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ABSTRACT

The objective of this work is to présent a new method for the dynamic and static analysis

ofthin, elastic, isotropic, non-uniform circular and annular plates. The method is a combination

of plate theory and finite élément analysis. The plate is divided into one circular and many

ammlar finite éléments. The displacement functions are derived from Sanders' classical plate

theory, which is based on Love's first approximation and gives zéro strain for small rigid-body

motions. Thèse displacement functions satisfy the convergence criteria of the finite élément

method. The matrices for mass and stiffness are determined by précise analytical intégration. The

free vibration problem becomes a problem of eigenvalues and eigenvectors. A computer

programme bas been developed, the convergence criteria have been established, and the natural

frequencies and vibration modes have been computed for différent cases. The results obtained

reveal that the frequencies calculated by this method are in good agreement with those obtained

by other authors.
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LIST 0F SYMBOLS

a outside radius of an annular or circular plate

ao inside radius of an annular plate

Bj (j == l ,4) constant in the équation of U

Cj (]' = l ,4) constant in the équation of V

cj 0=1'8) éléments of vector {Q

D stiffness membrane = Et/(l - v)

E Young's modulus

J number of boundary conditions

K bending stiffness = Et3/12(l - v2)

Ln Napierian Logarithm

m number of radiai mode

M^, Mg, M^g torque components for a cu-cular plate

n number of circumferential mode

N number of finite éléments

Nr' Ne' Nrs stress components for a circular plate

t thickness of the plate

U, V, W radiai, tangential, tramversal displacement

un> Vn, Wn amplitude of U, V, W associated with the nth circumferential mode

number

y coordinate defined by y = r/a

yo coordinate defined by yg = âo/a

o;j (]=1,4) defined by équation 10

er> ee' ere déformation of the mean surface of a circular plate

6 circumferential coordinate

K^ , Kg, K^g change of curvature and twist of the mean surface of a circular

plate
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^j (J = l ,4) roots of the characteristic équation (8)

v Poisson's ratio

p density of the material of the plate

u natural angular frequency

non-dimensional natural frequency = oa2 J -p^|î
K.

IV



LIST 0F MATRICES

[A J defined by équation 14

[An J defined by équation 17

[BJ defined by équation 33

[BJ defined by équation 42

[BBJ defined by équation 19

[BBJ defined by équation 22

arbitrary constants vector

[CJ defined by équation 33

[CnJ defined by équation 42

[DJ defined by équation 34

[DnJ defined by équation 43

[EJ defined by équation 34

[EnJ defined by équation 43

[FJ defined by équation 39

[FpJ defined by équation 46

[GJ defined by équation 33

[GJ defined by équation 42

[H] defined by équation 7

[HJ defined by équation 39

[H J defined by équation 46

[k] elementary stiffness matrix

[K] global stiffness matrbc

[m] elementary mass matruc

[M] global mass matrix

[P] elasticity matrix

[QJ defined by équation 18

[QnJ defined by équation 21

[RJ defined by équation 11



[RnJ defined by équation 17

[SJ defmed by équation 37

[SnJ defined by équation 46

[STJ defined by équation 25

[STJ defined by équation 27

[TJ defined by équation 11

[T J defined by équation 17

{ô,} vector of degrees of freedom at node i

{e} déformation vector

{o} stress vector

VI



l. INTRODUCTION

Circulai plates are widely used in engineering. They are used, for example, by the

aerospace and aeronautical industry in aircraft fuselage, rockets and turbo-jets; by the nuclear

industry in reactor walls; by the marine industry for ship and submarine parts; by the petroleum

industry in holding tanks; and by civil engineers in domes and thin shells. Knowledge of the

free vibration characteristics of thèse structures is uuportant not omy for tue researcher who

wishes to understand their behaviour, but also for the engineer whose duty it is to foresee and

to prevent any failure which may occur in the course of the industrial use of such structures.

Research into the vibration of circular plates began in the 18th century [l ,2,3]: in 1766,

Euler fonnulated the first mathematical approximation of plate membrane theory. The German

physician Chladin later found the vibration modes, and Lagrange developed a differential

équation for free vibrations. Kirchoff (1877) is considérée! to be the founder of the plate theory

which combines membrane effects with bending by analyzing plates with large deflections. He

concluded that non-linear expressions could not be ignored and showed that the natural

frequencies of plates can be detemimed by the virtual work method. Love applied Kirchoff's

work to thick plates, whilst Timochenko made significant contributions to the work on circular

plates with large deïïections.

Foppl, Volmin and Panov worked on non-linear plate theory. The final form of the

differential équation for plates with large deïïections was developed by Von Karman.

Chien Wien-Zang introduced the perturbation method to solve équations for plates with large

deflections. Hodge extended elastic plate theory into the plastic domain.

Leissa collected the work of several researchers into one excellent book [4], which

provides approxunately 500 références. More recently, Leissa and Narita [5] have studied the

influence of Poisson's ratio on the natural frequencies of a simply-supported circular plate.

The Japanese Irie, Yamada and Aomura [6] have detemiined the natoral frequencies of

clamped, sunply-supported and free plates for thickness to plate radius ratios varying from 0.01



to 0.25. They used Mindlin's theory which takes rotational inertia into account. Itao and

Crandall [7] have calculated the 701 fîrst modes of vibration of a free circular plate.

The analysis of non-uniform plates of varying thickness has been carried out by several

authors. Celep [8] used the initial functions method to détermine the first and second vibration

modes. Irie and Yamaha [9] used a spline tecbjiique in studying aruiular plates of which the

thickness varied linearly, parabolically and exponentially. They also used Ritz' method to sol ve

plate Systems numerically. Sato and Shimzu [10] used the transfer matrix method to study the

linear and non-linear behaviour of plates of varying thickness.

Narita [11] and Gorman [12] studied anisotropic plates. Bolotin formulated the problem

of the dynamic stability of mechanical Systems, and Lepore and Shah [13] applied this theory

to ckcular plates, while Tani and Nakamura [14] studied the dynamic stability of annular plates.

In order to analyze complex plates, it has been necessary to employ new methods, the

best known of which is the finite élément method. Numerous général computer programmes,

such as NASTRAN, SAP, ADINA and ABAQUS, are available for the industrial use of the

finite élément method, prmcipally in the domain of the mechanics of solids. In général,

triangular and square éléments are used [15], where the displacement functions are polynomial,

although curved éléments [16] have been found to account more precisely for the geometry of

the surface. The analytical formulation of thèse éléments is complex.

One of the most important criteria in determining the versatility of a method is the

capacity to predict, with précision, both the high and the low frequencies. This criterion

demands the use of a grcat many éléments in the finite élément method, and, in order to meet

it, our research group has developed a new type of finite élément, a hybrid wherem the

displacement functions in the finite élément method are derived from Sanders' classical shell

theory [17]. This method has been applied with satisfactory results to the dynamic linear and

non-linear analysis of cylindrical [l 8-25], conical [26] and spherical [27], isotropic and

anisotropic, uniform and non-uniform shells, both empty and liquid-filled. This method also has



the advantage of giving good low frequencies, as well as high, with a small number of finite

éléments.

The method used here is a combination of circular plate theory and finite élément

analysis: We first détermine the plate équations; second, we dérive the displacement functions

of plate theory and détermine the stiffness and mass matrices by the finite élément method. ïn

this part of the study, we develop two new types of fmite élément, the first type being a circular

plate and the second an annular plate, for circumferential modes n ^ 2.

2. FUNDAMENTAL EQUATIONS

2.1 Equilibrium équations

To study the equilibrium of the plate, taking into account membrane effects as well as

bending effects, we use Sanders' [17] équations. It should be remembered that thèse équations

are based on Love's [28] first approximation, and show zéro déformation due to rigid-body

motion. This is not the case with other théories.

The geometry of the mean surface of the plate studied and the coordinates used are shown

in Figure l. The unit vectors of the membrane force, the shear forces and the moment with

référence to the mean surface are indicated in Figure 2.

The equilibrium équations of the plate are:

ON, __ . ON,,
r^"- + N, + ^8. - N« = 0 (a)

âr "r ô8 "8

ON,, . _- . âN»
r n^. + 2H, + ^-9 = 0 (b)
3r "'r8 ô8 ~ v~/ (l)

ô2M, , . 3M, . . ô2M^ , 2 9M,n , l ô2M(, ôMgr2 " ""r + 2 ""'r + 2 " "'r8 . + z ""xre + 1 " "*9 - ^"8 = o fc1

or2 - or - 9r9Q r 9Q r ae2 39



where N^, Ng, N^g, M^, Mg and M^ are the stress components, and r and 6 are the coordinates

of the plate.

2.2 Kinematic relationshîps

The relationship between the defonnation and the displacements for a circular plate can

be written as follows:
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where U is the radiai displacement, V is the tangential displacement and W is the transversal

displacement.

2.3 Constitutive équations

For an isotropic and elastic material, the constitutive équations which link the stress

components to the déformations are:

N
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N.
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e
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(3)



where [P] is the elasticity matrix given in Appendbc A.

By substituting (2) and (3) m the equilibrium équations (l), we obtain new équations (4)

in terms of the radiai, tangential and transversal displacements (U, V, W) of the mean surface

of

the plate:

-+V'+{^L}U7-U-{L^}V'-{3—}V7-0 <•>

l^^^v.^)v,.X-^jX., „
'" w w" w w" w w

y/"" + 2-"— + -"- + 2-"_ - 2 " - " + /| v¥ + -"— = 0 Cci
r2 r4 - r r3 r2 r4 r3

(4)

The terms (') and (•) represent [ô( )/ar] and [a( )/ô6] respectively.

By solving thèse équations it is possible to dérive the displacement fonctions in terms of

the nodal displacements.

3. DISPLACEMENT FUNCTIONS

3.1 Characteristic équations

Two types of fmite élément will be developed, the first being an élément of the circular

plate type and the second an élément of the annular plate type (Figure 3). In this way, circular

plate theory can be used to détermine displacement functions.

The nodal displacements are (U, W, u-1^, V) where U is the radiai displacement, W is
dr

the transversal displacement, -^- is the rotation and V is the tangential displacement.
dr



As the plate is circular, the displacements are periodic as a function of 0 and can be

developed in a Fourier séries:

U(r,6) = u (r) cas n6

W(r,6) = w^(r) cos n6 (5)
V(r,9) = v^(r) sin n6

n is the number of the cu-cumfercntial mode Un, w'n, v'n are fanctioris soîeîy of r.

Exammation of the equilibrium équations (l) reveals that (a) and (b) show the membrane

effect while (e) shows the bending effect. Thèse two groups of équations (a, b) and (e) are

mdependent of each other and can be solved separately.

The généralisée forms of the displacements Un, Vn and Wn are:

À - l i. - l

un " c y 2 ' vn = B y 2

Wn = C,y" + Cgy-n •4- C^yn+2 + Cgy-n+2 (annular élément)

= ç n + c^y""2 (circular élément)

where X is the solution to the characteristic équation.

y = T- ; T is the radius of the plate
a

a is the outside radius of the plate

By substituting (6) mto (4a and 4b), we obtain a System of homogeneous équations m B

and C of the form

[H] {^ } = {0} (7)

where [H] is a second-order square matrix, the terms of which are functions of À. This matrix

is given in Appendix A. For a non-trivial solution, the déterminant of [H] should be zéro,

giving the following characteristic équation:



À4 - 4À3 - 2(1+4n2) À2 +4(3+4n2) À + (9-40n2 + 16n4) (8)

This characteristic équation has 4 roots, all of which are real.

From the sum of the 4 values for \j, we can obtain the complète solution for U and V.

Each value of Xj involves t\vo corxStants, Bj and Cj. As the values for Bj and Cj are not

independent, one can express Bj as a function of Cj.

BJ = aj cj (9)

By substituting (9) to (7), we may fmd a^.

Thus we obtain

n2 + l

aj

,-î<l.-"2-M-

(^^-•)-"[^-
(10)

3.2 Displacement functions for a fînite élément of annular plate type

In matrix form, displacements U, V and W can be written as follows:

u

w
v

^ = [TJ [R^ {C} (11)

where [TJ and [RJ are (3 x 3) matrices given in Appendix A and the vector {C} is given by:

le,

{C} = 1 (12)



Constants Cj are eliminated in favour of displacements at the nodes of the éléments.

The displacement field at the node can be defîned as:

{ôiî = {"ni'^,,|-^|,v,}tatnodei

<ôj} = {unj> wnj'

dr^,'

dw.
—j, v^}t at nodej

(13)

{ô,} and {ôj} can be expressed as a function of constants {Cj} in the following manner:

ô..

.ôj

= [AJ C (14)

[An] is the (8 x 8) matrix given in Appendix A.

Thus we have

{C} = [AJ -l

rô,

ô:
(15)

Equation (11) becomes

u

w
v

[ô,
r = [TJ [RJ [AJ-- -j; ^= [NJ

ôj

ô..

.ôj

(16)

where [N J is the displacement matrbc.

Since the circular plate élément has a single node, the displacement field is defined by:

dw,,

^ =^-wnj'|::d7l|.'v"jît

The three displacements U, V and W can therefore be written as follows:

u

w
ô,

= [TJ [RJ [A,] -l (17)



where [TJ is the (3 x 3) matrix given in Appendix A.

[RnJ is the (3 x 4) matrix given in Appendix A.

[AJ is the (4 x 4) matrix given in Appendix A.

4. DEFORMATION AND STRESS COMPOXŒNT MATRICES

4.1 Déformation matrk for a finite élément of the annular plate type

By substituting équation (16) in the kinematic équations (2), we obtain:

{€} = 1

er

68

2^e

Kr

K6

2Kr9

[TJ [0]

[0] [TJ [QJ [AJ -l
ô,

.ÔJ

Matrices [T J, [QJ and [AJ are given in Appendix A.

The déformation matrix is defined as follows:

|[TJ [0]
[BBJ =

[0] [TJ
[QJ [AJ -l

The déformation vector can be written:

<€) = [BB.] = ^ }

(18)

(19)

(20)



4.2 Déformation matrix for a finite élément of the circular plate type

By substituting équations (17) in the kinematic équations (2), we obtain:

{e} =

e
r

e
8

2e
r9

K
r

K
e

2K
r8

[TJ
ne

[0]

[0]

[TJ
ne

[QJ [\F {§,}
ne ne j

Matrices [TnJ, [QnJ and [AnJ are given in Appendix A.

The déformation matrix is defmed as follows:

ICTJ [0]
[BBJ =

[0] [TJ
[QJ [AJ -l

(21)

(22)

4.3 Stress component matrix for a fînite élément of the annular plate type

By replacing the vector {e} of équation (3) by the expression in (20), we obtain:

ô.. (23){0} = [P] [BBJ \ -^

The stress component matrix for the group of nodes i and j of the finite élément is

produced:

|[TJ [0]

0:

.aj

[TJ

[TJ

[0] [TJ

[P] [QJ [AJ
m [Q,] [AJ

(24)

= [STJ
ô,

.ÔJ
(25)
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where the matrices [QJ and [Qnj] are obtained from matrix [QJ (Appendix A), by substituting

r = âg and r = a, respectively. Matrices [T J, [P] and [AJ are given in Appendix A.

4.4 Stress component matrix for a finite élément of the circular plate type

Since the finite élément of the circular plate type has only one node, the stress component

matrix is given by:

{o,} = [STJ {ôj} (26)

where

|[TJ [0]
[ST.J =

'ncj |[0] [T^J
ne

[P] [Q,j] [AJ-1 (27)

[Qng] is the matorbc [QJ (Appendix A) calculated for r = a. [T J, [P] and [A J are the

matrices given in Appendix (A).

5. STIFFNESS AND MASS MATRICES

5.1 Annular plate

5.1.1 Stiffness matrix

In a System of local axes (r, 6), the stiffness matrix is obtained as follows [15]:

[k] = j [BBJ1 [P] [BBJ dS (28)
s

where dS is the surface élément = r dr d0.

[P] is the elasticity matrix given in Appendix A and [BB,,] is the matrix defined by

équation (19).

By replacing [BBJ by its expression in (19), the stiffness matrix can be written as

follows:

[k] = / [[AJ-l]t [QJ* [P] [QJ [AJ-1 r rd d6 (29)
s

11



The intégration with respect to Q gives:

[k] = [[AJ-']t {TT J' [QJ* [P] [QJ r dr } [AJ (30)

where a and &Q are the outside and inside radii of the annular plate élément. Expressing:

a

[G] = n f [QJ( [P] [QJ r dr (31)

The stiffness matrix can be expressed as:

[k] = [[AJ-T [GJ [AJ-'

After intégration of équation (31), we obtain:

(32)

w - -2 E ^,IyT)w),, [•
'""'•v - " ^ g^^^ ^ ^^^ ^ ^

(i =1,8 and j =1,8)

if E^(i,k) + C^(k,j) +2^0

B,(i,k)+^(kj)+2
Yo'

G^(iJ) = -na2 S DnO'k) B^(k,j) Ln y,
k=l

(i= 1,8 and j =1,8)

if E^(i,k) + C,(k,j) +2=0

(33)

12



where

[DJ = [BJ* [P]
(34)

[EJ = [CJ(

a
yo=Ï

[BJ and [CJ are the two (6 x 8) matrices given in Appendix (A) and Ln is the Napierian

Logarithm. [P] is the elasticity matrix given in Appendix A.

5.7.2 Mass matrix

In a system of local axes (r, 6), the mass matrix is defined as follows [15]:

[m] = pt / [NJ( [NJ dS (35)
s

where

dS is the surface élément = r dr d6

p is the density or the finite élément

t is the thickness of the finite élément

[NJ is the matrix defined by (16)

By inserting (16) in (35) and integrating it with respect to Q, we obtain:

a

[m] = pt [[AJ-']t {TT f [RJ [RJ r dr} [AJ-1 (36)
ao

where [AJ and [RJ are given in Appendix (A).

Letting

a

[SJ = TC J' [RJt [Rnl r dr (37)

13



The mass matrix can then be written as follows:

[m] = pt [[AJ-']t [SJ [AJ-1

After intégration of équation (37), we obtain:

k.j)^.2È..^i-k);-(kj),.[i-y;
"nv"J/ •'" ^ H^(k,i) - Iî^(k,j) -2

(i= 1,8 and j =1,8)

if H^(k,i) + H^(k,j) +2^0

H^k,i)+H^k,j)+2

(38)

S^(i,j) = -7i a2 E Fn(k,i) F^(kj) Ln y,,
k=l

(i=l,8 and j =1,8)

if H^(k,i) + H^(k,j) +2=0

(39)

where [FJ and [HJ are the (3 x 8) matrices given in Appendix A.

5.2 Circular Plate

5.2.7 Stiffness matrix

As the ckcular plate élément has only one node, fhe stiffness matrix will be of the order (4x4).

It is given by:

1-1[k] = [[AJ-1]1 [G,] [AJ

where [A J is the (4 x 4) matrix given in Table (2) of Appendix A.

[GJ = " / [Qnc]t [Pl [Qnc] r ^

(40)

(4l)

"a" being the radius of the circular plate élément.

After intégration we obtain:

14



O..(,,j) - ^ t , ww ,-ne— •-- ^ E^,^ ^ç^^ ^2

(i=l,4 and j =1,4)

if EJLk) + C^(k,j) +2.0

GJiJ) = -Ti a2 E Fnc0'k) Bnc(kJ) Ln e ; e =
k=l

0=1,4 and j =1,4)

if EJi,k) + C^(k,j) +2=0

10 -9

(42)

where [DJ [BJ1 [P]

[HJ = [CJ1 (43)

[BJ and [CJ are two (6 x 4) matrices given in Appendbc A.

[P] is the elasticity matrix given in Appendix A.

5.2.2 Mass matrix

The mass matrix is given by:

[m] = pt[[AJ-l]t[SJ [A,]-' (44)

where [A J is the matrix given in Appendix A.

[S J = "J'[RJt[RJ r dr (45)

After intégration we obtain:

15



w-^li „ ,FJk'i)w.
"ncv'J/ "" ^ H,,(k,i) + H,(k,j) +

(i= 1,4 and j =1,4)

if EJi,k) + C^(kJ) +2=0

SJiJ) = -7i a2 S FJk,i) F^(k,j) Log e ; e
k=l

(i= 1,4 and j =1,4)

if HJk,i) + H^(k,j) +2=0

= 10-9

(46)

where [F J and [H J are the (3 x 4) matrices given in Appendix A.

6. CALCULATIONS AND DISCUSSION

6.1 Assembly of the finite éléments

As has already been mentioned, the complète plate is divided into a finite number of

circular and annular éléments, the positions of which can be selected arbitrarily. Each finite

élément of the ciï-cular plate type bas a node at the circumference end, while the éléments of the

annular plate type have one node at each extremity (Figure 3).

Once the stiffness and mass matrices have been obtained, it is possible to constmct the

global matrices for the complète plate using finite élément assembly technique. If N is the

number of finite éléments, [M] and [K] are two matrices of the order 4(N+1) for an annular

plate and of fhe order 4N for a cu-cular plate. Thèse matrices are symmetrical and semi-defined;

they are also band matrices of which the half-width of the band is equal to 8.

16



6.2 Static Forces

The study of the static equilibrium is can-ied out in the following manner:

When: {FA} is the vector of the forces applied to the nodes of the plate

{FB} is the vector of unknown réactions

{dA} is the vector of unknown nodal displacements

{dB} is tfae vector of displacements defined by the boundary conditions

The static equilibrium équation [K] {d} = {F} becomes:

KAA KAB

KBA KBB

-dA 1 fFA

dB l IFB
(47)

We have therefore:

{dA} = [KAA]-' {FA} - [KAB] {dB}

{FB} = [KBA] {dA} + [KBB] {dB}

Finally, the stresses can be found from the displacement by the relation (24) and (26).

6.3 Free vibrations

In the free vibrations, the équations of motion are:

[M] {ô}^ + [K] {ô}, = {0} (49)

where [M], [K] are the global mass and stiffness matrices and {ô-^} is the vector for the global

displacements of the whole plate.

{ô^} = {ô,, ô,, ... Ô^,,}T

N being the number of finite éléments.

17



The vibration is harmonie:

{ô^} = {ôj^ sin (cet + i{f) (50)

where u is the natural angular frequency

V' is the phase angle.

By introducing équation (50) in (49), we obtain:

([K] - u2 [M]) {ô^ = {0} (51)

This relation holds only for certain values of u where the déterminant of the matrix in

parenthèses is zéro. Thèse values define the natural angular frequencies of the structure and

give rise to a typical problem of eigenvalues and eigenvectors.

det [[K] - u2 [M]] = 0 (52)

Corresponding to each natural frequency for which équation (51) has been verified is a

vector {ôo} of which the components are defined to one close arbitrary multiplying constant.

Such vectors are called the natural modes (or eigenvectors) of the System.

6.4 Boundary Conditions

Ifthe plate has boundary constraints such as being simply-supported, clamped, etc., the

appropriate lines and columns in [K] and [M] are eliminated to satisfy thèse constraints.

Consequently, matrices [K] and [M] reduce to square matrices of order 4(N+1)-J for an annular

plate and 4N-J for a circular plate, where J is the number of constraints applied.

Thus, for a plate:

free : J = 0

with one edge simply-supported (u=v=w=0):J=3

with two edges clamped (u=v=w= ^-!L =0):J=8
dr

18



6.5 Convergence

The finite élément method permits us to reach an approximate solution to the problem

of elasticity. This solution is marred by errors which fall into two catégories:

The discretisation error which stems from the replacement of the initial physical

problem by an approximate modei.

The tmncation error stemming from the numerical calculation.

From the convergence of the finite élément method, we see that the solution to the

problem is a function of the number of finite éléments used to model the structure under

considération, that is to say, it is a fonction of the fmeness of the net.

The calculation was carried out with one particular plate for a number of radiai modes

"m" equal to l, 2 and 3, with a number of finite éléments N = 2, 4, 6, 8, 10, 12.

The results for n = 2 are given in Figure 4. We conclude that the convergence of the

System demands 6 finite éléments for the relatively low radiai modes "m", but 20 for radiai

mode m = 10.

6.6 Free vibrations of circular plates

The natural frequencies of a circular plate can unquestionably be calculated by simpler

methods than thèse. Our principal objective, however, has been to verify the accuracy of the

mass and stiffness matrices in their général forms.

For this reason, we have comparée! the non-dimensional natural frequencies detennined

by this method with those obtained by other authors, both for différent boundary conditions

(plate clamped, sunply-supported, free) and for différent values of the number of circumferential

mode "n" and on the number of radiai mode "m".

19



We have obtained very good agreement both for high and low frequencies (Figures 5).

Figure 6 shows the non-dimensional natural frequency curves as a function of the number of

circumferential mode "n" for différent boundary conditions and for différent values of the

number of radiai mode "m".

Detaiïed discussioa of the results obtained and their sigriificance v.'ill not be undertaken

here as this has ah-eady been donc by others, notably in [l] and [4]. The évident success of this

method in analysing circular plates is considered to have provided adéquate proof of the

soundness of the theory as a whole and the correctness of the expressions of the stiffness and

mass matrices derived in this paper.

6.7 Free vibrations of annular plates

Our method is remarkable for the fact that it enables us to determme with high précision

both low and high frcquencies.

The results obtained in the literature are only for relatively low modes (n = 0, 1,2 and

m = l, 2, 3). To extend the range of results, Figures 7-13 show part of the results obtained

for n = 2 and m = 1-10 for différent boundary conditions and various dimensions of the annular

plate.

Figures 7 and 8 show the natural frequencies of an annular plate as a function of the

number of radiai mode for différent boundary conditions and différent ratios (âo/a : inside radius

/ outside radius of the annular plate). We observe that for small Q.JQ. (= 0.1), the frequencies

increase uniformly with the incrcasmg ofthe radiai mode, but for high ratio âo/a (= 0.9), there

are some parts of the radiai mode where the frequencies increase very slightly.

We see in Figures 9 to 11 that the frequency increases slightly with increasing a^/a. ratio

in the range 0 < âo/a < 0.4 approximately, and then increase rapidly for high âo/a ratio.

Figures 12 and 13 show the natural frequency for one particular boundary condition

(clamped-free) as a function of the âo/a ratio for différent radiai mode m and circumferential

mode n = 2.
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7. CONCLUSION

The objective of this work was to présent a new method for the static and dynamic

analysis of thin, elastic, isotropic, non-uniform circular and annular plates. The method

combined circular plate theory with finite élément analysis. Two types of finite élément were

developed, die fîrst was an élément of the circular plate type and me second was or the annular

plate type. The displacement fonctions, the mass and stiffness matrices were developed for

circumferential modes n >: 2.

The convergence of the method was established and the natural frequencies were obtained

forvarious boundary conditions and for différent circumferential and radiai modes. Thèse were

compared with the results of other investigations and satisfactory agreement was found.

This method combmes the advantages of fmite élément analysis which deals with complex

plates (variable thickness, non-uniform materials, various boundary conditions, différent types

of load), and the précision of formulation obtained when we use displacement fiinctions derived

from circular plate theory.

The method enabled us to supplément the few results available on high natural

frequencies associated with high circumferential and radiai modes. It also enabled us to

détermine the natural frequencies and vibration modes of non-uniform annular and circular

plates. We consider that we have, here, a method by which it is possible to predict the

vibrationary characteristics of circular and annular plates.

The next step in this line of work should be the analysis of linear and non-linear

anisotropic plates, and of the dynamic stability of circular and annular plates.
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APPENDK A

List of Matrices

MATRIX [H]

H(l,l)=^-A-(l_^n2_i
4 2 I, 2 J " 4

H(l,2) = -L?'- nÂ - ^ (7 - v)

H(2,l) = -L-pL nÀ - ^ (5 - 3v)

H(2,2)= [1_^L| ,. - |i^L| l - 3|I—L| -n'

MATRICES [TJ and [T J

[Tj = [TJ = diag [cosn6 , cosnO , sinn6]

MATRIX [AJ

\

An

A

\

\

(1J)

(2,5)

(2,6)

(2,7)

(2,8)

Yc

= y

= y

= y

= y

y1

> 2 , J = 1,4

n

0

-n

0

n+2

0

-n+2

0

n n" i
An (3,5) = ^ y;

a

25



\ (3,6) = -H v~n-'
a -70

\ (3,7) = nj^ ^
a Jo

\ (3,8) = -1"__^ y -"-l
0

\ (4J) =

\ (5J) =

An (6J) =

^
"j Yo 2 J

1 j =1,4

1 ' J =5,8

= 1,4

A, (7,5) = n
a

\ (7,6) = - "

\ (7,7) = nj_l
a

An (7,8) = -UL^_

A" ^ =^ , J = 1,4

A" (U) = 0 for au other i and j
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MATRIX [A J

A(l,l) = A(l,2) = A(2,3) = A(2,4) = l

A(3,3) = 1
a

A(3,4) = n-'-^-

A(4,l) = a,

A(4,2) = a,

A(ij) = 0 for all other i and j

MATRICES [RJ, [FJ et [HJ

Rn(iJ) = Fn(iJ) yHn(i^ i = 1,3; j = l,î

The matrk [F J is defined by:

F^(l,j) =1 for j = 1,4

F,, (2, l) =1 for j = 5,8

F/3J) = ^ for j = 1,4
Fn(iJ) = 0 for all other i and j

The matrix [H J is defined by:

HnO>J) = -y-J = 1.4

H,, (2,5) = n

H,, (2,6) = -n

H,, (2,7) = n+2

H,, (2,8) = -n+2

Hn(3J) = :1— fO'-J=l>4

Hn Oj) = ° for all other i and j
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Matrices [RJ, [F J et [H J

RJ'J) = Fnc(i'J) yHJi'j) ' = 1'3> J = 4

The matrix [FnJ is defined by:

Fnc O'D = Fnc d>2) = F^ (2,3) = F, (2,4) = l

Fnc <3>D = al

FHC 0'2) = (.2

F (i,j) = 0 for all other i and j

The matrix [HnJ is defined by

H,(lj) =—-,j = 1,2

"ne (2,3) = n

H^ (2,4) = n+2

Hnc(3'J) = -y- forJ=l>2

î~L (ij) = 0 for all other i and j
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Matrices [QJ, [BJ et [CJ

Qn(U) = B^(iJ) ycn(ij') i = 1,6 ; j = 1,8

The matrix [BJ is defined by:

Bn OJ) =

^ (2J) =

À.-1

for j =1,4

l-f-KjIl

for j =1,4

Bn (3J) = ^
À.-3

-n + a, l —
J l 2

for j =1,4

^ (4,5) = -^n-ll

B,. (4,6) =
-n(n+l)

B f4.7^ = -n(n+2)(n+l)
n v '5

n, (4,8)
-n(l-n)(2-n)

^ (5,5) = n(n^D

^ (5,6) = n(n^D

B^ (5,7) = n!^2
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^ (5,8) = n^r2
a2

,„ (6,5) = 2n^H
a-

B. «,6) = ^pl

B. (6,7) = 2n(î^
a.'

^ (6,8) = ^2n^D
a-

B (i,j) =0 for all other i and j

The matrix [Cn ] is defined by

cn (ij) = — for i=:l'2>3 and }=Ï,..A

€„ (i,5) = n-2 for i =4,5,6

C (i,6) = -n-2 for i =4,5,6

C (i,7) = n for i =4,5,6

C,, (i,8) = -n for i =4,5,6

C,, (ij) = 0 for all other i and j

Matrices [QJ, [BJ et [CJ
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<y'.j) : -QncOJ) = B^(ij) y^uj; i = 1,6 ; j = 1,4

The matric [Bnc ] is defined by:

Bnc

BO

Bnc

(1J)

(2J)

(3J)

-b: l

2a

ï4-CCfl

a

l
a

—l

for j:

for j

n -•- «j

-n(n-l)

: 1,2

=1,2

À^3
~2~

B, (4,4) - -n<n+2Xn+l)

Bnc (5,3) =

a

n(n-l)

B. (5.4) = n^2

B, (6,3) = 2ncn^)

B. (6.4) = M-^l

B (i,j) = 0 for all other i and j
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The matrix [Cnc ] is defined by:

À,-3

cnc (U) = ^— for i=l>2,3 and j =1,2

€„ (i,3) = n-2 for i =4,5,6

€„, (i,4) = n for i =4,5,6

CL (ij) = 0 for all other i and j

Matrix [P]

P(l,l) = P(2,2) = D, P(4,4) = P(5,5) = K

P(l,2) = P(2,l) = ,D, P(4,5) = P(5,4) = vK

P(3,3) = ^ ^j = D, P(6,6) = A^LJ K

where D = | -E^- \ and K = [ —K-
1-v2; U2(l-v2),
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Figure 2 : Differential élément for a plate
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(a) Finite élément of the 'circular plate' type

(b) Finite élément of the 'annular plate' type
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