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RÉSUMÉ

Les véhicules à guidage automatique (AGV) sont utilisés dans les lignes de production et les
entrepôts pour transporter des marchandises sur des chemins prédéterminés. Cependant, la
nécessité d’utiliser des AGV en libre parcours dans les sentiers intérieurs augmente récem-
ment. Un AGV à portée libre est appelé Robot Mobile Autonome (AMR) qui a des capacités
de prise de décision comme l’évitement d’objets ou la planification de trajectoire. Pour un
tel robot, le suivi de la trajectoire prévue, précisément, est important.

L’une des configurations les plus courantes de l’AMR consiste en deux roues motrices dif-
férentielles et des roues pivotantes qui offre une bonne stabilité et maniabilité. D’une part,
ces roues augmentent la stabilité du robot en suivant passivement la trajectoire dictée des
roues motrices tout en supportant une charge verticale. D’autre part, les rover pivotauto
sont la principale source d’incertitude qui entraînent une augmentation de l’erreur de suivi
de trajectoire. De plus, le chargement et le déchargement d’un robot avec une charge incon-
nue, mais dans une plage prédéterminée, modifie le centre de masse (COM) du robot, ce qui
entraînent davantage d’erreurs de suivi de trajectoire.
Dans cette mémoire, nous étudions dans un premier temps le comportement des rover piv-
otauto au niveau cinématique et nous perposons un modèle cinématique pour prédire son
orientation dans certaines circonstances. Ensuite, le modèle dynamique d’un AMR avec la
variable COM est considéré. En outre, la mise en œuvre de capteurs de force est proposée
pour mesurer les forces d’interaction avec le sol des roues et déterminer l’emplacement du
COM. Par la suite, une méthode de contrôle non linéaire a été utilisée pour traiter le nouveau
modèle cinématique et dynamique.
Les performances du modèle proposé ont été testées dans un environnement de simulation
du nouveau modèle par rapport à un modèle existant qui considère le COM fixe sans aucun
retour de force. Les résultats ont montrés une amélioration significative des performances et
une baisse de l’erreur de suivi de trajectoire.
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ABSTRACT

Automated Guided Vehicles (AGVs) are used in production lines and warehouses to carry
merchandises in predetermined paths. However, necessity of using free range AGVs in indoor
paths is raising recently. A free range AGV is called Autonomous Mobile Robot (AMR)
which has decision making abilities like object avoidance or path planing. For such a robot,
the tracking of the planned path, precisely, is more important.
One of the most common configuration of AMR consists of two differential drive wheels
and caster wheels which offers good stability and maneuverability. On one hand, Caster
wheels allow the robot to follow dictated paths of the driving wheels passively while carrying
vertical load. On the other hand, caster wheels are the main source of uncertainty which
cause increase in path tracking error. Moreover, loading and unloading a robot with an
unknown load, but in a predetermined range, changes the robot’s Center Of Mass (COM)
which cause more path tracking error.
In this thesis, we study the behaviour of caster wheels in kinematic level and we proposed
a kinematic model to predict its orientation in certain circumstances. Then, the kinematic
model and the dynamic model of an AMR with variable COM was considered. The addition
of force sensors has been proposed in order to measure the wheel ground interaction forces
and to determine the location of COM. Afterwards, some nonlinear control method was used
to deal with new kinematic and dynamic models.
The performance of the proposed model was tested in simulation environment. The results
of the new model compared with an existing model which considers fixed COM without any
force feedback. The results have shown significant improvement in performance and a drop
in path tracking errors.
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ṫ2 Twist of the left driving wheel
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CHAPTER 1 INTRODUCTION

1.1 Problem Statement

Automated Guided Vehicles (AGVs) are used in industries to supply parts and sub assem-
blies to the production lines. Among various mobile robot configurations, the combination
of caster wheel and differential drive wheels is the most common type offering good sta-
bility and maneuverability. Also, the necessity of replacing AGVs by Autonomous Mobile
Robots (AMRs) is raising recently because AMRs are smarter and more flexible than AGVs.
AMRs do not require fixed routes and they are able to move out of the way of obstacles
independently. However, applying unknown weight (but in an acceptable range) on an AMR
negatively affects robot performance by increasing path tracking error.
The unknown load changes robot’s Center Of Mass (COM) as well as wheels ground interac-
tion forces. The eccentricity of COM affects the precision of dynamic model and consequently
kinematic model. Furthermore, caster wheels apply not only unknown dissipative forces to
the robot’s body, but also the dissipative force’s direction changes and produce a large amount
of uncertainty on the control system. Since the amount of dissipative force is unknown, the
angle between caster wheel and robot body estimated in literature [1] and [2] will not help
to tackle with the problem. Moreover, the variations in friction between wheels and ground
surface, affect the caster wheel ground interaction force and cause more uncertainty. The
amount of uncertainty caused by COM variation and caster wheel’s dissipative force, lead to
an unacceptable range of path tracking error.

1.2 Research Question

Applying an unknown weight on an AMR cause undesirable path tracking error. The aim of
this research is to decrease the path tracking error of an AMR with variable COM which has
special configuration and dimensions ordered by an industrial company. The main research
question is:

• Is it possible to decrease path tracking error of an autonomous mobile robot having a
variable center of mass?
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1.3 Objectives

The aim of this study is to drive a new kinematic and dynamic model for an AMR with
variable COM to reduce its path tracking error. Since the location of COM is varying, the
kinematic model which yields the velocity of COM has to be derived first. Additionally, the
kinematic of the caster wheels, installed on an differential drive wheel mechanism, has been
considered. Then, the dynamic model was reconsidered based on the location of instantaneous
COM. Moreover, the implementation of force sensors to determine the position of COM
and to measure dissipative force of wheels was proposed. In order to be able to evaluate
the proposed method, a simulation environment including physics engine to simulate wheel
ground interaction forces was chosen. Finally, the robot model with actual dimensions was
imported to chosen simulator and the performance of proposed method was compared with
the other latest method.

1.4 Assumption

The following assumptions has been made to simulate this problem:

• Since the robot does not demand to tackle with high speed maneuver, the pure rolling
situation assumed for both driving wheels and caster wheels.

• The robot has planar motion in a smooth flat rigid surface with fixed friction coefficient.

• Although the friction between wheels and ground has considered at any kind in simu-
lation but, the robot body and wheels are considered as rigid.

1.5 Organization of the thesis

Chapter 2 presents a literature review on the kinematics of AMR, in particular with caster
wheels. It also discuses the dynamics and control of these vehicles with regard to a varying
COM.
Chapter 3 presents a kinematic model of an AMR with caster wheels which has been the
subject of a conference paper [1]. The new kinematic model adds kinematics of a caster
wheel to a usual kinematic model of an AMR in the aim of take casters’ dissipative force into
account.
Chapter 4 presents the kinematics and dynamics of an AMR with variable COM. Further-
more, the main idea of this thesis to answer the research question is proposed.
Chapter 5 explains the control method which was used to deal with the nonholonomic nature
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of the AMR and the new kinematic and dynamic models. Furthermore, the simulation result
of the new dynamic model with variable COM is compered by the previous dynamic model
based on fixed COM.
Chapter 6 briefly concludes the works done trough this thesis and discuses the limitations of
the job and finally provides some ideas for future works.
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CHAPTER 2 LITERATURE REVIEW

2.1 Caster wheel orientation

Caster wheels could be divide into two main categories namely, powered casters and unpow-
ered casters. Powered casters are equipped with two motors which one motor rotates the
wheel around the horizontal axis, while the other one rotates the wheel around the vertical
axis. Opposed to the powered caster wheels, unpowered caster wheels follow the path dic-
tated by driving wheels, meanwhile carrying the normal load of the base. In this study, we
focused on unpowered casters and wherever we name a caster wheel in this thesis, we mean
unpowered casters.
Casters are designed in such a way that do not resist against rolling and turning. Whoever,
when it comes to carrying a load, specially in a free range robot, the uncertainty originated
from casters are not negligible. Having said that, the resistance force caused by caster wheels
as an uncertainty, is not necessarily along the moving direction of the robot. Consider a robot
with two caster wheels in arbitrary direction, When the robot start moving, casters gradu-
ally rotates to the direction of the robot. After some time, the casters’ orientation remains
alongside the robot’s moving direction. The period when a caster wheel turns towards the
robot’s moving direction, is called transition mode. Caster wheels orientation after transition
mode have studied in literature [2]. Wu et al, showed that when the robot is turning along
an Instantaneous Center of Rotation (ICOR), the velocity of caster wheels’ pivot points is
normal to the line connecting Caster’s pivot point and ICOR. The situation discussed in [2]
is the orientation of caster wheel right after transition mode. This will be discussed in details
in chapter 3.
Another important application of caster wheel is to help to stabilize wheelchairs. In [3],
Chénier et al, derived an estimator to estimate the orientation of caster wheels in a wheelchair.
The estimated angle of so called estimator fluctuates around the real value and after a while
the error value converges to zero. The geometrical behaviour of caster wheel in transition
mode remained some how pristine.

2.2 Control method

Many AMRs are composed of two differential driving wheels and from two to four caster
wheels for stabilization. Although, the number and location of caster wheel do not affect
the control method, the amount of uncertainty caused by caster wheels affect the whole con-
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trol system’s performance. Considering the differential drive mechanism stabilized by caster
wheels, the most challenging part of the control system is to deal with the non-linearity of
the system. This non-linearity is inherited from nonholonomic property of the system orig-
inated from kinematic constrains. Because of the kinematics constrains, the robot cannot
have a lateral motion and considered to be skid free. The kinematic constrains of the robot
prevents the control system to use integration of velocities for localization. In other words,
according to Brockett’s conditions, the non linearity of the problem which is inherited from
nonholonomic kinematic constrains, cannot be dealt with continuous time invariant feedback
controller.
Many litterateurs have proposed different methods to deal with nonholonomic properties of
differential drive wheel robot for path tracking in presence of uncertainty in kinematic level.
Although these methods makes the robot follow the required path and were exponentially
stable, all the applied nonlinear control methods were in kinematic level [4–7]. These methods
took the advantage of back-stepping, sliding mode and adaptive control but were not suffi-
cient to address the uncertainties caused in dynamic level. Approaches applying nonlinear
control methods considering dynamic model were developed later [8–11]. Feedback lineariza-
tion were the next purposed solution to tackle with the challenge of nonholonomic properties
of differential drive wheel mobile robot [12]. However, the linearization of feedback lead to
approximation of parameters which brings more rigorous convergence when some feedback
parameters deviate from real values.
For such a nonholonomic under study system, the ideal control method to control the robot
in kinematic level could be the one proposed by Yutaka et al [13] called Back-stepping control
method. This method compares desired position and desired velocity with momentary po-
sition and momentary velocity to adjust robot’s input velocity. Back-stepping method uses
Lyapunov function to make sure pose error converge to zero.
Sliding mode control method is a nonlinear fast response method which is widely used in dy-
namic level due to its robustness to the uncertainties [14, 15]. Thanks to Switching function
in sliding mode control method, the robot reaches and sticks to the sliding surface even in
presence of disturbances. However, adjusting the coefficient of switching function could be
challenging since the robot needs a bigger gain in reaching mode rather than sliding mode.
Due to the delay between control system and physical model observed in experimental re-
sults, the big gain speed up reaching mode and consequently cause chattering problem in
sliding mode [16].
Various adaptation methods has been proposed to adjust sliding mode control’s gain to dealt
with the chattering problem [17–21]. Rossomando et al in literature [17] proposed neural
sliding mode controller in order to tune control gain in the vicinity of sliding surface to
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reduce chattering in trajectory tracking. Integral sliding control method was proposed by
Bessas et al [18] to solve the reaching problem in trajectory tracking by omitting the matched
disturbances and minimizing the unmatched ones. Particle swarm optimization regulates the
sliding surface and adjusts gain in sliding mode controller proposed by Thanok et al [20].
Exponential sliding was another method which was claimed by Mehrjerdi et al [21] to reduce
chatering problem in trajectory tracking of mobile robot.
Begniniet et al proposed robust adaptive fuzzy control schema to tackle with chattering at-
tenuation [22]. Wu et al in [23] proposed Back-stepping Fuzzy Sliding Mode in order to
proportionally adjust the switching coefficient to avoid chattering problem.
In literature [22, 23], the dynamic model was derived based on the position of COM at the
middle of the line connecting two diver wheels’ center or the longitudinal line passing through
that point. In many applications, a small change in position of COM dose not imply large
trajectory tracking error and approximation in position of COM will be behaved like a noise
in control system. However, when it comes to carrying off-centered heavy loads, the precision
of dynamic model can affects the accuracy of trajectory tracking totally. Furthermore, for the
robots which moves in narrow spaces, the accuracy of trajectory tracking gets more important
because the probability of collision increases. Considering noises from sensors for calculation
of robot’s position and velocity will result unacceptable amount of trajectory error. Here, the
necessity of having a precise dynamic model in order to minimizing the trajectory tracking
error is raising.
In this study, we derived the dynamic model based on position and velocity of COM. De-
termination of COM’s position needs force sensors to measure vertical load carried by each
wheel. Wheel ground interaction forces could be determine by implementing force sensors as
well which will be discussed deeply in Chapter 4. In all mentioned literature, the interaction
between wheels and ground would be considered as uncertainty in dynamic model. Therefore,
they literally use an open loop dynamic model completed with closed-loop kinematic model.
In our understudy AMR, the amount of uncertainty in dynamic model is originated from mis-
placement of COM and dissipative forces of wheels. Due to the high amount of uncertainty,
implementing closed-loop kinematic model is not sufficient and the necessity of closed-loop
dynamic model is raising.
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CHAPTER 3 KINEMATICS

3.1 Differential Drive Wheels Kinematics

An AMR with differential drive wheels consist of two laterally aligned driving wheels mounted
on a central body. This mechanism is naturally unstable because the central body tends to
tilt forward or backward. In order to take the advantage of this mechanism, it has to be
stabilized either by implementing special control method in software level or using caster
wheels in hardware level. In our case, the under study robot has caster wheels which well
stabilize the mechanism. So, the kinematic model of a Differential Drive Wheel Mobile Robot
(DDWMR), stabilized with caster wheel, is summarized to planar motion of the central
body and does not need to stabilize the mechanism. The rotation and displacement of such
a mechanism is linearly related to the angular velocity of the driving wheels. The former
include the subtraction of driving wheels’ angular velocities while the latter consist of the
summation of them.
A typical configuration of a DDWMR is depicted in Figure 3.1. Let us attache the base frame
F to the ground while x, y and z are its three orthogonal unit vectors. Then, lets attache
a moving frameM to the platform of the vehicle with its y-axis collinear with the common
revolute axis of the driving wheels and its x-axis along the moving direction. The origin of
M is located at the mid-point of the line connecting driving wheels’ centers c1 and c2; where,
c1 is the center point of the right driving wheel and c2 is the center point of the left driving
wheel. The attached unit vectors h, l and z are the x-, y- and z-axis of the moving frame
M. The radius of driving wheels is denoted by r whereas their contact points to the ground
is shown by p1 and p2 for the right and the left driving wheels, respectively.

o x
yz

F

M
l h

z

o′

φ
Robot platform

θ̇2

p2

c2
r

θ̇1

c1

p1

Figure 3.1 Geometry of a generic differential drive wheel mobile robot
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The angular velocity of the two driving wheels known as θ̇1 and θ̇2 which are know as arrays
of the independent velocity vector θ̇ ≡ [θ̇1 θ̇2]T . The linear velocity of the DDWMR in the
frameM is denoted by υ whereas its orientation is represented by φ along z. The pose vector
of the DDWMR in frame F is presented by q ≡ [x y φ]T . In order to derive the kinematic
model of the DDWMR, we need to link the independent velocity vector θ̇ in frameM to the
twist vector q̇ ≡ [ẋ ẏ φ̇]T in frame F whereas q̇ is nothing but the time derivative of robot
pose q.
Lets define the position of the driving wheels’ centers c1 and c2 in frame F as vector ~oci for
i = 1, 2 by:

~oci = ~opi + ~pici = ~opi + rz (3.1)

Considering the angular velocity of the left and right driving wheels as ωi = [0 θ̇i φ̇]T in
frameM and after taking the time derivative of eq.(3.1) we have:

~̇oci = ~̇opi + rθ̇ih (3.2)

where ~̇opi is the velocity of the driving wheels’ contact point to the ground ~opi. Under the
assumption of pure rolling, ~̇opi is zero in frameM. Let’s define δi as the slippage angle which
is the displacement loss because of slipping of a driving wheel and ε as skidding distance which
is the lateral displacement of the robot [24]. Therefore, the velocity of driving wheel’s center
in eq.(3.2) will be as follow:

~̇oci = (rθ̇i − δ̇i)h− ε̇l (3.3)

Now, in order to calculate the velocity of point o′ in framM, its position needs to be defined
first as:

~oo′ = ~oci + ~cio
′ (3.4)

where :
~c1o′ = −d/2h, ~c2o′ = d/2h (3.5)

Knowing the angular velocity of the DDWMR’s base as φ̇z and taking the time derivative of
eq.(3.4) yields:

~̇oo′1 = (rθ̇1 − δ̇1 −
d

2)h− ε̇l, ~̇oo′2 = (rθ̇1 − δ̇1 + d

2)h− ε̇l (3.6)

Then, by solving eq.(3.6), the linear and angular velocity of a DDWMR in frameM will be
as follow:

φ̇ = (r
d

(θ̇1 − θ̇2)−
1
d

(δ̇1 − δ̇2))z (3.7)
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υ = (r2(θ̇1 + θ̇2)−
1
2(δ̇1 + δ̇2))h− ε̇l (3.8)

Since, in our study the AMR does not demand to cope with the high speed maneuver, the
assumption of pure rolling is applicable. Therefore, further in this study, we consider δ̇i and
ε̇ as zero. Now, using eq.(3.7) and eq.(3.8), the twist of the DDWMR in frameM is defined
by v ≡ [υ φ̇] considering independent velocity vector θ̇ as:

v = Kθ̇, K =


r
2

r
2

0 0
r
d
− r
d

 (3.9)

To translate the motion from moving coordinate system M to fixed coordinate system F ,
the rotation matrix along z is used. As a result, the twist vector q̇ in frame F , will be related
to the twist vector v in frameM as follow:

q̇ = R(φ)v, R(φ) =


cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 (3.10)

So, the Jacobian matrix which links the twist vector q̇ to the independent velocity vector θ̇
is:

q̇ = Jθ̇ ,J ≡ R(φ)K =


cosφ − sinφ 0
sinφ cosφ 0

0 0 1




r
2

r
2

0 0
r
d
− r
d

 (3.11)

The eq.(3.11) will be used in chapter 5 to deal with path tracking problem.

3.2 Kinematics of AMR

In section 3.1, the kinematic model of a DDWMR has been derived considering the velocity
of point o′ which is at the middle of the line connecting driving wheels’ centers. In many
cases, such a mechanism has been used considering the point o′ as the COM. However, as
explained in Chapter 1, the COM of the under study robot is variable due to loading and
unloading weight on the robot’s platform. In order to derive the dynamic model of the AMR
around its COM, the velocity and location of its COM matters. So, we need to obtain the
velocity of new COM knowing its location. Let us assume the loaded weight on the AMR
relocate the location of COM from point o′ to the point c which called Instantaneous Center
Of Mass (ICOM). The location of c in moving frameM is presented by b and a along h and
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l respectively shown in Figure 3.2.

a
b

c

o x
yz

F

M
l h

z

o′

φ
Robot platform

θ̇2

p2

c2
r

θ̇1

c1

p1

Figure 3.2 Geometry of an AMR with variable COM

The equation 3.4 could be rewritten considering point c as ICOM as follow:

~oc = ~oci + ~cic (3.12)

where :
~c1c = bh + (d2 + a)l, ~c2c = bh− (d2 − a)l (3.13)

Knowing the angular velocity of the robot’s base as φ̇k and taking the time derivative of
eq.(3.12) yields:

~̇oc = (rθ̇i − δ̇i ∓
d

2 − a)h− (ε̇+ bφ̇)l (3.14)

By solving eq.(3.14) for i = 1, 2, the angular velocity of the AMR around its ICOM in frame
M will be the same as eq.(3.7) for a DDWMR but, the linear velocity of ICOM, υc, will be
as follow:

υc =


r
2(θ̇1 + θ̇2)− 1

2(δ̇1 + δ̇2)− ar
d

(θ̇1 − θ̇2) + a
d
(δ̇1 − δ̇2)

br
2 (θ̇1 − θ̇2)− b

d
(δ̇1 − δ̇2)− ε̇

0

 (3.15)

As mentioned in the Section 3.1, the assumption of pure rolling is applicable due to relatively
slow maneuver of AMR; so, we can ignore the slippage and skid of the driving wheels. Thus,
the angular velocity of AMR around its ICOM would be like a DDWMR as eq.(3.8) and
ICOM’s linear velocity will be simplified as:

υc = [r2(θ̇1 + θ̇2)−
ar

d
(θ̇1 − θ̇2)]h + [(br

d
(θ̇1 − θ̇2)]l (3.16)
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The twist of an AMR along its ICOM, vc ≡ [υc φ̇] in frameM can be shown as:

vc = Kc

 θ̇1

θ̇2

 , Kc =


r
2 −

ar
d

r
2 + ar

d
br
d

− br
d

r
d

− r
d

 (3.17)

In addition, the twist vector of an AMR in frame F , q̇c, is obtained using rotational matrix
R(φ) as:

q̇c = R(φ)v (3.18)

where R(φ) has been introduced in eq.(3.10). So, the Jacobian matrix which links the twist
vector of AMR in frame F along its ICOM, to the AMR’s independent velocity vector θ̇ is
defined as:

Jc =


cosφ − sinφ 0
sinφ cosφ 0

0 0 1




r
2 −

ar
d

r
2 + ar

d
br
d

− br
d

r
d

− r
d

 (3.19)

The eq.(3.19) is used in Chapter.5 to solve dynamic model.

3.3 Caster Wheel Kinematics

Caster wheels in DDWMR stabilize the system and passively follow the dictated path by
driving wheels. Caster wheel, as shown in Figure 3.3, is a single wheel with two axis, one
horizontally in wheel’s center for rolling and one vertically off the wheel’s center for turning.
The off center distance of caster’s pivot point is illustrated by e whereas its rotation shown
by θc. When the driving wheels are rolling and the orientation of the caster wheel is not
along the orientation of the platform, the contact point of the caster wheel to the ground
generates a torque along the vertical axis. This generated torque gradually rotates the caster
wheel to the dictated orientation by the platform. This stage called transition mode and
after that caster wheel’s orientation remains fixed as long as the platform keeps turning with
fixed turning radius shown by s in Figure A.3. This fixed angle which is proportional to the
turning radius is called final angle. Under the assumption of no slipping and no skidding, the
kinematic model of a DDWMR, shown in eq.(3.9), does not express the orientation of the
caster wheels. The steering angle of a caster wheel which have been studied in [2] is nothing
but the angle between the velocity of the caster wheel’s pivot point, Figure 3.3, and h-axis
of the frameM. Moreover, the proposed method in literature [2] is not able to consider the
transition mode which is the caster orientation before reaching the final angle. Hence, we
propose a mathematical model which computes the rotation angle of a caster wheel along its
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vertical axis in transition mode.

•
@
@
@@R

Vertical steering (Turning) Axis

Horizontal (Rolling) Axis
�
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�
�
�
�
�
��

e

-

PPqPPi

Ground Contact Point •

-Pivot Point •

�
�
�
�
�
�
�

�
�
�
�

Center point of the wheel

Caster wheel radius rc

Figure 3.3 A typical caster wheel

Let us consider Figure A.3 which shows a differential drive mechanism mounted on a platform
with four casters spread at four corners while the vehicle is turning left and rotates around
its Instantaneous Center Of Rotation (ICOR) denoted by point cr. The distance between
the point cr to the origin of the frameM is called turning radius and shown by s. During
any rotation, the ICOR remains along the l-axis of the frameM. The distance between the
pivot point of each caster wheel ni, and ICOR point cr, is shown by li for i = 1 to 4. The
angle between the orientation of each caster wheel and the h-axis of frameM is expressed
by ψi for i = 1 to 4. The angle made by the line connecting the caster wheels’ pivot point
and ICOR point with h-axis of frameM is denoted by αi for i = 1 to 4. In this thesis, the
position in which the angle ψi is zero called caster’s neutral position.

In this Section we study two different scenarios of caster wheels as follow:

• The situation where the casters are in neutral position and the robot starts turning.

• The casters have an angle and the robot moves straight so the casters return to their
neutral position.
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front
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φ

hl

ψ4
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l2

l1

f
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h2

Figure 3.4 Caster wheels orientations relative to the ICOR

3.3.1 Turning on neutral position

In this section, we consider the change in the orientation of caster wheels start from neutral
position what we called transition mode. Considering Figure A.3, when the platform starts
turning around a vertical axis passing through ICOR, the velocity of the pivot point of ith

caster with respect to the point cr in the frame F , is the result of pure rotation such that:

vni
= liφ̇

 sin(αi − φ)
cos(αi − φ)

 (3.20)

On the other hand, the velocity of each caster wheel pivot point could be decomposed into
two perpendicular velocities. First, rcθ̇ic which is the result of rolling motion of the ith caster
wheel. Second, eφ̇i which is consequence of rotation of the ith caster wheel around its contact
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point to the ground. Expressing these two velocities in the frame F , yields:

vni
=

 rcθ̇
i
c cosψi − eψ̇i sinψi

rcθ̇
i
c sinψi + eψ̇i cosψi

 (3.21)

Once comparing eqs. (A.9) and (A.10), we get:

tanψi = liφ̇ cos(αi − φ)− eψ̇i cosψi
li sin(αi − φ) + eψ̇i sinψi

(3.22)

When the robot starts turning, ψi will rise and by keep turning of the robot, the ψi reaches
to its final orientation [ψi]f and ψ̇i gets zero. Applying this condition to the eq.(3.22) yields:

[ψi]f = π

2 + φ− αi, (3.23)

The angle between the line connecting the pivot point of each caster wheel and ICOR point
with respect to the h-axis will be as follow:

α1 = tan−1(s+ f

h2
), α2 = tan−1(s− f

h2
), (3.24)

α3 = tan−1(s+ f

h1
), α4 = tan−1(s− f

h1
), (3.25)

The lateral displacement of each caster’s pivot point in the fixed frame F can be considered
from two point of views. Firstly, the lateral displacement of a point ni is due to the rotation
around ICOR. Secondly, this lateral displacement is because of the rotation of caster wheel
around its contact point to the ground. In order to meet the assumption of pure rolling,
these two lateral displacement must be equal which yields the following kinematic constrain:

sinψi − sin [ψi]init = ||li||
e

(sin(αi − φ)− sinαi) (3.26)

where [ψi]init is the initial value of ψi which considered zero because the motion has started
from neutral position of caster wheels.

3.3.2 Turning to neutral position

When the vehicle start going straight forward after turning, the heading velocity of the robot
will be rθ̇, where θ̇ is the angular velocity of the driving wheels. Moreover, by moving robot
forward, caster wheels which are not yet in neutral orientation, will do so with a kinematic
relationship. As shown in Figure A.3, each caster wheel pivot ni must follow the vehicle,
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whereas in the frameM, the heading velocity of the ith wheel pivot point is given by rcθ̇c
i and

the velocity of the caster wheel caused by rotation around the contact point to the ground
is eψ̇i. Since the sum of these two vectors must results in the velocity of the robot, we have:

Along h : rθ̇ = rcθ̇
i
c cosψi + eψ̇i sinψi (3.27)

Along l : eψ̇i cosψi = rcθ̇
i
c sinψi (3.28)

Upon substitution of eq.(A.16) into (A.15) in order to get ride of θ̇ic, we obtain:

rθ̇

e
= ψ̇i

sinψi
(3.29)

The integral of eq.(A.17) with respect to the time between the initial condition, [ψi]f from
previous stage, and the final condition, ψi, can be calculated as:

∫ rθ̇

e
=

∫ ψi

[ψi]f

ψ̇i
sinψi

(3.30)

rθ

e
= ln[tan([ψi]f/2)]− ln[tan(ψi/2)] (3.31)

3.3.3 Simulation Results

The mathematical model of eqs.(A.12, 3.26, A.19), for determining the caster wheel orien-
tation ψi, is compared with the dynamic simulation of the Webot platform [9] along two
different scenarios. This multi-platform desktop application is open source and used to sim-
ulate robots. Dimensions used in simulations are shown in Table A.1. In scenario 1, the
platform moves straight forward to make sure all the caster wheels are along robot platform
and then turns with two different radii. We select for an easy interpretation such as a) having
an ICOR at point o′ so that the robot is turning around itself (s = 0)(mm); b) having ICOR
at one driving wheel contact point to the ground so that the platform turns around one of
its driving wheels (s = 344)(mm). In scenario 2, the platform starts going straight forward
after turning with two different radius c) from (s = 0)(mm); and d) from (s = 344)(mm).

Table 3.1 Geometrical dimensions of the AGV used in simulation (mm)

h1 h2 s e rc r
631 562 250 34 38 100
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Apparently from Figure A.4, the mathematical model is a rather coarse in scenarios 1 and
2. One possible reason for fluctuation of simulation value in scenario 1, could be, the ef-
fect of centrifugal force on the caster wheels. It means, the centrifugal forces try to turn
caster wheels more by push them to skid. But, in scenario 2, the robot goes straight and
the centrifugal forces does not affect caster wheels much. In scenario 2, the gaps between
the simulation and mathematical model are less in bigger turning radius. It seems, caster
wheels tend to skid more because they must turn more at shorter amount of time. Moreover,
we do not have much information about the elements included into the dynamic model of
Webots [9].



17

ψi

ψi

ψi

ψi

θ

φ

θ

φ

(a) start turning at s = 0 mm; (b) start turning at s = 344 mm;

(c) straight from a s = 0 mm; (d) straight from a s = 344 mm;

Figure 3.5 Mathematical model and Webot’s dynamic simulation of caster wheel orientation:
scenario 1, turning from neutral position of caster wheels a) turning with (s = 0) (mm);
b) turning with (s = 344) (mm); scenario 2, going straight forward after turning c) from a
turning of (s = 0) (mm); and d) from turning of (s = 344) (mm).
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CHAPTER 4 DYNAMICS

4.1 AMR’s Dynamic Model

The dynamic model is the link between the pure trajectory tracking and the actual trajec-
tory tracking. Caster wheels in an AMR, shown in Figure 3.3, are one of the main sources of
uncertainty in dynamic models. A wheel faces three types of dissipative forces namely rolling
resistance, turning friction and skidding friction and all of them are a function of wheel’s nor-
mal load [26]. Under the assumption of unwell distributed load on the AMR, normal load and
resistance force of each caster wheel applied to the robot’s platform varies. This unbalance,
leads to an unwilling disturbance torque and consequently error in the robot’s orientation. As
a result, the interaction force between wheels and ground can not be neglected in a dynamic
model of an AMR with variable COM. Moreover, the off center location of mass changes
COM totally. Therefore, the dynamic models based on a fixed COM will not be faultless.
To tackle with this problem, the employment of 3D force sensors is proposed to measure the
horizontal dissipative force and vertical load of each wheel. Dissipative forces can be directly
measured by force sensors installed on the robot’s platform and sensed vertical loads helps to
find COM location. Let’s divide an AMR to three bodies, namely right driving wheel as the
first body, left driving wheel as the second body and the rest, including carrying weight and
excluding caster wheels, considered as the platform and third boy as shown in Figure 4.1.

@
@
@
@R

XXXXXXXXz

-Front Left Caster Wheel
Left Driving Wheel

Back Left Caster Wheel

@
@

@
@@I

XXX
XXX

XXX
Xy

�

Front Right Caster

�

Right Driving Wheel
Back Right caster

Platform

1©
2©

3©

Figure 4.1 A typical configuration of an AMR and numbers associated to each body
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The twist ti ≡ [ċi ωi]T of each body which consist of the linear and angular velocities of the
associated body’s COM will be defined as follow:

ti = Tiθ̇, T1 =

Right Wheel

0 0
1 0
r
d
− r
d

r 0
0 0
0 0


, T2 =

Left Wheel

0 0
0 1
r
d
− r
d

0 r

0 0
0 0


, T3 =

Platform and Load

0 0
0 0
r
d

− r
d

r
2 −

ar
d

r
2 + ar

d
br
d

− br
d

0 0


(4.1)

where T ≡ [T1 T2 T3]T is a 18× 2 twist shaping matrix of the robot which links the robot’s
twist t ≡ [t1 t2 t3]T to the vector of independent velocity θ̇ = [θ̇1 θ̇2]T . The frame M has
planar motion and only one rotation which is φ ≡ [0 0 φ]T . Considering the rotation of the
platform, the derivative of h and l unit vectors would be as follow:

ḣ = φ̇k× h = φ̇l, l̇ = φ̇k× l = −φ̇h (4.2)

Considering the rotation of wheels, the derivative of h and l unit vectors would be as follow:

ḣ = (φ̇k + θ̇il)×h = φ̇l− θ̇ik, l̇ = (φ̇k + θ̇il)× l = −φ̇h, k̇ = (φ̇k + θ̇il)× k = θ̇ih (4.3)

Using equation (4.2,4.3), the time-derivative of twist shaping matrix Ṫ ≡ [Ṫ1 Ṫ2 Ṫ3]T is
going to be a 18× 2 matrix with following sub matrices:

Ṫ1 =



r
d
θ̇2 − r

d
θ̇1

0 0
0 0
0 0

r2

d
(θ̇1 − θ̇2) 0
rθ̇1 0


, Ṫ2 =



r
d
θ̇2 − r

d
θ̇1

0 0
0 0
0 0
0 r2

d
(θ̇1 − θ̇2)

0 rθ̇2



Ṫ3 =



0 0
0 0
0 0

−b( r
d
)2(θ̇1 − θ̇2) b( r

d
)2(θ̇1 − θ̇2)

( r
d
)2(d2 − a)(θ̇1 − θ̇2) ( r

d
)2(d2 + a)(θ̇1 − θ̇2)

0 0



(4.4)
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Furthermore, the 18×18 mass matrix of the whole system M, which contains the 6×6 mass
matrix of each body Mi and 3× 3 inertia matrix of each body Ii are given as follow:

M ≡


M1 0 0
0 M2 0
0 0 M3

 , Mi ≡

 Ii 0
0 mi1

 , Ii ≡


Ihi 0 0
0 Ili 0
0 0 Izi

 (4.5)

where 0 and 1 are 3× 3 zero and identity matrices, respectively. In eq.(4.5), mi is the mass
of ith body and Ihi, Ili and Izi are the moment of inertia of ith body relative to its COM
along h,l and z axes, respectively, for i = 1, 2 and 3. The moment of inertia and the mass
of robot’s platform, are calculated using the vertical loads applied to the platform by wheels
measured by force sensors. The angular velocity matrix of ith body Wi which is a sub matrix
of 18× 18 angular velocity matrix W can be defined as follow:

W ≡


W1 06×6 06×6

06×6 W2 06×6

06×6 06×6 W3

 , Wi ≡

 Ωi 03×3

03×3 03×3

 (4.6)

where 06×6 is a 6× 6 zero matrix and Ωi is the cross product matrix of the angular velocity
vector of each body as follow:

Ω1 ≡


0 − r

d
(θ̇1 − θ̇2) θ̇1

r
d
(θ̇1 − θ̇2) 0 0
−θ̇1 0 0

 , Ω2 ≡


0 − r

d
(θ̇1 − θ̇2) θ̇2

r
d
(θ̇1 − θ̇2) 0 0
−θ̇2 0 0



Ω3 ≡


0 − r

d
(θ̇1 − θ̇2) θ̇1

r
d
(θ̇1 − θ̇2) 0 0

0 0 0


(4.7)

Now, using natural orthogonal complementary method [27], the dynamic model of an AMR
with variable COM can be derived as:

I(θ)θ̈ = C(θ, θ̇)θ̇ + Υ + γ + δ (4.8)

or alternatively:

TTMTθ̈ = −TT (MṪ + WMT)θ̇ + TT (wA + wG + wD) (4.9)
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where:

I ≡ TTMT Matrix of generalized inertia

C ≡ −TT (MṪ + WMT) Matrix of convective inertia

τ ≡ TTwA Vector of driving force

γ ≡ TTwG Vector of gravity force

Υ ≡ TTwD Vector of dissipative force.

Since the robot has planar motion, the gravity wrench has been ignored. The acting wrench
of the robot is 16× 1 column including the acting wrench of each body as follow:

wA =


wA

1

wA
2

wA
3

 , wA
1 =

Right wheel

0
τ1

0
0
0
0


, wA

2 =

Left wheel

0
τ2

0
0
0
0


, wA

3 =

Platform

0
0
0
0
0
0


(4.10)

where τ1 and τ2 are the generated torque of the driving wheels’ motors. The arrays of the
dissipative wrench are filled by the values read from force sensors as follow:

wD =


wD

1

wD
2

wD
3

 , wD
1 =

Right wheel

0
−rfh1

0
0
0
0


, wD

2 =

Left wheel

0
−rfh2

0
0
0
0


, wA

3 =

Platform

0
0

mc∑j
n=1 fhj∑j
n=1 flj

0


(4.11)

The fhj
and flj stand for longitudinal and lateral forces sensed with jth force sensor. The

number of each force sensor associated to the each wheel shown in Figure 4.1, is listed in
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Table.(4.1) as follow:

Table 4.1 Number assigned to the force sensor of each wheel

Wheel Name Force sensor Number (j)
Right driving wheel 1
Left driving wheel 2
Front right caster 3
Front left caster 4
Rear right caster 5
Rear left caster 6

The mc, used in eq.(4.11), is the summation of torques, caused by horizontal dissipative
forces of caster wheels, along the vertical line passing through the COM as:

mc ≡ (fh3 + fh5)(f + a) + (fl3 + fl4)(h2− b)− (fh4 + fh6)(f − a)− (fl5 + fl6)(h1 + b) (4.12)

After inverting the eq.(4.8), the dynamic model can be simplified as follow:

θ̈ = (TTMT)−1(−TTMṪ−TTWMT)θ̇ + (TTMT)−1TT (wA + wD) (4.13)

or alternatively
θ̈ = Aθ̇ + B(wA + wD) (4.14)

with A ≡ (TTMT)−1(−TTMṪ−TTWMT), B ≡ (TTMT)−1TT

4.2 Dissipative Forces

In section 4.1, the location of COM and the amount of dissipative force have been fed to the
dynamic model. However, knowing these parameters is not as easy as it seems. In order to
calculate the position of COM, the amount of vertical force applied to the platform by each
wheel must be known. Moreover, the longitudinal and lateral forces of each wheel applied to
the platform must be known to calculate dissipative forces. Longitudinal and lateral forces
of caster wheels are purely dissipative force but for driving wheels, it is little different. The
lateral forces applied by driving wheels, to their joints in platform, is accounted for none-
working constrain forces [27]; but the longitudinal forces applied by driving wheels to the
platform are actually pure active forces. These sensed forces, are originated from the torque
of driving motors which rolling resistance of the driving wheels has been subtracted from
them. By knowing the amount of pure active force from sensors and applied torque to the
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driving wheels, the amount of dissipative force of the driving wheels can be calculated as
follow:

FDj ≡ (τjr − Fhj)h, i = 1, 2 (4.15)

where FDj are the dissipative forces and Fhj are longitudinal horizontal forces sensed by force
sensors of the driving wheels. This is the main idea behind the closed-loop dynamic model
proposed in this thesis.
In order to clarify the proposition of installing dissipative force sensors, a typical model of
force sensor and its internal structure is shown in Figure 4.2 [28]. The sensing prob, which is
caster wheel and driver wheel in our case, gets installed on the inner frame which is connected
to the outer frame via links as shown in Figure 4.2. Otter frame gets installed to a rigid
part of the robot body. All sides of the links are covered by strain gauges to measure tension
and compression of each side. Knowing the material properties of the internal structure and
using homogeneous translation, the applied force and torque to the probe can be calculated.
Considering the way that caster wheels get connected to the robot body, the installation
bracket shown in Figure 4.3 can play similar role to links in internal structure of force sensors
to accommodate strain gauges.

(a) Force sensor (b) Force sensor internal structure

Figure 4.2 A typical force sensor and its internal structure [28]
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The driver wheels of the under study robot, are installed directly on robot frame as shown
in Figure 4.3. In order to accommodate the strain gauges of force sensors, a simple solution
would be to install driver wheel on a separate bracket which itself installed on the robot
platform as a link. The design of the proposed bracket is beyond the scope of this study and
remains for future work.

Differential driving
wheels

B
B
B
B
B
B
BBN

@
@
@
@
@
@
@
@
@
@R

Caster’s
installation brackets

A
A
A
AAU

@
@
@
@
@
@
@@R

Caster’s
installation brackets

A
A
A
AAU

@
@
@
@
@
@
@@R

Figure 4.3 Proposed positions to install force sensors
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4.3 MATLAB Simscape and Multibody Settings

In order to simulate the interaction between wheels and ground, the MATLAB Simscape con-
tact force library [29] was used. The simulation model of the robot is illustrated in Figure 4.4.
The wheel and ground contact was considered as sphere and plane. MATLAB offers linear
and non-linear contact force law [30]. The linear law imitate linear spring damper penetra-
tion resist force wheres in non-linear law the penetration resist force increase exponentially.
In this study, we used linear friction law between wheels and ground which provides a good
estimation for non-inflatable tires’ forces. [31].

Figure 4.4 Illustration of the robot model in MATLAB Simulink environment using Simscape
library.

The friction coefficients of caster wheels and driving wheels are listed in Table 4.2 and
Table 4.3 respectively. Although many authors studied the friction model of inflatable
tires [26, 32], all friction data of rubber tires, used in AMRs, are not available. So, the
data of Table 4.2 and Table 4.3 are approximated from some available data published by well
known manufacturers [33,34].



26

Table 4.2 Contact parameters for caster wheels and ground

Stiffness (N/m) 1e4

Damping (N/(m/s)) 20
Kinetic Friction coefficient 1e−1
Static Friction coefficient 12e−2
Velocity Threshold (m/s) 1e−3

Table 4.3 Contact parameters for driving wheels and ground

Stiffness (N/m) 1e3

Damping (N/(m/s)) 10
Kinetic Friction coefficient 38e−2
Static Friction coefficient 4e−1
Velocity Threshold (m/s) 1e−3

In order to validate the usability of this friction data and performance of MATLAB Simscape
library in simulation of the wheel ground interaction forces, a simple test was performed. The
driving motor of the AMR was actuated for a short amount of time and the longitudinal dis-
placement of the platform was measured as shown in Figure 4.5. As depicted, the robot starts
to accelerate at the first 10 seconds, then, by cutting of the input torque, the velocity which
is the slop of the plot, decreases gradually over the next 10 seconds. After that, the slop
of the plot gets negative which means the wheels rotate backward before start to bouncing.
Finally, after a couple of back and forth, the platform gets to equilibrium point and stops
completely.
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Figure 4.5 Validation of simulation environment considering wheels and ground friction
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CHAPTER 5 CONTROL

5.1 Trajectory Tracking

5.1.1 Control Architecture

The kinematic controller regulates AMR’s input twist q̇c ≡ [vc φ̇c]T to alter the AMR’s actual
pose qd ≡ [xd yd φd]Tand robot’s actual twist q̇d ≡ [vd φ̇d]T according to the reference pose
qr ≡ [xr yr φr]Tand reference twist q̇r ≡ [vr φ̇r]T . The robot’s actual pose qd and robot’s
actual twist q̇d are read from Navigation System (NS) consist of wheels’ encoders and Inertial
Measurement Unit (IMU) installed on robot’s platform. The origin of the frame M, point
o′, is the target of trajectory tracking system i.e the aim is to hold it coincidence to the
trajectory path. The pose error vector eq ≡ [ex ey eφ]T will be defined as follow:

eq ≡


ex

ey

eφ

 = qr − qd =


xr − xd
yr − yd
φr − φd

 (5.1)

The deviation in pose eq will be adjusted in kinematic level by controlling the robot’s twist
q̇c. The twist error vector eq̇ will be defined as follow:

eq̇ ≡

 ev

eφ̇

 = q̇r − q̇d =
 vr − vd
φ̇r − φ̇d

 (5.2)

The deviation in twist eq̇ will be regulated in dynamic level using force and twist feedback of
the AMR. The control architecture depicted in Figure 5.1 shows the configuration of dynamic
and kinematic control layers.

5.1.2 Kinematic Control

Trajectory tracking of the nonholonomic differential drive wheel robot with twist feedback is
controlled with a back-stepping method proposed in [13]. In this method, the time derivative
of pose error has been considered as follow [13]:

ėq =


ėx

ėy

ėφ

 =


φ̇dey − vd + vr cos eφ
vr sin eφ − φ̇dex

φ̇r − φ̇d

 (5.3)
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Kinematic Dynamic Robot

NS

qr
q̇r

q̇c
q̈c

qd
q̇d

τ1
τ2

fhi fli fziq̇d

Figure 5.1 The configuration of control system layers

In eq.(5.3) the nonholonomic property of the robot is presenting itself since the three arrays of
pose error vectors have to be taken care of with only two inputs of the independent velocity
vector. Then, a Lyapanov function defined to make sure the pose error asymptotically
converges to zero. As a result, the control law defined the input twist of the robot as : vc

φ̇c

 ≡
 k1ex + vr cos eφ
φ̇r + k2vrey + k3vr sin eφ

 (5.4)

where k1, k2 and k3 are positive real control coefficients which mainly be determined based
on trial and error.

5.1.3 Dynamic Control

The dynamic controller is responsible for tracking the desired twist provided by kinematic
controller based on the reference twist. In this level, the time-derivative of pose error defined
at eq.(5.2) is used to construct sliding surface proposed in [35] as follow:

s(t) = eq̇ + k4

∫ t

0
eq̇ dt (5.5)



29

In order to guarantee that the system stays on the sliding surface, the derivative of sliding
surface ṡ(t) must be zero when the s(t)=0. The time-derivative of eq.(5.5) can be written as:

ėq̇ + k4eq̇ = 0 or


v̇r

l̈r

φ̈r

−

v̇d

l̈d

φ̈d

 + k4eq̇ = 0 (5.6)

Because of the nonholonomic property of the robot, in eq.(5.6), the l̈r must be zero, which
means we can not demand the robot to have a lateral movement. After taking the time-
derivative of eq.(5.5) and using Kc matrix in equation eq.(3.17) we expect:


v̇r

0
φ̈r

−Kc

 θ̈1

θ̈2

 + k4eq̇ = 0 (5.7)

Using the rule of inverting non square matrix, the inverse of K3×2 matrix is given as:

Kc2×3
−1 = [KcKT

c ]−1KT
c (5.8)

Applying eq.(4.13) and eq.(5.8) to eq.(5.7), it yields the desired torque of the driving wheels’
motors, according to the definition of equivalent control, as: τ1

τ2


eq

= B−1Kc
−1q̈c + k4B−1Kc

−1eq̇ −B−1BWD −B−1Aθ̇ (5.9)

where, q̈c is the derivative of the robot input twist q̇c which is the output of kinematic
controller. In [9], the term B−1BWD has been considered as noise because it is difficult to
measure. However, in our case which is carrying a heavy load not necessarily well distributed,
the amount of uncertainty caused by the mentioned term is not negligible and instead it is
measured by force sensors. The switching control law, which is used to drives the robot
during the reaching phase and forces the robots’ states to approach the sliding surface, is
defined as:  τ1

τ2


sw

= B−1Kc
−1σsign(s) (5.10)

Where sign is the mathematical sign function and σ is positive definite diagonal matrix as
follow:

σ =
 σ1 0

0 σ2

 σ1, σ1 > 0 (5.11)
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So, the driving wheels output torque is calculated as follow: τ1

τ2

 =
 τ1

τ2


eq

+ k5

 τ1

τ2


sw

, k5 > 0 (5.12)

5.1.4 Fuzzy logic Control

The coefficient k5 in eq.(5.12) determines the severity of switching behaviour of the con-
trol system on the neighbourhood of the sliding surface. In order to force the robot to
follow a reference trajectory, the coefficient k5 must be big enough which consequently
causes chattering problem or back and forth between two states with different polarities.
In order to eliminate the chattering behaviour of the system, literature [23] have proposed
implementation of fuzzy logic control method. Determining the coefficient k5 proportion-
ally using fuzzy logic, helps to adjust k5 based on linguistic rules. Lets define velocity
tracking error ev as the input of the fuzzy logic control method, with range of [−a1, a1]
where a1 is the maximum heading velocity of the robot which is 2.5 m/s in our case.
The output of the fuzzy system is k5 which its range was determined by trial and er-
ror and in our case it ranges [0, 20]. Standard domain of normalized variables ev and k5

are defined as [−2.5,−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2, 2.5] and [0, 2, 5, 9, 13], respectively,
which stand for fuzzy state of qualitative variables as [NB,NM,NS,ZO, PS, PM,PB] and
[ZO,PS, PM,PB]. The linguistic rules of fuzzy logic control systems are shown in Ta-
ble.(5.1).

Table 5.1 Fuzzy Logic Controller Linguistic Rules

Abbreviation Quantitative variables
NB Negative Big
NM Negative Medium
NS Negative Small
ZO Zero
PS Positive Small
PM Positive Medium
PB Positive Big

The idea behind the fuzzy logic control design is to adjust the switching behaviour pace.
When the velocity error ev has a large value, the switching behaviour needs to have its max-
imum value to asymptotically decrease the velocity error. On the other hand, in very small
amounts of velocity error, the k5 must be set as a very small value or zero to avoid chattering
problem.
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5.2 Simulation and Results

In order to validate the performance of the designed dynamic system, the under study AMR
has been simulated in MATLAB Simscape [36]. This MATLAB library gives the advantage
of defining the friction between wheels and ground, as a result, the wheel’s ground interaction
force can be taken into account. The virtual force sensors, in simulation, measure the dissi-
pative forces of caster wheels and active forces of driving wheels which apply to the AMR’s
base. Furthermore, virtual force sensors can find the location of AMR’s COM by reading the
vertical load on each wheel.
The performance of the designed controller equipped with force sensors for an AMR with
variable center of mass has been simulated and the results compared with the same con-
troller without force sensors. The AMR has been demanded to perform a circular maneuver
of 5 m radius with heading velocity of 2 m/s and angular velocity of 1 rad/s. The simula-
tor performed simulation for two different scenarios which are centralized loaded AMR and
off-centered loaded AMR. In centralized scenario, the load was placed at the origin of the
frameM. In off-centered scenario, the load was placed 200 mm laterally and 400 mm lon-
gitudinally far from the origin of the frameM. The control coefficients used for simulation
are shown in Table.(5.2).

Table 5.2 Control coefficients used in simulation

k1 k2 k3 k4 σ1 σ2
0.008 0.008 5 19.8 1 1

The Figure 5.2 represents the trajectory tracking, angular velocity, longitudinal velocity and
tracking error of an unloaded AMR for both, with and without force sensors. As shown,
there is not a disparity between two methods, apparently, when the amount of uncertainty
is not huge. The simulation results for an AMR with a 20 kg off-centered load are shown in
Figure 5.3. Comparing Figure 5.2 with Figure 5.3 shows, when it comes to a large amount of
uncertainty, the trajectory error of the method without force sensors surges 60% in x direc-
tion and 48% in y direction; while, this scale for the method with force sensors remains more
robust which has only 12.8% and 7% of increase in tracking error along x and y directions
respectively. Moreover, regarding the controller without force feedback, in off-centered load
scenario, orientation error and angular and heading velocities fluctuate dramatically while
for the controller with force feedback, orientation error remains closer to zero and angular
and heading velocities follow the references more adequately. It means in off-centered loading
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scenario, the adjustment of coefficient k5 by fuzzy logic control method gets less effective to
prevent chattering problem. Furthermore, controller with force feedback has better perfor-
mance while robot carrying off-centered load regarding the heading velocity since controller
without force feedback cannot keep up with the reference velocity. Comparing the heading
velocity and angular velocity of two controllers also yields, in case of large amount of uncer-
tainty in AMR’s dynamic, the control method without force feedback is not sufficient and
a more precise dynamic model needs to be considered using force feedback. More precise
dynamic model means the closed loop dynamic model proposed in this study which uses
force feedback.
Its worth mentioning, in our study we used true location of the AMR from simulator to
compare two methods which is not the case in real world example. Usually, in experiment,
the data gathered from driving wheels’ encoders and IMU are fused by other control methods
such as Extended Kalman Filter [37,38] to estimate AMR’s location. Sensor data are always
noisy and consequently there would be some deviation from true location and estimated lo-
cation which increases the path tracking error accordingly.
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Figure 5.2 Trajectory, trajectory error, orientation error, angular velocity, heading velocity
of an unloaded AMR with Force Feedback (FF) and without FF control methods.
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Figure 5.3 Trajectory, trajectory error, orientation error, angular velocity, heading velocity
of an off-centered loaded AMR with Force Feedback (FF) and without FF control methods.
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CHAPTER 6 GENERAL DISCUSSION

In this chapter the proposed methods are discussed. In this study, a differential drive wheels
mobile robot with caster wheels and variable COM has been considered. Unlike the other
studies, the location of COM of the under study robot is not fixed and it changes arbitrar-
ily due to the variation in location of load on the robot tray. COM misplacement causes
inaccuracy in dynamic model as well as variation in wheel ground interaction forces. The
inaccuracy in dynamic model and uncertainty of caster wheels cause path tracking error.
Caster wheel is the main source of uncertainty because not only its dissipative force magni-
tude changes by variation of COM but also the direction of dissipative force varies regarding
robot orientation.
For applications such that COM’s location considered to be fixed, the relation between caster
wheel orientation and robot orientation matters, such as designing wheelchairs [3]. In such
applications, the magnitude of dissipative force of caster wheel is a portion of the carrying
weight. The orientation of caster wheel calculated in literature [1] helps to find the direction
of dissipative force. However, in our study, the magnitude of dissipative forces of caster
wheels are unknown, and knowing their orientations does not help.
In order to deal with variation of position of COM, the kinematic model and dynamic model
based on an arbitrary position of COM has been derived. Moreover, implementation of force
sensor has been proposed to measure the vertical load carried by each wheel and consequently
finding the position of COM. Finally, the latest nonlinear control method has been reconsid-
ered to control the new proposed kinematic and dynamic model.
To evaluate the performance of the proposed method, the designed robot model has been
imported to MATLAB Simulink environment. The friction between wheels and ground was
simulated using MATLAB Simscape contact library to be able to consider the dynamic be-
havior of wheels and its dissipative forces. At the end, the performance of the proposed
method has been compared to one of the latest methods which considers fixed COM. Sim-
ulation results show significant improvement in decreasing path tracking error while robot
carrying off-centered weight.
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CHAPTER 7 CONCLUSION AND RECOMMENDATIONS

7.1 Conclusion

In this study, we considered a free range differential drive wheel mobile robot with variable
COM to minimize its path tracking error. To do so, the kinematic of such an AMR was
reconsidered based on the location of its instantaneous COM. Also, a new mathematical
model was proposed to show how the orientation of caster wheels change by changing the
orientation of the robot. Then the dynamic model of the AMR was derived around the
location of an arbitrary COM. The interaction forces between wheels and ground are the
unknown parameters in the dynamic model. The implementation of force sensors on each
wheel has been proposed to determine wheel ground interaction forces of associated wheel and
to determine the position of COM of AMR. The robot model with actual size, was simulated in
MATLAB simulator using Simscape library to generate friction forces and rolling resistances
of wheels. Then, the required control methods where chosen to deal with the nonholonomic
properties of the robot. And finally, the path tracking error of the robot with new kinematic
model, dynamic model and control method was compared with the other state of the art
method in two different scenarios. At the first scenario, the COM of the robot was considered
at the middle of the line connecting driver wheels. In the second scenario the location of
COM was moved longitudinally and laterally by displacement of the carrying load on the
robot tray. In first scenario, the performance of both methods remains almost the same.
But, in the second scenario, the new derived model has outstanding performance comparing
to the other method. There was a considerable difference between the path tracking error of
two methods in second scenario while the orientation error remains almost the same.
In conclusion, the main objective of this study which was to decrease path tracking error
of an AMR with variable COM was achieved in simulation level, by reconsidering AMR’s
kinematic model, dynamic model and implementation of force sensors.

7.2 Recommendation and Future work

The kinematics of the differential drive robot with skidding and slipping has been derived
and simplified to the model under the assumption of pure rolling. The reason of such a
simplification was the lack of control method to consider slipping and skidding as inputs.
Such an input could be received from fused data of Inertia Measurement Unit (IMU) and
wheels’ encoders. This control method can be derived using advanced nonlinear control
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methods such as Back-stepping or sliding mode control. Moreover, the implementation of
the used method in the simulation in this thesis was remained to explore.
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A.1 Abstract

Automatic Guided Vehicle (AGV) are increasingly used in the industry for a wide variety of
applications such as goods handling and manufacturing. Under the assumption of no slipping
and no skidding, the kinematic model does not involve any geometric parameter of caster
wheels. However, when the vehicle is carrying heavy loads, and moreover, not well distributed
over the vehicle, the interaction between the caster wheels and the driving wheels become
significant, and needed to be taken into account. This paper proposes a mathematical model
based on the kinematics in order to predict the behavior of caster wheels. Simulation results
show good prediction of caster wheel orientations in some scenarios relative to the dynamic
model of the Webots simulator.

A.2 Introduction

Automatic guided vehicles (AGV) are increasingly used in the industry for a wide variety
of applications such as goods handling and manufacturing. Several configurations exist for
incorporating the motorized driving wheels together with passive wheels, either fixed on the
vehicle or free to rotate as implemented by caster wheels. The latter is often included as a
passive mean for the stability of the load carried and its inheritance of not affecting the control
law, under the assumption of no slipping and no skidding. However, when carrying heavy
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loads, and moreover, not well centered on the vehicle, the interaction between the caster
wheels and the driving wheels become significant, and needed to be taken into account.
Kinematics and dynamics behavior of differential wheels integrated with caster wheels were
well studied in the literature [1–5]. All of them are getting ride of the caster wheel behavior,
and hence, are not able to consider this significant interaction with the driving wheels when
carrying heavy loads [6]. In this paper, we concentrated on the modeling of the kinematic
behavior of caster wheels in order to predict their orientation based only on kinematic means.
A long term objective is to incorporate such a mathematical model into control schema of
the AGV in order to carry heavy loads not necessarily well centered on the platform. As
shown in Fig. A.1, the left and right sides of the platform are symmetric, while the front
and rear sides are different. The platform is controlled by two motorized differential driving
wheels that are aligned along a common revolute axis. The platform has four passive caster
wheels spread over the four corners.

A.3 Problem Formulation

Let us designate points Pi as the pivot points of each caster wheel on the platform, points
Dj the contact points of the driving wheels with the ground, while points OA and OB,
respectively, the origins of framesA fixed to the ground and frame B attached to the platform.
The two independently motorized differential wheels are located along the y-axis of B and
use this axis as a common revolute joints.

A.4 Kinematic Analysis

Under the assumption of no slipping and no skidding of the wheels, we have a 2-Degree-
Of-Freedom (DOF) mobile platform, although it can reaches any position and orientation
in the plane, i.e. three unknowns of position and orientation. This under actuation is the
fundamental characteristic of a nonholonomic mechanical systems such as wheeled mobile
platforms. Since the kinematic formulation is easier expressed in the moving frame B, let us
define i, j and k as unit vectors along x- , y- and z-axis of frame B, i.e.,

i = [cosψ sinψ 0]T , j = [− sinψ cosψ 0]T , k = [0 0 1]T , (A.1)

where ψ is the orientation of the platform. For a planar motion, k is identical in frames A
and B. The radius of the driving wheels is rd, while the one of caster wheels is rc.
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Figure A.1 Automatic Guided Vehicle (AGV) with two motorized differential driving wheels
and four passive caster wheels.

A.4.1 AGV Modeling

We follow the kinematic modeling of [7, 8] that we summary below for quick reference. The
velocity v of OB can be written through D1 as

v = ḋ1 + ψ̇ × pOB/D1 (A.2)

where ḋ1 is the velocity of D1, i.e., the contact point of the driving wheel 1 with the ground,
pOB/D1 the relative position of OB with respect to D1 and ψ̇ the angular velocity vector of
the AGV, i.e.,

ψ̇ = rd
2c(θ̇1 − θ̇2)k (A.3)

with rd the radius of the driving wheels and θ̇j the actuated revolute speed of the driving
wheel j. We can express these vectors in frame B as

ḋ1 = rdθ̇1 i, pC/D1 = 2c j (A.4)

Upon substituting of eqs.(A.3,A.4) into (A.2), it is possible to write the motion of the platform
as relationship between the twist t, the actuated driving wheel speeds θ̇ and the Jacobian
matrix J as

t ≡ [ψ̇T vT ]T = Jθ̇, θ̇ ≡ [θ̇1 θ̇2]T (A.5)
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Figure A.2 Geometry of the automatic guided vehicule (AGV) under study

where t and θ̇ are, respectively, 6- and 2-dimensional columns, and J is

J = rd
2c

 k −k
ci ci


6×2

(A.6)

Since the motion is planar, the first two and the last rows of J are useless, and hence, a
reduced formulation is sufficient. Equation (A.5) becomes

tP = JP θ̇, (A.7)

where tP and JP are, respectively, a 3-dimensional column and a 3× 2 matrix, i.e.,

tP ≡ [ψ̇ ẋ ẏ]T , JP = rd
2c


1 −1

c cosψ c cosψ
c sinψ c sinψ


3×2

(A.8)

Under the assumption of no slipping and no skidding, eq.(A.7) does not depend on the
location of the caster wheels. The kinematic model does not need to take that into account
in the kinematic model, and hence, is unable to determine their orientations, as we will be
doing next.

A.4.2 Caster Wheel Modeling

Let us consider Fig. A.3 where the vehicle is turning left and rotates around the instantaneous
center of rotation (ICR). During any rotation, the ICR remains fixed at point O along the
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axis of the driving wheels and intersect the radius ri of each caster wheels. The offset of the
caster wheels are alway perpendicular to these radius. The orientation of each caster wheel
is given by ψi.

Start turing

When the vehicle start turning, the velocity of points Pi are pure rotation because Since O
is fixed such as

vPi
= riψ̇

 sin(αi + ψ)
cos(αi + ψ)

 (A.9)

On the other hand, each caster wheel pivot Pi must rotates around the ICR while the velocity
of the contact point to the ground is given by rcθ̇ along the caster wheel orientation given by
ψi and the rotation of the caster wheel around the contact point to the ground as eψ̇i along
the radius ri from the ICR. On the other hand, the vehicle rotates around the ICR, we have

vPi
=

 rcθ̇i cosψi − eψ̇i sinψi
rcθ̇i sinψi + eψ̇i cosψi

 (A.10)

Once comparing eqs. (A.9) and (A.10), we get

tanψi = riψ̇ cos(αi + ψ)− eψ̇i cosψi
ri sin(αi + ψ) + eψ̇i sinψi

(A.11)

When the vehicle start turning, an ICR moves instantly along the driving wheel axis at
distance r, as shown in Fig. A.3. From the other geometry of the platform, we can compute
the final orientation of each caster wheel [ψi]f as

[ψi]f = π

2 − ψ − αi, (A.12)

with

α1 = tan−1(r + d

a
), α2 = tan−1(r − d

a
), (A.13)

α3 = tan−1(r + d

b
), α4 = tan−1(r − d

b
), (A.14)

Start going straight

When the vehicle start going straight forward after turning its caster wheels are not yet in
neutral orientation, but will do so with a kinematic relationship. As shown in Fig. A.3, each
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Figure A.3 Caster wheels orientations relative to the instantenious center of rotation (ICR)

caster wheel pivot Pi must follow the vehicle, while the velocity of the contact point to the
ground is given by rcθ̇ along the caster wheel orientation given by ψi and the rotation of the
caster wheel around the contact point to the ground as eψ̇i along the radius ri from the ICR.
Since the sum of these two vectors must results in the velocity rdθ̇ of the vehicle as

Along i : rdθ̇ = rcθ̇i cosψi + eψ̇i sinψi (A.15)

Along j : eψ̇i cosψi = rcθ̇i sinψi (A.16)

Upon substitution of eq.(A.16) into (A.15) in order to get ride of θ̇i, we obtain

rdθ̇

e
= ψ̇i(

1
sinψi

+ sinψi) (A.17)

while the second term of the right-hand-side is neglected. The integral relative to time of
eq.(A.17) between the initial conditions ψi and the final condition [ψi]f , we have

∫ rdθ̇

e
=

∫ [ψi]f

ψi

ψ̇i
sinψi

(A.18)

rdθ

e
= ln[tan([ψi]f/2)]− ln[tan(ψi/2)] (A.19)



48

A.5 Simulation Results

The mathematical model of eqs(A.12) and (A.19), for determining the caster wheel finale
orientation ψi, is compared with the dynamic simulation of the Webot platform [x] along
two different scenarios. Dimensions used in simulations are shown in Table A.1. In scenario
1, the platform is going straight forward and start turning with two different radius. We
select for an easy interpretation such as a) having an ICR at point OB so turning around
itself (r = 0mm); b) having an ICR at point Dj so that the platform turns around one of its
driving wheel (r = 344mm). In scenario 2, the platform is turning with two different radius
and start going straight forward c) from r = 0mm; and d) from r = 344mm. Apparently
from Fig. A.4, the mathematical model is a rather coarse in scenario 1, while behaving better
in scenario 2. However, we don’t have much information about the elements included into
the dynamic model of Webot [9].

A.6 Conclusions

We have presented a new mathematical model base on kinematics in order to predict the
behavior of caster wheels, and more specifically its orientation for two simple scenarios.
First, start turning by a known radius or stop turning and going straight forward. The
mathematical model is able to capture the main behavior of the motion, but still other
approaches remains to explore in order to have a simple prediction of the reaction of caster
wheels. The validity of mathematical model has been verified by running the full model of
AGV in simulation environment using Webot environment.

Table A.1 Geometrical dimensions of the AGV used in simulation (mm)

a b c d e rc rd
631 562 344 250 34 38 100
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ψi

ψi

ψi

(a) start turning at r = 0 mm; (b) start turning at r = 344 mm;

(c) straight from a r = 0 mm; (d) straight from a r = 344 mm;

Figure A.4 Mathematical model and Webot’s dynamic simulation : scenario 1 from the
neutral orientation of the caster wheels a) turning with r = 0 mm; b) turning with r =
344 mm; scenario 2 going straight forward c) from a turning of r = 0 mm; and d) from
turning of r = 344 mm.
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