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ABSTRACT

The f im te élément method was used in this investigation in order to

détermine the static and dynami'c behaviour of non-um'form Ti'moshenko beams

subjected to various boundary conditions. When using this approach, the

général displacement functions are based on the cubic polynomial expansion

of three principal quanti'ties as degrees of freedom: transverse displace-

ment, rotation of the cross section and shear déformation. The stiffness

and mass matrices, however, are derived from expressions of the strain and

ki'netic energy which are based on the assumptions of curved, slightly curved

and straight beams.

In addition, a formula was obtained from the général équation for a

slightly curved beam and as a result, frequency équations for a straight

beam were obtained for ten common types, taking into account all the forced

and natural boundary conditions. Good agreement was achieved by comparing

the results of thèse models with exact solutions, as well as with other

numerical methods for straight and tapered beams. In order to test the rate

of convergence, the natural frequenci'es of typi'cal cases were calculated as

a function of the number of éléments. Results showed that the model

converged rapidly and required only a sma11 number of éléments to achieve

good results. FinaHy, the présent analysis demonstrated the renabm'ty of

the mode1 chosen b.y including the transverse shear and rotary inertia

effects at the higher modes.



RESUME

Dans cette thèse, la méthode des éléments finis est utilisée pour-

analyser dynamiquement et statiquement les poutres de Timoshenko non-umfor-

mes et soumises à des conditions aux rives différentes. Dans une telle

méthode, les fonctions de déplacement générales sont basées sur le dévelop-

pement en polynôme cubique des trois quantités principales comme degrés de

liberté: le déplacement transversal, la rotation de la section transversale

et la déformation de cisaillement. Cependant, les matrices de raideur et de

masse sont dérivées des expressions de 1 "énergie de déformation et de

1'énergie cinétique qui sont basées sur les hypothèses des poutres courbes,

légèrement courbées et droites.

De plus, une formule est obtenue de 1'équation générale pour une poutre

légèrement courbée et par conséquent, les équations de fréquence d'une

poutre droite sont obtenues pour dix cas courants, en tenant compte de

toutes les conditions aux limites en charge et naturelles. Un bon accord a

été réalisé en comparant les résultats de ces modèles avec des solutions

exactes, ainsi qu'avec les autres méthodes numériques pour des poutres

droites et diminuées (tapered beams). Afin de tester le taux de convergen-

ce, nous avons calculé les fréquences naturelles des cas typiques en fonc-

tion du nombre d'ëléments. Ce calcul indique que le modèle converge rapide-

ment et ne demande qu'un petit nombre d'étéments pour obtenir de bons résul-

tats. Finalement, la présente analyse démontre ta fiabilité du modèle

sélectionné en incluant 1 effet de clsaiHement transversal et d inertie

rationnelle à des modes plus élevés.
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I,, : Moment of inertia around axis y

lygs Iyj3 : Moment of inertia between Ist and 2nd ends of

tapered beam

J : Number of boundary conditions
*

J : Number of 11" nés and/or columns to eliminate

in [K] and [M]

k : Shear déformation coefficient of a Timoshenko

beam
*

k : Di'stortion coefficient of a Timoshenko beam

L : Beam length

Mg : External moment (time-related) by unit

length

M^ : Bending moment

N : Number of f im" te éléments

NDF : Number of degrees of freedom for a uniform

élément

N.. ; Normal constraint

n,,, n^ : Components followi'ng y and z for a normal

unit vector on a cross section boundary

P : Curvature parameter determined in Tables, 5a,

5b

p : Quantity determi'ned in Table 5b
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Q : Rotary inertia parameter

q (x,t) : Transverse load by unit length applied to the
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q : Quantity determined in Tables 5a, 5b

r : Radius of curvature

s : Quantity déterminées in Tables 5a, 5b
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S,, Si, : Quantity determined in Tables 5a, 5b
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t : Time
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u : Rotary vibration frequency
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@o : Solution for straight beam
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8

^ y^ z : Global System coordinates
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^ (x, z, t) : Correction functi'on determined in

: Shear déformation
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CHAPTER l

INTRODUCTION

1.1 Général

In the présent research, my colleagues and l were mainly interested in

the dynamic behaviour of Timoshenko beams. This study was first undertaken

by Rayleigh, who explored the effect of rotational inertia on the beams.

After this first analysis, Timoshenko later included cross section and shear

déformation effects. Thèse two effects, with hyperbolic charactenstics,

led to minor modifications in the Bernouini-Euler theory, where elliptic

characteristics were used to calculate the lowest modes of long and thin

beams.

Kruszewski [l, 1945] obtained frequency équations for "free-free" and

"clamped-free" beams, by solvi'ng a complète deflecti'on differential équation

with non-homogeneous boundary conditions. Thèse équations, however, were

tinnted to solution for the above-menti'oned beams, both because of complex

boundary conditions and the time-consuming nature of the task.

Trai'11-Nash and Collar [2, 1953] presented a relativety complète

theoretical solution for the latéral vibration problem with a uni form beam

that included shear deflection (but not the delayed shear effect) and rotary

inertia for m'ne cases (the variation in thèse boundary conditions was a

combination of three types of end supports: free, simply supported and

clamped). They also demonstrated the conséquences of shear deflection and

rotary inertia which are essential to a modem understanding of the compact

beam.



Similar to the problem mentioned above, Dolph [2, 1954] présentée! a

derivation for several of the findings in Timoshenko's theory, including

général solutions and a complète analysis of a simply supported and um'form

beam.

Furthermore, Boley and Chaos [4, 1955] studies of the behaviour of

transverse beams included the effect of shear and rotary inerti'a and used an

approxi'mation method from the Laplante transformation procédure to soive for

the four types of loads applied to a semi-infinite beam step l: zéro velo-

city and bending moment step 2: zéro bending moment and displacements;

step 3: zéro velocity and force; step 4: zéro force and rotation.

Huang [5, 1961] produced a typi'cal analysis for Timoshenko beam

convergence such that the frequency équations and the normal free vibration

mode for a um'form bearn in the différent cases (for six ordinary types of

simple and fi ni te beams) were a product of homogeneous boundary conditions.

Solutions obtained through etastic analysis were produced for two complète

differential équations; one for total deftection and the other for rotation

of the cross section.

Lecki'e and Lindberg [6, 1963] offered a alternate System of anatysis

and vatidat.ed the accuracy of thèse methods. Thi's study, which included the

important effects mentioned above, was based on exact differential équations

for an infimtesimat élément in static equilibrium. The first area of rota'

tion chosen, which v/as the cross sections allowed for the correct and

individual boundary conditions at the end of a free or "clamped" beam.

Recently, Hurty and Rubinstein [7, 1964] used an approximation method

to calculate frequency energy in a simply supported beam. The most common

model was the one in Kapur [8, 1966]. This model was based on expansion of

the cubic displacement in both cases: for bending (attributed to flexural

déformation) and shear (caused by shear déformation). An important findi'ng

was that displacement at each node included disptacement and rotation.



Thèse di'splacements were considered separately for sti'ffness and mass

matrices using, as nodal coordinates, flexural and shear déformation; fim'te

deflection and shear slopes. A few of thèse nodal variables could be

eliminated by using a "condensation" method and the size of the System could

be reduced without any si'gmfi'cant 1oss of accuracy. The résultant élément

matrices were (8 x 8), and they could be used evenly between the flexural

and shear déformations. Frequency parameters were obtained for "clamped-

free" and "si'mply supported" beams. The frequencies obtai'ned with this

method matched the theory for two particular types of beams, but proved to

be unsatisfactory in relation to général structure (non-colinear structure).

Complexity increased when forces were added to disptacements. Each node had

then to be specifically studied. The rate of convergence wi'th this method

was much faster than with the others.,

Another model with a matn'x of order (8 x 8) was présentée! b.y Carné-

me, J. Thomas and Dokumaci" f 9. 19691. The élément they used, with an

internai node, had bending and deflection slopes as coordinates at the two

terminai nodes. The mi'dd'le nodes were used for assignment of the rate of

convergence for a with rotary inertia and shear déformation. However,

some difficulties could occur when the natural free-end boundary conditions

were established,

Nickel and Secor [10, 1972] used, as nodal coordinates, total trans-

verse displacement "w", total slope "aw/dx" and rotation "9" as a result of

bending in the beam-end and mi'd-beam nodes. Transverse displacement was

expressed as a cubic function and rotation, as a quadratic function for the

axtat coordinates of the beam. The matnx was of the order (7x7) for the

élément, labelled TIM7. It was then reduced to (4 x 4) with the help of a

constraint suggested by Egle, labelled TIM4. The two éléments produced an

unvaned convergence of variables, according to the degrees of freedom in

the System.



Then, Davis, Henshell and Waburton [11, 1972] présentée! an solution

approach based on the cubic polynomial for total deflection and rotation.

They derived the sti'ffness matrix for stati'c equilibrium conditions with two

degrees of freedom at each node. The boundary conditions were not satisfied

in the cases of free-end and simply supported Systems.

In 1973, an élément developed by Thomas, J.J. Wilson and R.R. Wilson

[12] gave an acceptable rate of convergence for calculating the natural

frequencies of a simple élément as waell as for the "clamped-free" beam.

1.2 Research objectives

Thi's thesis is an attempt to study the vibration problem in a more

général model than that of the Timoshenko beam, i.e. in um'form or non-uni-

form, slightly curved or straight beams. The f im" te élément chosen had two

nodes with four degrees of freedom at each node (in the parti cular case

where the élément forms an angle with the x axis, there were five degrees of

freedom). The nodal coordinates of each élément were: total deflection,

rotation, deflection slope and the fi'rst denvative of total slope. AU

boundary conditions (forced or natural) could be imposed and rate of conver-

gence was suffi ciently rapid.

The problem was stuch'ed wi'th a11 possible displacement functions,

including the case of a slightty curved beam. The results obtained for

thèse two types of beam agrée very well with results obtained through exact

solutions. Comparisons with other numen'cal methods in use among différent

authors are also performed.

1.3 Bnef summary of the report

This study contai" ns m" ne chapters, the separate contents of which are

summanzed bel ow in order to set out the global aspect of the problem.



CHAPTER l: Général history of the Timoshenko beam.

CHAPTER 2: A review of the basic theory concermng the Timoshenko beam,

from curved configurations to straight, including f im te élément

analysis of their dynamic behaviour. Analytical solutions of

équations of motion derived for différent boundary conditions

will be présentée! in thi's chapter. As to the fi ni te élément

method, the choice of dtsplacement function that will make for

the best analytic model in terms of the convergence cri ten" a

wi'11 be di'scussed.

CHAPTER 3: Detailed information regarding the displacement functions that

were selected from among three différent possibilities,

CHAPTER 4: The development of the matrices: the f im" te élément method is

used to build the stiffness and mass matrices of the beam

éléments, The analysis wi11 also tnclude a develonnient- for• ^ •"' • ~ ..... »-. . — ^ ...-^.^—^ ». _»--„.«,^...^..»

tapered beams.

CHAPTER 5: Présentation of a graph for détermination of a form factor k and

allowance for distortion of the cross section of the problem.

CHAPTER 6: Study of free vibration probtems. The main purpose of this

chapter is to détermine the free vibration for a11 boundary

conditions. A static analysis with arbitrary end loadings on

the beam nodes wi11 also be presented.

CHAPTER 7: Description of the procédure for computing free vibrations and

ei'gen vectors corresponding to the ten commonest cases.

CHAPTER 8: Calculations and général discussion of results obtained by the

computer program.

CHAPTER 9: Conclusions



CHAPTER II

BASIC THEORY

2 • ^ â]±âllî2z_curlve.d^ld-^lïlâlËl^JîÊa^^

Using Timoshenko s model as a guideli'ne, the général définitive soi u-

tion of the vibration problem is only obtainable from the équations of

motion derived from sli'ghtly curved beams (wi'th a simplifiée! case being the

straight beam). The formula is based upon the assumption that the large

ratio of elastic modulus over shear modutus (E/G) is E/G values may vary

from 20 to 50.

Fi'rst, the assumption is made that the beam under investigation is

slightly curvecl, e.g. the neutral axi's of the beam is im'tially quadratic in

form, so that initial curvature "H" then bas a constant value (the beam

where H varies along the axis and the tapered beam wi'H be discussed in

Chapter IV). In this particular case, the beam then becomes strai'ght and

this is considered to be the two major effects of Timoshenko theory (rotary

l'nertia and transverse shear). It is assumed that the beam is homogeneous,

isotropic, um'form and pnsmatic (Fig. l).

2.1.1 Equations of motion

The length of the beam as a uni form élément wi11 now be considered and

mentioned hereafter as (slightly curved) vibrating in the main plane. The y

and z axes wi'11 act as coordinates: they refer to the main axes of the

cross section, with the x axis being the "centroidal axi's (Fig. 2).



The basic équations of motion are:

8t2' (2.1)
3vz „ 92w

^ , = p^

^ -^^
avz,A-f!"o^ . „?!"

3x V&x "^)^M^J ° ^ (2-4>

where V., and M,, are the vertical forces and bending moments acti'ng on the

ends of the élément; u and w are the axial and transverse displacements of

the beam, w^(x5 is the initial axis of the beam; N,, is the normal

constraint on the cross section at the 2 ends; q(x,t) is the external

transverse load on the beam per unit of length: P is the density of the

élément; !„ is the moment of 'inertia with respect to ax-is y: A -is the

élément's cross sectional area and t is the time variable.

The bending moment, vertical force and normal constraint are given

by:

M = J zo^dA = J bzo^dz (2.5)
'A <Ci

"z -f y -r2 tltxzdz t2-6'
'A ^c,

\ -, °,dA (2.7)
7A



where dA = dydz, the distance measured from axis x of the beam along axis z;

e, and e-, are the upper and lower boundan'es, respectively, of beam thick-

ness; b is the total length of the cross section (generally b is a functi'on

of x); a^ and Tv^, respectively, are the total normal and shear stresses of

the beam.

Note that T, = 0 when z = -c^ or z = -c^. Two functions are

proposée!:

U(x,z,t) = u(x,t) - z9(x,t)

and

W(x,z,t) = w(x,t)

Uhere (U.u) and (W.w) are disolacements in the direction of x and z,

respect!vely; e is the rotation of the cross section around the y axis.

Transverse displacement w(x,t) can be considered as vertical displace-

ment of the "centroîd" of each cross section, ît could also be assumed that

for infimtesi'mal motion in the y direction (non-coupled motion), a and

ôb/az are yery small : the products whi'ch include thèse terms, however,

should not be ignored.

Thus, the appropriate components of the stress tensor for thèse

assumptions can be written (see b) of Table 3):

o^ = Ec ^ E -8U = Ef^- - z0^= fc£^= t -^ = fc^- - 2

T =lxz ~ "'xz

a = 0.

r9W _, W}_ pf8w=6^+^=G^- 6)
(2.8)



where e^ and Vv^ represent normal and shear déformation.-X """ 'XZ

"cî fi" _ ^ 9l\ ^^ = FT 3e
My=E/ VU" z t^Jt)7dz=: "yt^ ^•v

<c^

-. <z=G(lï-e)/c2bdî =AGfe-6) (2.10)
-Ci

The term ^w - 9 represents the référence shear déformation at each
ÔX

cross section.

A correction factor is requi'red in order to compensate for the assump-

tion that xxxx is a constant at each cross section. Thus, the numen'cal

factor "k" is introduced into (2.10) in such a way that:

v^-^-e) <-'

k is ca11ed the shear déformation coefficient of the beam (it wi'11 be

di'scussed in détail in Chapter V).

AU natural boundary conditions require that the bending moments and

vertical forces specifted at a point along the beam must satisfy équations

(2.9) and (2.11), whereas a11 those that involve rotation and transverse

displacements are cancetted out.

With the influence of the bench'ng moments we obtain, in the absence of

shear:

.-i 9w „ 9w _tan-ï t^iï=e
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If the transverse shear déformation at the neutral axi's of the beam is

taken into accounts, the following relationshp can be obtained:

|^=6+^ • (2.12)

Where ^ = y^., is the shear déformation of the beam. Fi'nally, the

normal constraint N^ can be représentée! as:

^u , 8wo : 9w
Nx=EAliï+-^'^ {2']:

Substituting (2.9) and (2.11) into (2.1), (2.2), (2.3), (2.4), we

obtain:

EI^+k6Afe-°) -PIy^=o '^'

,(x.,).k6Ag-|^^H-^=0
(2.15)

For suffi'ciently large curvatures, longitudinal inertia could be

ignored by setting o^-u- = 0 in (2.2), with the normal constraint N^ taking a
ôt2 ' " x

constant value N^.
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(2.13) can be integrated by considenng u=w=Oandx=Otox=L

for problems in which beam ends are fixed, the expression obtained for N,

will be:

¥/^^-n ïwdx
'0

L 32wo .. ... (2.16)

Where L is the total length of the beam.

Substituting (2.16) into (2.15), the équations of equi'libn'um for a

um'form beam, in terms of W and 9, can be wntten:

EI^+kGA^-e) =''Iy^i2-17>
'y ax2 ' '""" \ax 7 ' y at2

'82w 36\ _, sl_wo ^ EA f 3wo 9w ^, _ ^ 82w
q(x,t)+kGA(^-^j+-^ -^f-j 9^ i7dx=PA;7i (2-1

\ OA . .f OA 0 _ U >-

^w,2
Thèse two équations are valid for for —ï- < l (that is to say, for

»wo ^ ^^.^.3X..
slightly curved beam), where —^ represents the im'tial slope of the neutral

ÔX
axis of the beam.

y^4(^(l-ï) (Z.19)
Then write; . . wo =. y0

with yo==4lu.

Where H is the maximal value of w and y^ is a non-dimensional

quantity.

Also obtai'ned 1s:

w = h lî sin u t

and 6=^-9 sin <. t



12

Where beam thi'ckness (h = [oc ] + [oc ]; W and 9 represent the normal

functions of w and 9, respectively,, and are the rotational vibration

frequency of the beam.

The non-dimensional quantities are generated b.y substituting n = —s
L

hence (2.19) becomes:

yo=4n (l -n)

32y.
Fhen —°

8n2

(2.17) and (2.18) cou1d then be written in the absence of q(x,t) in

the free vibration problem:

a 2e . - /air ,\ , , 11-...̂ -//->.-. .. r^i -

+ S ^ - % j + À^9 • = u (2.20)

SÀ(I- @)+À;g- 64Pj"Idn=0 (2.21)

JK.
AU the non-dimensional parameters in (2.20) and (2.21) are determined

as foltows: S = KGAL2/EI^: shear déformation parameter; x2 = pAL4(d2/EI,,:

frequency parameter; Q = l /AL2: ro'tary inertia parameter; P = AH2/I :

deviation parameter.

2.1.2 Ana1yU^1_so^utwn_^^^

The den'ved équations (2.20) and (2.21) are used for a slightly curved

beam; thei'r solutions are discussed in f 25], and are wn'tten as:

|v ° vo+;^4P/L "od1 (2-"1

e = e^ (2.23)
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where w and 9 are the theoretical solutions for strai'ght Ti'moshenko beams.

They have the form:

^L = Ai(t) cosh Àan + Az^t) sinh Xan + «3(1) cosApn + A4(t) sinÀpn

(2.24)

©„ = As(t) sinh Àan + Ae(t) cosh Xan + ^[t] sinXgn + Aeît) cosXBn

(2.25)

a and p are the non-dimensional quantities whi'ch can be expressed in the

following two cases:

À2Q
Case a) When •^Q--è}+T2>Q+t ; "S"'R p / ^ • s

> 1

-f-^HRR)ïî+ ^

K - %?^ ("+ i) + ^ - t)2 + ^ (Z.26a)

Case b) When ^(Q-|-)+ ^ < Q+t ' ' ^ < 1

»- .^ "N ("4) -^((i-i)2+^

^ ^^TpHFT^
-/Fy

+ P (2.26b)
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Constants A^(t), A^(t) up to and includi'ng A (t) in (2.24) and (2.25)

must be determi'ned in each of the particular cases separate from the bound-

ary conditions on the beam ends. Thèse constants can also be replaced by

the following relati'onships for purposes of simplification:

As = À ^i
a

Ai

.2 . 1

or T s , , , fa2S_j_l'
AK = À —T—:— AZ = À l;—^c—j ^2

A? = -À

AR = À

a

,2 „ ly - ^

^ -1

(^^
^)'

-X

aS

B!y)A.

82S - 1

ps A, (2.27)

Substituting (2.27) into (2.22) and (2.23), the équations of equili-

brium for a slighty curved Timoshenko beam wi'll be:

^ = Ai(t) cosh Xan + Agit) sinh Àan + As(t) cos^pn + A^ît) sinXen

64
64 l Àa

sinh M + A^- (coshXa - 1 ) + Af^- sinXj? !+ A^tl (1 - cosX@)
Àa xe -w •]

(2.28)

e = Ma^ll AI (t) sinh Àan+Azd) cosh Àan

Astt) sinXBn + A4(t) cosÀBn^A
p̂s (2.29)
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This report wi11 only présent the theoretical équations for a typical

straight beam (curved or slightly curved beams are excluded). We will,

however, expand on the use of a f im" te élément approach to generate the

three types of beams.

In regard to straight beams in particular, certain theoretical equa-

tions den'ved from some common cases presented here were established by

applying them to (2.28) and (2.29) with a (2.29) with appropn'ate boundary

conditions, as well as constant relation intégration in (2.27).

Each équation is solved by means of a computer program (iteration

method) that yields the exact frequency parameters, whi'ch can then be

compared wi'th parameters obtained through the f im te élément method.

The common types of beams can be separately integrated with respect to

conditions at. bot.h ends: (to n =0 and n = l); "clamped-clamped", "clamped-

free", "clamped-supported", "free-free", "supported-free", "supported-

supported", "damped-simply supported", "simply supported", "si'mply

supported-simply supported", and "free-si'mply supported". The corresponding

frequency équations are derived from a uni f orm beam and are summan'zed in

Table l; the correspondi'ng normal modes appear 1n Table 2, Appendi'x D.

2.2 Fi m" te élément method

2.2.1 Choice of the model

The fi'rst point to consider in solving the problem is what model to

choose. The model chosen must be applicable to a11 types of beams and must

sati'sfy ait boundary conditions in all the cases. This method presupposes

that the nodal di'splacements are the unknowns in the problem and that the

compatibility conditions within and among the éléments must be first

satisfied. (A quick review: compatible éléments are éléments in which the

longitudinal boundary displacements are fully accounted for by displacements

of the nodal point that includes this boundary).
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The work of determimng the stiffness matn'x is then based on the

assumption of virtual displacement, rather than the virtual constr-aint that

has been previously discussed, in [20]. Some terms for den'vations of

déformation can be ignored in most practical cases. Furthermore, the

éléments the assumptions are based upon, the fi el d displacements, are the

most uni versai ones. The déformation for a structure compnsed of éléments

i"s given by its nodes. The stiffness matn'x for the structure must be

compatible wi'th the displacements and wi'th the corresponding load.

As was earlier mentioned, the type of élément used throughout the

analysis was a line segment which includes two nodes at ends to adjust to

the van'ous types of boundary conditions. The displacement vector for each

node is a combination of the following quantities: transverse displacement

and its slope, w and w', respectively; rotation of the cross section, e',

and finally transverse shear déformation, 4,. Thèse quantities, w", 9, <],,

are linked by the relation in (2.12); therefore if w is the cubi'c polyno-

mi ai, 9 and 4, can be represented in the same way as w, and then we obtain:

i:̂ A4(t) + AsCt) X + Azd) x2 + Ai(t) x3

mode symmetry

L state of umform déformation

L- rigid-body rotation

L principal mode of rigid-body motion

Mandatory
terms

where A^, A^, Ag, A^ are the constants or time functions for the dynamic

case which are to be déterminée!.

Two distinct models are derived from thèse assumptions:
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l) Model "i": in which transverse displacement, w, and shear déformation

<\i, are assumed to be cubic polynomials:

w = a^(t) x3 + a^Çt) x2 + a3(t) x + a^(t)

Eq. i

<^ + aç(t) x3 + âg(t) x2 + 87(1) x + ag(t)

l) Model "j": in which transverse displacement, w, and cross sectional

rotation, 9, are assumed to be cubic polynomials:

w = ai(t) x3 + az(t) x2 + 83(1) x + a^t}

6 = as(t) x3 + as(t) x2 + 37(1) x + ae(t) (^q. J)

where ai(t), ..., ae(t) are linked by (2.27).

It is apparent that in both "i " and "j" models, transvrse displace-

ment, w, is always a cubic polynomial. With both models, the formulation

for the stiffness and Imass matrices of a unifonn Timoshenko beam can be

used for: a) curved beams, b) slightly curved beams and e) straight beams

(see also Table 3, Appendix D) e

Three types of beams with différent displacement functions, as

indicated in Table 4, were chosen by means of (équation i) and (équation j).

For companson purposes. Table 4 also gives a summary of several models of

Timoshenko beams various authors have studied. Two models in particular

called number l and number III, satisfy all the normally applied boundary

conditions as well as their tests for convergence.

Model number II satisfies only three cases: "supported-supported",

"free-free", and "supported-free". The explanation for this particular

occurrence is found in équation (2.12). The existence of rotation 9, in the

cross section, in this situation is a necessary and sufficient condition for
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assuming the displacement functions; shear, fy, although an important factor

in Timoshenko theory, is only secondary when compared to the effects of

displacement, w, and rotation, 9. (AU previous studies have shown that

this effect has greater influence at higher modes). Of thèse three models,

only two (I and III) theoretically satisfy the above mentioned conditions

and are consequently able to satisfy ait strain-displacement boundary condi-

tions. The rotation slope, 9', and shear, ^, in mode1 II are necessary

conditions, but are insufficient to cover a11 possible boundary conditions.

Of the two models (I and III), model III is considered to be the

typical model in this analysis, because of the shear assumption, 4;, which

makes the problem more symmetncal.

2.2.2 Général Procédure

Since the finite élément method is well known, only some particular

guidelines will need to be repeated for the purposes of this analysis.

Consi'der a uniform segment of a beam defined by two nodes, "i" and

"j"s with the boundanes at the nodal référence (Fig. 3).

The displacement function chosen can be determined by:

{"(x.t)}- m j^[ (2.31)

where [N] is a matrix for the général position function and ^ui

represents the nodal displacements. ( Àjl

Once the displacement function is known, the déformation matrix can be

stated as:

M-m \^\ (2.32)
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Then, the one-dimensional stress matrix can be wntten:

{a} = FSTI {;'?^ (2.33)

Using the expressions strain for and kinetic energy, we dérive:

M = U . ^BT] [B] d (V01ume)
volume

CC = ^P/ [NT] [N] d (volume)
Volume ^-'

Finally, the stiffness and mass matrices [K ] and [M] within the local

System, associated with the finite éléments are, respectively:

[K] = / [BT] [B] d(volume)
volume

[M] = p / [NT] [N] d(volume)
volume (2.35)

82^(A)
where ^j - 3A7-8A,

32<C(S1
alu3 Rij = iî7^

2,2.3 Convergence Criteria

Accuracy dépends upon the critena for convergence in the method

mentioned previously. The critenon discussed in the particular case of a

simple élément is the monotonic convergence boundary. The two main points

of convergence are as follows:
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a) Displa e ement function

The function chosen is the one that does not allow deflection in an

élément to occur when displacements at its nodes are caused by displace-

ment of the rigid body.

b) Complète élément

The function chosen must be capable of representing the displacements of

a ngid body (this will enable all points of an élément to go through

similar displacements) and the states of constant déformation (those

necessary for assembling several éléments. This prerequisite can be

explained physically if we express an infinitimal élément for which

déformation will be approached as a constant value). This critenon can

also be considérée! as a sufficient condition for convergence. Note that

with this method, the number of terms for a c-nmplet-e polynomial of order

n, is therefore (n + l) for a one-dimensional case and 1/2 (n + 2) for

two dimensions»

e) Cpnti nu i ty of displacement

The function must be chosen in such a way that the déformation inter-

faces of the éléments are finite (otherwise the displacement would be

continued within the élément), and is dépendent upon the sélection of

continuous polynomials as général displacement functions. As has

previously been found, 1f there is discontinuity between the éléments, a

constant déformation condition wi11 automatically guarantee continuity

of the displacement.

The coordinates and displacements at the beam élément interface

(adjacent éléments) are the same. Furthermore, the strain energy intégrais

used in this case are evaluated precisely; the boundary charactenstics and

the properties of monotonic convergence can be applied.
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CHAPTER III

DISPLACEMENT FUNCTIONS

3.1 Sélection and détermination of displacement functions

The established général formulation is valid for a11 three models- I,

II and III. In particular, with a rnatn'x development for potential energy

and kinetic energy, the displacement function used was the one for model

III. This model bas ai ready been considered as a typical model for later

expansion (see Appendix D, Table 4).

When considenng a uniform élément of the beam (Fig» 4), it may be

assumed, in simplistic terms, that {u(x,t)} resembles the displacement

functions, with respect to parameters {a(t)}.

(<^ere;<u(x>t)} = D-(x)] {a(t)} (3.1)

[L(x)] is a matrix containing the cubic displacement functions, and:

{a(t)}T = {ai(t) az(t) 83(1) a^t) as(t) ae(t) a7(t) ae(t)}

The first term is this potential energy expression is the intégral for

the energy that 1s caused by strain; the second term is the shear energy.

The same applies to kinetic energy, where the first term represents the

intégral for the linear variation term and the second represents the

intégral for rotary inertia. To integrate thèse terms explicit by trans-

verse displacement w, rotation 6, or shear déformation <!; must be repre-

sented. For the sake of compatibility with the finite élément analysis, w,

9 or 4; are assumed to be of the form: (see Table a)
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Type III,

lïÊÊ-HLj:

w

^

w

e

= [L(x)] {a}

= [L(x)] {a}

The éléments in matrix [L(x) ] are, generally speaking, the structure's

coordinates; and the constant vector {a} is generally a time function. The

nodal displacements can therefore be assumed to be:

Where [A] = (Cte), interpolation rnatrix for the nodal displacements.

3.2 Internai displacements

The displacement functions can be specified by examining each node of

an élément for models l and III (F1g. 3). The components for transverse

displacement w and its slope w', rotation e and its slope 9', and shear i^

will be ordinates. The node "i" "displacement", for each model, can then be

determined by the vector:

MgdêL_L (types 1^ andîj):

(&,}=

w

w

6

e

1
!

1

1
l

1

(3;3a)

ModêT_Hl (types III^ andlllj):

tA,} =

w

e

e

^

1

1
l

1

1

(3.3b)
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For éléments having two nodes and 8 degrees of nodal freedom, we

obtain from (3.3a) and (3.3b):

Mode! l :

IAi
1&J - {

Nodel l II:

IA1

IAj

f^\
w"i|

lei
e'..

w,
\=

wj

h
\9'î)

(^}
!9i
''il

^
wj

Bj

[A],,

MIJ

{a}

s =

l f j/

[A]
[A]

IIIi

IIIj

{a}

(3.4a)

(3.4b)

Multiplying (3.4a) and (3.4b) by [A-1] III1 or [A-1] IIIj, respecti

vely, we obtain the général form:

-î

{a(t)} = [A~*] {A(t}}

By substttuting into (3.1) we end up with:

IM
(u(x.t)} = [L(x)][A-1] (A(t)} = [NIJ^J

<J

This équation defmes the displacement functions.

(3.5)
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CHAPTER IV

MATRIX CONSTRUCTION

4.1 Internai déformations

The assumption is made that a finite élément of the beam is deformed

according to two displacement functions as previously determined in Table 3.

Curved beams wlll be dealt with first, followed by slightly curved beams

and, finally, straight beams.

Déformations of an élément are expressed as général displacement func-

tiens (3o5); non-extension (or curved) beams are being neglected for the

purposes of this particular project.

The basic "strain-displacement" relationship for plafne déformation

produces:

(e.\

{£} = <
'xy

fyz

'xz

Ou

f9U/8x \
18V/3V

fsw/sz
l=^8U/9y + 8V/3X

18V/9Z + 3W/8y

t9U/3z + 3M/9X

8u
^vu/\

3w
3x

rz
r+z
0

0
0

-0
'r2

"(rïz:

31
3x

2

-iT

rCi=[<!i <4-1>

3u
ax -^(^)dx-H&)N (4.2)

It is important to note that in this analysis the "strain-displa-

cernent" équations contain ngid-body motion. It has been eliminated from

résultant expressions, however, in order to détermine the déformations, but

is is included in the displacement calculations.
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4.2 Internai stresses

The "stress-strain" relationship for one-dimensional isotropic

materials can be written:

{0} =

'0.. '
'X

0.'y

0.z

TX)/

Tyz

TXZ

== <

Ee^ '
'X

0

0

0

0

kG^

~3u rz 36

_8x - r+z 8x.

0

0

F8W r2
[ax~ Tr+zp

-l.[A-]
AT

Aj
=[ST] IAi

IAJ (4.3)

Wheresl^y-1 have been determined in (^».2),
>8xJ

4.3 Strain energy-kinetic energy

As has been mentioned previously, this method uses unknown nodal

displacements for the probtem; later displacements will be déterminée! by

solving the System of linear équations generated to satisfy the equilibn'um

conditions at the nodes.

By using the original total potential energy, we obtain:

^(tot.1 =U-^F - «R -^S

Where:

Internai déformation energy.

Potential energy due to body forces.

Potential energy due tu external nodal forces.

Potential energy due to surface tension.
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With regard to the free vibration modes, the last three energy terms,

^p» À-fp, and^ ' can be neglected, therefore giving ^totâl • =t?°

The internai strain energy expression for length "L" of a Timoshenko

beam élément can be written:

^= i f [o^]T [e^] d(volume) + ^ f ET^JT [ï^l d(volume) (4.4)
Volume -/vo1ume

J./-^-f^
-iabsaaaaîïL term shear term

The kinetic energy expression for length L of a Timoshenko beam élément

can also be given by:

r i

r1C= if pfM12 d(yolume) + ^f p[^1_2 d(volume) (4.5)
!L ./-...„ Lol'-jR

/olume

i
term sS l inear variation ' term. ©E'.rotary inertia

By substituting (4.1), (4.3) into (4.4) and (4.5), respectively, and

then by non-dimensionalizing through the substitution of and assuming that W

and 9 are cubic polynomials of the form of (2.30), wp pvpnt.naTly amve at
x .. W

the général expressions for internai strain energyMn = L9 ^ = L expression

and kinetic energy rC, , for a curved ((A.l.5) and (A.l.6)), s11ght1y curved

((A.2.l and (A.2.6)), or straight ((A.3J) and (A.3.5)) beam.

4.4 Stiffness and Mass matrices

The expression of potential energy ^ in (A.l.5), (A.2.l) or (A.3.l)

for the stiffness matrix can be given by:
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^ = i {A}T [K] {A} (4.6)

where [K ] is the stiffness matrix of the beam within the local System.

Kinetic energy 'C in (A.l»6), (A.2.6) or (A.3.5) in the mass matrix,

can also be expressed by:

rC = i {A}1 [M] {A} (4.7)

where [M] i s the mass matn'x of the beam within the local System. Both

matrices [R] and [R] dépend upon the géométrie and physical form of the beam

and are derived for three types of beams. The éléments in [R] and [R] can

be written as follows:

_ 32«(A)

^ K^=W (.S)

M..=3^-
. .

8A.3A,
.1

^<ir"

The stiffness and mass matrices for a Timoshenko beam were derived for

the foHowing cases:

A) Curved beam

* Stiffness matnx

[y=lT^[A"lJT [Y\1[A-1J (4.9)
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where [K^ ] is computed in Appendix A (équation A.l.10) and listed in

Table 5a (Appendix E).

In the global System, we can dérive:

[KJ = [AT]Oy [A] (4.10)

where [A] is a transformation matrix for the coordinates, given by

équation (A.5.4)

*Mass matnx

"°î"il r^.â-nrn*"!py =pAL3 LA"1]1 L^][A~11 (4-n)

where [R^ ] is calculated by means of équation (A.l.16) in Appendix A

and listed in Tabale 5b of Appendix E.

In the global System, the mass matrix will be in the form:

[Nc]= [AT]Pg[A] (4.12)

Where [A] is the same matrix as in (4.10)

B) S 1i ghtly curved beam

*Stiffness matrix

[Kscl = :? E""]1 ^*sc] [A"] «.13>
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where [K^^] is computed in Appendix A by équation (A.2.4) and listed

in Table 5c (Appendix E).

In the global System, we obtain:

P<sc]= [AT]Qy[A] î4-1^

where [A] is given by équation (A.5.4)

*Mass matrix

,T[M. J =PAL3.[A-1]' [X*sc1[A-1] (4.15)

[ul is calculated in Appendix A (équation A.2.9) and list.ed in Table

5d (Appendix E).

In the global System we have:

[MJ = [A]T |M^] [A] (4J6)

where [A] is the same matrix as in (4.14)

C) Straight beam

*Stiffness matnx

Pd] :?P"]T&*d][A-J (4.17)
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where [R^ ] is determined by équation (A.3.4) in Appendix A and listed

in Tables 5e, 5g, 5i of Appendix E.

In the global System, the stiffness matrix of a straight beam wi11

be:

[Kd]=[AT]Dy[A] (4.18)

where [A] is given by équation (A.5.4).

*Mass matrix

[îg = pAL3 [A-1]T [À^][A-1J (4.19)

where [M^ ] is catculated using équation (A.3.7) in Appendix A and

listed in Tables 5f, 5h, 5j of Appendix E.

In the global System, the mass matrix of a straight beam will be:

[M^j = [A]T [M^][A] (4.20)

where [A] is the same matrix as in (4.18),

D) Tapered beam

*Stiffness matrix

[K^CA-^tltA-] t4-21)
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where [R^ ] is determined by équations (A.4.3) and (A.4.4) in Appendix

A, and listed in Table 9a (Appendi'x E).

In the global System, it will be:

[K^] = [AT][Kdt][A] (4.22)

where [A] is given by équation (A.5.4)

*Mass matrix

[M^] = [A~1]T [^*dt]l:A~1] (4-23)

where [W^ ] is calculated by équations (A.4.8) and (A.4.9) 1n Appendix

A, and listed in Table 9b (Appendix E).

In the global System, the mass matn'x for a tapered beam will be:

[Mdtl = [AT][Ndt][A] (4.24)

where [A] is the same matrix used in (4.21).
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4.5 Vibration of variable section beams (tapered beams)

4.5.1 Introduction

Upon firmly establishing the formulas for the stiffness and mass

matrices, détermination of the eigenvalues•and eigenvectors for a strai'ght

uniform beam produced successful convergence. The development of non-uni-

form or tapered beams can now be proposed.

The only change in procédure for this spécifie type of beam is due to

its géométrie properties (the physical properties are also involved in beams

having non-um'form physical characteristics) : e.g. the depths of square or

rectangular sections, where diameters may vary over a row of circular or

elliptical sections. Depth, thickness and diameter can be linear, quadra-

tic, cubic, exponential or tapered functions. The beam may also have

différent conical forms such as cônes and t-njncated cônes s

4.5.2 Past studies and présent research

The problems of non-uniform or tapered beams have been previously

studied by various authors. Kirchkoff [39, 1879] conducted research into

edge vibrations with a cône fixed at one end and free at the other, Ward

[40, 1913] continuée! investigation of a beam with parallel dimensions at the

y and z axes which vaned between X_ and X , respectively, with m and n
T~ ~U

here representing whole numbers. Nickleson [31, 1961] reportée! on the

latéral vibration problem with a cantilever bar of vanable section. There-

after, Mononobe [4l] investigated latéral vibration of thin cantilever bars

with variable transverse and boundary conditions. Granch and Aider [18,

1956] used simple beam theory to calculate natural frequencies for several

types of beams. Several cases of "clamped-free" and double-edged free beams
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with various variations in depth were also studied. Martin [44, 1956]

looked at free vibration of a beam for différent size ratios: The depth

could be expressed in decreasing séries; the high power terms could be

neglectecL Lee [47, 1963] considérée! the problem of shear effects and

rotary inertia of an edge by suing Timoshenko theory. This same problem was

investigated by both Housner and Keightley [33, 1962] and Rissone and

Williams [45, 1965]; they studied the vibrations of a "clamped-free" beam

with a small thickness ratio using Myklestad and Stodola methods.

Conway, Becker and Dubil [46, 1964] also calculated the free vibra-

tions of a "damped-free" truncated cône - shaped cantilever for a certain

number of boundary conditions. Rao [32, 1965] determined the fundamental

flexural vibration of a "clamped-free" beam with linearly varying rectan-

gular sections, using Galerkin's technique.

Gaines 3"d Vol terra [21, 1966] presented cross-sectional free "ibra-

tion at the upper and lower eigenvalues at the boundan'es of a clamped-

free" variable section cantilever bar (in the form of edges or truncated

edges, cônes or truncated cônes), by both neglecting rather paradoxically

and then also taking into account two spécifie effects from Timoshenko's

theory.

Camegie and Thomas [22, 1967] also obtained the eigenvalues and

eigenvectors for a long tapered beam by means of an iteration procédure,

using the finite différence method from the équations derived from Euler-

BemouiHi. Using the finite élément method, Thomas, Wilson and Wilson [12,

1973] applied Timoshenko's theory to their model in order to calculate

vibrations for a tapered beam.

The most récent study was by Downs [48, 1977 ], who obtained excellent

results with a dynamic discretization technique which included the first

eight vibrations of edge of a11 geometnes, and the first four (or six)

modes for the stress distribution models.
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In the présent study, the derivation for a straight beam of différent

forms was generally accomplished by combimng the variable depths and thick-

nesses. A number of conical beams (cônes or truncated cônes, edges or

truncated edges) of variable section (rectangular, square, and elliptical)

were obtained (see Table 8).

For a beam with varying sections, we get:

where ^

A

'y

^

(x)

(x)

Ab

- Aa

'ya

-Aa

4- A

+ A

A

'y

(^
(î) C4.25)

and AT = T . -
Ay ~ lyb ~ 'ya

A, s I.., and A)., l,,,. are cross sections and inertia a and b, respecti-
3 y à

vely, of a tapered beam élément. Substituting (4.25) into (A.3.4), (A.3.4)

and (A.3.8) wi11 yield the stiffness and mass matrices for a tapered

Timoshenko beam.

In this case, the frequency parameters therefore become:

pA.LV .
2 _Àz =

"y>
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CHAPTER V

DETERMINATION 0F THE FORM FACTOR - DISTORTION PROBLEM

5.1 Calculation of factor k

The ambiguous nature of the équations of motion requihes proper choice

of a shear déformation coordinate, k, when considenng shear déformation for

several beam problems. This coefficient has a non-dimensional quantity.

Several authors have suggested that the usual values of k lead to unsatis-

factory results when thèse équations of motion are used to détermine the

high-frequency vibration spectrum of the beam. For better results, the

coefficient should be arbitrarily adjusted. The cause of the error origina-

tes in the Timoshenko équation, from where an efficient transverse shear

déformation is selected equal to the shear constraint of the référence cross

<°* n/'4»-î ^ >n ^-î»f5^^^1 ^»< Fî •sfe' l/ t.tln/Mn^ F1 •î r. -f»l^^ r>^rt.-»r> mnn>rl< il 11 r-
ock-b l un ^ ui v lucu L/y u rs, yïiicit: u 10 UliC OHCÎUI tltO'UU l U 0 e

That k dépends upon the vibration mode and the form of the cross

section is a well-known fact, introduced to demonstrate that the distribu-

tion of shear stresses as well as shear déformations on the section is not

um'form. However,, k also dépends on the assumptions made concerning the

type of end conditions.

Therefore, k is the référence shear déformation for a section with

respect to centroidal shear deformationo

The methods two well-known authors [23] and [19] used to détermine k

wi11 now be discussed. First, Sutherland and Goodman [23], based their

assumption on the fact that the shear stress distribution of a cantilever

beam with rectangular sections is such that the choice of k does not

particularly affect the vibration results for the cantilever beam.
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When considenng a pn'smatic length of beam, ôx, the déformation

energy increment due to shear distortion <^5[)' wi'n be:

d(ô^n) =i (y^ôx) (r ,,dA)^SD X2' xz'

= i G lxz

6^SD =^- / T2.

$ZT...dAôx -^z(SxdA
xz

~2Q

^^1 T2X2dA (5.1)

In addition, the work imposed by forces on the élément is

6( work ) = i V^ÔX (5.2)

Setting (5.1) equal to (5.2), we obtain;

Wx=^6xJr\^dA

wiUi g_ =e ~ RAG

./.Ï=/T2«zdA
A

k =

•yAI T..dAxz~

(5.3)
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With this formula, coefficient k will be determined for each value of

cross sectional over A.

The second investigator we shall consider here, G.R. Cowper [19 ],

stated a more général assumption ansing from den'vations of Timoshenko beam

équations, and dépendent upon a function X, which is specified for each type

of section.

With this method, the two quantities in beam theory mentioned earlier

can be déterminée! either i.e. transverse disptacement W or rotation 9 (9 may

be interpreted as being the référence angle of rotation of the cross section

around the neutral axis), such that:

ZdA..4.,.

Q=± l îu^dA
Ay.

wheredA = dydz.

(5.4)

W is chosen as centroïdat displacemento Accurate définition is a

prerequisite, since the beam cross section inevitably is deformed, leading

to a small elongation. AU points on the cross section do not have the same

displacements.

e is chosen as the indination angle of a plane surface which usually

coïncides with the left section.

Starting with the two équations of equilibrium which concem forces in

directions z and x, respectively, we get:
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^^^^p!^ (5.5)
92: ' 8y ' 8x ' " z ' g^z

^ &TVV 80Y 82UK
.X1+1-XY.+_X = p —x. (5.5^
-32-+-37-•t--8X =p~3t2 ^°u;

Integrating (5.5) and (5.6) yields the following expression:

±:Hy=7

VZ°J?TXZdA
-/A.

^ ^
Then:

9VZ . _,.. ^ _ .n 12_W (5.7)
-^z+ q(x,t) = pA3x • ul"sl" '•• 3f2

'"IL., ,pi,^ (5.8)
3X "z "-y st2 ^r ^- -^

Where q(x,t) is the total transverse load per unit length, applied to

the beam; q(x,t) can also be expressed by:

q(x,t)=^(v^ ryr^) dS^ F,dA (5.9)
^A

n^, n,, represent the normal unit components of the cross section

boundary; dS is the élément for the boundary arc; !„ is the moment of

inertia of the beam around axis y.

In accordance with residual displacement assumptions v^, v^:

VZdft=/VXdA=/ ZVXdA= 0 (5.10)
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Me can express the "stress-strain" relationship as:

^^^-^-^
E 3XX =ax - v<°z+°y' l5-12»

Multiply (5.12) by x, then integrate it over the entire section. With

regard to (5.10), we obtain:

^^=mf (xz-G^)d^ (5-13>

EIyllhMy - / z(az+ay) dzdy (5-14)and

The motion of the beam must therefore satisfy équations (5.7), (5.8),

(5.13) and (5.14).

Finatty, wtth the introduction of function X, we can relate stresses

t..-s \... and displacements u^ by assuming that the normal stresses a^, o^,
x z xy

are negligible in companson with a^, as we11 as with the transverse shear

stress distribution in a uniformly loaded beam (V^ van'es linearly along the

beam and has a constant value for an "extremal clamped-loaded" beam).

Txz

Tyx

ux

J^
- - 2H+^

_Ys.
= - 2UT^

= zf(x) -

îy

Iy

"2_

ET:

l IXL3Î

k
sy

- (x +

vz.
+-^

+ (2

zy2)

i.lî^k!
T

+ \>) zy (5.15)
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X in (5.15) represents the harmonie functions which satisfy the bound-

ary conditions of the cross section boundary:

2 f9--»U'2 l '
3^. , . y, l-v^ + ^-y- j - n^ (2+v)zy
an "z

f(x) 1s a polynomial of exact form which dépends upon the extremal

conditions of a beam.

From (5.15) and (5»10), the value Vx, cross-sectional displacement, is

calculated as:

x-El.
-x -zr + } l (x+zy2)dzdy+iL^zy2)dzdy+-,z- /z(x+zy2)dzdy

Substituting the v,, value into (5.13), we obtain

8W-L fi -_v^
3a'r u ~ kAG

where

2(1 + 'v)I
ï_

V"?I7
- ^- l z(x + zy2)dzdy

y*Â
(5.16)

!.. is the moment of inertia for the cross section about the Z axis

= J'y2dzdy.

For the différent beam sections, the various corresponding X(z,y)

functions will be obtained. Cross-sectionai area A will be evaluated in

order to détermine shear déformation coordinate k» The final results for a

number of section forms are given in Table 6 of Appendix D.
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5.2 Considération of section ch'stortions

As was previously noted in our den'vations of the équations of motion,

the assumption we made is that the plane section remains plane. In général,

this assumption does not completely meet all the requirements, when the fact

is bei" ng ignored that the planor cross sections are distorted dun'ng vi'bra-

tion. There is another considération, whi'ch with the help of Arnolds [35]

and Barrs [28] research, makes it possible to establish an équation on a

more général and satisfactory basis than is usually the case here.

The only change is in the value of déformation coefficient k, which

then has a différent meam'ng.

The correction for axi'al U(x,z,t) and transverse W(x,z,t) displacement

functions applied as follows:

U(x,z,t) = u(x,t) - z9(x,t) + E(%,Z,t)

where e(x,z,t) is a correction function added to shear déformation.

Consider a umform élément ABCD (Fig. 8) (we assume that the section

is rectangular and that the beam is subjected to bending and shear loads in

plane oz, where oz represents the shear displacement axis, and ox represents

the neutral axis of the non-loaded beam).

The cross section of éléments ABCD imtiany pivoted from oz to axi's

[l] with angle e as the bending slope (bending problem), combined with shear

loads (shear problem), resulting in distortion of cross-sectional élément (j,

at axis [2]. Similar effects should occur for a11 the éléments in the same

section whi1e, simultaneously, the face of the éléments forms an angle a^

wi'th a 1i ne parallel to the axis [l].
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The total shear angle, ¥, for any thickness z may now be wntten

¥ = (|^ + a^

where shear <|j is:

3w
^=tï-e

and the correction function e(z):

e(2)=/ adz

(2.16) and (2.17) now become:

?" laij-i _l - l 9"£ t-_.-!-

E^^.+AGl^-- 6J - EJ^bzuz -
ly 8x2 ' ""V8X 7 '/z 8X2

32e _ .f 3!£M6i tî bdE = pl
'^St2

82W,

-p/ bzdz

t2w 86\. 8'wo . EA
,(x.t) . AG g - ^ -^ • ÏJ

G/^ MZ = PA ^

i ^
•L 3w

o 9w
8x 3X

dx +

t 8x3z

Me then find two quantities:

3t:

(5.17)

(5.18)

6'=*y bezdz

<-^bltdz

(5.19)

(5.20)
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By substi'tuting (5.19) and (5.20) into (5.17) and (5.18) we observe

that 1+62 identifies with k.

1 4- 67

orthat k*=^ (5.21)
l

k* is called the distortion coefficient.

In other words, we may now wn'te:

•h/2
bï dz

^ J-h/2
T ^TT

ydzjt
^0

_l_y_ J-h/2 _ (5.22)
h/2i

-h/2

k* =

A [^ ^
jbzdz

Total shear angle can also be represented by a Fourier séries as:

COS RTTZ

Where a

This gi"

<i' E
k=1 ,3,5

^ are constants.

ves:

k*== yl21^
-^-

V

ai -

h

83

T
a3

+
as

~^\1L
a5

(5.23)

ai - —+-7-
~t 33 53

t6

k* is verified and compared to the value of déformation coefficient k.

For a rectangular section wi'th a tapered shear déformation distribution, the

value of k* can be evaluated as follows: We have:

"^ = îi ^ k* =hi' t?

1

1

+

+

1
34

T
+

+

1
54

T
+...

+

5
6
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Note that with certain types of cross sections, e.g. circular, square

or rectangular, the value of k* is equal to the value of k. This does not

necessanly always follow in other cases, because of the existence of oc

within the correction function e(XsZ,t).

Accordtng to our computer calculations, if the beam section is rectan-

gular, ci'rcular or square, then k* = k. If the section is elliptical,

however, the k formula wi'11 be used instead of (5.22), in order to simplify

the problem.
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CHAPTER VI

FREE VIBRATION

The présent chapter deals wi'th free vibration bending problem charac-

tenstics and their treatment, for a number of uni form and axi'ally non-um-

form beams. With this method, the beam must be subdivided into a number of

f im te éléments. The stiffness and mass matrices for each élément are first

established; the bending (and subsequently, the free vibration) and eigen-

values, eigenvectors are then determined.

The discrète di'fferential équations of motion for a f im te élément,

wi'thout any absorbing effect, can be expressed in the form:

[K]{A} + [M]{A} = F(t) (6.1)

where [A] is the displacement vector F(t) is the external force [K]

and [M] are, respectivety, the global stiffness and mass matrices.

6.1 Free vibrations

If there are no external forces in opération, équation (6.1) can be

rewritten as:

[K]

By introducing:

3 + w [y = 10} (6.2)

i:;H:;:i {S1n(ut+^



46

(6.2) then becomes:

IAiol
i[K]-œ2[M](^=(0} (6.3)

'^
e,1
e'

^

\

1

w_.'J

e3

e'j|
l ^ )

And u is the rotary vibration frequency.

( for model III)

[K] and [M1 are real matrices, symmetncal and always fim'te. [M] is

often called a consistent mass matn'Xs since the weighting functions used in

détermination of the mass matnx are identical to the ones used to form the

stiffness matrix of an élément. As for the dynamic problem, the consistent

formulation wi'11 be accurate if the actual déformation mode is included in

the wei'ghting functlons of 8u h,^^ l8u (or w, e in model l and w, ^ in

model III, respectively. L8yL L^tJR

Equation (6.3) teads to a standard eigenvalues problem.

If we cancet the déterminant in (6.3), the values are obtained automa-

tically. Due to différent boundary conditions for x = 0 and x = L (or n = 0

and n = l), the number of vibrations and weighting modes obtained wi11

dif fer depending on the number of displacements terms applied. In our case,

the real number of vibrations obtained was equal to 5(N+1) " J, where N is

the total number of f im" te éléments and J is the number of natural boundary

conditions spécifiée! for each case.

Each free vibration will be associated with a particular eigenvector
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6.2 [K] and [M] for the entire System

To develop a model of the entire System, the stiffness and mass

matrices are assemblée! so as to satisfy eqfuilibrium forces and continuiuty

of the displacement at the interfaces.

The two global stiffness and mass matrices obtained are calted [K ],

and [M]^,^, respectively. They are shown in Figure 9. [K]c»c+. ancl [M]<

are square matrices of order 5(N+1), where N is the number of éléments.

Note that the stiffness and mass matrices are individually established

for an élément whose the nodal points are at both ends. For beams, the

élément used is simpler than for other cases (plate and shell); triangular

or isoparametnc éléments are unnecessary. Displacements {A, } and {A.;}

corresponding to both enas or ar nmte élément must oe continuous (wnen tne

System considered is continuous) with those that allow for super overlaying

position of t.he st.iffness and mass matnces for each élément within t-he

global System.

Moreover, in the free vibration procédure, the beam System is subject

to tnertial forces anct the corresponding constraint and déformation states

are déterminée! by using an odd functton for the displacement, as was

discussed in Chapter II (e.g. ./xV, y.\ anc* representing the sum of the"" •©(' - A
<X.

forces and moments at a particular node, noting that must be equal to

external forces which, in our case, are mass inertial forces and the moments

applied to this node). Then, if {F,} and {F,} represent the internai nodal

forces acttng upon nodes i and j, respectively, we get:

(F,}=(F,}+(Fj)

and {A^} = {A^}
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The condition of déformation compatibili'ty wi'n also be satisfted.

Assuming the displacement of the basic System, we obtai'n:

w = h W sin u t

6 = ^- 6 sin u t

where u is the System"s natural frequency.

6.3 Static analysis ~ constant loads

This section deals with the beam problem as it relates to external

forces and time-related moments. It 1s assumed that an external force,

F (x,t), and an external moment, Mg(s,t), are acti'ng upon a non-um'form

beam; F^ and M^ are forces and moments, respect!vely, per unit length.

The équations of equi1ibr1um, in thts case, can then be rewntten:

^.p^^(..t)
3x ' 'z ^ gt2

8vz . ^!w =F^(x,t) (6.^}
9x "^2

By eliminating M and V in (2.1), (2.2), (2.3) and (2.4) with respect

to (2.8), (2.10) and (2.12), we obtain:

3ze
L-(w-8)=EI^+kGA^-rp1^fe-e)-pLrt=o (6.5)

L, (w.e) = PA ^ + k6A^ - ^) ^ ^ = 0 (6.6)
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V[)t-

W = Wg + ^

6 = ea+ eb

we can then obtai'n from (6.5) and (6.6):

Li (w^6g) = -Li (w^O^)

Lz (w^,6g) = -Lz (w^,6^)

And

My = Hya + Myb

", = "za + vrt

Furthermore, référence [34] descn'bes the procédure used to reduce the

eigenvalues probtem at. boundaries U ; 9 ; V to a problem where boundary
8 à Zâ

conditions become time-i'ndependent. It is then possible to formulate it as

follows:

W^ = fi(t) hi(x) + fz(t) hz(x)

eu = gi(t) i<i(x) + 92(1) k2(x)

(6.7)

(6.8)

X.

Uhere f^,....k^ are arbitrary time functions of t and of displacement

This program may be solved by super position to obtain a général

solution.

With a f im te élément approach, the results obtained wm be in matrix

format; for a beam élément, the loads applied to the élément are determined

by:

(F.} = Msyst <Aa} (6.9)
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Where {F } 1s the vector for the nodal 1oad, the {^} is the vector
aj ' l'~aj

for a11 nodal displacements.

The precedi'ng équation can be divided as follows:

F
l
l

l
j

F

A

B

'AA

'BA

SAB

VBB

A

l
l

l
l

A

A

B

(6.10)

Where {F^J represents the load applied to the beam and {Fg} is the

unknown réaction at the points where the displacements are specified.

{uni s"d {Ao} are also unknowns and spedfied displacements, respecti-

vely.

The preceding équation (6.10) can be solved to produce the followi'ng

resutts:

tA^} = [KAA]" (<FA1 - tKABl{&B"

{Fg} = [^1 <ÂA} + W{AB}
(6JU

The stresses are eventuatly identified, through the use of a particu-

lar type of retationship, from the displacements:

{o} = [ST]{A^}
(6.12)
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A computer program with appropriate subroutines wi'n ai d in solution

of the problem, and will etaborate upon the displacements and unknown

réactions at each pre-divided point on the beam (when the program was

im'tiated, only displacements and réactions for a "clamped-free" beam

subjected to a constant extremal force were calculated).

6.4 Boundary end conditions

Only in the case of a uni form élément with boundary conditions, there

are no constraint forces considered. In the case of forced vibrations of a

structure connectée! to an élément, the relationship between the "force-

déformation" properties, and the contact points where thèse forces are

acting must be known.

Four possible combinations of boundary conditions can be established

as follows:
= 0

free end:

supported end;

clamped end:

si'mply supported end:

Note that thèse assumptions are only val i d for um'form cases, for

non-umform beams, the results are only approximate.

The four possible combinations above generate ten général cases into

which a11 boundary conditions may be grouped in pairs, wi'th each pair

sharing the same frequency équation (Table 7).
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For the cases of "free-free", "free-simply supported", "simply

supported-simply supportée!" and "supported-free", the zéro frequencies

reflect a state of stable equilibrium (or rigid-body motion)»

For cases of "supported-supported", "simply supported-supported" and

"supported-simpty supportée!", the boundary conditions are completely

penodic, starting with the first mode. However, for the other cases, the

eigenvalues do not belong to penodic intervalSs as previously demons-

trated.

Particulariy for the "simply supported-supported" and "c1amped--free"

cases, the eigenvalues are non-zero and the fr-equency pairs are similar at

the higher modes.

As regards the bendtng pr-oblem, dtsplacement w and rotation e are the

two most important parameters descrtbing motion of the body. In many cases;

it would be advisable therefore to choose Models l and III to satisfy all

the boundary conditions, because they contain the displacement parameters as

a function of thèse two quantities.
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CHAPTER VU

CALCULATION METHOD

7. Calcul ati'on method

The calculât!on method consists of subdividing a um'form or non~um~

form élément of a beam into a sufficient number of fim'te éléments: then,

by means of a computer program, we do the following:

l) Enter a11 necessary data for each beam élément (géométrie and

physical properties): length of an élément, modulus of elasti-

ci'ty. Poisson s ratio, density, the radius of curvature and the

deviation angle.

2) Calculate the stiffness ['K] and mass [ff] matrices for each

élément in the local (8 x 8) System (listed in Tales (5a,

5b,....5i\ 5j of Appendix D). Transform to a global System by a

coordi'nate transformation matrix of order (8 x 10) as given by

eq. (A.5.4) to produce the new (10 x 10) matrices [K] and [M].

3) Group together ait individual [K] and [M] matrices to yie1d two

global matrices [K] ^. and [M] ^. as descn'bed in Chapter VI.

4) Application of static of kineti'c boundary conditions.

5) Calculate the eigenvalues (free vibrations) and the correspond-

ing eigenvectors.
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For free vibrations, the équations of motion may be written:

[K]^,w + M^t m - w (7'1)
'syst

where {A'} = {A^, A^, .......A[^ ^ jj , N being the number of fi'm'te éléments,

[KLvct and [M]c«C+ are rea1 and symmetnc square matrices of the dimen-

S10ns f(N+1) NDF x (N+1) NDF).

The noda1 displacement vector {A^} is in the form:

{À.}T = {W^ W^. 6^ (d9/dx), ^} (model III)

ipyp V . W . d. frlo/dy^. /i. . aro rocnor+i uol u •tTancwûvcû d'î cnl aromûntc
"xi' "z1 " U1' •-"'"-'•j» '4'-j -•*-> • ~-r"-~ - • ï~ •JF , <-. Ui... ï&i US U i Sy ; U^^iiiï;., u.,

in the direction of x and z, cross section rotations, derived rotation and

shear déformations at node i".

With {A} = {Ao} sin(a)t + ^ ]

(7.1) may be written:

(7.2)
IWsvst - -Wsyst' <A1} E w

where (7.2) is a standard eigenvector problem.
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In calculating the etgenvectors, if J is the number of imposed

constraints, then [K]^,^^. and [M]^,,^^ are reduced to square matrices of

order f(N + l) NDF 1 - .1. with the aDpropnate line? and c.olumns of

([l<L>,e4. - u [M]<~,,e+) being then reduced to satisfy the constraints. The

form and characten'stics of (7.2) are not affected, except for reduced

matrices [K]^ nd [M^ (of [K] ^ and [M] ) which are finite positi-

ve, instead of semi-finite positive. The [M~I]^^^| [K ] System is formed to

détermine the free vibrations, where 1 = 1, 2,...,[(N + l) NDF] - J and the

corresponding eigenvectors.

The eigenvalues problem produces N* real solutions

("l2, Aoi). ("z2. Aoz), .....(^*, AoM*)whereN*= [(N+1) NDF] - J

with 0 ^ "i2 ù "g2 ^ ...... ^ t.» 2
N*

;0 si l / j
and <VTOT(A^^ ;;;:^

Vector {A,_} is called the wrighting vector of mode i. Solution of

(7.2) gives:
01

[K] W = [M] W l O2] (7.3)

where {<|>} is a matn'x in which the columns are eigenvectors A ., and [o2] is

a diagonal matrix whtch contains eigenvalues u, 2 at the ith on a diagonal^

with the following rotation:

W s {ûoi> ÂOZ.... .AON*)

and

[ft2] =

b)

(JN* (7.4)
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7.2 Computer program

The fim'te élément program is composed of a séries of standard

modules. The modules appear as subroutines with différent uses in différent

contexts. The entire program is written in Fortran IV and represents an

extremely simple application of the subroutines.

The flow chart used 1n this anatysis is given in Fig. 11.

A. Input is the number of finite éléments used, the width and thick-

ness of the élément (whether the section 1s rectangular or square), the

diameters (if the section is circular or eHiptical), the géométrie proper-

ties, the length of the élément, Young's modulus for each élément, Poisson's

ratio, density of the élément matenal, the rotation angle, the radius of

curvature and the angle between two plane faces (see also Table 15a).

B. For each finite élément, the program essentiaHy proceeds as

foiiows:

l) Détermines the stiffness and mass matnces of t.he qlobal

System.

2) Groups a11 the matrices for ai 1 the Systems as described in

66.2.

3) Imposes a11 boundary conditions; [K]syst and ^M ^svst are now

reduced to square matrices of order [5(N + l) ] - J, where J is

the number of équations for constraints imposed.
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With [M]^,,^+ and [M]^.,,^^. reduced, the free vibrations can be

found by solving a group of équations in the form of

" 1\ ,ft<1.__., where fKl , and [Mi , are real svmmptricLpgd L" -red ; ••••-•- L-jpgd """ L"-Ted "'" ''-'-" -•j"-"--'-'••-

matrices, and [M ]^^^ is finite positive; the calculation is

done with the help of the EI6ZF subroutines in the IMSL catalo-

gue (this subroutine automatically normalizes ait eigenvec-

tors).

5) The final step consists of calculating, as necessary, the static

réactions for a constant force applied to the beam. The proce"

dure is based on équations (6.10) and (6.11).

AU calculation are duplicated on an IBM 360/70.

In conclusion, the computer program used for the présent study calcu-

lates free vibrations, the corresponch'ng vibration modes, as we11 as static

réactions for the static forces of a straight, curved or slightty curved

Timoshenko beam, or of ta.pered, rect.angular, square, circular and elliptical

beams, and for différent boundary conditions.
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CHAPTER VIII

CALCULATIONS AND DISCUSSION

8.1 Général discussion

The essential steps 1n constructing the stiffness and mass matrices

wtth the finite élément method have already been discussed. The following

calculattons corroborate the results we obtatned wtth our model, and compare

them wtth results from the theoretical équations. A Fortran IV computer

program with doub1e°precision anthmetic d1d the computation with relative

ease.

For the first group of calculations, the initial prerequisite was to

détermine the frequency parameters for a stratght, umform Timoshenko beam

havtng the following properttes: ratio of E/G = 8/3, rotary inertia parame-

ter Q = (0.08)2, shear déformation coefficient k = 2/3, Potssons's ratio v ==

0.3, density p = 7.3236 x 10-lt Ib-Lsecj2; cotd-drawn steel. The beam is
-ppTT

subdivtded tnto five unifGrm finite éléments and the square roots of

frequency parameter (X) are obtained for 10 général cases using models I,

II, and III. The final results demonstrated that two models, l and III,

satisfy ai1 boundary conditions and that their K^ are justtfied. This was

done by comparing model results with their exact solutions (Table 10).

The exact solutions were obtatned by using classical Timoshenko beam

équations (Table l). The results of the dassical équations are listed in

Table 2 for the ten cases.

The companson of results between the classical method and the finite

élément approach is shown in Table 12. For the same number of finite

éléments, models l and III are closest to the theoretical solutions, ëog.

there is less percentage of error in the square rootSo
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Mode! II satisfies only the three simple cases: "free-free",

"supported-free" and "supported-supported"; for the other cases, there are

neqative freauencies. the theoretical explanation for whi'ch is 1n ô ÏI-2.1,

Once the two models, l and III, are considered typicat, then one of

the two can be chosen, preferably model III (see ô 11.2.1), as the principal

model for the followi'ng vérification wrk.

As to the second group of calculations, they involved deternn'm'ng

frequency parameters for a tapered beam. The results obtained are listed in

Tables 14 (14a,...14h) and were compared with results found by other

authors. BernouiUi-Euler results are also presented in thi's table, to

corroborate the importance of the two effects from Timoshenko theory for

hi'gher modes.

Testing 1s done with several varidtions between û and l denved from

the rati'o of length "B" to thickness "H". For the same number of fi'm'te

éléments (8 éléments), the présent results are almost identical to results

obtained in référence [l], involvi'ng exact solutions for lower modes. When

B and H are set close to l, the différences are approximately 0.02% to 0.03%

for the higher modes (6, 7, 8...). The évidence seems to be clear that up

to now, for straight beams (tapered or non-tapered), models l and III can be

considered as about the best there are for the analysis of vibration problem

with Timoshenko beams.

The thi'rd example venfied free vibrations (HZ) in a tapered beam but

usi'ng the stiffness and mass matrices for strai'ght beams.

In this example. the solutions in [27] usi'ng the matrix transfer

method together with the assumption of displacements U, V, W (in three

directions), were developed for the constant prismattc curve of the plane.

The free vibrations were calculated approximately for a fifteen-element

subdivision of the same arc wi'dth.
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As for the results obtained in the présent study (eight fim'te

éléments), involving use of approxi'mati'on theory for a straight beam and its

application to a curved bea.m, t-he outcome proved to be scientiflcally

acceptable in the light of the process appli'ed (see Table 13).

8.2 Test of convergence

The followi'ng section on tests of convergence 1s an analytical study

of the beam wi'th the coordinates shown in Table 10. The problem consists of

ascertaimng the number of fi'm'te éléments requi'red to correspond to the

appropriate free vibrations in order to sati'sfy the convergence conditions

mentioned in 611.2.3.

For a gi'ven beam with subdi'vided éléments varying from two to ten, the

three models I, II and ÎII are used to corroborate the six standard cases.

vibrations (HZ) are obtained for the flrst 4 modes.

For model II, only t-he t-hree cases of "supported-suppQrted",

"supported-free" and "free-free" are dealt with. In addition to models l

and III, the "simply supported-supported", "clamped-clamped." and "clamped-

free" cases are also investigated.

Fi'rst, when investi" gati'ng model II (Fi g. 12a,...12d); it can be shown

that vibrations for four modes are easily determined for an adéquate number

of éléments (N = 6). Thèse cases are common and simple, with the rate of

convergence bei'ng extremety rapi'd for the fi'rst four modes.

Second, in the first and third models in Figure 12e (Ist mode), the

vibrations for "supported-supported" conyerge at a quicker rate than where

N=6. "Ctamped-free" and "clamped-clamped" converge more slowly, and thi's is

even true for "simply supported-supported". The rate of convergence is

slower sti'11 for a number of required éléments up to 10, due to the comple-

xity of the structure.
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Sinnlarly, with the second and third modes (Fig. 12f, 12g), the vibra-

ti'ons in a beam with a si'mply supportée! end display convergence with a

sli'ghtly more ramd décline- As demonstrated in Figure 12h (4th mode), the

simple end conditions, such as in the "supported", "free" and "clamped"

conditions;, always represent favourabte boundary conditions which enhance

the rate of convergences whi'te the other conditions require a greater number

of éléments to satisfy the convergence criteria. In général, the number of

f im te éléments required to satisfy the convergence cnteria adequately vary

between six and ei'ght.

Although the rate of convergence also dépends upon the order of the

polynomials chosen, thi's effect however does not simpli'fy conditi'omng of

the stiffness matn'x.

Furthermore, the formulation where a11 éléments are assumed to have a

cubicatly varying transverse di'splacement and a befcter représentation of

shear;, such as in models l and III, (having already satisfied the two

previous cri teri a.) a.Hows grea.ter opport-umt-i'es for ram'd convergence and

yields more précise results, unli'ke the other numerical models wi'th fewer

deqrees of freedom.
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CHAPTER IX

CONCLUSION

The construction of stiffness and mass matrices for a uniform

Timoshenko beam has been presented very generally and can be readi'ly applied

to non-umform beams (straight and slîghtly curved). Thèse matrices mai'nly

apply to the vibration probtems, which include the effects of shear and

rotary inertia. The présent éléments (models l and III) with transverse

di'splacement, rotation of the cross section and shear déformation, as

demonstrated in exprerssion (2.12}, wre nodal types of variables. Thi's

could be used to calculate the vibration characteristics of a simple struc-

ture or complex structures with discontinuities in cross section and angular

shapes (parti'cularly tapered beams, and of non-umform géométrie and

physical beams, in général. Thi's method converges faster and yields accura-

te predictions of free vibrations. The modes obtained were in accordance

with wave form and Timoshenko effects.

The method of analysis described contained an adéquate number of cases

of boundary conditions. The numerical results (eigenvalues) obtatned from

the computer program with thi's method corretated well wi'th the exact

solutions, whi'ch were obtained by usi'ng a final général solution for the

équations of motion.

The foregoi'ng procédure was indicative of the éléments convergence

toward an exact solution of the elasticity équations for a "supported"

supportée!" beam. The assumption made was that the value of the shear defor-

mati'on coefficient used was correct, and that it therefore could be apptied

to non-umform beams with différent boundary conditions.

Finally, the éléments with cubic variation in shear demonstrated a

better rate of convergence than linear variations as presented in [12].
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APPENDIX A

FORMULATION 0F STIFFNESS AND MASS

MATRICES 0F A BEAM ELEMENT

TRANSFORMATION MATRIX -

A.l Curved beam

From (4.4), the internai déformation energy expression for a curved

beam gi'ves:

^ ~-^[.. !H|^(^(^-fâfâ|-^fê)!d(^
f\/piumi\ '- "° -1 y

2
l fc& / ( ^ _ _f_^ Q^ j (voLme)
2 "" j , ^ ôx (r+z)a

+ -^
2

(A.1.1)

Fross (4.5)s the kinetic energy expression for d curveu beajn tnvp<;
,a

rf,= T̂ t. W?^-?^ ^}w
rvoUwe< *" "°

+i ç l f^wy^.f'/ot-'-'"A&)i<| l'àtj d'^VOLU"n-;

'Votui

ffl 1
\r\. l . t- /

i/o Lu ma

Non-dimensionalizing by substi'tuting:

-)4

tt =

L

w

<AX = ÀV} • L

<Aw = <A^..L (A.1.3)

And according to the expansion of the cubicat potynomi'als W and e, we

set W and 9 as:

W = ^v] + ^^z+ 35 ^ + »4

Q ^ a^.^3 + a^vl +a7v]+ A8
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Then, we obtai'n:

^H^4H0(<-9

0^: y^4('J(^)= 4^0-^) (A.1.4)

£+ ^^= 4 0-2^)^

The shear relation -^- =9-1-4; then becomes:

^ -_ i^- e
^

Substituting (A.l.3), (A.1.4) into (A.l.l) and (A.l.2), we wi'll

obtain:

A~(- -i E

^CH.^1

4H ^-21)liï

,1 f. r-,

'\/ol

+ 2. /K.U

î.
UtVlç.

àl--^.e
n c^-z)2

ch-4.HO-^)

A (vol.ijme.

^L L l^^"")

(A.1.5)

and

-î^ 4H| O-^)^^-4H(.-^)]
ât

+îeftL'| [^

4+

|àô
î lot

4 (vol-^t)

(A.1.6)
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A. l.a Stiffness matnx

Model III was chosen as a typical model for the job. The matnx

format (A.l.5) can be written as:

^ 4Ef \\w N ^ l-»]] -iîiïM^"1--^6) [B.]1^-'-)
/Vol^ Folum%.

-i E
~2 ,(€?J A<"1-HEL-. R)' ? NMA(~1^

^LM^ [?+ w]^>^ij^ ACTO'-) „„

Where [B^] > [B3t,] ; [&j / [BJ & [^5] are listed in Appendix B.

n =1 a J ^^f[uj^.^2(z/-2Z^)f^]^r£MA.4[p3]^
î- L { ï^ ^o ^ -'0 1^. -'0

U^:[Q+^| '^^] ?+j [U4J ^]
'o /o /o J ^

^^GAL" UL">
~z"

^ EI^
=ÏT" p[y,T<F[uj\c[u,]\s? sju,j\ s[u,,]'

M
/ A *s 0\

/ \t\. l .0}

Where; [U,]*=^J1[uj^ > [uj*=fM ^1 / [U,]'= 4^^] ^

E^F =f [u«] ^ - p<.r< p<^ ^ - ^ = r po] ^ •

[UT/ K/N -W^W & M are listed in Appendix B-

Ands Î5= ^/Gl > ^>= H/L . Q--VAL& ;F=^(Z^^)/G , ^=r/L.

-. J. ^L-V ^or rectanÊulaï sections ; ^= —^_-T C = ^'^'Z./Q-'i
^2. \'y j -•"-- ^^^-j_ , ^-- -~\i-/ —j

S,. .4 Lt/(Q^)S/Z- , Z'= ^^,. Ws, s-
ÊQ



72

[A] is given in Appendi'x B and [K^ ] is the stiffness matraix of a

curved beam in a local System.

To détermine [y^] of (A.l.8), the calculations were derived. analyt.i-

cally. The éléments of [^ ] have been determi'ned and are listed in Table 5a

(Appendi'x D).

In a global System of coordinates, the stlffness matrix of a curved

Timoshenko beam wi'll then be:

[KL=[yvTj [KJ [/v]
{.^0^0} (.^^S) (8K8^ (8^0)

(A.1.11)

where [A] is the transformation matrai'x of the coordinate Systems, gi'ven by

eq. (A.5.4).

A.l.b Mass matrix

In the same way from (A.1.6), we derived:

^ = 4<I, ïf4H M "4H Ml ~ -A M f^cunt)4 ^i M'a^
/uolu»n<. l.L l--l J '1+^J °

= i <f, (4HHL3M ^°^iVt^Ç,, o^ [QU <vot^)
Volume. -•--->-^- ' &. ^yo^ç ^" •-y

t^L^(4»)(-^)[NM+^[L^(v°l:"-)+^ftLlJ.<[LÎ][lt]'A1 (A.1.12)

Where L». L.L. L, . ts. & L are listed inAppendix B.
/ t*-^.p / ""^ ?

r^- t0 .^L-

= i ^AL31
2.

(ïH'MAi <f)V-"<? +rï?4{M^TtJ>^

W^r_^y~^~~~^ s 0.1-13)

Where ^ ^^^-.[^ - ^^ /^î-^^-l ^M-?^

M'^M^i^T & ^ are listed in APPendix B» snd P=<SP ;-f=QF/c^QC .
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Likewise, we could •wri.te,forC) : <"C = ^ ÇALÎ {<7<| |^J lc><j

Where ['A] s [À*g J for a curved beam.

. * 1 La 1
'J\c.\ for a slightly curved beam.

,*] .— 1-A"'. l foT-' a straight be,
'4J ' , "

)ea-m.

r. «l r.<- l - . , . • •

A j s L^tl tor a tapered. beam.

And [Sfj =[A-1[K}
The ki'netic energy of a curved can be expressed as follows:

^°i^^'MJî?J..Jft"J ^
[M] e

where [M]^ represents the matrix in a local System.

The mass matrix of a curved beam in a global System wi'H then be

L JC' •- -j

(<ox4o) (10^.6) (8x8) (Bîcio)

(A.1.14)

,1.15)

(A.1.16)

/ fi 1 1 7 \
\r\. l .l i /

[A] is gi'ven by eq. (A.5.a), [^ ] -is ana'lyticaHy determined in the way
^ ~" ^ ""

as [ïr. ] and [Rp ] and ai"e l'isted 'in Table 5b (Appendix D).

A.l.e Résultant stress matrix

The matn'x caris fina11y, be determi'ned from (4.35:

/

Me- {

E|¥(N-LM
0

0

0

0

^ [Bj

-z_ .1
!+z L K.^

)?

\ }

T N

A&

e _z_
-T uj

0

0

0

0

[Bj

N
T

M M
=[<>T]c fe

(A.1.18)
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where [ST] is the stress matnx of a curvecl ([Bi]o [82] and [B3J are

given in Appendix B).

[.?.. Slight'iy curved

A.2.a Sti'ffness matrix

For this type of beam, (A.l.5) becomes

^ =
voium» [

(<-?1&-<,H('-^)IIÏ ^Zj.a0| } J(voPuma)
L l^-l

+f^<G | [b.'.. e l ' 4 (voU^i)
/Vo(>;m<. L2.1)

Or,from (A.l. 7), we have

-U = l E f (4Hf ^} fB,1. cl (vol....) + l E f (f f [&;] [B;| 4(vol.-)
2 "Jvolu^l/L3-ii-3J " ' £ Ao^.-'r1jr'1J " ' /

.{.J, ^
Voturtt

H M+ Kl M l ^-^ 4- ^j, K] [B.c]- (vol-î)
Volvmt

(A.2.2:

a. r e pi: e s e n t e d in A p p e n d i x B .

'•i n /• » .S. /•î-

Wheref&s] , |,i] & ^2

^ = f& ^ "l'M-'^ -T["'] ^< '"f <M^ *t^M^}

Where l =J •z'''c<ft , et M^=j^z.ciA ; l s ic moment follnwing z dup to shear

-^ = î y-4PX^.[U^V^L*_SM]
[<] ' (A-2-3)

Where [^ - ^^ / M^W^^Î- 4CN ^ F-T -FE^] ^

N"/ [^r-N & [UACrare listed in Appendix B.'

And P^ ^/O ;V=-^M^/ALG , S=-^G'/EQ ; Q = I^/AL^ .

Ihere^, U . ^ {ûT} ^ [ft<]T K] [ff<] {ûj

|XL (A-2-4)



75

Where [!<],.„ is tEie sti'ffness matnx of a s'il

System (Table Se, Appendix D).

In the global System, we have:

y curved, in the 1oca1

se
IA <

SC

(lo^o) (-toxS) (Sî'.B) <<o)

i.2.5)

Where [l] is given by eq. (A.5.4;

A.2.b matrix

In the way (A. l. 6) becomes

^4 < L, .„ 1 |4Hf(<-î-'l|] "i -4H (-ti'[^
'Volumt ^L

ae'

at
.«olume.

+4 ^,î f4 piuP .^
\ ii-\l. j l-^l rt

4 f^tj

0 r »,,f r o m . ( A . l . 12 \,. w e h a v e ;

».2.6)

r€=.i
tuwi?<

[LJlfl-î1 ^(VOL"*e) +^- Ç f . Z?~[L^][L^] <A^olu"n^
'MQ^mH

+i Ç l .C4H)(^ ][L:][LJ +[L;][LJ|A(vo^)^çAL5J"[Ll][k] ^
^lw,t L- " - - -- -J ^ /o - " - (A.2.7;

Where ^ / La. , L^ are listed In Appendix.B S

'G ^ W'f F [T.? Q [T,? . [T3J'.[T,]" (

K]\*
lsc

(A.2.8)

"-ère [T,]'^< [T.] ^, [T,f .;;[T.]^ ; [T,]'^^ ;[T«HM«*I

[T<r'M* vî& [T4rare usted in Appendix B? andsp=Qp/Q=I^L2- ^=®'v •
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Therefore;

r€.-.l(s1^..s[AtlA:J M [H

se
(A.2.9)

Where [M]gç is the mass matnx of a stightly curved in the local System

(Table 5d, Appendix D).

In the global System, we have:

ML = lArl IRI.JA
js-c - r- '-j L' 'pc.

(i0i«o) QoK8) (8<8) (8,s<o)

Where [AJ is gi'ven by eq. (A.5.4)

n o ^ r^Ao.^^^.^ ^.^A..-^.-n.ic.c oïress iiMâtnx

(A.2.10)

(A.l.18) may be written:

^4 E H ^ _E , ^^

crL =
Jsc

î.h]
"?J L "• [."îjL m L

0

0
\w--

v ^ [B.c]

ii"[g_-|_i.7Jo;Tra~r2'iK1J

0

0

0

0

^ [B,c]

T

.-] ^

[S [^
J5C [^TL

(S x 8'')
(A.2.n)

where [ST]gç is the stress matn'x of a slightly curved beam ([Bj, [Bg] and

[83] are gi'ven in Appendix B).
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A.3 Straight

A.3.a Stiffness matrix

The expression pf A,.^ in (A. ?.. . l.) becomës

-l e f il ôe l cAC/o^e) + l fc& | ) ^- -e | <A(v<^.)
~z~-îEi )i ^rv"""'"/ 'Z"-7,,,L^

4^:'1 ' (A. 3.1)
Voluwt

or, from (A.2.3), the P and V cancel ont and we obtain

P =V = o

a n d (" ^

^,- i "t ^ [uj" - s [u,,]'

or

]ÇÎ,~ -" -l (A.3.Z)

i?^[4M[4M
-v^"

Kl<| . (A.3.3)
à

wher'e [R^ ] is the stiffness matrix of a straight Timoshenko beam, in a local

System.

[A] is gi'ven in appendi'x B

[y^] i"s analytically calculated from (A.3.2) in the same way as [y^]

and [y^].
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In a global System, the stiffness matn'x wi'H then be;

r. ^-i r- -i r-~..-."i r- -i

(loxto) QO.S) (8^9^ feltio)
(A.3.4)

where [.A.] is given by eq. (A.5.4)

Table 5e (model I)

Table 5g (mode] III

Table 5i (model II)

and [R,] is li'sted in

of Appendix D.

A.3.b matrix

(A.2.6) can be written as follows

cf.- p
'L.

Va l.u me.

z HiA(^e)-..i?M5! fe-fâ
|dtjj - ' i ' ^ LO'tJ (A.3.!

or frorn (A. 2 .8) we have f =: tj- = 0

Therefore

rc4^l1Q[T?.?]
^.... .^^-™-»^™^.^.^.-^

K (A.3.6)

In addition>
.̂v-^: , {^ [^ [A-.:1 M is

M À (A.3.7)
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where [R^ ] is the matrix in a local System (Table 5g, mode1 I), Table

5h (model III), Table 5j (rnodel II) in Appendix D).

In a global System, the matrix of a straight Timoshenko beam wi'll

be

à A À
(4on<o) (40*8') (8x6') C»mo)

1.3.8)

[A] is given by équation (A.5.4).

A.3.e Stress matn'x

Finally, ('A. 2.11) beeomR-s •,

( F- _. n-.Tl

-Tzl^
['

<A
0

0

}W1

v
k (7 ^j

e - r&
"r7Ïii

0

0

0

0

Jk(j|B,

1 iûll" j [5T]J^
rjd u:

(8r.8) lui-

l.

(A.3.9)

where [ST] is the stress
"d

gi'ven in Appendix B).

trix of a. straight beam ([B,'1 and [B^l are
A

NOTE: a) On the assumption that the beam is li'near, elastic, homogeneous

and isotropic, the axes' origi'n coïncides wi'th the centroid

of the section, the fist moment following z is cancelled out

(M. - 0).
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Indeed, if we consuier a élément wi'th a rectangular section

wi'th h and b bei ng width and depth, respect.ivel.y, we coût d

write:

M^,J z.df\
'^/t. f^/i /-kA

z <AM<AZ = f z"^ • -

^/t./V, /-*'A Mf.

-^,2.

^
?.. à 7. =: ^..'. z 0

-V,

That is to say, the two terms "V" and "v" in [K ^ and [M],

vanish. The two matrices [R ] and [M] therefore become the

matrices of a curved, homogeneous and isotropic Ti'moshenko

beam.

u a 1-lima U •; n II D II •» n ^1 II „ II •• « ..„„,_ F Pl --..-l miD,' 1T 1R1T13! CljrVSTUrS i" in "'r'" ans "p" is zéro, [K^ ânu [Mj

wi'11 matrices [R ]^ and [K ]^ of a straight Timoshenko

beam.

A.4 Tapered beam

As has already mentioned in previous ciiapters, we assume the

of surface A and the moment of inertia of a varyi'ng aflong the

axi's to be:

A M = Aa+(A(,-A,)^ ,. Aa+ ^

I,0<) =I^+(I^-I^)V) = I^+ûl^]



81

The analytical method here was developed particularly for a

strai'ght. bearn, using îtidel III. The devetopment could effectively

apply to the other models. (see Tab'ie 4 of Appendix D).

A.4.a Sti'ffness ma'trix

From (A.3.l) we can write:

4 E
" "2 L

4 E
-2. L

Ï^ ae
ch']

W) + A -Ç..&L j A(x)
7)^

ÂV}

fl{

(vt&v')^8h4!'6L)(fti>"ûfti)
'0

()l

(A.4.1)

A

f .._, „.. ...) . f ., ..__ ..1

.1; -l l i-^j+ Iï4u"f ^ -{^\^? Ab[u4CT]

Where
ik. f ~"a t- ."; ^:

^A \) P?.T ^ B an(:|u4c-r are listed in Appendix

"T l..^!r

1

(A.4.2)

Or;

/u=i^Ti ËLM^i iA)
K] At

/L<4 {!!\\î NT{1'- N< ^M'JN + teL NTjft« N + Ab M] [ftil û

(A.4.3)

(A.4.4)
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where [K],^ is the stiffness matri'x ;of a strai'ght tapered in a local
~k ^ is

System; ['Yçjt.] is determined ('inal.ytical'ly as [•^], [y ] and [y^ ].

In a global System, we have

A 4M
OOMO) (lor.8) (8x8) (8y.<o)

(A.4.5)

[.A.] is given by équation (A.5.4)

and [f7,^] i's given in Table 9a (Apjiendix D)

A.4.b matrix

Tn *t»^ o-mn ....»•• < ^ nn, l K 'Ï C\ >-«^ k l., n
,in me 3011111; waj , l l uiii {l-n-j.yi wc jiu»c

^çi-) yo
à6!^ 4^ Aw 3t

l (L f(i,.... M,.|) [IJYJ.) 4 ci' r^AA^] ^
g . ^ v , , ./ ^J , ;.. . ^ , ,.^.^J

W1^] ^ N* ^^-'{^[H+ ^M"

(A.4.6)

(A.4.7)

Or TA / TS-T , PSJ & [TAT are listed in Appendix'B.

-e ^ IY' 1
=f [/xatJ
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T

SimHarly:

<€.4S&Tî 14' K
(- \ ) ^_ -l

^ ù

M at

^a^A.K.M" ?]>^]TMy^? û

k.4.8)

^.4.9}

where [M] is the mass matrix °f: a local system. In a global system,

the mass matrix of a straight tapered beam will be;

\/
<At ~

(lOx.io) (fOf.S)

At

CS-AB) (8«o)

1.4.10)

[A

[\lj
[Rdt]

is given by eq. (A.5.4)

i's calcul ana'IyticaHy from (A.4.7)

•is li'sted in Table 9b (Appendix D).

Transformation matn'x

Les us a fimte élément of a beam that is initial 1y vibrations

m a of Cartesian coordinates wz, having an angle with the global

xyz, ai 1 the calculations are now referred to the new System. For

our models I, II and l II, transverse displacement is the only parameter that
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changes in System xyz. The other four parameters 1abe11ed w', e, 9' and 4,

whi'ch represent rotation around the y axis do not change (Figures 5a and

5b).

Ne therefore arrive at:

W = W^ Sîn o(<, + Wz. cos <

where w^ and w^ are, respectivety, the components of w at x and z in the

local xyz axis System. For an élément defined by two ends

transformation matrix wi'11 be;

and "j" the

Model l

Degree of
freedom in
the global
System

Model II

\^\
/

vvi,

e.

e.

^ ) ~'
/

w,

f

e»^)
w,

w,
/ô[

^i. \ _

w^
/

^
Q\

K̂'u /

AI
(ftx. 0'}

[A].
(8x~<o)

w..'y.i,

~^î.i

(

W(/

s.
™-/

Qu

wx.
<i

•^
Wi,

Qjf

^
»̂^-f

Wi.

—,
Q'i.

4^

^
ŵ^

^

.5.1

Degree of
freedom in
the local
syst.em

(A.5.2)



Model III;

A|
(8x<o)

w .
xi.

wzi,

H^

ŵ,

V/
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k.5.3)

where f'Al is the transformation matrix for the three models,!, II

and IH (see Table 4 of Appendix D).

A
(B<1o)

54'no(<, \.o5o(.o o o o

0 0 -t 0 0

0 0 0 '1 °

0 0 0 -l

.5^

0

0

Coso(o

0

0

0

0

<

0

0

0

0

4

0

0

0

0

4

(A.5.4)



1 ^ jAl.NATRICis:

B

LIST 0F MATRICES

a) M2M^UW_W19_93

T'yXâ._±
^ ® //

h

0 -< 0 0 0

o 4

t) î.

^ ^

000 -"<

o o o a -i ci

^ ^ 0000

32-fooo00

y S.4 o-^ -l. -i -^

b Z. o o -3 -S. -i o

^ e If
i?î__k-

L

0 0 0 ^ 0000

o o4ooooo

0 000000-)

o oc>c>oo4o

^ -l 44 oooo

3 t. 4 ooooo

0 0 0 0 i '14'î

o o o o 3 2.-10

Al
li.

soM_JL..—i}^VLLllLÎJ S

^ . "

i^fc-_.-^_.

ooo4oooo

oo'loc'ooo

o&oooo-'to

oo oo o o o -l

i 4 A i oooo

3 t'i ooooo

6 Z 0 Q -? -& -4 0

0 A A

h

T<

o o o îo oo e

o o 4 oo o o o

o oo o o oA o

0 0-j 0000—î

^ A A A 0000

J t 1 0000>0

o ooo52.4o

3 S. 4 0 -i -< --< -4
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[Ak

e) MO^Î_X_Jj^_0_e^J^

000^0000

oo-l oooo -<

OÎOOOO-40

0 0 000004

^ -l 4 ^ 00 00

3 S. -< o -<-<-<-<

6 2. 00-3-8-40

0 0 0 0 i •< 4.1

^ n //

Jl3^e_t-

00 0 i 0000

ooooooo4

00 6 0 00-1 0

oo -S o o o> o—l

-144 40000

000 o AÂ * ^

ooo o 3 t 4 o

5 2. 1 0-^-4-4 -S

âl MoM.-JS___iw^wl-'.e_Tts

0

T.

0

>-•• o n

>P- A,

ooo

O0'< 00000

0 0 i oooo --!

0 0 000 00 A

^ i 44 0 0 p a

3 2. -f o o ooe>

3 g. -< o -< -4-4-4

0 0 0 0 -i •1-S4

A

••' e n

J^_4_

OOO-l 0000

0 0^ 00000

0 0

4 4 4

3 t 4

0> 0 0 0 Â

0 000-4

<î o o o o

0 0000

00004 41 *

3 2. 4 0-4-1-4-4

Note; The inverse matrices [A"1] do not exist in model IV.



2) THE USED IN A III, type "i":

a) The matrices in (A.l.a), (A.l.b), (A.2.a), (A.2.bL

(A.3.a), (A.3.b) and (A.3.e)

5 î.
4 0 000

-cL

[t]
[e ?1-M

[B,'•^.

[B43

M{1

à9|
î VjJ

9i'_-rl, e

â^ or4zy

'^.

~ùv^ -]

--- [ ° 000 vf ^ ^ ^]
5 ^

A 0 -^" -^ -^ -'

6 M 2. o o ~3"T -Z.v\ "l o

l y -^ |

N-r^g^ [

5^.X) ^) <-X 0 fX {X ^ X [ ,)(^

0 0 0 0 Vt V| V\ ^

3n-é>ti 5,ii -4»i -i--?'n o o o oo

-/? -/î 0000 •J

s3KB^~M=[4l1î3rî 4r2^ ^ 0000

.3 .il

T -1" -l

0000

[L<H| -[^ ^ - °

[L^j -[^ ^ l -

[^]=o-^ lï

|L2(,|=J(t-^|âJf^= [ -%, -Vé -</é o o o oc
/o "La^J

[L3}H"H = [^-^ ^-i4 ai^T 2r4 0

-tv\A' vi-t.y3 v\-iv\ ï-iv\ 000 0

000
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e

0F THEORETICAL

l)

Starting from équations (2,24) and (2.25), the parameters representing

nodal displacements can be wr-itten:

V/ = A^ a-?sl\ 7\o{vj + f\^ sînk A<XVJ ••••A^ co> Api'j -» A^ 5-m 'A|)'r] [c.l)

e :-, ^(.^5..)5?nkAc<.l A, . .^o(2!i:'j cosk 7^ A,

4 A»

.Mî^s^ 7^n h.,-' ^filU ro5 ^v) ^.2)
"Llï }~' ' ' ~" tA P /

W = 7\c< S?nk?\c.'{^ A^ -••- "!\c{ c05l\ ?\o{^ /\?.;-"Ap fw\ 7^Vj P>5+ Ap cos 'hpvj ^ (C.-ô)

9 = A((X+-|-)cosli?-'tf>{vià^ .', ^'((.< +.i| 5.rn?w^ Ag
"L {' 5j ' " " 1-"1 "' ' L Y 5,

i.z'f. A • T.»-/' ?'\ - ... » -.. ..

+ ^ (l .- (î J m5 A^rj ?\5 -l- .^.^.^ -p'J Sw 7^ t\^ IC4)

.»- k
<:/'.<

^ _ h f o(- ^...+i )54nk 7\P^ ft, + ^. | c^ - l-'il) Co5^ 'À4n A^~- T r" ~-.<~fw" /w"i 1 IA ' T ^ '" '~^~iw" ""v! '

î(p+s^'i?n^3"î(A. f p, + î-î ) 5.?« 7-^ ^3 +,À. f p + 5-pj COS 7\^ ^4 (C.5)

Substituting the boundary conditions (Table 7, Appendix D) in the

équations (considenng w^ = w = w), the theoretical frequency équations for

différent cases are obtained corresponding to each group of appropn'ate

boundary conditions. Only two cases wi'll be developed here:
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2)

a) _"S_upported-Suppor'ted" case

Boundary conditions: (^ x.=o & y. =L (^ ^--0 & ^^j

w (o) = e' (o) :„ o

^AJ (L) •= Q (t..) -:: 0
(e.^.i)

S u b s t. i t u t. i n g ( e. &,. ^\ i n (e. >i ) & (e, 4) / w e o 1-) t a •i n:

e y = o À, = ^ .: 0

<A l
5

•^•-14)
v 5)

.5Îv^\ 7\c/\ cwn '"!\(>:

û,
"s.

l\, 0

[e]

S in ce t h e déterminant o'f Ici cannot be zéro, we therefore

h a v e : C o c°f. ' u l .-^ l f V ^

3!v\[\ 7\c< 5w\ 7\()) = 0 (c.^)

This équation is valid for' a-i)'- tf- > â+± and



nn
y y

KQ ^ i ,.,l-,,^,, A.Q ?" S are define'i ir, Table 1 (Appondix E)
5 ïï l 1^,,. I ^..

Ife.4, T f |((2-i)"+4
r

V?. 9

y ^ +1 % 2e®' /' à ^ wp wi'll have'

A5-m7\c< 5w'h(î> = 0

b) "Free-si'mply supf3ortecl" case

(c.a.i

/

Where j is an imaginary quanti ty (^r:~-"/i) &^-;y<

Boundary condt t'ions:

e (o) -:, ^ (o) - o

n l i \ 111/1 \ /~0 [L) ^ [y^.) =. o

Çnhçt-i tu'Hnn f r V, A'\ in ( ' r- .4'! ?" ( c.^\ we haVpî

(e. h.-l)

/'- U 9\
V-- "• '-l

e ;< =:, o A, - ... -s.:.p-, A,
< . .f-

A. =

p>+
i-f?

pi-

(C.b. 5)

r"
^.. —

z î\4

Similarty, (c-!^ in Ce-?-) & Ce.s-) proctuce:es

(a- ^= L •• fc<t+ f^ S<°. 7^A, + f(-A ^ Cas A°( Aî.
~~J~ l \~^~

^ (iifj s^ '^ ^3 - (i_f) Cos 7^ A4 = °
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<
and lo(--_5}5?^Ao(A, + ^-^-^.jcosk 7\o(A&

AL / • \ ^L

^A'

(c.k.4)
l î.v / i -2-^

-fp,+ilp)^ ApA^ +f(i+l^.)cos ^A^=
(iL/ • ' V ^

Substituting (c.fv.î} in Cc.b.4') gnd setting:

'< .&

s» =

We wm obtain:

?-'
; b= i^:

T

t>5?y\Aft-bfiî') s^7\o< -^f!__i.1cosÀc<-l?cùs'
^/' ' 'w-a/

'^S?^-^ ^ ^^ ((^)cos7^-t)[g^Ac(

(c.b.S)

Developing (c.b.s-)^, the final équation win be:

-i 5<°n ?\.o( COSÀ^ -^5^7\|1> cos.)w +|i StW-Sw7\c>] Cos^o<-l[cosM+^cos?^1 Al»M=0
ï

Equation fc.b.fci 1s vatid for iKS-lï+^l \ 6t+i & ?^
5; X-\ / " S S

* If[H)'+$]<cl+i &

(e.. b.(>)

Âaâ
« ) we can write:

•^ ^ Ào( CoS Àp-i S<°^)^ Cos^'Ào{-t ±S^W-S^n'>Ç> C OS Âo( -l

xi
CûS^M-^cos)^ S<°nM=0

(c.^.1}

Where -^°</p , o<=^ , ^=^=°<'/p , ^-f5_£

\i^i
And eosl\ ^ = &oso(. ^ s-fnl^ ^ =: ^.s<ono('.!

G.OS ^ =. C.osW1 ^ S<°n ^o<' = ^ S-?^o<!
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L lST 0F TABLES

Table l Theoreti'ca'l frequency équations for a straight Tirnoshenko beam.

Table 2 Normal vibration modes for a s.tra.Kiht Timoshenko bearn..

Table 3 Déformation assumptions for three types of beams,

Table 4 Summar.y of various elerrsent'î of Timoshenko beams.

Table 5a Stlffness matraix of a cnrved Timoshenko b(31ani ('rnodel III).

Table 5b matrix of a curved Timoshenko benm (mode') ï II)

T'^1^1^ C^ €t-^SS^^^^^, ^^4.^4^ ,.••.£ ^ .«.1 ^ ^i.A.'l ... ^..^>^^..^ 'T--S ...^/o. ..i. ^ .*.S./-. îk ^ ^^ ^^^^.^.,1
iùuic 3<.« «it, l l l nf'.'aa «in. i.,l •A m d. ;•> ( lyni.iy i-.urvei-i i l inu.-iiit'riMJ ucniflt >inuut;l

III).

5d of a slightly curved Timoshenko (model III).

Table 5e Stiffness mat.rix o"f a strai'ght Timoshenko (model I).

Table 5f ma trix of a straight Tinioshenko I).

5g Stiffness of a straight; Timoshenko (rnodel III).

Tab'le 5h ma'trix of a straîght Timoslienko (model III).

Table 51 Stiffness of a straight Timoshenko II).

Table 5j matrix of a straight Timoshenko (mode1 II).

Table 6 Values of the shear coefficient (or form factor) of vanous
sections.
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Table 7 Natural boundary conditions applying in the standard cases.

Table 8 Basic formulas for calculating width, thickness or diameter

variations in a tapered beam.

Table 9a Sti'ffness matnx of a straight tapered Timoshenko beam (model

III).

Table 9b Mass matrix of a straight tapered Ti'moshenko beam (mode1 ÎII).

Table 10 Theoreticat vérification of the frequency parameter roots in the

three models and for the analyzed

Table 11 Frequency (HZ) of a straight uniform Timoshenko beam in the

three models I, II and III (ascending order)

Table 12 Error percentages in the frequency parameter roots for a

straight urn'form "damped-free", Timoshenko obtained for

différent values of k (form factor) and Q (rotational inerti'a

parameter) m various numerical methods.

Table 13 Frequency (HZ) of a tapered "damped-free" Ti'moshenko beam.

Table 14 Frequency parameter roots for a tapered (Fi g. 10), usi'ng

(a,..,h) the BernouiHi-Euler and Timoshenko théories (Ist method, 2nd

method, 8th method).

Table 15a Instructions for data entry.

Table 15b Table of boundary conditions used for the computer program.
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-<oo6ooF

+î<ïoS|,
+650S

400 P
-rs&oF

<-}696oC

•*&<o5d

-ns.âo.Si,

-Zlo S

-630F

--f&goo C

•H 95-S,

^-loîSfc

400 P

^bBSBo C

+é5oS|,
-2-fO S

i 440 p

-•(00800 C

-3<S-0 -Sfc

-630 S

4880P
+7S6oF

+S3840C

42.340 5a

-<t60Sj,

•î 340 S

-ÎS.9 20 F

-650Sfc

&30F
-îikOûC

-WSf,

-loî5b

-MO F

-4î5»,

-SiéOO C

-ioSSk

5S.9Î.O C

+63o Sfc,

-CîoF

-^(&OC

-3305.3,

Mo F
+60 SA

-4440 F

+650S

4oo f

-3<9S^OC

•*6505|>

-2<0 S

-i(,8ooC,

+<os5b

4oo P

-noS

•f 44-0 P

-6505

48 80 P

-<-3<g&o C

-650 Si

+840 5-

-<S4E.oC

4880 P

+840 S

P^7Q,&-^/^:^^-^-^/Q-^-^" for rectanaular sections;

C -- ^7-/a ; z/= V(<-3Z) ; 5 -- AG/EQ ; Z'/= </(-ZV>^^(^-r)î; S^= 64L^(Q^)S/Z";

^-H/L ; 5t,.Z/S ; ^^/L.

Table 5a: Stiffness matrix of a curved Tlmoshenko beam (mode1 III)



CAL5
42.0

(6r8)
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-HOOÔp

+îi40
944 P

•is'toc.

+3SO

1?Zp
+£34of

-»oc
+60

-60 e

3î0f
-25Tc

944P
+3ÎO

1îg.p

-?-10C.

+6o

ï79 E. p

^Blo

7 i E) p

-2.S2.oc

4 4-îS

-13bf

•Ir Ï'^,S'?-.OC

-Ki'S

-1o8p

-i-8^ f

4 ?4o e

-Aî

-36o C

-43 S'f

-3ÎC

p
- ws

-100 p

+Î70C

-4-S

6of - î-S e - 360 e. < °>s -f

+3? C

4ÎZ{>

+6o

Tîfep
4 49S-

4<oo&p

+2'i.40

-iot

•s- a'ioc

-4.S

- 944 p

+Î-SÏ.OC.

•53,0

-45-f 3 S-C

-ÎSC.

-&QC

-<o6p

-4S

- 344 p

-î2>0

isa.p

l-2.-54of

-S'4oc

-^ êo

•33o^

^î. s e.

l» v. y

- S.10 C.

^-6o

fcof as- e

4'Sî.p- [

4-6o

P^ ^/Q ; G=xî/ALt- ; F=qt-CZ-2^-<)/Q ; ^ =4 (W for rectangu'l ar sections ;

C- ^/Q,, Z.'= /0-3Z); S= -^G-/E<3 ; Z"= y^^f^-r)3; ^=64L^â+^).S/z.^

Ô=H/L / 5^Z/S ; <1.r/L/ P--QP ; f=<3F/ C--QC.

Table 5b: Mass matrix of a curved Timoshenko beam (model III}
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(Bsœ)

iwop
*"IS6oS

-U40P

-100 000 V

+3780S

4880?

- »T?60V

-M9&OS

•t^S60

-4'ï88oV

+630.5

-3S280V

+530.5

+630

60S
+840

-.S 4.4.0 p

-téîûS

488op

-feçesoV

•i-asoS

-5S-&80V

-nfcâoP

•'K&OS

A 4.40 P

•*J008!lûV

•37 80 S

47 8 80 V
- (>3o S

-W-iîf

.'.- •lêo8oo V

•<-3Ï80$

4°oP

•1-36960V

+ < MO S

-'iseo

-tëîiooV

+ ÎOoS

•,!-2.9?.oV

-650 S

-336oo\/

- 3oo S

+630

4-S-5

-2M

-<44<>E

46SO:

4ooP

- ÎWoV

44&0 S

-46,800V

+ los-S

- 650

<440p

-ê30S

172.80.P

-is-60 S

4ooP

+É8ââoV

+42-0 S

4A4-OP

-WBflOV

-SMOOV

-<os-s

S&9Z.OV

•+630 S

4oop

-S^oS

4440 P

-630S

r0 84.0V

+ Î92.0 S

•^STéO

-<s-<£oV

-•53ûS

&30

488o P

+3mov

+2.405

6oS -<s<z.oV

4880P

+840S

P -.^/Q ; û = H/,, ; <Q , 1^^^ ;V=-AM^ /QAL; 5 = •6-&/
ES .

Table 5c: Stiffness matrix of a si i
III)

ghtly curved Timoshenko beam (model
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ffl?c|

fMÎ

&w

(8x8)

H008p 944 p

+2340 -Zs^oy

+350

-152 p

S40 0-

* 2.540 Q

+60

- 6 o ^'

- 2.5'0"

•*330Q

6oQ

944 P

+350

132.P

^70 iî-

+60

-ZSO-

5'Tït f>

+640

75ép

•istois-

+ ('3 S-

-î6o <9-

-756 P

-v2.SZ.oU-

•ns

-108 p

•i-5'AO t5-

+8<oQ

-4.Î

3S-15-

•'T ns ci

- 36o i?-

-3îtî'

-19S-Q

-4^<3

~TÎ> e, p

-<95

- 4o8 p

+270 0

-4?

îS i5>-

SYM.

iîZ. p W p

+60 .+495-

•H oo8p

+ 234-0

- ^0 8 p

•+ 2-10 13-

-4S

- g4-4 P

+ZS2.0 0-

-350

43t. p

-S"4o V

•+2540 (3

+6o

- ÎS tf-

-6o(^

LÎU-

-330(2

•il

-4S'

-9441

-530

^32-p

- 2.70»

+6o

2.: T (?-

f5Zp

+60

P= 's-/0, ; />-- HA ; a - TÏ/Ar / V-- -^M,/a/\L; S--WEQ ; p= QP ,0-. QV

Table 5d: Mass matrix of a stightly curved Timoshenko beam (modet IIIÎ
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IKid Eîï

42.0L

(8^8)

5"04S 42.5 2W5 4SÏS -S04S A?..S i{ OS -4^5

5É S -4ZS 0 -42..S -M.S 4^ S -75

m S 2 z. î

-504 +42

-Î.À OS 42.5

s 2-S 7 S
+,sx

5'4S -BS

-5-ô4 +42.

iïS -55

-A2- -44

S-04S -42. S -2-10 S 4^S

5G S -42. S 0

S7M.

15-é

5-04

s -n S

-A2.

45
+5-6

5=^/EQ ; a=I»/ALl

Table 5e: Stiffness matn'x of a straight Ti'moshenSœ beam (model I)
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^M-3

420
/'SxSt

-IS6 ^2. 0 0 5 A -<5 O 0

4 0 00-3 00

^s-6Q ^.2Q 0 0 ^4Q ~BQ

SYM.

4Q 0 /(5Q -30.

4S6 -2.2. 0 0

A
"T 0 0

^ S"é Q -22Q

4Q

Q -- J-î/f\i!-

Table 5f: Mass matn'x of a straight Tirnoshenko beam (model I)
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IKtd EI^

420L
/0..0\
\.u»u)

SO^S 25ZS 42.5 42.5 -SMS 2.SZS "4?.S 4^5

^8S 2.ZS ^4S -25? S ^.45 '2oS ^8S

+504 +4.2 -S'04 '+42.

45
+5-6

SYM.

0 -4^5 ?.oS -3 S 75

-42. -H

5(,S -42.5 2.8 S -75 -<4S

5-04S 'Z52.S 4ZS -42S

4Z8S -î-ï-S ,145

-(-S04- ~4?~-

4S
+5'6

0

5-6 S

S = WEQ ; Q -- ïî//\\î-

Table 5g: Stiffness matrix of a straight Timoshenko beam (model III)



113

n
ÎU

(8x8)

ÇftLS

42.0

\5G 2.^ 0 tt 5&. --15 0 --S5

i5GQ UQ 4 -i5 5-4Q

44 -5

SYM.

^a -5

4Q 0 0 \ 56? -3Q 0

4 B -5 0 _5

i5G -?-Z 0 -7...Z.

-f£xSQ

+4

-zz<S 4

4Q 0

Q. Iî/^

Table 5h: Mass matnx of a straight Ti'moshenko beam (model III)
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!K
td

(&xa)

KÏ

420L

504S 2.S-?-

^8
+5'04

s

s

42.5

2ZS
+4S>

-^o5

-M4S

-504

-SO&, S

-2.5ZS

2.52. S

<Z4S
-5-04

-4?~S

-ZoS

•+42.

-2(05

-géS

+S-04

4S -n S -42.5 ^o5 -3S -iïS

+5"6 -42. _4Z -14 +4£

^5-éS

+-S'o4

Ho

504

s

s

-96 S

+504

-2.S2S

^3
-42.

42

s

s

s-4 S

-5-04

UOS

SVM.

i2.6S -^S ~WS

+5-04 -4?- -5-04

45 22 S
+ S 6 +42.

^ 5-6 S

+S-04

5=^6/EQ ) a =WA^

Table 5i: Stiffness matrix of a straight Timoshenko beam (mode1 II)
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CAL3

420
(&xB)

i5G 22 005-4 -\ï O 0

/IS6Q

+4

2ZQ "4S6Q '(5 5-4 <^

- 5

•<5Q -MQ

4Q 22 Q 0 ^ 3 a -30. -<3Q

SYM.

^6 Q. 0 -Sà,^ ^5Q 5-4Q

45-6 -î-t 0 0

^SGQ -^Q -1S6Q

+4

4Q zzfi

^SéQ

Q = îy^

Table 5j : Mass matn'x of a straight Timoshenko beam (model II)
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ĝ
^.

'*_£

•^

<^
'îî
0
n
"]
<0

M
1+

03
«t-

01
+

«o
co
+
^»

<n
<r
•V

"E
^0
fr.
&t

a»
v
+

-K4
M- l.

X
_Q î

4Î

-l

l-l

0nm

^
+

«ç.

01

->
v\
+

,4.

"ç\-
il

E:
0

+JI
u

VI
3
0

•r™

s-

rci
>

4_
0

s-

p̂
u
M

E
0

1+-

i.
0

+->

e:
D

n-
tj_
0)
u
u
s-
f0
0)
sz
!/1

0)
-e
+J

lt_

0
m
n
3
03
>

-1-)

e
0
u

U3

<u

.0
fO



STANDARD TYPES 0F SUPPORT LIMITING CONDITION^
i»^=o , e K=L

118

SATISFAC-Î
TORY MODf!

/j_ Clamped-clamped ï W^= 0

Wa= 0

9=0

WK 3 0

'^/E = 0

6=0

I.M

2_ Clamped-free
W^ =0

Wz= 0

0=0

Q'=o

4, = o

I.-K

5- Clamped-supported -<|
w^= 0

w^=: o

9 =o

W,, =0

W^ =0
e/=o

I,ffl

4- Free-free
e' =0

»4/ = o

e'=o

»y = o
I,I,ffl

5- Supported-free 1> ^1=0

e/=o

Q'=o

\y = o
IJ,1

(n SuDDorted-suDDort.ed•»•„,-• yv î ^\»*-i .-..;^^^i —_u 1> <1
^=0
'"'2L=0

e'=o

W^=o

W^=0

e/=o

I,ÏM

7- Clamped-simply
supportée!

w-x=o

Wa=0

9 =o

=0

= 0
I.ffl

8- Simply supported-
supported

-4 9=0

= 0

w^=o

©'=0

I,X

9- Simpty supported-
simpty supported

0=0

4, = o

6=o

^= 0
I,X

40~ Free-simply supported
e = o

^ = 0

e = o

<+' = 0
I,X

McxA&l I: {vV^'e.Q'} , MoAa.1 1: [w,w/,Q//^} , Moc^i m: [w, e, e', ^J

Table 7: Natural boundary conditions applytng in the standard cases
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S F f BEAM SHAPE

RECTANGULAR

».(î

e.p&issaup n s n».œ
ns'l/a,,}..

CIRCLILAR

x L

z(x)

<j___s,
9 x L

ZM =L4.AH i
^ " •-- - (^4 » y &^ ^

VARIATION IN THICKNESSj
DEPTH, DIAMETER

M = b.

••) = ko .X

i..'

Ia]lleJ3: Basic formulas for calculating width, thickness or
diameter variations in a tapered beam.



120

IR
KAt] 4?-0

^. ^ ^

^3î

SYM.

Sk
•<?

&„ ^

<4 ~^-U ^^ ^1 ^8i,

34

^ ^n
-Xi-» Ïsc. -^.sn -&.28

&3Î -ft.36 ^-Sf -^.38

-44

^=2^C^+AO-ft&L

^ =4(3î^3oAt,)^GL

^î=6(4^+3Ab)^L

^4 = 42 A^&L

^6= 4(3oA^35Ai,)îtôL

^ =-&C3Aa+4-Ab)^.SL

A,g ^ A.e.Pia^&l-

<i^ = 2S2(l^+I^)i+2(3sA^^tgAi,)teL

^23 = 4?- I^b i- + (<3 Aft + 9AI,) -fe-GL

^= -z(î'AA-9At>)-îcGL

^ = -î?2-Cly<-X^)E+6&(Aa+Ab)^&L

A%7 = 4&Iï^ -C<5l\a,+«ftb)-^-GL

Ay, = 4(6Aa-i^)-^&L

-^35 = u(3Î^I>tb)-Ê+(2.?Aà+<.S/M>)fcG-L

^4

'-u

C46 ^•4'? ^-48

-^6 -^ -&4g

&-U. ^t-66 -68

A.i•17 .34

2(Ab-A^GL

-6(4/\2»+3fM>)^6L

-4^I^i+(^Aa+gAb)&SL

-7 (!,„+1^)1-4.S OyA(,)AGL.

(5-A^+Z.AbHGL

u(3A&+f\0&.GL

A.(^+(,AÙ t&L

-(zftà+^Ab)tSL

-7(Aa-^b)^.&L

2-sî~ (I^+î-yb)^+(5'8 Aà+7oA(,)fcGL

-4^Ê_(gA^3A|,)^eL

?.(9Aa-2.Ab)<-(îL

44 (ly, +5I^) i + (-^.S^A-^•^.sAfc)4GL

^--;

!„=.

i..=

1,7 =

1,8=

A.44 =

^ -
A.4.J =

l48=

A.66 =

4é7 =

be =

^ =
A.88 = .t4.(3P4,+P^UGL

Table 9a: Stiffness matrix of a straight tapered Timoshenko beam (model
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N.
w,«

<

-i?0

"«<; •' *"lt •»"<, 1«1,. 0 w,^

"'l;, "'-s^ '"<î.,( '"'s» '"i<- •"".; wis

mn ^ C "'^ »",7

"'l.i *t'i.s "'tS (1 n";6

•".l» *"»<• ° m,A

s v n
•s

n ? ; o

•ire

^« .: <î.(^^<-?A^CLÎ

wn.r: ^s?\a+-7Ai,)fl:

<^= î-!^a+Ab)e>-?

w,é = -(7Aa+6ftfc)CL

<vl9.z. = <2.(l<;T^»'1' 3Ï^t>lÇi.-Jl(s î n,» K Sfti,'*'(-L'1

Wj,,, = (<S X^ + 7 X^t.) (>L.

m^4 =: (&.s^B><-<5A^<'L5

fMf5 -- (te^t^^^ÇL

W<L6 = ^(T»*I^)<'L-<y(>\a^^<-''?

""n =: - 0 ï^ + (-ï^} <'i-

"\-S .-. ' >-r\A' ^ C''

"<^ .- (î ^'l,..• '•'>i)^ci

-^ -:. (<'î,,-t'7SLVI-

^ -•- -<ïu^"k^0..

^^ •=_ <î ^'\A<<<'Ai.'I(ll

>^s<.. = -(•"•\7,<-"A^ (i

•^t(, •= <î (' î,,,-<^ 1^ CI.+ ^.î ^^ 2 y ,\,,\ ^,.

*"'<V =-- - (•7Ty-'SÎy^Ç!-

^? -- (< s A»,- a.-sA^çi'

W;-, = (< SÏ.,î><2^'S*-.) Çl

T^<- o-h; fc,, ^f.n, ^ ., <t-,^hî t^c-^ -mos^nko be^ i^el :H'
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LIMITING CONDITIONSl

'î Clamped-clamped

2 Clamped-free

Clamped -
supportée!

4 Free-free

5- Supported-free

Supportée! -
supportée!

Clamped -
7 simply supportée!

Simply supporter
8 supportée!

Simply supportec|
3 simply supportecj

Free-simply
io supportée!

TXACT
SOLUTIONS

U .694

30 .894
49 -909

69 .309

3 ,î84
<5- .488

î4 . Sol

<"? ^ î.5'2.

,14 .659

zg .isi

48 .796
69 ,'Uo

0 . 00

0 • 00

n . 85

3T . iS

0 • 00

n. ^
3Z-.25

Si. &2.

8 .64S-

î.(, .960

47 .680

lo 0 • f^te>

2. .5Tb

H . 18

Î1 . 2.1

56 . 02.

0 • 00 0

&. 64-î

2.6, . 96o

47 . 68o

0 . 000

5- 2.2.4

U.6Î4

4S.06S'

OBSERVATÏON

MOPEL I

8 . 64

ib .96

^ . ^0

68.83

o . <SAx<oJ

42. . 8i

32. . il

Si .94

8 .64

2.6. 96

4-1 • 10

6%. 85

• o.48<><o

Q.&Slï<0

<7 -8î

37. 4Î

o.-iaîifo

42.. 85

3K..W

58,. 94

6.644

îb.Vt

4T. 6'3ê>

te* b . &fc.<o

0. î-Oxlo

1 î.. 8 î

32.. n

5i. °>4

O.ÎSoSio

1Z-.83

ïî-.n

S-Jî..°l4

O.iSAv-W

O.Î.S'O x<o

47. 8 S-

37.4.?

0. <-t'i> *10

o.&6< K<o

n.SS

37. A?

% ERROR

-A'»-m

-^.734

A. 4?.&

0.691

-400.000

- n.<fc<

S . 32.4

À X?'"t

- Z.S".T32.

1.5'35-

i.ZS°>

o-Ao?

0 .000

0 . 000

0 • 000

O.S3&

0. 000

o.4fc9

o. <Z.4

o. W

"0.0^

-0.0«

o. on

o • 14-.Ï

"^OCï-OÇïO

- 2.S.5ÎD

- o.nfc

- •8.7SS

0. OôO

-400 .000

îî.Tgo

_ &1.4-S-Î

o.ooo
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Cold-drawn steel ^cy3-&/e'3/s , as <o'06y'Ç'7-3"6-<s4-*fc;i3±t£'/ 5 finite éléments used

Table 10: Theoretical vérification of the frequency parameter roots 1n the
three models I, II and III and for the cases analyzed
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LIMITING CONDITIONS

FREE - FREE

FREE - SIMPLY SUPPORTED

SIMPLY SUPPORTED-SIMPLY
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SUPPORTED-FREE

SIMPLY SUPPORTED-SUPPORTED
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SUPPORTED-SUPPORTED
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98^ x
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7û&

2.76 y.
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sw
,242.

.S S -9
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-9SS

^
^

401

Cold-drawn steel, Â=V5 ' % '- 5/& ' Q=C°.°8)'-, ç=73»fexi°4âs^is.\ ^alt.^^s.
in"

Table 11: Frequency (HZ) of a straight umform Timoshenko beam in
the three models I, II, and III (ascending order)
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R.EF. [M] , ma tri x transfer
method (15 éléments used)

7.G

45. S

^2.&.<3

pKestM' Me'woji1 ^MO.A»J îu./strai

straight bea'm theory) (8
éléments used

9 .8-12.

J4 •<32.&

44A--Ï9Î,

Es SL&Y.IC6 lk/-/~ / L. = <g..?93 »'A)/ -^= 0.2.9 ,'o^ihi ,l^^o.o9

ç" = •7. s'o7& K <64 vvw_^' • 3°'( 5Aâ?.Aiass s-ta^bar.

»-«)•

Table 13: Frequency (HZ) of a ta'pered "clampeu-free"
Timoshenko bearn (Fig. 13)



Table 14 (a,...h): Frequency parameters roots for a tapered beam

(Fi g. 10) using the Bernoull1-Euler and Timoshenko
théories.

Notation: l) Given: v = 0.3

k = 0.85

Q = (0.082) ^
,-4 tbm-sec2

p = f.dUQ X 1U ———^.

G/E = 3/8

2) H = hg/h^: thtckness ratio

B = bg/b^: depth ratio
a: exact solutions wrinch équation [42]
b: numerical solutions for upper limits

(Rayleigh-Ritz) [21]
e: numerical solutions for lower limi'ts

d: exact solutions of [46]
e: exact solutions converted équations

from [48]
f: exact solutions standard manual

g: exact solutions for équations in [l]
h: numenca1 solutions fi ni te élément

(10 éléments) [49]
l: solutions devised by dynamic di'scre-

tizati'on technique (8 éléments) [50]

p: présent method (model III, 8 (ete-
ments)

3) Frequency parameter roof for a tapered beam:

^ = { £A^_w_)is

'y l

note: The results were obtained for every combi'nation

of B and H:

• The upper parti n: Bernoulli'-Euler theory.

• The lower portion: Ti'moshenko theory.
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Table 14a: Frequency parameter root for the fi'rst mode
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Table 14b: Frequency parameter root for the second mode
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Table14c: Frequency parameter root for the third mode
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Table 14d: Frequency parameter root for the fourth mode
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Table 14e: Frequency parameter root for the fifth mode
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Table ÎAf: Frequency parameter root for the sixth mode
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Table 14g: Frequency parameter root for the seventh mode
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Table 14h: Frequency parameter root for the eighth mode
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Table 15a: Instructions for data entry

l. Exécution menu (12)

co1. 1-2 .......... Number of problems to be executed (NGXC)

2. Control menu

col. l ........ l: for a straight beam (linear form)

2: for a strai'ght beam (tapered form) (KZ)

3: for a curved or slighty curved beam

4: for a curved or (li'near form)

slighty curved beam (tapered form)

co1. 2 ........ l: rectangular section

2: square section (KM)

3: circular section

4: elliptical section

3. Control menu for number of éléments (12)

col. 1-2 ...... number of éléments used (NEL)

4. Instructions menu for beam width and thickness (4D10.4)

co1. 1-10 ..... width at Ist end (Zl)

col. 11-20 ..... width at 2nd for rectangular (Z2)

co1. 21-30 ..... thi'ckness at Ist and square sections (Hl)

col. 31-40 ..... thickness at End end (H2)

5. Instructions menu for géométrie properties (6D10.4)

col. 1-10 ..... dlameter at Ist end rectangular section (Dl)

co1. 11-20 ..... diâme ter at 2nd end (D2)

col. 21-30 ..... Ist diameter at Ist end (Al)

col. 31-40 ..... Ist diameter at End end e11ipt1ca1 (A2)

section

col. 41-50 ..... 2nd diâme ter at Ist end (Bl)

col. 51-60 ..... 2nd ch'ameter at 2nd end (B2)

Note: Once a section has been chosen for exécution, the other sections

take the value of "l".
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Elément menus (312, D7.4, Dll.3, D7.3, Dll.4, D8.3, D8.4, D7.3)

col. 1-2 ......... number of each élément (NE)

col. 3-4 ......... Ist node of an élément (NODE(NE,J),J=1,2

co1. 5-6 ......... 2nd node of an élément

col. 7-13 ......... length of an élément (SL)

col. 14-24 ......... Young's modulus (E)

co1. 25-31 ......... Poi'sson's ratio (U)

col. 32-42 ......... densi'ties (SM)

co1. 43-50 ......... angle of deviation (ALF)

col. 51-58 ......... radius of curvature (R)

col. 59-65 ......... angle between 2 plane surfaces for curved bems)

(ALFI)

Note: SL = l If ALFI 4= 0

7. Title menu (15A4)

co1. 1-60 ......... location of specified boundary (ti'tle)

8. Menu for the boundary conditions (2E2, D6.4)

col. 1-2 ......... spécifiée! node (node)

co1. 3-4 ......... directional code (see Table 15b, NDF=5)(IDiR)

col. 5-10 ......... Displacement vector (DELP)

9. B1ank menu

10. Test menu (II)

col. l = l:......... calculation continues

* l:......... stop

11. Boundary conditions for static force détermination (212, D6.4)

col. 1-2 ......... spécifiée! node (node)

co1. 3-4 ......... directional code (see Table 15b, NDF=4)(IDi'R)

col. 5-10 ......... di'splacement vector (DEE)

12. Blank menu
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13. Menu for loads and moments

col. 1-4 ......... loaded node (node)

col. 5-8 ......... di'rectional code (see Table 15b, NDF=4)(IDir)

col. 9-15 ......... force and/or moment vectors (AFORCE)

14. Blank menu

Sanple instruction: Calculate the frequency of a tapered beam

(using straight beam theory) wi'th a rectangular

section, 301 stai'nless steel (8 éléments

used).

l)
2)
3)
4)
5)
6)

7)
8)

l
11
8
l.

l.

112
223
334

445
556
667
778
889
Case

11
12
13
94
95

l. .09 .09

l. l. l. l.

2.508 28.00 D+06

2.328

2.147

1.972

3.441

2.828

2.332

2.039

02: Timoshenko non-um'form beam:

0.0

0.0

0.0

0.0

0.0

l.

.29 7.5078 D-04
Il

Il

Il

Il

tl

Il

H

//CLAMPED-FREE//

23.5

25.5

27.0

31.25

35.25

44.25

59.25

78.5



138

9)
10)
11)

12)
13)
14)

B1

l
11
12
93
94
B1
51
B1

ank

ank

ank

menu

0.0

0.0

0.0

0.0

menu

-100.00

menu
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MODEL

clamped-
clamped

^ clamped-
free

ciamped-
3 supported

free-

4 free

supported-
s free

supported-
supportée!

clamped-sifflply

SHppôpted

simply-supported

8 supportée!

simply-supported
9

simply-supported

free-

<0
simply-supported

l (types

MîF = y

[w^^we e j
l 2. î

n=o

-) 1

A t

< A

-( -l

< z.

i, 4-

u
< î-

«.

<s-

(1

<z.

^s

(1

•IZ.

AS

^ ^

42.

-14.

H

<4-

<î

5 4 S

•K^L

°>\

•32.

94.

95

9<

92.

9f

<3S

95-

">k

"32.

1S

94

9-1

92.

95"

94.

94

'1 and j")

NT(-ï4

{w W
1 t.

Kï 0

4-t

•l î

<A

<'>

^ A

0

(4

u
-14

«

A4

A -l

Hï

<î>

<5

4

e e'}

î 4

itsL

94

93

94

•u

-54

94-

€3. J

94

1Î

'34

c)ï

95

II (types

M3>F:S

[w, ^ •

•l î.

r-^o

-u

.12-

d
4 2-

t ^

tZ.

u
^

u
\î-

.14

<4

-12.

m

^

-12-

is

i5

.14

AS

,w6\^

î 4 ?

ï<=L

9-!

gZ.

94
95

^
32.

94.

94

es

94
9S-

°n

gi

94

95-

9^
•32.

94-

95

9î

"i and j")

NÎ'F=4

[w
<

><=0

u

n

-14

(5

u

•M

fi

^^

aï

n

•<4

<4

<ï.

<*

w e ^}
2. i 4.

x=L

£>-1

95

94

<)H

93

93

94-

95
•34

-3-l

°>î

94

t3<

g?

94

'54

III

M>tL

^w,
< i

(s0

u
< &

\ï

.14

4 Z-

15

n
^2.

•<i

<4

*s

•n

42.

•14

il

^^

<4

«
4Z.

<5

tî

AS

\ï
<î

14

^

(types

-.!

,e e^}
3 4 î

K=L.

9-1

92.

93

9d

<3s

">^

<32.

94

94
gs-

94

9S

g-i

92.

94.

93

gs

-3<

92.

94

93
3s

gî

95

"i and j")

tOF =4

{w
4

)<=0

<4

^ 2.

«

<2.

u
At

)5

-14

^

n

<•<

tî

•l •l

<2-

^^.

•14.

u
là,

(3

<4

e e ^j
t. î 4

K-^L

3l

11-.

93

94

9'1

93

95

94

95

94

9-1

95

92-

94

e<

93

92.

94-

-3Z-

9A

(NDF number of degrees of freedom). For two figures, the Ist digit indicates the
node, the 2nd intticates the displacement as already numbered above.

Table 15b: Table of boundary conditions used for the compùter program
(8 éléments).
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APPENDIX E

LIST 0F FIGURES

Figure l Beam studied: homogeneous, um'form, wi'thout im'tial constraint,

di'splacement or torsion.

Figure 2 Detailed illustration of the elastic behaviour of a beam

segment.

Figure 3 Nodal displacements at points 1 and j.

Figure 4 Geometry and notation at résultant constraints N.., V^, moment

M,,, rotation e and displacements u, v, w on a beam élément.

Figure 5a Local and global coordinates.

Figure 5b Transformation between local and global displacement components

at a nodal point.

Figure 6a Déformation state of the normal constrai'nts (horizontal and

vertical ).

Figure 6b Déformation state of the shear constraints (diagonal).

Figure 7 Stress distribution over a beam élément.

Figure 8 Distortion of a beam section.

Figure 9 Assembty diagram of stiffness and mass matrices for total

System.
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Figure 10 Sample tapered beam (linearty tapered).

Figure 11 Flow chart of the pn'nciple program.

Figure 12a Convergence test for model II, "free-free", "free-supported" and

"supported-supported" cases (Ist mode).

Figure 12b Convergence test for mode1 II, "free-free, "supported" and

"supported-supported" cases (2nd mode).

Figure 12c Convergence test for model II, "free-free", "free-supported" and

"supported-supported" cases (3rd mode).

Figure 12d Convergence test for model II, "free-free, "free-supported" and

"supported-supported" cases (4th mode).

Figure 12e Convergence test for models l and III (Ist mode).

Figure 12f Convergence test for models l and III (2nd mode).

Figure 12g Convergence test for models l and III (3nd mode).

Figure 12h Convergence test for models l and III (4th mode).

Figure 13 Tapered "clamped-free" Timoshenko beam.



q(x,t): .load/unit length

^' / / /////'/77\~~ dz

Figure 1: Studied beam: homogeneous, uniform, without initial constraint,
displacement or torsion.

4^
[\î



143

Figure 2: Detailed illustration of the elastic behaviour of
a beam segment.
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Figure 4: Geometry and notation résultant constraints N.., V_, moment M
rotation and displacement D, V, M on a beam élément. " y
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-^

Figure 5a: -Local and global -coordi'nates.

\
b)

Figure 5b:_ .. Transformation between local and global displaçement
coroponents at a noda1 point.
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a)

ÂY

initial state

deformed state

û.
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nrn

<?.

^2-T

<xyx\

\
\̂

v 1

b)

"^
\

^

^e

s; M. —— 5%

\
\

\
\

jC±

\

\
-î--^

-SE

v

Figure 6: a) 'Déformation state of the normal coristraints
(horizontal and vertical).

b) Déformation state of the shear constrainfs
(diagonal).
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Figure 7: Stress distribution over a beam élément.
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Figure 8: Distortion of a beam section.



Figure 9: Assembly ctiagram of stiffness and mass
matrices for total System.

U1
0



x

Figure 10: Sample tapered beam (linearly tapered).
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Figure 11: plow chart of the principle program

REAP..ând .|br'iB-t entries

.(call SUBI)

Initiation of vectors and
matrices

(call SUB2)

Transformation of coord-inates

(caU IRAN, eall TRANS)

Construction of stiffness matrix

,(ca11 RIGID, call PRODUI (2))

Coris'tFUction of the mass matrix

(call SMASS, ca'll PRODUI(2))

Reduce order of stiffness matrix

to analyze static displacements

(call ENL, call SUB3)

Assemble stiffness matrices

(call ASS)
Assemble mass matrices

(call ASS)

(Cont'd)
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(Cont'd)

J.
Reduce order of total stiffness matrix

(to calculate static réactions)

and détermine direction of total displacement

(call ENL, call SUB4)

Apply boundary conditions

Reduce order of total ra§s,s and séiffness matrices
(eigenvalues problem)

(call ENL [K], call ENL [M])

Calculate the eigenvalues en eigenvectors

(call E16ZF)

and arrange node order

(call SUB5)

Transformation of eigenvectors matrix back
into initial form

(ca11 TRANSF)

Print final results
(call SUB6, call IMPRIM(2))

Calculate static displacements;

(ça 11 BANDW

call SUB7

call SPBC

call DECOMP

call SOLVEB)

T
(Cont'd)
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(Cont'd)

J_
Calculate static forces and moments

(call SUB8)

(™)
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\ Frequeney (HZ)

1,,304 -1~

1^302 +
6 8

Number of éléments

10 b,c

Figure 12a: Convergence test for model II (Ist mode)

a) supported-supported

b) free-supported (fréq 0)

e) frée-free (freq 0)
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Frequency (HZ^

4,150

4,050

^\
1,940 -t-

1,930
6

Number of éléments

10

Figure 12b: Convergence test for model II (2nd mode)

a) supported-supported'

b) f ree-supportée! (freq 0)

e) free-freé (freq 0)
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Tr-^^nnnn^nl C^ucii'L-^y y» ii- /

4,850

2,700

^

2,690
6 8

Number of éléments

10

Figure 12c: Convergence test for model II (3rd mode)

a) supported-supported

b) free-suDDorted

e) free-free
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12,000 1—

Frequency (hiz)

10,000 +-

^
9,500 -^—

7,500 -f—

6,000 t-

5,600

^

•+-
e ^

6 8
Number of éléments

10

Figure 12d: Convergence test for model II (4th mode)

a) supported-supported

b) free-supported

e) free-free
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Frequency (HZ)

2,700

2,200 -f—

^
2,218 +-

2.2 14

^
1,304

494.95 4.
6 8

Number of éléments

10
e»f

Figure 12e: Convergence test for models l and III (Ist mode)

a) simpïy-supported - supported

b) clamped-dalîiped ; e) supported-supported
d) clamped-free e) free - simply-supported (freq , 0)
f) free-free .(freq 0)
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Frequency (HZ)

6,500 +—

6 8

Number of éléments
10

Figure 12f: Convergence test of éléments for models l and III (2nd mode)

a) stmDly-supporfèd-supported

b) clamped-clamped e) supported-supported

d) claped-free e) free-simply-supported
f) free-free (freq 0)
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Frequenpy (HZ)

14,000 -fc-

2,690
6 8

Number of éléments
10

Figure 12g: Convergence test for models l and II'I (3rd mode)

a) simply-supported-supported b) clamped-damped

e) supported-supported ' 'd) clamped-free ' - .

e) free-si(np1y-supported 'f) free-free
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Frequency (HZ)

20 000 +—

10,000

9»000

8,600
G

Number of éléments

10

a
b
e

Figure 12h: Convergence test for model's l and III (4th mode)

a) simply-supported-supported

b) clamped-clamped c)supported-supported

d) .cTamped-free e)free-s1rap1y-supported

f ) free-free
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