POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE =50

PolytechniqUe Montréal D'INGENIERIE

Titre:/Une Approche pour le développement et la maintenance de
Title: systemes informatiques complexes

Auteurs:
Authors:

Date: 1986
Type: Rapport / Report

Richard St-Denis, & Pierre N. Robillard

Référence: St-Denis, R., & Robillard, P. N. (1986). Une Approche pour le développement et la
" 'maintenance de systémes informatiques complexes. (Rapport technique n° EPM-

Citation: RrT.86-31). https://publications.polymtl.ca/10159/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:) o
PolyPublie URL: https://publications.polymtl.ca/10159/

Version: Version officielle de I'éditeur / Published version

Conditions d’utilisation

Tous droits réservés / All rights reserved
Terms of Use:

Document publié chez I’éditeur officiel
Document issued by the official publisher

Institution: Ecole Polytechnique de Montréal

Numéro de rapport: o\ r1.86.31
Report number:

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/10159/
https://publications.polymtl.ca/10159/

EFM/RT-8&/31

{/UNE APPROCHE POUR LE DEVELOPPEMENT
T ET LA MAINTENANCE DE SYSTEMES

INFORMATIQUES COMPLEXES)}

Richard(ﬁt—benisb étudiant, Ph.D.
Pierre -N.(Robillarﬁ) Diretteur de thése

Département de Génie électrique

Ecole Polytechniﬁue de Montréal
Anﬁt(}986>

08 JAN. 1987

Toug droits réservés. On ne peut reproduire ni diffuser aucune partie du
présent ouvrage, sous gquelque forme que ce soit, sane avoir obtenu au
préalable 17 autoricsation écrite de 17auteur,

Dépdt légal, 2e trimestre 1984
Bibliotheégue nationale du Québec
Eibliothéque nationale du Canada

Pour se procurer une copie de ce document, s’adresser aus

Editions de 1'Ecole Folytechnique de Montréal
Ecole Folvtechnique de Montréal

Caze postale 6079, Succursale A

Montréal (Buébec) H3IC 3IA7

(514) 340-4000

Compter 0,104 par page f(arrondir au dollar le plus prés) et ajouter 3,00%
(Canada) pour ls» couverture, les frais de poste et la manutention. Régler
en donllars canadiens par chéque ou mandat-poste au nom de 1"Ecole
Folytechnique de HMontréal., Nous n’honorerons que leg . commandes
accompagnées d'un paiement, sauf s°il v a eu entente préalable dans le ras
g*établissements d’enzeignement, de sociétés ou d'organismes canadiens.

PREMIERE PARTIE

UNE APPROCHE POUR LE DEVELOPPEMENT ET LA
MAINTENANCE DE SYSTEMES INFORMATIQUES COMPLEXES

11

SOMMAIRE

Le génie logiciel s'intéresse a la pfoduction et a la maintenance
de systémes informatiques de haute qualité, Tivrés dans les délais
prescrits et aux colts estimés. Pour atteindre cet objectif fondamen-
tal, les outils logiciels offrent des éléments de solution intéres-
sants, car ils compiétent les méthodes et les langages en automatisant
différentes taches du processus de développement des systémes informa-
tiqueé. Dans ce rapport, nous prétons notre attention aux outils
logiciels de conception de systémes en présentant de fagon systémati-
que les différents choix qui s'offrent aux spécialistes de 1'informa-
tique pour 1'acquisition ou la création de tels outils. Aprés avoir
identifié deux approches possibles de construttion d'outils logiciels,
nous explorons les concepts et nous dégageons les problémes qui s'y
rattachent. Certains éléments introduits dans ce rapport ne sont pas
spécifiques & 1'étape de conception et peuvent é&tre généralisés aux
autres étapes du cycle de vie, en particulier 1'étape de spécificafion

formelle du systéme.

TABLE DES MATIERES

| 8114 o T 1 o3 o o 1
2. La conception des systémes informatiquesciiviveivnnnnnnn. 4
2.1 Le rdle de 1'étape de conception ...vveverernennnnneenneonss 4
2.2 Un modéle de conception ..vveveiveennerennnrenneens fereaeaa 5

2.3 Les environnements de conceptioncciiiiiniiiininenenennnnn 8

3. L'environnement de conception orienté vers les outils logiciels

conventionnels e essstesensnasectcaerrrseaaennnnean vee. 10
3.1 Les méthodes de coﬁception 13
3.2 Les notationsevvennenens T 16
3.3 Les outils logiciels conventionnelscovievenieennnenss 20

4. L'environnement de conception orienté vers les outils logiciels
d Dase de CONNATSSANCES tuuivirenneerneeonnensoeeanensonnnennnses 24

4.1 Quelques exemples d'outils logiciels & base de
CONNATSSANCES tuevernernssseansnescooenncnssncnoonnannnnes .o 27

4.2 Les caractéristiques des outils logiciels a base de

CONNATSSANCES wevvevensnnennnn Ceeteeasessitesactesesenacnns . 29

4.3 La modélisation du domaine d'applicationcvvvevinnnnnnn. 31
4.4 La modélisation du processus de conception v.veeeevvreeennns 33

5. Conclusion Ceseseasscsssesasaaceasttsesttsctsetattnncenta 34

BIBLIOGRAPHIE v e teeeenneeeneeaanaraa Ceeerrrrennnen Cerene 36

1. Introduction

La production d'outils logiciels.capables de fournir une assistance
aux concepteurs de systémes informatiques connait depuis ces derniéres
années une croissance rapide. I1 existe aujourd'hui plusieurs centai-
nes d'outils logiciels. Certains d'entre.eux sont disponibles commer-
cialement, d'autres plus expérimentaux n'ont pas encore été transférés
des institutions de développement et de recherche vers les sociétés
commerciales et industrielles. Fonctionnant seuls ou intégrés a un
environnement de génie 1og{cie1, ces outils visent surtout une
amé]ioratfon de la qualité du logiciel et un accroissement de la

productivité des équipes de développement.

A partir du moment ol 1'on s'est apergu que les concepteurs ne
dfsposaient pas d'outils adéquats pour effectuer convenablement leur
tache, les premiéres études du génie logiciel ont conduit & 1'é1abora-
tion et a la proposition de méthodes et de langages de conception de
systémes informatiques. Ce premier ensemble d'outils techniques,
largement accepté et répandu, connait encore aujourd'hui de nombreuses
améliorations et additions. Toutefois, il faut bien reconnaitre que
1'application manuelle des méthodes et des langages de conception
constitue un obstacle sérieux & un accroissement significatif de la
productivité des concepteurs dans un environnement réel de développe-
ment. Rapidement, les informaticiens ont décidé d'utiliser 1'ordina-
teur & leurs propres fins. I1s ont greffé autour de ces outils
techniques toute une gamme d'outils logiciels capables d'éditer, de
conserver, d'analyser et de documenter un ensemble voTumineux d'élé-

ments de données produitskpendant 1'étape de conception. Enfin,

depuis une quinzaine d'années, des groupes de chercheurs multidisci-
plinaires tentent de construire des outils capables d'effectuer

automatiquement une partie des tadches créatives des concepteurs.

I1 existe deux fagons d'aborder le probléme de conception, de
réalisation et de mise en oeuvre d'outils logiciels de conception de

systémes informatiques:

-La premiére consiste & distinguer clairement le processus de
conception et les produits qui résultent de 1'étape de conception.
Des}outi]s logiciels, dits conventionnels, traitent les ;pécifica—
tions architecturales et détaif]ées du systéme produites par les
concepteurs. Seuls ces derniers prennent des décisions, car ces
outils ne disposent pas de données sémantiques quant & la fagon
dont Tles spéciffcations ont été générées. Ces outils enrichissent
progressivement les méthodes et les langages de conception. Cette
approche pius traditionnelle a donné lieu a de nombreux travaux de

recherches théoriques et appliqueées.

-La deuxiéme considére le processus de conception comme un produit
au méme titre que les spécifications [Balzer 85]. I1 s'agit de
comprendre et de formaliser le processus de conception pour en
trouver une représentation et pour élaborer des méthodes de
raisonnement appropriées. Des outils logiciels, dits a base de
connaissances, guident, inspirent et parfois supplantent 1'exper-
tise des spécialistes du domaine. La logique, 1'intelligence
artificielle et la psychologie cognitive jouent un rdéle prépondé-
rant dans la réalisation dé tels outils. Dans la mesure oUu & long

terme elle pourra apporter des résultats intéressants, cette

nouvelle approche semble naturelle, car elle libére les concep-
teurs des détails techniques que leur imposent les méthodes, Tles

langages et les outils conventionnels.

Nous ne tenterons pas de classifier, de répertorier ou de présenter
les outils Togiciels qui existent aujourd'hui. D'excellentes études
ont fait le point sur 1'état d'art dans ce domaine, qu'il s'agisse des
outils logiciels conventionnels [Schindler 81; Howden 82;

De Drouas 82; Vosbury 84; Hoffnagle 85] ou des outils logiciels a base
de connaissances [Barr 82; Frenkel 85]. Avec uh regard nouveau et a
travers des récherches et des épp]ications récentes, nous examinons la
problématique 1iée & 1'élaboration d'outils logiciels. Nous établis-
sons des critéres pour 1'acquisition et la construction de tels
outils. Enfin, nous dégageons gquelques problémes non encore résolus

dans ce domaine.

Dans la deuxiéme section, nous présentons un modéle de conception
de systémes informatiques qui nous permet de mieux cerner les deux
approches normalement présentées dans les publications scientifiques.
Dans la troisiéme section, nous passons en revue les concepts de base
qui interviennent dans un environnement de conception orienté vers
T'utilisation d'outils logiciels conventionnels. Dans la quatriéme
section, nous présentons briévement quelques outils Tlogiciels a base
de connaissances et nous examinons le rdle des techniques de 1'intel-
Tigence artificielle dans le domaine de la conception des systémes
informatiques. Finalement, nous concluons notre étude en évoquant son

utilité pratique et en avangant quelques suggestions de recherche.

2. La conception des systemes informatiques

Avant d'aborder les concepts et les problémes 1iés aux outils
logiciels, nous rappelons le rble de 1'étape de conception dans le
développement de systémes informatiques. Nous présentons aussi un
modéle de conception de systémes informatiques qui nous permet de

préciser les deux approches introduites dans la section précédente.

2.1 Le rdole de 1'étape de conception

D'une fagon générale, on représente le cycle de vie traditionnel
comme la production contrdlée de descriptions successives du systéme
qui convergent vers un.produit livrable & 1'utilisateur. Chaque
description du systéme est appelée une spécification. La conception
d'un systeme informatique constitue certéinement 1'étape critique de
ce cycle, car elle influence fortement 1'étape de maintenance qui
représente une part importante du colt du systéme [Boehm 76].
Caractérisée par un processus de conception créatif, cette étape vise
principalement & transformer la spécification formelle du systéme,
elle-méme obtenue de 1'expression des besoins de 1'utilisateur, en une
spécification facilement traduisible dans un langage de programmation.

L'étape de conception comporte deux aétivités principales:

-la conception architecturale pendant laquelle le concepteur décrit
la structure du systéme informatique, aussi bien en termes des
traitements qu'en termes des données, en précisant ses parties
(modules et entités) et les jonctions entre les parties (interfa-

ces et associations);

-l1a conception détaillée pendant laquelle le concepteur détaille
chaque partie du systéme informatique en déterminant ses intrants,
ses extrants, sa logique, ses algorithmes et ses structures de

données.,

Bien entendu, ces deux activités ne sont pas, dans la réalité,
nécessairement séquentielles. Généralement, elles s'imbriquent et
forment ensemble un réseau de sous-activités (noeuds) reliées par des

mécanismes d'échange d'information (arétes).

2.2 Un modele de conception

Concevoir un systéeme informatique représente une téche complexe,
qui pour étre menée a bien, requiert des capacités intellectuelles,
des mécanismes d'échange d'information et de bons outils techniques.
Evidemment, exposé ainsi, le probléme apparait trés général. Pour-
tant, le modéle que nous élaborons a partir de cette formulation, nous
permettfa d'analyser les artifices et la richesse des diverses

orientations pour le développement d'outils logiciels.

Le modéle de conception illustré & la Figure 1 peut &tre schématisé

par trois éléments de bases:
-le processus de conception;
-les entrées et les sorties effectives de 1'étape de conception;

-les outils techniques de conception.

rétroaction

outils techniques

gestion du
projet processus de

conception

O

documentation

codification test implantation

sous-activité

mécanisme d’'échange

o]0

produit et document

Figure 1 - Modéle de conception des systémes informatiques

Le processus de conception est une activité humaine qui exige
divers degrés de créativité. Dans chacune des sous-activités du
réseau, les concepteurs doivent effectuer des choix, prendre des
décisions, communiquer avec les autres équipes 1mp1iquées‘dans Te
projet, interpréter les spécifications des étapes précédentes, adapter
leur travail en fonction de contraintes conflictuelles qui leur sont
imposées, raisonner et appliquer un ensemble de régles pour obtenir
finalement les résultats escomptés. Dans ce processus, la communica-
tion, qui s'établit grdce & des mécanismes d'échange d'information

entre les sous-activités, tient une place importante. En effet, les

concepteurs consomment, produisent eﬁ échangent une trés .grande
quantité d'information. Malheureusement, peu d'efforts ont été déplo-
yés pour proposer des techniques capables de capter toute la sémanti-
gue rattachée a 1'information véhiculée durant 1'étape de conception.
Bien qu'elle pourrait étre d'une treés grande utilité pendant 1'étape
de maintenance, une grande partie de cette information est perdué ou
devient obsolescente faute de moyens pour la conserver et la mettre 3

jour. Trois problémes principaux peuvent &tre identifiés:
-décider du type d'information pertinente & conserver;
-trouver une représentation adéquate de cette information;
-rendre cette information disponible.

Les spus-actiVités du processus de conception, via les mécanismes
Ad'échangé, acceptent et fournissent un ensemble d'informations a
caractére vertical et horizontal. Les informations & caractére
vertical assurent un déve]opﬁement efficace et harmonieux du logiciel.
Elles sont, par exemple, acheminées vers les étapes en aval (la
spécification détaillée pour la codification, les spécifications pour
les essais et 1'implantation) et vers les étapes en amont (les
rétroactions pour demander des ajustements ou des précisions). Les
informations & caractére horizontal fournissent une aide constante a
la gestion du projet ou permettent de documenter le systéme pour son
utilisation, son opération et son entretien. Ainsi, les entrées et
les sorties de 1'étape de conception sont divisées en produits et en
documents, et leur quantité varie en fonction du nombre de sous-

activités et du guide de développement des systémes dans lequel elles

s'inscrivent. De plus, des normes, généralement adoptées par 1'en-
treprise, fixent leurs formats. La communication écrite joue un rdle
primordial, car la communication orale, quoique largement utilisée,

reste informelle et volatile.

Finalement, pendant la conception, les spécialistes ne sont pas
laissés a eux-mémes. Ils disposent d'outils techniques pour effectuer
leur travail. Les outils techniques se répartissent en trois grandes
classes: les outils conceptuels, les outils linguistiques et les

outils logiciels.

2.3 Les environnements de conception:

Dans 1'optique d'un environnement orienté vers les outils logiciels
conventionnels, le processus de conception est régi par des principes
et des méthodes de travail empiriques qui ont été proposés a partir
d'expériences vécues dans le développement du logiciel. Les arguments
évoqués, justifiant 1'efficacité et 1'utilité de ces outils concep-
tuels, reposent principalement sur des intuitions acquises par les
spécialistes du domaine durant de nombreuses années. Des outils
linguistiques, tels que des diagrammes et des langages formels,
servent de support pour 1'expression des entrées et des sorties de
1'étape de conception. Dans le cas ol 1'on ne peut formaliser
1'expression de la communication, on a recours au langage naturel.
Toutefois, contrairement aux diagrammes et aux langages formels, les
langages naturels ne sont pas interprétables par les outils logiciels
de cet environnement. Finalement, pour accélérer une partie du

travail des spécialistes, cet environnement suggére 1‘'utilisation

d'outils logiciels (conventionnels), tels que des éditeurs spéciali-
sés, des générateurs de diagrammes et des analyseurs de spécifica-
tions, pour traiter Tles entrées et les sorties effectives de 1'étape

de conception.

Dans la perspective d'un environnement orienté vers les outils
logiciels & base de connaissances, 1'usage explicite d'un modéle
sémantique du domaine d'application permet d'organiser le dialogue
homme-machine, de comprendre les réponses de 1'utilisateur, de tradui-
re ces réponses en des actions appropriées et de fournir a 1'utilisa-
teur une exp]iﬁation sur les résultats générés. Le modéle séméntique
décrit‘1es classes d'objets, les événements, les relations entre les
événements et les objets, les contraintes et les Timites du domaine
d'application. Les outils conceptuels regroupent des techniques de
résolution de problémes basées principalement sur les connaissances
1iées au domaine d'application et au processus de conception. Les
langages formels occupent encore une place importante, mais on
privilégie de plus en plus une interaction homme-machine en langage
naturel. Les outils logiciels (& base de connaissances) empruntent
des techniqués de 1'intelligence artificielle. 1I1 s'agit le plus
souvent de systémes experts ou de systémes de programmation automati-
que. Une étude théorique et une compréhension approfondie des
sous-activités du processus de conception sont fondamentales pour la

réalisation de cet environnement.

Ces deux environnements de conception de systémes informatiques ne
sont pas opposés. I1s peuvent étre exploités conjointement pour

bénéficier de tous leurs avantages. 1Il1s ont été présentés ainsi pour

10

mettre en évidence deux approches fondamentalement différentes de
développement d'outils logiciels. Les deux prochaines sections sont

entiérement consacrées a 1'étude détaillée de ces deux approches.

3. L'environnement de conception orienté vers les outils logiciels

conventionnels

Dans cet environnement, les systémes d'aide & la conception
reposent sur trois concepts de base indissociables. La Figure 2,
inspirée de Ludewig et al. [Ludewig 85], illustre une trilogie formée
des classes d'outils conceptuels, linguistiques et logiciels. Ces‘
classes sont interdépendantes et se complétent 1'une 1'autre. De
plus, cette figure identifie quelques éléments appartenant a chacune
de ces classes. Ce cadre simplifié permet de mieux distinguer les

concepts & assimiler et de mieux cerner les problémes inhérents a ce

type d'environnement.

générateurs de documents

OUTILS LOGICIELS

Figure 2 - Trilogie des concepts de base

11

I1 est intéressant de noter que les outils logiciels constituent
une partie de systémes plus éomp]exes appelés systémes d'aide a la
conception. Malheureusement, on confond souvent ces notions. Cette
situation crée donc parfois des ambiguités au niveau de 1'évaluation et
de 1'acquisition de systémes d'aide a la conception. Par exemple, la
rigidité des systémes actuels force les utilisateurs a accepter
d'emblée les méthodes, les notations et Tles outils 1ogiéie1s qui Tleur
sont associés et & renoncer a la possibilité d'intégrer de nouveaux
outils pour une expérimentation ou pbur des besoins spécifiques. En
effet, pour un systéme d'aide & la conception donné, il existe

généralement une seule instantiation de cette trilogie.

Une méthode est constituée d'un ensemble de régles et de principes
sur lesquels reposgnt Te développement des spécifications. Toute
méthode est donc subordonnée & des principes élémentaires de concep-
tion de systémes. La notation fournit un moyen de représenter les
spécifications aussi bien a 1'aide de textes qu'a 1'aide de diagram-
mes. Finalement, les outils logiciels travaillent principalement sur
les spécifications et guident 1és spécialistes dans un cheminement
méthodologique. Ces derniers outils accélérent le processus de
conception, mais ils n'ont pas la possibilité de résoudre des
problémes. Le Tableau 1 donne quelques exemples de systémes d'aide a
la conception. 11 précise pour chaque systéme les méthodes, les

notations et les outils logiciels retenus par les auteurs.

Ainsi, pour 1'environnement orienté vers les outils logiciels
conventionnels, les chercheurs concentrent Teurs efforts pour amélio-

rer les outils existants ou pour trouver de meilleures méthodes, de

IN4

systéeme d'aide méthodes notations outils
la conception

DASOM SOM FS (diagramme éditeur (FS,

[Vefsnmo 85] (décomposition | de la structure | ST,SS,texte),
fonctionnelle, | fonctionnelle), | analyseur,
expression du ST (diagramme générateur
comportement de transition de documents,
du systéeme) d'états), gestionnaire

SS (diagramme

de la structure
du logiciel),
texte

de projets

SARA/IDEAS SARA SM (diagramme éditeur (SM,
[Krell 85] (décomposition | de structure), |[GMB),
et composition | GMB (graphe de | intégrateur,
modulaire) comportement) simulateur,
“debugger"
PRISM analyse diagramme de éditeur (PDL,
[Rosenberg 85] stucturée, flux de données,|DFD),
. conception organigramme générateur
structurée structuré, d'organi-
PDL grammes
SCHEMACODE programmation PCS (pseudocode |éditeur (PCS),
[Robillard 81] structurée schématique) générateur
de code
SPADES SPADE-M SPADE-L SPADE-T
[Ludewing 85] (modéle entité- | (texte) (éditeur,
association) analyseur)
TAGS méthode TAGS IORL éditeur (IORL),
[Sievert 85] (décomposition | (diagrammes analyseur,
fonctionnelle, |et tables) simulateur,
expression des gestionnaire
flux de données de versions
et de contrdle, multiples
prototypage)
USE.IT HOS AXES éditeur (AXES),
[Hamilton 83] (décomposition | (diagrammes) analyseur,
fonctionnelle générateur
basée sur un de code

modéle mathéma-
tique formel)

Tableau 1 - Systémes d'aide a la conception

13

meilleures notations et de meilleurs outils logiciels non seulement
pour faciliter la conception mais aussi 1'entret1én des systémes
informatiques. Dans cette section, nous préciserons davantage ces
trois concepts et nous dégagerons des criteres empiriques d'évaluation
pour mesurer 1'efficacité et la pertinence des outils existants et
pour fixer des objectifs & atteindre lors de la réalisation de

nouveaux outils.

3.1 Les méthodes de conception

Plus un systéeme est complexe, plus il devient difficf]e d'organiser
la structure du logiciel et de répondre aux attentes des utilisateurs
et des différentes équipes impliquées dans le projet. Pour mener a
bien 1'étape de conception, i1 s'avére essentiel de disposer de
méthodes de travail adéquates. A un niveau macroscopique, des.
méthodes partitionnent le travail en sous-activités et guident Tes
concepteurs du début jusqu'a la fin de 1'étape de conception afin
d'assurer une progression slire vers 1'objectif final. A un niveau
microscopique, des méthodes tracent la voie pour la décomposition et
1'organisation du systéme informatique, pour la modélisation détaillée
des traitements et des données, ainsi que pour la documentation, la
vérification et la validation des spécifications. Ces méthodes
consistent donc en un ensemble ordonné de procédures et de points de
contrdle basés principalement sur des traditions, sur des expériences

vécues et sur des principes de conception de systémes.

171 existe plusieurs méthodes de conception de systémes informati-

ques. Parmi les plus fondamentales et les plus répandues, citons

14

1'analyse structurée [DeMarco 78], la conception structurée

[Yourdon 79], la méthode de Jackson et Warnier [Warnier 74;

Jackson 75], la programmation structurée [Yourdon 75] et la méthode
exposée par Gries [Gries 81]. Les deux premiéres méthodes ne
concernent que la conception architecturale, alors que les trois
derniéres s'attaquent presque exclusivement a la conception détaillée.
L'analyse structurée entraine une décomposition fonctionnelle et une
‘expression des flux de données du systéme. Lé conception structurée
conduit & une structure hiérarchique et modulaire du systéme. La
méthode de Jackson et Warnier propose de définir les algorithmes &
partir des structures de données d'entrée et de sortie. La programma-
tion structurée force le boncepteur a exprimer les algorithmes a
1'aide de trois structures de contréle. Enfin, la méthode de Gries,
basée sur le calcul des prédicats et sur la notion de précondition la
plus faible, est radicale maisAuti1e pour le développement de nouveaux
algorithmes complexes. Le lecteur trouvera dans 1'article de Yau

et al. [Yau 86] une synthése des méthodes de conception de systémes et
dans 1'ouvrage de DéMarco [DeMarco 79] une description concise des

principales méthodes.

Ces méthodes sont dites fondamentales parce qu'elles sont souvent
employées pour élaborer des méthodes plus spécialisées, Par exemple,
la méthode DARTS proposée pour la conception de systémes en temps réel
[Gomaa 84] utilise les principes de décomposition du systéme en téches
concurrentes et de masquage d'information [Parnas 72], ainsi que les
méthodes d'analyse structurée et de conception structurée. Le guide
de développement d'un systéme d'information, suggéré par la firme DMR

[DMR 85], favorise les méthodes d'analyse structurée et de conception

15

structurée pour la modélisation des traitements et le modéle entité-
association [Chen 76] pour la modélisation des données. Enfin, la
méthode sous-jagente & 1'outil SCHEMACODE force les programmeurs a
concevoir des programmes structurés en voilant 1'aspect syntaxique des
langages de programmation et en mettant en évidence la structure
sémantique ou logique des programmes essentielle & une analyse

détaillée d'un probleme [Robillard 85].

L'évaluation d'une méthode resté encore aujourd'hui une tache
difficile a accomplir, car il n'existe pas une théorie générale des
méthodes. A p]ué’forte raison, la création des méthodes se fait plus
par référence au bon sens humain qu'a des formalismes de mathématique§
pures. A moyen terme, 1'efficacité d'une méthode peut étre mesurée a
partir d'un grand nombre de systémes réalisés a 1'aide de celle-ci
[Card 86]. A court terme, nous pouvons caractériser les méthodes &

partir des cing attributs suivants:

Spécificité., Les méthodes générales conviennent & un ensemble univer-

sel de systémes. Par contre, elles ignorent Teurs propriétés intrin-
séques. Les méthodes spécifiques, souvent construites a partir des
méthodes générales, permettent plus aisément la conception de systémes
spécialisés (systémes d'information, systémes en temps réel, systémes
répartis, systémes d'intelligence artificielle). L'introduction de
nouvelles reégles facilite, par exemple, 1'expression de la répartion,

de la concurrence, de 1a communication ou de la synchronisation.

Profondeur. Une méthode s'appuie sur des principes éprouvés (le

masquage d'information, 1'abstraction des données [Liskov 75], la

iV

séparation des mécanismes et des politiques [Brinch Hansen 70]) ou sur

des structures mathématiques formelles (Ta méthode HOS [Hamilton 76]).

Complétude. Une méthode est compléte si elle offre au concepteur un
nombre suffisamment élevé de points d'ancrage. Par exemple, si la
méthode utilise une technique de décomposition, elle doit lui fournir
des critéres de décomposition. Elle doit aussi Tui indiquer une liste
des vérifications et des validations a effectuer & chaque étape de la

décomposition.

Praticabilité. Une méthode ne doit pas nuire & la productivité des

concepteurs. Elle ne les encombre pas de détails inutiles ou d'un

trop grand nombre de détails a la fois. Par éontre, elle doit limiter
les concepteurs dans leur propre démarche afin de garantir une
uniformité et une qualité du logiciel. Idéalement, 1'application des -

régles doit étre transparente ou naturelle aux concepteurs.

Adaptabilité. Une méthode doit s'adapter facilement a de nouveaux

environnements de développement de systémes qui répondent mieux aux
besoins et aux politiques d'une entreprise. A cause de 1'inertie du
milieu, i1 est de plus en plus difficile et méme parfois coldteux de

faire accepter de nouvelles méthodes.

3.2 Les notations

La notation ou la représentation des spécifications, qu'elle soit
littérale ou graphique, fait T1'objet d'une attention particuliére. En
effet, la notation étant un formalisme qui sert de support pour

exprimer, communiquer, analyser et modifier les spécifications, elle

17

influence fortement la fonctionnalité des outils logiciels & mettre en
oeuvre. De nombreuses notations ont été proposées et un choix parmi
celles-ci ne constitue pas une tache facile. C'est pourquoi nous
soulignons quatre qualificatifs a prendre en considération pour

ventiler les nombreuses notations qui existent aujourd'hui.

Compléte. La notation comme moyen d'expression des spécifications
doit posséder une syntaxe pertinente pour capter suffisamment d'élé-
ments sémantiques et pour permettre une prise de décision éventuelle

sur la modifiabilité du systeme informatique.

Compréhensible. La notation comme moyen de communication des spécifi-

cations doit étre simple, facile d'accés et 1isible aussi bien par les

concepteurs que par les responsables de projets.

-Analysable. La notation comme support pour analyser les spécifica-
tions produites par les concepteurs doit étre formelle, pour vérifier
et valider leur cohérence et leur complétude, et étre exécutable pour

simuler le comportement du systéme informatique.

Flexible. La notation comme support documentaire a la maintenance
doit étre assez souple pour faciliter les modifications des spécifica-

tions.

Les notations a 1'aide de diagrammes apparaissent les plus populai-
res pour plusieurs raisons. Premiérement, les diagrammes sont treés
attrayants pour 1'oeil humain. Deuxiémement, les concepteurs sont
souvent enclins a schématiser pér des représentations sommaires
certains traitements et données qui leur semblent difficile & verbali-

ser ou & énoncer autrement qu'en ayant recours a des figures.

1Y

Troisiémement, Tes diagrammes facilitent 1'explication rapide des
structures globale et détaillée du systéme informatique. Finalement,
les diagrammes sont construits généralement & partir d'un nombre
restreint de symboles, ce qui évite aux concepteurs de se préoccuper
d'un trop grand nombre d'éléments syntaxiques et sémantiques. Ainsi,
les diagrammes sont avant tout une représentation visuelle de 1'en-

sembie des modules, des interfaces, des données et du comportement du
systeéeme infofmatique. Toutefois, selon les notations proposées, les
diagrammes comportent plusieurs inconvénients dont certains peuvent
étre contournés par 1'introduction d'outils appropriés. Premiérement,
ils sont souvent incomplets, peu analysables et/ou difficiles a
modifier; car méme si la partie graphique est formellement définie; la
majeure partie de leur contenu est constitué de textes informels.
Deuxiémement, des contraintes physiques du matériel, en particulier
celles des écrans et des imprimantes, imposent des limites quant a la
taille des diagrammes et au texte contenu dans une bulie. Finalement,
si les diagrammes comportent un niveau de détails élevé, on atteint

rapidement la limite visuelle de 1'utilisateur.

Parmi les notations graphiques les plus répandues, mentionnons les
diagrammes de flux de données, les organigrammes structurés, les
diagrammes entités-associations, les graphes de transition d'états,
les réseaux de Pétri, les organigrammes de Nassi-Scheiderman
[Nassi 73] et le pseudocode schématique [Robillard 81]. Le lecteur
trouvera daﬁs 1'article de Teplitzky [Teplitzky 79], un ensemble de
critéres différents de ceux présentés ici pour choisir parmi des

notations graphiques couramment employées celle qui convient la mieux.

19

Les représentations des spécifications a 1'aide de textes écrits
dans un langage naturel ou dans un langage formel occupent aussi une
place importante. Les langages formels possédent 1'avantage de bien
capter la sémantique associée au systéme informatique et permettent
plus aisément de déterminer si les spécifications sont cohérentes et
complétes. Par contre, ils possédent certains inconvénients. Souvent
les spécifications écrites dans ces languages sont plus longues que
Tes programmes qui en résultent. La codification est alors remplacée
par une autre forme d'écriture plus abstraite dans laquelle le taux
d'erreur est comparable & celui de la codification. Un formalisme
excessif exige une bonne formation scientifique des personnels et
implique une accumulation importante d'information dont 1'exploitation
n'‘est pas toujours immédiate et commode dans les étapes ultérieures du

cycle de vie.

I1 existe de nombreuses notations formelles; mentionnons celles
basées sur des formalismes algébrique et axiomatique [Guttag 77] ou
sur la logique mathématique (propositionnelle, du premier ordre,
temporelle). 1I1 existe aussi des langages de conception sans forma-
lisme mathématique comme, par exemple, DREAM [Riddle 78] ou ADL
[Vosbury 84]. Enfin, i1 y a les langages basés sur le pseudocode qui
utilisent conjointement des langages naturels et des syntaxes de
langages de programmation [Caine 75]. Ces notations ne possédent
aucun des avantages des langages formels. En plus, elles enferment

les concepteurs dans un environnement de programmation.

11 faut éviter de séparer les deux types de notation, car ils se

complétent 1'un T'autre. En particulier, les langages formels peuvent

20

posséder une contrepartie graphique qui supprime une partie de leurs
inconvénients. Ainsi, on aura tout avantage & offrir aux concepteurs
un ensemble d'outils capables de traiter plus d'une représentation de

spécifications.

Deux autres critéres permettent de caractériser les notations.
Premiérement, certaines d'entre elles sont plus appropriées pour la
conception architecturale que pour la conception détaillée (bien qu'il
existe plusieurs notations qui conviennent & la fois pour ces deux
taches) et inversement. Deuxiemement, elles permettent d'exprimer
soit les flux de données, soit la logique du systéme. Par exemple, le
pseudocode schématique s'emploie durant la conception détaillée et

facilite la description de la logique des modules d'un systéme.

3.3 Les outils Togiciels conventionnels

Dans la pratique courante, les taches des concepteurs sont nombreu-
ses. Méme si la créativité constitue le dénominateur commun dans la
réalisation de ces tdches, il n'en demeure pas moins qu'une bonne
partie du travail des concepteurs est fastidieuse, exigeante et
répétitive. Les outils Tlogiciels conventionnels procurent donc une
aide de plus en plus indispensable aux concepteurs, car ils automati-
sent les tdches routiniéres qui requiérent surtout des habiletés
manuelles et peu d'habiletés intellectuelles. I1s facilitent aussi
1'édification précise des dossiers techniques. Les outils logiciels
conventionnels constituent un prolongement des outils classiques
(compilateurs, éditeurs) qui opérent normalement sur des programmes.

En effet, ils comprennent des fonctions principalement axées vers

21

1'archivage, 1'édition, 1'analyse et la documentation des données
générées pendant la conception. Si du point de vue fonctionnel, ces
‘deux classes d'outils présentent une grande similitude, la différence
fondamentale réside dans le fait que les outils logiciels de concep-

tion traitent des spécifications d'un niveau d'abstraction plus élevé.

L'archivage permet de conserver toutes les informations produites
lors de la conceptfon architecturale et détaillée du systéme informa-
tique. Qu'il s'agisse d'un simple dictionnaire de données ou d'une
base de données spécialisée, cet outil constitue le fondement essen-
tiel au travail en équipe et & 1'intégration d'outils en général.

Nous discuterons ces deux aspects a la fin de cette section.

La manipulation des spécifications demande un travail considérabie
de la part dgs'concepteurs. Leur formulation et leur mise a jour
peuvent facilement devenir fastidieuses."Les éditeurs de diagrammes,
les éditeurs syntaxiques contextuels et les éditeurs de tables
constituent des outils essentiels, car en plus de résoudre le probléme
précédent, ils guident parfois les concepteurs dans leurs démarches en
imposant des régles de construction de systémes. Tout aussi impor-
tants sont les outils qui traduisent Tes ;pécifications d'une notation
& une autre. Il1s assurent aux concepteurs une vue multiple des
données [Reiss 84]. D'autres outils permettent de passer d'un niveau
de spécifications & un autre et ce dans les deux sens. Par exemple,
un générateur de code produit automatiquement, & partir des spécifica-
tions détailiées, une partie (e.g. la définition des données en COBOL)
ou la totalité du programme. I7 est parfois utile d'effectuer

1'opération inverse pour récupérer de vieux programmes et générer les

44

spécifications détaillées correspondantes dans une notation plus
compréhensible pour les concepteurs. Par exemple, FLOWCHART génére
des organigrammes de Nassi-Scheiderman a partir de programmes écrits

en PASCAL ou en pseudocode [Roy 76].

L'analyse des spécifications produites par les concepteurs consti-
tue une tache obligatoire, car elle garantit leur travail. Une
analyse statique permet de vérifier, par-exemple, si les spécifica-
tions sont complétes, cohérentes, correctes et réalisables. Un autre
aspect négligé est 1'analyse de 1'impact d'une modification dans un
systéme complexe, car i1 est trés difficile de déterminer quelles sont
les composantes gusceptib1es d'étre affectées par une modification et
d'effectuer les changements sans causer des dommages irréparables.
Enfin, une analyse dynamique permet de valider les spécifications par
rapport aux intentions des utilisateurs. Elle simule le comportement
du systéme. A ce stade, les simulateurs et les outils de mise au
point jouent un rdle significatif. Le lecteur trouvera dans 1'article
de Boehm [Boehm 84] un ensemble de critéres et de techniques pour la

validation et la vérification des spécifications.

Finalement, la documentation alimente les étapes ultérieures du
cycle de vie. Son volume peut étre imposant si le systéme est d'une
grande envergure. Plusieurs éléments de la documentation peuvent étre
produits a partir des données enregistrées dans la base de données.
Des générateurs de diagrammes, des formatteurs de tables et des
systémes de traitement de texte constituent Tes outils les plus
répandus. Aussi, pour mettre rapidement Teurs produits sur le marché

international, les Japonais construisent des outils capables de

23

traduire en anglais de la documentation originalement écrite en

japonais [Mohri 84].

Nous concluons cette section en soulignant que les outils logiciels
conventionnels doivent présenter, outre les fonctionnalités précéden-
tes, deux qualités importantes. I1s doivent favoriser un véritable

travail d'équipe et s'intégrer les uns aux autres.

Les systémes complexes doivent étre congus par plusieurs personnes.
I1 se peut fort bien qu'il n'y ait personne qui comprenne tous les
détails du systéme lors de sa conception. A un niveau supérieur
toutefois, le systéme informatique doit étre congu de fagon & étre
compris par au moins une personne. En dega de ce niveau, la
conception des sous-systemes est répartie entre plusieurs personnes.
Pour faciliter le travail d'équipe,‘i1 faut exploiter les mécanismes
offerts par les systémes de gestion de base de données pour asgurer
1'intégrité, la protection et le partage des données. 11 faut aussi
mettre en oeuvre des mécanismes de communication qui captent 1'infor-
mation pertinente véhiculée lors de la conception, et des mécanismes
qui facilitent 1'intégration de toutes les parties du systéme et qui

empéchent le travail redondant.

La majorité des outils sont monolithiques, car ils ont été
développés et ils évoluent dans un environnement spécifique. Chaque
outil geére ses propres fichiers ou sa propre base de données, et
utilise un systéme d'exploitation et du matériel particuliers. 1I1
présente & 1'utilisateur un interface unique. Ainsi, la grande
majorité des outils sont locaux, dans le sens qu'ils ne partagent pas

leurs résultats. Pour faciliter 1'intégration des outils logiciels,

4

i1 faut qu'ils soient portables, qu'ils soient conduits par un
processus commun et qu'ils soient congus en fonction de normes dictées
pour 1'interface des données, pour 1'interaction homme-machine et pour
les services offerts par les systemes d'exploitation et les systémes
de gestion de bases de données. Les méta-outils semblent la solution
la mieux adaptée pour offrir un cadre qui permet le développement
harmonieux d'outils techniques. A titre d'exemple, citons le travail
d'une équipe d'IBM [Hoffnagle 85] qui a proposé un modéle d'ﬁn

méta-outil qui rencontre les objectifs énongés ci-dessus.

4. L'environnement de conception orienté vers les outils logiciels a

base de connaissances

Dans cet environnement, dgs outils Togiciels fournissent une
assistance intelligente aux concepteurs, et méme parfois accomplissent
automatiquement une partie de leurs téches créatives. Ces outils
différent considérablement des outi]s'conventionne1s présentés dans la
section précédente, d'une part par les fonctionnalités qu'ils possé-
dent et d'autre part par les moyens a prendre pour leur mise en
oeuvre. Au début du développement de ces outils, les chercheurs
aspiréient essentiellement a faire en sorte qu'ils générent automati-
quement des spécifications utiles a partir de spécifications abstrai-
tes. Cette ambitieuse entreprise a donné lieu & un certain nombre de
prototypes expérimentaux qui malheureusement n'ont été capables & ce
jour que de résoudre de petits problémes. CHI, PSI, DELADUS, NLPQ et
SAFE sont des exemples de systémes de programmation automatique qui
acceptent en entrée une spécification d'un domaine de problémes bien

circonscrit et qui générent du code compilable ou interprétable

£

[Barr 82]. Adjourd'hui, des chercheurs concentrent davantage leurs

efforts pour développer des outils logiciels capables:

-de guider le concepteur dans le choix et dans 1'application des
régles de décomposition pour raffiner de plus en plus les

spécifications;

-d'assister le concepteur dans 1'évaluation de 1'impact d'une
décision et dans 1'exploration des différentes alternatives pos-

sibles de solutions;

-de conserver les justifications de certaines décisions envisagées
et analysées, mais rejetées, dans le cas ol ces derniéres
pourraient &tre reconsidérées un peu plus tard dans le processus

de conception;

-de vérifier la cohérence et la complétude du systéme informatique

et, dans le cas échéant, de remédier aux conflits et aux manques;

-de résoudre les contraintes conflictuelles et potentielles qui
s'exercent sur les choix des concepteurs et qui proviennent des

différentes sources de son environnement;

-d'évaluer Tles effets ou les répercussions néfastes d'une modifica-
tion dans la spécification formelle du systéme sur les spécifica-
tions de conception déja dérivées ou sur un systéme informatique

opérationnel;

-de dialoguer avec le concepteur dans un langage naturel ou dans un

sous-ensemble spécialisé et 1imité d'un langage naturel;

£0

-de fournir & la demande du concepteur une explication & propos des

résultats obtenus;

-de permettre 1'ajout, la destruction ou la mise a jour des regles

de conception.

Ces outils logiciels exécutent ces différentes actions soit en
exploitant 1'information contenue explicitement ou implicitement dans
les spécifications, soit en référant a la base des connaissances, soit
en interrogeant le concepteur. I1s différent des systémes de program-
mation automatique car ils ne réalisent pas, mais aident plutdt les
concepteurs a accomplir des sous-tdches difficiles du processus de

conception.

Ainsi, pour 1'environnement orienté vers les outils logiciels a
base de connaissances, les chercheurs doivent tendre @u-de1é des
méthodes et des notations traditionnelles. 1I1s doivent franchir une
autre étape en embrassant 1'étude de la nature du 1ogic1e1'et du
processus de conception [Perlis 85; Soloway 84] et reconna%tre le role
primordial de la connaissance associée au domaine d'application
[Barstow 85]. I1s doivent aussi exploiter les techniques de 1'intel-
ligence artificielle pour feprésenter les connaissances et pour
générer et expliquer des solutions. Finalement, pour éviter aux
concepteurs d'étre familiers avec un langage de spécification trop
comp]iqdé, ils doivent renforcer ces outils par une interaction

homme-machine conviviale permettant un dialogue en langage naturel.

Dans cette section, nous examinerons briévement quelques outils

logiciels a base de connaissances et nous donnerons leurs caractéris-

Z/

tiques. Noug.évoquerons aussi 1es.prob1émes de la modélisation du
domaine d'application et du processus de conception. Nous négligerons
deux aspecfs importants, la construction des systémes experts et e
traitement des langues naturelles, qui sont communs & tous les
domaines d'application et qui sont largement exposés dans les ouvrages

d'intelligence artificielle.

4.1 Que]ques'exemp1es d'outils logiciels a base de connaissances

A titre d'indication et pour illustrer leur diversité, nous
décfivons briévement quelques outils logiciels automatiques. Bien
entendu, cette présentation ne constitue pas une étude exhaustive.
Nous voulons seulement attirer 1'attention du lecteur sur quelques-
unes de Teurs caractéristiques internes et externes. Nous invitons
donc le lecteur qui désirerait compléter ses connaissances & se

référer aux articles cités dans le texte.

APE (Automatic Programming Expert) est un systéme expert pour la
programmation automatique développé a 1'Université de Bonn (Allemagne
de T'ouest) [Bartels 81]. Ce systéme dispose de connaissances pour
produire des programmes exécutables en INTERLISP a partir de spécifi-
cations algébriques de types abstraits de données et d'algorithmes
abstraits formulés a 1'aide de régles de production. I1 comporte deux
sous-systémes indépendants qui utilisent des connaissances représen-
tées sous forme de régles de production pour codifier respectivement

les types de données et les algorithmes.

SECSI (Systéme expert pour la conception de systémes d'information)

est un systéme expert pour la conception de bases de données développé

28

a 1'INRIA (France) [Bouzeghoub 83]. A partir d'une spécification
d'une application décrite dans un sous-ensemble du frangais, ce
systéme génére automatiquement un schéma relationnel normalisé ou
optimisé ainsi qu'un ensemble de contraintes d'intégrité. La spécifi-
cation est traduite en un réseau sémantique puis graduellement
transformée, a 1'aide d'un ensemble de régles de production, en un

schéma relationnel,

Un prototype expérimental, nommé Designer/Verifier's Assistant a
été développé par un étudiant de 1'Université du Texas [Moriconi 79].
Ce systéme comporte deux sous-systémes: un systéme expért qui
facilite le développement incrémental de gros systémes 1nfprmatiques
et un systeme traditionnel de preuve automatique. Le systéme expert
interpréte les effets possibles d'un changement dans une spécification
et indique comment procéder méthodiquement pour la conception et la
vérification. I1 utilise un graphe pour représenter les connaissances
déclaratives tels que les é1éments qui interviennent dans la concep-
tion et la vérification ainsi que les relations entre ces éléments.

De plus i1 gére, a 1'aide de régles de production, un agenda qui
suggére aux concepteurs les taches a accomplir pour compléter correc-

tement la conception du systéme informatique.

Un systéme expert a été développé & 1'Université d'Il1linois
(Urbana-Champaign) pour supporter la conception de systémes informati-
ques basée sur 1'analyse structurée [Harandi 85]. Ce systéme expert
utilise des patrons de segments de diagrammes de flux de données (DFD)
pour représenter les composants nécessaires lors de la conception. Un

ensemble de régles de transformation permet la combinaison et le

ZY

raffinement des segments afin d'obtenir un DFD détaillé du systéme
désiré. Au fur et a mesure du raffinement, les spécifications de
1'utilisateur et du DFD sont analysées pour vérifier si elles sont
cohérentes ou complétes. Le systéme expert prend en considération la
connaissance du domaine d'application, organisée sous forme de struc-
tures hiérarchiques, pour faciliter la sélection des segments et leur

intégration dans le DFD.

Une petite base de connaissances écrite en PROLOG contient de
1'information sur les attributs des modules, les relations entre les
modules, la cohésion et 1e couplage. Des faits sont ajoutés dans la
base de connaissances au fur et a mesure de la conceptioh du systeme,
Enfin, des régles permettent de déduire de nouveaux faits sur la
structure du systéme lors de la conception ou de la maintenance

[Leung 85].

La majorité des outils logiciels & base de connaissances sont en
cours de développement et/ou dans leur enfance. Seulement quelques
prototypes sont présentement employés dans des firmes spécialisées de
logiciel sur une base expérimentale. De grands efforts doivent étre
déployés avant d'atteindre les objectifs initiaux, en particulier
avant de démontrer qu'il s'agit d'une technique viable et praticable

pour des problémes réels.,

4.2 Les caractéristiques des outils logiciels a base de connaissances

Qutre les aspects utilitaires présentés au début de cette section,
il convient de souligner huit signes distinctifs importants qui

permettent de juger de leurs possibilités [Barr 82; Mostow 85].

3U

La méthode de spécification. La méthode de spécification offre aux
concepteurs un moyen de décrire én termes plus ou moins abstraits ses
applications. Le choix d'une méthode influence la qualité et la
complexité du module qui gére 1'interaction entre 1'outil et le
concepteur., Ainsi le concepteur pourra selon 1'outil exprimer son
probléme a partir d'exemples d'entrée et de sortie ou éypartir de
traces, ou a 1'aide de langages formels ou de sous-ensembles d'un
langage naturel. Bien que les langages naturels soient intéressants
pour les humains, ils obligent 1'outil & solutionner le probléme avec

des spécifications ambigués.

La sortie. La sortie produite varie d'un outil & 1'aytre. I1 peut
s'agir d'un langage de programmation cible dans le cas des systémes de
programmation automatique ou d'une spécification plus raffinée dans le

cas des outils plus spécialisés.

Le domaine d'application. Les outils ne peuvent résoudre que des

problémes appartenant a un domaine d'application bien précis. Plus le
domaine est restreint, plus 1'outil est puissant. Cette constatation
est inhérente aux systémes experts qui ont démontré 1'utilité des

techniques de 1'intelligence artificielle lorsque celles-ci ne s'atta-

qguent pas a une classe universelle de problémes.

La méthode d'opération. La méthode d'opération référe aux techniques

d'intelligence artificielle mises en oeuvre pour'résoudre le probléme.
Les outils s'appuient principalement sur des techniques de systémes
experts, mais des techniques de preuve automatique, de transformation

de spécifications et de résolution de problémes sont aussi employées.

31

Le degré d'automatisme. Le degré d'automatisme refléte en quelque

sorte la puissance de 1'outil, 11 dépend surtout du.domaine d'appli-
cation et de la base des connaissances. Le but ultime des recherches
dans ce domaine est d'atteindre un degré trés élevé afin d'automatiser
non seulement toute 1'étape de conception mais 1'ensemble du cycle de

vie.

La base des connaissances. Les connaissances et leurs représenta-

tions permettent de modéliser le domaine d'application et le processus
de conception. La connaissance descriptive décrit les éléments et les
relations qui interviennent lors de la conception tandis que la
connaissance normative indique comment inférer de nouvelles décisions.
Pour représenter ces deux types de connaissances, on a recours par
exemple aux réseaux sémantiques, aux régles de production, aux objets

structurés, aux systémes procéduraux et & la logique du premier ordre.

La portée de 1'outil. La tadche a laquelle 1'outil s'attaque, ainsi

que 1'écart entre le niveau des spécifications & 1'entrée et le niveau
des produits a la sortie, décident de la portée de 1'outil dans

1'étape de conception ou dans le cycle de vie.

4.3 La modélisation du domaine d'application

Les méthodes de conception élaborées jusqu'ici s'appuyaient essen-
tiellement sur des techniques de résolution de probliémes. Or, un
aspect négligé mais important est la connaissance du domaine d'appli-
cation. En pratique, le domaine d'application n'est pas pergu
exactement de la méme maniére par tous, car il n'existe pas de

description explicite de ce domaine. De plus, chaque individu

3

acquiert cette connaissance indirectement par des intermédiaires qui
risquent de ne pas étre précis et constants dans 1eufs descriptions.
Cette situation est donc source d'ambiguités et de conflits lors du
développement des systémes informatiques. Une solution & ce probléme
consiste a spécifier un modéle conceptuel du domaine d'application qui
évolue indépendamment des systémes informatiques & développer, et sur
lequel repose-1'analyse, la conception et la maintenance des systémes
informatiques. Les bénéfices a retirer d'une telle approche sont

nombreux [Barstow 85]:

-les concepteurs peuvent élaborer leurs spécifications en partie

par consultation, étude et analyse du modéle conceptuel;

-la simulation d'une partie du modéle conceptuel permet d'évaluer
son comportement dynamique et d'éclaicir des points imprécis qui

surgissent au moment de la conception;

-tout systéme de programmation automatique requiert explicitement

une connaissance formelle du domaine d'application;

-1'importante quantité de connaissances contenues dans le modéle
conceptuel constitue une partie intégrante de la base des connais-

sances de tout outil logiciel intelligent;

-la documentation propre au domaine d'application est explicitement

disponible via le modéle conceptuel.

Ainsi, le probléme de spécifier un modéle conceptuel du domaine
d'application est fondamental pour 1'environnement de conception

orienté vers les outils logiciels a base de connaissances.

33

L'analyse du domaine d'application implique [Arango 85]:

-la définition des frontiéres du domaine en fixant la classe des

problémes a étudier;

-1a recherche et la classification des entités conceptuelles du

domaine;

-le développement d'un modéle du domaine en établissant les
relations et les dépendances fonctionnelles entre les entités

identifiées;

-le développement de définitions réductibles en termes de modéles
existants ou en termes de modéles intermédiaires spécialement
congus pour profiter d'ensembles d'abstractions réutilisables dans

des développements ultérieurs.

La conception d'un domaine d'application est un processus qui
transforme la structure sémantique du domaine dans une structure
syntaxique appropriée. Plusieurs formalismes ont été proposés; parmi
les plus importants, citons les langages Clear [Burstall 79] et RML
[Borgida 85], les graphes conceptuels [Sowa 84], les réseaux de Pétri
et 1'usage de taxinomie [Borgida 84]. Ces formalismes visent princi-
palement a capter aisément la connaissance descriptive du domaine et a

faciliter la description structurée des problémes.

4.4 La modélisation du processus de conception

Pour modéliser une sous-activité du processus de conception, on a

recours aux techniques de la psychologie cognitive. Des observations

34

et des entrevues avec un ensemble de spécialistes qualifiés pour cette
opération permettent d'exhiber les connaissances, les structures des
connaissances, les mécanismes de raisonnement et les différentes
stratégies qui interviennent pendant chacune des phases d'exécution du
processus. Par exemple, pour la conception d'un algorithme, on
recueille et on interpréte des déroulements d'une série d'idées sur la
compréhension du probléme, 1'ébauche d'une solution, le raffinement de
la solution, 1'exécution de la solution préliminaire, la formulation
des difficultés et des opportunités, la vérification de la solution et
1'évaluation de la solution [Kant 85]. Ensuite, on reconstitue le
plus objectivement possible le comportement des spécialistes face & un
ensemble de problémes, pui; on traduit Teurs pensées en des plans et
des régles appropriés. Cette démarche conﬁtitue un préalable a toute
entreprise sérieuse de développement d'outils Togiciels a base de
connaissances, car elle conduit a 1'é1aboration de théories qui
permettent de parvenir & une meilleure connaissance du processus de
conception et & de nouvelles techniques qui cadrent mieux avec la

nature humaine.

5. Conclusion

Dans ce rapport, nous avons fait une synthése et une analyse des
principaux concepts 1iés aux outils logiciels de conception de
systémes informatiques. Malgré leur grande diversité, nous avons
montré comment ces outils pouvaient &tre classifiés en deux grandes
catégories bien distinctes. La premiére catégorie regroupe les outils
logiciels conventionnels et constitue une extension directe des outils

qui agissent sur des programmes. Selon une étude récente commandée

35

par le Département de 1a défehse américaine [Redwine 84], ces outils
commencent & peine & étre utilisés & une grande échelle. Toujours
selon ce méme rapport, les techniques requises pour leur mise en
oeuvre semblent bien maftrisées. Toutefois, un certains nombre de
problémes subsistent. En particulier, des efforts considérables
doivent étre faits pour proposer et développer des méta-outils qui
faciliteront leur intégration et Tleur normalisation. De plus, aucune
étude sérieuse n'a encore été faite pour évaluer leur performance
relative dans un environnement réel de développement. Les critéeres
d'évaluation dégagés dans ce rapport sont qualitatifs et permettent

seulement de jauger rapidement leurs possibilités.

La deuxiéme catégorie regroupe les outils logiciels a base de
connaissances. Méme si cette approche n'a pas encore démontré qu'il
s'agit d'une technique viable et efficace, elle semble étre prometteu-
se. De nombreuses recherches sont en cours et les premiers prototypes
sont représentatifs des possibilités offertes aux concepteurs, mais
soulévent de nombreuses questions et problémes auxquels doivent faire
face les chercheurs du domaine. La réussite de cette approche
dépendra surtout des trois facteurs suivants: 1'évolution des techni-
ques de 1'intelligence artificielle (en particulier les systémes
experts), la compréhension du processus de conception et la modélisa-
tion des domaines d'application. Le besoin persistant de réduire les
colts de développement et d'entretien du logiciel continuera a

orienter les chercheurs dans cette direction.

BIBLIOGRAPHIE

[Arango 85]
G. Arango, P. Freeman: Modeling knowledge for software
development; Proceedings of the 3rd Int. Workshop on Software

Specification and Design, London, 1985, 63-66.

[Balzer 85]
R. Balzer: The role of logic and Al in the software entreprise;

Proceedings of the 8th Int. Conf. on Software Engineering,

London, 1985, 394.

[Barr 82] 4
A. Barr, E. A. Feigenbaum: The Handbook of Artificial
Inte]]igence; William Kaufmann, Inc, Vol. 2, 1982, 295-379.

[Barstow 85]
B. Barstow, P. Barth, P. Dietz, R. Dinitz, S. Greenspan:
Observations on specifications and automatic programming;
Proceedings of the 3rd Int. Workshop on Software Specification

and Design, London, 1985, 89-90.

[Bartels 81]
U. Bartels, W. 01thoff, P. Raulefs: APE: An expert system for
automatic programming from abstract specifications of data types

and algorithms; MEMO SEKI-BN-81-01, Universitdt Bonn, 1981.

30

37

[Boehm 76]

B. W. Boehm: Software engineering; IEEE Trans. on Computers,

C 25 (12), 1976, 1226-1241.

[Boehm 84]

B. W. Boehm: Verifying and validating software requirements and

design specifications; IEEE Software, 1 (1), 1984, 75-88.

[Borgida 84]
A. Borgida, J. Mylopoulos, H. K. T. Wong: Generalization/specifi-
cation as a basis for software specification; In On Conceptual
Modelling, Perspectives from Artificial Intelligence, Databases
and Programming languages. "Ed. by M. L. Brodie, J. Mylopoulos,
J. W. Schmidt, Springer-Verlag, New York, 1984, 87-114.

[Borgida 85]
A. Borgida, S Greenspan, J. Mylopoulos: Knowledge representation

as the basis for requirements specifications; Computer, 18 (4),

1985, 82-91.

[Bouzeghoub 83]
M. Bouzeghoub, G. Gardarin: The design of an expert system
for database design; Proceedings of the lst Int. Workshop on New

Application of Databases, Cambridge, UK, 1983, 203-223.

[Brinch Hansen 70]

P. Brinch Hansen: The nucleus of a multiprogramming system;

Comm. ACM, 13 (4), 1970, 238-241.

30

[Burstall 79]
R. Burstall, J. Goguen: The semantics of Clear, a specification
language; Abstract Software Specification, Lecture Notes in
Computer Science, No. 86, D. Bjorner, Ed., Springer-Verlag,

New York, 1979, 292-331.

[Caine 75]
S. H. Caine, K. Gordon: PDL - A tool for software design;
Proceedings of the Nat. Comp. Conf., AFIPS, Arlington,
1975, 271-276.

[Card 86]
D. N. Card, V. E. Church, W. W. Agresti: An empirical study of
software design practices; IEEE Trans. on Software Engineering

SE 12 (2), 1986, 264-271.

[Chen 76]
.P. P. Chen: The entity-relationship model: Toward a unified view

of data; ACM Trans. on Database Systems, 1 (1), 1976, 9-36.

[De Drouas 82]
E. de Drouas, J.-M. Nerson: Les ateliers logiciels intégrés:

développements frangais actuels; T.S.I., 1 (3), 1982, 211-232.

[DeMarco 78]
T. DeMarco: Structured Analysis and System Specification;

Yourdon Press, New York, 1978.

[DeMarco 79]
T. DeMarco: Concise Notes on Software Engineering;

Yourdon Press, New York, 1979.

[DMR 85]
DMR: Guide de développement d'un systéme d'information, partie 2
le développement du systeme; Ducros, Meilleur, Roy & Associés

Ltée, deuxieme édition, Montréal, 1985.

[Frenkel 85]
K. A. Frenkel: Toward automating the software deve]opment cycle;

Comm. ACM, 28 (6), 1985, 578-589.

[Gomaa 84]
H. Gomaa: A software design method for real-time systems;

Comm. ACM, 27 (9), 1984, 938-949.

[Gries 81]
D. Gries: The Science of Programming; Springer-Ver1ag,

New York, 1981.

[Guttag 77]
J. V. Guttag: Abstract data types and the development of data
structures; Comm. ACM, 20 (6), 1977, 397-404.

[Hamilton 76]
M. Hamilton, S. Zeldin: Higher order software - A methodology
for defining software; IEEE Trans. on Software Engineering,

SE 2 (1), 1976, 9-32.

39

[Hamilton 83]
M. Hamilton, S. Zeldin: The functional 1ife cycle model and its
automation: USE.IT; The Journal of Systems and Software, 3 (1),
1983, 25-62.

[Harandi 85]
M. T. Harandi, M. D. Lubars: A knowledge based design aid for
software systems; Proceedings of Softfair Conference II,

San Francisco, 1985, 67-74.

[Hoffnagle 85]

G. F. Hoffnagle, W. E. Beregi: Automating the software

development process; IBM Systems Journal, 24 (2), 1985, 102-120.

[Howden 82]
W. E. Howden: Contempory software development environments;

Comm. ACM, 25 (5), 1982, 318-329.

[Jackson 75]
M. A. Jackson: Principles of Program Design; Academic Press,

New York, 1975.

[Kant 857
E. Kant: Understanding and automating algorithm design;
IEEE Trans. on Software Engineering, SE 11 (11), 1985,
1361-1374.

40

41

[Krell 85]
E. Krell, E. Lor: Current state of the SARA/IDEAS design
environmént; Proceedings of Softfair Conference II,

San Francisco, 1985, 218-230.

[Leung 85]
C. H. C. Ledng, Q. H. Choo: A knowledge-base for effective
software specification and maintenance; Proceedings of the 3rd
Int. Workshop on Software Specification and Design, London,

1985, 139-142.

[Liskov 75]
B, Liskov, S. Zilles: Specification techniques for data
abstraction; IEEE Trans. on Software Engineering, SE 1 (1),

1975, 7-19.

[Ludewig 85]
J. Ludewig, M. Glinz, H. Huser, G. Matheis, H. Matheis,
M.F. Schmidt: SPADES - A specification and design system and
its graphical interface; Proceedings of the 8th Int. Conf. on

Software Engineering, London, 1985, 83-89.

[Mohri 84]
T. Mohri, E. Ono, S. Uehara, T. Takao, H. Sato: PDAS: An
assistant for detailed design and implementation of programs;
Proceedings of the 7th Int. Conf. on Software_Engineering,

Orlando, 1984, 108-115.

4¢

[Moriconi 79]
4M. S. Moriconi: A designer/verifier's assistant;

IEEE Trans. on Software Engineering, SE 5 (4), 1979, 387-401.

[Mostow 85]
J. Mostow: Foreword: What is AI? And what does it have to do
with software engineering?; IEEE Trans. on Software

Engineering, SE 11 (11), 1985, 1253-1256.

[Nassi 73]
I. Nassi, B. Schneiderman: Flowchart techniques for structured

programming; ACM SIGPLAN Notices, 8 (8), 1973, 12-26.

[Parnas 72]
D. Parnas: On the criteria to be used in decomposing systems

into‘modu1es; Comm. ACM, 15 (12), 1972, 1053-1058.

[Perlis 85]
A. J. Perlis: Another view of software; ?roceedings of the 8th

Int. Conf. on Software Engineering, London, 1985, 395-396.

[Redwihe 84]
S. T. Redwine Jr., L. G. Becker, A. B. Marmor-Squires,
R. J. Martin, S. H. Nash, W. E. Riddle: DoD related software
technology, requirements, practices, and prospects for the future;

IDA paper P-1788, Institute for defense analysis, 1984,

43

[Reiss 84]
S. P. Reiss: Graphical program development with PECAN program
development systems; Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development

Environments, Pittsburg, 1984, 30-41.

[Riddle 78]
W. E. Riddle, J. C. Wileden, J. H., Sayler, A. R. Segal,
A. M. Stavely: Behavior modeling during software design;

IEEE Trans. on Software Engineering, SE 4 (4), 1978, 283-292.

[Robillard 81]
P. N. Robillard, R. Plamondon: An interactive tool for
descriptive, operational and structured documentation;
Proceedings of the 23rd IEEE Comp. Int. Conf.,
Washington, D.C., 1981, 291-295.

[Robillard 85]
P. N. Robillard: A software tool and a schematic notation that
improve the use of programming languages; Proceedings of

Softfair Conference II, San Francisco, 1985, 149-158.

[Rosenberg 85]
D. Rosenberg: PRISM - Productivity improvement for software
engineers and managers; Proceedings of the 8th Int. Conf. on

Software Engineering, London, 1985, 2-7.

[Roy 76]
P. Roy, R. St-Denis: Linear flowchart generator for a

structured language; ACM Sigplan Notices, 11 (11), 1976, 58-64.

44

[Schindler 81]
M. Schindler: Today's software tools point to tomorrow's tool

systems; Electronic Design, 29 (7), 1981, 73-110.

[Sievert 85]
G. E. Sievert, T. A. Mizell: Specification-based software

engineering with TAGS; Computer, 18 (4), 1985, 56-65.

[Soloway 84]
E. Soloway: A cognitive1y-ba$ed methodology for designing
1anguage;/environments/methodo]ogies; Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, Pittsburgh, 1984, 193-196.

[Sowa 84]
J. F. Sowa: Conceptual Structures - Information Processing in Mind

and Machine; Addison Wesley, Reading, MA, 1984.

[Teplitzky 79]
P. Teplitzky: An approach for choosing a programming specification

methodology; COMPSAC, 1979, 128-135.

[Vefsnmo 85]
E. A. M. Vefsnmo: DASOM - A software engineering tool for
communication applications increasing productivity and software
quality; Proceedings of the 8th Int. Conf. on Software Engineering,

London, 1985, 26-33.

45

[Vosbury 84]
N. A. Vosbury: Process design; In Handbook of Software Engineering,
Edited by C. R. Vick, C. V. Ramamoorthy, Van Nostrand Reinhold,
New York, 1984, 544-564.

[Warnier 74]
J. D. Warnier: Logical Construction of Programs;

Van Nostrand Reinhold Co., New York, 3rd Ed, 1974.

[Yau 86]
S. S. Yau, J. J.-P. Tsai: A survey of software design techniques;

IEEE Trans. on Software Engineering, SE 12 (6), 1986, 713-721.

[Yourdon 75]
E. Yourdon: Techniques of Program Structure and Design;

Prentice-Hall, Englewood Cl1iffs, 1975.

[Yourdon 79]
E. Yourdon, L. L. Constantine: Structured Design:
Fundamentals of a Discipline of Computer and Systems Design;

Prentice-Hall, Englewood Cliffs, 1979.

DEUXTEME PARTIE

DEFINITION DU PROBLEME

i

SOMMAIRE

'Dans ce rapport, nous donnons une orientation a notre projet de
recherche. Nous introduisons tout d‘abord les systemes informatiques
guidés par un systéme expert qui associent la représentation procédu-
rale & la représentation déclarative. Nous montrons 1'utilité de tels
systémes, d'une part en précisant dans quel contexte cette solution
est applicable, et d'autre part en dégageant leurs caractéristiques.
Nous présentons ensuite une approche générale pour le développement et
la maintenance de systémes informatiques’comp1éxes. Nous identifions
les problémes inhérents & cette approche et nous indiquons quelques
é1éments de solutions basés sur des réalisations récentes. Enfin,
nous concluons cette étude en énumérant une Tliste de problémes encore
ouverts. Chaque probléme constitue un sujet de recherche potentiel a

approfondir.

TABLE DES MATIERES

1. Introduction ..ieeeereeienenensenncnesansnannns ceensseanns PN 1
2. Les systeéemes informatiques guidés par un systeme expert 3

3. Un modéle général pour le développement et la maintenance de
systémes informatiques guidés par un systéme expertce0.. 6

4. Quelques exemples de systémes informatiques guidés par un
systeme expertiiiinenn Sessseesesenstsessaansonas certesesenas 10
4.1 HEXSCON Cesesanss Ceesesesesesesassaseseseans cesseseses 10

4.2 Un générateur de code pour compilateurs TR § |

4.3 YES/MVS tiiiiiiiniinenennnnans tecerssenes N Cetresenne ees 12
4.4 Autres systémes en développementvcvvevnannen S X
5. Problémes particuliers au modéle ...cevveenne P
5.1 Intégration du systéme expert ceeeens teseane cevee. 14
5.2 Représentations incompatibles des donnéesccevveeevncas 15
5.3 Outils techniques toeiiiveeirereesesenceoceoscasecasesssasaoe 16
5.4 Le temps réponse pour Tles app]icatjons en temps réel 16
5.5 Raisonnements incohérents cessecesennnes . ¥ 4
5. ConcTusSion cuvevenenrenensnnenonss cesessenses ceenes ceressssesess 17

BIBLIOGRAPHIE cereecese tesseseaseuensresesesecanns ceeeensnes 19

1. Introduction

Nous proposons comme objectif a notre projet de recherche d'appor-
ter une contribution théorique et pratique au probléme du développe-
ment et de la maintenance des systémes informatiques complexes. Pour
préciser ce que nous entendons ici par systémes informatiques com- -
plexes, rappelons la classification des programmes présentée par
Lehman [Lehman 80]. Cette classification partage les programmes en
trois catégories distinctes: les S, R}et E-programmes. Un S-programme
constitue une solution informatique & un probléme qui est précisément
-et complétement défini par une spécification statique. Les exemples
suivants donnent un apergu de quelques S-programmes: 1'inversion
d'une matrice carrée, la synchronisation de processus dans un systeme
d'exploitation et Te tri d'un vecteur d'éléments. L'entretien effec-
tué sur les S—programmes est de nature perfectible; c'est-a-dire qu'il
consiste & rendre les programmes plus efficaces, plus lisibles et plus
é1égants. Un P-programme contient des algorithmes heuristiques qui
calculent des solutions approximatives suffisamment proches des solu-
tions optimales d'un probléme réel completement spécifié pour lequel
les spécialistes possédent une connaissance incompléte, imprécise,
contradictoire et évolutive. Les programmes joueurs d'échec, par
exemple, entrent dans cette catégorie. Finalement, un E-programme est
dérivé d'une spécification S, elle-méme formulée a partir d'un modéle
M. La construction du modéle M comporte un processus d'abstraction
d'une partie de 1'environnement. Les E-programmes différent des
P-programmes par le fait qu'ils font partie intégrante des applica-
tions qu'ils modélisent. A titre d'exemples, mentionnons les systémes

en temps réel, les systémes d'exploitation, les systémes répartis, Tes

systémes de bureautique et Tes ateliers logiciels. Tout comme les
P-programmes, les E-programmes sont sujets a de fréquentes modifica-
tions qui résultent principalement des changements de 1'environnement
ou des pressions des utilisateurs de plus en plus expérimentés
vis-a-vis le systéme. L'entretien d'un E-programme reproduit les
changements qui surviennent dans 1'environnement, le modéle M, la
spécification S et le programme. Dans ce rapport, nous associons

1'expression "systéme informatique complexe" & un E-programme.

Selon Lehman, la décomposition d'un E-programme en modules permet
de distinguer les éléments fonctionnels qui peuvent étre complétement
et précisément spécifiés, des éléments fonctionnels qui sont par
nature heuristiques ou évolutifs. Dans ce dernier cas, ou bien ces
é1éments ne sont pas reconnus lors de la spécification du systeme et
alors ils sont implicitement contenus dans le modéle, ou bien ils sont
clairement identifiés et explicitement spécifiés. Au lieu d'utiliser
1'approche procédurale pour implanter ces derniéres spécifications,
nous suggérons de traduire ces spécifications en une représentation
exécutable par un systéme expert. Ainsi, un E-programme sera cons-
truit en deux parties distinctes: une partie stable construite a
partir des techniques conventionnelles de conception de systémes
informatiques et dne autre partie sujette a des changements continus
supportée par des outils de systémes experts. La premiere partie
correspond a un ensemble de S-modules tandis que la deuxiéme partie
correspond aux é1léments heuristiques et évolutifs du E-programme,
appelés E-éléments. Nous appelons un systéme informatique développé
selon cette approche un systéme informatique guidé par un systéme

expert (know]edge-driven system) [St-Denis 86].

Dans la prochaine section, nous justifions notre approche & ce
probléme en montrant comment les systémes informatiques guidés par un
systéme expert constituent une solution originale pour implanter des
E-programmes. Dans la troisiéme section, nous décrivons une méthode
générale a suivre pour développer et maintenir ce type de systémes.
Dans la quatriéme section, nous présentons quelques exemples de
systémes informatiques guidés par un systéme expert. Dans la cinquie-
me section, nous passons en revue un ensemble de problémes partielle-
ment résolus qui sont particuliers & cette approche. Enfin, dans 1la
derniére section, nous fournissons une liste de problémes & attaquer

avec plus de profondeur.

2. Les systémes informatiques guidés par un systéme expert

Un des moyens & prendre pour déVe]opper et maintenir'p1us efficace-
ment des E-programmes consiste a transformer le cycle de vie conven-
tionnel pour inclure 1'utilisation intensive des techniques ce 1'in-
telligence artificielle. Une solution & Tong terme proposée par
Balzer, Cheatham et Green exploite les outils logiciels & base de
connaissances pour automatiser 1'étape de développement [Balzer 83].
La solution & court terme présentée dans ce rapport est complétement
différente. Nous Suggérons de concevoir un E-programme comme un
systéme informatique guidé par un systéme expert, c'est-a-dire d'in-
tégrer un systéme expert dans chaque E-programme. Cette solution peut
paraitre a premiére vue inadéquate. Cependant les caractéristiques de
1'environnement dans lequel s'exécutent les E-programmes s'apparentent
aux critéres qui définissent en quelque sorte la classe des problémes

auxquels s'attaquent les systémes experts.

L'environnement dans lequel un E-programme s'exécute inclut un
grand nombre d'objets. Chaque objet appartient a une classe qui est
définie en terme d'une Tiste d'attributs. Les classes d'objets
présentent entre elles des relations. Par exemple, une classe peut
8tre définie comme une sous-classe d'une autre classe ou comme une
combinaison de plusieurs classes. Des événements peuvent générer ou
détruire des objets, ou altérer les valeurs courantes associées aux
attributs d'un objet. De plus, chaque utilisateur du systeme applique
ses propres régles pour manipuler les objets et pour réagir aux
événements. Les régles sont exécutées sous certaineS'hypothésés et
contraintes. Elles sont bésées sur 1'expérience de 1'utilisateur et

sur son appréhension actuel de 1'environnement.

Au début, les utilisateurs ont des besoins qui ne sont pas toujours
bien exprimés. "Les besoins sont imprécis et incomplets. Les utilisa-
teurs prennent de 1'expérience au fur et a mesure qu'ils utilisent Tle
systeme informatique. La spécification initiale est raffinée et
améliorée pour inclure des heuristiques sophistiqués et de nouvelles
facilités. Différentes perceptions de 1'environnement et des besoins
spécifiques propres a chaque utilisateur conduisent éventuellement &
des connaissances cohtradictoires ou incompatibles, ce qui obligent
les informaticiens a maintenir différeﬁtes versions du E-programme.
L'altération des spécifications est aussi gouvernée par 1'évolution de
1'environnement. Des classes d'objets et des événements sont ajoutés,

modifiés ou détruits. Les heuristiques deviennent de plus en plus

complexes.

Les E-programmes doivent interagir avec les utilisateurs pour de
multiples raisons. Deux d'entre elles sont importantes dans cette
discussion. Premiérement, pour un E-programme, les aspects qualita-
tifs de la solution sont plus importants que les aspects quantitatifs.
Ainsi, Tes utilisateurs sont plus confortables si le systéme informa-
tique peut expliquer et justifier ses conclusions & propos de la
solution générée. Deuxiémement, si le systéme informatique-se trouve
dans une impasse, il peut interroger 1'ﬁtilisateur pour lui demander
de 1'information supplémentaire afin de trouver éventuellement une

meilleure solution.

Les systéemes informatiques guidés par un systéme expert constitue
certainement une solution appropriée au probléme que nous voulons
attaquer. En effet, ils offrent un ensemble de mécanismes qui
permetfent de capter sous une forme déclarative l'importantg quantité
de conhaissances relatives a 1'environnement, d'introduire ou de
modifier rapidement et aisément les éléments heuristiques et évolutifs
sans détériorer la structure du systéme informatique, d'exécuter une
partie des spécifications sans les traduire dans un langage procédu-
ral, de raisonner avec des connaissances imprécises et incertaines, et
enfin de dialoguer de fagcon conviviale avec les utilisateurs pour la

recherche ou 1'explication d'une solution.

Cette approche de concevoir des systémes informatiques cohp]exes
posséde trois avantages significatifs par rapport a 1'approche conven-
tionnelle. Premiérement, ils possédent un plus haut degré de modifia-
bilité et donc d'adaptabilité vis-a-vis 1'environnement et les utili-

sateurs, car la majorité des modifications ne sont plus faites dans le

code mais & un niveau d'abstraction plus élevé. Deuxiémement, la
totalité ou des parties du systéme sont réutilisables, car elles sont
indépendantes de 1'environnement, des conditions d'opération et des
stratégies heuristiques. Troisiémement, les systémes qui en résultent
apparaissent de plus en plus sophistiqués, car ils incorporent toute

la puissance et les propriétés des systémes experts.

Cette approche apparait techniquement viable dd aux récents progrés
et développements dans les domaines du prototypage, des systémes
experts et des langages de spécifications. Enfin, soulignons qu'une
étude détaillée a démontré 1'intérét d'une telle approche pour une
classe particuliére de E-programmes, soit celle des systémes répartis

[St-Denis 86].

3. Un modéle général pour le développement et la maintenance de

systémes informatiques guidés par un systéme expert

La Figure 1 illustre de fagon schématique un modéle pour le
développement et la maintenance de systémes informatiques guidés par
un systéme expert. La premiére étapg de ce processus consiste a
décrire le domaine d'application en termes d'objets, d'événements, de
contraintes et de stratégies heuristiques en utilisant, par. exemple,
le Tangage RML [Greenspan 84]. Cette description formalise le modéle
M et permet de construire une premiére base de connaissances requise

pour 1'exécution du systéme informatique guidé par un systéme expert.

Dans la deuxieme étape du processus, une analyse des besoins
exprimés par 1'utilisateur permet d'identifier les composantes fonc-

tionelles et Tes éléments de données du systéme informatique. Les

données et les fonctions sont raffinées jusqu'a ce qu'elles ne
requiérent plus aucune décomposition. A la fin de cette étape, on

obtient la spécification formelle du systeme S.

environnement

DESCRIPTION DU DOMAINE
D' APPLICATION

v

$
besoins de 1'utilisateur

|
ANALYSE DES BESOINS

spécification formelle du systéme

FILTRAGE
‘ ry $ 3 : .
partie statique de Tf spécification partie heuristique de la spécification
ey . COMPILATEUR DE
CONCEPTION ET CONNAISSANCES
CODIFICATION
bases de connaissances

. ersion nf

MAINTENANCE

moteur d'inférence

systéme informatique guidé par un systéme expert—u MAINTENANCE

Figure 1 - Modele de développement et de maintenance

La troisiéme étape comporte une opération de filtrage. La spécifi-
cation S est divisée en deux parties. La premiére partie (59)
identifie les composantes qui sont des S-modules tandis que la seconde
partie (Sz) identifie les E-é1éments. Un lien est établi entre un
point de décision dans S1 et une portion des connaissances déclarées

dans la premiere étape. I1 s'agit ici d'appliquer le principe de

séparation des mécanismes et des politiques, introduit par Brinch-
Hansen [Brinch-Hansen 70], afin d'identifier les points de décision.
L'app]icabi]ité.de ce priﬁcipe est rendue nécessaire pour éviter aux
concepteurs d'introduire dans la spécification détaillée de la partie

procédurale des E-éléments formulés ultérieurement.

Une fois cette étape réalisée, le processus de développement se
divise en deux branches para]]é]eﬁ. La branche de gauche représente
essentiellement Te cycle de vie traditionnel [Boehm 81]. La spécifi-
cation S1 est traduite successivement en une spécification architectu-
rale, une spécification détaillée, puis en un ensemble de S-modules
écrits dans un langage de programmation procédural. Les techniques de
réutilisation de programmes sont possibles, car le systéme informati-
que est indépendant des stratégies heuristiques, des conditions

d'opérations et des environnéments.

La branche de droite représente le processus évolutif de développe-
ment des systémes & base de connaissances [Hayes-Roth 84]. Les
connaissances sont compilées sous une forme exécutable par un moteur
“d'inférence puis mémorisées. Enfin, elles sont vérifiées,° et validées

par rapport aux intentions des utilisateurs.

La derniére étape consiste & lier Te moteur d'inférence et les
S-modules via un mécanisme d‘'éditions de Tliens pour constituer le
systéme informatique guidé par un systéme expert. Au moment de
1'exécution, le moteur d'inférence prend des décisions & partir de la
base des faits mise & jour par 1'utilisateur et 1'ensemble des

S-modules.

Dans ce modéle, la maintenance apparait a deux endroits différents.
Un entretien de nature perfectible et corrective améliore la qualité
et la performance, et corrige les défaillances des S-programmes. Cet
entretien est fait sur le code. Un second entretien permet d‘adapter
le systéme a des changements de 1'environnement ou a de nouvelles
politiques des utilisateurs. Si ces nouveaux besoins n'entrainent pas
de modjfication de 1'architecture du systéme, les utilisateurs peuvent
eux-mémes modifier la base de connaissances pour améliorer la perfor-
mance globale du systéme ou ajouter de nouvelles connaissances pour
adapter le systéme .@ un nouvel environnement . I1 s'agit dans ce cas
d'un entretien correctif, perfectible et adaptatif sur les E-é1éments
seulement. Enfin, si les nouveaux besoins exprimés par les utilisa-
teurs nécessitent 1'ajout de nouvelles fonctionnalités au systéme,
1'addition de nouveaux S-modules est inévitable et la structure'du
systeme doit étre modifiée en utilisant un ensemble de techniques

connues et appropriées.

Le probléme de versions multiples est partiellement résolu en
associant a chaque famille d'utilisateurs un ensemble de connaissances
qui Teur sont propres. L'activation du bon ensemble de connaissances
au moment de 1'exécution du E-programme peut s'opérer au niveau de la
méta-connaissance d'une seule base de connaissances universelle ou &
1'aide d'une sélection d'une base de connaissances spécifique. Cette

derniére solution est présentée & la Figure 1.

En construisant les E-programmes de cette fagon, nous bénéficions
des avantages d'une approche classique et d'une approche moderne.

Dans 1'approche classique, les informaticiens disposent d'un grand

10

nombre d'outils qui sont techniquement viables et praticables. De
plus, la programmation procédurale apparait la plus appropriée pour le
parc d'ordinateurs actuel et pour la réutilisation de programmes
existants. Par contre, 1'approche systéme expert permet une modifica-
tion plus aisée du systeme, car les énoncés de la spécification
initiale ne passent pas par toute une série de transformations
successives qui ne sont pas aujourd'hui complétement systématisées.
Les énoncés sont donc simplement déclarés en vrac puis compilés.

Cette derniére approche s'apparente aux techniques de prototypage.
ana]ement, il est intéressant de noter que ce processus reconnait
trois types d'objets qui interviennent dans le développement d'un
E-programme: les algorithmes (les S-modules), les données (les struc-
‘tures de données des S-modules et de la base des faits) et les
connaissances liées a 1'environnement et au domaine d'application (la

base de connaissances).

4. Quelques exemples de systémes informatiques guidés par un systéme

expert

Voici une bréve description de trois systémes informatiques guidés
par un systeme expert. Pour chaque systéme, nous indiquons le domaine
d'application, nous décrivons 1'architecture du systéme et nous

présentons les particularités les plus intéressantes.

4.1 HEXSCON

HEXSCON (Hybrid EXpert System CONtroller) est un systéme expert

destiné aux applications en temps réel aussi bien dans le domaine

11

militaire que dans le domaine industriel [Lattimer Wright 86]. Le
systeme HEXSCON comporte quatre parties principales: Tle moteur
d'inférence, la base de connaissances, Te gestionnaire de la base des
connaissances et un systéme d'exploitation qui gére les différentes .
taches, les capteurs et les effecteurs. Le gestionnaire et la base
des connaissances résident sur un ordinateur de grande taille. Les
connaissances sont représentées a ce niveau dans un langage semblable
4 1'anglais. Cette connaissance est compilée, puis transférée dans un
micro-ordinateur ol s'exécutent le moteur d'inférence et le systéme
d'exploitation en temps réel. Ce systéme opére dans un environnement
dynamique. Les décisions doivent étre prises pour permettre une
réaction immédiate aux événements. Les signaux enregistrés par des
capteurs sont interprétés puis ensuite analysés pour identifier les
types d'objets et les événements connus de la base de connaissances.
Les propriétés temporelles et spaciales ainsi que Tes relations qui
existent entre les objets et les événements conduisent & des raisonne-
ments progressifs dont la complexité augmente en fonction du temps
disponible. De plus, ce systéme fonctionne raisonnablement et sire-
ment méme & partir de données incertaines et imprécises. Enfin, il
s'exécute sur des micro-ordinateurs avec des ressources matérielles

limitées,

4.2 Un générateur de code pour compilateurs

Les compilateurs commerciaux développés récemment par la firme
Intermetrics Inc. contiennent un systéme expert pour la génération de
code de haute qualité [Haradhvala 84]. Ce type de systéme comporte un

compilateur qui génére des arbres syntaxiques abstraits et un systeme

12

expert qui transforme ces stfuctures en une séquence d'instructions
exécutables par une machine cible. L'approche systeme expert est
rendue nécessaire, car les machines cibles possédent desAjeux d'ins-
tructions sophistiqués et des architectures particuliéres. Les.utili-
sateurs des compilateurs peuvent aisément adapter le générateur de
code en fonction de besoins spécifiques. Il1s n'ont pas a connaitre la

logique du compilateur et des outils de construction de compilateurs.

4.3 YES/MVS

YES/MVS est un systéeme expert qui assiste les opérateurs dans la
conduite d'ordinateurs [Ennis‘86]. I1 fournit des réponses rapides,
cohérentes et précises a des situations aussi bien routiniéres que
problématiques. I1 .réduit et réorganise le flot des messages entre
1'opérateur et le systéme cible. L'architecture du systéme se composé
principalement de quatre machines virtuelles. La machine virtuelle &
opérer et trois autres machines qui s'exécutent sur un ordinateur
distinct de la machine a opérer. Une premiére machine virtuelle
constitue le systéme expert. ETlle exécute les régles de la base des
connaissances en fonction des messages qﬁ'e]]e regoit de la machine
cible. En réponse aux décisions prises, le systéme expert retourne
des commandes & la machine cible. Aussi, le systéme expert regoit de
et envoie & 1'opérateur du texte. Une deuxiéme machine virtuelle
constitue 1'interface entre la machine cible et Te systéme expert.
Elle traduit tous les messages de la machine cible dans un format
compatible pour le systéme expert et vice et versa. Finalement, une
troisiéme machine virtuelle fournit une interface de communication

entre le systéme expert et 1'opérateur. Elle transmet aussi Tes

13

commandes suggérées par le systéme expert et autorisées par 1'opéra-
teur a la deuxiéme machine virtuelle. Le squelette de systémes
experts OPS5 a été utilisé pour construire YES/MSV. Certains change-
ments ont été apportés a OPS5 pour prendre en considération Tes

problémes qui surviennent dans un environnement dynamique.

" 4.4 Autres systémes en développement

I7 existe plusieurs projets en développement qui nécessitent la
construction de systémes informatiques guidés par un systeme expert.
Les systémes de traitement de texte dans lequel 1'expertise des
typographes peut étre incluse pour formatter du texte constitue un
exemple intéressant. Bonham et al. [Bonham 85] entrevoit d'intégrer
de 1'expertise en écrivant un tel systéme en LISP. La robotique et
1'opération d'avions commerciaux et militaires [Georgeff 86] consti-

tuent d'autres exemples d'applications en temps réel.

5. Problémes particuliers au modéle

Dans cette section, nous dégageons les principaux problémes inhé-
rents a 1'approche décrite dans la troisiéme section. Mais avant de
présenter les différents problémes et les solutions qui ont été
‘retenues, i1 nous apparait important de distinguer entre 1'évolution
de 1'environnement et des événements qui surviennent dans 1'environne-
ment. . L'évolution de 1'environnement se traduit par des changements
progressifs & des intervalles de temps macroscopiques. Ces change-
ments sont pris en considération par des modifications apportées a la

base des connaissances ou aux S-modules. I1 existe aussi des

14

événements qui entrainent des changements rapides dans la base des
faits. Ces changements surviennent a des intervalles de temps
microscopiques. Les événements déclenchent des raisonnements au
niveau du systéme expert. Dans ce dernier cas, on parle d'applica-
tions qui s'exécutent dans un environnement dynamique. Des problémes
de temps réponse et de cohérence dans le raisonnement doivent &tre
résolus. Pour les applications qui s'exécutent dans un environnement
statique, le systéme expert raisonne a partir de faits qui ne changent
pas durant ses raisonnements. Le probléme de temps réponse est moins

aigu. Le probléme de raisonnements incohérents n'existe pas.

5.1 Intégration du systéme expert

La fagon dont le systéme expert s'intégre a la partie procédurale
se traduit dans le contrdle ou la logique du systéme en général. Dans
HEXSCON, le systéme d'exploitation considére le systéme expert comme
une tache qui est déclenchée par une interruption logique. Une
interruption logique interrompt le raisonnement courant qui est
abandonné et démarre un raisonnement sur un nouveau probléme.. Dans ce
cas, on dit que le systéme expert est fortement intégré & la partie
procédurale. Dans les deux autres systémes, 1'exécution du systéme
expert est indépendante de la partie procédurale. Le systéme expert
est faiblement intégré. Dans le cas des compilateurs, le systéme
expert exécute une tache bien circonscrite dans une séquence d'opéra-
tions (analyse lexicale, syntaxique, génération du code, optimisation
du code). Dans le cas de YES/MVS, le systéme expert est indépendant

de la machine & opérer et un mécanisme de communication inter-machines

est mise en oeuvre pour répondre aux entrées/sorties.

15

5.2 Représentations incompatibles des données

Les représentations des données sont généralement différentes dans
la partie procédurale et dans la partie déclarative. Dans]'approche
procédura1e,‘1es attributs des objets sont contenus dans des structu-
res de données. Le langage procédural permet de décrire ces structu-
res et de manipuler leurs contenus. Des variables représentent des
adresses ou sont emmagasinées les données. Les systémes experts
n‘utilisent pas la méme représentation. Ils manipulent des données
emmagasinées sous une. forme symbolique. Cette incompatibilité dans
les représentations internes des données conduit a définir une
interface entre la partie écrite dans un langage procédural et le
systéme expert. Quelques solutions ont été retenues. Par exemple,
HEXSCON utilise un traducteur qui permet de passer d'une représenta-
tion a une autre. Le traducteur connait la représentation des données
dans chacune des parties et la fagon de passer de 1'une & 1'autre, La
solution retenue dans le systéme YES/MVS est différente. Une machine
virtuelle traduit les messages généré§ par le systeme MVS en un format
compatible pour Te systéme expert. Ensuite les réponses du systéme
expert sont transformées en des commandes de MVS. Contrairement au
traducteur de HEXSCON qui travaille sur les données internes du
programme, la machine virtuelle traite les entrées/sorties de MVS.
Enfin, les compilateurs d'Intermetrics produisent des données inter-
prétables par le systéme expert qui génére du code optimisé. Aucun
échange n'est fait dans le sens inverse (échange unidirectionnel). |
Dans toutes ces solutions, on contourne le probléme, car il n'existe
pas une véritable intégration des données de la partie procédurale et

des données de la base des faits. Le passage est effectué par une

16

traduction des données et par une édition de liens appropriée. Une
solution plus élégante consiste & définir un langage de haut niveau
qui permet la déclaration de structures de données, d'algorithmes et
de connaissances. L'association données et faits est assurée par des
mécanismes du langage, tout comme 1‘'interaction entre le systéme
expert et les algorithmes. Notons enfin qu'il existe une représenta-
tion des connaissances, appelée connaissance procédurale, qui intégre

1'approche déclarative et 1'approche procédurale [Georgeff 83].

5.3 Outils techniques

A notre connaissance, i1 n'existe pas véritablement d'outils
techniques spécifiques au développement et a la maintenance des
systémes informatiques guidés par un systéme expert. La méthode
présentée dans la section 3 doit étre approfondie et des outils

logiciels restent a développer.

5.4 Le temps réponse pour les applications en temps réel

Pour les applications en temps réel, le temps réponse est crucial.
Le moteur d'inférence ne peut raisonner dans 1'hypothése qu'il dispose
d'un grand temps. Plusieurs so]utioﬁs ont été envisagées pour
améliorer la performance des moteurs d'inférence. Par exemple, Tle
moteur d'inférence de HEXSCON utilise de la connaissance compilée et
introduit la notion de raisonnement progressif dont la complexité
augmente avec le temps. Le systéme YES/MVS utilise une version
modifiée du systéme OPS5 et s'exécute sur un ordinateur de trés grande

taille (IBM/370). Les parties droites des régles sont compilées et

17

les régles sont distribuées selon le sous-domaine d'activité entre
plusieurs systémes OPS5 qui s'exécutent concurremment sur des machines
virtuelles distinctes. Pour les applications statiques le temps
réponse n'est pas un facteur déterminant et ces mécanismes sont moins

importants.

5.5 Raisonnements incohérents

Dans un environnement dynamique, une altération des faits initiaux
durant un raisonnement peut conduire a des déductions incohérentes.
La solution retenue pour résoudre ce probléme dans le systéme YES/MVS
consiste & reconnaitre aprés chaque déduction les contradictions, et &
considérer dans ce cas de nouvelles avenues de raisonnement. On

appelle raisonnement non monotone ce type de raisonnement [Schor 86].

5. Conclusion

L'intérét pour les systémes informatiques guidés par un- systéme
expert est récent. Seulement quelques prototypes existent au-
jourd'hui. Outre la réa]isatfon pratique d'un systéme informatique
guidé par un systéme expert, cette approche souléve des problémes
techniques qui nécessitent un travail de recherche encore important.
Plusieurs problemes de recherche restent encore ouverts, sinon a

découvrir, en particulier:

-1'approfondissement de la méthode présentée dans la troisiéme

section;

18

-la construction d'outils logiciels pour la conception, le dévelop-

pement et la maintenance de tels systémes;

-Ta définition d'un langage de programmation propre aux systémes

informatiques guidés par un systéme expert.

19

BIBLIOGRAPHIE

[Balzer 83]
R. Balzer, T.E. Cheatham, Jr., C. Green: Software technology in
the 1990's: Using a new paradigm; Computer, 16 (11), 1983,

39-45.

[Boehm 81]
B. W. Boehm: Software Engineering Economics; Prentice-Hall,

Englewood Cliffs, NJ, 1981.

[Bonham 85]
M. Bonham, I. H. Witten: Towards distributed document preparation
with interactive and non-interactive viewing; INFOR, 23 (4),

1985, 365-388.

[(Brinch Hansen 70]
P. Brinch Hansen: The nucleus of a multiprogramming system;

Commun. ACM, 13 (4), 1970, 238-241.

[Ennis 86]
R. L. Ennis, J. H. Griesmer, S. J. Hong, M. Karnaugh,
J. K. Kastner, D. A. Klein, K. R. Milliken, M. I. Schor,
H. M. Van Woerkom: A continuous real-time expert system for
computer operations; IBM Journal Research and Development,

30 (1), 1986, 14-28.

20

[Georgeff 83]
M. P. Georgeff, U. Bonollo: Procedural expert systems; Proceedings
of the 8th Int. Joint Conf. on Artificial Intelligence, Karlsruhe,
Germany, 1983, 151-157.

[Goergeff 86]
M. P. Georgeff: Planning and reasonning in dynamic worlds;
Centre de cours intensifs de 1'Ecole Polytechnique de Montréal,

1986.

[Greenspan 84]
S. J. Greenspan: Requirements modeling: a knowledge representation
approach to software requirements definition; PhD thesis,

Technical report CSRG-155, University of Toronto, 1984.

[Haradhvala 84}
S. Haradhvala, B. Knobe, N. Rubin: Expert systems for high
quality code generation; Proceedings of the 1st Conf. on
“Artificial Intelligence Applications, Denver, CO, IEEE Computer
Society, Silver Spring, Md., 1984, 310-313.

[Hayes-Roth 84]
F. Hayes-Roth: The knowledge-based expert system: a tutorial;

Computer, 17 (9), 1984, 11-28.

[Lattimer Wright 86]
M. Lattimer Wright, M. W. Green, G. Fiegl, P. F. Cross:
An expert system for real-time control; IEEE Software, 3 (2),

1986, 16-24.

21

[Lehman 80]
M. M. Lehman: Programs, life cycles, and laws of software

evolution; Proceedings of the IEEE, 68 (9), 1980, 1060-1076.

[Schor 86]
M. I. Schor: Declarative knowledge programming: better than

procedural?; IEEE Expert, 1 (1), 1986, 36-43.

[St-Denis 86]
R. St-Denis: Expert systems for distributed systems;

Interfaces in Computing, 3 (3-4), 1986, 217-225.

g

9

MMl

LYTECHN
9334 0028

I

I

