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Abstract 

In this study, the transient evolution of two rising bubbles with different densities is investigated 

numerically using an enhanced version of the VOF model, aiming to establish an state-of-the-art 

benchmark solutions and up-to-date data set for CFD validations. The simulations are performed 

on the staggered grid system where a novel third‐ order accurate monotone convection scheme is 

applied for the discretization of the convection terms in Navier-Stokes and volume fraction 

equations while the semi-iterative PISOC algorithm (a combined version of the classical PISO 

and Chorin’s model) are used to solve the pressure-velocity coupling. To reduce the false 

diffusion errors and mitigate smearing of interface thickness in the regions of physical 

discontinuities, the interface compression technique is also incorporated into the transport 

equation. To further enhance the accuracy of the numerical solutions, the idea of Piecewise 

Linear Interface Calculation (PLIC) based on the ELVIRA technique (Efficient Least-square 

Volume-of-fluid Interface Reconstruction Algorithm) is also utilized for the interface 

reconstruction and accurate implementation of surface tension force. The validity and accuracy 

of the enhanced VOF model is further demonstrated against a series of challenging benchmark 
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cases including draining of liquids from the storage tank (tank draining), single rising bubble, 

three-phase Rayleigh-Taylor Instability and dam-break flows over dry and wet beds. The 

comparison of the obtained results with previously published data vividly demonstrates the 

superiority of the proposed method over the standard VOF/Level-Set models in handling 

multiphase/multi-fluid flow problems with large topological changes. In the last stage, the 

morphology and hydrodynamic characteristics of merging of two rising bubbles with different 

densities and diameters are examined and analyzed in details. The results show that, the 

initial/final deformations and the subsequent steady-state rise of two bubbles are remarkably 

influenced by the diameters of leading (upper) and trailing (lower) bubbles. 

Keywords: Monotone convection scheme; PISOC algorithm; Multiphase flows; VOF model; 

merging of two rising bubbles; 

Nomenclature 

C  Interface compression coefficient  

Fg gravity force 

FST surface tension force 

g Gravitational acceleration, ms-2 

H enclosure height, m 

L Length of the enclosure (m)  

n  interface normal vector 

p pressure, Nm-2 

P dimensionless pressure 

t time (s)  

t* dimensionless time, (
2

t H ) 

u,v velocity components, ms-1  

uR artificial compressive velocity, ms-1 
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Re Reynolds number 

U, V Dimensionless velocity components 

x,y Cartesian coordinates, m 

X, Y Dimensionless Cartesian coordinates  

We Weber number 

Greek symbols 

µ  dynamic viscosity, kg m-1 s-1 

ν kinematic viscosity, m2s-1 

ρ density, kg m-3 

φ Volume fraction of the primary phase (phase 1) 

λ Volume fraction of the secondary phase (phase 2) 

  Volume fraction of the third phase (phase 3) 

k  curvature of interface 

  interfacial tension coefficient, kg s-2 

  stream function(  
Y

Y
YXYU

0

),( 0 ) 

Subscripts 

L Lighter fluid 

H Heavy fluid 

M Middle fluid 

 

1. Introduction 

Multiphase flows where two or more immiscible fluids exist simultaneously in a domain are 

ubiquitous in a wide range of industrial and natural processes including fluidized beds [1,2], 

tsunami propagation [3–5], droplet impact [6,7], sediment transport [8,9], landslides and impulse 

waves [10]. The utilization of numerical methodologies as a promising cost-effective alternatives 

to conventional experimental and theoretical approaches has received a great deal of attention 
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during the last two decades [11]. However, the accurate tracking or capturing of the moving 

interfaces, together with the complex interface dynamics (i.e. coalescence or segregation) and 

discontinuous variations of material properties that frequently characterize such phenomena, 

impose tremendous challenges on numerical modelling [12]. Fundamentally, interface-resolved 

simulations of multiphase flows can be differentiated into two distinct categories according to 

the interface representation namely: (Ⅰ) interface-tracking, and (Ⅱ) interface-capturing methods 

[13,14]. With the former approach, the position of the material discontinuities is explicitly 

determined by a set of mobile particles attached to the interface (Lagrangian markers). Examples 

include Arbitrary-Lagrangian Eulerian (ALE) [15], front-tracking [16] and point-set method 

[17]. However, these models are computationally expensive and needs regular particle 

rearrangement (or re-meshing) especially when the interface is stretched or compressed [18]. 

Methods that fall in the second class are the Level-Set, (LS) [19] and the Volume-Of-Fluid 

(VOF) [20] in which an auxiliary scalar partial differential equation (PDE) is implicitly solved to 

represent the interface profile. Given the pros and cons of both methods, LS and VOF have been 

extensively applied to a broad range of engineering problems such as atomization and 

solidification [18,21], dam failure [22–24] and bubble rising [25,26]. However, the results of the 

Gibou et al. [27] showed that, although LS model can accurately compute the geometrical 

quantities of the interface (i.e. interface normal and curvature) using a smooth implicit Heaviside 

function, this model is typically plagued by mass conservation issues which in turn leads to a 

substantial loss of accuracy. On the other hand, Yin et al. [28] and Marić et al. [29] conducted 

comprehensive reviews on the last application of the Volume-Of-Fluid model and concluded 

that, although VOF model can intrinsically guarantee discrete mass conservation and is relatively 

simple to implement in practice, this model is characterized by some crucial drawbacks such as: 
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(1) unphysical growth of interface thickness arising from false-diffusion errors [30,31], (2) 

inaccuracy in estimating interface curvature [32,33], (3) unphysical pressure/velocity 

fluctuations around the material discontinuity [34,35] which can immensely jeopardize the 

reliability and consistency of the numerical solutions and render nonphysical flow physics, 

accordingly. During last decades, substantial research efforts have been devoted to address the 

aforementioned shortcomings. 

Inspired by work of Boris and Book [36], in a pioneering works, Harten [37] and Leonard [38] 

introduced the notion of High resolution non-oscillatory differencing schemes to address the 

problem of interface smearing and suppress detrimental effects of numerical diffusion. They 

proposed two novel second-order bounded convection schemes so-called TVNI and SHARP 

based on the TVD (Total Variation Diminishing) [39] and NVD (Normalized Variable  

Diagram), and found that, monotone difference schemes can offer better iterative convergence 

properties in comparison with the classical unbounded oscillatory ones such as second-order 

Upwind (LUD), Central Differencing (CD), QUICK and Fromm [40], when applied to the 

implicit solution methods. Moreover, they pointed out that, the implementation of the hybrid 

non-linear flux-limiter schemes exhibit better resolution of steep gradients and discontinuities 

but at the expense of a higher computational cost due to the switching between different flux-

limiter schemes especially when the interface orientation is tangential to the flow direction. 

Similar findings were also reported by Zhang et al. [31] who conducted a comprehensive 

literature survey on the various TVD schemes and highlighted that gradually-switching smooth 

flux-limiters can lead to the better convergence behavior compared to the piecewise linear limiter 

functions. From then on, various conservative differencing schemes were constructed by using 

the unique relationship between NVD and TVD constraints. Examples include SOUCUP [41], 
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MINMOD [37], SMART [42], TOPUS [43], HLPA [44], GAMMA [45], Van Leer [46], 

SMARTER and LPPA [30]. However, the results of Ubbink et al. [47] revealed that, the global 

order of these schemes are restricted to the second-order in any case. In addition to that, they are 

derived based on one-dimensional assumption which can hinder their further applications in 

multi-dimensional problems. To overcome this issue, they proposed a blended control-volume 

flux-limiter formulation named as “CICSAM” based on the Normalised Variable Diagram which 

switches smoothly between two high resolution schemes namely Hyper-C and Ultimate-Quickest 

(UQ). They claimed that, CICSAM is capable of preserving the integrity of the interface while 

reducing the diffusion errors. However, in the same context, Malgarinos et al. [48], Nguyen et al. 

[49], Wacławczyk et al. [50] questioned the capability of CICSAM scheme in handling large 

topological changes and stressed that the CICSAM scheme cannot satisfactory recover interface 

sharpness and is also prone to numerical smearing due to its inherent low order of accuracy. In 

order to mitigate the adverse effects of numerical diffusion and to cope with heterogeneity in 

physical properties, Garoosi et al. [51] proposed a novel third-order accurate flux-limiter 

function which guarantees boundedness condition while maintaining interface shape. They 

evaluated and tested the feasibility and accuracy of their scheme against a set of canonical test 

cases and showed that, the newly developed TVD function can successfully meet the 

completeness requirements for convective stability, convergence criteria, monotonicity and 

algorithmic simplicity. However, further assessment of performance and outcome is required 

prior to implementing/extending it to some intricate multi-fluid problems. 

Referring to the second drawback related to the VOF model, Pozzetti et al. [52], Dianat et al. 

[53] and Zhang et al. [54] suggested the use of PIMPLE algorithm (PISO-SIMPLE algorithm 

available in OpenFOAM® platform) to circumvent the problem of velocity/pressure jump across 
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the interface. However, since an additional iterative SIMPLE algorithm is incorporated into the 

standard PISO loop, this pressure-based solver seems not to be computationally efficient 

particularly when it will be extended to the three-dimensional real-life problems with large scale 

[55]. To remedy this deficiency, Garoosi et al. [51] proposed a novel hybrid semi-iterative 

PISOC algorithm by the combination of the classical PISO [56] and Two-step projection [57] 

models. Their results showed that, PISOC algorithm can appreciably remove the spurious 

pressure/velocity oscillations from fluid domain with affordable computational cost. 

Finally, as stated before, the third challenge faced by VOF model is to determine the exact value 

of interface normal/curvature for the accurate enforcement of surface tension force. To tackle 

this problem, Youngs [58,59] introduced the first-order accurate interface reconstruction 

technique in the context of the PLIC concept and then successfully utilized for modelling of 

Rayleigh-Taylor Instability problem. However, despite its many uses and applications in both 

commercial and open source CFD softwares, the analytical investigation of Pilliod et al. [33] 

revealed that, Youngs’ method cannot exactly reproduce all linear interface and is prone to 

fragment a smooth front. As an alternative approach, he proposed the ELVIRA technique for the 

reconstruction of interface and demonstrated that the method is second-order accurate on smooth 

interfaces. This technique was then coded and adopted by Garoosi et al. [51] for numerical 

investigation of multiphase flows with moving interfaces. 

The above literature review clearly demonstrate that, the previous work of Garoosi et al. [51] 

systematically addressed three crucial shortcomings related to the interface-capturing VOF 

model. However, these improvements still need further verifications before being generalized to 

multi-fluid flows with high density contrast and surfactant. Based on the above explanation, the 

purpose of the present work is twofold: (1) to demonstrate the versatility of the enhanced VOF 
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model in handling two- and three-phase flows, and (2) to introduce two novel benchmark 

problems for CFD validation. To accomplished this objectives, in the first stage of the current 

work, the validity and accuracy of the enhanced VOF model is further tested against the 

additional canonical test cases including draining of liquids from the storage tank (tank draining), 

single rising bubble, three-phase Rayleigh-Taylor Instability and dam-break flows over dry and 

wet beds. In the second stage, the verified VOF model will be employed to investigate two new 

challenging cases namely: merging of two rising bubbles with different densities and diameters, 

aiming to provide the state-of-the-art benchmark solutions and up-to-date data set for CFD 

validations. To the best of authors’ knowledge, such challenging benchmark problems have not 

been reported in the literature. The simulated results are presented in forms of volume fraction 

and pressure contours and related interface profile. 

2. Problem statement and governing equations 

The geometrical configurations of physical models with associated boundary conditions are 

portrayed in Fig. 1. In the present work, the first six canonical problems (cases 1-6) are chosen to 

further verify the capability and versatility of the improved version of VOF model in dealing 

with the multi-fluid flow problems with low and high density contrasts whereas cases 7 and 8 as 

two new benchmark problems will be analyzed in details. The numerical analyses were carried 

out using FORTRAN 90 programming language where the Intel® Visual FORTRAN Compiler 

19.0 was used for the compilation of the developed code. The governing equations (i.e. mass, 

momentum and volume fraction) for the Newtonian, laminar and incompressible multiphase 

flows in the Eulerian description can be written as follows [47,60]: 

0,
u v

t x y
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[ ( ) ( )]m m m
m m ST

u uu vu p u u
F

t x y x x x y y

           
      

       
 (2) 

[ ( ) ( )]m m m
m m m ST

v uv vv p v v
g F

t x y y x x y y

            
       

       
 (3) 

( (1 ) ) 0R

u v

t x y

      
    

  
u  (4) 

( (1 ) ) 0R

u v

t x y

      
    

  
u  (5) 

1   or 1      (6) 

where u, v, g, p and t denote the velocity components in 2D Cartesian coordinate system, gravity 

acceleration, pressure and time, respectively. m and m are density and dynamic viscosity of the 

mixture which can be calculated through the φ-, λ- and  -weighted average of phases in each 

computational cell as [61]: 

1 2(1 )m        (7) 

1 2(1 )m        (8) 

1 2 3(1 )m            (9) 

1 2 3(1 )m            (10) 

In the above formulations, Eqs. (7)-(8) are adopted for the approximation of the density and 

viscosity of two-fluid flow problems whereas Eqs. (9) and (10) are used to predict the fluid 

properties in the three-phase problems with subscripts 1, 2 and 3 being reference fluid-

components. The last term FST in Eqs. (2) and (3) stands for the surface tension force which is 

approximated based on the Continuum Surface Force (CSF) model proposed by Brackbill et al. 

[62] as:  

STF k    (11) 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Page | 10  

 

where denotes the surface tension coefficient between two phases and k represents the 

curvature of interface defined as [28]: 

( )k




   


n  (12) 

,
n

n
n

  n  (13) 

where n  indicates the interface unit normal vector which is pointing away from the interface. 

The third terms ( ( (1 ) )R   u  and ( (1 ) )R   u ) in the transport equations (i.e. Eqs. (4) and 

(5)) are known as the Artificial Compression Term (ACT) [63–65] which are non-zero in the 

close proximity of interface region owing to the existence of (1 )   and (1 )   terms. Note 

that, the additional ACT term has a tendency to preserve the interface sharpness especially when 

the flow is tangential to the interface. Ru  is the compressive velocity which act perpendicular to 

the fluid interface and may be estimated based on maximum velocity magnitude as follows 

[66,67]: 

R C u C u 




 


u n  (14) 

The coefficient 0.5C   is  the  compression  factor  which controls the strength of interface 

compression and ranges from 1 to 2 dependent on the grid resolution [68–70].  

3. Numerical methodology 

The system of governing partial differential equations (Eqs. 1-5) are solved using finite volume 

method (FVM) on a staggered grid arrangement where no interpolation is required to estimate 

velocity components at the scalar cell faces which in turn results in the proper velocity-pressure 

coupling and total elimination of unphysical checkerboard pressure fluctuations [71]. Structured 
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uniform mesh in X and Y-directions are utilized for all computations and the transient terms in 

the momentum and transport equations are treated implicitly using a second-order backward 

differencing scheme [72]. The diffusion terms in the Navier-Stokes equation is approximated by 

the second-order central differencing scheme while a third-order TVD upwinding scheme 

proposed by Garoosi et al. [51] is utilized for the discretisation of the convection terms in 

momentum and volume fraction equations. In order to enforce the conservation of mass in 

unsteady incompressible multiphase flows, the semi-iterative version of the improved PISO 

algorithm is applied for the treatment of the pressure-velocity coupling where two classical PISO 

[56] and Two-step projection (Chorin’s model [57]) approaches are merged in the single hybrid 

algorithm (labelled hereafter as PISOC). Details regarding the solution procedure and derivation 

of the PISOC algorithm can be found in previous work of Garoosi et al. [51] (see also Appendix 

A) . To further enhance the stability and consistency of the numerical solutions, the second-order 

interface reconstruction technique (ELVIRA) pioneered by Pilliod et al. [33] is implemented for 

the estimation of the interface curvature and the enforcement of the surface tension force, 

accordingly. 

4. Validation and verification 

To verify the feasibility and robustness of the proposed VOF model in handling multiphase flows 

with sever interface deformation and fragmentation, six different challenging benchmark test 

cases are numerically reproduced in this section. The first, second and third canonical test cases 

are classical dam-break flows (cases 1 and 2) and tank draining (case 3) where owing to sudden 

collapse of liquid column and high density contrast between phases (water-air fluids), the 

hydrodynamic/hydraulic behavior of the free-surface flow is characterized by series of interface 

rupture and coalescence events. The fourth and fifth benchmark examples are three-phase 
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Rayleigh-Taylor Instability problems (case 4 and 5) where due to the low density ratio between 

phases and the appearance of Kelvin-Helmholtz instability within the computational domain, the 

fluid interface is likely to undergo sever distortion including twisting, flattening or even 

filamentation. The last benchmark problem (case 6) involves the study of classical bubble rising 

with high density and viscosity ratios where due to the existence of the surface tension force and 

development of the wake region, the phenomenon so-called bubble detachment with associated 

interface filamentation are likely to occur within the fluid domain. The obtained results are 

presented in separate subsections and discussed in details. 

4.1.Dam-break flow over dry and wet beds (cases 1 & 2) 

Transient evolution and hydrodynamic characteristics of dam-break flow over a horizontal dry 

and wet bed are analyzed in this subsection. As sketched in Fig. 1, the calculations in the first 

benchmark problem (case 1) are carried out in a prismatic rectangular flume with dimensional 

size of 1.4D m and 1.61L m where the water column ( 29.81g ms
 , 3997kgm  ,

16 1855 10 kg m s    ) with initial width and depth of 0.6W H m  is stored on the left side 

of the reservoir. The rest of the enclosure is occupied by air (

7 1 131.0 , 184  10 kgm g m sk       ) as a secondary phase and the effects of surface tension 

force ( 20.071 Kgs  ) are taken into consideration. The simulation is performed on the 

uniform grid resolution of 500 435 (in x- and y-directions) and the initial zero values are 

assigned for pressure and velocity across the whole channel (
10, 0p u v ms
   ). The time 

histories of the water level height are monitored at three different sites ( 1 0.3l m , 2 1.114l m

and 3 1.362l m ) and pressure variations are recorded by two sensors installed on the 
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downstream wall ( 1 0.03Rh m and 2 0.08Rh m ). No-slip impermeable wall boundary conditions 

are imposed on all stationary walls and obtained results in terms of volume fraction and pressure 

contours are displayed in Fig. 2. The predicted results reveal that once the virtual lifting gate is 

removed, the standing water column descends downward under the gravity force and is promptly 

replaced by traveling wave, indicating the rapid conversion of the potential energy of the system 

into the kinetic one. As time progresses ( 0 1.61T  ), the flooding wave freely propagates over 

the initially dry bed and elongates horizontally until it encounters the boundary layer of 

downstream wall approximately at time 1.61T  where the first impact pressure and wave 

deflection occur ( max1, 1 2.29RP  , max1, 2 1.44RP  ). However, since the right wall is rigid and 

impermeable, the resultant impact wave starts to deviate upward and moves vertically along the 

rigid wall, leading to the formation of the ascending jet in that area. It is worth mentioning that, 

this stage is also accompanied by the emergence of semi-hydrostatic pressure distribution and 

stagnation point (or fluid trapping phenomenon) on the bottom-right corner of the flume which 

manifest themselves through an asymptotic reduction in the values of pressure load during the 

time period of 1.61 4.15T   (see also Fig. 3). As time proceeds, the intense upwelling jet 

grows in size and amplitude until the tip of the liquid jet reaches its maximum elevation at 

2.0Y y H   and 3.2T   which is approximately twice the initial water level height at dam 

site. Similar finding was observed and documented by Colagrossi et al. [73] who numerically 

investigated the same benchmark problem but with different initial water depth. Later, due to 

restoring action of the gravity force, the up-rushing liquid jet is eventually flipped down and 

decelerated, leading to the creation of reverse plunging wave breaker with maximum wave crest 

height of 0.97Y y H  which is nearly equals to the initial water level height at upstream 

region (compare two snapshots of the volume fraction contours at  time instants of 0.638T  and 
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4.707T  ). In addition, a close inspection of the pressure contours in Fig. 2 illustrates that 

during this period of evolution, the quasi-hydrostatic pressure zone expands to occupy larger part 

of the rolling wave which indicates that the main flow is primarily governed by transverse inertia 

force in x-direction. This phenomenon corresponds to the progressive augmentation in time 

histories of pressure variations during the period of 4.15 5.05T   (see also Fig. 3). Ultimately, 

the backward plunging breaker collapses obliquely onto the advancing water surface below and 

penetrates it, producing an egg-shaped air cushion structure and the second peak pressure (

max 2, 1 1.18RP  , max 2, 2 1.09RP  ) at 5.05T  . The position of shock pressure is also visible around 

the collapse site (see snapshot of the pressure contours at 5.026T  ) which presumable results 

from the immersion of reflected jet. However, as mentioned before, the impact of the plunging 

wave on the wetted bed generates a new surge with moderate celerity which spurts from the free-

surface of incoming dam-break wave and travels obliquely towards the upstream area, resulting 

in a strong air-water flow interaction with associated gas entrapment.  

Comparison of the obtained results with experimental and numerical data of Lobovský et al. [74] 

and Sun et al. [75] are plotted in Fig. 3. The overall examination of the figure shows that, the 

snapshots of the free-surface profile at three different time instants together with the non-

dimensional pressure variations predicted from the current work are in a satisfactory agreement 

with previously published data. Moreover, it is evident that the proposed model can effectively 

preserve the integrity and sharpness of the interface especially during the occurrence of the 

plunging breaker when flow-to-grid skewness is substantial. Thanks to the hybrid PISOC 

algorithm, the pressure field is totally free from the spurious fluctuations, which in turn confirms 

superiority of the proposed semi-iterative pressure-based model over the classical PISO and 

Two-step projection (Chorin’s model) approaches in dealing with the highly non-linear 
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incompressible fluid flows. Finally, it is worthwhile to mention that, the time histories of non-

dimensional surge front location (Xfront) and water column height at three different sections are 

presented in Fig. 3 as additional information which have not been reported in the literature. 

The problem of dam break flow over the initially wet bed is considered and reproduced here as a 

second test case (case 2). This small-scale laboratory experiment was originally conducted by 

Jánosi et al. [76] and then numerically reproduced by Jonsson et al. [77], Ye et al. [78], Crespo et 

al. [79] and Gu et al. [80]. The configuration of the prototype experiment is sketched in Fig. 1.  

As it can be observed, the simulation is carried out in a prismatic rectangular duct with 

dimensional size of 0.3D m and 1.2L m where the rectangular water column ( 29.81g ms
 ,

3997kgm  , 16 1855 10 kg m s    ) with width and depth of 0.38W m  and 0.15H m is 

connected to the downstream wet bed with initial water level height of 0.018B m . The rest of 

the channel is filled by air ( 17 13  1 , 184 10 k mkgm g s       ) as a secondary phase and the 

effects of surface tension force ( 20.071 Kgs  ) are taken into account. The simulation is 

performed on the uniform grid resolution of 480 120 (in x- and y-directions) and the initial zero 

values are assigned for pressure and velocity fields ( 10, 0p u v ms
   ). The time variations of 

the free-surface profile are recorded at three different sections ( 1 0.1l m , 2 0.5l m and 3 0.9l m

) and dynamic pressure variations on the bottom wall are monitored by three virtual sensors 

deployed at 1 0.1l m , 2 0.7l m and 3 1.0l m . No-slip impermeable wall boundary conditions 

are imposed on all rigid walls and predicted results in forms of volume fraction and pressure 

fields are portrayed in Figs. 4 and 5. Generally, although the global hydrodynamic and 

morphologic behavior of dam failure processes over the dry and wet beds are relatively identical, 

there are substantial differences when they come to hydraulic jump and plunging jet formations 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Page | 16  

 

[81]. It is evident from Fig. 4 that, contrary to the previous benchmark problem, owing to the 

head water differences between the falling water and downstream wet deck, the shock wave in 

form of weak ascending jet is immediately appeared at the junction of the upstream and the 

downstream areas and projected obliquely over the underlying wet bed as its kinetic energy 

increases. As time goes on, the front face of the stress wave steepens and becomes gradually 

horizontal. In these circumstances, due to the influence of the gravity force, the vertical celerity 

of the advancing wave decreases and consequently the resultant plunging breaking jet starts to 

fall down and hits the undisturbed water surface at T=2.205 and 0.69x m , leading to the 

emergence of the entrapped cavity (air tube) with a visibly large radius of curvature. This 

phenomenon corresponds to the rapid augmentation in the pressure time history ( max1, 2 0.326lP  ) 

recorded by sensor 2 installed at 2 0.7l m  (see also Fig. 5). However, the remaining portion of 

the kinetic energy of the system causes the overturning jet to rebound from the wet bed as a new 

ascending wave and travels downstream. As expected, this mechanism results in the creation of   

the second large air-cushion structure at T=3.52 and 0.985x m  with pronounced 

concentrations of vorticity. A third plunging action can also been observed during the time 

period of 3.528 4.491T   but at a much smaller scale. The comparison of the obtained results 

with previous works of Jánosi et al. [76] and Gu et al. [80] in Fig. 5 shows that, there is an 

excellent agreement between outcomes of the current study and published experimental data. 

However, as anticipated, it is evident that, the conventional VOF-LS model fails to predict the 

main features of the process which can be attributed to two aforementioned shortcomings 

associated with interface-capturing methods. On the other hand, the zoomed-in views of the 

interface in Fig. 5 reveal that, the proposed VOF model successfully alleviates the detrimental 

effects of numerical diffusion, thereby preserving the sharpness of the interface. Thanks to the 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Page | 17  

 

proposed TVD convection scheme, the thickness of the interface is efficiently controlled and 

limited to the 2-3 grid spacing and morphological changes of the dynamic process are well 

reproduced. Finally, similar to the previous test case, the time histories of the water level height 

and pressure variations at three different sections/points are presented in Fig. 5 which have not 

been reported in published literature. 

4.2.Tank draining problem (case 3) 

The temporal evolution and hydraulic characteristics of liquid draining from a vessel is examined 

in this subsection. The initial configuration of the system is similar to numerical work of 

Ghadampour et al. [82] where a quiescent column of water ( 29.81g ms
 , 3997kgm  ,

16 1855 10 kg m s    ) with width and height of 0.15W H m   is initially confined in the left 

side of the square reservoir with physical dimension of  0.35L D m  . Similar to the previous 

test case, the rest of the reservoir is filled with air ( 17 13  1 , 184 10 k mkgm g s       ) and the 

effects of the surface tension force ( 20.071 Kgs  ) are taken into account. The simulation is 

performed on uniform grid size of 0.001x y m    (352 352 mesh resolution) and no-slip 

boundary condition of zero velocity is imposed on all rigid walls. In order to induce the 

discharging process of water storage tank (partial breach dam-break flow), the stationary rigid 

wall and drain port with dimensions of 0.58 0.203R L m  and 0.1 0.035S L m   are installed 

at a distance of 0.15x m from the upstream boundary wall. Qualitatively, topological 

characteristics and hydrodynamic peculiarities of the tank draining are analogous to the former 

benchmark problem where conversion of potential energy into kinetic one occurs immediately 

once the sluice gate is opened. It is evident from Fig. 6 that, after the removal of the submerged 

gate, the stored water starts flowing through the breach and progressively spread over the flume 
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bed until the flood wave impacts the opposite wall. During this process, the water level height at 

the storage site gradually decreases which implies that the fluid flow in upstream of a vertical 

sluice gate is subcritical. On the other hand, the appearance of a hydraulic jump at 

0.485 1.536T   conveys that the fluid flow in the downstream is supercritical and the 

discharge may be determined by the upstream water depth and the gate opening [83]. However, 

after the impingement of the wave front onto the right wall, the surge wave changes its direction 

and propagates vertically until the wave crest reaches the its maximum position ( 2.0Y y H  ) 

at 3.153T  . As anticipated, this mechanism leads to the development of the pressure shock 

region (
max1 1.67P m ) on the bottom-right corner of the enclosure at 1.21T  which is 

monitored by sensors 1 deployed on the right wall (
1 0.0Rh m , see also Fig. 7). As time goes 

on, due to the retarding effects of gravity force, the newly generated sharp-crested wave (jet-like 

structure) starts to evolve into the plunging breaker which ultimately hits and immerses into the 

oncoming water discharge, leading to the establishment of an egg-shaped air cushion structure 

and second impact pressure ( max, 1 1.420RP  , max, 2 1.056RP   and max, 3 0.491RP  ) at 4.528T  . 

From the spatial anatomy of the stress wave at 4.528T   one can deduce that, due to the 

backward movement of the impinging jet and forward momentum of the water discharge, a 

clockwise rotating eddy may be developed within the air pocket. This flow pattern was originally 

termed "plunging vortex" by Basco [84] in the context of wave breaking. Another key feature of 

this interaction is the axial meeting of these two water masses which leads to the strong impulse 

wave and large pressure gradients on the flume floor at 0.24x m  (see pressure contour at

4.528T  ). Note that, from the hydraulics point of the view, the impingement zone of a 

plunging jet is referred to as the submerged hydraulic jump region where mechanic energy 

(kinetic energy) of the slanting jet is irreversibly dissipated into the pressure shock [85]. 
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Nevertheless, the residual or small excess momentum of the system with the aid of advancing 

plunging vortex cause the submerged jet to rebound from the underlying wetted bed and migrates 

towards the sluice gate where due to the integrated interaction of pseudo-plunging breaker and 

rigid gate, the third impact pressure and second air entrapment (air cavity structure) take place.  

Qualitative comparison of the obtained results with numerical work of Ghadampour et al. [82] in 

Fig. 7 shows that, the early stage of the tank draining process is well predicted by the enhanced 

VOF model. As can be seen from the results, the thickness and sharpness of the interface are 

well controlled and preserved during the simulation which vividly proves the capability of the 

proposed modifications in capturing steep gradients and retaining the boundedness of the volume 

fraction between 0 1  . Furthermore, it is evident that, the pressure field is satisfactory 

smoothed and the propagation of numerical diffusion arising from flow-to-grid skewness is 

effectively attenuated by the proposed third-order bounded TVD convection scheme. However, 

due to lack of essential information concerning tank draining problem in Ref [82], the pressure 

time history at three different marked points on the right (
Rih ) and left (

Lih ) walls of the 

enclosure together with the time histories of wave front location ( frontX ) and water level heights 

at two different sections (
1 0.06l m  and 

2 0.26l m ) are provided as supplementary data on 

present problem which may be utilized by scholars for assessment and validation of various CFD 

tools. However, before ending this section, it should be noted that, the small peak in the time 

histories of pressure variations recorded by sensors 
1 0.0Lh m , 

2 0.05Lh m 3 0.1Lh m  on the 

left wall can be attributed to the assigning initial zero pressure instead of imposing pre-known 

hydrostatic pressure value (
InitialP gH ). This statement implies that, the pressure field is 

progressively determined through the PISOC algorithm during the simulation. 
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4.3.Three-phase Rayleigh-Taylor Instability (cases 4 and 5) 

The initial growth and tortuous evolution of three-phase Rayleigh-Taylor Instability problem is 

investigated in this subsection. The benchmark test cases were originally introduced by Garoosi 

et al. [86] in the context of the Lagrangian description by means of the Moving Particle Semi-

implicit (MPS) method. As sketched in Fig. 1, three immiscible incompressible viscous fluids 

with nominal densities of 4.0H  , 2.0M   and 1.0L   are sequentially positioned at the 

top, middle, and bottom parts of the enclosure, respectively. All fluids have identical kinematic 

viscosities ( 0.01H H H     ). The simulations are conducted in the computational domain 

with size of    0, 0,3H H where 1H m denotes the width of the enclosure. The initial 

positions of interfaces between each pair of the fluids in configuration of case 4 are set to 

1 1.0 0.1 cos(2 )y x    and 2 2.0 0.1 cos(2 )y x    whereas the interfaces in case 5 are 

initialized as 1 1.0 0.1 cos(2 )y x    and 2 2.0 0.1 cos(2 )y x   , respectively. The instability 

in both cases is governed by non-dimensional Reynolds and Atwood numbers equal to

Re 420H HH gH   and ( ) ( ) 3 5H L H LAt        , respectively. The mesh 

resolution of 300 900 is chosen for both cases and the effects of surface tension force are 

neglected. However, contrary to the previous test case, since three distinct fluids are engaged in 

cases 4 and 5, Eqs. (4) and (5) are utilized to calculate the volume fractions of dense ( ) and 

middle ( ) fluids, respectively while the formula ( 1     ) in Eq. (6) is employed to 

estimate the volume fraction of the lighter fluid. Figs. 8 and 9 exhibit the time evolution of the 

density contours in cases 4 and 5. As displayed in Fig. 8, in the early stages of the RTI 

development, the heavy fluid ( H ) on top in case 4 starts to penetrate into the less-dense phase (

M ), meanwhile the middle fluid rises up from the sides of the enclosure in the form of plume-
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like structure. However, since both interfaces in case 4 are perturbed in the same directions, this 

course of the event also occurs between middle ( M ) and lighter ( L ) fluids. Hence, two pairs 

of bubble-spike structures with associated vortex sheets are established within the enclosure. 

Scrutiny of the figure illustrates that, during the early stages of the evolution ( 0 1.575T  ), the 

harmonic growth of the fluid interfaces remains symmetrical with respect to the center of the 

enclosure which indicates that the instability still follows the linear theory [87]. However, as 

expected after a finite time, due to the low density disparity between phases, the main flow 

becomes unstable to the Kelvin-Helmholtz shear instability which causes the initial disturbance 

to lose its symmetry feature and enter the weakly nonlinear mode (1.575 2.520T  ) [88]. As 

time goes on, the formation of the spikes gets more prominent and intensity of the Kelvin’s 

circulation increases. This intermediate stage of the development ( 2.520 3.150T  ) is also 

accompanied by the broadening of vortex shedding in the wake of spike which manifest itself 

through inward folding of the interface. As the instability grows further (3.150 4.095T  ), the 

rising wings of the lighter fluid start to embrace the falling spike of the denser fluid, resulting in 

the appearance of the tulip-shaped structure (or harpoon-like pattern). In this circumstance, the 

tails of the roll-ups evolve into the complicated pattern and consequently the fluid flow enters the 

fully non-linear regime where the corresponding contraction of the dense fluid alters the pattern 

into the needle-shaped spike. The surrounded spike keeps moving downward until it reaches the 

boundary layer of the bottom wall, giving rise to the substantial and sharp distortion of the 

interface with pronounced concentrations of vorticity. Inspection of the results in Fig. 8 also 

reveals that, the total displacement of the advanced bubble (lighter fluid) is considerably lower 

than that of the falling fluid. This finding may be attributed to the existence of some secondary 

eddies near the tips of the needle-shaped spike and due to the long horizontal distance between 
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the primary spike and vertical walls of the container where no-slip velocity boundary condition is 

imposed. 

However, Fig. 9 illustrates that by altering the direction of the upper cosinusoidal perturbation 

from 2 2.0 0.1 cos(2 )y x    to 2 2.0 0.1 cos(2 )y x   , a different scenario appears within 

the container. It is evident that, since the interfaces in case 5 are disturbed in the opposite 

directions, at the early stages of the evolution ( 0 2.520T  ), the middle fluid starts to penetrate 

simultaneously into the adjacent heavy and lighter fluids whereas the edges of the disturbed 

interfaces move radially towards the central zone of the enclosure to fulfill the need for the mass 

conservation. As the current progresses further ( 2.520 3.570T  ), the flow resistance of the 

lighter and denser fluids becomes important which causes the sides of the medium phase to roll-

up and amalgamate into the unsteady swirling flow (vortex shedding). As stated before, this flow 

pattern is commonly cited as the onset of the Kelvin-Helmholtz Instability (KHI), which denotes 

the presence of the shear force in the rear of the spikes. As the simulation time proceeds (

3.570 5.250T  ), the motion of the tips of a spikes slows down and interfaces undergo 

significant deformation. It can be seen from Fig. 9 that, during this process, the rising sheet 

plumes (lighter fluid, L ) start to bifurcate and cover the falling dense fluid ( H ), forming a 

heart-like structure within the enclosure. In fact, the creation of the heart-like structure (Pitchfork 

bifurcation phenomenon [89]) and its expansion/broadening in the x-direction at the central 

portion of the fluid domain, are the signs of the fluid entrapment phenomenon and development 

of the quasi stagnation point which causes the falling liquid to get stuck in that region. 

Qualitative and quantitative comparison in Fig. 10 demonstrate excellent agreement between the 

results of the present Eulerian VOF model with the data of Lagrangian MPS simulations [86]. 
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More precisely, it is evident that, the bubble-spike structures in both cases alongside the 

maximum and minimum positions of the dense and lighter fluids are satisfactory reproduced and 

predicted using the enhanced VOF method. However, the small differences between two results 

can be attributed to the nature of the two models to address the problem of physical 

discontinuities in the multiphase flow problems. Another reason for such a discrepancy can be 

traced back to the order of accuracy of the numerical schemes implemented for the discretization 

of the governing equations.  

4.4. Single rising bubble (case 6) 

To further assess the accuracy and consistency of the improved VOF model in solving 

multiphase flows with high density contrast, the numerical simulation of the single bubble rising 

in quiescent liquid is considered here as a last benchmark problem. This canonical test case was 

originally introduced by Sussman et al. [19] and was then adopted by Almasi et al. [90], 

Kruisbrink et al. [91] and Zainali et al. [92] to check the performance of Smoothed particle 

hydrodynamics (SPH) method in dealing with the multi-fluid flows. Fig. 1 illustrates a schematic 

sketch corresponding to the initial setup of the problem where a circular bubble with density and 

viscosity of 31.0L Kgm  and 1 11.106L Kgm s    is located at [1.5 ,1 ]H H  where 

02 1H R m   represents the initial diameter of the bubble. The calculations are performed in a 

rectangular duct [3 ,5 ]H H  filled with water as a secondary phase ( 31000.0H Kgm   and 

1 13.130H Kgm s   ). The pertinent parameters for this canonical test case are density ratio 

1000H L   , viscosity ratio 2.828H L   , Reynolds ( Re 2 2 1000H HR gR   ) and 

Bond ( 2(2 ) 200HBo g R   ) numbers with 
29.8g ms
 stands for the acceleration of 

gravity. No-slip boundary condition ( 0u ) is applied on all rigid walls and the effects of 
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surface tension force ( 2 49 Kgs  ) is taken into account. The uniform grid size of 450 750 is 

used for the simulation and obtained results in terms of volume fraction field with selected 

pressure contours are depicted in Fig. 11. Generally, the morphology and dynamics behavior of 

the rising bubble strongly depend on the magnitudes of the Reynolds and Bond numbers such 

that high surface tension (or low Bond number) and viscous (low Reynolds number) forces  

prevent the bubble from twisting, and tend to keep the bubble circular in shape , accordingly 

[93]. As seen from the figure, due to the existence of density gradient, the stationary bubble rises 

up under the action of buoyancy force while the water descends downward following the 

direction of gravity in the close proximity of the vertical walls, producing a pair of vortex rings 

behind the gas phase ( 0 1.062T  ). This mechanism causes the bubble shape undergoes 

moderate dynamical change to form the well-known apple-like structure as documented by 

Hysing et al. [94]. As time passes (1.062 3.514T  ), the downwilling water motion with the 

aid of unsteady vortex shedding begin to squeeze the bubble which results in the formation of the 

horseshoe-shaped structure within the container. Once the bubble is pierced from the center, the 

inertial force acting on the bubble decreases and consequently the surface tension force which is 

more pronounced in regions with high interface curvature starts to play its role and subsequently 

tear the main body. In this circumstance (3.514 5.312T  ), the air bubble broadens, and the 

horseshoe shape eventually splits into three main segments. This stage may be referred to as the 

“quasi terminal condition” describing the morphology of a rising bubble where the piercing 

phenomenon, detachment of two satellite bubbles, and reduction in bubble velocity are come to 

pass sequentially in a short period of time [95]. However, as time progressed, the shape of the 

bubble becomes more stable and flatter which signifies that the unsteady process starts to reach 

its terminal velocity and hemispherical state where all relevant forces such as drag, gravity, 
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surface tension, buoyancy and viscosity are in hydraulic equilibrium. This assertion is well 

supported by profiles of the interface positions plotted in Fig. 12 where due to the existence of 

the weak fluid circulation and wake shedding, the minimum location of the two daughter bubbles 

remains almost unchanged during the period time of 5.312 8.854T  . 

Coming to the comparison of the global characteristics of the bubble rising in Fig. 12, there is 

satisfactory agreement between results of present work and those reported by Almasi et al. [90], 

Kruisbrink et al. [91]. Moreover, the smoothness of the interface in the zoomed-in view of the 

grid near the trailing edge of the main bubble confirms the capability of the TVD convection 

scheme in capturing steep gradients without generating spurious oscillations or smearing. 

Finally, the minimum and maximum positions of the bubble versus non-dimensional time are 

also provided in Fig. 12 as additional information which may be used by scholars for 

validation/verification purposes.  

5. Results and discussion 

In the previous section, the accuracy and versatility of the enhanced version of the VOF model 

proposed by Garoosi et al. [51] were further verified against a series of challenging multi-fluid 

flow problems. However, from the numerical viewpoint, validation of CFD codes is of the great 

significant and has become a crucial part of the modelling process. As the number of users and 

programmers increases, the need for new benchmark solutions has received a great deal of 

attention by scientific community. Thus, at this stage, the verified VOF model will be employed 

to examine and analyze two new multiphase problems namely merging of two rising bubbles 

with different densities and diameters. The newly introduced benchmark solutions in the scope of 
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multifluid flows can provide a reliable dataset for validation of numerical models and shed more 

light on the coalescence process of the rising bubbles.  

5.1. Merging of two rising bubbles with different densities and diameters (cases 7 & 8) 

The configurations of two new benchmark solutions are depicted in Fig. 1. As can be seen, the 

calculations in both cases are performed in a rectangular container with size of [ , 2.2 ]H H where 

1H m  represents the width of the enclosure. The enclosure is filled with heavy fluid with 

nominal density and viscosity of 31000H Kgm  and 1 120H Kgm s   where two circular 

bubbles with physical properties of 3500M Kgm  , 3250L Kgm  , 1 110M Kgm s   and 

1 15L Kgm s   are located at [0.5 ,0.5 ]m m  and [0.5 ,1.1 ]m m  , respectively. The subscripts H, M 

and L stand for the three immiscible Newtonian fluids namely Heavy, Middle and Lighter, 

respectively. The initial diameters of two bubbles in case 7 are set as 1 0.2R m and 2 0.3R m

whereas these values in case 8 are 1 0.3R m and 2 0.2R m . The morphological evolution and 

hydrodynamic characteristics of the problems under consideration is governed by Reynolds and 

Froude numbers defined as 3 2

max 0 maxRe (2 ) (2 ) 90H HR U g R    and 

0 max2 1.0Fr U g R  where H  , 0U  and maxR  denote kinematic viscosity (

0.02H H H     ), reference velocity and maximum radius of the bubbles within the 

computational domain ( max 0.3R m ). Inspired by works of Pan et al. [96] and Zhao et al. [97], in 

order to reach sever topological changes, the effects of surface tension force are not taken into 

consideration ( 0  ). The simulations are carried out on uniform distributed grid of 350 770  

and no-slip boundary condition ( 0u ) is imposed on all rigid walls. All working fluid including 

dense liquid (H) and bubbles (M, L) are assumed to be stationary at the initial state ( 0p  , 0u
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). The shape evolution mechanism of rising bubbles in a quiescent liquid with corresponding 

velocity contours are portrayed in Figs. 13-16. Generally, from the wave theory point of the 

view, the dynamic behavior of the rising bubble in a stagnant Newtonian liquid subjected to the 

gravitational acceleration can be divided into three distinct stages namely: (1) linear stage where 

the buoyancy force is dominant and fluid flow is characterized by the development of two 

primary vortices, (2) weakly or quasi-linear stage where the bubble motion decelerates and the 

resistance drag by the surrounding liquid becomes comparable by the buoyancy force, and (3) 

fully non-linear stage where the final shape of the bubble is controlled and limited by viscous 

drag and transport phenomenon starts to obey the Stokes law [98]. The snapshots of bubbles 

shapes at six different time instants in Figs. 13-16 illustrate that, in early stages of impulsive 

motion ( 0 0.7T  ), the buoyancy force induced by the density gradients causes both bubbles 

in cases 7 and 8 to travel upward while the dense fluid sinks downward in vicinity of the vertical 

walls, leading to the development of a pair of counter-rotating eddies at the sides of the bubbles. 

The corresponded velocity contours in Figs. 14 and 15 reveal that as time elapses (0.7 1.5T  ), 

due to lower flow resistance drag, the flow acceleration and magnitude of the vertical velocity 

are intensified. This mechanism is accompanied by the invigoration of the downward jet current 

of the surrounding liquid beneath the leading bubbles, which in turn causes the primary vortices 

to move towards the region behind the leading bubbles, promoting the emergence of the prolate 

shape. At this stage, the formation of the wake region between two bubbles becomes more 

prominent and consequently some secondary vortices are appeared inside the bubbles. After a 

fast acceleration, during the period of 1.5 2.5T  , owing to the enhancement in the friction 

drag and shear force at the poles of the bubbles, the motion of the fluids flow slows down and the 

upper bubble in both cases begins to transform into the shape of a dimpled ellipsoidal-cap. It is 
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constantly perceived that, the well-developed vortices encourage the leading bubbles to elongate 

longitudinally and envelop the lower bubbles. In these circumstances, due to the shielding effects 

of the wake flow on rear of the leading bubbles (M), the trailing bubbles (L) undergo sever 

deformation and start to be swallowed by the primary bubbles. It can be seen from Figs. 14 and 

15 that, in the later rising moments ( 2.5 5.5T  ) where the buoyancy effects are less important 

and viscous force is leading the fluid flow, the magnitude of the non-dimensional velocity 

components remains almost unaltered. This physical model is the strong indication of the onset 

of the terminal condition and non-linearity within the fluid domain. It is evident that at this stage, 

the merged bubbles in both cases move with their constant velocity while deforming into the 

complex patterns. However, as pointed out before, if the effects of surface tension force were 

considered, the distortion of the bubbles shapes would become much less significant than the 

results obtained in Fig. 13. 

The time histories of the maximum positions of the bubbles fronts are displayed in Fig. 16. The 

close inspection of the figure shows that, although the global variations of the interfaces profiles 

in both cases are relatively similar and follow the general trend of the curves, the coalescence 

time is slightly different. It can be seen that, in case 8 the tips of the leading and trailing bubbles 

meet each other at 4.4T  while this course of event occurs at 5.5T  . This behavior can be 

partially originated from the stronger wake region generated in case 8 which causes the trailing 

bubble to rise faster compared to the one in case 7. Another reason behind this behavior can be 

attributed to the larger diameter of the lower bubble in case 8 which in turn leads to the stronger 

buoyancy force and lower shear force at the beginning of the evolution. This assertion is well 

supported by Figs. 14 and 15 where the maximum vertical velocity in the entire evolution in case 

8 is considerably higher than that of case 7. In fact, these observations suggest that, the diameter 
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and density of the leading and trailing bubbles have significant impact on the coalescence 

process and morphological characteristics of dual bubbles rising phenomenon.  

6. Conclusions 

In the present work, the accuracy and stability of an enhanced version of the Volume-Of-Fluid 

(VOF) model proposed by Garoosi et al. [51] are further tested against a series of challenging 

benchmark cases including draining of liquids from the storage tank (tank draining), single rising 

bubble, three-phase Rayleigh-Taylor Instability and dam-break flows over dry and wet beds. In 

the second part of the study, the verified VOF model is adopted to examine and analyze the 

transient evolution of two rising bubbles with different densities and diameters, aiming to 

establish the state-of-the-art benchmark solutions and up-to-date dataset for the verification and 

validation of CFD codes. The results of the numerical analysis led to the following conclusions: 

 It is found that, the enhanced VOF model allows accurate and consistent predictions of 

non-linear free-surface flows involving plunging wave breaking, large slamming events, 

impact pressure and interface rupture/coalescence.  

 The results show that, the sharpness of the interface can be successfully preserved by 

implementing third-order TVD bounded convection scheme.  

 The obtained results show that, the third-order TVD bounded convection scheme can 

efficiently alleviate the numerical diffusion, thereby eliminating interface smearing.  

 Through the numerical modelling of the three-phase Rayleigh-Taylor Instability, it is 

found that, the enhanced VOF model is capable of resolving multi-fluid flows with sever 

topological changes in comparison with Lgrangian mesh-free particle model (MPS). 
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 It is found that, the implementation of the hybrid PISOC algorithm can efficiently 

stabilize the numerical solutions and provide smoother pressure distribution in terms of 

both space and time. 

 The results of the single bubble rising with high density ratio vividly confirm that, the 

proposed numerical approach can successfully address the problem of physical 

discontinuities particularly when flow-to-grid skewness is substantial. 

 The results of merging of two rising bubbles with different densities illustrate that, the 

enhanced VOF model is capable of handling non-linear multi-fluid flows with large 

deformation and twisting 

 The numerical simulation of buoyancy-driven merging of two bubbles with different 

densities reveal that, the initial diameters of the leading and trailing bubbles have notable 

impact on the coalescence process and terminal bubbles shape. 

 It is found that, in the problem of buoyancy-driven merging of two bubbles, the shape 

and deformation of the lower bubble are significantly influenced by the diameter and 

wake of the upper bubble. 

Supplementary material 

In order to provide a comprehensive understanding of simulated benchmark problems, seven 

different video files associated with cases 1 to 6 are provided as supplementary material. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Page | 31  

 

CRediT authorship contribution statement 

Faroogh Garoosi: Conceptualization, Methodology, FORTRAN Code development, Validation, 

Visualization, Writing-Original Draft.  

Tarek Merabtene: Investigation, Validation, Writing-Review & Editing.  

Tew-Fik Mahdi: Supervision, Funding acquisition, Validation, Writing-Review & Editing. 

Acknowledgment 

This research was funded, in part, by a National Science and Engineering Research Council 

(NSERC) Discovery Grant for the co-author Tew-Fik Mahdi, application No: RGPIN-2021-

03272. 

Appendix A (Hybrid PISO-Chorin algorithm for solving Pressure-Poisson equation) 

A methodology for derivation of the hybrid PISOC algorithm which is the hybrid version of the 

standard PISO algorithm [56] and Chorin’s model (two-step projection method) [57] is 

elaborated along this appendix. The PISOC algorithm was originally pioneered by Garoosi et al. 

[51] for decoupling of velocity and pressure in Navier-Stokes equations on the staggered grid 

arrangement, aiming to eliminate numerical oscillation from the computational domain in 

incompressible multiphase flows and to speed up convergence rate of implicit iteration process. 

As outlined in section 3, the convection terms in the governing equations are discretized using 

the third-order TVD bounded scheme while the second-order central differencing scheme is 

applied for the treatment of the diffusion terms. Meanwhile, the pressure gradient term is 

approximated by means of the linear interpolation between two immediate nodes located on the 

momentum cell faces [71]. By implementing the above differencing schemes, a finite volume 
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discretization of the momentum equations can be expressed in the form of a linear algebraic 

equation as: 

( )ip p np np u t p p npa a S S A p p    u u  (A1) 

where the subscript nb represent the neighboring velocity nodes and uS is the volumetric source 

term. ipa  and npa are the diagonal and neighbour coefficients which represents the implicit form 

of the convection and diffusion variables together with the transient term of t u . As stated 

before, in order to ensure second-order temporal accuracy of the numerical simulation, the three-

time-levels scheme proposed by Kim et al. [72] is utilized for discretization of the transient term 

as: 

1 13( ) 4( ) ( )

2

n n n

p p p

t t

     


 

u u uu
 

(A2) 

By substituting Eq. (A2) into Eq. (A1), the central coefficient ipa and source term tS for the 

transient flow can be written as:  

13

2

n

p

ip pa a x y
t

 

   


 (A3) 

14( ) ( )

2

n n

p p

tS x y
t

  
  



u u
 (A4) 

where pa  is the central coefficient arising from the discretization of the linearized steady-state 

Navier-Stokes equations (for more details see previous works of Tuković et al. [99]). To initiate 

the PISOC algorithm and to compute the coefficients and constant terms in the momentum 

discrete equation, the initial guessed value of u* is assigned for velocity components. Ideally, the 

discretized momentum equations based on the guessed flow variables and correct pressure 

distribution (pn+1) can fulfill both momentum and mass laws as [71]: 
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* 1 1

1
( )n n

np np u t p p npn

p

ip ip

a S S A p p

a a

 
   
  u

u  (A5) 

It should be noted that, at this stage, all constant coefficients namely npa , ipa  and pA are evaluated 

using the initial guess, hence the terminology “operator splitting” [100]. By introducing the 

pseudo velocity ( u ) into the methodology and eliminating the pressure gradient term from Eq. 

(A5), the first predictor-corrector step of the algorithm related to the Chorin’s model (two-step 

projection model) can be accomplished as [101]: 

*

np np u t

ip

a S S

a

 
 u

u  (A6) 

1 1

1
2 ( )

3

n n

ip p npn

p

d p p 
 
 u u  (A7) 

where ip p ipd A a . By substituting Eq. (A8) into the following discretised continuity equation 

[102]: 

[( ) ( ) ] [( ) ( ) ] 0e w n suA uA vA vA        (A8) 

The following PPE equation can be obtained: 

1, 1, , 1 , 1

1 1

1 1 1 1 1

, , 1, 1, , 1 , 1 , 1

3 43 3
( )

2 2 2i j i j i j i j

n n n

p p pn n n n n

i j i j i j i j i j i j i j n

p

a P a P a P a P a P b x y
t

  
   

 
    

    

 
       


 

(A9) , 1, 1, , 1 , 1

1, 1, 1, ,

, 1 , 1 , 1 ,

, 1, , , 1,

,

,

i j i j i j i j i j

i j i j i j i j

i j i j i j i j

i j i j i j i ji j

a a a a a

a d y a d y

a d x a d x

b u y u y v x v x

   

  

  

 

   

   

   

       

 

where ,i jb stands for the mass imbalance arising from the pseudo velocities. Once the pressure 

distribution is computed, the pseudo velocity field can be modified using Eq. (A7). At this stage, 

it is important to note that, contrary to the fully-iterative version of PISO or PIMPLE algorithm, 

in order to achieve some prescribed level of accuracy, the iteration process is only applied to Eq. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Page | 34  

 

(A9) rather than extending it throughout the calculations, making the proposed PISOC algorithm 

more computationally efficient in comparison with traditional SIMPLE, SIMPLER, SIMPLEC, 

PISO and PIMPLE algorithms [55]. Note that, Eqs. (A1) to (A9) are part of the standard 

Chorin’s model and also correspond to the SIMPLER algorithm [71]. 

To initiate the second part of the methodology related to the PISO algorithm, one can assume 

that, the pressure and velocity values predicted from the previous stage still cannot satisfy the 

conservation of mass after a prescribed number of iterations applied on Eq. (9). Thus, the 

superscripts of these variables ( 1n
p

 ,
1n

u


) are replaced by ( *
p ,

**
u ). By substituting the semi-

corrected values of *
p and 

**
u  into the Eq. (A1), the discrete momentum equation for the current 

time step may be written as: 

** ** * *( )pip np np u t p p npa a S S A p p    u u  (A10) 

where 
**

u stands for the updated (modified) velocity field. However, by subtracting Eq. (A10) 

from (A1) and introducing the incremental pressure ( p ) and velocity variables ( u ), the 

following formulations can be achieved: 

** ** * *( ) ( ) [( ) ( )]pip p np np np p p p np npa a A p p p p      u u u u  (A11) 

*

**

p p p 

 u u u
 (A12) 

( ) ( )ip p p p npa A p p    u  (A13) 

** ** ( )p p np

p

ip

A p p

a

 
   u u u u  (A14) 

Note that, similar to the original PISO algorithm, for the sake of simplicity, the summation over 

the adjacent velocity points is omitted here ( **( ) ( ) 0np np np np npa a    u u u ). Substituting Eq. 
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(A14) into the discretized continuity equation yields the first system of discrete pressure-

correction equation as: 

1 1

, , 1, 1, 1, 1, , 1 , 1 , 1 , 1 , 1

3 4

2

n n n

p p p

i j i j i j i j i j i j i j i j i j i j i j n

p

a P a P a P a P a P b x y
t

  


 

        

 
           


 (A15) 

, 1, 1, , 1 , 1

1, 1, 1, ,

, 1 , 1 , 1 ,

** ** ** **

, 1, , , 1,

,

,

i j i j i j i j i j

i j i j i j i j

i j i j i j i j

i j i j i j i ji j

a a a a a

a d y a d y

a d x a d x

b u y u y v x v x

   

  

  

 

   

   

   

       

 (A16) 

Once the above equation is solved, the velocity and pressure fields can be modified via Eqs. 

(A12) and (A14) as: 

*

1

** ( )

p

p p np

ip

p p p

A p p

a

  

 
 u u

 (A17) 

where 1p denotes the first under-relaxation factor which is taken as unity in the current work. 

Once again it is assumed that the newly corrected velocity (u) field obtained from Eq. (17) is still 

not divergence free ( 0 u ) and therefore cannot satisfy the continuity equation rigorously. 

This assumption means that before advancing to the next time step (n+1), the second pressure-

correction step as a main part of the PISO algorithm is needed to reach a satisfactory degree of 

consistency. Thus, similar to the previous step, the superscripts of the modified velocity and 

pressure fields in Eq. (A17) are replaced by 
***u u and **

p p . By substituting the second 

semi-corrected velocity (
***u ) and pressure (

**
p ) values into the momentum equation, the third 

modified velocity (
***

u ) can be obtained as: 

*** ** **
*** ( )np np u t p p np
p

ip ip

a S S A p p

a a

  
  u

u  (A18) 
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It is important to note that, contrary to the classical PISO algorithm, due to the utilization of 

modified velocity and pressure values in momentum equation, the central ( ipa ) and neighbor (

npa ) coefficients in Eq. (A10) are replaced by the updated coefficients ipa and npa  in Eq. (A18). 

Our results have shown that, this modification has a significant impact on the accuracy and 

convergence rate of numerical solution in dealing with the convection-dominated flows. To 

terminate the methodology, it is assumed that the correct pressure field ( 1n
p

 ) with the aid of the 

newly updated velocity field (
***

u ) can accurately ensure the mass and momentum conservation 

at each computation grid as: 

*** 1 1

1
( )n n

np np p p npu tn

ip ip

A p pa S S

a a

 
  
  u

u  
(A19) 

By subtracting Eq. (A19) from (A18) and defining the second incremental pressure variable ( p

), the following relationships may be derived: 

*** *** 1 1 ** **
***1

( ) ( )n n
p pnpnp np np u t p np p npu tn

p

ip ip ip ip

a S S A p p A p pa S S

a a a a

 
     
     uu

u u  
(A20) 

1 **

2

n

pp p p    (A21) 

*** ***
***1

( ) ( )pnp np np p npn
p

ip ip

a A p p

a a


  

   u u
u u  

(A22) 

where 2 1p  is the second under-relaxation factor. Substitution of 
1nu in the discretized 

continuity equation results in the second partial differential equation for the incremental pressure 

given by: 

1 1

, ,, , 1, 1, 1, 1, , 1 , 1 , 1 , 1 1

3 4

2

n n n

p p p
i j i ji j i j i j i j i j i j i j i j i j i j n
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 (A24) 

Once the second pressure correction equation is solved, the exact velocity and pressure values 

can be computed via Eqs. (A21) and (A22). Having determined the correct velocity field, the 

volume fraction equation is solved and calculation is then transferred to the next time step where 

the updated physical quantities will be utilized as an initial guess values for the next level. 

However, before ending this discussion, it is worthwhile mentioning that, in the standard PISO-

algorithm, Issa [56] ideally assumed that the twice-improved velocity field (
***

u ) emerged as a 

source term ( ,i jb ) on the right hand side of Eq. (A24) is sufficiently accurate to fulfill zero-

divergence constraint (
***

,0, 0i jb  u ). However, our results have revealed that this 

assumption is not necessarily valid such that the strict enforcement of the continuity constraint 

via the direct imposition of 
***

0 u (or , 0i jb  ) in Eq. (A24) may lead to unphysical 

pressure/velocity fluctuation in highly nonlinear multi-fluid flow problems. 
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Fig. 1. Schematic diagram of eight different physical models under consideration with associated boundary 

conditions and coordinate system. 
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(a) Volume fraction field (b) Pressure field 

 

 

Fig. 2. Time evolution of dam-break flow over a dry bed (case 1) in terms of the volume-fraction and pressure 

fields calculated in the current work at different time instants. 
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Time histories of pressure variations on the right wall Time variation of water profile at 3 different sections 

  
Fig. 3. Qualitative and quantitative comparison of the obtained results with numerical and experimental works 

of Lobovský et al. [74] and Sun et al. [75] for case 1. 



  

  

  

  

  

  

  

  

Fig. 4. Time evolution of dam-break flow over a wet bed (case 2) in terms of the volume-fraction and pressure 

fields calculated in the present work at different time instants. 

 

 



Present work J´anosi et al. [76] & Gu et al. [80] 

 

 
 

 
 

 
 

Enlarged views of the interface at three non-dimensional times 

  

Time histories of water level depth at three different 

sections ( 1 0.1l m , 2 0.5l m and 3 0.9l m ) 

Time histories of pressure variations recorded by 

three different sensors installed on the bottom wall 

  

Fig. 5. Qualitative and quantitative comparison of the obtained results with numerical and experimental works 

of Gu et al. [80] and J´anosi et al. [76] for case 2. 

 



(a) Volume fraction field (b) Pressure field 

   

   

   

   

Fig. 6. Time evolution of flow under submerged gate (tank draining, case 3) calculated in the current work at 

different time instants. 
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Fig. 7. Qualitative comparison of the obtained results with numerical data of Ghadampour et al. [82] in case 3. 



    

    
Fig. 8. Time evolution of three-phase Rayleigh-Taylor Instability (case 4) in terms of the volume-fraction field 

calculated in the current work at different time instants. 



    

    
Fig. 9. Time evolution of three-phase Rayleigh-Taylor Instability (case 5) in terms of the volume-fraction field 

calculated in the current work at different time instants. 
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Fig. 10. Qualitative and quantitative comparison of the obtained results with numerical data of Garoosi et al. 

[88] for cases 4 and 5. 

 

 

 

 

 



(a) Volume-fraction fields 

(b) Pressure fields 

  

Fig. 11. Time evolution of bubble rising (case 6) in terms of the volume-fraction and pressure fields  calculated 

in the current study at different time instants. 
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Close-up snapshot of the interface at T=6.197 Location of the interface 

  
Fig. 12. Qualitative comparison of the obtained results with numerical works of Kruisbrink et al. [93] and 

Almasi et al. [92] for case 6 at different time instants.  Zoomed-in view of the interface together with the time 

histories of maximum and minimum position of the bubble interface calculated in the current work. 



Case 7 Case 8 

    

    

    

Fig. 13. Transient evolutions of merging of two rising bubbles with different densities (cases 7 & 8) in terms of 

the volume-fraction fields calculated in the current work at different time instants. 
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Fig. 14. Contours of non-dimensional velocity in the x and y-directions (u,v) in case 7 at different time instants. 
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Fig. 15. Contours of non-dimensional velocity in the x and y-directions (u,v) in case 8 at different time instants. 

 



Case 7 Case 8 

  

Fig. 16. The time histories of maximum locations of the bubble fronts in cases 7 and 8. 
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