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Abstract

An analysis i,s presented for the prediction of the stfesses,

displacements and interface pressure of cylindrical vessels partially

filled with liquid, pressurized and having a surface of contact with rigid

supports. The supports are subdivided into a number of line and surface

éléments in the axial and circumferential directions. Each élément is

subjected to a unifonn load q^., i = l, ..., N. The applied loads, expressed

in double Fourier séries and inserted into shells équations of motion,

allow the détermination of the corresponding displacements and stresses.

Calculations are conducted for such a shell and the results are compared

with those obtained by another theory.



Nomenclature

3. == axial coordinate of élément "i", i = l,..., N

€„ == half saddle width

D,K = parameters defined in équation (5)

K = (1/12) (t/r)2

i = length of the vessel

m == axial wave-number

n = circumferential wave-number

N,,, N,_, N,x' cp^ xcp

stress-resultants for a circular cylinder.
X' Cp Xcp

N-,, N^ = number of line éléments on the support in the axial and

circumferential directions, respectively.

N = total number of éléments.

[P] = elasticity matrix

P^î P^? ?„ := external applied loads in axial, circumferential and radiai

directions, respectively.

P^ ) ?„„ 5 ?„ = load factors corresponding to the applied loads p_,
.X--mn Tmn ' mn

p_ and p^, respectively.

p_ = surcharge près sure

q. = density of élément *'-i", i = l, ..., N.

r == mean radius of shell

b == wall-thicKness of shell

J, V, W = axial, circumferential and radiai displacementsof the vessel

mn? vmn5 wmn = coefficients of the Fourier séries for the displacement

components U, V and W, respectively.



x = axial coordinate

x , Xf = axial coordinates of the saddle (fig. 2)

Y = spécifie weight of fluid

Y^ ~ spécifie weight of the vessel

6_ = half-total saddle angle

Ce} = strain vector

e, e , e == axial, circumferential and shear strains of middle surface''x' "cp' '"xcp —"—»

K^, K_, K^_ = axial, circumferential and modified twisting strains

vi == Poisson's ratio

[o] == stress-resultant vector

cp = circumferential coordinate

cp = angle indicating the level of the liquid in the vessel,



INTRODUCTION

The first attempts to investigate experimetaly saddle supported

vessels vers made by Hartenberg [lj~, Wilson and Olson [2] in 1941, and were

followwl in 1951 by an expérimental and analytical worK by ZicK [3] which

has been incorporated into British Standard 1515, part l = 1965, as mentioned

in [6]. Since then the theory of saddle supported vessels has repeatedly

been re-examined in the literature [4]-[7].

Forbes and Tooth [6], and Wilson and Tooth [7] formulate an

analysis capable of predicting the saddle/cylinder interface pressure and

the stress résultants throughout the vessel. They assumed, in their

investigation, a constant interface pressure distribution in the axial

direction. It is the conviction of the authors that the saddle/vessel

interface pressure is non-uniform in the axial as well as in the circumfe-

rential directions.

The worK presented here is an attempt to produce a général theory

capable of giving accurate prediction of the saddle-vessel interface

pressure distribution in the axial and circumferential directions as well as

the stresses and displacements at any point within the structure with a minimum

of limitations and hence, with wide range of applicability. This investigation

is divided into two parts. Part l which is developed in this paper describes

l
Number in bracKets desigrirites Références at end of paper.



a new approach to the point of obtaining the s très ses and displacements for

a vessel partially-filled with liquid, pressurized and having a surface of

contact with rigid supports. To this end, the support is subdivided into

a sufficient number of Une and surface éléments each of which subjected

to a load q., i = l, 2, .,., N. In part 2, under préparation, prediction

of the saddle-vessel interface pressure distribution is obtained by minimising

the total energy of the system which is derived in terms of the q^fs using

the theory developed in part l. This theory will be capable of analysing

geometrically axially non-symmetric, long or short thin cylindrical shells,

sùbject to any set of boundary conditions (including supports other than

at the two axial extremities of the shell).



l. BASIC EQUATIONS

The basic équations which describe the static behaviour of

cylindrical shells with bending résistance under arbitrary loads are derived

from Sanders' theor}r [8] for thin shclls. This theory was used, in préférence

to Love1s of TimoshenKo's théories, because in the former all the strains

vanish for small rigid-body motions, which is not true for the latter

théories. Thus, SandersT équations of equilibrium for cylindrical shells

under distributed loads p_, p_ and p_ talœ the form'y.' t'cp "'"" ^r

.2 92_u ,_ 0_^J. ô_u.-. ril_±^_l ô?^L , ^3W , „ r(l -v ~» ô2 U
r ^--^^—.^-.^.^^icp+r '^+kL—^3T -

ôx- - 99" - "" ^~t' ""* " ôq?'

iÛ—^J. . ô2JL 4. H—^Ll . ^ w i - _ , £2
1~ r ^T^p -t' 2r ~~^-J = ~ px T '

ôx ôcp~

(l +V )r âîjJ_ ,_ ô2_V , _(3^_-v_)_r2 ô2 V ,ôW , ,.r-3(l -\^)r ô2 U
2 sxôcp ' ^2 • 2 ^2 ' ôcp ' IVL 8 âx ôcp

4.^(i»^^2ôLv^^_(3_^â3J^_^^ _^ ^g M »v ir ^J~-f-^J--^—^—^--^-j= - p^ ^- ,
ôx~ ôcp- ~ àx" ôcp ôcp~

^,^^^4-K ^^^^^-^^—-^âx ~àV " ' " L 2 ^ ^^2 ' 2 ._2
Sx ôcp- - 3x~ ôcp

+ô^ _ ^4 ôlj/„ ^2 Ô4-W-—-Ô^W1 = n £2T" - r ~4~ - zr -j—^- - —4- J = p^ -p- ,
ôcp 3x • QX" ôcp- ôcp

and the strain-displacement relations are

a)



w =

'X

e."<p

2g.
"xcp

x

H.-(p

2iL
"xcp

ôU/Sx

(1/r) (ôV/ôcp) + (W/r)

âV/ôx + (1/r) (ôU/ôcp)

- 92W/àx2

- (1/r2) [(A/ôcp2) - (ôV/âcp)]

- (2/r) (§ W/3xôcp) + (3/2r) (ôV/ôx) - (l/2r2) (ôU/ôcp).

f>
(2)

Here U, V and W are, respectively, the axial, circumferential

and radiai displacements of the middle surface of the shell, r its radius,

and K: = (1/12) (t/r) ', v> is Poisson»s ratio and t is the thickness of the

shell (Figure l).

The appropriate set of stress-strain relations is given by

N

[a] =

x

N

N
xcp

M
x

M
CP

M

LP] [e} ,

xcp

where N_ == ^ (N_ 4- N_),xcp 2 "xcp ' "cpx;'?

matrix, is given by

M^.. = ? (M..-. + H..^ and [PL the elasticity
X(p xcp cpx

(3)



[p] =

D

\»n

0

0

0

0

^D

D

0

0

0

0

0

0

oLL^-vl
2

0

0

0

0

0

0

K

\^K

0

0

0

0

vK

K

0

0

0

0

0

0

K{1_- v)
2

, (4)

where the stiffness parameters K and D, for an isotropic elastic material,

are given by

K = Et3/12(l - v2) D = Et/(l - v^) (5)



2. SHELLS SUBJECTED TO ARBITRARY DISTRIBUTED LOADINGS

A cylindrical shell partially filled with liquid, pressurized

and having a surface of contact with a rectangular rigid support of dimensions

îa x 21)) is aho'wu in Figure 2. The location of the support on the vessel

is arbitrary. with coordinates 6_ and (x , x,,) in the circumferential and
0 0-

axial directions, respect!vely. The theory developed here for one support

may be applied to shells having two or more supports. Also, the assumption

of a vertical plane of symmetry of the loads through the axis of the shell,

permits the investigation of only half the support(a x b).

Thèse dimensions "a" and nb" are first subdivided into N^ and

Nr> line éléments, respectivelyj and then by assuming two point loads on

the boundary A and B of the support (see Figure 2), N finite éléments are

obtained and distributed over the area, a x b, as follows: a) two concentrated

loads of densities q. (ib or Kg), i == l, 2, applied on the points A and V;

b) (N-, + 2N,-,) line loads applied on the line éléments and of densities q.

(Ib/in or Kg/m), i == 3, 4, ..., 2N^ + N-, + 2; and e) N^N^, surface loads

of densities q^ (Ib/in or Kg/m ), i = 2N^, + N^ + 3 to N; where N is

given by

N = N1N2 + 2N2 + Nl + 2 • ^

The pressure distribution and the surface of contact between

the rigid support and the shell are represented by the densities q..Ts where

i = l, 2, ..., N.



The purpose of this study is to formulate a général procédure

in order to obtain the displacements and the stresses induced by the

q^'s, the fluid, the surcharge pressure, the weight of the vessel and its

heads. To do so, the loads and the displacements are first représentée!

by double Fourier séries and then inserting thèse séries into the équations

of motion, the coefficients of the Fourier séries are obtained for the

displacement components in terms of the load factors ?„„„, ?..„_ , p_„ for"xmn? rcpmn ) ^rmn

axial, circumferential and radiai directions, respectively. The second step

is to détermine thèse loads factors p_._.._ , p and n .-._ in tenns of the
xmn ' "cpmn xrmn

Knowns q^'s for each particular case.

2.1 Arbitrary loadings

Using the method of Fourier expansions and assuming that, for a

cylinder of length A,

and

7X

•cp

> sa "S E [T^] [T_J <;nj '-"mx-
nr=l n==0

p

p

p,

Kmn

rmn /

cpmn

w__ > ==
00

E
m=l ït=0

00
E [TJ [T_J <nj L~mK-

u.mn

w.mn

mn

(?)

(8)

it is possible to obtain, by introducing (?) and (8) into (l), the coefficients

of the Fourier séries for the displacement camponents as follows



u.-mn -xmn

w,'mn > ==
[^p]

v
inn

l'nin

qîmn

'<))

where m and n are the axial and circumferential wave number, respectively,

and the matrices [T^], [T^.] and [A^] are shown in Appendix l.'n mx

the loading can be represented by Fourier séries of the

forni

x

Lcp

03

ff=0,2,3,4,
DU <l

n

p.xon

ron

cpon

The displacements c.an, in général, be assumed to havc the form

w_

•p

p

f
p

03

iFO, 2,3,4,...,

[TJnj <

on

w
on

on

(10)

(11)

where the coefficients u^^, w^^ and v , for n ^= l, may be obtained from

équation (6) by imposing m == 0. The case of loading for which n = l in

(10) requires spécial treatment and will be considered later.

Equations (?), (8) and (9) allow the pressures and displacements

.to be expressed in tenns of the 3oad factors p__,_, p__ and p . The
"xnm? rrmn "'"" ^cpmn*

object new is to détermine thèse load factors corresponding to each parti-

cular case of loading.
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2.2 Expressions for load factors correspôndiilg t6 point load, Une

load and surface load.

a) Concentrated radiai lôads.

We assume two concentrated radiai forces of intensity q. (Ib or- Kg)

applied at the coordinate (x,cp) == (b^ ± 6^), Figure 3.

The load factors corresponding to such forces are as follows

2q_. m n b_.
pnnoi =—-^ sin —^ —^ » m == 1,2,3,..., (12)

rnï-A ~-" A

and
4 <L m n b^

prmni = n r APnnni = Z~T7 cos n 64 sin —T— , n,m = 1,2,3,..., (1,3)

where i == l and 2. By referring to figure 2 we obtain 61 == 6^ =s on ,
A<

bl = XQ and b2 = xf •

b) Line loads on two sepients along the generator.

Let the segments, on which a constant inward Une load q.;

Ib/in or kg/m) is applied, be contered at (x,cp) = (b^ ± 64) and of

limension 2 c^ along the axial direction. Figure 4.

The coefficients of the séries expansion for this loading is

;iven by

4 q^ m n C m n b^
Prmoi =3 T— sin ~T~ sin —T— » m= 1,2,3,..., (14)

TT r m

araJ
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8 qi . m TT C2 ^ m n b^
p_^^ = ",,"1 '•"iii sin —,—- cos n 6^ sin —^—- , n,m = 1,2,3,..., (15)
'rmru- TT^ r m A 1

where i = 3,4,..., N-, +2.

e) Line loads on two segments perpendiciilar to the generator.

For the cases where the shell is subjected to a line load q^

(Ib/in or Kg/m) perpendicular to the generator, figure 5, and of dimension

2r cp^ , the load factor p__ is given by

4 C131 qi ^ m TT b^
Pnnoi = —77- sin-T- . m =1,2,3,..., (16)

and
8 q_. m n b_.

prrani = ^nA sin n cpl cos n ôi sin S, :L ^ n,m = 1,2,3,..., (17)

f/here b,; is equal to x^ and x.p for i =- N^ +3 toN^ + N^ -r* 2, and for

L = N-^ + N^ +3 to N^ +2N + 2, respectively; figure 2.

d) Constant pressure uniformly distributed over two rectangular

areas.

Consider two rectangular areas subjected to a constant

.oading q., centered at the coordinates (x,cp) = (b. ± 6.), and having the

imensions 20^ and 2r cp^ along the axial and circumferential directions,

espectively (Figure 6).

The Fourier séries expansion of the pressure, p^., due to the

adial loading, q^, being given by équation (7), one obtains the following

for the loâ.d factor t>
nnni



II

cp^ q^ ^ m TT C^ m n b^
gin —;—^ sin —;—-, for m == 1,2,3,..., (18)'nnoi 2 „. "~" Si """ S,

TT m

and
16 q^ ^ ^ m n C^ ^ m rr b^

sin n cp^ sin —;;—=• cos n 64 sin —^—=- ,'mini 2 _ .. """ " Yl ""' H """ " "i "'"" S, )
rr m n

for m,n = 1,2,3,..., (19)

where i = N-, + 2N^ +3,..., N; and N is given by équation (6).

2.3 Pressure corresponding to a partially-filled vessel.

The près sure distribution on a shell partially or completely

filled with stationary liquid is given by

p(x,cp) = - Y r (cos cp - cos cp ) , for - cp^ s, cp s, cp , (20)

and p(x,cp) is equal to zéro elsewhere. Here y (ib/in or Kg/m ) is the

spécifie weight of the fluid and ^ indicates the level of the liquid in

the shell. Figure 7. , ,;;;

The séries expansion for the loading shown in figure 7 is given

?y équation (10) and its corresponding load factor may be written in the

?orm

P^o =a - WT^ [sin CPo - CPo cos CPo] '

prl =! ~ (Vr/^ tlcPo ~ (sin 2CP(/2^] ?

p = - [2Yr/(rrn(n -l))] [cos cp sin n cp - n sin cp cos n cp ] ,

n = 2,3,..., (21)
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2.4 Surcharge pressure, weight of vessel and heads.

The heads of the vessel are assumed to be rigid and, consequently,

their effects will be taken into account by prescribing the appropriate

boundary conditions on the shelPs edges.

The loading corresponding to a surcharge pressure p^ is given by

p^. (x,cp) = - Pc , (22)

and the loading due to the weight of the vessel may be written as

Py (X»<P) =3 - Yg t sin 9 »

Py (x»<p) == -Y t cosy ,

vhere y^ is the spécifie weight of the shell and t its thickness.

(23)
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3. DISPIACEMENTS AND STRESS-iŒSULTANTS

The displacements due to arbitrary distributed loadings may be

obtained by introducing the coefficients given by équations (12) to (23)

into relations (9). However, équations (9) and (11) cannot be applied to

cases vhere the loadings are expressed in terms of the form (a cos cp) and

(b sin cp); this is due to the fact that expressions in d cos cp ard g sin cp,

for the radiai displacement W, c.prrespond to rigid body motion of the shell

and therefore, tliey do not represent the true displacement caused by

loadings expressed in terms of the same form. In order to avoid this

difficulty, it was necessary to either expand the constant "a", and "b" in

a Fourier sine séries of the form S D^ siti (m TT x/A) and thus to lengthen

the numerical computations, or to obtain a particular solution using shells'

membrane theory. It was decided to use the latter alternative, for thèse

particular case since such solution which is easily obtainable describes

adequately the behavior of a cylindrical shell closed by stiff heads.

Such spécial cases occur when m = 0 and n = l, e.g., for the weight of

the shell and for the terms, m = 0 and n = l, of the fluid pressure. In

a.11 other cases, where (m =a 0, n^ l) and m^O, the exact solution, developed

in previous sections, was used with bending résistance under arbitrary loads

fco détermine the corresponding displacements and stresses.

T
The stress-resultant vector. j a} =[N. N. N .M.M. M» L"J l"X? "(p? "xcp' "x' "ç' "xcpj '

'or différent loadings is obtained by substituting the corresponding

lisplacement relations into équation (2) and thence into équation (3).
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a) Surcharge pressure

The surcharge pressure p^ induces displacements and stresses

for the case n = 0, accordingly, we may write

u

w

ôW/ôx

v

> = <

po

p

p

r ï
0

2,
r

0

0

0

^ (l

(l

- 2v)/2Et

0.5v)/Et

(24)

and

^}po = îpo r/2? po rf 0) 0> 0) 0} (25)

b) Weight of the shell

By considering that the veight of the shell induces motions in

the first circumferential wavenumber, n = l, we obtain

là F ^— f±L[î5?("7-:7u

w

ôW/ôx

v

> <

PI

.3 .3 ^2i" / 4x" 6x" l xLS r !T_ /4x" 6x~ ,-,\ ,r£, ^ ^\ /1 x'-f [ fe (23 -^+i) +T d-4v) (f - j)] cos cp

Y- .4 ^4 ^3LS r-Jli_ /X' 2x^E— (XI -^S- +£) + (xA-xz) (2.125+^)+^-(4-^)] cos cp
E L12r2 '/ ~ ts' l

^ LJ— (4s7-foÇ+l)+(ji-2x) (2.125+^)] cos cpE L12r2 ^ A3 S2 ' ^ ' "' "^ '~'^ ' 2/

Yo f4 .^4 9^3
- -^ [—67 (sz - ^T + s) + (xA - x^) (2.125 + 1.5^)] sin cp

L12rz 'S.4 S6 s1'

,(26)

and
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x x\ r- ^t EU~/r) {-j-j) -j ] cos cp2 ~ a'

YA r cos tp

^Pi = J - 2 y^t (°.5 A-x) sin cp
s

0

0

0

where H, r, t and y are, respectively, the length, mean radius, thickness
s

and spécifie weight of the shell; \> is Poisson»s ration, and E is Young's

modulus.

(27)

e) Fluid près sure

Upon substituting relations (2l) into équations ((9), (il)) and

thence into équations (3) we obtain the following expressions for the

displacements and the stress-resultants of the shell:

u

w

SW/ôx

v

> <

Pf

and

[^ ==

u

w

âW/ôx

v

[o5.

> <

+

Pf(n=0)

+

u

w

ôW/ôx

v
> 4

{a}.

>

+

Pf(n=l)

+

n=2
[ïjn-

u
on

w
on

on

00
E

lï=2

T.. 0n

0 T
n J

[E,J'on-

u.on

w
on

on

(28)

, (29)
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where

u

w

ÔW/SK

P^(n=0)

- (a, r x/2Et) (l - 2v)

(a^ r7Et) (l - 0.5v)

0

0

(30)

u

w

ôW/ôx

.(n=l)

Î3/4x3 6x2

r nt
(a/Et) [^ (^ - 6^ + l) + M(l-4v)(| - I)] cos cp

,4 4 „ 3 „ 2
-(a^/Et) [-^ (^ - ^Ç +ï)+1.125 (xA-x2)+Ç (4-^)] cos cp

24r" C S;

*3 ,..3 ,_2
[__ (^ _.u_ + i) 4. 1.125 (A- 2x)] cos cp
~24r^ ^ A'

.4 ..4 ,__3

(a^/Et) [-^-j (— _^— +ï) 4. 1.125 (xA- xz)] sin <p

and

24r" S7 S.

T
^p^O) i--aor/2' ^,0,0,0,0]' ,

^}p^.(n=l) i-al[l? (^2 ~ î) ~'Ï] COSCP» -raicos^ ai(t - x)sincp,0,0,0}\

a^ and a^ are, respecitvely, equal to p_ and p^ of équations (2l); the

matrices [T^], [r^] and [E ] are shown in Appendix l; and tic vector

.T
[ù, w^, v 5 is detennined by substituting relations (2l) into

p^.(ns2)

équations (9).

(31)

(32)

(33)

d) Point, line and surface loads

Similarly, the stresses and displacements due to the applied

contentrated loads, line loads and surface loads (q.., i = l, N), Figure 2,

may be written as follows
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w

^/^
00
s

00
E

n==0 m=CL
[T^] [T_]nj '- 'mx-

N
Z u

i=l mni

Z wmm

E
l

(niT/A) wmni

S v.mni

(34)

and

W 00
s
=0

00E
np=l

T.n

0

0

T.n

X,m

0

0

x_m

["] v

g
i=l

z
i

E
i

u
mni

wmni

v
mni

'^

(^5)

where [P], the elasticity matrix, is determined by équation (4); the matrices

'.'r..~\, [ T-_-L ET-L Cx»] and [c»_] are given in Appendix l; anl tten-^ L 'mx-)î Lxn-I? l-"mj ""*" l-"mnj "'"' 6""v'" •"" "f^-"— --?

N . .T
vector Z j'u__;, w__.;, v_^;} „ is evaluated by substituting the relations"mni> "rnni9 'mnij q^

(13), (15), (16), (17) and (19) corresponding, respectively, to

i = l to 2, 3 toN^ + 2, N^+3 to N^ +N^ +2, N^ + N^ 4- 3 to N^ + 2N^ + 2,

and N-, + 2N^ +3 to N, into équations (9); Figure 2.
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4. CALCUIATIONS AND DISCUSSION

To détermine the displacements and stresses of a given cylindrical

shell completely or partially filled with liquid, pressurized and having

a surface of contact with a rigid support, we first specify the location

of the support and its dimensions. The surface of this support is then

sùbdivided into a sufficient nznnber, N, of line and surface éléments each

of which subjected to a load q^., where i = l,2,...,N; (sufficiency in this

context is related to the distribution and the densities of the q^Ts).

Finally, a computer programme, written in Fortran V language for the CDC CYBER 74

computer, calculâtes, for given input data, the displacements and stresses

for each particular loading using équations (24)-(35) and détermines the total

stress and displacements from all loading Systems at any point of the

structure.

The necessary input data are the mean radius r, wall thickness t,

length of the vessel S,, material and fluid spécifie v/eights Y and y,
s

respectively; PoissonTs ratio \>, modulus of elasticity E, surcharge

internai pressure p , densities of the q.Ts and the angle cp (rad ) which

représenta the level of the liquid in the shell.

This analysis proceeds separately for each circumferential

wavenumber, n, and the total response may then be foimd by summing over n.

The total number of n required for the computation is reached when the

—9
relative error of each displacement component approaches lO""'.
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In order to test the correctness of the theory, one typical case

has been calculated. This calcùlation involves the détermination of the

displacements and stresses of a particular twin saddle supported vessel

which has been analysed by Wilson and Tooth [7]. The vessel is subjected to

water loading, self weight and interface pressure. The resulting interface

pressure distribution between the saddle and the vessel is shown in Figure 8a

as given by référence [7]. The data for the vessel are as follows:

r = 6 ft(l.85m), t = l in (25.4mm), S, = 180 ft (54.9m), E = .29 x 108 Ib/in2

.(.2039 x 10UKg/m2), v = 0.3, y = 0,03611 Ib/in3 (999.52 Kg/m3),

Y^ = 0.284 Ib/in (7.8 x 10 Kg/m ) and cp^ == rr rad. The location of the
S >-- ' T Q

twin saddles on the vessel is shown in Figure 9a. The effect of the closed

ends is taken into account.

The analytical displacements and stresses in [7] were obtained

by application of Flùgge's theory and employing double Fourier séries proce-

dure. The distribution and magnitude of the interface pressure is assumed

to be (l) the same for both saddles, (2) symmetric with respect to the

generator passing through the center of the saddle arc and (3) constant

across the saddle width. Finally the saddle arc length is subdivided into

a séries of equal angular parts each of axial length equal to the width of

the saddle and loaded by a urdLform pressure.

The results obtained by the présent theory were computed with N^ = 49,

N,, = 15 and N = 816 éléments, and are compared with those of [7] in

Figure 8-10. As may be seen, the results obtained by this theory are

generally in quite good agreement with those of [7] and, what is more

interesting, they are in better agrcement with B.S. 1515. This is particularly
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noticeable in the case of the dominant circumferential bendine moment M
9

as shown in Figure lOb. Detailed discussion of the results obtained and

their significance will not be undertaken here as this has already been

done by Wilson and Tooth [7].

The results for the radiai displacement, W, in terms of the

saddle(s width are shown in Figure 8b. We note that thèse displacements are

not constant along the width of the saddle for cp smaller than the saddle

angle fi , (cp ^ 75 ), but tend to a uniform value for cp higher than 6 .

Therefore, our results show an incompatibility regarding the assumption,

used in [7], that the interface pressure is constant across the saddle

width.
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5. CONCLUSION

In this paper we have presentcd a theory capable of predicting

the stresses and displacements of a thin cylindrical vessel partially

filled with liquid, pressurized and having a surface of contact with a

rigid support. To this end the support is subdivided into a sufficient

number. N, of line and surface éléments in the circumferential and axial

directions, each of which subjected to a load q^, i = l, 2, ..., N. The

analysis proceeds separately for each circumferential wavenumber, n, and

the total stresses and displacements may then be found by summing over n.

This theory vas computarized so that if the dimensions and

material properties of the vessel, and the properties of the saddle, are

given as inputs, the program gives as output the displacements and stresses

at any point of the structure.

Here we limite ourselves to the case where the q^'s are Known,

The situation where the interest is t.he évaluation of the contact area and

the pressure distribution, i.e. the q..Ts, is the subject of another study,

under préparation, where the theory of this worK is applied to dérive the

total energy of the System in terms of the q;T s. The minimisation of this

energy will permit us to obtain the distribution of pressure over the

contacting régions.
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The matrices referred to in the text are listed as follows,

[T^] =n-

[T^J ='mx

cos n cp 0 0

0 cos n cp 0

0 0 sin n cp

cos (mnx/j?) 0 0

0 s in (mrfX/A) 0

0 0 s in (mnx/A)

^ ° cos n cp

0

0

0

0

cas n cp

0

0

0

0

cos n cp

0

0

0

0

sin n cp

[XJ =~m- s in (mnx/A) 0 0

0 s in (mnx/jl) 0

0 0 cos (mnx/.e)

[1_] =mx
e os (nirpc/^)

0

0

0

0

s in (niTixA)

0

0

0

0

cos (mrOi/jt)

0

0

0

0

sin (niTTxA)
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[E_] =
on-

0

0

-nD(l-v)/2r

0

0

nK(l-v)/4r

vD/r

D/r

0

2.,., 2
vn-K/r

.2,, ,..2n-K/r'

\)Y[D/T

nD/r

0

9,
vnK/r'

nK/r'

0

EU ="mn -m-n/A

0

-n/r

0

0

0

1/1

(^s.Y

-2/_.2n /r

n/2r" (2n/rL(mTrA)

0

n/r

mnA

0

n/r'

(3/2r).(mTT/A)

^ (1,1) = r2Wj6)2 + n2(l-^) (1-Hc)
T~ ' i

Ap (1,2) = -r(m2)[v - (l-y) K n2 ]
A - T

A,, (1,3) = -rn (m^) [{1-^) + v(l+Sk>\l, ... -^ ^ L- -^' —--^j

Ay (2,1) =A^, (1,2)

Ap (2,2) = l + kr't^+ (mrAF]

r

2,_\ , /-, \ . 2Ap (2,3) = n(l+n^k) + (3^) Kr^n (11^)
2

^ (3,1) =A^ (1,3)

A^ (3,2) =Ap (2,3)

Air (3.3) = (l^)î"" (mrrA)" (1+9K)+ n2(l+K)
~2~ T'
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(e)

Figure l (a) Définition of the displacements U, V and W.
(b) Stress-resultants and displacements acting upon a

differential éléments.
(e) Stress couples and surface loads acting upon a

differential éléments.

Plane of symmetry

-T

\
r~rm~

N, B^q,

^7 / / / / U b
^~7~7~77^

X,

Figure 2 Location of the support on the shell.
(N^ and N^ are the nnmber of line éléments at the boundaries
of the support in x and cp directions, respect!vely; and,

N = N^N^ + 2N^ + N^ + 2, is the total number of éléments).
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x=0

Figure 3 Concentrated radiai loads, q^ (ib or kg).
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x=o

Figure 4
L^ load along a generator, ,. (,^

' <îiub/in or icg/m).
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x=0

Figure 5 Line load perpendicular to the generator, q^ (ib/in or Kg/m).
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x=0

.2Figure 6 Distributed loads, q^ (ib/in^ or Kg/mz)



5:1

^. -^

Figure 7 Pressure distribution for a partially-filled shell.
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Figure 8 Pressuredistribution and displacements of a twin saddle supported
cylindrical vessel full of liquid. —, this theory; — theory
of Wilson and Tooth, [7].



1=180 ft,( 54.9 m)
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Fiffiirc 9 Values of N_ and N^, at sadctle center profil for fluid and self

wcjpht. —, t 11 is t-lu'ory; —, theory of [7].
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Figure 10
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Values of M^ and M^ at saddle center profile for fluid and

self veight. —, theoretical results obtained by this
theory; —, theoretical results of référence .[7].
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