
Titre:
Title:

Une Approche pour le développement et la maintenance de
systèmes informatiques complexes

Auteurs:
Authors:

Richard St-Denis, & Pierre N. Robillard

Date: 1986

Type: Rapport / Report

Référence:
Citation:

St-Denis, R., & Robillard, P. N. (1986). Une Approche pour le développement et la
maintenance de systèmes informatiques complexes. (Rapport technique n° EPM-
RT-86-31). https://publications.polymtl.ca/10159/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/10159/

Version: Version officielle de l'éditeur / Published version

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Institution: École Polytechnique de Montréal

Numéro de rapport:
Report number:

EPM-RT-86-31

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/10159/
https://publications.polymtl.ca/10159/

EPM/RT-86/31

(UNE APPROCHE POUR LE DEVELOPPEMENT
ET LA MAINTENANCE DE SYSTEMES

INFORMATIQUES COMPLEXES)

Richard(st-Denis)étudiant, Ph.D.
Pierre -N. (Robi l l&rd) Directeur de thèse

(^

Département de Génie Électrique

Êcoîe Polytechnique de Montréal
Août (1986

Tous droits réservés. On ne peut reproduire ni diffuser aucune partie du
présent ouvrage, sous quelque forme que ce soit, sans avoir obtenu au
préalable l •'autorisation écrite de l'auteur.

Dépôt léqal, 2e trimestre 1984
Bibliothèque nationale du Québec
Bibliothfeaue nationale du Canada

Pour se procurer une copie de ce document, s'adresser au;

Editions de l'ècole Polytechnique de Montréal
Ecole Pol v'techni que de Montréal

Case postale 607'?, Succursale A
Montréal (Québec) H3C 3A7
(514) 340-4000

Compter 0,10$ par page (arrondir au dollar le plus près) et ajouter 3,00$
(Canada) pour 1s couverture, les frais de poste et la manutention. Régler

en dollars canadiens par chèque ou mandat-poste au nom de l'Ecole
F'olvtechnique de Montréal. Nous n'honorerons que les . commandes

accompaonées d'un paiement, sauf s'il v a eu entente préalable dans le cas
d?etsbliaîements d'enseiçnement, de sociétés ou d'organismes canadiens.

PREMIERE PARTIE

UNE APPROCHE POUR LE DEVELOPPEMENT ET LA

MAINTENANCE DE SYSTEMES INFORMATIQUES COMPLEXES

n

SOMMAIRE

Le génie logiciel s'intéresse à la production et à la maintenance

de systèmes informatiques de haute qualité, livrés dans les délais

prescrits et aux coûts estimés. Pour atteindre cet objectif fondamen-

tal, les outils logiciels offrent des éléments de solution intéres-

sants, car ils complètent les méthodes et les langages en automatisant

différentes tâches du processus de développement des systèmes informa-

tiques. Dans ce rapport, nous prêtons notre attention aux outils

logiciels de conception de systèmes en présentant de façon systémati-

que les différents choix qui s'offrent aux spécialistes de l'informa-

tique pour 1'acquisition ou la création de tels outils. Après avoir

identifié deux approches possibles de construction d'outils logiciels,

nous explorons les concepts et nous dégageons les problèmes qui s'y

rattachent. Certains éléments introduits dans ce rapport ne sont pas

spécifiques à 1'étape de conception et peuvent être généralisés aux

autres étapes du cycle de vie, en particulier 1'étape de spécification

formelle du système.

m

TABLE DES MATIERES

l. Introduction ... l

2. La conception des systèmes informatiques 4

2.1 Le rôle de 1'étape de conception 4

2.2 Un modèle de conception 5

2.3 Les environnements de conception 8

3. L'environnement de conception orienté vers les outils logiciels
conventionnels ... 10

3.1 Les méthodes de conception 13

3.2 Les notations .. 16

3.3 Les outils logiciels conventionnels 20

4. L'environnement de conception orienté vers les outils logiciels
à base de connaissances .. 24

4.1 Quelques exemples d'outils logiciels à base de
connaissances .. 27

4.2 Les caractéristiques des outils logiciels à base de
connaissances .. 29

4.3 La modélisation du domaine d'application 31

4.4 La modélisation du processus de conception 33

5. Conclusion ... 34

BIBLIOGRAPHIE ... 36

l. Introduction

La production d'outils logiciels capables de fournir une assistance

aux concepteurs de systèmes informatiques connaît depuis ces dernières

années une croissance rapide. Il existe aujourd'hui plusieurs centai-

nés d'outils logiciels. Certains d'entre eux sont disponibles commer-

dalement, d'autres plus expérimentaux n'ont pas encore été transférés

des institutions de développement et de recherche vers les sociétés

commerciales et industrielles. Fonctionnant seuls ou intégrés à un

environnement de génie logiciel, ces outils visent surtout une

amélioration de la qualité du logiciel et un accroissement de la

productivité des équipes de développement.

A partir du moment où l'on s'est aperçu que les concepteurs ne

disposaient pas d'outils adéquats pour effectuer convenablement leur

tâche, les premières études du génie logiciel ont conduit à l'élabora-

tion et à la proposition de méthodes et de langages de conception de

systèmes informatiques. Ce premier ensemble d'outils techniques,

largement accepté et répandu, connaît encore aujourd'hui de nombreuses

améliorations et additions. Toutefois, il faut bien reconnaHre que

1'application manuelle des méthodes et des langages de conception

constitue un obstacle sérieux à un accroissement significatif de la

productivité des concepteurs dans un environnement réel de développe-

ment. Rapidement, les informaticiens ont décidé d'utiliser l'ordina-

teur à leurs propres fins. Ils ont greffé autour de ces outils

techniques toute une gamme d'outils logiciels capables d'éditer, de

conserver, d'analyser et de documenter un ensemble volumineux d'élé-

ments de données produits pendant 1"étape de conception. Enfin,

depuis une quinzaine d'années, des groupes de chercheurs multidisci-

plinaires tentent de construire des outils capables d"effectuer

automatiquement une partie des tâches créatives des concepteurs.

11 existe deux façons d'aborder le problème de conception, de

réalisation et de mise en oeuvre d'outils logiciels de conception de

systèmes informatiques:

-La première consiste à distinguer clairement le processus de

conception et les produits qui résultent de 1'étape de conception.

Des outils logiciels, dits conventionnels, traitent les spécifica-

tions architecturales et détaillées du système produites par les

concepteurs. Seuls ces derniers prennent des décisions, car ces

outils ne disposent pas de données sémantiques quant à la façon

dont les spécifications ont été générées. Ces outils enrichissent

progressivement les méthodes et les langages de conception. Cette

approche plus traditionnelle a donné lieu à de nombreux travaux de

recherches théoriques et appliquées.

-La deuxième considère le processus de conception comme un produit

au même titre que les spécifications [Balzer 85]. Il s"agit de

comprendre et de formaliser le processus de conception pour en

trouver une représentation et pour élaborer des méthodes de

raisonnement appropriées. Des outils logiciels, dits à base de

connaissances, guident, inspirent et parfois supplantent l'exper-

tise des spécialistes du domaine. La logique, l'intelligence

artificielle et la psychologie cogmtive jouent un rôle prépondé-

rant dans la réalisation de tels outils. Dans la mesure où à long

terme elle pourra apporter des résultats intéressants, cette

nouvelle approche semble naturelle, car elle libère les concep-

teurs des détails techniques que leur imposent les méthodes, les

langages et les outils conventionnels.

Nous ne tenterons pas de classifier, de répertorier ou de présenter

les outils logiciels qu-i existent aujourd'hui. D'excellentes études

ont fait le point sur 1'état d'art dans ce domaine, qu'il s'agisse des

outils logiciels conventionnels [Schindler 81; Howden 82;

De Drouas 82; Vosbury 84; Hoffnagle 85] ou des outils logiciels à base

de connaissances [Barr 82; Frenkel 85]. Avec un regard nouveau et à

travers des recherches et des applications récentes, nous examinons la

problématique liée à 1'élaboration d'outils logiciels. Nous établis-

sons des critères pour 1'acquisition et la construction de tels

outils. Enfin, nous dégageons quelques problèmes non encore résolus

dans ce domaine.

Dans la deuxième section, nous présentons un modèle de conception

de systèmes informatiques qui nous permet de mieux cerner les deux

approches normalement présentées dans les publications scientifiques.

Dans la troisième section, nous passons en revue les concepts de base

qui interviennent dans un environnement de conception orienté vers

1'utilisation d'outils logiciels conventionnels. Dans la quatrième

section, nous présentons brièvement quelques outils logiciels à base

de connaissances et nous examinons le rôle des techniques de Tintel-

ligence artificielle dans le domaine de la conception des systèmes

informatiques. Finalement, nous concluons notre étude en évoquant son

utilité pratique et en avançant quelques suggestions de recherche.

2. La conception des systèmes informatiques

Avant d'aborder les concepts et les problèmes liés aux outils

logiciels, nous rappelons le rôle de 1'étape de conception dans le

développement de systèmes informatiques. Nous présentons aussi un

modèle de conception de systèmes informatiques qui nous permet de

préciser les deux approches introduites dans la section précédente.

2.1 Le rôle de Tétape de conception

D'-une façon générale, on représente le cycle de vie traditionnel.

comme la production contrôlée de descriptions successives du système

qui convergent vers un produit livrable à 1'utilisateur. Chaque

description du système est appelée une spécification. La conception

d'un système informatique constitue certainement 1"étape critique de

ce cycle, car elle influence fortement 1'étape de maintenance qui

représente une part importante du coût du système [Boehm 76].

Caractérisée par un processus de conception créatif, cette étape vise

principalement à transformer la spécification formelle du système,

elle-même obtenue de 1'expression des besoins de 1'utilisateur, en une

spécification facilement traduisible dans un langage de programmation.

L'étape de conception comporte deux activités principales:

-la conception architecturale pendant laquelle le concepteur décrit

la structure du système informatique, aussi bien en termes des

traitements qu'en termes des données, en précisant ses parties

(modules et entités) et les jonctions entre les parties (interfa-

ces et associations);

-la conception détaillée pendant laquelle le concepteur détaille

chaque partie du système informatique en déterminant ses intrants,

ses extrants, sa logique, ses algorithmes et ses structures de

données.

Bien entendu, ces deux activités ne sont pas, dans la réalité,

nécessairement séquentielles. Généralement, elles s'imbriquent et

forment ensemble un réseau de sous-act.ivités (noeuds) reliées par des

mécanismes d"échange d'information (arêtes).

2.2 Un modèle de conception

Concevoir un système informatique représente une tâche complexe,

qui pour être menée à bien, requiert des capacités intellectuenes,

des mécanismes d'échange d"information et de bons outils techniques.

Evidemment, exposé ainsi, le problème apparaît très général. Pour-

tant, le modèle que nous élaborons à partir de cette formulation, nous

permettra d'analyser les artifices et la richesse des diverses

orientations pour le développement d'outils logiciels.

Le modèle de conception illustré à la Figure l peut être schématisé

par trois éléments de bases:

-le processus de conception;

-les entrées et les sorties effectives de Tétape de conception;

-les outils techniques de conception.

rétroaction

gestion du
projet

D<-

documentation

processus de / \^

conception /^^

codification test implantation

Q sous-activité

mécanisme d'échange

[3 produit et document

Figure l - Modèle de conception des systèmes informatiques

Le processus de conception est une activité humaine qui exige

divers degrés de créativité. Dans chacune des sous-activités du

réseau, les concepteurs doivent effectuer des choix, prendre des

décisions, communiquer avec les autres équipes impliquées dans le

projet, interpréter les spécifications des étapes précédentes, adapter

leur travail en fonction de contraintes conflictuelles qui leur sont

imposées, raisonner et appliquer un ensemble de règles pour obtçnir

finalement les résultats escomptés. Dans ce processus, la commum'ca-

tion, qui s'établit grâce à des mécanismes d'échange d'information

entre les sous-activités, tient une place importante. En effet, les

concepteurs consomment, produisent et échangent une très grande

quantité d"information. Malheureusement, peu d"efforts ont été déplo-

yés pour proposer des techniques capables de capter toute la sémanti-

que rattachée à 1"information véhiculée durant 1"étape de conception.

Bien qu'elle pourrait être d'une très grande utilité pendant Tétape

de maintenance, une grande partie de cette information est perdue ou

devient obsolescente faute de moyens pour la conserver et la mettre à

jour. Trois problèmes principaux peuvent être identifiés:

-décider du type d'information pertinente à conserver;

-trouver une représentation adéquate de cette information;

-rendre cette information disponible.

Les sous-activités du processus de conception, via les mécanismes

d'échange, acceptent et fournissent un ensemble d"informations à

caractère vertical et horizontal. Les informations à caractère

vertical assurent un développement efficace et harmonieux du logiciel.

Elles sont, par exemple, acheminées vers les étapes en aval (la

spécification détaillée pour la codification, les spécifications pour

les essais et 1"implantation) et vers les étapes en amont (les

rétroactions pour demander des ajustements ou des précisions). Les

informations à caractère horizontal fournissent une aide constante à

la gestion du projet ou permettent de documenter le système pour son

utilisation, son opération et son entretien. Ainsi, les entrées et

les sorties de l'étape de conception sont divisées en produits et en

documents, et leur quantité varie en fonction du nombre de sous-

activités et du guide de développement des systèmes dans lequel elles

s'inscnvent. De plus, des normes, généralement adoptées par 1'en-

trepnse, fixent leurs formats. La communication écrite joue un rôle

primordial, car la communication orale, quoique largement utilisée,

reste informelle et volatile.

Finalement, pendant la conception, les spécialistes ne sont pas

laissés à eux-mêmes. Ils disposent d'outils techniques pour effectuer

leur travail. Les outils techniques se répartissent en trois grandes

classes: les outils conceptuels, les outils linguistiques et les

outils logiciels.

2.3 Les environnements de conception

Dans 1'optique d'un environnement orienté vers les outils logiciels

conventionnels, le processus de conception est régi par des principes

et des méthodes de travail empinques qui ont été proposés à partir

d'expén'ences vécues dans le développement du logiciel. Les arguments

évoqués, justifiant 1'efficacité et 1'utilité de ces outils concep-

tuels, reposent principalement sur des intuitions acquises par les

spécialistes du domaine durant de nombreuses années. Des outils

linguistiques, tels que des diagrammes et des langages formels,

servent de support pour 1'expression des entrées et des sorties de

1'étape de conception. Dans le cas où l'on ne peut formaliser

1'expression de la communication, on a recours au langage naturel.

Toutefois, contrairement aux diagrammes et aux langages formels, les

langages naturels ne sont pas interprétables par les outils logiciels

de cet environnement. Finalement, pour accélérer une partie du

travail des spécialistes, cet environnement suggère Tutilisation

d'outils logiciels (conventionnels), tels que des éditeurs spéciali-

ses, des générateurs de diagrammes et des analyseurs de spécifica-

tions, pour traiter les entrées et tes sorties effectives de 1"étape

de conception.

Dans la perspective d'un environnement orienté vers les outils

logiciels à base de connaissances, Tusage explicite d'un modèle

sémantique du domaine d'application permet d'organiser le dialogue

homme-machine, de comprendre les réponses de 1'utilisateur, de tradui'

re ces réponses en des actions appropriées et de fournir à l'utilisa-

teur une explication sur les résultats générés. Le modèle sémantique

décrit les classes d'objets, les événements, les relations entre les

événements et les objets, les contraintes et les limites du domaine

d'application. Les outils conceptuels regroupent des techniques de

résolution de problèmes basées principalement sur les connaissances

liées au domaine d'application et au processus de conception. Les

langages formels occupent encore une place importante, mais on

privilégie de plus en plus une interaction homme-machine en langage

naturel. Les outils logiciels (à base de connaissances) empruntent

des techniques de 1'intelligence artificielle. Il s'agit le plus

souvent de systèmes experts ou de systèmes de programmation automati-

que. Une étude théorique et une compréhension approfondie des

sous-activités du processus de conception sont fondamentales pour la

réalisation de cet environnement.

Ces deux environnements de conception de systèmes informatiques ne

sont pas opposés. Ils peuvent être exploités conjointement pour

bénéficier de tous leurs avantages. Ils ont été présentés ainsi pour

10

mettre en évidence deux approches fondamentalement différentes de

développement d'outils logiciels. Les deux prochaines sections sont

entièrement consacrées à 1'étude détaillée de ces deux approches.

3. L'environnement de conception orienté vers les outils logiciels

conventionnels

Dans cet environnement, les systèmes d"aide à la conception

reposent sur trois concepts de base indissociables. La Figure 2,

inspirée de Ludewig et ai. [Ludewig 85], illustre une trilogie formée

des classes d'outils conceptuels, linguistiques et logiciels. Ces

classes sont interdépendantes et se complètent l'une l'autre. De

plus, cette figure identifie quelques éléments appartenant à chacune

de ces classes. Ce cadre simplifié permet de mieux distinguer les

concepts à assimiler et de mieux cerner les problèmes inhérents à ce

type d'environnement.

^Ite

générateurs de documents

Figure 2 - Tnlogie des concepts de base

11

11 est intéressant de noter que les outils logiciels constituent

une partie de systèmes plus complexes appelés systèmes d'aide à la

conception. Malheureusement, on confond souvent ces notions. Cette

situation crée donc parfois des ambiguïtés au niveau de 1"évaluation et

de 1'acquisition de systèmes d'aide à la conception. Par exemple, la

rigidité des systèmes actuels force les utilisateurs à accepter

d'emblée les méthodes, les notations et les outils logiciels qui leur

sont associés et à renoncer à la possibilité d"intégrer de nouveaux

outils pour une expérimentation ou pour des besoins spécifiques. En

effet, pour un système d'aide à la conception donné, il existe

généralement une seule instantiation de cette tn'logie.

Une méthode est constituée d'un ensemble de règles et de principes

sur lesquels reposent le développement des spécifications. Toute

méthode est donc subordonnée à des principes élémentaires de concep-

tion de systèmes. La notation fournit un moyen de représenter les

spécifications aussi bien à 1'aide de textes qu'à 1'aide de diagram- .

mes. Finalement, les outils logiciels travaillent principalement sur

les spécifications et guident les spécialistes dans un cheminement

méthodologique. Ces derniers outils accélèrent le processus de

conception, mais ils n'ont pas la possibilité de résoudre des

problèmes. Le Tableau l donne quelques exemples de systèmes d'aide à

la conception. Il précise pour chaque système les méthodes, les

notations et les outils logiciels retenus par les auteurs.

Ainsi, pour 1'environnement orienté vers les outils logiciels

conventionnels, les chercheurs concentrent leurs efforts pour amélio-

rer les outils existants ou pour trouver de meilleures méthodes, de

i<r

système d'aide
la conception

DASOM
[Vefsnmo 85]

SARA/IDEAS
[Krell 85]

PRISM
[Rosenberg 85]

SCHEMACODE
[Robillard 81]

SPADES
[Ludewing 85]

TAGS
[Sievert 85]

USE.IT
[Hamilton 83]

méthodes

SOM
(décomposition
fonctionnelle,
expression du
comportement
du système)

SARA
(.décomposition
et composition
fnodulaire)

analyse
stucturée,
conception
structurée

programmation
structurée

SPADE-M
(modèle entité-
association)

néthode TAGS
(décomposition
fonctionnelle,
expression des
flux de données
st de contrôle,
3rototypage)

ws
(décomposition
fonctionnelle
basée sur un
îiodèle mathéma-
bique formel)

notations

FS (diagramme
de la structure
fonctionnelle),
ST (diagramme
de transition
d'états).,
SS (diagramme
de la structure
du logiciel),
texte

SM (diagramme
de structure),
GMB (graphe de
comportement)

diagramme de
flux de données,
organigramme
structuré,
PDL

PCS (pseudocode
schématique)

SPADE-L
(texte)

10 RL
(diagrammes
et tables)

AXES
(diagrammes)

outils

éditeur (FS,
ST,SS,texte),
analyseur,
générateur
de documents,
gestionnaire
de projets

éditeur (SM,
GMB),
intégrateur,
simulateur,
"debugger"

éditeur (PDL,
DFD),
générateur
d'organi-
grammes

éditeur (PCS),
générateur
de code

SPADE-T
(éditeur,
analyseur)

éditeur (IORL),
analyseur,
simulateur,
gestionnaire
de versions
multiples

éditeur (AXES),
analyseur,
générateur
de code

Tableau l - Systèmes d"aide à la conception

13

meilleures notations et de meilleurs outils logiciels non seulement

pour faciliter la conception mais aussi 1"entretien des systèmes

informatiques. Dans cette section, nous préciserons davantage ces

trois concepts et nous dégagerons des critères empin'ques d'évaluation

pour mesurer 1'efficacité et la pertinence des outils existants et

pour fixer des objectifs à atteindre lors de la réalisation de

nouveaux outils.

3.1 Les méthodes de conception

Plus un système est complexe, plus il devient difficile d'organiser

la structure du logiciel et de répondre aux attentes des utilisateurs

et des différentes équipes impliquées dans 1e projet. Pour mener à

bien 1'étape de conception, il s'avère essentiel de disposer de

méthodes de travail adéquates. A un niveau macroscopique, des.

méthodes partitionnent le travail en sous-activités et guident les

concepteurs du début jusqu'à la fin de 1"étape de conception afin

d'assurer une progression sûre vers 1'objectif final. A un niveau

microscopique, des méthodes tracent la voie pour la décomposition et

1'organisation du système informatique, pour la modélisation détaillée

des traitements et des données, ainsi que pour la documentation, la

vérification et la validation des spécifications. Ces méthodes

consistent donc en un ensemble ordonné de procédures et de points de

contrôle basés principalement sur des traditions, sur des expériences

vécues et sur des principes de conception de systèmes.

11 existe plusieurs méthodes de conception de systèmes informati-

ques. Parmi les plus fondamentales et les plus répandues, citons

14

1'analyse structurée [DeMarco 78], la conception structurée

[Yourdon 79], la méthode de Jackson et Warnier [Wamier 74;

Jackson 75], la programmation structurée [Yourdon 75] et la méthode

exposée par Gnes [Gries 81]. Les deux premières méthodes ne

concernent que la conception architecturale, alors que les trois

dernières s'attaquent presque exclusivement à la conception détaillée.

L'analyse structurée entraîne une décomposition fonctionnelle et une

expression des flux de données du système. La conception structurée

conduit à une structure hiérarchique et modulaire du système. La

méthode de Jackson et Warnier propose de définir tes algorithmes à

partir des structures de données d'entrée et de sortie. La programma-

tion structurée force le concepteur à exprimer les algorithmes à

1'aide de trois structures de contrôle. Enfin, la méthode de Gries,

basée sur le calcul des prédicats et sur la notion de précondition la

plus faible, ..est radicale mais utile pour le développement de nouveaux

algorithmes complexes. Le lecteur trouvera dans 1'article de Yau

et ai. [Yau 86] une synthèse des méthodes de conception de systèmes et

dans Touvrage de DeMarco [DeMarco 79] une description concise des

principales méthodes.

Ces méthodes sont dites fondamentales parce qu'elles sont souvent

employées pour élaborer des méthodes plus spécialisées. Par exemple,

la méthode DARTS proposée pour la conception de systèmes en temps réel

[Gomaa 84] utilise les principes de décomposition du système en tâches

concurrentes et de masquage d'information [Parnas 72], ainsi que les

méthodes d'analyse structurée et de conception structurée. Le guide

de développement d'un système d'information, suggéré par la firme DMR

[DMR 85], favorise les méthodes d"analyse structurée et de conception

15

structurée pour la modélisation des traitements et le modèle entité-

association [Chen 76] pour la modélisation des données. Enfin, la

méthode sous-jaçente à 1'outil SCHEMACODE force les programmeurs à

concevoir des programmes structurés en voilant 1"aspect syntaxique des

langages de programmation et en mettant en évidence la structure

sémantique ou logique des programmes essentielle à une analyse

détaillée d'un problème [Robillard 85].

L'évaluation d'une méthode reste encore aujourd'hui une tâche

difficile à accomplir*, car il n'existe pas une théorie générale des

méthodes. A plus forte raison, la création des méthodes se fait plus

par référence au bon sens humain qu'à des formalismes de mathématiques

pures. A moyen terme, Tefficacité d'une méthode peut être mesurée à

partir d'un grand nombre de systèmes réalisés à 1'aide de celle-ci

[Card 86]. A court terme, nous pouvons caractériser les méthodes à

partir des cinq attributs suivants:

Spécificité. Les méthodes générales conviennent à un ensemble um'ver-

sel de systèmes. Par contre, elles ignorent leurs propriétés intrin-

sèques. Les méthodes spécifiques, souvent construites à partir des

méthodes générales, permettent plus aisément la conception de systèmes

spécialisés (systèmes d'information, systèmes en temps réel, systèmes

répartis, systèmes d'intelligence artificielle). L'introduction de

nouvelles règles facilite, par exemple, Texpression de la répartion,

de la concurrence, de la communication ou de la synchronisation.

Profondeur. Une méthode s'appuie sur des principes éprouvés (le

masquage d'information, Tabstraction des données [Liskov 75], la

séparation des mécanismes et des politiques [Brinch Hansen 70]) ou sur

des structures mathématiques formelles (la méthode HOS [Hamitton 76]).

Complétude. Une méthode est complète si elle offre au concepteur un

nombre suffisamment élevé de points d'ancrage. Par exemple, si la

méthode utilise une technique de décomposition, elle doit lui fournir

des critères de décomposition. Elle doit aussi lui indiquer une liste

des vérifications et des validations à effectuer à chaque étape de la

décomposition.

Praticabilité. Une méthode ne doit pas nuire à la productivité des

concepteurs. Elle ne les encombre pas de détails inutiles ou d'un

trop grand nombre de détails à la fois. Par contre, elle doit limiter

les concepteurs dans leur propre démarche afin de garantir une

uniformité et une qualité du logiciel. Idéalement, Tapplication des

règles doit être transparente ou naturelle aux concepteurs.

Adaptabilité. Une méthode doit s'adapter facilement à de nouveaux

environnements de développement de systèmes qui répondent mieux aux

besoins et aux politiques d'une entreprise. A cause de Tinertie du

milieu, il est de plus en plus difficile et même parfois coûteux de

faire accepter de nouvelles méthodes.

3.2 Les notations

La notation ou la représentation des spécifications, qu'elle soit

littérale ou graphique, fait l'objet d'une attention particulière. En

effet, la notation étant un formalisme qui sert de support pour

exprimer, communiquer, analyser et modifier les spécifications, elle

17

influence fortement la fonctionnalité des outils logiciels à mettre en

oeuvre. De nombreuses notations ont été proposées et un choix parmi

celles-ci ne constitue pas une tâche facile. C'est pourquoi nous

soulignons quatre qualificatifs à prendre en considération pour

ventiler les nombreuses notations qui existent aujourd'hui.

Complet La notation comme moyen d'expression des spécifications

doit posséder une syntaxe pertinente pour capter suffisamment d'élé-

ments sémantiques et pour permettre une prise de décision éventuelle

sur la moch'fiabilité du système informatique.

Compréhensible. La notation comme moyen de communication des spécifi-

cations doit être simple, facile d'accès et lisible aussi bien par les

concepteurs que par les responsables de projets.

•Analysable. La notation comme support pour analyser les spécifica-

tions produites par les concepteurs doit être formelle, pour vérifier

et valider leur cohérence et leur complétude, et être exécutable pour

simuler le comportement du système informatique.

Flexible. La notation comme support documentaire à la maintenance

doit être assez souple pour faciliter les modifications des spécifica-

tions.

Les notations à 1'aide de diagrammes apparaissent les plus populai-

res pour plusieurs raisons. Premièrement, les diagrammes sont très

attrayants pour 1"oeil humain. Deuxièmement, les concepteurs sont

souvent enclins à schématiser par des représentations sommaires

certains traitements et données qui leur semblent difficile à verbali-

ser ou à énoncer autrement qu'en ayant recours à des figures.

10

Troisièmement, les diagrammes facilitent 1"explication rapide des

structures globale et détaillée du système informatique. Finalement,

les diagrammes sont construits généralement à partir d'un nombre

restreint de symboles, ce qui évite aux concepteurs de se préoccuper

d'un trop grand nombre d'éléments syntaxiques et sémantiques. Ainsi,

les diagrammes sont avant tout une représentation visuelle de 1'en-

semble des modules, des interfaces, des données et du comportement du

système informatique. Toutefois, selon les notations proposées, les

diagrammes comportent plusieurs inconvénients dont certains peuvent

être contournés par 1"introduction d'outils appropriés. Premièrement,

ils sont souvent incomplets, peu analysables et/ou difficiles à

modifier; car même si la partie graphique est formellement définie, la

majeure partie de leur contenu est constitué de textes informels.

Deuxièmement, des contraintes physiques du matériel, en particulier

celles des écrans et des imprimantes, imposent des limites quant à la

taille des diagrammes et au texte contenu dans une bulle. Finalement,

si les diagrammes comportent un niveau de détails élevé, on atteint

rapidement la limite visuelle de 1'utilisateur.

Parmi les notations graphiques les plus répandues, mentionnons les

diagrammes de flux de données, les organigrammes structurés, les

diagrammes entités-associations, les graphes de transition d'états,

les réseaux de Pétri, les organigrammes de Nassi-Scheiderman

[Nassi 73] et le pseudocode schématique [Robmard 81]. Le lecteur

trouvera dans 1'article de Teplitzky [Teplitzky 79], un ensemble de

critères différents de ceux présentés ici pour choisir parmi des

notations graphiques couramment employées celle qui convient la mieux.

19

Les représentations des spécifications à 1'aide de textes écrits

dans un langage naturel ou dans un langage formel occupent aussi une

place importante. Les langages formels possèdent 1'avantage de bien

capter la sémantique associée au système informatique et permettent

plus aisément de déterminer si les spécifications sont cohérentes et

complètes. Par contre, ils possèdent certains inconvénients. Souvent

les spécifications écrites dans ces languages sont plus longues que

les programmes qui en résultent. La codification est alors remplacée

par une autre forme d"écriture plus abstraite dans laquelle le taux

d'erreur est comparable à celui de la codification. Un formalisme

excessif exige une bonne formation scientifique des personnels et

implique une accumulation importante d'information dont 1'exploitation

n'est pas toujours immédiate et commode dans les étapes ultérieures du

cycle de vie.

11 existe de nombreuses notations formelles; mentionnons celles

basées sur des formalismes algébrique et axiomatique [Guttag 77] ou

sur la logique mathématique (propositionnelle, du premier ordre,

temporelle). Il existe aussi des langages de conception sans forma-

lisme mathématique comme, par exemple, DREAM [Riddle 78] ou ADL

[Vosbury 84]. Enfin, il y a les langages basés sur le pseudocode qui

utilisent conjointement des langages naturels et des syntaxes de

langages de programmation [Caine 75]. Ces notations ne possèdent

aucun des avantages des langages formels. En plus, elles enferment

les concepteurs dans un environnement de programmation.

11 faut éviter de séparer les deux types de notation, car ils se

complètent l'un l'autre. En particulier, les langages formels peuvent

zu

posséder une contrepartie graphique qui supprime une partie de leurs

inconvénients. Ainsi, on aura tout avantage à offrir aux concepteurs

un ensemble d'outils capables de traiter plus d'une représentation de

spécifications.

Deux autres critères permettent de caractériser les notations.

Premièrement, certaines d'entre elles sont plus appropriées pour la

conception architecturale que pour la conception détaillée (bien qu'il

existe plusieurs notations qui conviennent à la fois pour ces deux

tâches) et inversement. Deuxièmement, elles permettent d"exprimer

soit les flux de données, soit la logique du système. Par exemple, le

pseudocode schématique s'emploie durant la conception détaillée et

facilite la description de la logique des modules d'un système.

3.3 Les outils logiciels conventionnels

Dans la pratique courante, les tâches des concepteurs sont nombreu-

ses. Même si la créativité constitue le dénominateur commun dans la

réalisation de ces tâches, il n'en demeure pas moins qu'une bonne

partie du travail des concepteurs est fastidieuse, exigeante et

répétitive. Les outils logiciels conventionnels procurent donc une

aide de plus en plus indispensable aux concepteurs, car ils automati-

sent les tâches routimères qui requièrent surtout des habiletés

manuelles et peu d'habiletés intellectuelles. Ils facilitent aussi

Tédification précise des dossiers techniques. Les outils logiciels

conventionnels constituent un prolongement des outils classiques

(compilateurs, éditeurs) qui opèrent normalement sur des programmes.

En effet, ils comprennent des fonctions principalement axées vers

21

l'archivage, Tédition, Tanalyse et la documentation des données

générées pendant la conception. Si du point de vue fonctionnel, ces

deux classes d'outils présentent une grande similitude, la différence

fondamentale réside dans le fait que les outils logiciels de concep-

tion traitent des spécifications d'un niveau d'abstraction plus élevé.

L'archivage permet de conserver toutes les informations produites

lors de la conception architecturale et détaillée du système informa-

tique. Qu'il s'agisse d'un simple dictionnaire de données ou d'une

base de données spécialisée, cet outil constitue le fondement essen-

tiel au travail en équipe et à 1'intégration d'outils en général.

Nous discuterons ces deux aspects à la fin de cette section.

La manipulation des spécifications demande un travail considérable

de la part des concepteurs. Leur formulation et leur mise à jour

peuvent facilement devenir fastidieuses. Les éditeurs de diagrammes,

les éditeurs syntaxiques contextuels et les éditeurs de tables

constituent des outils essentiels, car en plus de résoudre le problème

précédent, ils guident parfois les concepteurs dans leurs démarches en

imposant des règles de construction de systèmes. Tout aussi impor-

tants sont les outils qui traduisent les spécifications d'une notation

à une autre. Ils assurent aux concepteurs une vue multiple des

données [Reiss 84]. D'autres outils permettent de passer d'un niveau

de spécifications à un autre et ce dans les deux sens. Par exempte,

un générateur de code produit automatiquement, à partir des spécifica-

tions détaillées, une partie (e.g. la définition des données en COBOL)

ou la totalité du programme. Il est parfois utile d'effectuer

1'opération inverse pour récupérer de vieux programmes et générer les

^

spécifications détaillées correspondantes dans une notation plus

compréhensible pour les concepteurs. Par exemple, FLOWCHART génère

des organigrammes de Nassi-Scheiderman à partir de programmes écrits

en PASCAL ou en pseudocode [Roy 76].

L'analyse des spécifications produites par les concepteurs consti-

tue une tâche obligatoire, car elle garantit leur travail. Une

analyse statique permet de vérifier, par exemple, si les spécifica-

tions sont complètes, cohérentes, correctes et réalisables. Un autre

aspect négligé est 1"analyse de 1'impact d'une modification dans un

système complexe, car il est très difficile de déterminer quelles sont

les composantes susceptibles d'être affectées par une modification et

d'effectuer les changements sans causer des dommages irréparables.

Enfin, une analyse dynamique permet de valider les spécifications par

rapport aux. intentions des utilisateurs. Elle simule le comportement

du système. A ce stade, les simulateurs et les outils de mise au

point jouent un rôle significatif. Le lecteur trouvera dans 1'article

de Boehm [Boehm 84] un ensemble de critères et de techniques pour la

validation et la vén'fication des spécifications.

Finalement, la documentation alimente les étapes ultérieures du

cycle de vie. Son volume peut être imposant si le système est d'une

grande envergure. Plusieurs éléments de la documentation peuvent être

produits à partir des données enregistrées dans la base de données.

Des générateurs de diagrammes, des formatteurs de tables et des

systèmes de traitement de texte constituent les outils les plus

répandus. Aussi, pour mettre rapidement leurs produits sur le marché

international, les Japonais construisent des outils capables de

Z3

traduire en anglais de la documentation originalement écrite en

japonais [Mohri 84].

Nous concluons cette section en soulignant que les outils logiciels

conventionnels doivent présenter, outre les fonctionnalités précéden-

tes, deux qualités importantes. Ils doivent favoriser un véritable

travail d'équipe et s'intégrer les uns aux autres.

Les systèmes complexes doivent être conçus par plusieurs personnes.

11 se peut fort bien qu'il n'y ait personne qui comprenne tous les

détails du système lors de sa conception. A un niveau supérieur

toutefois, le système informatique doit être conçu de façon à être

compris par au moins une personne. En deçà de ce niveau, la

conception des sous-systèmes est répartie entre plusieurs personnes.

Pour faciliter le travail d"équipe, il faut exploiter les mécanismes

offerts par les systèmes de gestion de base de données pour assurer

1'intégrité, la protection et le partage des données. Il faut aussi

mettre en oeuvre des mécanismes de communication qui captent l'infor-

mation pertinente véhiculée lors de la conception, et des mécanismes

qui facilitent 1'intégration de toutes les parties du système et qui

empêchent le travail redondant.

La majorité des outils sont monolithiques, car ils ont été

développés et ils évoluent dans un environnement spécifique. Chaque

outil gère ses propres fichiers ou sa propre base de données, et

utilise un système d'exploitation et du matériel particuliers. Il

présente à 1'utilisateur un interface unique. Ainsi, la grande

majorité des outils sont locaux, dans le sens qu'ils ne partagent pas

leurs résultats. Pour faciliter Tintégration des outils logiciels,

^t

11 faut qu'ils soient portables, qu'ils soient conduits par un

processus commun et qu'ils soient conçus en fonction de normes dictées

pour 1'interface des données, pour 1'interaction homme-machine et pour

les services offerts par les systèmes d'exploitation et les systèmes

de gestion de bases de données. Les méta-outils semblent la solution

la mieux adaptée pour offrir un cadre qui permet le développement

harmonieux d'outils techniques. A titre d"exemple, citons le travail

d'une équipe d'IBM [Hoffnagle 85] qui a proposé un modèle d'un

méta-outil qui rencontre les objectifs énoncés ci-dessus.

4. L'environnement de conception orienté vers les outils logiciels à

base de connaissances

Dans cet environnement, des outils logiciels fournissent une

assistance intelligente aux concepteurs, et même parfois accomplissent

automatiquement une partie de leurs tâches créatives. Ces outils

diffèrent considérablement des outils conventionnels présentés dans Ta

section précédente, d'une part par les fonctionnalités qu'ils possè-

dent et d'autre part par les moyens à prendre pour leur mise en

oeuvre. Au début du développement de ces outils, les chercheurs

aspiraient essentiellement à faire en sorte qu'ils génèrent automati-

quement des spécifications utiles à partir de spécifications abstrai-

tes. Cette ambitieuse entreprise a donné lieu à un certain nombre de

prototypes expérimentaux qui" malheureusement n'ont été capables à ce

jour que de résoudre de petits problèmes. CHI, PSI, DELADUS, NLPQ et

SAFE sont des exemples de systèmes de programmation automatique qui

acceptent en entrée une spécification d'un domaine de problèmes bien

circonscrit et qui génèrent du code compilable ou interprétable

^û

[Barr 82]. Aujourd'hui, des chercheurs concentrent davantage leurs

efforts pour développer des outils logiciels capables:

-de guider le concepteur dans le choix et dans 1'application des

règles de décomposition pour raffiner de plus en plus les

spécifications;

-d'assister le concepteur dans 1'évaluation de 1'impact d'une

décision et dans 1'exploration des différentes alternatives pos-

sibles de solutions;

-de conserver les justifications de certaines décisions envisagées

et analysées, mais re jetées, dans le cas où ces dernières

pourraient être reconsidérées un peu plus tard dans le processus

de conception;

-de vérifier la cohérence et la complétude du système informatique

et, dans le cas échéant, de remédier aux conflits et aux manques;

-de résoudre les contraintes conflictuelles et potentielles qui

s'exercent sur les choix des concepteurs et qui proviennent des

différentes sources de son environnement;

-d'évaluer les effets ou les répercussions néfastes d'une modifica-

tion dans la spécification formelle du système sur les spédfica-

tions de conception déjà dérivées ou sur un système informatique

opérationnel ;

-de dialoguer avec le concepteur dans un langage naturel ou dans un

sous-ensemble spécialisé et limité d'un langage naturel;

co

-de fournir à la demande du concepteur une explication à propos des

résultats obtenus;

-de permettre 1'ajout, ta destruction ou la mise à jour des règles

de conception.

Ces outils logiciels exécutent ces différentes actions soit en

exploitant 1"information contenue explicitement ou implicitement dans

les spécifications, soit en référant à la base des connaissances, soit

en interrogeant le concepteur. Ils diffèrent des systèmes de program-

mation automatique car ils ne réalisent pas, mais aident plutôt les

concepteurs à accomplir des sous-tâches difficiles du processus de
ft

conception.

Ainsi, pour 1"environnement orienté vers les outils logiciels à

base de connaissances, les chercheurs doivent tendre au-delà des

méthodes et des notations traditionnelles. Ils doivent franchir une

autre étape en embrassant 1'étude de la nature du logiciel et du

processus de conception [Périis 85; Soloway 84] et reconnaître le rôle

primordial de la connaissance associée au domaine d"application

[Barstow 85]. Ils doivent aussi exploiter les techniques de l'intel-

licence artificielle pour représenter les connaissances et pour

générer et expliquer des solutions. Finalement, pour éviter aux

concepteurs d'être familiers avec un langage de spécification trop

compliqué, ils doivent renforcer ces outils par une interaction

homme-machine conviviale permettant un dialogue en langage naturel.

Dans cette section, nous examinerons brièvement quelques outils

logiciels à base de connaissances et nous donnerons leurs caractéris-

z/

tiques. Nous évoquerons aussi les problèmes de la modélisation du

domaine d'application et du processus de conception. Nous négligerons

deux aspects importants, la construction des systèmes experts et le

traitement des langues naturelles, qui sont communs à tous les

domaines d'application et qui sont largement exposés dans les ouvrages

d'intelligence artificielle.

4.1 Quelques exemples d'outils logiciels à base de connaissances

A titre d'indication et pour illustrer leur diversité, nous

décrivons brièvement quelques outils logiciels automatiques. Bien

entendu, cette présentation ne constitue pas une étude exhaustive.

Nous voulons seulement attirer 1'attention du lecteur sur quelques-

unes de leurs caractéristiques internes et externes. Nous invitons

donc le lecteur qui désirerait compléter ses connaissances à se

référer aux articles cités dans le texte.

APE (Automatic Programming Expert) est un système expert pour la

programmation automatique développé à 1'Université de Bonn (Allemagne

de 1'ouest) [Bartels 81]. Ce système dispose .de connaissances pour

produire des programmes exécutables en INTERLISP à partir de spécifi-

dations algébriques de types abstraits de données et d'algorithmes

abstraits formulés à 1'aide de règles de production. Il comporte deux

sous-systèmes indépendants qui utilisent des connaissances représen-

tées sous forme de règles de production pour codifier respectivement

les types de données et les algorithmes.

SECSI (Système expert pour la conception de systèmes d'informât ion)

est un système expert pour la conception de bases de données développé

zy

à l'INRIA (France) [Bouzeghoub 83]. A partir d'une spécification

d'une application décrite dans un sous-ensemble du français, ce

système génère automatiquement un schéma relationnel normalisé ou

optimisé ainsi qu'un ensemble de contraintes d'intégnté. La spécifi-

cation est traduite en un réseau sémantique puis graduellement

transformée, à 1'aide d'un ensemble de règles de production, en un

schéma relationnel.

Un prototype expérimental, nommé Designer/Verifier's Assistant a

été développé par un étudiant de l'Université du Texas [Monconi 79].

Ce système comporte deux sous-systèmes: un système expert qui

facilite le développement incrémental de gros systèmes informatiques

et un système traditionnel de preuve automatique. Le système expert

interprète les effets possibles d'un changement dans une spécification

et indique comment procéder méthodiquement pour la conception et la

vérification. Il utilise un graphe pour représenter les connaissances

déclaratives tels que les éléments qui interviennent dans la concep-

tion et la vérification ainsi que les relations entre ces éléments.

De plus il gère, à 1'aide de règles de production, un agenda qui

suggère aux concepteurs les tâches à accomplir pour compléter correc-

tement la conception du système informatique.

Un système expert a été développé à l'Université d'Illinoi's

(Urbana-Champaign) pour supporter la conception de systèmes informati-

ques basée sur 1'analyse structurée [Harandi 85]. Ce système expert

utilise des patrons de segments de diagrammes de flux de données (DFD)

pour représenter les composants nécessaires lors de la conception. Un

ensemble de règles de transformation permet la combinaison et le

zy

raffinement des segments afin d"obtenir un DFD détaillé du système

désiré. Au fur et à mesure du raffinement, les spécifications de

1'utilisateur et du DFD sont analysées pour vérifier si elles sont

cohérentes ou complètes. Le système expert prend en considération la

connaissance du domaine d"application, organisée sous forme de struc-

tures hiérarchiques, pour faciliter la sélection des segments et leur

intégration dans le DFD.

Une petite base de connaissances écrite en PROL06 contient de

l'information sur les attnbuts des modules, les relations entre les

modules, la cohésion et le couplage. Des faits sont ajoutés dans la

base de connaissances au fur et à mesure de la conception du système.

Enfin, des règles permettent de déduire de nouveaux faits sur la

structure du système lors de la conception ou de la maintenance

[Leung 85].

La majorité des outils logiciels à base de connaissances sont en

cours de développement et/ou dans leur enfance. Seulement quelques

prototypes sont présentement employés dans des firmes spécialisées de

logiciel sur une base expérimentale. De grands efforts doivent être

déployés avant d'atteindre les objectifs initiaux, en particulier

avant de démontrer quli1 s'agit d'une technique viable et praticable

pour des problèmes réels.

4.2 Les caractéristiques des outils logiciels à base de connaissances

Outre les aspects utilitaires présentés au début de cette section,

11 convient de souligner huit signes distinctifs importants qui

permettent de juger de leurs possibilités [Barr 82; Mostow 85].

JU

La méthode de spécification. La méthode de spécification offre aux

concepteurs un moyen de décrire en termes plus ou moins abstraits ses

applications. Le choix d'une méthode influence la qualité et la

complexité du module qui gère 1'interaction entre 1"outil et le

concepteur. Ainsi le concepteur pourra selon 1'outil exprimer son

problème à partir d'exemples d'entrée et de sortie ou à partir de

traces, ou à l'aide de langages formels ou de sous-ensembles d'un

langage naturel. Bien que les langages naturels soient intéressants

pour les humains, 11s obligent 1"outil à solutionner le problème avec

des spécifications ambiguês.

La sortie. La sortie produite varie d'un outil à l'autre. Il peut

s'agir d'un langage de programmation cible dans le cas des systèmes de

programmation automatique ou d'une spécification plus raffinée dans le

cas des outils plus spécialisés.

Le domaine d"application. Les outils ne peuvent résoudre que des

problèmes appartenant à un domaine d'application bien précis. Plus le

domaine est restreint, plus 1'outil est puissant. Cette constatation

est inhérente aux systèmes experts qui ont démontré 1'utilité des

techniques de 1'intelligence artificielle lorsque celles-ci ne s'atta-

quent pas à une classe universelle de problèmes.

La méthode d'opération. La méthode d'opération réfère aux techniques

d'intelligence artificielle mises en oeuvre pour résoudre le problème.

Les outils s'appuient principalement sur des techniques de systèmes

experts, mais des techniques de preuve automatique, de transformation

de spécifications et de résolution de problèmes sont aussi employées.

31

Le degré d"automatisme. Le degré d"automatisme reflète en quelque

sorte la puissance de l'outil. Il dépend surtout du domaine d'appli-

cation et de la base des connaissances. Le but ultime des recherches

dans ce domaine est d'atteindre un degré très élevé afin d"automatiser

non seulement toute 1'étape de conception mais 1'ensemble du cycle de

vie.

La base des connaissances. Les connaissances et leurs représenta-

tions permettent de modéliser le domaine d'application et le processus

de conception. La connaissance descriptive décrit les éléments et les

relations qui interviennent lors de la conception tandis que la

connaissance normative indique comment inférer de nouvelles décisions.

Pour représenter ces deux types de connaissances, on a recours par

exemple aux réseaux sémantiques, aux règles de production, aux objets

structurés, aux systèmes procéduraux et à la logique du premier ordre.

La portée de 1'outil. La tâche à laquelle 1'outil s'attaque, ainsi

que 1 "écart entre le m'veau des spécifications à 1"entrée et le niveau

des produits à la sortie, décident de la portée de 1'outil dans

1'étape de conception ou dans le cycle de vie.

4.3 La modélisation du domaine d'application

Les méthodes de conception élaborées jusqu"ici s"appuyaient essen-

tiellement sur des techniques de résolution de problèmes. Or, un

aspect négligé mais important est la connaissance du domaine d'appli-

cation. En pratique, le domaine d'application n'est pas perçu

exactement de ta même manière par tous, car il n'existe pas de

description explicite de ce domaine. De plus, chaque individu

à'â

acquiert cette connaissance indirectement par des intermédiaires qui

risquent de ne pas être précis et constants dans leurs descriptions.

Cette situation est donc source d'ambiguïtés et de conflits lors du

développement des systèmes informatiques. Une solution à ce problème

consiste à spécifier un modèle conceptuel du domaine d"application qui

évolue indépendamment des systèmes informatiques à développer, et sur

lequel repose'1'analyse, la conception et la maintenance des systèmes

informatiques. Les bénéfices à retirer d'une telle approche sont

.nombreux [Barstow 85]:

-les concepteurs peuvent élaborer leurs spécifications en partie

par consultation, étude et analyse du modèle conceptuel;

-la simulation d'une partie du modèle conceptuel permet d'évaluer

son comportement dynamique et d'éclaicir des points imprécis qui

surgissent au moment de la conception;

-tout système de programmation automatique requiert explicitement

une connaissance formelle du domaine d"application;

-1'importante quantité de connaissances contenues dans le modèle

conceptuel constitue une partie intégrante de la base des connais-

sances de tout outil logiciel intelligent;

-la documentation propre au domaine d'application est explicitement

disponible via le modèle conceptuel.

Ainsi, le problème de spécifier un modèle conceptuel du domaine

d'application est fondamental pour 1'environnement de conception

orienté vers les outils logiciels à base de connaissances.

33

L'analyse du domaine d'application implique [Arango 85]:

-la définition des frontières du domaine en fixant la classe des

problèmes à étudier;

-la recherche et la classification des entités conceptuelles du

domaine;

-le développement d'un modèle du domaine en établissant les

relations et les dépendances fonctionnelles entre les entités

identifiées;

-le développement de définitions réductibles en termes de modèles

existants ou en termes de modèles intermédiaires spécialement

conçus pour profiter d'ensembles d'abstractions réutilisables dans

des développements ultérieurs.

La conception d'un domaine d"application est un processus qui

transforme la structure sémantique du domaine dans une structure

syntaxique appropriée. Plusieurs formalismes ont été proposés; parmi

les plus importants,•citons les langages Clear [Burstall 79] et RML

[Borgida 85], les graphes conceptuels [Sowa 84], les réseaux de Pétri

et 1'usage de taxinomie [Borgida 84]. Ces formalismes visent princi-

paiement à capter aisément la connaissance descriptive du domaine et à

faciliter la description structurée des problèmes.

4.4 La modélisation du processus de conception

Pour modéliser une,sous-activité du processus de conception, on a

recours aux techniques de la psychologie cognitive. Des observations

•J4

et des entrevues avec un ensemble de spécialistes qualifiés pour cette

opération permettent d'exhiber les connaissances, les structures des

connaissances, les mécanismes de raisonnement et les di.fférentes

stratégies qui interviennent pendant chacune des phases d'exécution du

processus. Par exemple, pour la conception d'un algorithme, on

recueille et on interprète des déroulements d'une série d'idées sur la

compréhension du problème, l'ébauche d'une solution, le raffinement de

la solution, 1"exécution de la solution préliminaire, la formulation

des difficultés et des opportunités, la vérification de la solution et

1'évaluation de la solution [Kant 85]. Ensuite, on reconstitue le

plus objectivement possible le comportement des spécialistes face à un

ensemble de problèmes, puis on traduit leurs pensées en des plans et

des règles appropriés. Cette démarche constitue un préalable à toute

entreprise sérieuse de développement d'outils logiciels à base de

connaissances, car elle conduit à 1'élaboration de théories qui

permettent de parvenir à une meilleure connaissance du processus de

conception et à de nouvelles techniques qui cadrent mieux avec la

nature humaine.

5. Conclusion

Dans ce rapport, nous avons fait une synthèse et une analyse des

principaux concepts liés aux outils logiciels de conception de

systèmes informatiques. Malgré leur grande diversité, nous avons

montré comment ces outils pouvaient être classifiés en deux grandes

catégories bien distinctes. La première catégorie regroupe les outils

logiciels conventionnels et constitue une extension directe des outils

qui agissent sur des programmes. Selon une étude récente commandée

35

par le Département de la défense américaine [Redwine 84], ces outils

commencent à peine à être utilisés à une grande échelle. Toujours

selon ce même rapport, les techniques requises pour leur mise en

oeuvre semblent bien maîtrisées. Toutefois, un certains nombre de

problèmes subsistent. En particulier, des efforts considérables

doivent être faits pour proposer et développer des méta-outils qui

faciliteront leur intégration et leur normalisation. De plus, aucune

étude sérieuse n'a encore été faite pour évaluer leur performance

relative dans un environnement réel de développement. Les critères

d'évaluation dégagés dans ce rapport sont qualitatifs et permettent

seulement de jauger rapidement leurs possibilités.

La deuxième catégorie regroupe les outils logiciels à base de

connaissances. Même si cette approche n'a pas encore démontré qu'il

s"agit d'une technique viable et efficace, elle semble être prometteu-

se. De nombreuses recherches sont en cours et les premiers prototypes

sont représentatifs des possibilités offertes aux concepteurs, mais

soulèvent de nombreuses questions et problèmes auxquels doivent faire

face les chercheurs du domaine. La réuss.ite de cette approche

dépendra surtout des trois facteurs suivants: révolution des techni-

ques de l'intelligence artificielle (en particulier les systèmes

experts), la compréhension du processus de conception et la modélisa-

tion des domaines d'application. Le besoin persistant de réduire les

coûts de développement et d'entretien du logiciel continuera à

orienter les chercheurs dans cette direction.

>SD

BIBLIOGRAPHIE

[Arango 85]

G. Arango, P. Freeman: Modeling knowledge for software

development; Proceedings of the 3rd Int. Workshop on Software

Spécification and Design, London, 1985, 63-66.

[Balzer 85]

R. Balzer: The rôle of logic and AI in the software entreprise;

Proceedings of the 8th Int. Conf. on Software Engineering,

London, 1985, 394.

[Barr 82]

A. Barr, E. A. Feigenbaum: The Handbook of Artificial

Intelligence; William Kaufmann, Inc, Vol. 2, 1982, 295-379.

[Barstow 85]

B. Barstow, P. Barth, P. Dietz, R. Dim'tz, S. Greenspan:

Observations on spécifications and automatic programming;

Proceedings of the 3rd Int. Workshop on Software Spécification

and Design, London, 1985, 89-90.

[Bartels 81]

U. Bartels, W. Olthoff, P. Raulefs: APE: An expert System for

automatic programming from abstract spécifications of data types

and algorithms; MEMO SEKI-BN-81-01, Universitât Bonn, 1981.

37

[Boehm 76]

B. W. Boehm: Software engineering; IEEE Trans. on Computers,

C 25 (12), 1976, 1226-1241.

[Boehm 84]

B. W. Boehm: Verifying and validating software requirements and

design spécifications; IEEE Software, l (l), 1984, 75-88.

[Borgida 84]

A. Borgida, J. Mylopoulos, H. K. T. Wong: Generalization/specifi'

cation as a basis for software spécification; In On Conceptual

Modelling, Perspectives from Artificial Intelligence, Databases

and Programming languages. Ed. by M. L. Brodie, J. Mylopoulos,

J. W. Schmidt, Spnnger-Verlag, New York, 1984, 87-114.

[Borgida 85] . •

A. Borgida, S Greenspan, J. Mylopoulos: Knowledge représentation

as the basis for requirements spécifications; Computer, 18 (4),

1985, 82-91.

[Bouzeghoub 83]

M. Bouzeghoub, G. Gardarin: The design of an expert System

for database design; Proceedings of the Ist Int. Workshop on New

Application of Databases, Cambridge, UK, 1983, 203-223.

[Brinch Hansen 70]

P. Bn'nch Hansen: The nucleus of a muTtiprogramming System;

Comm. ACM, 13 (4), 1970, 238-241.

00

[Burstall 79]

R. Burstall, J. Goguen: The semantics of Clear, a spécification

language; Abstract Software Spécification, Lecture Notes in

Computer Science, No. 86, D. Bjomer, Ed., Spnnger-Verlag,

New York, 1979, 292-331.

[Caine 75]

S. H. Caine, K. Gordon: PDL - A tool for software design;

Proceedings of the Nat. Comp. Conf., AFIPS, Arlington,

1975, 271-276.

[Card 86]

D. N. Card, V. E. Church, W. W. Agresti: An empirical study of

software design practices; IEEE Trans. on Software Engineering

SE 12 (2), 1986, 264-271.

[Chen 76]

-P. P. Chen: The entity-relationship model: Toward a unified view

of data; ACM Trans. on Database Systems, 1(1), 1976, 9-36.

[De Drouas 82]

E. de Drouas, J.-M. Nerson: Les ateliers logiciels intégrés:

développements français actuels; T.S.I., l (3), 1982, 211-232.

[DeMarco 78]

T. DeMarco: Structured Analysis and System Spécification;

Yourdon Press, New York, 1978.

39

[DeMarco 79]

T. DeMarco: Concise Notes on Software Engineering;

Yourdon Press, New York, 1979.

[DMR 85]

DMR: Guide de développement d'un système d'information, partie 2

le développement du système; Ducros, Meilleur, Roy & Associés

Ltée, deuxième édition, Montréal, 1985.

[Frenkel 85]

K. A. Frenkel: Toward automating the software development cycle;

Comm. ACM, 28 (6), 1985, 578-589.

[Gomaa 84]

H. Gomaa: A software design method for real-time Systems;

Comm. ACM, 27 (9), 1984, 938-949.

[Gnes 81]

D. Gries: The Science of Programming; Springer-Verlag,

New York, 1981.

[Guttag 77]

J. V. Guttag: Abstract data types and the development of data

structures; Comm. ACM, 20 (6), 1977, 397-404.

[Hanrilton 76]

M. Hamilton, S. Zeldin: Higher order software - A methodology

for defining software; IEEE Trans. on Software Engineering,

SE 2 (l), 1976, 9-32.

40

[Hamilton 83]

M. Hamilton, S. Zeldin: The functional life cycle model and its

automation: USE.IT; The Journal of Systems and Software, 3 (l),

1983, 25-62.

[Harandi 85]

M. T. Harandi, M. D. Lubars: A knowledge based design aid for

software Systems; Proceedings of Softfair Conférence II,

San Francisco, 1985, 67-74.

[Hoffnagle 85]

G. F. Hoffnagle, W. E. Beregi: Automating the software

development process; IBM Systems Journal, 24 (2), 1985, 102-120.

[Howden 82]

W. E. Howden: Contempory software development environments;

Comm. ACM, 25 (5), 1982, 318-329.

[Jackson 75]

M. A. Jackson: Principles of Program Design; Académie Press,

New York, 1975.

[Kant 85}

E. Kant: Understanchng and automating algonthm design;

IEEE Trans. on Software Engineering, SE 11 (11), 1985,

1361-1374.

4l

[Krell 85]

E. Krell, E. Lor: Current state of the SARA/IDEAS design

environment; Proceedings of Softfair Conférence II,

San Francisco, 1985, 218-230.

[Leung 85]

C. H. C. Leung, Q. H. Choo: A knowledge-base for effective

software spécification and maintenance; Proceedings of the 3rd

Int. Workshop on Software Spécification and Design, London,

1985, 139-142.

[Liskov 75]

B. Liskov, S. Ziltes: Spécification techniques for data

abstraction; IEEE Trans. on Software Engineering, SE l (l),

1975, 7-19.

[Ludewig 85]

J. Ludewig, M. Glinz, H. Huser, G. Matheis, H. Matheis,

M.F. Schmidt: SPADES - A spécification and design System and

its graphical interface; Proceedings of the 8th Int. Conf. on

Software Engineering, London, 1985, 83-89.

[Mohri 84]

T. Mohn, E. Ono, S. Uehara, T. Takao, H. Sato: PDAS: An

assistant for detailed design and implementation of programs;

Proceedings of the 7th Int. Conf. on Software Engineering,

Orlando, 1984, 108-115.

4Z

[Monconi 79]

M. S. Monconi: A designer/verifier's assistant;

IEEE Trans. on Software Engineering, SE 5 (4), 1979, 387-401.

[Mostow 85]

J» Mostow: Foreword: What is AI? And what does it have to do

with software engineering?; IEEE Trans. on Software

Engineering, SE 11 (11), 1985, 1253-1256.

[Nassi 73]

I. Nassi, B. Schneiderman: Flowchart techniques for structured

programming; ACM SIGPLAN Notices, 8 (8), 1973, 12-26.

[Parnas 72]

D. Parnas: On the criteria to be used in decomposing Systems

into modules; Comm. ACM, 15 (12), 1972, 1053-1058.

[Périls 85]

A. J. Périls: Another view of software; Proceedings of the 8th

Int. Conf. on Software Engineering, London, 1985, 395-396.

[Redwine 84]

S. T. Redwine Jr., L. G. B-ecker, A. B. Marmor-Squires,

R. J. Martin, S. H. Nash, W. E. Riddle: DoD related software

technology, requirements, practices, and prospects for the future;

IDA paper P-1788, Institute for défense analysis, 1984.

43

[Reiss 84]

S. P. Reiss: Graphical program development with PECAN program

development Systems; Proceedings of the ACN SIGSOFT/SIGPLAN Software

Engineering Symposium on Practical Software Development

Environments, Pittsburg, 1984, 30-41.

[Riddle 78]

W. E. Riddle, J. C. Wileden, J. H. Sayler, A. R. Segal,

A. M. Stavely: Behavior modeling during software design;

IEEE Trans. on Software Engineering, SE 4 (4), 1978, 283-292.

[Robillard 81]

P. N. Robillard, R. Plamondon: An interactive tool for

descriptive, operational and structured documentation;

Proceedings of the 23rd IEEE Comp. Int. Conf.,

Washington, D.C., 1981, 291-295.

[Rabinard 85]

P. N. Robillard: A software tool and a schematic notation that

improve the use of prograimiing languages; Proceedings of

Softfair Conférence II, San Francisco, 1985, 149-158.

[Rosenberg 85]

D. Rosenberg: PRISM - Productivity improvement for software

engineers and managers; Proceedings of the 8th l nt. Conf. on

Software Engineering, London, 1985, 2-7.

[Roy 76]

P. Roy, R. St-Denis: Linear flowchart generator for a

structured language; ACM Sigplan Notices, 11 (11), 1976, 58-64.

44

[Schindler 81]

M. Schindler: Today's software tools point to tomorrow's tool

Systems; Electronic Design, 29 (7), 1981, 73-110.

[Sievert 85]

G. E. Sievert, T. A. Mizell: Specification-based software

engineering with TAGS; Computer, 18 (4), 1985, 56-65.

[Soloway 84]

E. Soloway: A cognitively-based methodology for designing

languages/environments/methodologies; Proceedings of the ACM

SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

Software Development Environments, Pittsburgh, 1984, 193-196.

[Sowa 84]

J. F. Sowa: Conceptual Structures - Information Processing in Mind

and Machine; Addison Wesley, Reading, MA, 1984.

[TepHtzky 79]

P. Teplitzky: An approach for choosing a programming spécification

methodology; COMPSAC, 1979, 128-135.

[Vefsnmo 85]

E. A. M. Vefsnmo: DASOM - A software engineering tool for

communication applications increasing productivity and software

quality; Proceedings of the 8th Int. Conf. on Software Engineering,

London, 1985, 26-33.

45

[Vos bury 84]

N. A. Vosbury: Process design; In Handbook of Software Engineering,

Edited by C. R. Vick, C. V. Ramamoorthy, Van Nostrand Reinhold,

New York, 1984, 544-564.

[Warnier 74]

J. D. Warnier: Logical Construction of Programs;

Van Nostrand Reinhold Co., New York, 3rd Ed, 1974.

[Yau 86]

S. S. Yau, J. J.-P. Tsai: A survey of software design techniques;

IEEE Trans. on Software Engineering, SE 12 (6), 1986, 713-721.

[Yourdon 75]

E. Yourdon: Techniques of Program Structure and Desi.gn;

Prentice-Hall, Englewood Cliffs, 1975.

[Yourdon 79]

E. Yourdon, L. L. Constantine: Structured Design:

Fundamentals of a Discipline of Computer and Systems Design;

Prentice-Hall, Englewood CHffs, 1979.

DEUXIEME PARTIE

DEFINITION DU PROBLEME

n

SOMMAIRE

Dans ce rapport, nous donnons une orientation à notre projet de

recherche. Nous introduisons tout d'abord les systèmes informatiques

guidés par un système expert qui associent la représentation procédu-

raie à la représentation déclarative. Nous montrons 1"utilité de tels

systèmes, d'une part en précisant dans quel contexte cette solution

est applicable, et d'autre part en dégageant leurs caractéristiques.

Nous présentons ensuite une approche générale pour le développement et

la maintenance de systèmes informatiques complexes. Nous identifions

les problèmes inhérents à cette approche et nous indiquons quelques

éléments de solutions basés sur des réalisations récentes. Enfin,

nous concluons cette étude en énumérant une liste de problèmes encore

ouverts. Chaque problème constitue un sujet de recherche potentiel à

approfondir.

111

TABLE DES MATIERES

l. Introduction ... l

2. Les systèmes informatiques guidés par un système expert 3

3. Un modèle général pour le développement et la maintenance de
systèmes informatiques guidés par un système expert 6

4. Quelques exemples de systèmes informatiques guidés par un
système expert ... 10

4.1 HEXSCON .. 10

4.2 Un générateur de code pour compilateurs 11

4.3 YES/MVS .. 12

4.4 Autres systèmes en développement 13

5. Problèmes particuliers au modèle 13

5.1 Intégration du système expert 14

5.2 Représentations incompatibles des données 15

5.3 Outils techniques .. 16

5.4 Le temps réponse pour les applications en temps réel 16

5.5 Raisonnements incohérents 17

5. Conclusion ... 17

BIBLIOGRAPHIE ... 19

l. Introduction

Nous proposons comme objectif à notre projet de recherche d'appor-

ter une contribution théorique et pratique au problème du développe-

ment et de la maintenance des systèmes informatiques complexes. Pour

préciser ce que nous entendons ici par systèmes informatiques com-

plexes, rappelons la classification des programmes présentée par

Lehman [Lehman 80]. Cette classification partage les programmes en

trois catégories distinctes: les S, P et E-programmes. Un S-programme

constitue une solution informatique à un problème qui est précisément

et complètement défini par une spécification statique. Les exemples

suivants donnent un aperçu de quelques S-programmes: l'inversion

d'une matrice carrée, la synchrom'sation de processus dans un système

d'exploitation et le tn" d'un vecteur d'éléments. L'entretien effec-

tué sur les S-programmes est de nature perfectible; c'est-à-dire qu'il

consiste à rendre les programmes plus efficaces, plus lisibles et plus

élégants. Un P-programme contient des algorithmes heuristiques qui

calculent des solutions approximatives suffisamment proches des solu-

tions optimales d'un problème réel complètement spécifié pour lequel

les spécialistes possèdent une connaissance incomplète, imprécise,

contradictoire et évolutive. Les programmes joueurs d'échec, par

exemple, entrent dans cette catégorie. Finalement, un E-programme est

dérivé d'une spécification S, elle-même formulée à partir d'un modèle

M. La construction du modèle M comporte un processus d'abstraction

d'une partie de 1"environnement. Les E-programmes diffèrent des

P-programmes par le fait qu'ils font partie intégrante des applica-

tions qu'ils modélisent. A titre d'exemples, mentionnons les systèmes

en temps réel, les systèmes d'exploitation, les systèmes répartis, les

systèmes de bureautique et les ateliers logiciels. Tout comme les

P-programmes, les E-programmes sont sujets à de fréquentes modifica-

tions qui résultent principalement des changements de 1'environnement

ou des pressions des utilisateurs de plus en plus expérimentés

vis-à-vis le système. L'entretien d'un E-programme reproduit les

changements qui surviennent dans 1'environnement, le modèle M, la

spécification S et le programme. Dans ce rapport, nous associons

1'expression "système informatique complexe" à un E-programme.

Selon Lehman, la décomposition d'un E-programme en modules permet

de distinguer les éléments fonctionnels qui peuvent être complètement

et précisément spécifiés, des éléments fonctionnels qui sont par

nature heuristiques ou évolutifs. Dans ce dernier cas, ou bien ces

éléments ne sont pas reconnus lors de la spécification du système et

alors ils sont implicitement contenus dans le modèle, ou bien ils sont

clairement identifiés et explicitement spécifiés. Au lieu d'utiliser

1'approche procédurale pour implanter ces dernières spécifications,

nous suggérons de traduire ces spécifications en une représentation

exécutable par un système expert. Ainsi, un E-programme sera cons-

truit en deux parties distinctes: une partie stable construite à

partir des techniques conventionnelles de conception de systèmes

informatiques et une autre partie sujette à des changements continus

supportée par des outils de systèmes experts. La première partie

correspond à un ensemble de S-modules tandis que la deuxième partie

correspond aux éléments heuristiques et évolutifs du E-programme,

appelés E-étéments. Nous appelons un système informatique développé

selon cette approche un système informatique guidé par un système

expert (knowledge-driven System) [St-Denis 86].

Dans la prochaine section, nous justifions notre approche à ce

problème en montrant comment les systèmes informatiques guidés par un

système expert constituent une solution originale pour implanter des

E-programmes. Dans la troisième section, nous décrivons une méthode

générale à suivre pour développer et maintenir ce type de systèmes.

Dans la quatrième section, nous présentons quelques exemples de

systèmes informatiques guidés par un système expert. Dans la cinquiè-

me section, nous passons en revue un ensemble de problèmes partielle-

ment résolus qui sont particuliers à cette approche. Enfin, dans la

dernière section, nous fournissons une liste de problèmes à attaquer

avec plus de profondeur.

2. Les systèmes informatiques guidés par un système expert

Un des moyens à prendre pour développer et maintenir plus efficace-

ment des E-programmes consiste à transformer le cycle de vie conven-

tionnel pour inclure 1'utilisation intensive des techniques de l'in-

telligence artificielle. Une solution à long terme proposée par

Balzer, Cheatham et Green exploite les outils logiciels à base de

connaissances pour automatiser 1"étape de développement [Balzer 83].

La solution à court terme présentée dans ce rapport est complètement

différente. Nous suggérons de concevoir un E-programme comme un

système informatique guidé par un système expert, c'est-à-dire d'in-

tégrer un système expert dans chaque E-programme. Cette solution peut

paraître à première vue inadéquate. Cependant les caractéristiques de

1"environnement dans lequel s'exécutent les E-programmes s'apparentent

aux critères qui définissent en quelque sorte la classe des problèmes

auxquels s'attaquent les systèmes experts.

L'environnement dans lequel un E-programme s'exécute inclut un

grand nombre d'objets. Chaque objet appartient à une classe qui est

définie en terme d'une liste d'attributs. Les classes d'objets

présentent entre elles des relations. Par exemple, une classe peut

être définie comme une sous-classe d'une autre classe ou comme une

combinaison de plusieurs classes. Des événements peuvent générer ou

détruire des objets, ou altérer les valeurs courantes associées aux

attributs d'un objet. De plus, chaque utilisateur du système applique

ses propres règles pour manipuler les objets et pour réagir aux

événements. Les règles sont exécutées sous certaines Jiypothèses et

contraintes. Elles sont basées sur 1 "expérience de Tutilisateur et

sur son appréhension actuel de 1'environnement.

Au début, les utilisateurs ont des besoins qui ne sont pas toujours

bien exprimés. 'Les besoins sont imprécis et incomplets. Les utilisa-

teurs prennent de 1'expérience au fur et à mesure qu'ils utilisent le

système informatique. La spécification initiale est raffinée et

améliorée pour inclure des heuristiques sophistiqués et de nouvelles

facilités. Différentes perceptions de 1'environnement et des besoins

spécifiques propres à chaque utilisateur conduisent éventuellement à

des connaissances contradictoires ou incompatibles, ce qui obligent

les informaticiens à maintenir différentes versions du E-programme.

[.'altération des spécifications est aussi gouvernée par 1'évolution de

Tenvironnement. Des classes d"objets et des événements sont ajoutés,

modifiés ou détruits. Les heunstiques deviennent de plus en plus

complexes.

Les E-programmes doivent interagir avec les utilisateurs pour de

multiples raisons. Deux d'entre elles sont importantes dans cette

discussion. Prenn'èrement, pour un E-programme, les aspects qualita-

t1fs de la solution sont plus importants que les aspects quantitatifs.

Ainsi, les utilisateurs sont plus confortables si le système informa-

tique peut expliquer et justifier ses conclusions à propos de la

solution générée. Deuxièmement, si le système informatique se trouve

dans une impasse, il peut interroger 1'utilisateur pour lui demander

de 1'information supplémentaire afin de trouver éventuellement une

meilleure solution.

Les systèmes informatiques guidés par un système expert constitue

certainement une solution appropriée au problème que nous voulons

attaquer. En effet, ils offrent un ensemble de mécanismes qui

permettent de capter sous une forme déclarative 1'importante quantité

de connaissances relatives à 1'environnement, d'introduire ou de

modifier rapidement et aisément les éléments heuristiques et évolutifs

sans détériorer la structure du système informatique, d'exécuter une

partie des spécifications sans les traduire dans un langage procédu-

ral, de raisonner avec des connaissances imprécises et incertaines, et

enfin de dialoguer de façon conviviale avec les utilisateurs pour la

recherche ou 1'explication d'une solution.

Cette approche de concevoir des systèmes informatiques complexes

possède trois avantages significatifs par rapport à 1"approche conven-

tionnelle. Premièrement, ils possèdent un plus haut degré de modifia-

bilité et donc d'adaptabilité vis-à-vis 1"environnement et les utili-

sateurs, car la majorité des modifications ne sont plus faites dans le

code mais à un niveau d'abstraction plus élevé. Deuxièmement, la

totalité ou des parties du système sont réutilisables, car elles sont

indépendantes de 1"environnement, des conditions d"opération et des

stratégies heuristiques. Troisièmement, les systèmes qui en résultent

apparaissent de plus en plus sophistiqués, car ils incorporent toute

la puissance et les propriétés des systèmes experts.

Cette approche apparaît techniquement viable dû aux récents progrès

et développements dans les domaines du prototypage, des systèmes

experts et des langages de spécifications. Enfin, soulignons qu'une

étude détaillée a démontré 1"intérêt d'une telle approche pour une

classe particulière de E-programmes, soit celle des systèmes répartis

[St-Denis 86].

3. Un modèle général pour le développement et la maintenance de

systèmes informatiques guidés par un système expert

La Figure l illustre de façon schématique un modèle pour le

développement et la maintenance de systèmes informatiques guidés par

un système expert. La première étape de ce processus consiste à
l»

décrire le domaine d"application en termes d'objets, d'événements, de

contraintes et de stratégies heunstiques en utilisant, par. exemple,

le langage RML [Greenspan 84]. Cette description formalise le modèle

M et permet de construire une première base de connaissances requise

pour 1"exécution du système informatique guidé par un système expert.

Dans la deuxième étape du processus, une analyse des besoins

exprimés par 1'utilisateur- permet d'identifier les composantes fonc-

tionelles et les éléments de données du système informatique. Les

données et les fonctions sont raffinées jusqu'à ce qu'elles ne

requièrent plus aucune décomposition. A la fin de cette étape, on

obtient la spécification formelle du système S.

environnement

_L
DESCRIPTION DU DOMAINE

D'APPLICATION

besoins de TutHisateur

_L

ANALYSE DES BESOINS

spécification formelle du système

_L

FILTRAGE

partie statique de 1a spécification

J_
-»•

partie heunstique de la spécification

_1
CONCEPTION ET

CODIFICATION

COHPILATEUR DE
CONNAISSANCES

bases de connaissances

MAINTENANCE •S-modules

version U

version ni

moteur d'inférence

système informatique guidé par un système expert. MAINTENANCE

Figure l - Modèle de développement et de maintenance

La troisième étape comporte une opération de filtrage. La spécifi-

cation S est divisée en deux parties. La première partie (S^)

identifie les composantes qui sont des S-modules tandis que la seconde

partie (S^) identifie les E-éléments. Un lien est établi entre un

point de décision dans S^ et une portion des connaissances déclarées

dans la première étape. Il s'agit ici d'appliquer le principe de

séparation des mécanismes et des politiques, introduit par Bn'nch-

Hansen [Bn'nch-Hansen 70], afin d'identifier les points de décision.

L'applicabilité de ce principe est rendue nécessaire pour éviter aux

concepteurs d'introduire dans la spécification détaillée de la partie

procédurale des E-éléments formulés ultén'eurement.

Une fois cette étape réalisée, le processus de développement se

divise en deux branches parallèles. La branche de gauche représente

essentiellement le cycle de vie traditionnel [Boehm 81]. La spécifi-

cation S, est traduite successivement en une spécification architectu-

raie, une spécification détaillée, puis en un ensemble de S-modules

écrits dans un langage de programmation procédural. Les techniques de

réutilisation de programmes sont possibles, car le système informati-

que est indépendant des stratégies heuristiques, des conditions

d'opérations et des environnements.

La branche de droite représente le processus évolutif de développe-

ment des systèmes à base de connaissances [Hayes-Roth 84]. Les

connaissances sont compilées sous une forme exécutable par un moteur

•d'inférence puis mémon'sées. Enfin, elles sont vén'fiées, et validées

par rapport aux intentions des utilisateurs.

La dernière étape consiste à lier le moteur d'inférence et les

S-modules via un mécanisme d'éditions de liens pour constituer le

système informatique guidé par un système expert. Au moment de

1'exécution, le moteur d'inférence prend des décisions à partir de la

base des faits mise à jour par 1'utilisateur et 1"ensemble des

S-modules.

Dans ce modèle, la maintenance apparaît à deux endroits différents.

Un entretien de nature perfectible et corrective améliore la qualité

et la performance, et corrige les défaillances des S-programmes. Cet

entretien est fait sur* le code. Un second entretien permet d'adapter

le système à des changements de 1"environnement ou à de nouvelles

politiques des utilisateurs. Si ces nouveaux besoins n'entralnent pas

de modification de 1"architecture du système, les utilisateurs peuvent

eux-mêmes modifier la base de connaissances pour améliorer la perfor-

mance globale du système ou ajouter de nouvelles connaissances pour

adapter le système .à un nouvel environnement . Il s'agit dans ce cas

d'un entretien correctif, perfectible et adaptatif sur les E-éléments

seulement. Enfin, si les nouveaux besoins exprimés par les utilisa-

teurs nécessitent 1'ajout de nouvelles fonctionnalités au système,

1'addition de nouveaux S-modules est inévitable.et la structure du

système doit être modifiée en utilisant un ensemble de techniques

connues et appropriées.

Le problème de versions multiples est partiellement résolu en

associant à chaque famille d'utilisateurs un ensemble de connaissances

qui leur sont propres. L'activation du bon ensemble de connaissances

au moment de 1'exécution du E-programme peut s'opérer au niveau de la

méta-connaissance d'une seule base de connaissances universelle ou à

Taide d'une sélection d'une base de connaissances spécifique. Cette

dernière solution est présentée à la Figure l.

En construisant les E-programmes de cette façon, nous bénéficions

des avantages d'une approche classique et d'une approche moderne.

Dans 1"approche classique, les informaticiens disposent d'un grand

10

nombre d'outils qui sont techniquement viables et praticables. De

plus, la programmation procédurale apparaît la plus appropriée pour le

parc d'ordinateurs actuel et pour la réutilisation de programmes

existants. Par contre, Tapproche système expert permet une modifica-

tion plus aisée du système, car les énoncés de la spécification

initiale ne passent pas par toute une série de transformations

successives qui ne sont pas aujourd'hui complètement systématisées.

Les énoncés sont donc simplement déclarés en vrac puis compilés.

Cette dernière approche s"apparente aux techniques de prototypage.

Finalement, 11 est intéressant de noter que ce processus reconnaît

trois types d'objets qui interviennent dans le développement d'un

E-programme: les algorithmes (les S-modules), les données (les struc-

tures de données des S-modules et de la base des faits) et les

connaissances liées à 1'environnement et au domaine d'application (la

base de connaissances).

4. Quelques exemples de systèmes informatiques guidés par un système

expert

Voici une brève description de trois systèmes informatiques guidés

par un système expert. Pour chaque système, nous indiquons le domaine

d'application, nous décrivons 1"architecture du système et nous

présentons les particularités les plus intéressantes.

4.1 HEXSCON

HEXSCON (Hybn'd EXpert System CONtroller) est un système expert

destiné aux applications en temps réel aussi bien dans le domaine

11

militaire que dans le domaine industriel [Latt-imer Wright 86]. Le

système HEXSCON comporte quatre parties principales: le moteur

d'inférence, la base de connaissances, le gestionnaire de la base des

connaissances et un système d'explo-itation qui gère les différentes

tâches, les capteurs et les effecteurs. Le gestionnaire et la base

des connaissances résident sur un ordinateur de grande taille. Les

connaissances sont représentées à ce niveau dans un langage semblable

à 1'anglais. Cette connaissance est compilée, puis transférée dans un

micro-ordinateur où s'exécutent 1e moteur d'inférence et le système

d'exploitation en temps réel. Ce système opère dans un environnement

dynamique. Les décisions doivent être prises pour permettre une

réaction immédiate aux événements. Les signaux enregistrés par des

capteurs sont interprétés puis ensuite analysés pour identifier les

types d'objets et les événements connus de la base de connaissances.

Les propriétés temporelles et spaciales ainsi que tes relations qui

existent entre les objets et les événements conduisent à des rai'sonne-

ments progressifs dont la complexité augmente en fonction du temps

disponible. De plus, ce système fonctionne raisonnablement et sûre-

ment même à partir de données incertaines et imprécises. Enfin, il

s'exécute sur des micro-ordinateurs avec des ressources matérienes

limitées.

4.2 Un générateur de code pour compitateurs

Les compilateurs commerciaux développés récemment par la firme

Intermetrics Inc. contiennent un système expert pour la génération de

code de haute qualité [Haradhvala 84]. Ce type de système comporte un

compllateur- qui génère des arbres syntaxiques abstraits et un système

12

expert qui transforme ces structures en une séquence d"instructions

exécutables par une machine cible. L'approche système expert est

rendue nécessaire, car les machines cibles possèdent des jeux d'ins-

tructions sophistiqués et des architectures particulières. Les.utili-

sateurs des compilateurs peuvent aisément adapter le générateur de

code en fonction de besoins spécifiques. Ils n'ont pas à connaHre la

logique du compilateur et des outils de construction de compilateurs.

4.3 YES/MVS

YES/MVS est un système expert qui assiste les opérateurs dans la

conduite d'ordinateurs [Enm's 86]. n fournit des réponses rapides,

cohérentes et précises à des situations aussi bien routinières que

problématiques. Il réduit et réorganise le flot des messages entre

Topérateur et le système cible. L'architecture du système se composé

principalement de quatre machines virtuelles. La machine virtuelle à

opérer et trois autres machines qui s'exécutent sur un ordinateur

distinct de la machine à opérer. Une première machine virtuelle

constitue le système expert. Elle exécute les règles de la base des

connaissances en fonction des messages qu'elle reçoit de la machine

cible. En réponse aux décisions prises, le système expert retourne

des commandes à la machine cible. Aussi, le système expert reçoit de

et envoie à 1"opérateur du texte. Une deuxième machine virtuelle

constitue 1'interface entre la machine cible et le système expert.

Elle traduit tous les messages de la machine cible dans un format

compatible pour le système expert et vice et versa. Finalement, une

troisième machine virtuelle fournit une interface de communication

entre le système expert et 1'opérateur. Elle transmet aussi les

13

commandes suggérées par le système expert et autorisées par l'opéra-

teur à la deuxième machine virtuelle. Le squelette de systèmes

experts OPS5 a été utilisé pour construire YES/MSV. Certains change-

ments ont été apportés à OPS5 pour prendre en considération les

problèmes qui surviennent dans un environnement dynamique.

4.4 Autres systèmes en développement

11 existe plusieurs projets en développement qui nécessitent la

construction de systèmes informatiques guidés par un système expert.

Les systèmes de traitement de texte dans lequel Texpertise des

typographes peut être incluse pour formatter du texte constitue un

exemple intéressant. Bonham et ai. [Bonharn 85] entrevoit d'intégrer

de 1"expertise en écrivant un tel système en LISP. La robotique et

1'opération d'avions commerciaux et militaires [Georgeff 86] consti-

tuent d"autres exemples d'applications en temps réel.

5. Problèmes particuliers au modèle

Dans cette section, nous dégageons les principaux problèmes inhé-

rents à 1'approche décrite dans la troisième section. Mais avant de

présenter les différents problèmes et les solutions qui ont été

retenues, i1 nous apparaît important de distinguer entre 1'évolution

de 1'environnement et des événements qui surviennent dans 1'environne-

ment. . L'évolution de 1'environnement se traduit par des changements

progressifs à des intervalles de temps macroscopiques. Ces change-

ments sont pris en considération par des modifications apportées à la

base des connaissances ou aux S-modules. Il existe aussi des

14

événements qui entraînent des changements rapides dans la base des

faits. Ces changements surviennent à des intervalles de temps

microscopiques. Les événements déclenchent des raisonnements au

niveau du système expert. Dans ce dernier cas, on parle d'applica-

tions qui s"exécutent dans un environnement dynamique. Des problèmes

de temps réponse et de cohérence dans le raisonnement doivent être

résolus. Pour les applications qui s'exécutent dans un environnement

statique, le système expert raisonne à partir de faits qui ne changent

pas durant ses raisonnements. Le problème de temps réponse est moins

aigu. Le problème de raisonnements incohérents n'existe pas.

5.1 Intégration du système expert

La façon dont le système expert s'intègre à ta partie procédurale

se traduit dans le contrôle ou la logique du système en général. Dans

HEXSCON, le système d'exploitation considère le système expert comme

une tâche qui est déclenchée par une interruption logique. Une

interruption logique interrompt le raisonnement courant qui est

abandonné et démarre un raisonnement sur un nouveau problème.. Dans ce

cas, on dit que le système expert est fortement intégré à la partie

procédurale. Dans les deux autres systèmes, Texécution du système

expert est indépendante de la partie procédurale. Le système expert

est faiblement intégré. Dans le cas des compilateurs, le système

expert exécute une tâche bien circonscrite dans une séquence d'opéra-

tions (analyse lexicale, syntaxique, génération du code, optimisation

du code). Dans le cas de YES/MVS, le système expert est indépendant

de la machine à opérer et un mécanisme de communication inter-machines

est mise en oeuvre pour répondre aux entrées/sorties.

15

5.2 Représentations incompatibles des données

Les représentations des données sont généralement différentes dans

la partie procédurale et dans la partie déclarative. Dans 1'approche

procédurale, les attnbuts des objets sont contenus dans des structu-

res de données. Le langage procédural permet de décrire ces structu-

res et de manipuler, leurs contenus. Des variables représentent des

adresses où sont emmagasinées les données. Les systèmes experts

n'utilisent pas la même représentation. Ils manipulent des données

emmagasinées sous une forme symbolique. Cette incompatibilité dans

les représentations internes des données conduit à définir une

interface entre la partie écrite dans un langage procédural et le

système expert. Quelques solutions ont été retenues. Par exemple,

HEXSCON utilise un traducteur qui permet de passer d'une représenta-

tion à une autre. Le traducteur connaît la représentation des données

dans chacune des parties et la façon de passer de l'une à l'autre. La

solution retenue dans le système YES/MVS est différente. Une machine

virtuelle traduit les messages générés par le système MVS en un format

compatible pour le système expert. Ensuite les réponses du système

expert sont transformées en des commandes de MVS. Contrairement au

traducteur de HEXSCON qui travaille sur les données internes du

programme, la machine virtuelle traite les entrées/sorties de MVS.

Enfin, les compilateurs d'Intermetrics produisent des données inter-

prétables par le système expert qui génère du code optimisé. Aucun

échange n'est fait dans le sens inverse (échange unidirectionnel).

Dans toutes ces solutions, on contourne le problème, car il n'existe

pas une véritable intégration des données de ta partie procédurale et

des données de la base des faits. Le passage est effectué par une

16

traduction des données et par une édition de liens appropriée. Une

solution plus élégante consiste à définir un langage de haut niveau

qui permet la déclaration de structures de données, d"algorithmes et

de connaissances. L'association données et faits est assurée par des

mécanismes du langage, tout comme 1"interaction entre le système

expert et les algorithmes. Notons enfin qu'il existe une représenta-

tion des connaissances, appelée connaissance procédurale, qui intégre

1'approche déclarative et 1"approche procédurale [Georgeff 83].

5.3 Outils techniques

A notre connaissance, il n'existe pas véritablement d'outils

techniques spécifiques au développement et à la maintenance des

systèmes informatiques guidés par un système expert. La méthode

présentée dans la section 3 doit être approfondie et des outils

logiciels restent à développer.

5.4 Le temps réponse pour les applications en temps réel

Pour les applications en temps réel, le temps réponse est crucial.

Le moteur d'inférence ne peut raisonner dans Thypothèse qu'il dispose

d'un grand temps. Plusieurs solutions ont été envisagées pour

améliorer la performance des moteurs d'inférence. Par exemple, le

moteur d'inférence de HEXSCON utilise de la connaissance compilée et

introduit la notion de raisonnement progressif dont la complexité

augmente avec le temps. Le système YES/MVS utilise une version

modifiée du système OPS5 et s'exécute sur un ordinateur de très grande

taille (IBM/370). Les parties droites des règles sont compilées et

17

les règles sont distribuées selon le sous-domaine d'activité entre

plusieurs systèmes OPS5 qui s"exécutent concurremment sur des machines

virtuelles distinctes. Pour les applications statiques le temps

réponse n'est pas un facteur déterminant et ces mécanismes sont moins

importants.

5.5 Raisonnements incohérents

Dans un environnement dynamique, une altération des faits initiaux

durant un raisonnement peut conduire à des déductions incohérentes.

La solution retenue pour résoudre ce problème dans le système YES/MVS

consiste à reconnaître après chaque déduction les contradictions, et à

considérer dans ce cas de nouvelles avenues de raisonnement. On

appelle raisonnement non monotone ce type de raisonnement [Schor 86].

5. Conclusion

L'intérêt pour les systèmes informatiques guidés'par un système

expert est récent. Seulement quelques prototypes existent au-

jourd'hui. Outre la réalisation pratique d'un système informatique

guidé par un système expert, cette approche soulève des problèmes

techniques qui nécessitent un travail de recherche encore important.

Plusieurs problèmes de recherche restent encore ouverts, sinon à

découvrir, en particulier:

~1"approfondissement de la méthode présentée dans la troisième

section;

18

•la construction d'outils logiciels pour la conception, le dévelop-

pement et la maintenance de tels systèmes;

•la définition d'un langage de programmation propre aux systèmes

informatiques guidés par un système expert.

19

BIBLIOGRAPHIE

[Balzer 83]

R. Balzer, T.E. Cheatham, Jr., C. Green: Software technology in

the 1990's: Using a new paradigm; Computer, 16 (11), 1983,

39-45.

[Boehm 81]

B. W. Boehm: Software Engineering Economies; Prentice-Hall,

Englewood Cliffs, NJ, 1981.

[Bonham 85]

M. Bonham, I. H. Witten:' Towards distributed document préparation

with interactive and non-interactive viewing; INFOR, 23 (4),

1985, 365-388.

[Brinch Hansen 70]

P. Brinch Hansen: The nucleus of a multiprogramming System;

Commun. ACM, 13 (4), 1970, 238-241.

[Ennis 86]

R. L. Ennis, <J. H. Griesmer, S. J. Hong, M. Karnaugh,

J. K. Kastner, D. A. Klein, K. R. Milliken, M. I. Schor,

H. M. Van Woerkom: A continuous real-time expert System for

computer opérations; IBM Journal Research and Development,

30 (l), 1986, 14-28.

20

[Georgeff 83]

M. P. Georgeff, U. Bonollo: Procédural expert Systems; Proceedings

of the 8th Int. Joint Conf. on Artificial Intelligence, Karlsruhe,

Germany, 1983, 151-157.

[Goergeff 86]

M. P. Georgeff: Planning and reasonm'ng in dynamic worlds;

Centre de cours intensifs de 1'Ecole Polytechnique de Montréal,

1986.

[Greenspan 84]

S. J. Greenspan: Requirements modeling: a knowledge représentation

approach to software requirements defimtion; PhD thesis,

Technical report CSRG-155, University of Toronto, 1984.

[Haradhvala 84]

S. Haradhvala, B. Knobe, N. Rubin: Expert Systems for high

quality code génération; Proceedings of the Ist Conf. on

Artificial Intelligence Applications, Denver, CO, IEEE Computer

Society, Silver Spring, Md., 1984, 310-313.

[Hayes-Roth 84]

F. Hayes-Roth: The knowledge-based expert System: a tutorial;

Computer, 17 (9), 1984, 11-28.

[Lattimer Wn'ght 86]

M. Lattimer Wn'ght, M. W. Green, G. Fiegl, P. F. Cross:

An expert System for real-time control; IEEE Software, 3 (2),

1986, 16-24.

21

[Lehman 80]

M. M. Lehman: Programs, life cycles, and laws of software

évolution; Proceedings of the IEEE, 68 (9), 1980, 1060-1076.

[Schor 86]

M. I. Schor: Déclarative knowledge programming: better than

procédural?; IEEE Expert, l (l), 1986, 36-43.

[St-Denis 86]

R. St-Denis: Expert Systems for distnbuted Systems;

Interfaces in Computing, 3 (3-4), 1986, 217-225.

ECOLE POLYTECUNIQyEDE MONTREAL

393340028944

Ki

