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Abstract

An analysis is presented for the prediction of the stresses,
displacements and interface pressure of cylindrical vessels partially
filled with liquid, pressurized and having a surface of contact with rigid
supports. The supports are subdivided into a number of line and surface
elements in the axial and circumferential directions., Each element is
subjected to a uniform load a5 i=1, ..., N, The applied loads, expressed
in double Fourier series and inserted into shells equations of motion,
allow the determination of the corresponding displacements and Stresses,
Calculations are conducted for such a shell and the results are compared

with those obtained by another theory.



Nomenclature

b, = axial coordinate of element Wity i =1,,.., N

2
i

half saddle width

D,K = parameters defined in equation (5)

kK = (1/12) (t/r)2

£ = length of the vessel
m = axial wave-number
n = circumferential wave-number

ng ij wa
M .M. M stress-resultants for a circular cylinder,

x? Tk

P P

N.s N, = number of line elements on the support in the axial and
1’ 72

circumferential directions, respectively.

N = total number of elements,
[P] = elasticity matrix
P> p@, p. = external applied loads in axial, circumferential and radial

directions, respectively,

P, » P , P = load factors corresponding to the applied loads P,

*mn~ Pmn Trn x
pQP and b.s respectively,

pO = surcharge pressure

9y = density of element MM, 4 =1, ..., N,

" = mean radius of shell

C = wall-thickness of shell

J, V, W = axial, circumferential and radial displacementsof the vessel

i’ Vimn? Wom - coefficients of the Fourier series for the displacement

components U, V and W, respectively.



X = axial coordinate

Xy Xp = axial coordinates of the saddle (fig. 2)

Y = specific weight of fluid

Yy~ specific weight of the vessel

60 = half-total saddle angle

{e} = strain vector

€, s ew, eXCP = axial, circumferential and shear strains of middle surface
Kx’ K¢, Kg¢ = axial, circumferential and modified twisting strains

v = Poisson's ratio

{d} = stress-resultant vector

¢ = circumferential coordinate

P, = angle indicating the level of the liquid in the vessel.



INTRODUCTION

The first attempts to investigate experimetaly saddle supported
by Hartenberg [“]1, Wilson and Olson [2] in 1941, and were
followed in 1951 by an experimental and analytical work by Zick [3] which

has been incorporated into British Standard 1515, part 1 = 1965, as mentioned

in [6]. Since then the theory of saddle supported vessels hag repeatedly

been re-examined in the literature [4]-[7].

Forbes and Tooth [6], and Wilson and Tooth [7] formulate an
analysis capable of predicting the saddle/cylinder interface pressure and
the stress resultants throughout the vessel, They assumed, in their
investigation, a constant interface pressure distribution in the axial
direction, It is the conviction of the authors that the saddle/vessel
interface pressure is non-uniform in the axial as well as in the circumfe-

rential directions,

The work presented here is an attempt to produce a general theory
capable of giving accurate prediction of the saddle-vessel interface
pressure distribution in the axial and circumferential directions as well as
the stresses and displacements at any point within the structure with a minimum
of limitations and hence, with wide range of applicability., This investigation

is divided into two parts. Part 1 which is developed in this paper describes

Number in brackets designates References at end of' paper,



a new approach to the point of obtaining the stresses and displacements for
a vessel partially-filled with liquid, pressurized and having a surface of
contact with rigid supports. To this end, the support is subdivided into
a sufficient number of line and surface elements each of which subjected
to a load S i=1, 2, ..., N, In part 2, under preparation, prediction
of the saddle-vessel interface pressure distribution is obtained by minimising
the total energy of the system which is derived in terms of the qi's using
the theory developed in part 1, This theory will be capable of analysing
geometrically axially non-symmetric, long or short thin cylindrical shells,
subject to any set of boundary conditions (including supports other. than

at the two axial extremities of the shell),



1. BASIC EQUATIONS

The basic equations which describe the static behaviour of

cylindrical shells with bending resistance under arbitrary loads are derived

from Sanders® thecry [8] for th

heory was used, in preference
to Love's of Timoshenko's theories, because in the former all the strains
vanish for small rigid-body motions, which is not true for the latter

theories. Thus, Sanders' equations of equilibrium for cylindrical shells

under distributed loads Py p(P and p,. take the form [9]

2 2 2 2
#2 2 ;J+ U.;v) azUﬁ_rﬂé+v) ;{g 4—rv§¥-kk ﬂl gv) azU _
3% 3 P p
30 -v) 2V, (1-v) a3w] ; r?
8 2 207 7 D ’
X ¥ 3 % X
At+vdra®u | 2* Vv, (1-vir® 2?2V g 30 =v)r v
2 > op | 2 2 2 T TE 8 X o9
o o2
(1)
NENCRRR G S S A IR R I B
v T =V 1Y = = ) o — 3 = e e .
8 NORA, 2 > 3 30 % D
3 2.3
-n\)r%%-n?;y—e—W*l-K [("j‘l)raU2+(3£"’r52V +
P 3 39 x” 0
SV 43w 2 3% w tw, g2
L S Ry il I S
P ox X 3y op

and the strain-displacement relations are



( 6, \ raU/ax
€ (1/v) (3V/3p) + (W/r)
= | 2, _ J aV/ax + (1/1) (3/39) ()
Moo f - a?'w/axz ?
"o - (1/r%) [(BZW/BCPZ) - (3V/3p)]
k z,zxq)J - (2/7) (3%W/ax30) + (3/20) (3V/3x) - (1/252) (30/30). J

Here U, V and W are, respectively, the axial, circumferential
and radial displacements of the middle surface of the shell, r its radius,
and k = (1/12) (t/r)zg v is Poisson's ratio and t is the thickness of the

shell (Figure 1),

The appropriate set of stress-strain relations is given by
N

N
X

e} =9y f = [P] {e} , (3)

B[

- 1 v .
where Nx¢ =5 (N, +N ), M ==(M + M@x) and [P], the elasticity

X

matrix, is given by



D ) 0 0 0
) D 0 0 0
0 0 D(1 - ) 0 0
2
Pl =1, 0 0 K K
0 0 0 VK K
0 0 0 0 0

where the stiffness parameters K and D, for an isotropic elastic material,

are given by

K = Et/12(1 - v2) , D= Et/(1 - v%)

0

0

K(1 =)

2

, (4)

(5)
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2, SHELLS SUBJECTED TO ARBITRARY DISTRIBUTED LOADINGS

A cylindrical shell partially filled with liquid, pressurized

and having a surface of contact with a rectangular rigid support of dimensions

P EIy .
P Zb\i A3 OLIUW

[ anad

{a 1 in Figure 2, The location of the support on the vessel
is arbitrary, with coordinates 5, and (xo, xf) in the circumferential and
axial directions, respectively, The theory developed here for one support
may be applied to shells having two or more supports. Also, the assumption
of a vertical plane of symmetry of the loads through the axis of the shell,

permits the investigation of only half the support(a x b).

These dimensions "a!' and "b" are first subdivided into N1 and

N2 line elements, respectively; and then by assuming two point loads on

the boundary A and B of the support (see Figure 2), N finite elements are
obtained and distributed over the area, a x b, as follows: a) two concentrated
loads of densities q; (Ib or kg), i =1, 2, applied on the points A and B;

b) (N1 + ZNZ) line loads applied on the line elements and of densities q s

(1b/in or kg/m), i =3, 4y oouy 2N2 + N, + 2; and c) N1N2 surface loads

1

) )
of densities q, (1b/in“ or kg/m“) i=2N, + N, +3 to N;  where N is
i ? 2 1

given by

N=N1N2+2N2+N1+2 . (6)

The pressure distribution and the surface of contact between
the rigid support and the shell are represented by the densities qi's where

i = 1’ 2, ..0’ N'



The purpose of this study is to formulate a general procedure
in order to obtain the displacements and the stresses induced by the
q;'s, the fluid, the surcharge pressure, the weight of the vessel and its

i

heads. To do so, the loads and the displacements are first represented

l+nl

v double Fourier series and then inserting these series into the equations

7]

of motion, the coefficients of the Fourier series are obtained for the

displacement components in terms of the load factors P...s P for

@mn ’ Prmn
axial, circumferential and radial directions, respectively, The second step
is to determine these loads factors P s p¢mn and p in terms of the

Knowns qi’s for each particular case.

2.1 Arbitrary loadings

Using the method of Fourier expansions and assuming that, for a

cylinder of length ¢,

( h ¢ N\
Px Pxmn

$ Pr r= 2 T oI 1< Py

=L n=0

PCP p¢mn

\ \ J

and ( 3 ( 5

UP Ymn

pr = ngl 20 (T 0Tpd ¢ Y%m o,
Vp J Von

\ /

(8)

it is possible to obtain, by introducing (7) and (8) into (1), the coefficients

of the Fourier series for the displacement components as follows



e AN
“mn Pxmn
2 oy -
Ym o= r” [A] 1 Pron ¢ , (9)
D I
Vi Peomn
J

where m and n are the axial and circumferential wave number, respectively,

and the matrices [Tn]9 [TmX] and [AF] are shown in Appendix 1.

When the loading can be represented by Fourier series of the

- Torm ¢
Py Pxon
| P (= % (7, ] Pron ( (10)
1=0,2,3,4, ..., ’ '
Pm p¢on
J . )
The displacements can; in general, be assumed to have the fornm
U u
p on
é W = $ [T ] w (11)
p n on 11
ﬁ =0,2,3,4,..., J f ’
¥
p Yon

where the coefficients Uont Yon and Von? for n # 1, may be obtained from
equation (6) by imposing m = 0, The case of loading for which n = 1 in

(10) requires special treatment and will be considered later,

Fiquations (7), (8) and (9) allow the pressures and displacements
to be expressed in terms of the load factors P, D and p ., The
xmn’  Frmn pmn
object now is to determine these load factors corresponding to each parti-

cular case of loading,



2,2 Expressions for load factors correspondiiig to point load, line

load and surface load.

a) Concentrated radial locads.
We assume two concentrated radial forces of intensi

applied at the coordinate (x,q) = (bi + 61), Figure 3,

The load factors corresponding to such forces are as follows

2q. Mﬁb.
Prmoi = N i m=1,2,3,.., (12)
rmol ey Sin ) s PR Rt} ’
and
4 q. m 'rrb.
P = —=2cosn§, sin = n,m=1,2,3 (13)
mni TTrL i ‘c s 44 39T 900y ™
where i =1 and 2. By referring to figure 2 we obtain 61 = 62 = 8
b1 = X, and b2 = Xp o

b) Line loads on two segments along the generator.

Let the segments, on which a constant inward line load 9
1b/in or kg/m) ‘is applied, be contered at (x,q) = (bi + si) and of

| imension 2 Cy along the axial direction, Figure 4,

The coefficients of the series expansion for this loading is

iven by

4 q.
= e sin
prmoi 2

™ rm

mm 02 . m bi
sin

and



8q. mqqg C m b,
. 2 . 1
P = sin ) Cos n 6i sin

c) Bine loads on two segments perpendicular to the generator.

For the cases where the shell is subjected to a line load 9y
(1b/in or kg/m) perpendicular to the generator, figure 5, and of dimension

2r 95 the load factor Prmni is given by

B e R m=1,2,3
pmoi TTL ‘e 3 3E9 s 004y
and
8 . m'rrb.
= sin n cos n §, sin —= n,m=1,2,3
Prmni ) Lal i ) ’ ) 343535000y
vhere b, is equal to x_ and x_ for i = N + 3 to Ny +N, +2, and for
i 0 f 1 1 2

L = N1 + N2 + 3 to N1 + 2N2 + 2, respectively; figure 2.

d) Constant pressure uniformly distributed over two rectangular

areas.

Consider two rectangular areas subjected to a constant
oading 4;, centered at the coordinates (x,¢) = (bi + 6i), and having the
imensions 2C, and 2r ¢, 2along the axial and circumferential directions,

espectively (Figure 6).

The Fourier series expansion of the pressure, Pri» due to the
adial loading, 9y s being given by equation (7), one obtains the following

<pression for the load factor Prmni

10

n,m = 1,2.3,..., (15)

(16)

(17)



= é—?l—gi sin o 02 sin I bi for m=1,2,3
pmoi ) 7 7 P) 34509 0e0uy
T m
and
16 q. maqeqC mmyub,
= L sin n sin 2 cos n §., sin =
Prmni 2 Al ) i £ ’

T Mmn
for m,n=1,2,3,,.,.,

where i = Ny + 2N, +3,..., N;  and N is given by equation (6).

2.3 Pressure corresponding to a partially-filled vessel.

The pressure distribution on a shell partially or completely
filled with stationary liquid is given by

p(x,0) = - yr(cos ¢ - cos ¢,) , for - Py <P S @,

and p(x,q) is equal to zero elsewhere, Here vy (1b/in3 or Kg/m3) is the
specific weight of the fluid and 9, indicates the level of the liquid in

the shell, Figure 7.

The series expansion for the loading shown in figure 7 is given
y equation (10) and its corresponding load factor may be written in the
‘orm

ro = = (yr/m) [sin Po = P COS @],
Pq = = (yr/) (9, - (sin 290/2)1

- [Zyn/(nn(nz—l))] [cos %o Sinn ¢ - n sin R

o)
I

rn

n=2,3,...,

11

(18)

(19)

(20)

(21)
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2.4 Surcharge pressure, weight of vessel and heads.

The heads of the vessel are assumed to be rigid and, consequently,
their effects will be taken into account by prescribing the appropriate

boundary conditions on the shell's edges.

The loading corresponding to a surcharge pressure P, is given by

pI‘ (X,CP) = - pO ) (22)
and the loading due to the weight of the vessel may be written as
P, (x,0) = - Y, t sing ,
(23)

P. (x,¢) = =Y t cos o s

where Yg is the specific weight of the shell and t its thickness.
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3.  DISPIACEMENTS AND STRESS-RESULTANTS

The displacements due to arbitrar& distributed loadings may be
obtained by introducing the coefficients given by equations (12) to (23)
into relations (9). However, equations (9) and (11) cannot be applied to
cases where the loadings are expressed in terms of the form (a cos ) and
(b sin ¢); this is due to the fact that expressions in d cos ¢ and g sin ¢,
for the radial displacement W, correspond to rigid body motion of the shell
and therefore, they do not represent the true displacement caused by
loadings expressed in terms of the same form. In order to avoid this
difficulty, it was necessary to either expand the constant “at', and "b" in
a Fourier sine series of the form Y Dn sin'(m'n x/z) and thus to léngthen
the numerical computations, or to obtain a particular solution using shells!'
membrane theory. It was decided to use the latter alternative, for these
particular case since such solution which is easily obtainable describes
adequately the behavior of a cylindrical shell closed by stiff heads.
Such special cases occur when m =0 and n = 1, e.g., for the weight of
the shell and for the terms, m = 0 and n = 1, of the fluid pressure. In
a1l other cases, where (m = 0, n=k 1) and nﬁ#QO, the exact solution, developed
in previous sections, was used with bending resistance under arbitrary loads

to determine the corresponding displacements and stresses.

- - T
The stress-resultant vector, {o} = {Nx, N¢’ Nx¢’ Mx’M¢ Mx¢
‘or different loadings is obtained by substituting the corresponding

isplacement relations into equation (2) and thence into equation (3).



14

a) Surcharge pressure

for the case n = 0;

and

b)

{o}

po

pPo

The surcharge pressure P, induces displacements and stresses

accordingly, we may write

1 p, r x (1 - 2v)/2E¢
2
P, T (1 - 0.5v)/Et
= 4 ’ (24)
0 ,
0
\ /
T
= {po I‘/Z, Po r, 0, O, 0, 0} . (25)

Weight of the shell

By considering that the weight of the shell induces motions in

the first circumferential wavenumber, n = 1, we obtain

’

and

\

’

Y 3 3 2
_S £ 4x 6x rs 1 x
~E [12r(£3" Jﬁz*‘l)*‘zi (1-4v) (3 =301 cos ¢
Y 4 4 3 2
S -4 X 2x X 2 v r
T T3 G -5+ + (ux?) (2.125+3) +5(4-v)] cos ¢

122 g4 2 ,(26)

A 4x3 6x2
[ (

3 -3t 1)+(8-2x) (2.125 + 3)] cos ¢
12r £ £

£4 x4 2x3 X 2
[———-—(-Z -5+ Z) + (x4 - x%) (2.125 + 1.5v)] sin ¢
12r™ g )




{c}

Yt T €08 9

i

N

P, -2 vt (0.5 4-x) sin ©

2
- Y [(Lz/r) (’—;—i—%) --2 1 cos ¢

)

/

15

where 4, r, t and Yg are, respectively, the length, mean radius, thickness

and specific weight of the shell;

modulus,

c)

Fluid pressure

v is Poisson's ration,

and E is Young's

Upon substituting relations (21) into equations ((9), (11)) and

‘thence into equations (3) we obtain the following expressions for the

displacements and the stress-resultants of the shell:

4 N\

and

(el

4 U N\ 7/ U W
\ W
? < >
W/ 3x +  |oW/ax +
A \'
L /pf(n‘—'"o) L Pf(n"‘l)

[r,]

u
on

w
on

v
on

(27)
, (28)
,  (29)
(
JPe
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where
¢ 3 ’
U - (a0 r x/2Et) (1 - 2v)
W - (ao rz/Et) (1 - 0.5v) , (30)
< > < S
W/ 3 0
v 0
\ / pf(n::O) \ /
4 N /
3 3 2 :
L (4 ox re 1 x
U (al/Et) Ky ( 3 - 2 +1) + 4(1—4\))(2 - z)] cos
4 4 3 2
W ~(ay/Bt) (25 (57 - Z5 +5) 41,125 (o x5 (4=0)] cos o
< > < 24r” &0 4
L3 4x3 6x2
W/ 3x ~(a)/Bt) [ (=5 - 5 + 1) +1.125 (4~ 2x)] cos ¢
24r £ £
4 2x3 2
v (e (al/Et) [_&_E (§z - ——3'+ %) + 1,125 (x£= x“)] sin ¢
N pf =1 . 24r° g A
and

T
{O}pf(n=0) {-—aor'/Z, -2 r,0,0,0,0}

4 (X _Xy_r -
{G}Pf(n=1) {ay[57 (22 7) ~7] cosp, -ra
ag and a; are, respecitvely, equal to P 2
matrices [Tn], [Tn] and [Eon] are shown in A

: T
{u _, w , v 1}
on’ "on’ ‘on pf(nZZ)

equations (9),

d) Point, line and surface loads

(32

| T
cos, al(g - x)sing,0,0,0} 4 (33
nd p , of equations (21); the

ppendix 1; and the vector

is determined by substituting relations (21) into

Similarly, the stresses and displacements due to the applied

contentrated loads, line loads and surface 1

may be written as follows

oads (qi, i=1, N), Figure 2,

>
4(31)

)

)



/3

and

where [P], the elasticity matrix, is determined by equation (4);

r) [,

¢ N
vector T f{u .

i=1

@ o]
= 3 r  [v 1[0~ 1]
=0 m=1 n mx
- . T, 0
= F PN
=0 m=1 0 T
n

[r,J,

T

Ly W

mni’ ani} qQ

i

™ e M

e M

mni
Yinni
(m/2) w
Vi
[P [c, ]

mni

<

N7/

™

™

(13), (15), (16), (17) and (19) corresponding, respectively, to

i=1to2, 3 toN

and N, + 2N

1 2

+ 3 to N,

+2, N, +

1 1

3 to N1

into equations (9);

+ N, + 2,

Ny

Figure 2.

+ N2 +3 to N

17

’ (34)
mni
(35)
)
Yini ) i
mni
/qi

the matrices

[Xm] and [Cmn] are given in Appendix 1; aml the

is evaluated by substituting the relations

+ 2N

2 + 2,
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4, CALCUILATIONS AND DISCUSSION

To determine the displacements and stresses of a given cylindrical
shell completely or partially filled with liquid, pressurized and having
a surface of contact with a rigid support, we first specify the location
of the support and its dimensions. The surface of this support is then
subdivided into a sufficient number, N, of line and surface elements each
éf which subjected to a load 9 where i = 1,2,...,N; (sufficiency in this
context is related to the distribution and the densities of the qi's).
Finally, a computer programme, written in Fortran V language for the CDC CYBER 74
“computer, calculates, for given input data, the displacements and stresses
for each particular loading using equations (24)-(35) and determines the totdl
stress and displacements from all loading systems at any point of the

structure.

The necessary input data are the mean radius r, wall thickness t,
length of the vessel £, material and fluid specific weights Yg and v,
respectively; Poisson's ratio v, modulus of elasticity E, surcharge
internal pressure P, densities of the qi's and the angle 9, (rad ) which

represents the level of the liquid in the shell.

This analysis proceeds separately for each circumferential
wavenumber, n, and the total response may then be found by summing over n.
The total number of n required for the computation is reached when the

relative error of each displacement component approaches 10—9.



In order to test the éorrécﬁﬁess of the theory, one typical case
has been calculated. This calculation in?olves the determination of the
‘displacements and stresses of a particular twin saddle supported vessel
which héé been analysed by Wilson and Tooth [7]. The vessel is subjected to
water loading, self weight and interface pressure. The resulting interface
pressure distribution between the saddle and the vessel is shown in Figure 8a
as given by reference [7]. The data for the vessel are as follows:
r =6 ft(1.85m), t =1 in (25.4mm), ¢ = 180 ft (54.9m), E = .29 x 10° 1b/in>
(2039 x 101 kg/m?), v = 0.3, y=0.03611 1b/in> (999.52 kg/m),
Yg = 0.284 lb/in3 (7.8 x 103 kg/m3) and Py, = rad, The location of the
twin saddles on the vessel is shown in Figure 9a. The effect of the closed

ends is taken into account.

The analytical displacements and stresses in [7] were obtained
by application of Flagge's theory and employing double Fourier series proce-
dure. The distribution and magnitﬁde of the interface pressure is assumed
to be (1) the same for both saddles, (2) symmetric with respect to the
generator passing through the center of the saddle arc and (3) constant
across the saddle width, Finally the saddle arc length is subdivided into
a series of equal angular parts each of axial length equal to the width of

the saddle and loaded by a uniform pressure.

The results obtained by the present theory were computed with N, =

1
N, =15 and N = 816 elements, and are compared with those of [7] in

Figure 8-10. As may be seen, the results obtained by this theory are

generally in quite good agreement with those of [7] and, what is more

19

49,

interesting, they are in better agrcement with B.S, 1515. This is particularly



noticeable in the case of the dominant circumferential bending moment M@
as shown in Figure 10b, Detailed discussion of the results obtained and
their significance will not be undertaken here as this has already been

done by Wilson and Tooth [7].

The results for the radial displacement, W, in termsjéf the
saddlets width are shown in Figure 8b. We note that these displacements are
not constant along the width of the saddle for ¢ smaller than the saddle
angle 60, (p = 750), but tend to a uniform value for ¢ higher than 50.
Therefore, our results show an incompatibility regarding the assumption,
“used in [7], that the interface pressure is constant across the saddle

width,.

20
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5. CONCLUSION

In this paper we have presented a theory capable of predicting
the stresses and displacements of a thin cylindrical vessel partially
filled with liquid, pressurized and having a surface of contact with a
rigid support. To this end the support is subdivided into a sufficient
number, N, of line and surface elements in the circumferential and axial
directions, each of which subjected to a load 4y s i=1, 2, ..., N, The
analysis proceeds separately for each circumferential wavenumber, n, and

the total stresses and displacements may then be found by summing over n.

This theory was computarized so that if the dimensions and
material properties of the vessel, and the properties of the saddle, are
given as inputs, the program gives as output the displacements and stresses

at any point of the structure,

Here we limite ourselves to the case where the qi’s are Knowm,
The situation where the interest is the evaluation of the contact area and
the pressure distribution, i.e. the qi's, is the subject of another study,
under preparation, where the theory of this work is applied to derive the
total energy of the system in terms of the qi's. The minimisation of this
energy will permit us to obtain the distribution of pressure over the

contacting regions,



APPENDIX 1

The matrices referred to in the

[Tn] = cos n o 0
0 cos n ¢
0 0 sin n ¢
(Tnd = | cos (mrx/2) 0
sin (mrx/4)
0 0
L
[Tn] = cos n ¢ 0 0
] cos n ¢ 0
0 cos n o
0 0 0
L.
[X 1 = | sin (mx/g) 0
0 sin (mwx/4)
0 0
L.
(T ] = cos (mrx/4) 0
0 sin (mmx/2)
0 0
0 0
-

0
0

sin (mrx/2)

0

cos (mrx/4)

0
0
cos (mmx/4)

0

text are listed as follows.

0

0

sin (mmx/2)
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[E,] = 0 vD/r wnb/r
0 D/r nb/r
-nD(1-v)/2r 0 0
0 anK/'r2 \)nK/r2
0 nzK/r2 nK,/r2
nK(1-v)/4r> 0 0
L | i
[Cmn] = —m'n/.e 0 | 0
0 1/r n/r
-n/r 0 mry/ 2
0 (mr/!,)z 0
0 n2/ v o/r?
n/2r2 (20/r) (n/8)  (3/2r) . (me/2)
- J
Ap (1,1) = v (me/2)? + 0’ (1=y) (1) Ap (2,3) = n(1+%) + (3=y) kr’n (ne/ )
2 4 2
Ay (1,2) = —r(%ﬂ)[v - (;53) Kk n” ] Ap (3,1) =a, (1,3)
Ay (1,3) = =m (%_q) [(1-_3215) + v(1+_3215)] AL (3,2) = A, (2,3)
2
Ay (2,1) =4, (31,2) Ap (3,3) = (1=r® (m/0)” (149K)+ n? (1)
2 4

A (2,2) =1+ Kr4[£§' + (mn/ﬁ)zj

r
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(c)

Figure 1 (a) Definition of the displacements U, V and W,
(b) Stress-resultants and displacements acting upon a
differential elements,

(c) Stress couples and surface loads acting upon a
differential elements.

l Plane of symmetry

[
l
|
I
|
I
l

-
W
™~
nt
"~
P~
ne
N
o

v

Figure 2 Location of the support on the shell.
(N1 and N, are the number of line elements at the boundaries
of the support in x and ¢ directions, respectively; and

N = N1N2 + 2N2 + N1 + 2, 1is the total number of elementsj.



Figure 3 Concentrated radial loads, g, (1b or kg).

[ )
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Figure 4 Line load along a generator, Q- (1b/in or kg/m).
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Figuré 5 Line load perpendicular to the generator, 9 (1b/in or kg/m).



x=0

Figure 6 Distributed loads,

q (lb/in2 or Kg/mz).
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Figure 7
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-\p;

Pressure distribution for a partially-filled shell,

3
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Values of M _ and M¢ at saddle center profile for fluid and

self weight, ——, theoretical results obtained by this

L73.

theory; —--, theoretical results of reference
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