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ABSTRACT

The objective of this work is to present a new method for the dynamic and static analysis
of thin, elastic, isotropic, non-uniform circular and annular plates. The method is a combination
of plate theory and finite element analysis. The plate is divided into one circular and many
annular finite elements. The displacement functions are derived from Sanders' classical plate
theory, which is based on Love's first approximation and gives zero strain for smaﬂ rigid-body
motions. These displacement functions satisfy the convergence criteria of the finite element
method. The matrices for mass and stiffness are determined by precise analytical integration. The
free vibration problem becomes a problem of eigenvalues and eigenvectors. A computer
programme has been developed, the convergence criteria have been established, and the natural
frequencies and vibration modes have been computed for different cases. The results obtained
reveal that the frequencies calculated by this method are in good agreement with those obtained

by other authors.
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1. INTRODUCTION

Circular plates are widely used in engineering. They are used, for example, by the
aerospace and aeronautical industry in aircraft fuselage, rockets and turbo-jets; by the nuclear
industry in reactor walls; by the marine industry for ship and submarine parts; by the petroleum
industry in holding tanks; and by civil engineers in domes and thin shells. Knowledge of the
free vibration characteristics of these structures is important not only for the researcher who
wishes to understand their behaviour, but also for the engineer whose duty it is to foresee and

to prevent any failure which may occur in the course of the industrial use of such structures.

Research into the vibration of circular plates began in the 18th century [1, 2, 3]: in 1766,
- Buler formulated the first mathematical approximation of plate membrane theory. The German
physician Chladin later found the vibration modes, and Lagrange developed a differential
equation for free vibrations. Kirchoff (1877) is considered to be the founder of the plate theory
which combines membrane effects with bending by analyzing plates with large deflections. He
concluded that non-linear expressions could not be ignored and showed that the natural
frequencies of plates can be determined by the virtual work method. Love applied Kirchoff’s
~-work to thick plates, whilst Timochenko made significant contributions to the work on circular

plates with large deflections.

Foppl, Volmin and Panov worked on non-linear plate theory. The final form of the
differential equation for plates with large deflections was developed by Von Karman.
Chien Wien-Zang introduced the perturbation method to solve equations for plates with large

deflections. Hodge extended elastic plate theory into the plastic domain.

Leissa collected the work of several researchers into one excellent book [4], which
provides approximately 500 references. More recently, Leissa and Narita [5] have studied the

influence of Poisson’s ratio on the natural frequencies of a simply-supported circular plate.

The Japanese Irie, Yamada and Aomura [6] have determined the natural frequencies of

clamped, simply-supported and free plates for thickness to plate radius ratios varying from 0.01



to 0.25. They used Mindlin’s theory which takes rotational inertia into account. Itao and

Crandall [7] have calculated the 701 first modes of vibration of a free circular plate.

The analysis of non-uniform plates of varying thickness has been carried out by several
authors. Celep [8] used the initial functions method to determine the first and second vibration

modes. Irie and Yamaha [9

1 uced a ¢
L7y Bovd 4 o
thickness varied linearly, parabolically and exponentially. They also used Ritz’ method to solve
plate systems numerically. Sato and Shimzu [10] used the transfer matrix method to study the

linear and non-linear behaviour of plates of varying thickness.

Narita [11] and Gorman [12] studied anisotropic plates. Bolotin formulated the problem
of the dynamic stability of mechanical systems, and Lepore and Shah [13] applied this theory
to circular plates, while Tani and Nakamura [14] studied the dynamic stability of annular plates.

In order to analyze complex plates, it has been necessary to employ new methods, the
best known of which is the finite element method. Numerous general computer programmes,
such as NASTRAN, SAP, ADINA and ABAQUS, are available for the industrial use of the
- finite element method, principally in the domain of the mechanics of solids. In general,
- triangular and square elements are used [15], where the displacement functions are polynomial,
although curved elements [16] have been found to account more precisely for the geometry of

the surface. The analytical formulation of these elements is complex.

One of the most important criteria in determining the versatility of a method is the
capacity to predict, with precision, both the high and the low frequencies. This criterion
demands the use of a great many elements in the finite element method, and, in order to meet
it, our research group has developed a new type of finite element, a hybrid wherein the
displacement functions in the finite element method are derived from Sanders’ classical shell
theory [17]. This method has been applied with satisfactory results to the dynamic lineér and
non-linear analysis of cylindrical [18-25], conical [26] and spherical [27], isotropic and

anisotropic, uniform and non-uniform shells, both empty and liquid-filled. This method also has

2



the advantage of giving good low frequencies, as well as high, with a small number of finite

elements.

The method used here is a combination of circular plate theory and finite element
analysis: We first determine the plate equations; second, we derive the displacement functions
of plate theory
this part of the study, we develop two new types of finite element, the first type being a circular

plate and the second an annular plate, for circumferential modes n = 2.

2. FUNDAMENTAL EQUATIONS
2.1  Equilibrium equations

To study the equilibrium of the plate, taking into account membrane effects as well as
bending effects, we use Sanders’ [17] equations. It should be remembered that these equations
are based on Love’s [28] first approximation, and show zero deformation due to rigid-body

motion. This is not the case with other theories.
The geometry of the mean surface of the plate studied and the coordinates used are shown
in Figure 1. The unit vectors of the membrane force, the shear forces and the moment with

reference to the mean surface are indicated in Figure 2.

The equilibrium equations of the plate are:

oN N, _
oN oN
r_‘e+2re+_£—o (b)
or a0 1)
2 FM, .y oM, | ) azMre'+ 2 M, 1M, M, -0 (©
or? or aro0 r o0 r oo 30



where N, N, N, M, M, and M, are the stress components, and r and @ are the coordinates

of the plate.

2.2  Kinematic relationships

The relationship between the deformation and the displacements for a circular plate can
be written as follows:

€ ou
A 7=
or
c lov U
8 r 4 r
1 U oV
—_— e r — | —
%50 r o or ( r)
= 4 2w > 2)
Kr - arZ
1w _ 1 @w
K r or P2 5e?
- S, 1w
Ko { or\r 0 )

where U is the radial displacement, V is the tangential displacement and W is the transversal

displacement.

2.3  Constitutive equations

For an isotropic and elastic material, the constitutive equations which link the stress

components to the deformations are:

Nr er
Ne €
N %€
) 1] - [P] ) r \ (3)
M K
r r
M K
0 0
kMre 2Kre J



where [P] is the elasticity matrix given in Appendix A.

By substituting (2) and (3) in the equilibrium equations (1), we obtain new equations (4)

in terms of the radial, tangential and transversal displacements (U, V, W) of the mean surface
of

_ . + _ .
wr g+ (L2 U U L v g 3 2V Y oy g
2 r r 2 2 r
+ . - - -
I+v v [ 37vIU [ 1oy Py o+ lvV'+-Y-— 1-v !:0 (b)
2 2 r 2 r 2 r 4)
woow oW LW W W W LWL W
2 r r r3 r2 4 3

The terms (’) and (*) represent [&( )/or] and [&( )/36] respectively.

By solving these equations it is possible to derive the displacement functions in terms of
the nodal displacements.

3. DISPLACEMENT FUNCTIONS

3.1  Characteristic equations

Two types of finite element will be developed, the first being an element of the circular

plate type and the second an element of the annular plate type (Figure 3). In this way, circular
plate theory can be used to determine displacement functions.

The nodal displacements are (U, W, ?, V) where U is the radial displacement, W is
r

the transversal displacement, ({TW- is the rotation and V is the tangential displacement.
r



As the plate is circular, the displacements are periodic as a function of # and can be

developed in a Fourier series:

U(r,6) = u (r) cos nb

W(,6) = w(r) cos nb 5)
V(1,0) = v (r) sin nf
n is the number of the circumferential mode u,, w,, v, are functions solely of r.

Examination of the equilibrium equations (1) reveals that (a) and (b) show the membrane
effect while (c) shows the bending effect. These two groups of equations (a, b) and (c) are

independent of each other and can be solved separately.

The generalised forms of the displacements u,, v, and w, are:

A -1 A =1

u =Cy * ,v =By ?

w, = Cy" + Ciy™ + C,y"™ + C,y ™? (annular element) ©)
w, = C,y" + C,y"™? (circular element)

where A is the solution to the characteristic equation.

; r is the radius of the plate

® |-

a is the outside radius of the piate

By substituting (6) into (4a and 4b), we obtain a system of homogeneous equations in B
and C of the form

[H] {g } = (0) 0

where [H] is a second-order square matrix, the terms of which are functions of A. This matrix
is given in Appendix A. For a non-trivial solution, the determinant of [H] should be zero,

giving the following characteristic equation:



A = 423 = 2(1+4n?) A2 +4(3 +4n2) A + (9-40n%+16n) ®)

This characteristic equation has 4 roots, all of which are real.

From the sum of the 4 values for \;, we can obtain the complete solution for U and V.

Each value of ); involves two constants, B; and C;. As the values for B; and C; are not
independent, one can express B; as a function of G
B, = «; C )]

By substituting (9) to (7), we may find o;.

Thus we obtain

—i-(kj—l)2+(1_v)n2+l

o« = _— ; (10)

v _ _ -V
( 2 ) n (& ) = n ( 5 )
3.2  Displacement functions for a finite element of annular plate type
In matrix form, displacements U, V and W can be written as follows:

U
W =I[T]I[R] {C} (11)
v

where [T,] and [R] are (3 x 3) matrices given in Appendix A and the vector {C} is given by:

,

C,

c =4. ¢ 12)




Constants (_lj are eliminated in favour of displacements at the nodes of the elements.

The displacement field at the node can be defined as:

{63}

dw, . .
{u, W i v} at node i
i

(13)
dw, . )

J

{6:} and {8;} can be expressed as a function of constants {C;} in the following manner:

Sl 14
6j}—[A“]C (14)

[A,] is the (8 x 8) matrix given in Appendix A.
Thus we have

0,

1}
SO

o.
{C} = A, { ‘ } (15

Equation (11) becomes

(u 5.
1W = [T,] [R,] [A,]™" {6‘ }
\ j

where [N,] is the displacement matrix.

ol

Since the circular plate element has a single node, the displacement field is defined by:

_ dw, .
{8} = {uy Wy I ; Vag

The three displacements U, V and W can therefore be written as follows:

v 5.
W[ =T, R [A,]™ { } an
\ %



where [T,] is the (3 x 3) matrix given in Appendix A.

:Ik

4.1

[R,] is the (3 x 4) matrix given in Appendix A.
[A,] is the (4 x 4) matrix given in Appendix A.

AL
Deformation matrix for a finite element of the annular plate type

By substituting equation (16) in the kinematic equations (2), we obtain:

{ er
€y
2e [T] [0] 5.
_ % L S (18)
S oy rr| Q! {aj}
Kg
k2?(}61

Matrices [T,], [Q,] and [A,] are given in Appendix A.

The deformation matrix is defined as follows:

[T,] [0]

- (19)
o1 x| @ A

[BB,] =

The deformation vector can be written:

(0 = BB, = {2 } 20)

i



4.2

Deformation matrix for a finite element of the circular plate type

By substituting equations (17) in the kinematic equations (2), we obtain:

,

€
r

€
0

2 | [ r01]

= X 0 ] -1 by (21)
S R e P R N

Matrices [T,J, [Q,J and [A,] are given in Appendix A.

The deformation matrix is defined as follows:

T, [0
BB, = Q,] A, 1" (22)
[ (01 [T, I
4.3  Stress component matrix for a finite element of the annular plate type
By replacing the vector {e} of equation (3) by the expression in (20), we obtain:
5.
{o} = [P] [BBH]{éf } 23)
J
The stress component matrix for the group of nodes i and j of the finite element is
produced:
[ (01 |
{oi _ [T,] [P] [Q,] [An]:‘ {a 24)
9 [T,] [P1IQ;1 A" | |3
[0] [T,] |
0,
= [ST,] {61 } (25)
j
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where the matrices [Q,] and [Q,] are obtained from matrix [Q,] (Appendix A), by substituting
I = ayand r = a, respectively. Matrices [T,], [P] and [A,] are given in Appendix A.

4.4  Stress component matrix for a finite element of the circular plate type

Since the finite element of the circular plate type has only one node, the stress component

matrix is given by
{o} = [ST,1{8;} (26)
where
[T.] [0]
ST 1=1| " p J[A T 7)
[ST,] (0]  [T.] [P1[Q,] [A,]

[Qyl is the matrix [Q,] (Appendix A) calculated for r = a. [T,.], [P] and [A,] are the

matrices given in Appendix (A).

5. STIFFNESS AND MASS MATRICES
5.1  Annular plate
5.1.1 Stiffness matrix

In a system of local axes (r, 6), the stiffness matrix is obtained as follows [15]:

[k] = f [BB,]' [P] [BB,] dS (28)

where dS is the surface element = r dr dé.

[P] is the elasticity matrix given in Appendix A and [BB,] is the matrix defined by
equation (19).

By replacing [BB,] by its expression in (19), the stiffness matrix can be written as

follows:

[k} = fs (LA 17 [Q1 [P] [Q,]1 [A,17" r rd dO 29)

11



The integration with respect to 6 gives:

a

(k1 = [[A,17']' {= f [Q,)' [P] [Q,] rdr} [A]” (30)

2
where a and a, are the outside and inside radii of the annular plate element. Expressing:

(6] = = [ [Q1' [P] [Q] r dr (3D

0

The stiffness matrix can be expressed as:

(k1 = [[A, 17T [G,1[A,]™ (32)

After integration of equation (31), we obtain:

(G W) = 7 a2 26: D (i.k) B, (k.j) _EOR a2
" & EGR) + Gk * 2 ’

(i=1,8 and j=1,8)

if E(ik) + C(kj) + 2 #0

. 6
G(ij) = ~ma? ), D,k B (kj) Lny,
k=1
\ (i=1,8 and j=1,8) (33)
if E(ik) + C(kj) + 2 =0

12



where

[D,] = [B,]' [P] 34)
[E,] = [C,]'

Yo = =
0
%

[B,] and [C] are the two (6 x 8) matrices given in Appendix (A) and Ln is the Napierian
Logarithm. [P] is the elasticity matrix given in Appendix A.

5.1.2 Mass matrix

In a system of local axes (r, 6), the mass matrix is defined as follows [15]:

[m] = ptfs [N_]* [N.] dS (35)

where

ds is the surface element = r dr df

i) is the density of the finite element
is the thickness of the finite element

[N,] is the matrix defined by (16)

By inserting (16) in (35) and integrating it with respect to 6, we obtain:

[m] = pt [[A,]17] = [ [R] [R,]r dr} [A]” (36)

8,

where [A,] and [R]] are given in Appendix (A).

Letting

[S,] == f [R,1' [R,] r dr (37)

a

13



The mass matrix can then be written as follows:

[m] = pt [[A,17'T [S,]1 [A,] (38)

After integration of equation (37), we obtain:

(o g F (i,k) F (kj) H (k) +H (k) +2
S“(l"]) --n;a2§: T n_z.nnn.:\ IS _1 ~ Yo

k=1 xxn(k,i) ’ jln\l\,_;) N4

(i=1,8 and j=1,8)
if Hy(ki) + Hkj) + 2 =0

[ 3
(i) = —ma® ), F(ki) F (ki) Lny,
k=1
) (i=1,8 and j=1,8) (39)
if Hy(k) + Hkj) +2 =0

where [F,] and [H,] are the (3 x 8) matrices given in Appendix A.

5.2  Circular Plate
5.2.1 Stiffness matrix

As the circular plate element has only one node, the stiffness matrix will be of the order (4 x 4).

It is given by:

(k] = [A,17'1 [G,] [A]" (40)
where [A,.] is the (4 x 4) matrix given in Table (2) of Appendix A.

[Gy] = [ [Q] [P1[Q,] r dr @1
0

"a" being the radius of the circular plate element.

After integration we obtain:

14



r

.. . D, .(Gk) B_ (k)
— 2 nc ne
b)) = ma k;: E Gk + C (kj) *+ 2

(i=1,4 and j=1,4)
if E, (k) + C,(kj) +2 # 0

r 6
G (i) = ~ma® ), F (K B (k) Lne;e =107
k=1

\ (i=1,4 and j=1,4) (42)

if E (k) +C (kj) +2 =0

where [D,] [B,]' [P]
[E.d = [Cl' 43)

[B,.] and [C_] are two (6 x 4) matrices given in Appendix A.

[P] is the elasticity matrix given in Appendix A.

5.2.2 Mass matrix

‘The mass matrix is given by:
[m] = pt [A, 17T [S,] [A,]™ “44)
where [A,] is the matrix given in Appendix A.

[S,] = 7 [ [R, [ [R,] rdr (45)

L

After integration we obtain:

15



r

5,0 = wa? 3 — LD Fuld)
ner k=1 H (ki) + H (kj) + 2

(i=1,4 and j=1,4)

if E G + C (kj) +2 =0

[ 3
S, () = ~ma? Y, F (ki) F (kj) Loge ;e = 107
k=1

(i=1,4 and j=1,4) (46)

if Hy(ki) + H (kj) +2 =0

where [F, ] and [H,] are the (3 x 4) matrices given in Appendix A.

6. CALCULATIONS AND DISCUSSION
6.1  Assembly of the finite elements

As has already been mentioned, the complete plate is divided into a finite number of
circular and annular elements, the positions of which can be selected arbitrarily. Each finite
element of the circular plate type has a node at the circumference end, while the elements of the

annular plate type have one node at each extremity (Figure 3).

Once the stiffness and mass matrices have been obtained, it is possible to construct the
global matrices for the complete plate using finite element assembly technique. If N is the
number of finite elements, [M] and [K] are two matrices of the order 4(N+1) for an annular
plate and of the order 4N for a circular plate. These matrices are symmetrical and semi-defined;

they are also band matrices of which the half-width of the band is equal to 8.

16



6.2

6.3

Static Forces

The study of the static equilibrium is carried out in the following manner:

When: {FA} is the vector of the forces applied to the nodes of the plate
{FB} is the vector of unknown reactions
{dA} is the vector of unknown nodal displacements

{dB} is the vector of displacements defined by the boundary conditions

- The static equilibrium equation [K] {d} = {F} becomes:

KAA xap |[¢A i FA @)
KBA KBB ||dB FB

We have therefore:
{dA} = [KAA]™' {FA} - [KAB] {dB}
{FB} = [KBA] {dA} + [KBB] {dB}

Finally, the stresses can be found from the displacement by the relation (24) and (26).

Free vibrations

In the free vibrations, the equations of motion are:

[M] {8}; + [K] {8}; = {0} ' (49)

where [M], [K] are the global mass and stiffness matrices and {6;} is the vector for the global

displacements of the whole plate.

{8;} = {8,, 8,, .., 8y}

N being the number of finite elements.

17



The vibration is harmonic:

{6 = {§,}; sin (wt + ) (50)

where w is the natural angular frequency

¥ is the phase angle.

By introducing equation (50) in (49), we obtain:

(K] = «® [M]) {8,}; = {0} (51)

- This relation holds only for certain values of w where the determinant of the matrix in
- parentheses. is zero. These values define the natural angular frequencies of the structure and

give rise to a typical problem of eigenvalues and eigenvectors.

det [[K] — w? [M]] =0 (52)

Corresponding to each natural frequency for which equation (51) has been verified is a
vector {§,} of which the components are defined to one close arbitrary multiplying constant.

Such vectors are called the natural modes (or eigenvectors) of the system.

6.4 Boundary Conditions

If the plate has boundary constraints such as being simply-supported, clamped, etc., the
appropriate lines and columns in [K] and [M] are eliminated to satisfy these constraints.
Consequently, matrices [K] and [M] reduce to square matrices of order 4(N+1)-J for an annular

plate and 4N-J for a circular plate, where J is the number of constraints applied.

Thus, for a plate:
- free : J =0
- with one edge simply-supported (u = v=w =0):J =3

- with two edges clamped (u = v = w = dv 0):7=28
r

18



6.5 Convergence
The finite element method permits us to reach an approximate solution to the problem

of elasticity. This solution is marred by errors which fall into two categories:

- The discretisation error which stems from the replacement of the initial physical

P )

problem by an approximate model.
- The truncation error stemming from the numerical calculation.

From the convergence of the finite element method, we see that the solution to the
problem is a function of the number of finite elements used to model the structure under

consideration, that is to say, it is a function of the fineness of the net.

The calculation was carried out with one particular plate for a number of radial modes

"m" equal to 1, 2 and 3, with a number of finite elements N = 2, 4, 6, 8, 10, 12.

The results for n = 2 are given in Figure 4. We conclude that the convergence of the
system demands 6 finite elements for the relatively low radial modes "m", but 20 for radial

mode m = 10.

6.6  Free vibrations of circular plates
The natural frequencies of a circular plate can unquestionably be calculated by simpler
methods than these. Our principal objective, however, has been to verify the accuracy of the

mass and stiffness matrices in their general forms.

For this reason, we have compared the non-dimensional natural frequencies determined
by this method with those obtained by other authors, both for different boundary conditions
(plate clamped, simply-supported, free) and for different values of the number of circumferential

mode "n" and on the number of radial mode "m".

19



We have obtained very good agreement both for high and low frequencies (Figures 5).
Figure 6 shows the non-dimensional natural frequency curves as a function of the number of
circumferential mode "n" for different boundary conditions and for different values of the

number of radial mode "m".

here as this has already been done by others, notably in [1] and [4]. The evident success of this
method in analysing circular plates is considered to have provided adequate proof of the
soundness of the theory as a whole and the correctness of the expressions of the stiffness and

mass matrices derived in this paper.

6.7  Free vibrations of annular plates
Our method is remarkable for the fact that it enables us to determine with high precision

both low and high frequencies.

The results obtained in the literature are only for relatively low modes (n = 0, 1, 2 and
m = 1, 2, 3). To extend the range of results, Figures 7-13 show part of the results obtained
for n = 2 and m = 1-10 for different boundary conditions and various dimensions of the annular
plate.

Figures 7 and 8 show the natural frequencies of an annular plate as a function of the
number of radial mode for different boundary conditions and different ratios (a,/a : inside radius
/ outside radius of the annular plate). We observe that for small a/a (= 0.1), the frequencies
increase uniformly with the increasing of the radial mode, but for high ratio a,/a (= 0.9), there

are some parts of the radial mode where the frequencies increase very slightly.

We see in Figures 9 to 11 that the frequency increases slightly with increasing a,/a ratio

in the range 0 < a/a < 0.4 approximately, and then increase rapidly for high a/a ratio.
Figures 12 and 13 show the natural frequency for one particular boundary condition

(clamped-free) as a function of the a/a ratio for different radial mode m and circumferential

mode n = 2.
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7. CONCLUSION
The objective of this work was to present a new method for the static and dynamic
analysis of thin, elastic, isotropic, non-uniform circular and annular plates. The method
combined circular plate theory with finite element analysis. Two types of finite element were
eloped, the first was an element of the circuiar plate type and the second was of the annuiar
plate type. The displacement functions, the mass and stiffness matrices were developed for

circumferential modes n = 2.

The convergence of the method was established and the natural frequencies were obtained
for various boundary conditions and for different circumferential and radial modes. These were

compared with the results of other investigations and satisfactory agreement was found.

This method combines the advantages of finite element analysis which deals with complex
plates (variable thickness, non-uniform materials, various boundary conditions, different types
of load), and the precision of formulation obtained when we use displacement functions derived

from circular plate theory.

The method enabled us to supplement the few results available on high natural
frequencies associated with high circumferential and radial modes. It also enabled us to
determine the natural frequencies and vibration modes of non-uniform annular and circular
plates. We consider that we have, here, a method by which it is possible to predict the

vibrationary characteristics of circular and annular plates.

The next step in this line of work should be the analysis of linear and non-linear

anisotropic plates, and of the dynamic stability of circular and annular plates.
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APPENDIX A
List of Matrices

MATRIX [H]
2 —_
NS PR
H(1,2) = IZ" - 2@ -
HE1) = |2 :" nA - %(5 ~ 3v)
H22) = 1;\’ Az_(l—v)A_B(l“v

MATRICES [T,] and [T, ]

[T] = [T,] = diag [cosn6 , cosnB® , sinnf]

MATRIX [A,]

).j-l

A1) =y, ? L= 14

A, 235 =y,

A, (206 =y,
— n+2

A, @27 =y,

A (28 =y,

A, (35 = 2y
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A 36 = -2yt

a

+ 2 n+
A, (37 =2 yo!

a

-n + 2 -n+

A, (38 = L2y

2

A1
A @) = ey, " L i= 14
A G =1,j=14
A 6 =1,j =58
A (75 =2

a

A (6 = -1

a

KR
A (7 =272

a
A (18) = ~n*2

a

A, 8 = o, = 14

A G =0 for all other i and j
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MATRIX [A,]
A(LD = A(1,2) = AQR3) = A24) = 1

AB3) = 1
a
AGa) = L2
a
A1) = a
A42) = «a,

AGj) =0 for all other i and j

MATRICES [R,], [F,] et [H,]

R = FG) y™ =13 j=18

The matrix [F,] is defined by:

F (L)) =1 forj = 1,4
F (2,1) =1 forj = 5,8
F@3h = @, forj = 1,4
F.G) =0 for all other i and j

The matrix [H,] is defined by:

H(.-)_A‘j—l D= 14
jy = —4—,j =1,
, Uy 2 J

H (25 =n

H, (2,6) = -n

H (27 = n+2

H (28) = —n+2

ATl .
H Gj = 5 for j=1,4

H, (i) = 0 for all other i and j
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Matrices [R, ], [F,] et [H,]

R, G) = F G y ™™ =13 j=4

F. (L1) =F, (12 =F_ (23) =F, (24 =1
F. G = «,

F. (G2) = «,

F. Gj) = 0 for all other i and j

The matrix [H,] is defined by

. A’j—l .
H, 1) = 54 =12

H, 23) =n
H, (24) = n+2

N oo M .
H, @Gj = 5 for j=1,2

H_(@(j) = 0 for all other i and j
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Matrices [Q,], [B,] et [C,]

QG = BGH) y™™ i=16;

B (2j) = S for j=1,4
B (3j) =—[—n+ oc‘( ﬁ) l for j=1,4
n j 2 4
B, (4.5) = —1"D
a
B, (4,6) = —X2D)
aL
B, (47) = 212
a
B, (48 = (1 70C70)
a
B (5,5 = “—(‘1}11
a
B, (5,6 = 227D
a
B, (57 = L7072
a
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n2+ n-2

n a2
™ rL=N — 2n(n—1)
B, (6,0) = s
a
- +
B, (6,6) = 2n(n+1)
a2
— 2n(n+1)
B, (67) = ==
B (68) = —2n(n—1)
a2

B (i,j) = 0 for all other i and j

The matrix [C, ] is defined by

A3

]

for i=1,2,3 and j=1,..4

C, (i)

C (i,5) = n—=2 for i=4,5,6

C (6) = —n—2 for i=4,5,6

C, (7)) =n for i=4,5,6

C, (i,8) = —n for i=4,5,6

C, Gj) = 0 for all other i and j

Matrices [Q,.], [B.J et [C,]
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c o <oy o Cli)
Q.G = B, () y

The matric [B,, ] is defined by:

D /13 — A'.i_.l frn 1=119

L)nc \lu) - 2a 101 J l,‘:
. _ l*an .

B. (2j) = for j=1,2

2
B, (43) = —2€°D)
a
—n(n & +
B, (44) = —H0T2X07])
a

B_ (53 = Mo~

B, (54

B, (.)) = 0 for all other i and j

i = 16;

j

1,4



The matrix [C, ] is defined by:

Co A’j‘?’ ‘. -
C. (i) = —5 for i=1,2,3 and j=1,2

C, (i,3) = n—2 for i=4,5,6

C. G4 =n for i=4,56

C, (ij) = 0 for all other i and j

Matrix [P]
P(1,1) = P2,2) = D, P@,4) = P(5,5 =K
P(1,2) = PQ2,1) = D, P4,5) = P(5,4) = 1K
/ 1 oy / 1 __..\
P(3,3)=L‘2V)=D, P(6,6)=L‘2"JK

where D = Et and K = Et
1-v2 12(1-v?
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Figure 2 : Differential element for a plate
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Figure 4 : Non—dimensional natural frequency Q1 of a clamped
circular plate as a function of the number of finite elements;
where n is the number of circumferential mode, m is the
number of radial mode, a is the plate's radius, t its thickness,
p is the material density, K is the bending stiffness and

@ is the natural angular frequency.
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