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ABSTRACT

The finite element method was used in this investigation in order to
determine the static and dynamic behaviour of non-uniform Timoshenko beams
subjected to various boundary conditions. When using this approach, the
general displacement functions are based on the cubic polynomial expansion
of three principal quantities as degrees of freedom: transverse displace-
ment, rotation of the cross section and shear deformation. The stiffness
and mass matrices, however, are derived from expressions of the strain and
kinetic energy which are based on the assumptions of curved, slightly curved
and straight beams.

In addition, a formula was obtained from the general equation for a
slightly curved beam and as a result, frequency equations for a straight
beam were obtained for ten common types, taking into account all the forced
and natural boundary conditions. Good agreement was achieved by comparing
the results of these models with exact solutions, as well as with other
numerical methods for straight and tapered beams. In order to test the rate
of convergence, the natural frequencies of typical cases were calculated as
a function of the number of elements. Results showed that the modei
converged rapidly and required only a small number of elements to achieve
good results. Finally, the present anaiysis demonstrated the reifabiiity of
the model chosen by including the transverse shear and rotary inertia
effects at the higher modes.



RESUME

Dans cette thése, la méthode des é&léments finis est utilisée pour
analyser dynamiquement et statiquement les poutres de Timoshenko non-unifor-
mes et soumises a des conditions aux rives différentes. Dans une telle
méthode, les fonctions de déplacement générales sont basées sur le dévelop-
pement en polynome cubique des trois quantités principales comme degrés de
liberté: 1le déplacement transversal, la rotation de la section transversale
et la déformation de cisaillement. Cependant, les matrices de raideur et de
masse sont dérivées des expressions de 1'énergie de déformation et de
1'énergie cinétique qui sont basées sur les hypothéses des poutres courbes,
1égérement courbées et droites.

De plus, une formule est obtenue de 1'équation générale pour une poutre
1égérement courbée et par conséquent, les équations de fréquence d'une
poutre droite sont obtenues pour dix cas courants, en tenant compte de
toutes les conditions aux 1imites en charge et naturelles. Un bon accord a
été réalisé en comparant les résultats de ces modéles avec des solutions
exactes, ainsi qu'avec Tles autres méthodes numériques pour des poutres
droites et diminuées (tapered beams). Afin de tester le taux de convergen-
ce, nous avons calculé les fréquences naturelles des cas typiques en fonc-
tion du nombre d'éléments. Ce calcul indique que le modéle converge rapide-
ment et ne demande qu'un petit nombre d'éléments pour obtenir de bons résul-
tats. Finalement, la présente analyse démontre la fiabilité du modéle
sélectionné en incluant 1'effet de cisaillement transversal et d'inertie
rationnelle a des modes plus élevés.
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NOMENCLATURE

Constants determined in (eq. i) and (eq. j)
Constants determined in (2.23) and (2.24)
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Area of section at 1lst end and 2nd end of a
tapered beam

Beam Width
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beam
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Moment of inertia around axis y

Moment of inertia between 1lst and 2nd ends of
tapered beam

Number of boundary conditions

Number of 1lines and/or columns to eliminate
in [K] and [M]

Shear deformation coefficient of a Timoshenko
beam

Distortion coefficient of a Timoshenko beam
Beam length

External moment (time-related) by unit
length

Bending moment

Number of finite elements

element

Normal constraint

Components following y and z for a normal
unit vector on a cross section boundary
Curvature parameter determined in Tables, ba,
5b

Quantity determined in Table 5b



q (x,t)

ALS

APSD
V, v

ix

Rotary inertia parameter

Transverse load by unit length applied to the
beam

Quantity determined in Tables 5a, 5b
Radius of curvature

Quantity determined in Tables ba, 5b

Shear deformation parameter

Quantity determined in Tables 5a, 5b

Time

Kinetic energy

Axial displacement functions

Internal deformation energy

Potential energy due to body forces
Potential energy due to external nodal
forces

Potential energy due to surface tension
Deformation energy due to shear distortion
Displacement function in direction y
Quantity determined in Tables 5c, 5d
Quantity determined in Table 5d

Vertical force

Rotary vibration frequency
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Transverse displacement function
Initial form of beam axis

Quantity determined in (6.7) and (6.8)

Normal function of w (solution for slightly

curved beam)
Solution for straight beam

Rotation of cross section

Normal function of (solution for slightly

curved beam)

Solution for straight beam

Quantities determined in (6.7) and (6.8)
Global system coordinates

Local system coordinates
Non-dimensional quantity determined
{(2.19)

Density

Frequency parameter

Non-dimensional displacements

Poisson's ratio

Function determined in {5.15)

Correction function determined in

Shear deformation

by
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Total shear angle

Angle determined in (A.5.4)

Angle determined in

Quantity determined in (2.23) and (2.24)
Quantity determined in (2.23) and (2.24)
Angle determined in

Integration quantities determined by (5.19)
and (5.20)

Non-dimensional quantity determined in Tables

1 and 2
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CHAPTER 1

INTRODUCTION

1.1 General

In the present research, my colleagues and I were mainly interested in
the dynamic behaviour of Timoshenko beams. This study was first undertaken
by Rayleigh, who explored the effect of rotational inertia on the beams.
After this first analysis, Timoshenko later included cross section and shear
deformation effects. These two effects, with hyperbolic characteristics,
led to minor modifications in the Bernouilli-Euler theory, where elliptic
characteristics were used to calculate the lowest modes of long and thin

beams.

Kruszewski [1, 1945] obtained frequency equations for "free-free" and
"clamped-free" beams, by solving a complete deflection differential equation
with non-homogeneous boundary conditions. These equations, however, were
Timited to solution for the above-mentioned beams, both because of complex
boundary conditions and the time-consuming nature of the task.

Traill-Nash and Collar [2, 1953] presented a relatively complete
theoretical §o1ution for the lateral vibration problem with a uniform beam
that included shear deflection (but not the delayed shear effect) and rotary
inertia for nine cases (the variation in these boundary conditions was a
combination of three types of end supports: free, simply supported and
clamped). They also demonstrated the consequences of shear deflection and
rotary inertia which are essential to a modern understanding of the compact

beam.



Similar to the problem mentioned above, Dolph [2, 1954] presented a
derivation for several of the findings in Timoshenko's theory, including
general solutions and a complete analysis of a simply supported and uniform

beam.

Furthermore, Boley and Chaos [4, 1955] studies of the behaviour of
transverse beams included the effect of shear and rotary inertia and used an
approximation method from the Laplante transformation procedure to solve for
the four types of loads applied to a semi-infinite beam step 1: zero velo-
city and bending moment step 2: zero bending moment and displacements;
step 3: zero velocity and force; step 4: zero force and rotation.

Huang [5, 1961} produced a typical analysis for Timoshenko beam
convergence such that the frequency equations and the normal free vibration
mode for a uniform beam in the different cases (for six ordinary types of
simple and finite beams) were a product of homogeneous boundary conditions.
Solutions obtained through elastic analysis were produced for two complete
differential equations; one for total deflection and the other for rotation

of the cross section.

Leckie and Lindberg [6, 1963] offered a alternate system of analysis
and validated the accuracy of these methods. This study, which included the
important effects mentioned above, was based on exact differential equations
for an infinitesimal element in static equilibrium. The first area of rota-
tion chosen, which was the cross section, allowed for the correct and
individual boundary conditions at the end of a "free" or "clamped” beam.

Recently, Hurty and Rubinstein [7, 1964] used an approximation method
to calculate frequency energy in a simply supported beam. The most common
model was the one in Kapur [8, 1966]. This model was based on expansion of
the cubic displacement in both cases: for bending (attributed to flexural
deformation) and shear (caused by shear deformation). An important finding
was that displacement at each node included displacement and rotation.



These displacements were considered separately for stiffness and mass
matrices using, as nodal coordinates, flexural and shear deformation, finite
deflection and shear slopes. A few of these nodal variables could be
eliminated by using a "condensation" method and the size of the system could
be reduced without any significant loss of accuracy. The resultant element
matrices were (8 x 8), and they could be used evenly between the flexural
and shear deformations. Frequency parameters were obtained for "clamped-
free" and "simply supported" beams. The frequencies obtained with this
method matched the theory for two particular types of beams, but proved to
be unsatisfactory in relation to general structure (non-colinear structure).
Complexity increased when forces were added to displacements. Each node had
then to be specifically studied. The rate of convergence with this method
was much faster than with the others.

Another model with a matrix of order (8 x 8) was presented by Carné-
gie, J. Thomas and Dokumaci [9, 1969]. The element they used, with an
internal node, had bending and deflection slopes as coordinates at the two
terminal nodes. The middle nodes were used for assignment of the rate of
convergence for a beam with rotary inertia and shear deformation. However,
come difficulties could occur when the natural free-end boundary conditions
were established.

Nickel and Secor [10, 1972] used, as nodal coordinates, total trans-
verse displacement "w", total slope "aw/dx" and rotation "o
bending in the beam-end and mid-beam nodes. Transverse displacement was

as a result of

expressed as a cubic function and rotation, as a quadratic function for the
axial coordinates of the beam. The matrix was of the order (7 x 7) for the
element, labelled TIM7. It was then reduced to (4 x 4) with the help of a
constraint suggested by Egle, Tabelled TIMA. The two elements produced an
unvaried convergence of variables, according to the degrees of freedom in

the system.



Then, Davis, Henshell and Waburton [11, 1972] presented an solution
approach based on the cubic polynomial for total deflection and rotation.
They derived the stiffness matrix for static equilibrium conditions with two
degrees of freedom at each node. The boundary conditions were not satisfied
in the cases of free-end and simply supported systems.

In 1973, an element developed by Thomas, J.J. Wilson and R.R. Wilson
[12] gave an acceptable rate of convergence for calculating the natural

frequencies of a simple element as waell as for the “clamped-free" beam.

1.2 Research objectives

This thesis 1is an attempt to study the vibration problem in a more
general model than that of the Timoshenko beam, i.e. in uniform or non-uni-
form, slightly curved or straight beams. The finite element chosen had two
nodes with four degrees of freedom at each node (in the particular case
where the element forms an angle with the x axis, there were five degrees of
freedom). The nodal coordinates of each element were: total deflection,
rotation, deflection slope and the first derivative of total slope. All
boundary conditions (forced or natural) could be imposed and rate of conver-
gence was sufficiently rapid.

The problem was studied with all possible displacement functions,
including the case of a slightly curved beam. The results obtained for
these two types of beam agree very well with results obtained through exact
solutions. Comparisons with other numerical methods in use among different
authors are also performed.

1.3 Brief summary of the report

This study contains nine chapters, the separate contents of which are
summarized below in order to set out the global aspect of the problem.



CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

CHAPTER 4:

CHAPTER 5:

CHAPTER 6:

CHAPTER 7:

CHAPTER 8:

CHAPTER 9:

General history of the Timoshenko beam.

A review of the basic theory concerning the Timoshenko beam,
from curved configurations to straight, including finite element
analysis of their dynamic behaviour. Analytical solutions of
equations of motion derived for different boundary conditions
will be presented in this chapter. As to the finite element
method, the choice of displacement function that will make for
the best analytic model 1in terms of the convergence criteria
will be discussed.

Detailed information regarding the displacement functions that
were selected from among three different possibilities.

The development of the matrices: the finite element method is
used to build the stiffness and mass matrices of the beam

elements.  The analysis will also include a development for

tapered beams.

Presentation of a graph for determination of a form factor k and
allowance for distortion of the cross section of the problem.

Study of free vibration problems. The main purpose of this
chapter is to determine the free vibration for all boundary
conditions. A static analysis with arbitrary end loadings on
the beam nodes will also be presented.

Description of the procedure for computing free vibrations and
eigen vectors corresponding to the ten commonest cases.

Calculations and general discussion of results obtained by the
computer program.

Conclusions



CHAPTER IT

BASIC THEORY

2.1 Slightly curved and straight beam theory

Using Timoshenko's model as a guideline, the general definitive solu-
tion of the wvibration problem is only obtainable from the equations of
motion derived from slightly curved beams (with a simplified case being the
straight beam). The formula is based upon the assumption that the large
ratio of elastic modulus over shear modulus (E/G) is E/G values may vary
from 20 to 50.

First, the assumption is made that the beam under investigation is
slightly curved, e.g. the neutral axis of the beam is initially quadratic in
form, so that initial curvature "H" then has a constant value (the beam
where H varies along the axis and the tapered beam will be discussed in
Chapter IV). In this particular case, the beam then becomes straight and
this is considered to be the two major effects of Timoshenko theory (rotary
inertia and transverse shear). It is assumed that the beam is homogeneous,

isotropic, uniform and prismatic (Fig. 1).

2.1.1 Equations of motion

The Tength of the beam as a uniform element will now be considered and
mentioned hereafter as (slightly curved) vibrating in the main plane. The y
and z axes will act as coordinates: they refer to the main axes of the
cross section, with the x axis being the "centroidal" axis (Fig. 2).



The basic equations of motion are:

oV

z ., %
X - Par
oy _ 2%
DX = P
oM pl 2
Y . Yy 28
ax Vz A otz

oV ow 9
z 9 0 - 9w
alx,t) + 55+ 5§'<bx Nx) P 3t

where VZ and My

ends of the element; u and w are the axial and transverse displacements of

are the vertical forces and bending moments acting on the

the beam, wo(x) is the initial axis of the beam; Nx is the normal
constraint on the cross section at the 2 ends; q{x,t) is the external
transverse load on the beam per unit of length: P is the density of the
element; Iy is the moment of inertia with respect to axis y: A is the
element's cross sectional area and t is the time variable.

(o]

The bending moment, vertical force and normal constraint are given
by :

(2.1)

(2.2)

(2.3)

(2.4)

Ca
My = Jgﬂ zonA = bzo, dz (2.5)
A =-Cy
Ca
v, = 7, dA = gP bt _dz (2.6)
jA %Ex |

N, =;!f OXdA (2.7)



where dA = dydz, the distance measured from axis x of the beam along axis z;
Cq and C, are the upper and lower boundaries, respectively, of beam thick-
ness; b is the total length of the cross section (generally b is a function

of x); oy and Tyz 2 respectively, are the total normal and shear stresses of
the beam.

Note that Tygy © 0 when z = =Cq Or z = ~Cy. Two functions are
proposed:

1

U(x,z,t) = u(x,t) - z6(x,t)

W(x,z,t) = w(x,t)

Where (U,u) and (W,w) are displacements in the direction of x and z,
respectively; o is the rotation of the cross section around the y axis.

Transverse displacement w(x,t) can be considered as vertical displace-
ment of the "centroid" of each cross section. It could also be assumed that
for infinitesimal motion in the y direction (non-coupled motion), a, and
ab/az are very small:  the products which include these terms, however,
should not be ignored.

Thus, the appropriate components of the stress tensor for these
assumptions can be written {(see b) of Table 3):

_g U au _ , 230
I = EEx X - E(ax z ax)
(2.8)
_ = foW U _ pfow _
xz = Bz = <ax az>'“ G(px e) |
o. =10



where ¢, and y, . represent normal and shear deformation.
S U 26 (2.9)
Myﬁgg “é’*y:mZ“éf;{)bZdZwEIyé—x- .
.,
oW = M
and VZ = 0 (—a—x— - 8)/ bdz = AG (8)( 0) (2‘10)
.,.Cl

The term 2% - o represents the reference shear deformation at each

%
cross section.

A correction factor is required in order to compensate for the assump-
tion that xxxx is a constant at each cross section. Thus, the numerical
factor "k" 1is introduced into (2.10) in such a way that:

aw } (2.11)
\Iz = kGA <6x )

k is called the shear deformation coefficient of the beam (it will be

discussed in detail in Chapter V).

A1l natural boundary conditions require that the bending moments and
vertical forces specified at a point along the beam must satisfy equations
(2.9) and (2.11), whereas all those that involve rotation and transverse

displacements are cancelled out.

With the influence of the bending moment, we obtain, in the absence of

shear:

-1 oW _ oW _
tan % > % 5
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If the transverse shear deformation at the neutral axis of the beam is
taken into accounts, the following relationshp can be obtained:

w .
i 0 + (2.12)
Where ¢ = y,, 1s the shear deformation of the beam. Finally, the

normal constraint Nx can be represented as:
oW
0 & W
NX EA (*“—'i' “ax BX) | (2.]3)

Substituting (2.9) and (2.11) into (2.1), (2.2), (2.3), (2.4), we
obtain:

326 ( ) 5%
El 5 + kGA -8} -pl <2 =0
y BX .Y atZ (2.]4)
ow 2
aw 20\, 9 ___9_) _ap W (2.15)
q(x t) + kGA (—3—2 - '5-)-(') + (NX ™ pA 12
X

For sufficiently large curvatures, longitudinal inertia could be

ignored by settlng =0 in (2.2), with the normal constraint Nx taking a
at2
constant value No’
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(2.13) can be integrated by considering u = w = 0 and x = 0 to x = L
for problems in which beam ends are fixed, the expression obtained for Ny

will be:

=N = E@[L Mszwo w dx (2.16)

ax?

Where L is the total length of the beam.

Substituting (2.16) into (2.15), the equations of equilibrium for a
uniform beam, in terms of W and o, can be written:

e 220 4 ken (») = o1 3% 597
Y ax? Y at?
L
2 07w ovi
xt)+kGA( L ) o EA [ "o . _ a3 (5 4g)
L5 Az sy 2 L 9X oX ot
6W02
These two equations are valid for fov < 1 {that is to say, for
oW 0X
stightly curved beam), where =—-—19-re:pr"eseﬂ’cs the initial slope of the neutral
3X
axis of the beam.
Then write: WO = Hyo '
X X
with Yo = 4Gj>(] - [> (2.19)

Where H is the maximal value of W and Yo is a non-dimensional

quantity.

Also obtained is:

w=hWsin ot
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Where beam thickness (h = [oc ]; W and ¢ represent the normal

1]+ o,
functions of w and o, vrespectively, and are the rotational vibration

frequency of the beam.

The non-dimensional quantities are generated by substituting n = 5-3
L

hence (2.19) becomes:

Yo = 4 (1 -n)
82
Then 7o = -8
an ?

(2.17) and (2.18) could then be written in the absence of q{(x,t) in
the free vibration problem:

a4 IQH' \ 320

Zm Sy - 9) A% =0 (2.20)
X

WL NATEG | B
sﬁéﬁ_skvﬁmwﬁj Wdn=0 (2.21)

I ko .
A1l the non-dimensional parameters in (2.20) and (2.21) are determined

as follows: S = KGALZ/Eiy: shear deformation parameter; A2 = pAL“wz/EIy:
frequency parameter; Q = Iy/AL2: rotary inertia parameter; P = AH2/Iy:

deviation parameter.

2.1.2 Analytical solution of the equations of motion

The derived equations (2.20) and (2.21) are used for a slightly curved
beam; their solutions are discussed in [25], and are written as:

Vo= W 6424P/ W dy (2.22)

e = 8 (2.23)
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where W, and 0, are the theoretical solutions for straight Timoshenko beams.
They have the form:

if
i1

AAAAA

A,{t) cosh Aan + Ax(t) sinh Aon + Az{t) cosiBn + A,{t) sinin

i

@
H

As(t) sinh Aar + Ag(t) cosh Aon + A;{t) siniBn + Ag(t) cosiBn

a and g are the non-dimensional quantities which can be expressed in the
following two cases:

Case a) When &) - J§

2
SN

1V , 4
R = ‘12—2_!/ (O+%)+ ‘\Q-gl o (2.26a)
1 A%Q
Case b) When J(Q‘l +'§‘2 Q'*g‘: S 1

(2.26b)



Constants A (t),

A, (t)

2

the following relationships

As

Ae

A

7o

14

up to and including A (t) in (2.24) and (2.25)
must be determined in each of the particular cases separate from the bound-
ary conditions on the beam ends.

These constants can also be replaced by

for purposes of simplification:

1B

] =

L] =t

A

A,

As

it

i

a?S + 1
()

Substituting (2.27) into (2.22) and (2.23), the
brium for a slighty curved Timoshenko beam will be:

n

W

64

- 64

&

AQL

A, (t) sinh don+A,(t) cosh Aan

As(t) siniBn + A,(t) cosABn

1(t) sinh Ao+ mli~l-(coshka 1)+

-y

et
-

Ay

Ay (2.27)

equations of equili-

A, (t) cosh xan + A,(t) sinh Aon + As(t) cosifn + A, (t) sinABn

%gl smAB -——j—l (1 -coskB)]

(2.28)

(2.29)
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This report will only present the theoretical equations for a typical
straight beam (curved or slightly curved beams are excluded). We will,
however, expand on the use of a finite element approach to generate the
three types of beams.

In regard to straight beams in particular, certain theoretical equa-
tions derived from some common cases presented here were established by
applying them to (2.28) and (2.29) with a (2.29) with appropriate boundary
conditions, as well as constant relation integration in (2.27).

Each equation is solved by means of a computer program (iteration
method) that yields the exact frequency parameters, which can then be
compared with parameters obtained through the finite element method.

The common types of beams can be separately integrated with respect to
conditions at both ends: (to n = 0 and y = 1), “"clamped-clamped", "clamped-
free", "clamped-supported", "free-free", "supported-free", "supported-
supported"”, ‘“"clamped-simply supported", ‘“simply supported", “simply
supported-simply supported", and "free-simply supported". The corresponding
frequency equations are derived from a uniform beam and are summarized in
Table 1; the corresponding normal modes appear in Table 2, Appendix D.

2.2 Finite element method

2.2.1 Choice of the model

The first point to consider in solving the problem is what model to
choose. The model chosen must be applicable to all types of beams and must
satisfy all boundary conditions in all the cases. This method presupposes
that the nodal displacements are the unknowns in the problem and that the
compatibility conditions within and among the elements must be first
satisfied. (A quick review: compatible elements are elements in which the
longitudinal boundary displacements are fully accounted for by displacements
of the nodal point that includes this boundary).
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The work of determining the stiffness matrix is then based on the
assumption of virtual displacement, rather than the virtual constraint that
has been previously discussed, in [20]. Some terms for derivations of
deformation can be ignored in most practical cases. Furthermore, the
elements the assumptions are based upon, the field displacements, are the
most universal ones. The deformation for a structure comprised of elements
is given by its nodes. The stiffness matrix for the structure must be
compatible with the displacements and with the corresponding load.

As was earlier mentioned, the type of element used throughout the
analysis was a line segment which includes two nodes at ends to adjust to
the various types of boundary conditions. The displacement vector for each
node is a combination of the following quantities: transverse displacement
and its slope, w and w', respectively; rotation of the cross section, o',
and finally transverse shear deformation, ¢. These quantities, w', @8, ¢,
are linked by the relation in (2.12); therefore if w is the cubic polyno-
mial, @ and ¢ can be represented in the same way as w, and then we obtain:

0
! = A (t) + Ag(t) x + Ap(t) x2 + Ay(t) x°
b L— mode symmetry

state of uniform deformation

rigid-body rotation Mandatory
terms

L principal mode of rigid-body motion

where A1’ A2, A3, A“ are the constants or time functions for the dynamic

case which are to be determined.

Two distinct models are derived from these assumptions:



17

1) Model “i": in which transverse displacement, w, and shear deformation
¢, are assumed to be cubic polynomials:

w=a,(t) x3tay(t) x2F as(t) x + a,(t)
Eq. i
b+ aglt) x3 + ag(t) x2+ a,(t) x + ag(t)

1) Model "j": in which transverse displacement, w, and cross sectional
rotation, ©, are assumed to be cubic polynomials:

"

W a,(t) x? + a(t) x* + as(t) x + a,(t)
6 = ag(t) x? + ag(t) x2 + a;(t) x + as(t) (8q. §)
where a,(t), ..., ag(t) are linked by (2.27).

It is apparent that in both "i" and "j" models, transvrse displace-
ment, w, is always a cubic polynomial. With both models, the formulation
for the stiffness and lImass matrices of a uniform Timoshenko beam can be
used for: a) curved beams, b) slightly curved beams and c) straight beams
(see also Table 3, Appendix D). |

Three types of beams with different displacement functions, as
indicated in Table 4, were chosen by means of (equation i) and (equation j).
For comparison purposes, Table 4 also gives a summary of several models of
Timoshenko beams various authors have studied. Two models in particular
called number I and number III, satisfy all the normally applied boundary
conditions as well as their tests for convergence.

Model number II satisfies only three cases: “supported-supported”,
"free-free", and "supported-free". The explanation for this particular
occurrence is found in equation (2.12). The existence of rotation 6, in the
cross section, in this situation is a necessary and sufficient condition for



18

assuming the displacement functions; shear, ¢, although an important factor
in Timoshenko theory, is only secondary when compared to the effects of
displacement, w, and rotation, 6. (A1l previous studies have shown that
this effect has greater influence at higher modes). Of these three models,
only two (I and III) theoretically satisfy the above mentioned conditions
and are consequently able to satisfy all strain-displacement boundary condi-
tions. The rotation slope, ©', and shear, ¢, in model II are hecessary
conditions, but are insufficient to cover all possible boundary conditions.

0f the two models (I and III), model III is considered to be the
typical model in this analysis, because of the shear assumption, ¢, which

makes the problem more symmetrical.

2.2.2 General Procedure

L. -

n

Since the finite eiement me iell Kknown, only

"
v
=
(1]

thod
guidelines will need to be repeated for the purposes of this analysis.

ne st

Consider a uniform segment of a beam defined by two nodes, "i" and
“j", with the boundaries at the nodal reference (Fig. 3).

The displacement function chosen can be determined by:

{ooot}= N m (2.31)

where [N] is a matrix for the general position function and 3Ai§

represents the nodal displacements. Aj

Once the displacement function is known, the deformation matrix can be

stated as:

A5
{e} = [B] iAz ) (2.32)
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Then, the one-dimensional stress matrix can be written:

A.
{5} = [ST] 5‘1 |
(25) (2.33)

Using the expressions strain for and kinetic energy, we derive:

1

o= 5 [87] [B] d (volume)

volume

1 T3 [N] d (vol
((: z p“é;lumgN 1IN (volure) (2.34)

Finally, the stiffness and mass matrices [K] and [M] within the local
system, associated with the finite elements are, respectively: '

L

[%] f [8T] [B]  d(volume)

<" yolume

M] = T d(vol
[ p‘/;o]umEN 1IN] divotume) (2.35)

32 % (A)
where ij BAi aAj

pay)
]

q. - 52 (%)

and ..
iJ aAi aﬁj

2.2.3 Convergence Criteria

Accuracy depends upon the criteria for convergence in the method
mentioned previously. The criterion discussed in the particular case of a
simple element is the monotonic convergence boundary. The two main points
of convergence are as follows:
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a) Displacement function

The function chosen is the one that does not allow deflection in an
element to occur when displacements at its nodes are caused by displace-
ment of the rigid body.

b) Complete element

The function chosen must be capable of representing the displacements of
a rigid body (this will enable all points of an element to go through
similar displacements) and the states of constant deformation (those
necessary for assembling several elements. This prerequisite can be
explained physically if we express an infinitimal element for which
deformation will be approached as a constant value). This criterion can
also be considered as a sufficient condition for convergence. Note that

with this method,

vit o L

the number of terms for a complete polynomial of order

n, is therefore (n + 1) for a one-dimensional case and 1/2 (n + 2) for

two dimensions.

c) Continuity of displacement

The function must be chosen in such a way that the deformation inter-
faces of the elements are finite (otherwise the displacement would be
continued within the element), and is dependent upon the selection of
continuous polynomials as general displacement functions. As has
previously been found, if there is discontinuity between the elements, a
constant deformation condition will automatically guarantee continuity
of the displacement.

The coordinates and displacements at the beam element interface
(adjacent elements) are the same. Furthermore, the strain energy integrals
used in this case are evaluated precisely; the boundary characteristics and
the properties of monotonic convergence can be applied.
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CHAPTER ITII

DISPLACEMENT FUNCTIONS

3.1 Selection and determination of displacement functions

The established general formulation is valid for all three models- I,
II and III. In particular, with a matrix development for potential energy
and kinetic energy, the displacement function used was the one for model
I1I. This model has already been considered as a typical model for later
expansion (see Appendix D, Table 4).

When considering a uniform element of the beam (Fig. 4), it may be

assumed, in simplistic terms, that {u(x,t)}T resembles the displacement
functions, with respect to parameters {a(t)!
Where: {U(X:1)} = [L(x)] {a(t)} . (3.1)

[L(x) ] is a matrix containing the cubic displacement functions, and:

{a(t)}T = {a;(t) a (t) as(t) a.(t) as(t) ag(t) as(t) ag(t)}

The first term is this potential energy expression is the integral for
the energy that is caused by strain; the second term is the shear energy.
The same applies to kinetic energy, where the first term represents the
integral for the linear variation term and the second represents the
integral for rotary inertia. To integrate these terms explicit by trans-
verse displacement w, rotation 6, or shear deformation ¢ must be repre-
sented. For the sake of compatibility with the finite element analysis, w,
0 or ¢ are assumed to be of the form: (see Table a)
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Type 111 |y
o= [(L(x)] {o}

Type 111 L)
! ol = [L(x)] {a}

The elements in matrix [L(x)] are, generally speaking, the structure's
coordinates; and the constant vector {a} is generally a time function. The
nodal displacements can therefore be assumed to be:

Where [A] = (Cte), interpolation matrix for the nodal displacements.

3.2 Internal displacements

The displacement functions can be specified by examining each node of
an element for models I and III {Fig. 3). The components for transverse
displacement w and its slope w', rotation 6 and its slope o', and shear ¢
will be ordinates. The node "i" "displacement", for each model, can then be

determined by the vector:

Model 1 (types I, andlj)i

{Ai} = (3.3a)

() = 8 (3.3b)
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For elements having two nodes and 8 degrees of nodal freedom, we
obtain from (3.3a) and (3.3b):

Model 1I:
(”“
w s
8
A. ',
;EE: (3.4a)
j 43
W
0.
\e’
Model 1III:

WJ- { U:A]IHJ'J

{e : ' |
a5l _ <wi\ J[A]”“] el (3.4b)
\

Multiplying (3.4a) and (3.4b) by [A-1] IIIi or [A-!] IIIj, respecti-
vely, we obtain the general form:

{a(t)} = [A7] {a(t)}

By substituting into (3.1) we end up with:

1 Ai' 5
Qu(x, £)) = [LOAATT 6(0) = TN, (3.5)

This equation defines the displacement functions.
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CHAPTER IV

MATRIX CONSTRUCTION

4.1 Internal deformations

The assumption is made that a finite element of the beam is deformed
according to two displacement functions as previously determined in Table 3.
Curved beams will be dealt with first, followed by slightly curved beams
and, finally, straight beams.

Deformations of an element are expressed as general displacement func-
tions (3.5); non-extension (or curved) beams are being neglected for the
purposes of this particular project.

The basic "strain-displacement" relationship for plafne deformation
produces:

- T
(e, [2U/ox \ [z 20 |
ey oV/ay 0 (85 N
e, | |ouraz . 0 A, =B, e
le} = ny:=<aU/By + oV/ax | 0 J J
Y aV/oz + oW/ay 0
yz y m o r: g
Yxz \a0/0z + 3H/B% ERGREN

oy oy 3
_ au _H ojfaw ST el | LA | 4.2)
0 3x ~ 'L_f (ax)(ax) dx - H (ax>(3x) (

0

It is important to note that in this analysis the “strain-displa-
cement" equations contain rigid-body motion. It has been eliminated from
resultant expressions, however, in order to determine the deformations, but
is is included in the displacement calculations.
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4,2 Internal stresses

The ‘“stress-strain" relationship for one-dimensional isotropic

materials can be written:

- T
au rz a9 1
(ox | [Eex E[’a?ﬁ?‘é?]
°y 0 0 A
A. .
O o S o et el @
Txy 0 0 J J
0 0 |
Tyz ow r?
(2] \K7xz) € (3 - e )

Where: (%‘(—) have been determined in (4.2),

4.3 Strain energyv-kinetic energy

As has been mentioned previously, this method uses unknown nodal
displacements for the problem; later displacements will be determined by
solving the system of linear equations generated to satisfy the equilibrium

conditions at the nodes.

By using the original total potential energy, we obtain:

Miotar = M- Up - Mg - Ms

Where:

Internal deformation energy.
Potential energy due to body forces.

Potential energy due tu external nodal forces.

Potential energy due to surface tension.
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With regard to the free vibration modes, the last three energy terms,
4-(,_-, q?R, andu can be neglected, therefore giving wtota] =U.

-  The internal strain energy expression for length "L" of a Timoshenko
beam element can be written:

..T :
AL = / [0, ]T e, ] d(volume) + %/ [ty vy ) d(volume)
vo]ume olume
FALra
fiﬁx&ﬂﬁiterm shear term

- The kinetic energy expression for length L of a Timoshenko beam element
can also be given by:

lal

PC= %»[ p@_] d{volume) + % [ p[-au‘l d(volume)
] Lat]y J Lup
volume volume )
. term &# linear variation E term ef Totary inertia /

. ANy

By substituting (4.1), (4.3) into (4.4) and (4.5), respectively, and
then by non-dimensionalizing through the substitution of and assuming that W
and 6 are cubic polynomials of the form of (2.30), we Pvpnfna]lv arrive at
the general expressions for internal strain energykin = L’ y= E expression
and kinetic energy ¢, , for a curved ((A.1.5) and (A.1.6)), sTightly curved
((A.2.1 and (A.2.6)), or straight ((A.3.1) and (A.3.5)) beam.

4.4 Stiffness and Mass matrices

The expression of potential energy &g in (A.1.5), (A.2.1) or (A.3.1)
for the stiffness matrix can be given by:

(4.4)

(4.5)
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Q=1 [ (4.6)

where [K] is the stiffness matrix of the beam within the Tocal system.

Kinetic energy T in (A.1.6), (A.2.6) or (A.3.5) in the mass matrix,
can also be expressed by:

C =1 {8} M () (4.7)
where [M] is the mass matrix of the beam within the Tocal system. Both
matrices [R] and [M] depend upon the geometric and physical form of the beam

and are derived for three types of beams. The elements in [R] and [M] can
be written as follows:

And T (4.8)

L.
comrgeses Redd
The stiffness and mass matrices for a Timoshenko beam were derived for
the following cases:
A) Curved beam

* Stiffness matrix

K3 = o )T e d (67 (4.9)




B)
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where [Rc] is computed in Appendix A (equation A.1.10) and listed in
Table 5a (Appendix E).

In the global system, we can derive:

kJ =K [ (4.10)

where [A] is a transformation matrix for the coordinates, given by
equation (A.5.4)

*Mass matrix

M1 =or® A1 DI (4.11)

where [MC] is calculated by means of equation (A.1.16) in Appendix A
and listed in Tabale 5b of Appendix E.

In the global system, the mass matrix will be in the form:

MJ = WA (4.12)

Where [A] is the same matrix as in (4.10)

Slightly curved beam

*Stiffness matrix

EI -
K. = —Ll AT [ J A (4.13)




where [RSC] is computed in Appendix A by
in Table 5¢c (Appendix E).

In the global system, we obtain:

K = (V][R [A]

where [A] is given by equation (A.5.4)

*Mass matrix

A =eA AT Dt

In the global system we have:

mJ=0" mJm

where [A] is the same matrix as in (4.14).

C) Straight beam

*Stiffness matrix

I

E
Kl £ 7 oyl
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equation (A.2.4) and listed

(4.18)

(4.15)

145 calculated in Appendix A (equation A.2.9) and listed in Table

(4.16)

(4.17)
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where [Rd] is determined by equation (A.3.4) in Appendix A and Tisted
in Tables 5e, 5g, 5i of Appendix E.

In the global system, the stiffness matrix of a straight beam will
be:

k] = VIR | (4.18)

where [A] is given by equation (A.5.4).

*Mass matrix

[F] = eA® [A2]7 P )07 | (4.19)

where [ﬁd] is calculated using equation (A.3.7) in Appendix A and
listed in Tables 5f, 5h, 5j of Appendix E.

In the global system, the mass matrix of a straight beam will be:

[Mg) = [A]" [F,10A] (4.20)

where [A] is the same matrix as in (4.18).

D) Tapered beam

*Stiffness matrix

Ry = A7 [y A (4.21)
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where [Rdt] is determined by equations (A.4.3) and (A.4.4) in Appendix
A, and listed in Table 9a (Appendix E).

In the global system, it will be:

[Kge] = [ATI[R,,I0AD (4.22)

where [A] is given by equation (A.5.4).

*Mass matrix

[, = [ DA | (4.23)

where [Mdt] is calculated by equations (A.4.8) and (A.4.9) in Appendix
A, and listed in Table 9b (Appendix E).

In the global system, the mass matrix for a tapered beam will be:

Myl = [AIF4 10 (4.24)

where [A] is the same matrix used in (4.21).
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4,5 Vibration of variable section beams (tapered beams)

4,5.1 Introduction

Upon firmly establishing the formulas for the stiffness and mass
matrices, determination of the eigenvalues-and eigenvectors for a straight
uniform beam produced successful convergence. The development of non-unj-
form or tapered beams can now be proposed.

The only change in procedure for this specific type of beam is due to
its geometric properties (the physical properties are also involved in beams
having non-uniform physical characteristics): e.g. the depths of square or
rectangular sections, where diameters may vary over a row of circular or
elliptical sections. Depth, thickness and diameter can be linear, quadra-
tic, cubic, exponential or tapered functions. The beam may also have

different conical forms such as cones and truncated cones.

4.5.2 Past studies and present research

The problems of non-uniform or tapered beams have been previously
studied by various authors. Kirchkoff [39, 1879] conducted research into
edge vibrations with a cone fixed at one end and free at the other, Ward
[40, 1913] continued investigation of a beam with parallel dimensions at the

y and z axes which varied between__&l“ and _ﬁ_n, respectively, with m and n
L L
here representing whole numbers. Nickleson [31, 1961] reported on the

lateral vibration problem with a cantilever bar of variable section. There-
after, Mononobe [41] investigated lateral vibration of thin cantilever bars
with variable transverse and boundary conditions. Granch and Alder [18,
1956 ] used simple beam theory to calculate natural frequencies for several
types of beams. Several cases of "clamped-free" and double-edged free beams
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with various variations in depth were also studied. Martin [44, 1956 ]
looked at free vibration of a beam for different size ratios: The depth
could be expressed in decreasing series; the high power terms could be
neglected. Lee [47, 1963 ] considered the problem of shear effects and
rotary inertia of an edge by suing Timoshenko theory. This same problem was
investigated by both Housner and Keightley [33, 1962 ] and Rissone and
Williams [45, 1965]; they studied the vibrations of a "clamped-free" beam
with a small thickness ratio using Myklestad and Stodola methods.

Conway, Becker and Dubil [46, 1964 ] also calculated the free vibra-
tions of a "clamped-free" truncated cone - shaped cantilever for a certain
number of boundary conditions. Rao [32, 1965] determined the fundamental
flexural vibration of a "clamped-free" beam with linearly varying rectan-
gular sections, using Galerkin's technique.

Gaines and Volterra [21, 1966] presented cross-sectional free vibra-
tion at the upper and lower eigenvalues at the boundaries of a "clamped-
free" variable section cantilever bar (in the form of edges or truncated
edges, cones or truncated cones), by both neglecting rather paradoxically
and then also taking into account two specific effects from Timoshenko's

theory.

Carnegie and Thomas [22, 1967] also obtained the eigenvalues and
eigenvectors for a long tapered beam by means of an iteration procedure,
using the finite difference method from the equations derived from Euler-
Bernouilli. Using the finite element method, Thomas, Wilson and Wilson [12,
1973] applied Timoshenko's theory to their model in order to calculate
vibrations for a tapered beam.

The most recent study was by Downs [48, 1977 ], who obtained excellent
results with a dynamic discretization technique which included the first
eight vibrations of edge of all geometries, and the first four (or six)

modes for the stress distribution models.



In the present study, the derivation for a straight beam of different
forms was generally accomplished by combining the variable depths and thick-

nesses. A number of conical beams (cones or truncated cones,

edges or

truncated edges) of variable section (rectangular, square, and elliptical)

were obtained (see Table 8).

For a beam with varying sections, we get:

A(x) = A +8A (%)

X
Iy (x) Iya + A 1“v (r)

where A A = A

and - -
A Iy be Iya

(4.25)

A I and Ab’ be are cross sections and inertia a and b, respecti-

a’ "ya

vely, of a tapered beam element. Substituting (4.25) into (A.3.4), (A.3.4)

and (A.3.8) will yield the stiffness and mass matrices

Timoshenko beam.

In this case, the frequency parameters therefore become:

14 2
pAaLw

EIya

A=

for a tapered
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CHAPTER V

DETERMINATION OF THE FORM FACTOR - DISTORTION PROBLEM

5.1 Calculation of factor k

The ambiguous nature of the equations of motion requires proper choice
of a shear deformation coordinate, k, when considering shear deformation for
several beam problems. This coefficient has a non-dimensional quantity.
Several authors have suggested that the usual values of k lead to unsatis-
factory results when these equations of motion are used to determine the
high-frequency vibration spectrum of the beam. For better results, the
coefficient should be arbitrarily adjusted. The cause of the error origina-
tes in the Timoshenko equation, from where an efficient transverse shear
deformation is selected equal to the shear constraint of the reference cross

fuidad hy 0 % b whana 0 4
e vy N Wilicre a 1

That k depends upon the vibration mode and the form of the cross
section is a well-known fact, introduced to demonstrate that the distribu-
tion of shear stresses as well as shear deformations on the section is not
uniform. However, k also depends on the assumptions made concerning the
type of end conditions.

Therefore, k is the reference shear deformation for a section with
respect to centroidal shear deformation.

The methods two well-known authors [23] and [19] used to determine k
will now be discussed. First, Sutherland and Goodman [23], based their
assumption on the fact that the shear stress distribution of a cantilever
beam with rectangular sections 1is such that the choice of k does not
particularly affect the vibration results for the cantilever beam.
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When considering a prismatic length of beam, éx, the deformation

energy increment due to shear distortion Ugp-> will be:

d(GL(SD) =1 (YXZ(SX) (T XZdA)

In addition, the work imposed by forces on the element is:

§( work ) =% VZBe(SX

Setting (5.1) equal to (5.2), we obtain:

(5.1)

(5.2)

(5.3)
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With this formula, coefficient k will be determined for each value of
cross sectional over A.

The second investigator we shall consider here, G.R. Cowper [19],
stated a more general assumption arising from derivations of Timoshenko beam

equations, and dependent upon a function X, which is specified for each type
of section.

With this method, the two quantities in beam theory mentioned earlier
can be determined either i.e. transverse displacement W or rotation 6 (6 may

be interpreted as being the reference angle of rotation of the cross section
around the neutral axis), such that:

-~
1
w:-ﬁ’[ UZdA

A _ (5.4)
6 = l zu_dA | |

<=

wheredA = dydz. -

W is chosen as centroidal displacement. Accurate definition is a
prerequisite, since the beam cross section inevitably is deformed, leading

to a small elongation.

A1l points on the cross section do not have the same
displacements.

8 is chosen as the inclination angle of a plane surface which usually
coincides with the left section.

Starting with the two equations of equilibrium which concern forces in
directions z and x, respectively, we get:
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30 ot 3T 32
2y Y2, X4 =p—2 (5.5)
¥4 oy ax 2 2
. ) at
or ot o0 o%u
XZ Xy X - X fe £\
5% + 57" ax = p " \9.6;

Integrating (5.5) and (5.6) yields the following expression:

Then:
oV 2
ZZy glx.t) = ph 22 (5.7)
X 3t 2
My e 2 (5.8)
3)( Z .Y Btz pﬁ:l/ K”'W\\

Where q(x,t) is the total transverse load per unit length, applied to
the beam; q(x,t) can also be expressed by:

q(x,t) ~Lf((n o, + MTy ;) de/erdA (5.9)
A

n,s ny represent the normal unit components of the cross section
boundary; dS is the element for the boundary arc; Iy is the moment of
inertia of the beam around axis y.

In accordance with residual displacement assumptions Vos Vi

/deA=/vdi szdi =0 (5.10)
A A A
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We can express the "stress-strain" relationship as:

v oV
aw — Txz X - 'z
2z T8 =% “ 32 "5 (5.11)
Bux .
E —B—X— = O'x - \)(OZ + Oy) (5’]2)

Multiply (5.12) by x, then integrate it over the entire section. With
regard to (5.10), we obtain:

av
oW _ - g 2 .
S+0=1 (sz Gaz) dzdy (5.13)
El 26 _ - v z(o, + o) dzdy | (5.14)
and y 9x y z Y

A

The motion of the beam must therefore satisfy equations (5.7), (5.8),
(5.13) and (5.14).

Finally, with the introduction of function X, we can relate stresses
Ty z2 Txy and displacements Uy by assuming that the normal stresses I, oy,
are negligible in comparison with o, s as well as with the transverse shear
stress distribution in a uniformly loaded beam (VZ varies linearly along the

beam and has a constant value for an "extremal clamped-loaded" beam).

v i 2 2
_ z x , vz?  (2-v)y
Txz T AWV, | B2 ot
P (5.15)
Tyx='21+vly Lay+(2+\»)zy .

VZ 2
u, =zf(x) - g (x + 2zy?)
y



X in (5.15) represents the harmonic functions which satisfy the bound-

ary conditions of the cross section boundary:

r..-.2 (9-\»\\/2—‘ T2 TR Y
n. {4a+v)dy

VL \& viJ -
?.X.:..nz\'z-'l' 2 J y

f(x) 1is a polynomial of exact form which depends upon the extremal

conditions of a beam.

From (5.15) and (5.10), the value Vx, cross-sectional displacement, is

calculated as:

v =
X EIy

Substituting the vy value into (5.13), we obtain:

v
oW _ 'z
9= (aG

2(
e\

il

2 \\\T
T OVji

Yy
where |k = \)(IZ=I ) A
———§~—z—-- T z(x + zy?)dzdy
Y

2]

Iy

- dy.
I, fyzdlyA
A

VY B
- Nex —zy? + % /(x + zy?)dzdy + z(x+zy? )dzdy
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is the moment of inertia for the cross section about the Z axis:

(5.16)

For the different beam sections, the various corresponding X(z,y)

functions will be obtained.

order to determine shear deformation coordinate k.
number of section forms are given in Table 6 of Appendix D.

Cross=sectional area A will

be evaluated in
The final results for a
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5.2 Consideration of section distortions

As was previously noted in our derivations of the equations of motion,
the assumption we made is that the plane section remains plane. In general,
this assumption does not completely meet all the requirements, when the fact
is being ignored that the planor cross sections are distorted during vibra-
tion. There is another consideration, which with the help of Arnolds [35]
and Barrs [28] research, makes it possible to establish an equation on a
more general and satisfactory basis than is usually the case here.

The only change is in the value of deformation coefficient k, which
then has a different meaning.

The correction for axial U(x,z,t) and transverse W(x,z,t) displacement
functions applied as follows:

U(x,z,t) = u(x,t) - z6(x,t) + e(x,z,t)

where ¢(x,z,t) is a correction function added to shear deformation.

Consider a uniform element ABCD (Fig. 8) (we assume that the section
is rectangular and that the beam is subjected to bending and shear loads in
plane oz, where oz represents the shear displacement axis, and ox represents
the neutral axis of the non-loaded beam).

The cross section of elements ABCD initially pivoted from oz to axis
[1] with angle ¢ as the bending slope (bending problem), combined with shear
loads (shear problem), resulting in distortion of cross-sectional element ¢
at axis [2]. Similar effects should occur for all the elements in the same
section while, simultaneously, the face of the elements forms an angle «,
with a line parallel to the axis [1].



The total shear angle, v, for any thickness z may now be written:

¥V =¢ ta

z
where shear ¢ is:
v

and the correction function ¢(z):

4
e(z) =’[ azdg

(2.16) and (2.17) now become:

w_ .
o%w 98y, - o EA[ O . 9Wg4yxy4
+ AG |/ - 57 3X 99X
alx.t) (ax2 ax) axz g
Gf d % _op 20w
) X3z bdz = p 12
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(5.17)

(5.18)

(5.19)

(5.20)
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By substituting (5.19) and (5.20) into (5.17) and (5.18) we observe
that 1 + &, identifies with k.
1+ &

148
or that k* = 1-+af (5.21)

k* is called the distortion coefficient.

In other words, we may now write:

h/2
d/~ by dz
I _h/2

5.22
o= 0 (5.22)

A z
/ [ ‘i'dz]bzdz
-h/2 0

Total shear angle can also be represented by a Fourier series as:

= cos kmz
=1 % T h
k=1,3,5
Where a are constants.
This gives:
) a3 ds
I O S 2 T (5.23)
K*=\n) » T &, 3
~a1--—-—-+—--..
33 53

k* is verified and compared to the value of deformation coefficient k.
For a rectangular section with a tapered shear deformation distribution, the
value of k* can be evaluated as follows: We have:

: 21+%+%«“
h? _1%.h 3 5 .2
7¥'= 177 > k= h: 12 1 ] "6

1+ —+ —+
36 56 “ o
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Note that with certain types of cross sections, e.g. circular, square
or rectangular, the value of k* is equal to the value of k. This does not
necessarily always follow in other cases, because of the existence of o,
within the correction function ¢(x,z,t).

According to our computer calculations, if the beam section is rectan-
gular, circular or square, then k* = k. If the section is elliptical,
however, the k formula will be used instead of (5.22), in order to simplify
the problem.
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CHAPTER VI

FREE VIBRATION

The present chapter deals with free vibration bending problem charac-
teristics and their treatment, for a number of uniform and axially non-uni-
form beams. With this method, the beam must be subdivided into a number of
finite elements. The stiffness and mass matrices for each element are first
established; the bending (and subsequently, the free vibration) and eigen-
values, eigenvectors are then determined.

The discrete differential equations of motion for a finite element,
without any absorbing effect, can be expressed in the form:

KA} + MUAY = F(t) (6.1)

where [A] is the displacement vector F(t) is the external force [K]
and [M] are, respectively, the global stiffness and mass matrices.

6.1 Free vibrations

If there are no external forces in operation, equation (6.1) can be
rewritten as:

[ fﬁji v I {2} - ©

By introducing:

Ai}— {Aia} sin (0t + ¢)
{Aj - Gy { }
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(6.2) then becomes:

Aio}
- w? = {0}
{Ix] - " M {Ajo

(for model 111)

And  is the rotary vibration frequency.

[K] and [M] are real matrices, symmetrical and always finite. [M] is
often called a consistent mass matrix, since the weighting functions used in
determination of the mass matrix are identical to the ones used to form the
stiffness matrix of an element. As for the dynamic problem, the consistent
formulation will be accurate if the actual deformation mode is included in

the weighting functions of l}gﬂ and [QE] (or w, 6 in model I and w, ¢ in
model III, respectively. oty 9t |p

Equation (6.3) leads to a standard eigenvalues problem.

If we cancel the determinant in (6.3), the values are obtained automa~
tically. Due to different boundary conditions for x = 0 and x =L (orn =0
and n = 1), the number of vibrations and weighting modes obtained will
differ depending on the number of displacements terms applied. In our case,
the real number of vibrations obtained was equal to 5(N+l) - J, where N is
the total number of finite elements and J is the number of natural boundary
conditions specified for each case.

Each free vibration will be associated with a particular eigenvector

(6.3)

;Aio
A.

Jo

5
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6.2 [K] and [M] for the entire system

To develop a model of the entire system, the stiffness and mass
matrices are assembled so as to satisfy eqfuilibrium forces and continuiuty
of the displacement at the interfaces.

The two global stiffness and mass matrices obtained are called [K]

and [M]Syst
are square matrices of order 5(N+1), where N is the number of elements.

syst

, respectively. They are shown in Figure 9. [K]syst and [M]Syst

Note that the stiffness and mass matrices are individually established
for an element whose the nodal points are at both ends. For beams, the
element used is simpler than for other cases (plate and shell); triangular
or isoparametric elements are unnecessary. Displacements {Ai}and {Aj}
corresponding to both ends of af finite element must be continuous {(when the
system considered is continuous) with those that allow for super overlaying
position of the stiffness and mass matrices for each element within the

global system.

Moreover, in the free vibration procedure, the beam system is subject
to inertial forces and the corresponding constraint and deformation states
are determined by using an odq function for the displacement, as was
discussed in Chapter Il (e.g. 4()()( x) and representing the sum of the

@

L L

forces and moments at a particular node, noting that must be equal to
external forces which, in our case, are mass inertial forces and the moments
applied to this node). Then, if {Fi} and {Fj} represent the internal nodal
forces acting upon nodes i and j, respectively, we get:

{F,} = {F;} + (F3)

and {A]-} = {‘Aj}
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The condition of deformation compatibility will also be satisfied.
Assuming the displacement of the basic system, we obtain:

hWsinwt

_h .
6 = L 6 sinw t

=
Il

where  is the system's natural frequency.

6.3 Static analysis - constant loads

This section deals with the beam problem as it relates to external
forces and time-related moments. It is assumed that an external force,
Fe(x,t), and an external moment, Me(s,t), are acting upon a non-uniform
beam; Fe and Me are forces and moments, respectively, per unit length.

guilibrium, in this case, can then be rewritten:

1
?.;M.avl--fv vg—y‘—"z‘g‘:; [ (ygt)
Ny o = F (x, 1) (6.4)
X atz

By eliminating My and V_ in (2.1), (2.2), (2.3) and (2.4) with respect
to (2.8), (2.10) and (2.12), we obtain:

220 ow 3%
L, (w,0) =EI —+ kGA(— - e) -pl =—==0 (6.5)
1 Y ax? X Y at?
ow
_p %W 3% _ 26 9 o\ _
L, (w,0) = PA 1 + kGA . - 3x)+ X Nx Bx) 0 (6.6)
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If w and o are partitioned by the relationship in

‘w =W, + W
e te =6+ 8
we can then obtain from (6.5) and (6.6):
= 6.7
Ly (Wasea) = -l (wb’eb) ( )
= 6.8
Lo (Waaea) = -, (Waseb) ( )
And
= M
My = Mya * Pyp
VZ = Vza + Vzb

Furthermore, reference [34] describes the procedure used to reduce the

eigenvalues problem at boundaries wa; 0., VZa to a problem where boundary

“a

conditions become time-independent. It is then possible to formulate it as

follows:

Wy = F1() ha(x) + fa(t) ha(x)

g1(t) ki(x) + g2(t) kalx)

it

5y

Where f,,....k, are arbitrary time functions of t and of displacement

2

This program may be solved by super position to obtain a general

solution.

With a finite element approach, the results obtained will be in matrix

format; for a beam element, the loads applied to the element are determined

{(F Y= (K] o {8 (6.9)
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Where {Fa} is the vector for the nodal load, the {Aa} is the vector
for all nodal displacements.

The preceding equation can be divided as follows:

B . B
Fa Kan t Kas bp
] : :
4 E I ‘:. ________ | (6.10)
I ' ]
t
\Fg Kea + Kep o

Where {FA} represents the load applied to the beam and {FB} is the
unknown reaction at the points where the displacements are specified.

{AA} and {AB} are also unknowns and specified displacements, respecti-
vely.
The preceding equation (6.10) can be solved to produce the following
results:
= -1 - [Kpl{A
(ap} = [kapl ™ PR} - [Kpp) p)) (6.11)
{FB} - [KBA] {AA} + [KBB]{AB}
The stresses are eventually identified, through the use of a particu-
lar type of relationship, from the displacements:
(6.12)

{o} = [ST]{AA} ,
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A computer program with appropriate subroutines will aid in solution
of the problem, and will elaborate upon the displacements and unknown
reactions at each pre-divided point on the beam (when the program was
initiated, only displacements and reactions for a "clamped-free" beam
subjected to a constant extremal force were calculated).

6.4 Boundary end conditions

Only in the case of a uniform element with boundary conditions, there
are no constraint forces considered. In the case of forced vibrations of a
structure connected to an element, the relationship between the "force-
deformation" properties, and the contact points where these forces are
acting must be known.

Four possible combinations of boundary conditions can be established
as follows:

{ g' =10
- free end: vy =0
g w =0
- supported end: (e’ =0
{w =0
~ clamped end: 8 =0
%6 =0
- simply supported end: vy =0

Note that these assumptions are only valid for uniform cases, for
non~uniform beams, the results are only approximate.

The four possible combinations above generate ten general cases into
which all boundary conditions may be grouped in pairs, with each pair
sharing the same frequency equation (Table 7).
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For the cases of "free-free", '"free-simply supported", ‘“simply
supported-simply supported" and ‘“supported-free", the zero frequencies
reflect a state of stable equilibrium (or rigid-body motion).

For cases of "supported-supported", "simply supported-supported" and
"supported-simply supported", the boundary conditions are completely
periodic, starting with the first mode. However, for the other cases, the
eigenvalues do not belong to periodic intervals, as previously demons-
trated.

Particularly for the "simply supported-supported" and "clamped-free"
cases, the eigenvalues are non-zero and the frequency pairs are similar at
the higher modes.

As regards the bending problem, displacement w and rotation 6 are the

two most important parameters describing motion of the body. 1In many cases,
it would be advisable therefore to choose Models I and III to satisfy all
the boundary conditions, because they contain the displacement parameters as
a function of these two quantities.
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CHAPTER VII

CALCULATION METHOD

7. Calculation method

The calculation method consists of subdividing a uniform or non-uni-
form element of a beam into a sufficient number of finite elements: then,

by means of a computer program, we do the following:

1)

Enter all necessary data for each beam element (geometric and
physical properties): length of an element, modulus of elasti-
city, Poisson's ratio, density, the radius of curvature and the
deviation angle.

Calculate the stiffness [K] and mass [M] matrices for each
element in the Tocal (8 x 8) system (listed in Tales (5a,
5b,....51, 5j of Appendix D). Transform to a g]obalvsystem by a
coordinate transformation matrix of order (8 x 10) as given by
eq. (A.5.4) to produce the new (10 x 10) matrices [K] and [M].

Group together all individual [K] and [M] matrices to yield two

global matrices [K] and [M] as described in Chapter VI.

syst syst

Application of static of kinetic boundary conditions.

Calculate the eigenvalues (free vibrations) and the correspond-
ing eigenvectors.
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For free vibrations, the equations of motion may be written:

[Klgyee (8} + Mg qq (B3 = {0} (7.1)

where {AT} = {Al’ Dys eovones Ay 4 1}, N being the number of finite elements,

[K]syst and [M]Syst are real and symmetric square matrices of the dimen-

stons ((N+1) NDF x (N+1) NDF).

The nodal displacement vector {Ai} is in the form:

o ] ° “ e X). -} ||l0de
RS = “"x-i b "Z-i » vi ] (‘-—'J/‘JX) 5 2 (:v.i are 9 ¥ L.S',}LL lv‘!. v L‘!y, Iv‘- ansversge ‘uli S'r,‘.!a‘,\_.--» ts

in the direction of x and z, cross section rotations, derived rotation and
shear deformations at node i.

With {a} = {a,} sinlwt +¢)

{7.1) may be written:

2 = (7.2)
([K]gys - @2 Mgysy) 0) = (O

where (7.2) is a standard eigenvector problem.
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In calculating the eigenvectors, if J is the number of imposed
constraints, then [K]syst and [M]syst
order [(N + 1) NDF] - i, with the appropriate lines and columns of

are reduced to square matrices of

([K]syst -~ w? [M]syst) being then reduced to satisfy the constraints. The
form and characteristics of (7.2) are not affected, except for reduced
matrices [K]red nd [M]red (of [K]syst and [M]syst) which are finite positi-
ve, instead of semi-finite positive. The [M=1] ., [K]system is formed to
determine the free vibrations, where i = i, 2,...,[(N + 1) NDF] - J and the

corresponding eigenvectors.

The eigenvalues problem produces N* real solutions

(@2 5 Aoy )s (w2, Agy)s ... (“x> Boys)whereNs= [(N+1) NDF] - J
with 0 L w? £ ) Lo Lol

0 sii#J
and a7 M) () { : .

Vector {Aci} is called the wrighting vector of mode i. Solution of
(7.2) gives:

[K] {9} = [M] {¢} [ 9%] (7.3)

where {¢} is a matrix in which the columns are eigenvectors As» and [@2] is
a diagonal matrix which contains eigenvalues wiz at the ith on a diagonal,
with the following rotation:

{6} ?.{AOXs AOZs--°~A0N*}

and wlz ' O
h)zz

[07] - :

<:::> wﬁ* (7.4)
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7.2 Computer program

The finite element program 1is composed of a series of standard
modules. The modules appear as subroutines with different uses in different
contexts. The entire program is written in Fortran IV and represents an
extremely simple application of the subroutines.

The flow chart used in this analysis is given in Fig. 11.

A. TInput is the number of finite elements used, the width and thick-
ness of the element (whether the section is rectangular or square), the
diameters (if the section is circular or elliptical), the geometric proper-
ties, the length of the element, Young's modulus for each element, Poisson's
ratio, density of the element material, the rotation angle, the radius of
curvature and the angle between two plane faces (see also Table 15a).

B. For each finite element, the program essentially proceeds as
foliows:

1) Determines the stiffness and mass matrices of the global
system.

2) Groups all the matrices for all the systems as described in
86.2.

3) Imposes all boundary conditions; [K]syst and [M]syst are now
reduced to square matrices of order [5(N + 1)] - J, where J is
the number of equations for constraints imposed.
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4) With [M]Syst and [M]syst reduced, the free vibrations can be
found by solving a group of equations in the form of
[M=1[ k] ., where [K]1 . and [M] . are real symmetric
- ‘red*- -‘red “ red v ired v

matrices, and [M]Ped is finite positive; the calculation is
done with the help of the EIGZF subroutines in the IMSL catalo-
gue (this subroutine automatically normalizes all eigenvec-

tors).

5) The final step consists of calculating, as necessary, the static
reactions for a constant force applied to the beam. The proce-
dure is based on equations (6.10) and (6.11).

A1l calculation are duplicated on an IBM 360/70.

In conclusion, the computer program used for the present study calcu-
jates free vibrations, the corresponding vibration modes, as well as static
reactions for the static forces of a straight, curved or slightly curved
Timoshenko beam, or of tapered, rectangular, square, circular and elliptical

beams, and for different boundary conditions.
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CHAPTER VIII

CALCULATIONS AND DISCUSSION

8.1 General discussion

The essential steps in constructing the stiffness and mass matrices
with the finite element method have already been discussed. The following
calculations corroborate the results we obtained with our model, and compare
them with results from the theoretical equations. A Fortran IV computer
program with double-precision arithmetic did the computation with relative
ease.

having the following properties: ratio of E/G = 8/3, rotary inertia parame-
ter Q = (0.08)2, shear deformation coefficient k = 2/3, Poissons's ratio v =
0.3, density p = 7.3236 x 10=" 1b~sec?; cold-drawn steel. The beam is

frequency parameter (\) are obtained for 10 general cases using models I,
IT, and III. The final results demonstrated that two models, I and III,
satisfy all boundary conditions and that their AS are justified. This was
done by comparing model results with their exact solutions (Table 10).

The exact solutions were obtained by using classical Timoshenko beam
equations (Table 1). The results of the classical equations are listed in
Table 2 for the ten cases.

The comparison of results between the classical method and the finite
element approach 1is shown in Table 12, For the same number of finite
elements, models I and III are closest to the theoretical solutions, e.g.
there is less percentage of error in the square roots.
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Model II satisfies only the three simple cases: "free-free",
“supported-free" and “supported-supported"; for the other cases, there are
negative freguencies, the theoretical explanation for which is in & II.2.1.

Once the two models, I and III, are considered typical, then one of
the two can be chosen, preferably model III (see & II.2.1), as the principal
model for the following verification work.

As to the second group of calculations, they involved determining
frequency parameters for a tapered beam. The results obtained are listed in
Tables 14 (l4a,...14h) and were compared with results found by other
authors. Bernouilli-Euler results are also presented in this table, to
corroborate the importance of the two effects from Timoshenko theory for
higher modes.

- P PP
1§ 1S QOi

P b -
1€ WILIT Severdl

Testi variations between O and 1 derived from
the ratio of length "B" to thickness "H". For the same number of finite
elements (8 elements), the present results are almost identical to results
obtained in reference [1], involving exact solutions for lower modes. When
B and H are set close to 1, the differences are approximately 0.02% to 0.03%
for the higher modes (6, 7, 8...). The evidence seems to be clear that up
to now, for straight beams (tapered or non-tapered), models I and III can be
considered as about the best there are for the analysis of vibration problem

with Timoshenko beams.

The third example verified free vibrations (HZ) in a tapered beam but
using the stiffness and mass matrices for straight beams.

In this example, the solutions in [27] using the matrix transfer
method together with the assumption of displacements U, V, W (in three
directions), were developed for the constant prismatic curve of the plane.
The free vibrations were calculated approximately for a fifteen-element
subdivision of the same arc width.
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As for the results obtained in the present study (eight finite
elements), involving use of approximation theory for a straight beam and its
application to a curved beam, the outcome proved to be scientifically

acceptable in the light of the process applied (see Table 13).

8.2 Test of convergence

The following section on tests of convergence is an analytical study
of the beam with the coordinates shown in Table 10. The problem consists of
ascertaining the number of finite elements required to correspond to the
appropriate free vibrations in order to satisfy the convergence conditions
mentioned in &I11.2.3.

For a given beam with subdivided elements varying from two to ten, the
three models I, II and IIl are used to corroborate the six standard cases.
Vibrations (HZ) are obtained for the first 4 modes.

For model II, only the three cases of "supported-su .
"supported-free" and "free-free" are dealt with. In addition to models I
and III, the “simply supported-supported", "clamped-clamped" and "clampe
free" cases are also investigated.

First, when investigating model II (Fig. 12a,...12d), it can be shown
that vibrations for four modes are easily determined for an adequate number
of elements (N = 6). These cases are common and simple, with the rate of
convergence being extremely rapid for the first four modes.

Second, in the first and third models in Figure 12e (lst mode), the
vibrations for “supported-supported" converge at a quicker rate than where
N=6. "Clamped-free" and "clamped-clamped" converge more slowly, and this is
even true for "simply supported-supported". The rate of convergence is
slower still for a number of required elements up to 10, due to the comple-
xity of the structure.
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Similarly, with the second and third modes (Fig. 12f, 12g), the vibra-
tions in a beam with a simply supported end display convergence with a

slightly more rapid decline. As demonstrated in Figure 12h (4th mode), the
simple end conditions, such as in the "supported", "free" and "clamped"
conditions, always represent favourable boundary conditions which enhance
the rate of convergence, while the other conditions require a greater number
of elements to satisfy the convergence criteria. In general, the number of
finite elements required to satisfy the convergence criteria adequately vary

between six and eight.

Although the rate of convergence also depends upon the order of the
polynomials chosen, this effect however does not simplify conditioning of
the stiffness matrix.

Furthermore, the formulation where all elements are assumed to have a
cubicaily varying transverse dispiacement and a better representation of
shear, such as in models I and III, (having already satisfied the two
previous criteria) allows greater opportunities for rapid convergence and
yields more precise results, unlike the other numerical models with fewer
degrees of freedom.
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CHAPTER IX

CONCLHSTON

LACA L AV SRVEN RV

The construction of stiffness and mass matrices for a uniform
Timoshenko beam has been presented very generally and can be readily applied
to non-uniform beams (straight and slightly curved). These matrices mainly
apply to the vibration problems, which include the effects of shear and
rotary inertia. The present elements (models I and III) with transverse
displacement, rotation of the cross section and shear deformation, as
demonstrated in exprerssion (2.12), were nodal types of variables. This
could be used to calculate the vibration characteristics of a simple struc-
ture or complex structures with discontinuities in cross section and angular
shapes (particularly tapered beams, and of non-uniform geometric and
physical beams, in general. This method converges faster and yields accura-
te predictions of free vibrations. The modes obtained were in accordance
with wave form and Timoshenko effects.

The method of analysis described contained an adequate number of cases
of boundary conditions. The numerical results (eigenvalues) obtained from
the computer program with this method correlated well with the exact
solutions, which were obtained by using a final general solution for the
equations of motion.

The foregoing procedure was indicative of the elements convergence
toward an exact solution of the elasticity equations for a "“supported-
supported" beam. The assumption made was that the value of the shear defor-
mation coefficient used was correct, and that it therefore could be applied
to non-uniform beams with different boundary conditions.

Finally, the elements with cubic variation in shear demonstrated a
better rate of convergence than linear variation, as presented in [12].
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APPENDIX A

FORMULATION OF STIFFNESS AND MASS
MATRICES OF A BEAM ELEMENT

- TRANSFORMATION MATRIX -

A.1  Curved beam

From (4.4), the internal deformation energy expression for a curved
beam gives:

/Q BUCEEEIE] R e
(

(A.1.7)

<
2
(@]
=
-5
<
[¢]
o
o

eam aives:-
2

)(22) ae- (292 - 2 (.g_g))} T
+ 10 [ (oW 2
\

1 {ow) A (volume)
2 i] t/) /
Volume

J VOLume( Lo

(A.1.2)
Non-dimensionalizing by substituting:
X
g =T =% dx = dy L
g=F = dw=dyb (A.1.3)

And according to the expansion of the cubical polynomials W and o, we
set W and 6 as:

. { w
6

i

3 2
&4V’ + A +a3v]+a4

2
asvf + aev] * 2,9+ Bg
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Then, we obtain:

Oum 3024(%)(4_{):”(4_@ (A.1.4)

&t dys4 (1-29) 4y

The shear relation "%Y = 9 + ¢ then becomes:

Substituting (A.1.3), (A.1.4) into (A.1.1) and (A.1.2), we will

obtain:

o Voluwe { | © L L _.J
2
+‘ /&G ( I"i.:% ___':,,2 e‘] A (uo[)mo\\ (A ] 5)
) vz
2 ‘JVO(uw\e, [ ‘q ( ) J
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A.l.a Stiffness matrix

Model III was chosen as a typical model for the job. The matrix
format (A.1.5) can be written as:

2
Moz {[4_3 Bl [Bn]] = ]}d(wwqu %JM M[Bg]z A retoms)
G 1 R I A | Y RIS

A i

(A.1.7)
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=
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u:%@ j ) o+ B 2 ZZOHJM”“A%IM] L
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v
&GAL \_ Al [Q,,qa] o o\v]+Zf[U4zd"] Jﬁ-’ﬂ] “
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=%EE&€P[] Wl ol S, ud S lud S[“J} (A.1.8)
[vc]

Where: (L]* :46£['(j4] Ay }[Ija]*=£ [Uz] & [U;:\* 24{; [U5] ay
EU‘“ :j; i é\q ’ [U“Z]*:J: es) 49 [Q&;{k:fo‘ [Uss] 29

[U,]*' [UL]*,[UJ‘ :[044]*'E14J( 8 [UAT are listed in Appendix B.

And: T= A/Q; »= H/L 5 Q= I"/AL" ; F= qz(zl’zz—‘4)/8 s a=L5
4 for rectangular section - 1 . = .
Z-4 (4 w2 iy o Cooaz /0,

1-37 7
5—64Lv4(@+q)5/z Z'- 5,-Z2'S; 5= k&

(?J\Mr) (2h-v)° ’ EQ
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[A] is given in Appendix B and [K.] is the stiffness matraix of a
curved beam in a local system.

To determine fv:]
cally. The elements of [ ] have been determined and are listed in Table 5a
(Appendix D).

of (A.1.8), the calculations were derived analyti-

In a global system of coordinates, the stiffness matrix of a curved
Timoshenko beam will then be:

[K]e =[AT] (K] (] (A.1.17)

(40x40) (40%8) B x8) (8x10)

where [A] is the transformation matraix of the coordinate systems, given by

eq. (A.5.4j.
A.1.b Mass matrix

In the same way from (A.1.6), we derived:

: . R . .
el ffon bl -ovod] -2 [ faemdog e[ o
=é (Lo‘vme(l\ H‘)?- [L;] [L3] d(vo\ume)-&-_‘_ QJ (A+Z z [L,(J [L(] d\(vo\ume,)
+_;: QIVOQMQ(AH)<~£-§—.) [[L:] [L5] + [L;][ ]] a\(vo\wne)"r 2 (A[}j [l."z] [Lz] 0\‘1 (A.] Ul 2)
Where Loa , bap , Lay e & |5 are listed in Appendix B.

<"6=;;-w’{(%ﬁe£[ an +(£) @2z oy + 244 [T+ ta]aq}

el T« BT o <[ 019 ]

[~] (A.1.13)
inere [ 46 ] s [ = B [ = 4 oy [ = ] o

E[A]*I[Tz]*/f{s]" & [T‘\T are listed in Appendix B, énd p=QP ;f:QF;c=QC.



Likewise, we could 'w*ri.tesfor?f;; (J i em {ﬁfg i?{” {?jf (Af.1014)
Where [7\:1 [ ] for a curved beam.
[ \*] [l S,A] for a S],i{?)}.'lt'l_}/". curved beam. (AJ 915)
[Z\,f‘] {;\;,‘J for a straight bean.
e w1 ~ o PR
L}\ 1 = | Mad for a tapered beam.
And EIRN RN

The kinetic energy of a curved beam can be expressed as follows:

ﬁﬁ%?\ggﬁL[ T. f\j oo»

where [#]. represents the mass matrix in a Tocal system.

The mass matrix of a curved beam in a global system will then be:

ISR N

[ B N [

=
-]
.

(10% 10} {108) (B«8) (Bx10)

ke
[A] is given by eq. (A.5.a), [kﬁ] is analytically determined in the same way
as [yt] and [M_] and are Tisted in Table 5b (Appendix D).

[9)

The stress matrix can, finally, be determined from (4.3):

ol B2 Bl [ = )|
o], - ° (| [~ {o)
o 0 _ %)
AG [B) |G [B.] | =kl &A&}

[M{ (A.1.16)

o
]
g

S g

(A.1.18)
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where [ST]. is the stress matrix of a curved beam ([B,], [B,] and [B,] are
given in Appendix B).

A2 Slightly curved beam

A.72.a Stiffness matrix

For this type of beam, (A.1.5) becomes:

Ap = L [ ) g h{ f(~ . M)E%’]M S (4 ay) B;ﬂ} [‘;ﬂ }Zd(meume)

s %- /Q& GJ [Qﬁ' -8 ] ’ ) (uvd:rkmm{t)
volume ~ra¥} . (A 2.1 )
Ov,from (A.1.7), we have:
2 .
’/L/Q = A E ( (A%H) ﬁ)}:1{51 ‘5%‘(’“ “’“’) + :“ E ( { )2 BT B‘.‘ O\(VOlumt)
2 }voluw ;&\ L/ Lodl & Nolume M/ B TaLTR
v d @;J éf[? 7) [g_jJ {gzl + M’] M} Afsoburd) +4 26 jv | MESJC][BZCEO% (volvent)
] “ > (A.2.2)

u = %" Elﬁ’% A?;% ”*j M Ay J( [‘»&l dq ¢ ﬁ% 4 f (?% dy+ @‘ﬁ-‘f‘é f U] }

Y
Where ~g~ fﬁ? an el M, if zdh: 1% poment following z due to shear.
= LS lpp) ) v Ial s [0 ]
) [ ;i,] (A.2.3)

Where E;)”d’” = “’j: [U,,] Ay [U;T ’—L‘ F}a] M J [U«B]&: 4 Lﬂl [UB] dy EIMI :LQEUM'J o

and P. /@ ; Ve-aM, /aLa ; S=46/eq 5 Q=1 /A"
meresore: AL = 4 (&) € [5]" (2] [w] {o)
[‘K] . (A.2.4)
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Where [K ]sc is the stiffness matrix of a stightly curved beam in the local
system (Table 5c, Appendix D).

In the global system, we have:

K

[K:LC = [/\ﬂ N [AJ (A.2.5)

(40)&40) (40%%‘) (8+8) {8x10)

Where [A] is given by eq. (A.5.4).
A.2.b Mass matrix

in the same way (A.1.6) becomes:

’“6"”,; 5)/ lmg{{ﬂrﬁ) G- “”[ﬂ]m] AH U ;:r} ; ” [ j ‘””“"”‘"é’)

4,
R ”’”) A (A.2.5)
Orefrom.(A.1.12), we haves

f A J{ (AH) Lg ] A(volome) + 4 ef L] LA A{volome)

V@xumg L \/o\ume
iy £ e [M[ ]%{Lg][l,_a]]a(mm) +{ng\f:[§][uj dn (A.é.?’)

Where |, , |, ,L, are listed in Appendix. B B

T :gw&§ e[n] "+ @] "+ o [L] {n]*}
(7% 1 —— | (A.2.8)

7]
Where D]’“;A(;LA[ ] 495 [Ta fﬁz A [rﬁ ““J [(3"“1)@ Jﬁ“ "\'\

[R]*,Fg]*/ [T_,J* & [T,,,]* are listed in Appendix B, andip-QP,Q=Tyjp ;o=QV .



Therefore:

Where [M],

(Table 5d, Appendix D).

In the global system, we have:

M = [

7

| ML 1]

Where [A] is given by eq. (A.5.4).

A.2.C Stress

ol =

(10x10) (10x8) (8« 8) {8x10)
natiix
(A.1.18) may be written:
) _ 11
(iﬁﬂ R1-E, rﬂw\ 4EHR1_E S m]
(I o1 B SO A Lo oL Ty
o) [&]
()= ° A
o R “ }
o O
K\ %G'E§J '&GE%J
e A¢
- [51] { N }
5C ¥
(Bxd)

where [ST] . is the stress matrix of a slightly curved beam ([B,], [B,] and

[B3] are given in Appendix B).

(A.2.9)

is the mass matrix of a slightly curved beam in the Tocal system

(A.2.10)

(A.2.11)
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A.3  Straight beam

A.3.a Stiffness matrix

The expression of Af in (A.2.1) becomés:

. 2 " 2
A\g . i E {}1 ég } g\ C-.N)\dm@) “+ ,:4" &Gj { :g,\é - 9} G\ (VOS\«,)VMQ.)
~7 L9y e (A.3.1)

Voluwse

or, from (A.2.3), the P and V terms cancel out and we obtain:

P - N -0

and ( o \
EL ol e sluf
=1 i Mr 7)[1 j o)
RES
,["Efjg\ (A.3.3)

where [R, ] is the stiffness matrix of a straight Timoshenko beam, in a Tocal
system,

[A] is given in appendix B
%
[yd] is analytically calculated from (A.3.2) in the same way as [y:]
*
and [y, ]



In a global system, the stiffness matrix will then be:

Kl A

(4()%4@)‘) (4o ‘a) {(558) (8.10)

4= [0

where [A] is given by eq. (A.5.4)

and [K,] is Tisted in: Table Se (model I)
Table 5g (model 111)
Table 51 (model 11)
of Appendix D.

A.3.b Mass matf1x

{A.2.6) can be written as follows:

? 2

C() -~ Ao { | E 7 [29] 1 Alvdome) + 4 ppy |2 (4 [24]" 4,

VAR L) SR

§ o]
Yerluras

or from (A.2.8) we have:

e

mm W3 = O

Therefore

”fmem*{ T]*N]}

wﬁ R

N
In addition

Ot e [8] [N] [N] 1

M.

0
S’
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(A.3.4)

(A.3.5)

(A.3.6)

(A.3.7)
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whare [ﬁﬁ ] is the mass matrix in a local system {Table 5g, model 1), Table
5h (model I11), Table 5j (model II} in Appendix D).

In a global system, the mass matrix of a straight Timoshenko beam will
be:

M, -

/\j [M] N (A.3.8)

(lox10) {1028) (@x8) @x9)

[A] is given by equation (A.5.4).

A.3.c Stress matrix

Finally, (A.2.11) becomes

: T
. ™y s rf’") } (
A . N
. : fn.)
- 7 L o i
%Q}A = ° =] = ° [Acliﬁg = ljﬁ& lﬁ'j
o © (8r8) L°F
9] [&] ; 7 -
hG 1}%» X B;,J (A.3.9)

where [ST] s the stress matrix of a straight beam ([B,] and [B,. ] are

given in Appendix B).

NQTE: a)  On the assumption that the beam is linear, elastic, homogeneous
and isotropic, when the axes' origin coincides with the centroid
of the section, the fist moment following 2z is cancelled out
kMZ = 0.
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Indeed, if we consider a beam element with a rectangular section
with h and b being width and depth, respectively, we could

write:
Ya A e by
?47“j z AR w]y jt ?A§A7“/r23 " Az
A AVARATA Mo |
Wa h
= bj zdz =k o
avA A RD

That is to say, the two terms "V" and "v" in [K]. and [#],
vanish. The two matrices [K]. and [M]_ therefore become the
matrices of a curved, homogeneous and isotropic Timoshenko

beam.,
b} If dnitial curvature Hdn "P" and "p" is zero, [R] Jo and [R]
will become matrices [K], and [K]4 of a stra1ght T‘m@fhenk

beant.

A.4  Tapered beam

As has already been mentioned in previous chapters, we assume the area
of surface A and the moment of inertia of a tapered beam varying aflong the

¥ axis to bhe:

A \(K) = /\a""(Ab m}‘/) Ad%‘ Af\{)

Imé(x) = Tyar (T4, Te)y = Tyt OTy0



The analytical wmethod used here was developed particularly for a
straight beam, using Model III.  The same development could effectively
apply to the other models. (see Table 4 of Appendix D).

A.4.a Stiffness matrix

From {A.3.1) we can write:

4 12 A 2
AL -4 %f 1%@[4‘39 dy + 4 koL f AG) [?w‘zfne] ey

2 Bq 0y

4 - 9 A 2
SN 2
&-g ;gjﬁ} mﬂ) P@l An + % ’?@-GLJ(%”‘”M\V}) [3_3«9} A

o}

= {5 BT

.

V][5 [A] (8]

[}Z}M (A.4.3)

(A.4.4)

i b i BT flon o d )
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where [K],. is the stiffness matrix ;of a straight tapered beam in a local

ok * )
system; [ydt] is determined analytically as [y_], [Y%c] and Ly;]o

In a global system, we have:

V\ AT [M [K(At D\««] (A.4.5)

(407«40) (ﬂo 7&8} (Bx@ (8y.t0)

where [A] is given by equation (A.5.4)

and [Edf] is given in Table 9a (Appendix D).

A.4.b Magswqgtrix

In the same way, from {A.3.5) we have
C - hol Lo [20] ﬁfﬁxw 2y] "
sm 0 ) Ry e () AWIRE (A.4.6)
Y ) 2 4 h) 2
4 1 ‘,N ] e 4 3( e %‘)
=5 (g [la] T[] e gel i% S j (A.4.7)

or [T L [T L[] & [&; are Tisted in Appendix B,



83

Similarly: ) . ) . R
Cog (1) 5] [ (8] 5]
_1'\7\] N (A.4.8)
Tl e BT 1 sy B {1 BT S{ ) {B]

(A.4.9)

wh@ﬁe [ﬁ]dt is the mass matrix ©°% a local system. In a global system,

the mass matrix of a straight tapered heam will be:

M= [A] Mo [N

oy ) @) G

where [A] is given by eq. (A.5.4)
[K%?] is calculated analytically from (A.4.7)
and [%dt] is Tisted in Table 9b (Appendix D).

.5  Transformation matrix

Les us assume a finite element of a beam that is initially vibrations
in a system of Cartesian coordinates Xxyz, having an angle with the global
system xyz, all the calculations are now referred to the new system. For
our models I, II and III, transverse displacement is the only parameter that
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changes in system xyz. The other four parameters labelled w', &, o' and ¢

which represent rotation around the y axis do not change (Figures 5a and
5b).

We therefore arrive at:

W = W, Sind, + Wy (os el

where @x and WZ are, respectively, the components of w at x and z in the

Tocal xyz axis system. For an element defined by two ends "i" and "j", the
transformation matrix will be:

Model 1 .
‘v\f{, WZ.L
0 W
0. l ‘ 0
AR PR
VJ? > b ‘é;uﬁ | Wiy | (A.5.1)
Degree of h \ Waj Degree of
freedom in 0 ﬁvé freedom in
the global ) 5 the Tocal
system 0 N system
\ 2
Model 1T W, W;
‘ W, .
Wi 7;“&
’ WL
e, —r
, i . 5.
Ve o\ — H\J Fe (A.5.2)
Wa' (8x10) WK'
’ ¥
Wé" Wz}
0; Wy
Wi O
Yi



Model IIT:

where [A] is the transformation matrix for the three

i

0; & »40)

and IIL (see lable 4 of fppendix D),

e

{(Bx o)

Skacl, (osed, ©
[ o {
O ) o
0 0 o
/‘mmm\’k

O

a
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models, I,

(A.5.3)

I

(A.5.4)
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[A] MATRICES:

APPENDIX B

LIST OF MATRICES

. 7 /
2) Model T {w,w, 0,6},
Type 2"
mo o o o o o o
o o 4 o o o o
e o 4 o o o ¢ -4
- 0 2 o0 o o o~ o
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THE MATRICES USED IN APPENDIX A {(model III, type "i")

a) The matrices in
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88

{(A.2.c),

(A.3.a), (A.3.b) and (A.3.c)

5\/1" Qv} 4 o} wf’ Y -4

B 6\1 2 o

0 ) o X P XX ] gy

3y QV} I o v’\“}” »‘f" - WA.]
IR
]

= | -3%he Yo Y& o o o o o EI
L A

- va‘lv‘?’wi; ayﬁv}"‘;é 2»1’:‘/]-2‘: 294 0 0 o o:]



63840

15600

0480

53760

42560

37800

25200

25200

0

40320
335600

33600

S5YM.

SY M.

25200

SYM.

iy

}

0 .

~ZB350

~{2600
o
¢

14340

{7640
-3{080

~{£600

G

25200
~12600
0
0
9450

F400

~40080
~§400
8400

&

63500
£300

£ 300

89




44340 9450

8400

-22680 -{8900
-46800

| 11340 9450
8400

6300

6300

6300

SYM.

-§2600
~42660

~{2600

57M.

6300
6300

6300

S5Ym.

~3450
- 2520

-{515

9oo

3450
2520

1575

-3780
-3{50

~2400

{050

1260

3780
3¢50

2100

~4788
~4200

-34{50

1260
15875

2400

4188

4200

3{s0
o

g

S0

-6300
-6300
~6300
0
1575
2400
3{s50

6%00

6300
€300
€300

0




& o

0 a

Hodg-ty
PO
[ 210

{0640

¥

o

4

o

Fa0

q

a

d

{050

1260

9

&7

&

42 60

{5758

2{n0

0

91




b)

{0440
. oLX ;
%] =&
900
%
1] =45
L.

8820

6720

1050

1260

7140 {2600

4200

57™M.

{260
15775

2400

5YM.

8400

1575

2400

3450

£300

~{155

-{950

~2340

~3780

0

LY

~ 14740

={360

~2380

- 4200

(&)

a

The matrices in (A.4.a) and (A.4.b) (tapered beam)
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LIST OF MATRICES

Nodal displacement interpolation matrix
Matrix defined 1n (4.1)

Displacement function matrix

Stiffness matrix in the local system
Stiffness matrix in the global system
Mass matrix in the local system

Mass matvix in the global system

AL U o
2t la ot . Equivalent to |w] and o], or |w ] and | 4]

A
[A] Transformation matrix, defined by 5 A4
[A*] Matrix defined by (A.1.15) (For mass)
[y*] Matrix defined by (A.1.9) (for stiffness)
(0% ] Diagonal matrix defined by (7.4)

[s1] Matrix defined by (4.3)

[y} peformation vector
{0l Stress vector
(F ) Force vector

\ Nodal Toad vector

IS g Foen et o £, g o N PN N S I o . - "
{Fé},{F.T Internal nodal force wector acting on nodes i and j,
J respectively

ful ) Displacement vector defined by (3.1)
{ACE) D Modal displacement vector defined by (3.2)
L)} Vector with parameters defined by (3.1)

(o) Vector of aeigenvectors
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APPENDIX €

FORMULATION OF THEORETICAL FREQUENCY EQUATIONS

1) METHOD:

Starting from equations (2.24) and (2.25), the parameters representing
nodal displacements can be written:

W= A 5 cosh Tt g 4 A? stah F‘w‘\vl » f\% cos 7\{-%} Y 4 500, 7\[‘”) @Lﬂ
= é 5 2.
§ N ”‘?"’"5 ol = o B[ e Nely A
Q [l A R ——— Sanin /1€<¥E [\@ L W.,,,....) Qs Y \’2 Ma
L ot / 1 \ o
+ 7(5P ) st Ny Py = 2 (;5_ F} cos AP y (c2)
Ly ¢ ) Ly b
Ai .
o At f%?w\l*\?‘x(?f(ﬁ f\% + el cosh /\fﬁ(v f\p f\(‘% SAn /\{ V) A 7\(’1 £0s$ ?x(}} (ic.%)
L2 3 a\\ 9 / 2 4 ™
6i g (’< *“"f?} cosh 7\{:{%{1 f\4 & ol 4 8) A m%q Ao
&m . ’)//
FTLs ) s hen o E\% ) 5ty A *~
/”}é. . S
k%j — f\; ol - .. 3\’54%% ?\C{k} i, T 7\‘ fol -~ Vi.wwﬂ) f‘QSL’\ Cﬁﬂ IA\?
4z /’ A2
LAY N 50 ) st Y AL+l P 50 ) cos ey Ay (cs)
R B R

Substituting the boundary conditions (Table 7, Appendix D) in the
equations (considering W =W, = w), the theoretical frequency equations for
different cases are obtained corresponding to each group of appropriate

boundary conditions. Only two cases will be developed here:
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2) SAMPLE CASES:

a) upported-Supported” case

=]

W o= L (“O?“ V?‘:O & ?a‘)t4>>

Boundary conditions: (5 Wm0

~

W (0]

I

0" (0) = o
({7:,;%‘»4)

i

wo (L) 0 (1) =0

Substituting  (c.ad) in (c)4 (c.4),we obtain:

Cx=0 - AA o= {“’\3 o

[ ]

A
>
=
—
=
e
-
-
P
LN
Zz
by
e
>
S s SR R,
K B
R
11
i
P P —
.
L
O

Since the determinant of ](j} cannot be zevo, we thevrefore

have: Sk A St NP = O (ca02)

e . \ . [ iN 4 i
This equation is valid for O-23+ 21 > @+L  and
| 5
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U2

2 - - = . i ed G Te "
/\t“% > 4 . Whe\fﬂ{?‘, /’%/ (s S ale 4 et bal e L
S

N
T3
—

)
RN
pRTe—
E=N

o B -
Soarh g MO 0 e Wil haves

o . . oo .
A ST AL ST AP = 0 (ca3)
U '

- . . ., ST L]
Where 415 an imaginavy quantity ( g uf) & A= ?gﬁ{‘

b) "Free-simply supported” case

Boundary conditions:

o) = W(0) = o

S
g
e
s

P
-y
"
i
i
<
A
o~
54
5
s
o

(cb1) in (ca) & (cs) we have:

(c-b.3)

s
S

Stmilariy, (che) jp (2 g (c8) produces:

2 2.
‘ i o
Ew=b (D<+§>S/?V\7\,D<P\4+(/<+§)CQS7\O<P\2
"y X

. (‘éw(’l‘w) 550 A As «(é* - (5’") cos 7 Ay = O
¢
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e d LA
and - 5 sth A A, + (o - 8 Jeosh Aoty
d\L'L ra ;dLi\ | (Clb.A)
-((1,+ :S__ég_) st NBA, +((3 + Sﬁf )cos 7\(5%(: 0

Substituting (c¥3) in (cb.4) and setting:

1 & ] 2
Ll
s 50
= pn 3 b = 3 (5
We will obtain:
. : mi’-
bstn 7\(547(;&-) SR A ”3‘<,,(,£)"°5“°"b cos AP
L

((5+ AE) ST np +<;>< ~%) -g— g Sl (@""‘5 CosNB- <o< %) (;%) Gosh Aot
L.

Developing ©b.s), the final equation will be:

~4 5P not Cos N é ST 05 0o +[%_ S 7\0(“54°V\7\(5} mshm—% [cosNer% 005%{5] $habipel =0
o (b6

Yo S S

is valid for {@»—i\i:ﬂ;{i S g+l & AU >4
5 5 5

Y% 2
J <c§1+§‘ & 7~\§@<4) we can write:

[
~4 Goahne( Cos h(b.é SPNp Cosh 7\0(,'!*[%, soah el Sfm?\(b] oS M'»%/[Cask M'ﬁ%ms?\(&] SPnNA=0
¥
c.b.D

5 @)

A 2.
A s ol
5

Where X:"(/P 3 0(:/50(, ; X:/&X/:: o(,/(h 5 gv:”(
And  eosh j’ = eosel ;S gol' = gl
coshol! 5 SPn je' = fStahel

eos 5,0(' =



Table 1

Table 2

Table 23

Table 4

Table 5a

Table 5b

i

a8
or
v
4
il

Table 5d

Table &e

Table 5¢

Table 5¢g

Table 5h

Table 5j

Table 6
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APPENDIX D

LIST OF TABLES
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Theoretical frequency equations for a straight Timoshenko beam.

3

Mormal vibration modes for a straight Timoshenko beam.
Deformation assumptions for three types of beams.
Summary of various elements of Timoshenko beams.

Stiffness matraixz of a curved Timoshenko beam {model 111},

Imoshenko

Mass matyix of a curved

Tode ot Lo o oo gm s e Be I P I P S S P T | o e o e b oo B [ . £ i o8 B
S EEE RIS B WY 1A U o S iUt Ll Y LAAE YEVLR PERL SRR LTS CRERL [R111925 Ll

Mass matrix of a slightly curved Timoshenko beam {model 111},
Stiffness matrix of a straight Timoshenko beam (model 1).
Mass matrix of a straight Timoshenko beam (model 1}.
Stiffness matrix of a straight Timoshenko beam (model I1I11).
Mass matrix of a straight Timoshenko beam {(model II11}.
Stiffness matriz of a straight Timoshenko beam {(model 1I).

Mass matrix of a straight Timoshenko bheam (model II).

Values of the shear coefficient (or form factor) of various
sections.
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Table
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Table 15a

Table 15b
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8
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10

11

12
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Natural boundary conditions applying in the standard cases.

Basic formulas for calculating width, thickness or diameter
variations in a tapered beam.

Stiffness matrix of a straight tapered Timoshenko beam (model
I11).

Mass matrix of a straight tapered Timoshenko beam {model III).

Theoretical verification of the frequency parameter roots in the
three models and for the cases analyzed.

Frequency (HZ) of a straight uniform Timoshenko beam in the
three models I, II and III (ascending order).

Error percentages in the frequency parameter vroots for a
straight uniform "“clamped-free", Timoshenko beam obtained for
different values of k (form factor) and  (rotational inertia
parameter) in various numerical methods.

Frequency (HZ) of a tapered "clamped-free" Timoshenko beam.
Frequency parameter roots for a tapered beam (Fig. 10), using
the Bernouilli-Euler and Timoshenko theories (1st method, 2nd
method, 8th method).

Instructions for data entry.

Table of boundary conditions used for the computer program.
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'K— _E'L,
1 4200

(¢«

Table 5a:

17280 P -4440P - 47880C
+7560S  ~400800C +630 5,
+3150 5,
+630 5

" 4880P 630 F
+7560F -35280C
-437760C +33085,
+23405,
'416055
4840 S
840F
+60 S,
SYM.

~4440 P
+6305

4880P
-68880C

”CBOSb
+ 8408

-35280C

48g0P
+840 8

-q1280 P
-15605

1440 P
+400800 C

~3450 Sb
-630S

47880 C
=£30 .Sb

1440 P

~630S

{7280 P

+7560 S

-h440P

-400800F
+3150Sy,

%6305

400 P
~-7560F
+36360(

*8405,
+ 42.6055

-2i0 S

-630F
~46800 C
+1955,
+405 S,

400 P
+68880 C
+630 5,
~240 S

i440P
-100800 C
-3{50 S},
-630 S

4880 P
«7560F

+63840C

4234085,
-~ 1260 5
1840 S

2
v

-52920F
- 6505;,

630F
-33600C

~495 Sa
=105 5y

-240 F
~45 Sa

-33600 C
~405 5,

52920 C
+630 5S¢,

~650 F
~45i20C
-330 5,

840 F

+6053~

106

- 4440 P
+6305

4o0 P
-3i320C
«§30 S,
-240 S

~-46800(C
4105 Sy

460?
2405

1440P
- 6305

4880 P
+31920 C

-630 5,
+840 S-

-15420C

4880 P
+840 S

’
P: sa; Q=5/N*F:q*(z-22-1)/a; Z =‘—‘1(“‘/) for rectanaular sections;
C=8qZ2/Q@; Z'-1/-32); 5= k6/eq ; Z"= 4/(2»\")3(1»\—@’; Sa= 4L R4d)S /2"

sV S,-2"5 5 q=%/.

Stiffness matrix of a curved Timoshenko beam (model III)
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35 ¢
A32¢p 1H6P ~{obp ~BEC ~{olp
+6o + 405 + 2716C &S
M | eAP ~ 45
c| 420
xe) _ Hoosp  -o44p ~Gec  ~344Pp
o B340 +RS RO 3B
=330
{v2.¢ ~330f B2 p
+2340f x25e  -2I0C
~Ss0C . Y
g ‘y M ) G0
Sof 25 ¢
RETASE
+60

’ 2z, . .
Pz s/ ; G=T4/n Feqi(z-2z-0)/0; Z = & (%) for rectangular sections;
Ce 2qZ2/Q; Z= 4/(132) ; 5= FO/e@; 2"- 4/(aherf (1) 5= 6l (@ed) /2.,
/.):H/L_;-szzls;ﬂ:r/l.)?:&?;f:@F,‘ c=0QC .

Table 5b: Mass matrix of a curved Timoshenko beam {model I1I}
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Table 5c¢:

—

Pef/a; »="1

Stiffness
I11)

412Bop -440F - a7gg0Y
495605 ~4pogooy w6305
37805
4880F “35280Y
- 437760V 3305
448205 +6A0
+IT6GO
608
*B40
SYM

-4 A0 ET-
46305

48805
~-63880Y
%2105

~35280Y

48409
“ 8405

~11280F

- 95603

144D P

40680\

-3780%5

47880 Y

=580 5

1440P
~4305

{7280
#1560 5

~ 1640 P
400500
£37605

400P
+36960Y

+ 18605
-1 560

~46800V

5 3005
- £30

400

+63%80Y
2 4205

haof
- 400800 Y
~3790 &

48909
* £3840V
+14§320 5
* 540

~§2.920Y
-4305

-33600Y
- 308
+630

45 5
~210

~33600V
~-405 §

52920V
4630 S

~{sizoV
33085

- &30

60§
+ 840

s Q=Te/B; Ve oM, faBL ; 5= R6/pg .

108

-1440P
46305

4ooP
- 33920V
+4205

-46800Y
+{os §

ool
-2408

4440P
- £305

4880 P
+3{g920V

+240 5

~4s420Y

4880 P
%8405

matrix of a slightly curved Timoshenko beam (model
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11008 p 944 p - bo da4p  s7a2p  -736P 360 ~TRbp
+ 2340 25200 +330 +B40 ¥ 2520 0 - {95
+330 -495§
132 p -25 0 132.p 736 p ~108 p -3y & -le8p
=540 & +330Q -270 9 -2520w *SAD & -85 Q t270 ¢
+ 2340 Q +60 +195 +8i0Q ~4S
+60 45
6o Q -25  -36o 351 -45 @ B3SO
495 A
132p  T36p  -~tosp ~3sw  -loBp
s +60 + {95 + 290 W —45
'ﬂ _ AL 43
msq 420
(8x8) toofp  -944p ~Gow  ~94ap
+ 2340 +2520 O ~%30
~330
432, p 2.5 > 132.p
~S40 -330Q ~270v
42340 A %60
S\/M, + 60
600 256
{32 p
4+ 60

- .

P:b?./&; /S:H/L,' &:I%/AL?, )V:”bM;/G\AL,‘S:%G/EQ}P;&E;Q’:&V

Table 5d: Mass matrix of a slightly curved Timoshenko beam {(model III)



5045
K |-E5
14| 420L
(8x8)
Table 5e:

2405 425 5045

~42.5 O -42.9

1565 225
504 42

4S5 ~42.5

5045

S:k6/e@ 5 Q= Ty/p

=240 5

—14S

425

56 5

110

2105 -425S
A2S  -T715
545  -13S
-504 42
135 -39
-4 2 - A4
2405 42§
~-42.5 'Q
15¢ S =228
+504 “42
45
+ 56

Stiffness matrix of a straight Timoshenko beam (model 1I)
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|l 420
{Rx8)

Table 5f:

156 22 s
4 O
1S60
SYM.

O

4Q

O

156

~13

~2.2

54Q

13Q

)

IS6Q

Mass matrix of a straight Timoshenko beam (model I)
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-13Q

=30

O

~22Q)

40




5045 2525 42.5
128 5 225
504 +42
45
+56
[‘" _ELy
14| 4201
(8x8)
SYM.

Table 5g:

42.5  -5045S
145 -252S
0 -425

565 “42.5
5045

3 Q=T /NP

2525

425

1245 -205
~504 42
204 -3 5
~- 42 -14
285  -7§

-2525 425

1285 225
+ 504 -4 2
45
+56

Jrod
[
™o

425

285

75

145

~42.5

145

565

Stiffness matrix of a straight Timoshenko beam (model III)
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e

m| 420
(Bx8)

Table 5h:

156 22 )
156Q 223
+ 4
4Q
SYM.

22 54 43

4 13 54Q

-3
0 0 13 Q
4 {3 )
156 -22
156 Q

+ 4

Q= Ty /AL

13Q

-3Q

-220

Mass matrix of a straight Timoshenko beam (model III)
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-45

22
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o

(&x8)

Table 5i:

5045

2525 425  -240S5
128 S 225 -4 S
+504 +42 - 504
4S5 -22S

+56 ~42
156 S

+504

SYM.

-5045

-2529

—425

210 5

504 S

5:-46/ga ; @ =Ty/p2

Stiffness matrix of a straight Timoshenko beam

252 S

1245
- 504

205
~42

965
+504

~252S

1285
+ 504

114

ey

-425 2105
~2095 <965
+ 42 +504
-394 -135

~i4 * 42
138 5485

- 42 ~504
425 2405
-225 -4 5

&7 -504
45 228

+56 42
1568

+504

(model 1II)
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(Bx8)

Table 5j:

22 0
156 22Q
+4
4 QR
57M

~156Q

22 Q

156 Q

Q= /a2

15

54 Q

13 Q

~54Q

-27

156 Q
+4

<

-13Q

-3Q

13Q

-220

AQ

Mass matrix of a straight Timoshenko beam (model II)

-
-

~-54Q

~-13Q

54Q

-1$6Q

229

156 Q

o
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LIMITING CONDITIONS SATISFACH
STANDARD TYPES OF SUPPORT e x=o , e xeL TORY MODH
A W, =0 Wy = O
Clamped-clamped 2 *
A- Clamp P 1 b | wezo | weso | IE
V 9 jmed (o] 6 - o
W, =0 ;
2 _ Clamped-free % w:_= o 8 =o T
© =0 V=0
Wy =0 Wy =0
3_ Clamped-supported g Q<Z Wy= 0 Wy = I,I
8 =0 e/ =0
/ 4
4~- Free-free o=0 ©=0 II,I
q/ =0 W= [}
Wy =0 ’
5_ Supported-free 3>-: wyeo Q=0 III
» el.—.O W =0
Wy =0 w,= 0
&.. Supported-supported d2>r~ ;\<g/ ".:_ 5 w.x T
= z= ol 4 B pdhh
8'.—.— (o] eI:O
WX:'G
7- Clamped-simply g % Wy =0 @=0 I,
supported 6 .0 W =0
- Wg:O
8- Simply sgpported— ﬁ 4 6 Z Wz—o A
supporte = o'=0
6= 0 = :
9- Simply supported- ﬁ I?WE I,IC
simply supported W= =
' 6’: 0 6 -0
10~ Free-simply supported :ZE Y =0 Y=o I,

Mode! T:{w,w'e,0} , Moded L. {w,w’, 0", ¥} ; Moddl L. {w,0,6, v}

Table 7: Natural boundary conditions applying in the standard cases
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55
e

=
e
S
=

BEAM SHAPE

VARIATION IN THICKNESS,

DEPTH, DIAMETER

RECTANGULAR

Lab‘g@uw %} = %%‘ {%}m/é

Epaisseve b = ha{%>

rned,2,5...

Z(X) = ba,,

CIRCULAR

Qiﬁgm& EEE N < %\;
Mowent

A %é.w,tz&‘iﬁfz«

L (X) = baﬁ@%)

/ (X) = !7,3 + (,bg: b&gﬁ) %ﬂ

ELLIPTICA

- }}} 7y r}e -
0=by{ s
S e

(
b= ?f*’a& gif@ﬂ"}
L

8

§
i

CYAEY
Lyaz=2 b

w=4,2,%...

[ Y £ & -%jg
L&) = by (-7 )

Z(")‘ = ba e(

i

)

Table 8:

Basic formulas for calculating width, thickness or
diameter variations in a tapered beam.
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’&{44 Q"Az ’Q“AS B‘M “&44 2“4(, &41 9‘48

[—K }: A &44 ”&49 ~%p “&43
At} 420

&“66 &67 '@55

&88

&M = 252 (A‘,"’"Ab)'ﬂ-G‘L 21\34 = 2(A|,~A&) L6t
fp = 4(33 har30R)AGL fiss = -6 (4Pa +3Py) 46L
us = 6(4 Pa+30) 6L bz = -42T, Ex(uharo Ab) 6L
«&44 = 42 Ab‘&GL &37 = -7 (I\‘a"ri%b)%a.fi-s (P\a'\'Ab)AQGL
%io = 4 (30A5+33Ay) R6L Rag = (5hg+2.8) KGL
Ky = =6 (3Rarahp) koL fag = A8 (302 + L) 6L
,2(43 - 42 An %6GL 9{4.6 = A (\ﬁ\_‘a_«f SAb) kGl
oy = 252 (I",*«I,,,)%fa(as%%a Ap) k6l faq = - (N\aﬂfﬂ\b) kst
&23 = 42 L;l»% + (43 Aa-*g/\b)’&GL Bag = «T(Aa"‘"‘\b) %GL
'&M = '2(2AA"9A|?> 'Q(GL '&66 = 252 (I‘Aa+1‘éb>‘%+(58Aa”"v?OAb)&'GL
&26 — ”252-(1\3&*13‘»)% +62~ (Aa*Ab}’g‘-GL ’&67 - -4.?. I’éh% - (9 Ab‘+43 Ab) '%G'L
Sar = 42 Iﬁa% (o P+ Ap) &GL ke = £(9hs - 2Pp) £6L
Yoy = 4 (Gl\adw Ab) LGl Ry = 14 (I%-ralﬁb)% «(1.5 Pt 2.5 Py GL
hzs = A4 (3130*1*&b)%+ (z.s Ankds AQ&GL Rgg = 14 (BAL*P\A\ HGL

Table 9a:  Stiffness matrix of a straight tapered Timoshenko beam (model
I11)
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EXACT o o

LIMITING CONDITIONS SOLUTIONS Mopel I /3 ERROR I mopeLs Tull /o ERROR
14 694 8 .64 ~AA-AT3 14.693 ~0.006

4 C]amped~c1amped 30 .894 26 .96 42,7134 30.970 0.246
49 .909 47 .10 - 4 426 49.904 - 0. 040
69 .309 £8 .83 .~ 0.6%4 69. 468 0.229
3 284 o-454x‘55 ~400.000 3. 284 0000

. .8 - - 0.

5 Clamped-free A5 488 1283 17464 15.487 6. 006
34 . 304 32, . 21 - 5.924 34 237 - .04
£3.652 52 .94 - 4,327 53,673 s.0la
4 . 639 8.64 - 257732 14 . 639 o.000

3 Clamped - 29 451 26. 96 - 7.535 29. 459 0. 006

supported 48 .796 471. 70 - 2.259 4884 © o8

, 69 . 440 69 .83 - ©0-49% 9. 24 o . {44

0.00 0485 18° 0.000 o.285%16° 0.00n
- -6

4 Free-free 0. 00 0. 650x13° ©.000 o.892xlo 0.000
A7 .85 {1.85 o000 {7 .85 O-0oo
37.18 37.45 0.536 37.4S 0.536

o .00 ow%?nlgs 0.000 o_zso"m(és ©.0a0

5 Supported-free TP L] 42.83 0. 469 293 . 469
32..2% 2.2 o. 124 32.27 PEY
52.82 52 .94 o. 221 52.94 ©.227

S ted 8 .645 B. 644 ~ 0. 044 5. 644 -0 Lol

6 St‘:ppg:tgd - 26 .960 26 .95 ~0.0l4 26.957 -0l ot

pp 4 . 680 47. 696 0.0%% AT. 696 o. 033

6% 726 68.826 o 445 §8.826 045
o. 2AB XIS &.B4A3

v C]amped - . 12.. 83 19.98 S
! simply supported 32 27 38.83
52 .94 £6.97

. %76 5. 356x43° -4os.000 2.376 5. 000

Simply supported 2. 276 v

8 supported 1718 12.83 - 25.320 i7.22 0232
37 .24 3299 - 43276 3122 o.005
58 . o £2.94 - B.1sS 58.28 ©.336

. 0.000 0.25.4»«55 Q.000 0. 494 K& 2.0600
Simply supporteg o a2S 105,005

9 simply supporteq & 64° 0. RSO xio -hoo. 8.644 ~ o o4
26.960 17.85 - 33.790 26 .95 - 5. 014
47 . 680 37,45 ~ 24.45% 47 . 696 o .033%

. 0.000 0. 143 w15 0.009 0. 234 745" S.000

10 Free»s1mp1y 5.224 0. 681x1° -{05.000 5.209 -0.297

supported 22.624 47, 85 - 24401 22486 -4.936
45.06S 37. 4S - 46.837 42. 623 - 5448

OBSERVATION

VALID FOR 4,5 ,6

VALID FOR ALL CASES

Table 10:
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Cold-drawn steel,%=" % Ys, &= (oo8), Q=T.3236 x13%breree” 5 finite elements used

three models I, Il and III and for the cases analyzed

Theoretical verification of the frequency parameter roots in the



LIMITING CONDITIONS

MopELS T ¥ 1L

MODEL

X

FREE - FREE

0

[
2,690,
5,643.

430 %10

134 w43~
458
709

o.
fo 303
2,690.
5,643

274 % 16>
g4 16"
458

.Tod

[2]

.349 x 16

T8% .059

3,343
6,423

492
.2.54

SIMPLY SUPPORTED-SIMPLY
SUPPORTED

0
4302
4,062
7,487

288 x 167
559
.366
769

SUPPORTED-FREE

[o]
4,933 .

-3
.462 x 40

449

4,863 .540

7,978

242

4,933 .
4,86%
1,978 .

276 % 4153

449

539

242

SIMPLY SUPPORTED-SUPPORTED

358
2,595 .
5,608 .
8,778 .

409

470
583
486

CLAMPED-FREE

494 -
£,33% -

5,168 .
8,088 .

849
633
567
483

CLAMPED-SIMPLY SUPPORTED

129.
5,014 .
5,854 .
B,885.

B&7
1B
182
916

SUPPORTED-SUPPORTED

4,302 .

559

4,0 6% . 266
7,487 - 769

io,374

- 9653

A 302
4,062
7, 187
40,371

.559
. 366
-769
-936%

CLAMPED-SUPPORTED

1,753
4,392
7, 354

10, 429

-679
- 837

.957
.46

CLAMPED-CLAMPED

2,243
4,667
7,520
{o, 468

-679
- 587
. 388
- €97

Cold-drawn steel, ®="3, % %%, Q:=Co8), ¢-13136x15" m-ssc®, 5 elements .
e

Table 11:

Frequency (HZ) of a straight uniform Timoshenko beam in
the three models I, II, and III (ascending order)
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REF. [27] , matrix transfer
method (15 elements used)

pResewt- MEMa® (Model T, gtpa
(8

straight beam theovry)

sFs!
elements use

d)

7.6
A3.5

12.6.9

54 -

144

Ez 28 ,(.406 U%.NL

P = 7.5078 x (S - 2o

for

Table 13: Frequency (HZ

AY
)
Timoshenko beam

, L :19.583 4, V=025 ,b=ild , -0 oo

; 3ot skatnless steed bayp,

f a tapered "clamped-free”
S

125



Table 14 (a,...h):

Notation:

126

Frequency parameters roots for a tapered beam
(Fig. 10) using the Bernoulli-Euler and Timoshenko

theories.

1) Given:

™

e

pre

I

P
N

S

=
—

[¢2]

S0 =h

3) Frequency

0.3
0.85
(0.082)
~4 1pm-sec 2
7.3236 x 10 Jbmosec?
0
3/8 P

thickness ratio

: depth ratio
: exact solutions wrinch equation [42 ]
¢ numerical solutions for upper limits

(Rayleigh-Ritz) [21]

: numerical solutions for lower limits
: exact solutions of [46]
: exact solutions converted equations

from [48]

: exact solutions standard manual

: exact solutions for equations in [1]
e
e

°

: numerical solutions finite elemen

(10 elements) [49]

: solutions devised by dynamic discre-

tization technique (8 elements) [50]

: present method (model III, 8 (ele-

ments)

parameter roof for a tapered beam:

A Lq 2 1
A= ngtTﬂﬁ_)

vl

note: The results were obtained for every combination
of B and H:

e The upper portin: Bernoulli-Euler theory.
e The lower portion: Timoshenko theory.
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4.0

8.71928
8. 7193"
8. 6e28°
8. 719240
8.71826

8.13372"
7.92.674"
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AB'\S’AOZ&
3154 P

2998 ©
.3450?“
CBASAAY

w oy

086 22"
CEr A

0.1

7.2049b
7.4827°
W.aomaei
1.20487"

6.78856"
6 11569°

6307 "
L 62.46°
_63072°
63072"

> e lm e e

4487
44118 °

£

0.2

1964 ®
646636
€A3634%
610630"

o

5. 86287"
5827297

24294

= > > >

2925 ®
[

292.49°

G
.26249"

>
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Table 14a: Frequency parameter root for the first mode
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Table 14b: Frequency parameter root for the second mode
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Table 14c: Frequency parameter root for the third mode
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Table 14d: Frequency parameter root for the fourth mode
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Table 1l4e: Frequency parameter root for the fifth mode
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Table 14f: Frequency parameter root for the sixth mode
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Table 14g: Frequency parameter root for the seventh mode
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Table 14h: Frequency parameter root for the eighth mode




Table 15a: Instructions for data entry

Note:

~

col. 1-2

. Execution menu (12)

. Control menu
col.

| N 1: for a straight beam (linear form)

2w N

for a straight beam (tapered form)
for a curved or slighty curved beam
for a curved or (linear form)

slighty curved beam (tapered form)

~N
°
°
°
°
@
°
®
°
[y

: rectangular sectijon
square section

: circular section
elliptical section

oW N

. Control menu for number of elements (12)
col.

1«2 ceeess number of elements used

Instructions menu for beam width and thickness

col.
col.
col.
col.

1-10 ..... width at 1st end
11-20 ..... width at 2nd

21-30 ..... thickness at 1st
31-40 ..... thickness at 2nd end

Instructions menu for geometric properties

col.
col.
col.
col.

col.
col.

1-10 ..... diameter at lst end rectangular section

11-20 ..... diameter at 2nd end

21-30 ..... 1st diameter at 1lst end

31-40 ..... 1st diameter at 2nd end elliptical
section

41-50 ..... 2nd diameter at 1st end

51-60 ..... 2nd diameter at 2nd end

for rectangular
and square sections

135

(KZ)

(KW)

(NEL)

(4D10.4)
(21)
(22)
(H1)
(H2)

(6D10.4)
(D1)
(D2)
(A1)
(A2)

(B1)
(B2)

Once a section has been chosen for execution, the other sections
take the value of "1".



6. Element menus (312, D7.4, D11.3, D7.3, D11.4, D8.3, D8.4, D7.3)
col. 1-2 .cioecrnns number of each element (NE)
col. 3-4 ....oc... 1st node of an element (NODE(NE,J),d=1,2
Col. 5-6 ..ivevene 2nd node of an element
col. 7-13 ..eoveeen Tength of an element (SL)
col. 14-24 .....c.ce. Young's modulus (E)
col. 25-31 ......... Poisson's ratio (U)
col. 32-42 ..ccvvuns densities (SM)
col. 43-50 ......... angle of deviation (ALF)
col. 61-58 ..ccvvene radius of curvature (R)
col. 59-65 ......... angle between 2 plane surfaces for curved bems)

(ALFI)
Note: SL = 1 if ALFI %0

7. Title menu (15A4)
col. 1-60 ...cvvuns Tocation of specified boundary (titie)

8. Menu for the boundary conditions (2E2, D6.4)
col. 1-2  .eeevnvse specified node (node)
col. 3-4 ......... directional code (see Table 15b, NDF=5)(IDiR)
col. 5-10 ......... Displacement vector (DELP)

9. Blank menu

10. Test menu (I1)
col. 1 =1icivuennss calculation continues
C N stop

11.

12.

136

Boundary conditions for static force determination (212, D6.4)

col. 1=2 cecvveose specified node (node)
col. 3-4 ......... directional code (see Table 15b, NDF=4)(IDiR)
col. 5-10 ..ccvvvos displacement vector (DEE)
Blank menu



13. Menu for loads and moments

col. 1-4

14. Blank menu

ooooooooo

ooooooooo

Sample instruction:

1) 1
2) 11
3) 8
4) 1.
5) 1.
6) 112
223
334
445
556
667
778
889
7) Case 02:
g8) 11
12
13
94
95

.09

.508
. 328
.147
.972
441
.828
.332
.039
Timoshenko
0.0
0.0
0.0
0.0
0.0

N RO N W = NN N = =

lToaded node

137

(node)

directional code (see Table 15b, NDF=4)(IDir)

force and/or moment vectors

(AFORCE)

Calculate the frequency of a tapered beam
(using straight beam theory) with a rectangular
section, 301 stainless

used).

.09
1.
28.00 D+06

1.

.29

steel (8 elements

7.5078 D-04 23.5
25.5
27.0
31.25
35.25
44.25
59.25
78.5

non-uniform beam: //CLAMPED-FREE//



9)
10)
11)

12)
13)
14)

138

Blank menu

1

11 0.0
12 0.0
93 0.0
94 0.0
Blank menu
51 -100.00
Blank menu
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I (types "i and j")JIT (types "i and 3")JIII (types "i and j"
ODEL ypes :
MODE -
NDPE: S wIF =4 NDF:-S NPFz4 NIF=S WIF = 4
' ’ ‘ , / 4 s
{w,w,_wle 9} {w w 0 ef fw, w, W e/q)} {w w e wi {w‘wze o Ly} {w © e W}
CASE 1 2345 i L34 04 23 45] 4234 1 2345 ) 4 23 4
X=O =l %z o =L f ®zo x=l |x=o ==L Xz O x=L |x=zo =L
o b o 9
clamped- ‘: b [ sl e |, M 94
clamped ! 22 1 93 | 12 9% ‘x oz | 4% 2k
A& g4 a> 5
44 14 i 93
» clamped- (2 o5 | o4 14 % |, 93 \2 %24 | ¢
free i3 {2 gs 94 9s 1% 24
A4 13
- A i 34
clamped 14 20, ot | 14 E H 14 94
3 supported- (2 92 gy | M 12 g2
i3 94 iz 93 iz 93
14 95 94 13 94
free- s os | 14 94 |14 94 |13 93 | 14 94 1143 93
4 free is as |44 gx |1s a5 |14 94
- 4
. supported i Y o t a4 |14 23 1, a4 | U g3
free 2 i 4 a5 |3 o4 O o
is 14 14
¢ supported- |2 o SRR IEVRRE-THN S I VRV
12 a2 A2 gL 42 a2
t 13 93 13 93
I-S 1 14
clamped-simply |44 | RN IR P P N L a2
7 supported - 12 i3 o4 : . 95 | 42 94
s
simp1y~$upported o1 ot 94 g1 |3 gt |, o
8 supported - e gy | 1P a4 s g2 |44 g3 | 45 ELd 93
95 94 94
simply-supported
9 4 94 |43 93 L4s 95 {44 94 ‘: 23 iz 92
s A s 4
simply-supported 4 94
free- i i3 22
4 A% 14 93
{ 9
10 is 94 4 E) s 95 14 A4 is o5 “ a4
simply-supported

(NDF  number of degrees of freedom). For two figures, the 1st digit indicates the
node, the 2nd indicates the displacement as already numbered above.

Table 15b: Table of boundary conditions used for the computer program
(8 elements).



Figure 1

Figure 2

Figure 3

Figure 4

Figure 5a

Figure 5b

Figure 6a

Figure 6b

Figure 7

Figure 8

Figure 9
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APPENDIX E

LIST OF FIGURES

Beam studied: homogeneous, uniform, without initial constraint,
displacement or torsion.

Detailed illustration of the elastic behaviour of a beam
segment.

Nodal displacements at points i and j.

Geometry and notation at resultant constraints Nx’ VZ, moment
My, rotation 6 and displacements u, v, w on a beam element.
Local and global coordinates.

Transformation between local and global displacement components
at a nodal point.

Deformation state of the normal constraints (horizontal and
vertical).

Deformation state of the shear constraints (diagonal).
Stress distribution over a beam element.
Distortion of a beam section.

Assembly diagram of stiffness and mass matrices for total
system.



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

11

12a

12b

12¢

12d

12e

12f

12g

12h

13

Sample tapered beam (1inearty tapered).
Flow chart of the principle program.

Convergence test for model II, "free-free", "free-supported"
"supported-supported" cases (1st mode).

Convergence test for model II, "free-free, "supported"
"supported-supported" cases (2nd mode).

Convergence test for model II, "free-free", "free-supported"
"supported-supported" cases (3rd mode).

Convergence test for model II, "free-free, "free-supported"
"supported-supported" cases (4th mode).

Convergence test for models I and III (1st mode).

Convergence test for models I and III (2nd mode).

‘Convergence test for models I and III (3nd mode).

Convergence test for models I and III (4th mode).

Tapered "clamped-free" Timoshenko beam.
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Studied beam: homogeneous, uniform, without initial constraint,

. displacement or torsion.
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Figure 2: Detailed illustration of the elastic behaviour of
a beam segment.



Figure 3:

Nodal displacements at points i and j. .=

2t
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Figure 4: Geometry and notation resultant constraints N , V,, moment M
rotation and displacement U, V, W on a beam"element. -
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- /2 a) ’ Y

<4

Figure 5a: -Local and global coordinates.

Figure 5b: : Transformation between local and global displacement
components at a nodal point.
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Figure 6: a) ‘Deformation state of the normal constraints
(horizontal and vertical),

b) Deformation state of the shear constraints
(diagonal).
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Stress distribution over a beam element.
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o7

Figure 8: 'Distortion of a beam section.
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Figure 11:

Flow chart of the principle program

l

READ..and .print entries

i{call SuB1)

Initiation of vectors and

matrices
' (call SUB2)

Transformation of coordinates

(call TRAN, call TRANS):

Construction of stiffness matrix
(call RIGID, call PRODUI (2))

Construction of- the mass matrix
(call SMASS, call PRODUI(2))

5

Reduce order of stiffness matrix.
to analyze static displacements

(call ENL, call SUB3)

Assemble stiffness matrices
(call ASS)
Assemble mass matrices - - -

(call ASS)

1

(Cohf"d)

152



(Cont'd)

|

Reduce order of total stiffness matrix
(to calculate static reactions)

and determine direction of total disp]acemént

(call ENL, call SUB4)

Apply boundary conditions

Reduce order of total mass and s§iffness matrices
(eigenvalues problem)

(call ENL [K], call ENL [M])

Calculate the eigenvalues en eigenvectors
(call E1GZF)

and arrange node order
(call SUB5S)

Transformation of eigenvectors matrix back
into initial form -

(call TRANSF)

X

Print final results
(call SUB6, call IMPRIM(2))

Calculate static displacements:
(call BANDW

call SUB7
call SPBC
call DECOMP
call SOLVEB)

!

(Cont'd)

153



(Cont'd)

l

Calculate static forces and moments

(call SUB8)

J

End
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Figure 12a: Convergence te;t for model II (1st mode)
a) supported-supported
b) free-supported (freq 0)
c) free-free (freq 0)
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Figure 12b: Convergence test for model-1I (2nd mode)
a) supported-supported’
b) free-supported (freq O0)
c) free-free (freq 0)
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Figure 12¢:  convergence test for model I1 (3rd mode)
a) supported-supported
b) free-supported

c) free-free
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Figure 12d: Convergence test for model II (4th mode)
a) supported-supported
b) free-supported

c) free-free
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Figure 12e: (onvergence test for models I and IIT (Ist mode)
a) simply-supported - supported
b)'ciambedéciambed ~; ¢) supported-supported

d) clamped-free  e) free - simply-supported (freq 0)
f) free-free (freq 0) e
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Convergence test of elements for models I and III (2nd mode)
a) simply-supportéd-supported
b) clamped-clamped c) supported-supported

d) claped-free e¢) free-simply-supported
f) free-free (freq 0)
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Figure 12g: Convergence test for models I and IIT (3rd mode)

a) simply-supported-supported b) clamped-clamped
c) supported-supported = “d) clamped-free
e) free-simply-supported f) free-free
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Figure 12h: _Convergence test for mode]é I and III (4th mode)
a) simply-supported-supported
b) clamped-clamped ¢) supported-supported
d) cTamped-free e) free-simply-supported

f) free-free
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