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ABSTRACT

This report présents a method for the dynamic and static analysis of thin, elastic,

anisotropic and non-uniform open cylindrical shells.

The open shells are assumed to be freely simply-supported along their curved edges

and to have arbitrary straight-edge boundary conditions. The method is a hybrid of finite

élément method and classical shell théories.

The shell is subdivided into cylindrical panel segment finite éléments, the displacement

functions are derived from Sanders' équation for thin cylindrical shells. Expressions for

the mass and stiffness are determined by précise analytical intégration.

The free vibration of open and closed cylindrical shells are studied by this method as

well as anisotropic shells and shells having circumferentially varying thicknesses. The

results obtained reveal that the frequencies calculated by this method are in good

agreement with those obtained by others.



l. INTRODUCTION

The analysis of thin shells under static or dynamic load has been the focus of many

théories. Most of the research in this field has involved analysis of linear thin closed

cylindrical shells. Very little is known concerning the dynamics of open cylindrical shells

with circumferentially varying geometry and material properties.

This paper présents a method for the dynamic and static analysis of thin, elastic,

anisotropic and circumferentially non-uniform open cylindrical shells.

The first attempt to formulate a bending theory of thin shells from the général

équations of elasticity was made by Aron in 1874, and was followed in 1988 by a

successful approximate theory known as Love's first approximation [l]. Since then the

theory ofelastic shells has repeatedly been re-examined, [2]-[8].

Open cylindrical shells (panels) have been analyzed by a number of authors. In

général, the finite élément method was used for solving thèse problems [9]-[16]. Various

types of finite éléments were used and a polynomial displacement functions were assumed.
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Boyd [17] analysed a simply supported open cylindrical shell by solving Donell

équations. Kurt and Boyd [18] used a trigonometric and polynomials displacement

fùnction and solved the dynamics of simply supported cylindrical panels. Strinivasan and

Bobby [19] developed a matrix method for analysis of clamped cylindrical shell panels by

using a Green function. Massalas et al. [20] analyzed a non-circular cylindrical panel by

choosing a double séries of cosine and sine for the displacement functions.

Belvins [21] simplified the work of Sewall [22] by studying an open cylindrical shell.

Leissa et al. [23] analyzed the vibration of cantilevered cylindrical panels by using the Ritz

method, with algebraic polynomial triai functions for the displacements.

Tonin and Bies [24] used the Rayleigh-Ritz method; Suzuki and Leissa [25]-[26],

analysed the free vibration of circular and non-circular cylindrical shells having

circumferentially varing thickness. Srinivasan and Krishnan [27] calculated the natural

frequencies of cylindrical panels with clamped edges in the latéral direction and free to

move in the in-plane directions. Cheung et al. [28] applied the Spline finite strip method

to the forced vibration analysis of a singly curved shell panel.

Recently, Kumar and Singh [29] analysed the vibration of non-circular cylindrical

shells. This analysis is based on die Ritz method in which a combination of eigenfunctions
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for beams and quintic Bezier functions are used to represent the displacement. Jiang and

Olsen [30] developed a finite élément to analyse the vibration of orthogonally stiffened

cylindrical shells and panels. They used a combination of polynomials and analytical

functions to formulate the displacement functions.

Leissa [31] collected the work of several researchers into one excellent book. We find

in différent types of shells and panels, a particular study of Heri [32] in analytical and

expérimental analysis have been used to compare with our study. In that work the solution

is developed for the Donnell-Mushtari theory neglecting tangential inertia, where the

straight edges of the panel are free and the others edges are supported by shear

diaphragms.

One of the most important criteria in determining the versatility of a method is the

capacity to predict, with précision, both the high and the low frequencies. This criterion

demands the use of a great many éléments in the finite élément method, and in order to

meet it, our research group has developed a hybrid type of finite élément, wherein the

displacement functions in the finite élément method are derived from Sanders' classical

shell theory [5]. This method has been applied with satisfactory results to the dynamic

linear and non-linear analysis of cylindrical [33]-[39], conical [40], spherical [4l],

isotropic and anisotropic, uniform and axially non-uniform shells, both empty and liquid-
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filled. This method bas also been applied to the dynamic analysis of circular and annular

plates [42], [43].

The purpose of this study is to explore the static and dynamic analysis of thin, elastic,

anisotropic and non-uniform open cylindrical shells subjected to a flowing fluid. Here we

consider the problem of panels which are freely simply-supported along their curved edges

and have arbitrary straight edge boundary conditions. The effect of the flowing fluid on

the natural frequencies of thèse panels will be the subject of a later work.



2. FUNDAMENTAL EQUATIONS FOR OPEN CYLINDRICAL SHELLS

Sanders' thin shell theory [5] is used in order to obtain the équations of motion. Thèse

équations are based on Love's first approximation [l] and give zéro strain for small rigid-

body motion, this is not the case with other théories. The geometry of the mean surface

of the shell studied and the coordinates used are shown in Figure l.

The equilibrium équations of an open cylindrical shell may be written as follows :

9N, ^ i 9N,, i 9M^ _

ôx R ô8 2R2 ô6

l ON,, ^ ^ ^ 3 9M^ ^ i ÔM,,

+ — + — — + — — =R 9Q 9x 2R ôx R2 9Q

32M, ^ 2 92M,, l 92M,, _ N,, ^

Ôx2 R ôx ô6 RÎ ÔQÎ R

where N^, Ng, N^g, M^, Mg and M^g are the stress components and x and 0 are the

coordinates of the shell.



(a)
X9

Max

Figure l: (a) Open cylindrical shell geometry

(b) Differential élément for an open cylindrical shell.



The strain vector of the middle surface is

T
{e} = {€„ 6g, 2e^, K,, Kg, 2K^}

where e^, gg are the in-plane tensile or compressive strains, 2e g is the in-plane shear, K^,

Kg are the bending components and 2^9 is the torsion of middle surface during

déformation. For a linear elastic behaviour, the strain vector is related to the

displacements through the following équation:

{6} =

l

R

9V
Bx

OU
ôx

(^9Q

l
+

R

W)

OU
ô9

-9Î W

3x2

l /ô2 W

R2 ô62

ôV,

9Q'

ôV2 Qï W 3

R 0x ô6 2R ôx

l OU
2R2 9Q

(2)

where U, V, W are axial, tangential and radiai displacements.
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For an anisotropic and elastic material, the constitutive équation which links the stress

vector to the strain vector is

{0} = [P]{6} (3)

where [P] is the elasticity matrix, in which the général term is designated by

Pij(i = l,..., 6 ; j = l,..., 6) and given in référence [44].

For isotropic material, the only non-vanishing terms are:

=D P..=P-=K11 ~ r 12 ~ u r 44 ~ •l 55 ~

P.. = P-. = vD P.. = P.. = vKi2~ X2! - "^ x 45 - ^ 54 - ' ^ ,^1\

p,,. d^l D P» - °^> K
133 2 " '66 2

where D, the membrane stiffness and K, the bending stiffness, are given by:

Et y _ Et3

1-v2 12(l-v2)

E being Young's modulus, v Poisson's ratio and t the shell thickness.

The éléments Py of [P] characterize the shell's anisotropy which dépends on the

mechanical properties of the material of the structure.
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By substituting équations (2) and (3) in the equilibrium équations (l), we obtain new

équations (6) in terms ofaxial, tangential and radiai displacements (U, V, W) of fhe mean

surface of the shell and in terms of the élément Py of the matrix of elasticity [P], thèse

équations are:

L, (U,V,W,P,p = 0

L, (U,V,W,Py) = 0 (6)

L, (U,V,W,P;j) = 0

where L^ (k = l, 2, 3) are three linear differential operators, the form ofwhich is fully

explained in Appendix A-l.

The solution of équations (6) will permit us to dérive the displacement functions.
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3. DISPLACEMENT FUNCTIONS

The finite élément used in this theory, as shown in Figure 2, is a cylindrical panel

segement defined by two nodal lines i and j. As stated in the introduction, in the présent

method, we employ the equilibrium équations of this cylindrical shell to obtain the

pertinent displacement function, instead ofusing the more common arbitrary polynomial

forms. By assuming that the panels are to be freely supported (V = W = 0) along their

curved edges, the displacements are periodic functions ofx, and therefore, they may be

developed into a Fourier séries as follows:

{U(x,6), W(x,6), V(x,6)}T = ^ [T,] {UJ6), WJ9), VJ6)}T (7)
m=l

where m is the axial wave number and [TJ is a 3 x 3 square diagonal matrix given in

Appendix A-2. U,,,, W,,,, ¥„ are the magnitudes of the deflections and dépend on 6 only.

Upon substituting équation (7) into équation (6), we obtain three ordinary differential

équations in U,n, W,,, and V^. Solutions of thèse équations have the général form [8]:

UJ6) = A e'1e VJ8) = B e'18 W,(9) = C e 11B (8)
m v / m ^ / m

where 11 is a complex number.
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(a)

N+1

^m, ^
(dW^/d9)^•^-^

(b)

Figure 2: (a) pinke élément idealization

(b) Nodal displacements at note i for the finite élément m.

N: number of finite elements.ns (6) yield three ordinary linear
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The substitution of équation (8) into équations yield three ordinary linear équations in

A, B and C of the form:

[H] 1
A

B
e

\ = {0} (9)

For a non-trivial solution of (9), the détermination of [H] must vanish yielding the

following characteristic équation:

h, n8 + h, n6 + h, n4 + h, ri2 4- ^ = o (10)

Th.e expressions for [H] and hi are given in Apnendix A-2.

Equation (10) provides for eight complex roots, the complète solution is a linear

combination of thèse eight solutions:

UJ9)=E A. e11'9
i= l

V^O) = F B, e'1ie
m v ~ ' ^—i l

(11)
i= l

WJ9) = E C,e"i
i' l

n,e
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A,, B; and C; are not independent, we shall next express the A; and B, in terms of C;

as:

A, = a; C, B; = p;C. i = 1,2,... 8 (12)

where a; and p; are complex. Substituting équation (12) into équation (9), we may now

détermine a; and p; by solving the simple Cramer System:

Hll H12

H21 H22

a;

Pi

-H

-H
13

23

H,, are the terms of matrix [H] given in Appendix A-2.

The final form of U, V and W may be written as:

(13)

u
W ^ = [T,J [R] { C }
v

(14)

where [T J and [R] are shown in Appendix A-2 and {C} = {Ci, ..., Cg}T is a set of

constants. The C; (i = 1,8) are the only free constants in our problem and must be

determined from eight boundary conditions, four at each edge of constant 6.
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We are now in position to specify the displacement function. At each node in

Figure 2, the axial, circumferential and radiai displacements, as well as a rotation, will be

prescribed. The displacement of node i can thus be defined by the vector:

{ô;} = \V_ ,W^; ,i) l "mi ? ' ' mi ?

dW
l "M-v-1 (15)

where all thèse components represent amplitudes of U,V, W and dW/d6 associated with

the m th axial wave number. The élément, having two nodes and eight degrees of

freedom, will have the following nodal displacements:

f & 1 f / ".„ ^ / .".ï.r \ 1T

,' ï= <!u^; w,; | —^1 v^; u,; w^; | —^ | V,; ?> = [A]{C} (16)
ôj j l"mi "mi l de J, 'mi "mj "aj { àQ ), 'mï

wherc [A] is given in Appendix A-2, the terms of [A] being obtained from the terms of

[R].

Now, pre-multiplying by [A ] , we obtain:

{C} =[A-1]^1| 07)

and substituting into équation (14), we obtain:

W \= [T] [R] [A-l]^i ff (18)



The displacement function is defined by:
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[N] = [T] [R] [A-1] (19)

4. STRESS VECTOR

The strain vector may be found by using équations (2) and (18):

{6} =
ET»] [0]
[0] [T» ]

ô,

tQHA-lMô;h[B]1ô;

where the matrices [T], [A] and [Q] are given in Appendix (A-2).

Referring to équation (3), the stress vector is given as:

(20)

{0} = [P] {€} = [P] [B] \^ (21)
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5. MASS AND STIFFNESS MATRICES FOR ONE NNITE ELEMENT

Following the framework of the finite élément approach [45], the mass and stiffness

matrices may be expressed as:

L <(.

[m] = pl f f [N]T [N] dA (22)

L +
|T[k] = f f [B]T [P] [B] dA (23)

0 0

where dA = rdxde. Here, [N], [B] and [P] are defined in équations (19), (20) and (3).

Using thèse équations in équations (22), (23) and integrating over x and 6, we obtain:

[m] = [A-1]T[S] [A-1] (24)

[k] = [A -1]T [G] [A -1] (25)

where [S] and [G] are defined by the above équations:
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sa,,).". <". Vp. ^+ ') (.^ - i) if ^.o (M)
2 (t1;+ il?

S(iJ) = RI^A (<x, ^ + P, Pj + l) if t1, + ^ = 0 (27)

G (^ = ^ (PU A. A, + P,, A. ^ + P,, A, D^ -<- P,, A, ^

+ P31 Bi Aj + p.. B, Bj + P24 Bi Dj + p.5 Bi Ej

+ P4i D, A^ + P42 D, B^ . P,, D, D^ . P,, D; E^

+ PSI E, A^ . P,, E, B^ . P,, E; D^ + P,, E, E, (28)

+ P33 C, C, . P, C. K . ?„ F, ^ . P, F, R)

(e(ni+^<" -l

(n, + îij)
if n, + HJ ^ o

G(i,j) = RL^- (P,, A, A^ + ......+ P,, F; K) if n, + Hj = 0 (29)

The terms A,, B,, C,, D,, E, and F; (i = l, ..., 8) may be expressed as follows:

m îi a,

A, = - =—, (30)
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n; P; + l
B, - - -!L^—, (31)

m it |1, n, ce,
e, = - ^—^ + ^- (32)

L R

D, . - C^Ï, (33)

E, . - "; ' ". p. (34)
R2

Zmîin, 3mn(3. n:a;
and F; = - 1__^1 ^ ' ;;; '• - ^i-^ (35)

RL 2 RL 2R2

6. THE GLOBAL MASS AND STIFFNESS MATRICES

The complète shell or panel is divided into finite éléments each of which is a

cylindrical segment panel. The position of the nodal points (nodal lines) may be chosen

arbitrarily. With the mass and stiffness matrices known of each élément, the global mass

and stiffness matrices for the whole structure, M and K, respectively, may be constructed

by superposition in the normal manner. Each of thèse square matrices will be of order

4(N+l), where N is the total number offinite éléments (see Figure 2).
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If the panel has in the straight edges constraints such as simply-supported, clamped,

etc., the appropriate lines and columns in [M] and [K] are deleted to satisfy thèse

constraints. Consequently, matrices [M] and [K] reduce to square matrices of order

4(N+ 1)-J, where J is the number of constraints applied. Thus, for a closed cylindrical

shell, free simply supported along its curved edges, no spécification of boundary

conditions need be made and J = 0. For this case we connect the last node of the structure

to the first node with the total angle (j).r equal 360°. For a panel with two straight edges

clamped we have J = 8.

7. ANALYSIS 0F AN OPEN SHELLS SUBJECTED TO STATIC LOADS

The study of the static equilibrium is carried out in the following manner:

When: {FAÎ is the vector of the forces applied to the nodes of the shell

{Pc} is the vector of unknown réactions

{ô^} is the vector of unknown nodal displacements

{on} is the vector of displacements defined by the boundary conditions

The static equilibrium équation [K] {5} = {F} becomes



KAA KAB

KBA KBB
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(36)

We have therefore

{^}= [KAA ]" «FAÏ - [KAB ] <ÔB»

{F^} = [K^ ] {ô^} + [K,, ] {ô,}
(37)

Finally, the stresses can then be found from the displacements by relation (21).

8. FREE VIBRATIONS

In the case of free vibrations, the équations of motion are:

[M] {ô}, + [K] {ô}, = {0} (38)

where [M] and [K] arc the global mass and stiffness matrices, {ô^} is the vector for the

global displacements of the whole shell.

{ô,} = {ô,, ô,,.., Ô^,}T

N being the number of finite éléments.

By specifying:

{ô,} = {ôj^ sin(u/ + i|r) (39)

where u is the natural angular frequency and t is the phase angle.
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By introducing équation (39) in (38), we obtain

([K] - o2[M1) {ÔJ, = 0 (40)

This relation holds only for certain values of u where the déterminant of the matrix

in parenthèses is zéro. Thèse values define the natural angular frequencies of the structure

and give rise to a typical problem of eigenvalues and eigenvectors.

det [[K] - u2[M ]] = 0 (4l)

9. CALCULATIONS AND DISCUSSION

9.1 Convergence of the method

A first set of calculations was undertaken to détermine the requisite number of finite

éléments for a précise détermination of natural frequencies. Calculations were made for

the same panel with the number of finite éléments N = 2, 4, 6, 8, 10. The data for the

panel are as follows : R = 2.286 m, t = 0.01143 m, L = 1.143 m, ^ == 30°,

E = 193.26 GPa, v = 0.3 and p = 7933 kg/m3, the boundary conditions are clamped

at the straight edges and free simply-supported in the curved edges. The results for

m = 2,10 and n = 1,2 are shown in Table l. We conclude that the convergence of the

System demands 6 finite éléments for both the low and the high modes.
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Table l

Convergence study for increasmg number of fînite élément (N)

for m = 2, 10 and n = 1,2

i::::»::::»::::::::;;^^^^
:::;::%:::ï::::îï::B:ï:;^:^^

lllllllalllllll111^1111^
;:y:ï:::::y:g^::::::::::::®::::S^

«nilllil

::::y:;::;^:::::::::ï;iiiil
lii]

liaiiilill

|||||||(i|||||::(^Sy^:;:^;^:^j:::::y
iMiïlilijli 313.8 298.1 288.9 286.8 286.2

isiMliill^^^^ 407.0 307.5 299.1 296.8 296.1
;:::::ï::;%i:ï:w::::S^^
:;:;isiî!ï;§U

llllltiiiiioiiiiiiiiii 2310 2244 2133 2105 2098

3435 2305 2199 2166 2158

n l
Jy.A Caicuîations for uniform panels and sheiïs

The eigenvalues of a uniform shell may unquestionably be calculated by simpler

methods than thèse. Our main aim here is to test the correctness of the mass and stiffness

matrices in their général form as developed in this paper.

(a) The first calculation involves the détermination of the natural frequencies of a

particular panel, having its straight edges free and the others free simply-supported.

The data of the panel are as follows : 4^ = 60°, L = 20 cm, R = 10 cm, t = 0.1 cm,

E = 210 GPa, v = 0.3 and p = 7800 kg/m3.
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As may be seen in Table 2, our results are in fairiy good agreement with other théories

and with experiments

Table 2
Frequency (Hz)of cylmdrical panel havîng its straight edges free

and the others free simply-supported'

(b) The second calculation involves the détermination of natural frequencies of a

particular simply-supported closed shell which has been anaiysed by Michalopoulos and

Muster [46], Baron and BIeich [47], Lakis and Paidoussis [33] and many others.

The data for the shell are as follows : R = 103.6 mm, t = 1.194mm, L = 471 mm.

^r = 360°, E = 207 GPa, v = 0.3, p = 7790 kg/m3.
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The natural frequencies of this shell for n = 0 to 5 and m = l are shown in Table 3.

The results obtained by our method were calculated using 10 equal finite éléments. As

may be seen, the results obtained by this method are in good agreement with those from

other théories.

Table 3
Natural frequencies, in Hz, for a particular uniform closed shell, as calculated by

various théories (m = l)

B:;:;;;:;:^:.:::::^:::::::i::::

mmmmmsm
s:!::^:?:Bi^ii::^::iiii:l:§ï:

(stMssa;:::;:!;;:;:;^^

•iiuiiisliilliUiiiil ms

air 3384 3540 3398* 3385

(;;;;;;:;:;:; 1775 1920 1790* 1777

750 760 752 750

ir 436 435 436 435
::;sS:â:;:B::SB;S

467 463 468 468
lilliil

675 670 678 675

Lakis and Sinno [37]
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9.3 Calculations for orthotropic shell and panel

This example illustrâtes that of the hybrid finite élément method developed in this

paper can be used with success for an orthotropic closed or open cylindrical shell.

The data for the shell are the same as for the panel except the total angle <^T. ^ = 360°

for closed shell and ^ = 90° for the panel described in Figures 3 and 4.

For n = l (beam bending mode) and long axial wave lengths, the frequency

parameters are asymptotic to those ofbeams according to the Euler-Bernouilli theory [32].

This asymptotic behavior is shown in Figure 3 for the case when Eg/E^ > l.

The results for an open cylindrical shell are given in Figure 4 for différent axial and

circumferential modes. This figure shows that the small axial wave length 'mR/L' has

little effect on the frequency. This effect decreases when the circumferential mode

increases.
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----- Shell Theory [32]

- - - Beam Theory [32]

0.1 l

mR/L
10

Figure 3. Frequency parameters for the beam-type mode (n=l) ofsimply-supported

orthotropic closed cylindrical shells

R/t = 1000, Eg/E, = 24.2, G/E, = 0.527, Vg = 0.527

n = coR^/p (i-v^g)/E,
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Figure 4. Variation of frequency parameter with mR/L for an orthotropic open cylindrical

shell; having its straight edges free and the others free simply-supported.

^ = 90° , R/h = 1000, E,,/E, = 24.2, G/E, = 0.527, v,. = 0.527, n ï l

n = uR^/p (l-v^e)7È,
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9.4 Calculations for sheUs having circumferentially varying thickness :

The présent method has been applied to a cylinder whose inner bore is circular but

non-concentric with circular outer surface (figure 5). This case was studied by Tonin and

Bies [24] using the Rayleigh-Ritz method.

The steel cylinder is free simply supported at both ends, and the data for this analysis are

as follows :

a = 37.83 mm, a+ = 40.75 mm, a = 39.29 mm, L = 398.8 mm, and the eccentricity

e was studied for three values e = 0, 0.5, l. The effect of the eccentricity on the

calculated natural frequencies for various modes is detailed in Table 4. Note that the effect

of increasing eccentricity is to lower the frequencies of the shell.
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Figure 5. Geometry of the distortion
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Table 4

Variation of natural frequencies (Hz) of some modes with varying distortion

iirii

1,2 1340 1341 1347 1330 1343 1302 1303

1,3 3553 3540 3420 3442 3410 3060 2949

1,4 6773 6758 6510 6495 6479 6177 5499

2.2 2105 2090 2071 2063 2062 1955 1954

2,3

2,4

3,2

3,3

3,4

3740

6905

3598

4204

7159

3728

6890

3568

4188

7144

/T\£-

6638

3542

4083

6890

3627

6617

3463

4085

6861

3596

6607

3518

4071

6860

I^/CI
JZ.tJ

6308

3302

3816

6575

3132

5618

3253

3743

5869



33

10. CONCLUSIONS

A method based on Sanders' équations for thin shells and making use of the finite

élément method has been formulated for the static and dynamic analysis of thin, elastic,

anisotropic and non-uniform open cylindrical shells. The extensional and bending

stiffnesses of the structures have been taken into account.

A new panel finite élément was developed, making possible the derivation of the

displacement functions from the équation of motion of the shell. Mass and stiffness

matrices were also determined by analytical intégration. The convergence of the method

was established and the natural frequencies were obtained for différent shells and panels.

Thèse were comparée! with the results of other investigations and satisfactory agreement

was obtained.

This method combines the advanges of finite élément analysis and the précision of

formulation which die use of displacement functions derived from shell theory contributes.

Only a few cases have been présentée! here; a sufficient number, the authors believe,

to illustrate the capabilities of the method. Several other cases could also have been

tackled, but were not because of the volume of the paper.
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A paper currently under préparation will deal with liquid-filled open and closed

cylindrical shells. The dynamic stability of shells containing flowing fluid will also be

analysed. Further work is under way to deal with the non-linear dynamic analysis of an

open cylindrical shell containing flowing fluid.
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APPKNmX A-1

EQUATTDNS OF MnTTOJSI

This appendbc contains the équations of motion for a thin cylindrical anisotropic shell.

L, (U,V,W,P,,) = ?„ ^ ^ (^ ^) - p,,^ .
9 x2 R ôx ô9 ôx " âx3

P2i (_ÔLW_ , ^V_) . (P31 - -P6L) (-ô!-v- . l ôl-u) .
R2 'ôxôô2 ôxôO' 'R 2R2' 'ôx ô8 R ô62

^ - î66) (- 293 w +1 82 v _ IR 9Î U'

'R2 2R3' ' ôx 9QÎ 2 ôx ô9 2 ô82

L, (U,V,W,P,) = (P21 + P51) (^lu-) + l (PK + ^1)
"2vu'"""ij/ 'R ' R^/ 'Ôxô8/ ' R 'R ' Rî'

.ô2v . aw, /P;4 . P54, / Ô3W , . l (P25 . PS5,
(^—- + ——-) - (.—^ + —r) ( " . " ) + — —^ + —)
ô62 ô9 ' R R2' ~ôx2 06' R2 R R2

(-^.^).ff,,.3^)(^.^L).
ô63 ô92/ '~33 2R / v ôx2 R9x 06'

i (p, . ^) (-2 ^L"_ . l ^ - ^'v^
R "36 2R/ ' ~ ôx2ô6 2 ôx2 2R ôx ô8'

(2)
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L, (U.V.W.P.) . P, ^ ^ (^ . ^ - P« s^- .-3 ,-,.,..,. y/ -41 ^^3 R '^2^Q 3^2/ '44 flx4

p£ (- ô4W , ô3V ^ ,2P,^ 33 u ^ Ô^V ^ ^ ^
R2 ôx2 9Q2 ôx2 ô8 R R ôx ô62 Sx2 9Q R2

(_2^w- . 3-^v- - Ô3U ) . ^ ^lu- . p" (^v- .
ôxW 2 ôx2 ô9 2Rôx ôô2 R2 9x 9QÎ R3 ' BO3

Ô2 W , . p 55 / Ô4 W 93 V , P21 OU P54 Ô4 W
+ — (- — — + — -) - — — - —

ae2 ' R4 ' ae4 ôe3 R ôx R2 ôx2 00

P2lrav- + w^ + P2l 9Î w -P2l| - Ô2W +av
R2 '9Q ' R 962 R3 [ 9QÎ 9Q
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APPF.NPnC A-2

Appendbc A-2 contains the matrices referred to in the text which were too large to be

included therein.

The matrices are listed as follows.

[H]

hi (i=0,2,4,6,8)

[TJ

[R]

[A]

[Q]

(See Table 5)

(See Table 6)

(See Table 7)

(See Table 8)

(See Table 9)

(See Table 10)

Table5:Matrix[H]3,3

[H] ^ B ^ = {0} (9) ;

Where :



[H] =

Hll H12 H13

H21 H22 H23

H31 H32 H33

m 2 + Jllu = -rn m" + —, - — p.- + " pt'33 ~ l r36 + 4RÏ v?

H,, = m n t (p^ + P33) + -^ (p" + P30 ) -
4R:

66

HB=^ .P,m3- ^^(P,^2P,,-lp,)
R R R

H21 = H12

47

l
H,, . m ' (P,,* ^ P,..^ P.^ - ^ (P,,^ P,,.^ P,)

R " 4R R R

.= 2

= --rL n> +^- p '>+ rl rp +JL p t- r>m ^2p-.+p-.+— P.-+-— p.H23 = "l?(P22+^ P52)+IÏ (P25+^ P55)- ~1T (2P36+P24+I P66+R P54)

H31 = H13

H32 = HU

"» - — r. 1< - ^
R' R

-^ -m2(2P^ .4P^
R

mn
m =



where
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Table 6 : Characteristic Equation

h, T18 + h, n6 + h, n4 +h,n2 +h<, = o (io)

h8 = fl f6 fl0 ~ fl f8

\ = fl f< fil + fi fy fio - 2f, f, f,

+ f2 f6 fl0 - f2 f^ - f3' fl0

+ f f f + f f f - fL3 tS i4 " ^4 X3 ^8 - ^4 X6

^ = fi ^ fn + f,f7fn - ^ ^ + ^ ^ fu

+ ^ ^ fio - 2f, î, î, - f,2 tu + t, t. f4

+ ^3 ^ ^5 + ^ Î3 î. - ^ ^ - f4 f<> ^

+ î S f 3 ^ - f S f. f<

^ = f, ^ fl2 + ^ ^ f,. + ^ ^7 fil - ^ ^

- ^ ^+ f, ^ f5 - ^ ^ ^ + ^ f3 ^

- f S î 7 ^ - ^ f.

\ - f. f7 fl. - f7 f52



The coefficients f; (i = 1,12) are given by the above équations :
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f. = —Cv.. - — PLl ~ T~v-i 55 - T
R R 36

4R
p..)

t,- -P,,m2

f, = m
R

(PU - Pn) + ^ (PIS + P3o) -
R 4R:

66

^ - - ^ œ. +2 p- - i p-)

f^ = —i m + P,, m-S R " ''4

t<--^(p"^p55+îp")

f, - m (P,, -<- ^ P
R 36

4R:
p^

f- ° ÏT (p" + Ï p")

m2
f. = - -T (p. + T ps.) - ^- (2P. +P.+ ^-P. + ^- PS^

R R R R R

f.. = - J- p.f-°= - ^p"

fll = ^Tp.5 + ^ (2P.5 + 4P.6)
R R

^n= - ^-P22- ^p»mî -f^m

71
and m = m—

L
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Table7:Matrîx[Tj3x3

[TJ =

cos
mitx

L

sm

0

mnx

L

0

0

0

sm
mîix

Table8 :Matrix[R]3,8

R (U)
R (2J)
R (3 J)

a; e

=e^9

- p.e

1j9

1j0

1,8

1,8

1,8

Table 9 :Matrix[A]^8

For j = 1,8

A(1J)
A(2J)
A(3J)
A(4J)

A(5J)

A(6J)
A(7J)

A(8J)

= 0^

l
= ^

= pj

aje
^

e
1j8

n, e
H;9

=p-^
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Table 10 : Matrix [Q] ^s

For j = 1,8

Q(U) =A^9

Q(2J) = B^e^8

Q(3J) = C^e^9

Q(4J) = DjC^0

Q(5j)=E^9

Q(6J) = F^e

The terms Aj, Bj, Cj, Dj, Ej and Fj (j =1,8) are given by équations (30) to (35).
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APPENDDC A-3

NOMTCNFTATTÎRR

T,TST 0F SYMROLS

A;, B;, C;, D,, E;, F, (i = l, ..., 8) Defined by équations (30) to (35)

A, B, C Defined by équation (8)

A,, Bp e; Defined by équation (11)

D Membrane Stiffness

E Young's modulus for isotropic shell

E^, Eg Young's modulus for orthotropic shell

e Distortion (figure 5)

f, (i = l, 12) Defined in Appendix A-2, Table 6

G Shear modulus

h; Coefficients of the characteristic équation

(10), 0=0,2,4,6,8)

K Bending stiffness

L Length of the shell

M M g, M g Bending moments

m Axial mode number



53

m Defined by nm/L

N Number of finite éléments

N^, N9, N^g Stress components

n Circumferential mode number

Pij Terms of eleasticity matrix

(i= l,...6;j=l,...6)

R Mean radius of the shell

t Thickness of the shell

U, V, W Axial, tangential and radiai displacements

Un > Vn, , Wn, Amplitudes of U, V, W associated with m th

axial mode number

x Axial coordinate

ce,, P, Defined by équation (12)

ri; Complex roots of the characteristic équation

(10)

ex' 6e' 6xe Déformation of référence surface

Kx> Ke' Kxe Changes in curvature and torsion of référence

surface

6 Circumferential coordinate
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v Poisson's ratio for isotropic shell

v^, Vg Poisson's ratio for orthotropic shell

(j) Angle for one finite élément

<^>T Angle for the whole open shell

où Natural frequency (rad/s)

Û Nondimensional frcquency, Figures 3 and 4

p Density of the shell material
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TJST 0F MATRTFES

[A]

[B]

{C}

[G]

[H]

[k]

[K]

[m]

[M]

[NI

[p]

[Q1

[R]

[S]

[TJ

{e}

{"}

{ôj

{STÎ

Defined by équation (16)

Defined by équation (20)

Vector for arbitrary constants

Defined by équations (28) and (29)

Defined by équation (13)

Stiffness matrix for one finite élément

Global stiffness matrix

Mass matrix for one finite élément

Global mass matrix

Displacement function defined by équation (19)

Elasticity matrix

Defined by équation (20)

Defined by équation (14)

Defined by équations (26) and (27)

Defined by équation (14)

Déformation vector

Stress vector

Degrees of freedom at node i

Degrees of freedom for total shell
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