digital twin generated through the closest point-to-point (pp) search. It is also visually 

seen in Figure 5.12(c) that the nonconformity between point-to-surface damage-free digital twin 

profile and actual damage-free profile in high-curvature feature of the blade is less than point-to-

point damage-free digital twin profile. The results for the synthetic noisy point cloud data 

demonstrate that the proposed method is robust to noise and can accurately deform the CAD model 

to match it to the noisy point cloud and generate an accurate damage-free digital twin model while 

avoiding shrinkage and expansion of data points set. 

5.5.3 Damage-free digital twin of a scanned damaged blade 

Here, an experimental case study is presented in which we construct the damage-free digital twin 

of a damaged blade from the scanned point cloud data of it. The damaged blade was scanned using 

an ATOS Core 200 (GOM, Braunschweig, Germany) structured-light 3D scanner. Figure 5.13 

shows the damaged blade being scanned, the scanned point cloud data, and the nominal CAD 
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model of the blade. The scanned point cloud contains 950,202 points with an average point spacing 

of 0.08 mm. The damaged blade includes voids and tip damage (see Figure 5.13), which are 

common material-missing type damages on the surface of aero-engine blades. Since the scanned 

point cloud data has an arbitrary relative position and orientation with respect to the CAD model, 

as can be seen in Figure 5.13(b) and (c), the fine-tuned registration algorithm of [28] is applied to 

align the measurement data with the CAD model using a rigid body transformation. It should be 

noted that, in this work, we have employed the raw scanned point cloud data of the blade as input, 

which is contaminated by outliers at the high-curvature features. 

  

(a) (b) (c) 

Figure 5.13(a) The damaged blade being scanned by the structured-light scanner, (b) the scanned 

point cloud of the damaged blade (the decimated point cloud data is shown for the sake of better 

visualization), and (c) the nominal CAD model of the blade. 
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Figure 5.14(a) shows the error colormap of scanned point cloud data with respect to the CAD model 

after being aligned using the fine-tuned scan-to-CAD rigid registration algorithm of [28]. The error 

range of the colormap is capped at 0.5 mm for the sake of better visualization. Figure 5.14(b) 

depicts the error colormap of the generated damage-free digital twin with respect to the nominal 

CAD model after point-to-surface non-rigid registration. It is seen by comparing the colormaps of 

Figure 5.14(a) and Figure 5.14(b) that the proposed algorithm correctly deforms the original CAD 

model in undamaged regions to match it to the scanned point cloud data. Due to the fact that there 

is no actual damage-free digital twin for which the actual deviations from the CAD are known, as 

a reference, the performance of the proposed CAD-to-scan non-rigid registration is evaluated 

through error evaluation between undamaged regions of the scanned damaged blade and 

constructed damage-free digital twin. Table 5.6 lists the deviation of the data points of undamaged 

regions of the scan data from the CAD model after rigid scan-to-CAD registration and from 

damage-free digital twin after the proposed non-rigid CAD-to-scan registration, respectively. It is 

seen that the average deviation between the scan data and the generated damage-free digital twin 

model is 0.067 mm smaller than the average deviation between the scan data and the original CAD 

model, which means a 32.5 % improvement in conformity of damage-free digital twin model to 

the scanned point cloud compared to the original CAD model. 

A Boolean difference is performed between mesh models of the scan data and the damage-free 

digital twin in MeshLab software to get the geometric model of the repair volume (see Figure 

5.14(c)). MeshLab carries out an exact Boolean difference between the two meshes using the code 

provided in the libigl library [126], which uses the method proposed in [127]. The acquired repair 

volumes can be used in subsequent steps of remanufacturing process planning including additive 

and subtractive repair toolpath generation. 
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Table 5.6 Deviation of the data points of undamaged regions of the scanned point cloud from the 

CAD model (after scan-to-CAD rigid registration) and from damage-free digital twin model (after 

proposed non-rigid registration). 

 
Deviation from CAD         

(after rigid registration) 

Deviation from damage-free digital 

twin (after non-rigid registration) 

Improvement 

(%) 

Average error 

(mm) 
0.2057 0.1388 32.5 % 

 

  

 

(a) (b) (c) 

Figure 5.14(a) Deviation of the scan data from original CAD model after fine-tuned scan-to-

CAD rigid fine-tuned registration of [28], (b) deviation of the damage-free digital twin from 

original CAD model after CAD-to-scan non-rigid registration, and (c) repair volumes 

representation in triangulated mesh form obtained by a Boolean difference between damage-

free digital twin and scan data. 
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5.6 Conclusions 

This paper presents a new methodology to accurately construct a damage-free digital twin of a 

damaged blade for generating the repair volume geometry for additive restoration of the damaged 

blade based on its scan data. A region growing segmentation approach is employed to eliminate 

the data points of damaged regions from the scanned point cloud of the damaged blade through 

geometric error evaluation between the scan data and the CAD model. The Euclidean distance and 

angular difference between normal vectors of each measured data point and its closest point on the 

CAD model are combined for geometric error computation. We propose a CAD-to-scan non-rigid 

registration algorithm to specify the relationship between the CAD model and the scanned point 

cloud of the damaged blade in order to deform the CAD model incrementally to match it to the 

defective blade in undamaged regions while preserving local rigidity of data points as much as 

possible. The proposed non-rigid registration benefits from a point-to-surface correspondence 

search method developed to reduce the influence of measurement noise on damage-free digital 

twin construction and avoid shrinkage and expansion of data points set in high curvature features 

(i.e., leading and trailing edges) by finding the corresponding point of each CAD point on the 

quadric surface fitted to the local neighborhood of its nearest measured data point. The proposed 

correspondence search method eliminates the influences of the unreliable corresponding pairs 

introduced in the repair volume region of the CAD model by weighting them and using the medial 

axes mesh surface constraint. The weighted stiffness term of the objective function of the non-rigid 

registration algorithm regularizes the deformation of CAD data points by penalizing the difference 

of the transformations of neighboring points to provide a smooth geometric transition at the 

interface of the constructed repair region and undamaged region.  
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Implementation results on numerical and experimental case studies have demonstrated the 

effectiveness of the proposed method in generating an accurate damage-free digital twin of the 

defective blade and avoiding the shrinkage and expansion of data points set in high curvature 

features of the blade. The Airfoil profile comparison in repair volume regions has substantiated 

superior performance of the proposed point-to-surface correspondence search over the traditional 

point-to-point correspondence search. 

Although the proposed damage-free digital twin construction approach is accurate and effective, 

the non-rigid registration method is relatively computationally expensive. Thus, an avenue for 

future research is to focus on improving the efficiency of the proposed algorithm either through 

simplification of scan and CAD point clouds to reduce the computation time of non-rigid 

registration process or using voxel-based models instead of point-based models. In both cases, there 

would be a trade-off between preserving the fine details of data and computational efficiency 

depending on the resolution of the model. With low resolutions, useful data will be lost. Using high 

resolutions to preserve the fine details of data will increase the computation time. Due to the fact 

that the simplified datasets should preserve the details of the original models, it calls for further 

research on feature-preserved data simplification methods to enhance the efficiency of the proposed 

methodology while maintaining the accuracy at an acceptable level. 
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 GENERAL DISCUSSION 

During the course of this research, we mainly focused on the development of a framework for 

automatic inspection and repair volume construction of damaged aero-engine blades using the 3D 

scanned point cloud data. The 3D scanned point cloud of the damaged blade and CAD model are 

given as input to the computational framework. This framework includes three main steps: a) scan-

to-CAD rigid registration to bring the scanned point cloud data of the damaged blade and its CAD 

model into a common coordinate system, b) airfoil profile reconstruction from 2D sectional 

scattered data points for section-specific inspection of the damaged blade in undamaged regions, 

and c) damage-free digital twin construction of the defective blade for repair volume generation. 

The main contributions in each component of the proposed virtual framework are summarized as 

follows: 

1- A novel scan-to-CAD rigid registration method has been developed for alignment of the 

scanned point cloud of the damaged blade with its CAD model to address the averaging-out 

errors resulted from original ICP-based registration algorithms. The proposed approach 

includes three main steps: rough registration, fine registration, and fine-tuned registration. In 

the correspondence search of fine-tuned alignment, the algorithm automatically assesses the 

geometric dissimilarity of each corresponding pair through group-to-group evaluation of 

Euclidean distance and curvature of the local neighborhood of each measured point and its 

nearest point on the CAD model and eliminates the unreliable pairs of damaged regions from 

the registration process. Numerical case studies have been conducted to validate the proposed 

alignment method. Comparison of the developed alignment method with the existing methods 

demonstrates the superiority of the proposed approach in aligning the point cloud of the 

damaged blade to the CAD model and its robustness to measurement noise. Moreover, the 
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performance of the proposed method is examined in an experimental case study with a real 

scanned point cloud. 

2- An airfoil profile reconstruction methodology has been developed to generate a smooth airfoil 

profile from unorganized and noisy sectional data points for section-specific geometric error 

evaluation of airfoil profiles in undamaged regions of the defective blades. The main 

contribution of the proposed method lies in automatically thinning the scattered sectional data 

points within the measurement uncertainty constraint of inspection data using a recursive 

weighted local least squares technique.  A reliable profile polygon is generated from thinned 

data to order the dataset with no user interaction. After thinning and ordering the unorganized 

set of sectional data points, the smooth airfoil profile is generated by fitting a closed 

nonperiodic B-spline curve on the ordered data. Employing the proposed airfoil profile 

reconstruction, the centroid location and orientation angle of airfoil sections have been 

accurately estimated, which play a critical role in the precision inspection of aero-engine blades 

using non-contact 3D scanning techniques for MRO applications. The proposed method has 

been validated using synthetic inspection data points from the simulated in-service blade with 

known geometric deformations and manufacturing errors as reference. The performance of the 

airfoil profile reconstruction approach has also been evaluated for point clouds in presence of 

various measurement noise levels and various point cloud densities. In addition to blade 

inspection, the developed approach can equally benefit for automatic airfoil profile 

reconstruction in regenerate and adaptive machining of aero-engine blades. 

3- A new methodology has been proposed to construct the repair volume by establishing a 

damage-free digital twin of the defective blade using a CAD-to-scan non-rigid registration 

approach. Utilizing a constrained point-to-surface correspondence search method, the 
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algorithm avoids incorrect correspondences and eliminates the effects of measurement noise 

and outliers on the CAD-to-scan non-rigid registration. The damage-free digital twin has been 

constructed through incrementally deformation of CAD data points towards the measured data 

under the local rigidity constraint to avoid shrinking and expanding of data points and yield the 

repair volume with a smooth geometric continuity at the interface of the constructed repaired 

areas and unrepaired regions of the damaged blade. The developed repair volume construction 

method has been validated using numerical (i.e., the synthetic point cloud of the damaged 

blade) and experimental case studies. The Hybrid manufacturing applications can be equally 

benefited from the proposed method for toolpath generation in additive and subtractive 

processes. 

The outcomes of each sub-objective of this thesis have been/will be published in peer-reviewed 

journals and conference paper listed as follows: 

1. Sub-objective 1: 

- Ghorbani, H. and Khameneifar, F., 2021, “Accurate Registration of Point Clouds of 

Damaged Aeroengine Blades,” Journal of Manufacturing Science and Engineering, 

Transactions of the ASME, 143(3), pp. 031012-1˗˗031012-10. 

- Ghorbani, H. and Khameneifar, F., 2022, “Scan-to-CAD Alignment of Damaged Airfoil 

Blade Point Clouds through Geometric Dissimilarity Assessment,” Procedia CIRP.  

2. Sub-objective 2:  

- Ghorbani, H. and Khameneifar, F., 2021, “Airfoil Profile Reconstruction from 

Unorganized Noisy Point Cloud Data,” Journal of Computational Design and 

Engineering, 8(2), pp. 740˗˗755. 
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3.  Sub-objective 3: 

- Ghorbani, H. and Khameneifar, F., “Construction of Damage-free Digital Twin of 

Damaged Aero-engine Blades for Repair Volume Generation in Remanufacturing,” 

Robotics and Computer-Integrated Manufacturing, under review. 
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 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

7.1 Conclusions 

Due to operation in harsh environments, blades are susceptible to geometric deformations and 

material-missing damages on the surface. Blades must thus be inspected during their service life to 

check for their conformance to the design tolerances. Accurate inspection of in-service blades is 

crucial to make a reliable decision on acceptance, rejection, or repair of inspected blades. On the 

other hand, remanufacturing of damaged blades is of great interest for MRO applications to extend 

the service life of blades and reduce the costs associated with the replacement of new blades.  

This thesis develops a framework for automatic 3D scanning-based inspection and repair volume 

construction of damaged aeroengine blades. As illustrated in Figure 7.1, the workflow of the 

proposed computational framework includes three main parts: scan-to-CAD rigid registration, 

section-specific geometric error evaluation, and damage-free digital twin construction. 

The main challenge in the rigid registration of scanned point cloud of the damaged blades to their 

CAD model is that the measured data points of material-missing regions affect the alignment results 

of ICP-based methods. The least-squares minimization objective function of the ICP algorithm 

attempts to best-match the data points in both defective (material-missing) and non-defective 

regions with their corresponding points on the nominal model. This computation leads to averaging 

out errors in which the estimated errors at the damaged regions become smaller than the actual 

errors, and the estimated errors at the undamaged regions become larger than the actual errors. This 

thesis proposes the fine-tuned registration algorithm to provide an accurate scan-to-CAD matching 

between the damaged blade and its CAD model through group-to-group geometric dissimilarity 

evaluation between corresponding pairs and automatically remove the unreliable corresponding 

pairs with significant geometric nonconformities from the rigid registration process.  



138 

 

Rough registration

Fine registration

Fine-tuned registration

SO1: Scan-to-CAD rigid registration

Thinning 

SO2: Airfoil profile reconstruction

Damaged data points 
elimination

CAD-to-scan non-rigid 
registration

Boolean operation

SO3: Damage-free digital twin 
construction

B-spline curve fitting 

Ordering 

Geometric 
deviation

Challenge 1: misalignment between scan data 
and CAD model 

Challenge 2: unorganized 2D sectional data 
points for section-specific geometric error 

evaluation 

Challenge 3: geometric deviation between CAD 
and scan data for repair volume construction

 

Figure 7.1 Workflow of the developed computational framework for 3D scanning-based virtual 

inspection and repair volume generation of damaged blades (based on the research objectives). 
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Once the scanned point cloud of the damaged blade is registered to the CAD model and both are 

in the design coordinate system, for any section-specific geometric error evaluation it is essential 

to construct the airfoil profile from unorganized and noisy projected 2D sectional data points. 

However, for the projected set of data points from the 3D scanned point cloud, the order of points 

is unknown for parametrization purposes. On other hand, the sectional projected data points are 

also scattered, which makes the data point ordering a challenge. This leads to a need for accurate 

airfoil profile reconstruction from scattered sectional data points. This thesis proposes an airfoil 

profile reconstruction method in which the scattered 2D data points are automatically thinned and 

ordered; and then, the smooth profile is approximated by fitting a B-spline curve to data. 

After accurate section-specific inspection of the damaged blades, it is crucial to generate the repair 

volume in material-missing regions of the repairable blades for additive restoration. Due to extreme 

working conditions, the geometric shapes of aero-engine blades deviate and the original CAD 

model no longer represents the actual underlying geometry shape of the damaged blade. Thus, the 

Boolean difference between the original CAD model and scanned point cloud data of the damaged 

blade may not provide an accurate repair volume with a smooth transition between repaired and 

unrepaired regions. Moreover, applying a limited number of sectional profiles obtained from scan 

data could not provide sufficient information of underlying geometry of damaged blade for repair 

volume generation via interpolation/extrapolation methods. Therefore, there is a definite need to 

devise an approach to accurately deform the CAD model to best-match to undamaged regions of 

the scanned point cloud. This thesis presents an accurate CAD-to-scan non-rigid registration 

algorithm to match the CAD data points with the whole data points in undamaged regions of the 

scanned point cloud through incrementally deformation of CAD data points towards the measured 

data while maintaining the local rigidity of CAD points as much as possible.  
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7.2 Future Work 

This thesis has successfully generated a computational framework for virtual inspection and repair 

volume generation of the damaged aero-engine blades from 3D scanned point cloud data. The 

following subjects are suggested for future research topics: 

1- In this research, it is assumed that the filtered 3D scanned point cloud of the damaged blade is 

given as input to the proposed computational framework. However, due to undesirable 

reflections in the scanning process, the raw scan data of the blade is often contaminated by 

outliers at the high-curvature features i.e., leading and trailing edges, which may influence on 

the accuracy of the implemented algorithms. Therefore, an appropriate point cloud 

preprocessing scheme should be proposed for outlier removal, smoothing, and simplification 

of the raw scan data of the damaged blade while preserving the underlying geometry of the 

surface. 

2- Due to the fact that many parameters affect the accuracy and efficiency of the proposed 

computational framework such as location, size, and geometry of damages on the blade surface, 

measurement noise, and point could density, it is desirable to develop deep learning 

methodologies such as Convolutional Neural Network (CNN) for intelligent inspection and 

repair volume construction of the damaged blades. Deep learning mainly can be explored to 

extract the intrinsic relation for damage detection (i.e., location and type of material missing 

damages) on the scan data of damaged blade and shape correspondence between scan data and 

CAD model for rigid and non-rigid registrations. In particular, the convolution operation can 

be designed based on intrinsic geometric properties of data points such as curvature, normal 

direction, and geodesic distance to capture the shape variations between the CAD model and 

scan data of the damaged blade. Thus, the constructed non-Euclidean CNN can be utilized to 
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train the network for damaged blades (with the same design geometric specifications) 

containing different types of material-missing damages on the surface and point cloud quality 

(i.e., noise levels and point cloud density). Artificial intelligence-based inspection and repair 

of damaged blades can be of great interest for the MRO industry to improve the efficiency and 

accuracy in remanufacturing of the damaged blades. 
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APPENDIX A   SCAN-TO-CAD ALIGNMENT OF DAMAGED AIRFOIL 

BLADE POINT CLOUDS THROUGH GEOMETRIC DISSIMILARITY 

ASSESSMENT 

In Chapter 3, we evaluated the effectiveness of the proposed scan-to-CAD registration method 

using various numerical case studies [28]. Here, we compare the result of the proposed rigid 

registration method and the standard ICP algorithm for the experimental case study using scanned 

point cloud data of a damaged blade. The damaged blade was scanned using an ATOS Core 200 

(GOM, Braunschweig, Germany) structured-light 3D scanner. Figure A.1 shows the damaged 

blade, scanned point cloud data, and the nominal CAD model. As can be seen in Figure A.1, the 

scanned point cloud data has an arbitrary relative position and orientation with respect to the CAD 

model. The scanned point cloud contains 950,202 points with an average point spacing of 0.08 

mm. The damaged blade contains voids and tip damage (see Figure A.1), which are common 

material-missing type damages on the surface of the aero-engine blades. The point cloud of the 

CAD model is also obtained by the uniform sampling of the surface with the average point spacing 

equal to scanned point cloud data (i.e., 0.08 mm) to analyze the same surface area on both CAD 

surface and the underlying surface of the scan data for the subsequent curvature and distance 

analysis. 

The PCA method and original ICP algorithm are applied respectively for rough and fine matching 

[28]. The classical point-to-point minimization algorithm has been used to globally minimize the 

root mean square error (RMSE) of the measured data from the CAD model and compute the 

transformation parameters T and R in Equation (3.1). The iteration is terminated when the change 

of the global registration error falls below the threshold, which is set to be µ=10-6. 
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Figure A.1(a) Damaged blade, (b) scanned point cloud of the damaged blade, and (c) the nominal 

CAD model. 

Figure A.2(a) shows the point cloud data of the damaged blade with its colormap based on the 

absolute deviations from the CAD model after being aligned using the fine-tuned registration 

procedure. Figure A.2(b), illustrates the removed data points (in black) at the end of the last 

iteration of the fine-tuned registration. Using the proposed method, almost all data points of the 

damaged regions are eliminated from the registration process. It is seen in Figure A.2(b) that some 

data points of the undamaged regions in the trailing edge and sharp edges of the blade tail are also 

removed as unreliable points. Since only a tiny portion of data points in undamaged regions are 

removed as unreliable points, it does not affect the accuracy of the registration outcome. It should 

be noted that we have employed the raw scanned point cloud data of the blade as input, which is 

contaminated by outliers at the high-curvature features.  
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Figure A.2(a) Error colormap of the aligned scanned point cloud data, and (b) the removed data 

points (in black) after the last iteration of the fine-tuned alignment. 

To locally investigate the averaging-out errors resulted from the original ICP algorithm, the point 

cloud data of both damaged blade and CAD model are sectioned by 17 equidistant sectional planes 

parallel to XY-plane of the CAD model from the bottom (Z=20 mm) to top (Z=100 mm) of the 

blade. Then, the data points in 0.1 mm distance from each sectional plane are specified as sectional 

data. The post-alignment errors are analyzed for each sectional data to compare the performance 

of the proposed method and standard ICP algorithm. Figure A.3 shows the RMSE of sectional data 

points of the scanned point cloud from the CAD model after the original ICP (in red) and fine-

tuned registration (in black). The sectional planes 4-6 and 12-17 are in damaged regions, and 

sectional planes 1-3 and 7-11 are in undamaged areas. As can be seen in Figure A.3, the post-

alignment sectional RMSE values of the ICP method in damaged regions are smaller than the post-

alignment sectional RMSE values of the proposed method and in undamaged regions are larger 

than the RMSE values of the proposed method. The maximum absolute deviation between the two 

is 21.5 µm at the tip of the blade (sectional plane #17). As discussed earlier, these averaging-out 
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errors result from global minimization of the least-squares objective function of ICP. It should be 

noted that the averaging-out error values depend on the size and the geometry of damages on the 

scanned damaged blade. The results of aligning the scanned point cloud data of the damaged blade 

with the CAD model demonstrated that the proposed fine-tuned scan-to-CAD alignment method is 

successful in avoiding the averaging-out errors of the original ICP algorithm.  

The results of Appendix A has been presented at the CIRP ICME conference [120]. 

 

Figure A.3 Deviation of post-alignment RMSE of sectional data points from the CAD 

sectional data points after original ICP registration (in red) and the proposed method (in 

black). 
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