POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre:

Title: Transformation in reengineering techniques

Auteurs:
Authors:
Date: 1994

Type: Rapport / Report

Germinal Boloix, & Pierre N. Robillard

Référence: Boloix, G., & Robillard, P. N. (1994). Transformation in reengineering techniques.
Citation: ' (Rapport technique n° EPM-RT-94-25). https://publications.polymtl.ca/10151/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: .
; . : . .
PolyPublie URL: https://publications.polymtl.ca/10151/

Version: Version officielle de I'éditeur / Published version

Conditions d Ut'l'sat'onf Tous droits réservés / All rights reserved
Terms of Use:

Document publié chez I’éditeur officiel
Document issued by the official publisher

Institution: Ecole Polytechnique de Montréal

Numéro de rapport: o\ n1.94.55
Report number:

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal


https://publications.polymtl.ca/
https://publications.polymtl.ca/10151/
https://publications.polymtl.ca/10151/

>

92 1ARS 1995

EPM/RT-94/25

Transformations in Reengineering Techniques

Germinal Boloix
Pierre N. Robillard

Département de génie électrique
et génie informatique

Ecole Polytechnique de Montréal
Novembre 1994



Tous droits réservés. On ne peut reproduire ni diffuser aucune partie du présent ouvrage, sous quelque
forme que ce soit, sans avoir obtenu au préalable I’autorisation de 1’auteur,
OU des auteurs

Dépb6t 1égal, novembre 1993
Bibliotheque nationale du Québec
Biblioth2que nationale du Canada

Pour se procurer une copie de ce document, s’adresser:

Les Editions de I’Ecole Polytechnique
Ecole Polytechnique de Montréal
Case postale 6079, succ. Centre-ville
Montréal, (Québec) H3C 3A7
Téléphone: (514) 340-4473
Télécopie: (514) 340-3734

Compter 0.10 $ par page et ajouter 3,00 $ pour la couverture, les frais de poste et la manutention.
Régler en dollars canadiens par chdque ou mandat-poste au nom de I'Ecole Polytechnique de Montréal.

Nous n’honorerons que les commandes accompagnées d’un paiement, sauf s’il y a eu entente préalable
dans le cas d’établissements d’enseignement, de sociétés ou d’organismes canadiens.



Transformations in Reengineering Techniques

Germinal Boloix, Pierre N. Robillard
3 November 1994
Ecole Polytechnique de Montréal
Département de Génie Electrique et de Génie Informatique
C.P. 6079 succ Centre Ville
Montréal, Québec H3C 3A7
Tel. (514) 340-4031, 340-4238 - Fax. (514) 340-3240
boloix@rgl.polymtl.ca
pnr@rgl.polymtl.ca

Abstract

Reengineering techniques (REs) seek to understand systems by extracting knowl-
edge from source code. This knowledge is represented by different views and different
layers of abstraction. By studying REs, it is possible to determine what knowledge is
required and to determine why it was not available in the first place. This understanding of
REs should provide important insights into the way new systems should be developed.

In this paper we analyze several REs using a transformational approach for purposes
of identifying the characteristics of REs. By formally specifying the characteristics of
views (or environments) and the correspondance among these views at different layers of
interpretation, it is possible to identify the knowledge manipulated by reengineering tech-
niques. Each environment (e.g., code, dataflow graph, structure chart) is formally repre-
sented using an object-oriented model to define the objects, its associations and the
operations upon them. Correspondences among environments are defined using a transfor-
mational approach.




1.0 Introduction

Reengineering (RE) techniques (e.g., reengineering, reverse engineering, restructur-
ing, remodularization) manipulate different types of knowledge, abstracted from the
implementation, to generate higher-level views understandable to humans. From these
views, a forward-engineering process may take place. Some reengineering approaches
claim the system’s functionality remains unchanged. Other approaches, like business-pro-
cess reengineering, may require a complete overhaul of the systems to conform to new
models of the business.

The user’s view of systems is functional, and related to the application domain. The
developer’s view of systems requires knowledge of both the application domain and soft-
ware techniques. Matching functionality to programming constructs aids during software
evolution activities. Corrections or enhancements are performed at the programming
level, but may impact the application domain. The goal is to define a formal mapping from
programming constructs to application domain functionality.

REs utilize different approaches to generate software representations. Composition,
decomposition and transformation are some mechanisms for managing software represen-
tations. Composition is the process of assembling information by finding relevant compo-
nents and establishing their relationships. Decomposition creates objects and relationships
derived from existing components. Transformation maps components among different
representations. Formalizing the reengineering process is a step towards understanding
precisely what type of knowledge is required.

Our approach is to analyze several reengineering techniques to identify this knowl-
edge, from implementation to high-level representations of systems. Implementation con-
cepts are matched to layers concepts to establish the knowledge manipulated by each
reengineering technique. Each environment (e.g., code, abstract syntax trees, dataflow
graphs, structure charts) is formally represented using an object-oriented model to define
the elements, its relationships and the available operations. Correspondences among envi-
ronments are defined to establish the transformations steps. This approach has already
been analyzed for forward-engineering activities [BST92], and integrates common con-
cepts from reengineering and forward-engineering approaches.

We would like to identify what knowledge is required to understand a system or a
piece of code. Some knowledge is present in the source code, but hidden from the point of
view of understandability. Knowledge evolving during development or maintenance
which was not captured has to be captured with external assistance. Knowledge about the
programming language, the operating system, the problem domain, the solution space, the
evolution of the system, as well as an understanding of the different types of software rep-
resentations at high layers of abstraction, is required. The knowledge abstraction problem
[A87] consists in differentiating domain knowledge from implementation knowledge
through layers of abstraction.

The paper is organized as follows. Section 2 presents a summary of reengineering
techniques. Section 3 introduces formal representations of environments and their trans-




formations. Section 4 summarizes the knowledge captured from the implementation and
the knowledge produced at different abstraction layers. Section 5 presents the knowledge
required and produced by each reengineering technique. Finally, section 6 gives some con-
clusions and suggest future areas of research.

2.0 Reengineering Techniques

Reengineering techniques (REs) are oriented towards improving maintenance
through an understanding of existing source code and the generation of a better software.
The object of these efforts is to reduce maintenance costs and increase maintenance pro-
ductivity by improving software quality and reducing software complexity. The main
objectives of REs are to understand and improve software (i.e., make it more adaptable to
change), and to capture, preserve, and extend knowledge about software. The process of
creating or reconstructing software has to be considered together with the characteristics
of the software itself, if improvements of orders of magnitude are to be expected. Design
decisions and their rationale are documented to help understand the reasons behind the
alternatives. REs seek to express knowledge of programs and data structures in terms
closer to the problem domain, understandable by developers and maintainers, in order to
optimally manage system evolution.

2.1 Summary of reengineering techniques

A summary of reenginering technique definitions is presented which identifies its
main characteristics (more detail can be found in Arnold [A93]). In most cases REs create
new systems without changing their functionality; changes in functionality should be
made after the system has been reengineered. Other RE techniques only create high-level
representations of the system for purposes of understandability. Finally, business process
reengineering may have a major impact on software because the business itself is affected.

Reengineering comprises reconstruction of software to adapt it to new environmen-
tal conditions. It changes the underlying technology of a system without affecting its over-
all function, basically updating the technology rather than improving functionality. It
requires uncovering the essential software requirements and the user’s underlying model.
It examines and alters the system to reconstitute it in a new form, and to finally implement
the new form.

Examples of conversion approaches in reengineering are:
» Assembler to third-generation language
» Structured Cobol to open-system environment
» Cobol-74 to Cobol-85
 Fortran to Ada
+ Ultra to Pascal

+ Convert from old DBMS and file structures to new relational DBMS




+ Conversion from Univac to IBM 370

Reverse engineering generates software representations that help in understanding it
or facilitate its processing. It is a backward process from code to a high-level representa-
tion similar to that of a design document. The process of reverse engineering analyzes a
system to identify the system’s components and their interrelationships, and to create rep-
resentations of the system in another form at a higher layer of abstraction. This transfor-
mation goes from low-level technology considerations (i.e., code) to high-level enterprise
model representations (i.e., business rules).

Restructuring is the process of changing the source code control structure according
to the rules of structured programming without changing external functionality. This trans-
formation is done at the same abstraction layer, preserving the system’s external behavior.
It implies modifying the software to make it easier to understand and to change, or make it
less susceptible to error when future changes are made. A major goal of software restruc-
turing is to preserve or increase software value (e.g., cost savings to users and more pro-
ductive maintenance activities). For large systems, remodularization is necessary, in
addition to restructuring.

Reuse of software involves selecting existing components and adapting them to per-
form for different environments. Besides code, there are several types of software assets
that can be reused: specifications, designs, test data, software documentation and code
templates. Reusing a software component may imply concurrent reuse of other compo-
nents associated with it. Criteria for reusability are the functional usefulness of compo-
nents, the cost to adapt components in a new system, their environmental independence,
and the degree of dependency among components. Experience from past development and
maintenance activities can also be reused along with the components, provided that the
experience is recorded.

Remodularization is the reorganization of the system’s architecture. Similarity
among program or system parts is analyzed and a new structure is proposed. As in other
REs, the functionality of the system should not be altered. Modules should be logically
meaningful to facilitate their association with the application domain.

Design recovery is the process of identifying the high-level design abstractions
comprising the system, the domain knowledge and the reasoning behind decisions. The
design recovery process looks for large-scale organizational structures (i.e., subsystems,
modules, data structures). A domain model of the system is built that captures the abstract
design components. Informal information from experts is also captured to document the
design. Recovered design abstractions include formal specifications, module breakdown,
data abstractions, data flows, program designs (PDL) and informal knowledge about the
application and problem domains.

Data reengineering is a system-level process that normalizes data structures and
purifies data definitions and values. It provides meaningful, non-redundant data defini-
tions, and valid, consistent data values. It recognizes and eliminates dataflow anomalies.
The process can be partly automated. Data restructuring changes the underlying data




model. Users want to access data transparently and move applications across hardware
platforms.

Business process reengineering requires looking at the fundamental processes of the
business from a cross-functional perspective. The objective is to use information technol-

ogies to enable a new, more efficient business process, instead of maintaining existing
software. Quality, innovation and service may be more important than cost, growth and
control. Business process scope is interorganizational, interfunctional, and interpersonal
instead of localized. The business vision has to be defined along with the objectives of
each process. Some guidelines for improving business processes include capturing infor-
mation once, and, at the source, organizing around outcomes, not tasks, having those that
use the output of the process perform the process, putting decision points where the work
is performed, and treating geographically dispersed resources as though they were central-
ized.

Redocumenting is the process of creating a semantically equivalent representation
within the same relative abstraction layer. Alternate views are intended for a human audi-
ence. Documentation helps in understanding code, in planning and performing modifica-
tions, and in performing testing. Source code documentation is upgraded with in-line,
expanded and accurate comments.

The traditional process of forward engineering develops high-level abstractions and
logical, implementation-independent designs, up to the physical implementation of a sys-
tem. It follows a sequence from requirements through design to implementation. Some
REs apply techniques of forward engineering once the architecture of the systems has
been recovered.

Candidate systems for reengineering are those with code over seven years old, sys-
tems with an overly complex structure, code written for a previous generation of hardware
and systems implemented with very large modules and systems using inflexible structures
(e.g., hard-coded parameters).

2.2 Knowledge in reengineering techniques

RE techniques require different types of knowledge to understand the code and its
high-level representations. Each representation of software portrays some degree of
knowledge. This knowledge is present in the form of elements and their relationships. Dif-
ferent layers of abstraction are required for understanding at any representation layerl. The
process being followed to reengineer is also important for evolution activities, as well as
knowledge about the technology implementing the system. There is also the knowledge
about the principles governing the optimal assembly of elements and their relationships.
Finally, there exists the knowledge about the application domain, which may be embedded
in the software.

Global knowledge

Documentation (Understanding)




Legacy systems normally lack documentation because of their evolving history.
These systems require external and internal documentation to be understood. The process
of understanding a system requires support documentation in the form of manuals (e.g.,
user, operation, system) or mixed with the source code (e.g., comments). Diagrams show-
ing different representations of the system are additional sources of documentation. Docu-
mentation helps to understand code, plan and perform modifications, and perform testing.

Principles (Standards)

Principles governing the optimum arrangement of elements is required to improve
software engineering practices. Enforcing standards for systems is also a way of achieving
consistency across applications. Maintainers benefit from consistency when working on
several systems. Programming standards and style guidelines are used to improve soft-
ware quality.

Abstraction
Layers (Levels)

A conceptual model is a logical representation of a system. This model is organized
by layers of abstraction. These layers may not coincide with the existing system structure.
High-level representations of systems facilitate understanding of the underlying imple-
mentation model. From the information available at the implementation layer, higher-level
abstractions of the system are built using simplifying transformations. Ideally, the abstrac-
tion process tries to recover design and specification documentation to help maintainers
during software evolution.

Architecture (Structure)

Portraying the architecture of a system helps to understand its functionality. Systems
are partitioned into subsystems, modules, and routines. This partitioning facilitates identi-
fication of pieces of code that perform specific functions. Relating system structure to
user’s functionality facilitates maintenance. The physical architecture of a system is differ-
ent from its logical architecture, representing the conceptual model of the system.

Views (Visualization)

Different views of software (e.g., structure, data, control, behavior) are required to
gain a complete understanding of the system. Source code only provides a textual repre-
sentation of software, whereas call graphs, control graphs and dataflow graphs are exam-
ples of graphical aids. These additional views provide maintainers with understandability.

Process

Design Rationale (Reasoning)




The evolution of a system involves several design decisions during development
and maintenance. These decisions indicate the reason for a particular structure being cho-
sen. Having the rationale behind design decisions helps in understanding the system.

Measurement (Analysis)

Metrics to measure software properties are required to reengineer systems. Through
analysis, it is possible to identify hard-to-maintain code that requires reengineering, and
choices are made to improve software quality.

Methods (Techniques)

Techniques to represent software at high layers of abstraction are fundamental dur-
ing reengineering. These methods or techniques are similar to forward-engineering meth-
ods.

Domain
Function (Application)

Knowledge about the application domain is a key issue in building better systems,
supporting the rationale behind decisions and facilitating an understanding of the system.
Management and clerical rules put into systems are a source of knowledge about the appli-
cation domain that may be retrieved from systems for documentation purposes. Reengi-
neering business processes is an attempt to consider larger issues that impact the
effectiveness of the business rather than system performance only. Domain experts are a
valuable source in documenting existing systems.

Data (Information)

Data is a more stable resource than procedures. Reengineering the data is an impor-
tant objective in RE techniques. A good choice of data structure facilitates the evolution of
systems. Data definition and data value problems abound within existing systems. Data-
flow anomalies jeopardize system correctness.

Some data definition problems are cryptic, inconsistently named, use names that are
not descriptive, and have inconsistent field names. Some data value problems contain
inconsistent default values, lack distinction between valid and missing values, and contain
most-significant digits that are truncated.

Technology
Tools (Facilities)

Knowledge about software technology is fundamental. Programming languages,
virtual machine environments and software tools are some examples of the knowledge
required to build, reengineer and maintain software.




Repository (Data Dictionary)

Development of systems around a repository has been suggested as a way to keep
documentation updated. A data dictionary keeps track of software definitions, and can be
used to document different representations of the system, including application-domain
information.

Figure 1 shows a summary of important reengineering knowledge, organized in four
dimensions. There is an overall type of knowledge which involves documentation require-
ments in each dimension and the principles to usefully produce software. One dimension
identifies the functionality and application domain of the software. Another dimension
identifies issues regarding the software reengineering process, the reengineering rationale
and the methods being utilized. The abstraction layers dimension identifies the importance
of various layers, different views of the software and its architecture. Finally, the last
dimension identifies issues regarding the technology and tools used during reengineering
activities and to implement the system.

3.0 Formalizing Reengineering Techniques

Our objective is to identify what system knowledge is recovered by REs. Some of
this knowledge is present in the source code, but hidden from the point of view of under-
standing. Other types of knowledge which evolve during development or maintenance but
are not captured formally, have to be gathered with external assistance. We want to iden-
tify what knowledge is required to understand a system or a piece of code. Knowledge
about the programming language, the operating system, the problem domain, the solution
space and the evolution of the system, as well as an understanding of the different types of
software representations at high layers of abstraction, is required.

Figure 2 presents the transformation approach from code to intermediate representa-
tion, and eventually back to code. The transformation process involves defining the corre-
spondences among different environments. The original code is represented by the source
environment, at the code or implementation layer. Intermediate representations are high-
level views, possibly derived from code, for purposes of understanding. Target environ-
ments are represented as code, a new language implementing the system. A repository
with all the knowledge of the system as well as the automatic support required to build
each environment consistently is required if automatic tools are going to be developed.
Metric support contributes to improved software development by identifying complex
areas that should be reengineered first.

It is important to mention that in all reengineering techniques human participation is
required. We represent this in the form of an oracle that provides the information required
to perform the correspondence from one environment to another. The figure of the oracle
can also be identified with the business process model that impacts the characteristics of
the system.




3.1 Object-oriented approach

REs are closely related to forward-engineering approaches. Both are integrated for
purposes of the development and maintenance of software. To identify the knowledge
manipulated by REs, an approach based on the specification of REs is proposed. The
approach defines an environment as a representation of software using the same vocabu-
lary. Defining transformations among different environments [BST92] helps to identify
the correspondences among environments using the same or different vocabulary.

An object-oriented approach defining environments (i.e., representations of soft-
ware) is presented [KR94]. The objects to be manipulated, their associations and the oper-
ations upon them are the elements needed to establish correspondences among
environments. Other powerful characteristics of the object-oriented approach, such as
inheritance, are useful once common patterns of transformations are identified, for reuse

purposes.

Environment

An environment is the representation of software using a specific vocabulary. Code
would be an environment at the implementation layer, structure charts would be an envi-
ronment at the architecture layer.

Objects

Objects are the basic building blocks for defining the environment vocabulary. Code
objects include operators and operands. Structure chart objects include modules, user
interfaces, parameters and files.

Associations

Objects in the environments are not isolated, they maintain relationships with other
objects. These relationahips are prespecified to define the interactions among objects. In
code, the locations of operators and operands are fixed by grammar rules, and some state-
ments have to be placed according to preestablished patterns. In structure charts, modules
are allowed to call other modules, but user interfaces are not associated with similar user
interface objects, for example. By establishing associations during the definition of an
environment, constraints on permitted relationships are automatically enforced.

Operations

When creating environments, additional constraints may be imposed on the charac-
teristics of objects and their associations (e.g., graphical location constraints). When trans-
forming environments from one abstraction layer to another, mapping operations are
defined to relate objects from different environments.

A contract-based approach is being proposed to specify these transformations. Spec-
ifying mappings among environments requires defining what must be true before perform-
ing the mapping (precondition), and what must be true after performing the mapping




(postcondition). These conditions must be true relative to what must be true for all opera-
tions (invariants).

Aggregation

Aggregation is an important aspect of environment definitions as aggregation relates
to abstraction layer concepts. Aggregates may be composed of several objects and associ-
ations, by themselves representing new objects.

3.2 Example of environments and transformations

An example of the steps required to visualize the correspondence between a code
environment, at the implementation layer, and a structure chart environment, at the archi-
tectural layer, is described. Each environment is defined using the object-oriented
approach and the correspondence between one environment to the other is specified using
the same formalism.

3.2.1 Code-layer environment

At the code layer, language characteristics are a major concern. The Abstract Syntax
Tree (AST) is another type of environment very close to code. Let us give a summary of
the objects and their associations required at the code layer.

Objects:

» Operators (e.g., mathematic operators, boolean operators, etc.)
¢ Operands (e.g., variables, labels, etc.)

+ Statements (aggregates of operators and operands)

» Blocks (aggregates of statements)

» Procedures (aggregates of statements and/or blocks)

« Programs (aggregates of procedures and/or blocks and/or statements)
Associations:

¢ language grammar orderings

» invoking procedures

Operations:

 constraints on the language syntax (location of elements)

3.2.2 Architectural-layer environment

At the architectural layer, structure charts define the structure of the system in terms
of modules and their interaction. Let us present an example of an environment definition
for structure charts.

10



Obijects:

+ Modules

o Parameters
+ Interfaces

» Files

\ ations:

+ Communication with module (Interface, Module) /*relationship with user*/
+ Call Module (Module, Module) /*relationship between two modules*/

» Access (Module, File) /*relationship with database*/

Operations:

+ Constraints on allowable connections among objects

3.2.3 Correspondance from code to architecture

Mapping rules from the source code environment to the architecture environment
are specified using contract-based operations. Examples of correspondences or transfor-
mations are:

Description {Define Module}

Parameters {Procedure (Code environment); Module (Structure Chart environment) }
Invariant { Procedure exists}

Precondition {Module (corresponding to Procedure) does not exist}

Postcondition {Module (corresponding to Procedure) exists}

Description {Define Call}

Parameters {Procedure, Invoke (Code environment); Module (Structure Chart))
Invariant {Modules exist; Procedures exist; Procedure is invoked }
Precondition {Module does not Call same Module}

Postcondition {Module Calls Module}

11



4.0 Implementation and Abstraction Layer Concepts

Identifying the main objects to be manipulated in different environments, from the
implementation environment up to the application domain, would help in identifying the
different types of knowledge required for each RE.

4.1 Implementation Concepts

Programs are textual representations of data and logic expressed in a particular lan-
guage. Syntactically, a program is a sequence of text strings, but semantically they contain
many types of concepts, including language and abstract concepts. Language concepts are
variables, declarations, modules, statements, and so on, that are defined by the coding lan-
guage. Statements are formed by operators and operands. Constants, variables, labels, and
arithmetic and logical operators are some examples of operators and operands. Assign-
ments, calls, declarations, comments and control statements are some examples of state-
ments.

A program can be understood at different layers of abstraction. The lexical level pre-
sents the operators and operands. The syntactical level presents the statements and the
structures (e.g., data structures and control structures). The style level characterizes a pro-
gram according to similar patterns of coding such as structured programming. Finally, the
semantic level identifies patterns of computation such as counters, enumerators and algo-
rithms.

4.1.1 Lexical level

Language concepts are textual in nature and tend to be specific to a particular lan-
guage syntax.

operators

Different types of operations are permitted in a language. Through symbols or key
words, operators are defined in the language.

operands

The data being transformed in a program are represented by variables which identify
their current value. Some symbols represent constants that keep the same value over the
computations.

4.1.2 Syntactical level

Operators and aperands are arranged together in statements. A series of statements is
associated in a structure or block.

12



statement

Several statements are available to build the logic of programs. Assignments, decla-
rations, comments, control statements and calls to subroutines are some examples.

structure

A structure is a sequence of statements. A structure is not a compilable unit in itself,
A structure has one entry point and one exit point.

procedure

A procedure is an element that can be compiled, but its execution only makes sense
within the context of a program. Procedures are aggregates of software elements (i.e.,
statements, variables, structures). There are procedures that are developed anew for a sys-
tem or reused from another system or library. There are procedures that are called from
system libraries (e.g., sort, search).

program

A program is an element that can also be compiled. Programs are also aggregates of
software elements, as in the case of a procedure.

4.1.3 Style level

Programs can be written using different patterns of arrangements. A program writ-
ten using go-to statements would be different in style from one using only structured con-
structs like ‘if-then’ and ‘do-until’.

4.1.4 Semantic level

The interpretation of the programming logic is defined by the algorithms and their
computation objectives.

4.1.5 General Implementation Concepts

Analyzing several programming languages, it is possible to generalize a series of
program concepts at the implementation layer.

Documentation and Data (lexical level)

There are different mechanisms to document at the implementation layer. Com-
ments in the code are used for several purposes (e.g., domain knowledge or reasoning
about the logic in the program). Names of variables also offer a mechanism for documen-
tation of programs. Finally, external documentation (e.g., specifications and system manu-
als) represents a useful source of documentation.

13



Control and Procedures (syntactical level)

Control considerations in programs are primarily associated with conditional state-
ments and their corresponding control structures. Other types of statements like a group of
sequential statements or statements invoking procedures, are associated with control as
well.

A procedure represents a conceptual cohesive unit in a programming language. It
may be associated with a specific function. A module is usually associated with a proce-
dure or routine, but it may also be associated with an object in an object-oriented program-
ming language.

Program (semantical level)

A program represents a set of statements that implements a computation. It may be
associated with either an algorithm or a function.

4.2 Abstraction Layer Concepts

Program concepts are constructs of symbol sequences in a particular programming
language with a preestablished syntax. To understand a program, syntax and semantic
knowledge of the language is required. The process of understanding involves an abstrac-
tion mechanism from low-level representations to high-level representations up to the
application domain.

Abstraction layer concepts represent language-independent ideas of computation
and problem solving methods. Abstraction layer concepts can be classified into program-
ming concepts, architectural concepts, behavioral concepts, functional concepts and
domain concepts. Abstraction layer concepts may not be localized, and they do not neces-
sarily occupy consecutive sections of code.

Programming: Data structures, algorithms, strategy

Knowledge of programming language syntax is the first aspect to consider at this
layer. Programming concepts included at this layer are coding strategies, data structures
and algorithms [HN90]. Stereotyped code patterns of common programming strategies
can be recognized from the code (e.g., accumulators, enumerators, data movement).

data structures

Declarations of constants, variables, records and their operations are some examples
of data structures that can be abstracted away from the language. There are also dynamic
data structures, like stacks, queues and graphs, that can be recognized from the code.

strategy

Knowledge of stereotyped code patterns of common programming strategies is
identified. Strategies include accumulators, enumerators and data movement.

14



algorithms

Standard algorithms to solve common problems like mathematical computation,
searching and sorting, can be abstracted from the source code.

Examples of programming-level representations, besides the code itself, are abstract
syntax trees and symbol tables of program tokens, dataflow graphs, control-flow graphs
and dependency graphs.

Architecture: Components, interrelations

The structural-level view abstracts a program’s language-dependent details to reveal
its structure from different perspectives. The result is an explicit representation of the
dependencies among program components. Examples of architecture layer views are
structure charts and data architectures.

system

A system is the highest representation level of its components. The components
combine in a variety of ways to transform information. Presmann [P92] defines a system
as ‘A set or arrangement of elements that are organized to accomplish some method, pro-
cedure or control by processing information’. It is the application software and its inter-
faces that we are describing, together with its databases. The application software is
composed of procedures that perform the functions of the system.

subsystem

Subsystems are the next hierarchical level representation of the system. Functional-
ity is divided among subsystems. Each subsystem implements functionality by organizing
behavior into sets of programs.

programs

Programs are sets of procedures that accomplish a purpose. Programs are composed
of statements, variables, control structures, blocks, calls to routines and the logic of the
routines themselves. A program is a component that can be compiled and executed inde-
pendently.

Example of representations at the architectural layer are structure charts and entity-
relationship diagrams.

Behavior: Events and transactions

Dynamic considerations during the execution of the system are important at this
layer. The triggering of events in many software applications involves data or control
items that affect the functions performed by the software. Transaction flow is character-
ized by data moving along the incoming paths of the system and converted into a transac-
tion. The transaction is evaluated and flow along many action paths is initiated.

15



Examples of such representations are state transition diagrams and petri nets.
Function: Logic

The functional-level view relates pieces of programs to their functions to reveal the
logical (as opposed to the syntactical or structural) relations among them. Each component
of the function-level view is an abstract layer representation of a class of functionally
equivalent, but structurally different, implementations.

Examples of such representations are data flow diagrams (DFDs).
Domain: Business rules

The domain-level view further abstracts the function-level view by replacing its
algorithmic nature with concepts specific to the application domain. Business rules repre-
sent the view closest to the problem domain, reflecting the user’s view of the system.

An example of such a representation is the BIRTS model (Business, Information,
Rules, Transactions and Scenarios) [G94].

5.0 Knowledge manipulated by REs

The purpose of this section is to identify the type of knowledge manipulated by
reengineering techniques. These techniques analyze the code, in a reverse-oriented
approach, using part of or all the programming concepts available, subsequently produc-
ing a new system using forward-engineering techniques.

We have analyzed some restructuring techniques and identified those concepts being
manipulated. Other reengineering techniques are analyzed in the same way and a sum-
mary of findings is produced.

5.1 Restructuring

‘Software restructuring is the modification of software to make it easier to under-
stand and to change, or less susceptible to error when future changes are made.” [A93]
There are different techniques associated with the term restructuring. We have analyzed
code-oriented techniques for purposes of identifying their knowledge manipulation.

Writing-style techniques

Writing-style techniques involve esthetic changes to the code for purposes of human
understanding. The format of the source program is improved without changing the func-
tionality of the program. Changes to variable names, the introduction of more comments
in the code are some additional concerns in this type of restructuring.
 Pretty printing

e Code formatting

16



» Code standardization
Coding-style techniques

Control flow restructuring changes the structure of the program without affecting its
external functionality. New statements are introduced, new variables are defined, and
additional comments may be neccessary. Several restructuring techniques have been pro-
posed [Y75].

* Goto-less approach (Bohm & Jacopini)
 State-variable approach (Ashcroft & Manna)
» Duplication-of-code approach (Yourdon)

» Boolean-flag approach (Yourdon)

» Case-statement approach (Linger & Mills)

e Graph-theory approach (Baker)

Packages/Reusable code

This technique replaces whole sections of code with new code, normally at a high-
level of program concepts such as new procedures or programs.

Data restructuring

Data restructuring affects basically the data aspect of programs, but may also
involve changes to current statements. Documentation has to be updated to reflect those
changes in data structure.

Figure 3 presents the association of abstract layer/ implementation concepts to iden-
tify each restructuring technique in this context.

5.2 Reengineering Techniques

Each reengineering technique manipulates different types of knowledge. Figure 4
presents a classifying scheme according to the abstract layer/ implementation concepts.
Some reengineering techniques cover several abstraction layers (e.g., reverse engineering,
design recovery, redocumentation) whereas others apply at the same abstraction layer
(e.g., restructuring, remodularization).

As described in the last section, coding style techniques require knowledge related
to documentation, data and control. These techniques analyze knowledge at the intramod-
ule level. It is possible to assert that these techniques manipulate knowledge only at the
programming layer, as external functionality is not affected.

Data restructuring affects data definition aspects, including documentation. Depend-
ing on the impact of data restructuring, some statements may need to be rewritten, possi-

17



bly affecting the control aspect of the program. The layers involved are the programming
and the architecture layers, the latter concerning data architecture.

‘Reverse engineering manipulates knowledge of data, control, modules and program
to produce additional documentation for the system in the form of diagrams showing the
program structure. This technique primarily impacts the architectural layer.

Remodularization generates new system architecture, normally changing statements
at the programming layer. The external function of the system should stay basically
untouched. The layer of knowledge manipulation corresponds to the programming and
architectural layers.

Reengineering is a technique that involves technology changes for the system
implemented. It may affect several implementation concepts: documentation, data, con-
trol,procedure and program. It involves the programming, architecture and behavior lay-
ers.

Design recovery is a technique that manipulates concepts at several layers: architec-
ture, behavior and function. This technique is similar to reverse engineering, but its scope
is broader.

Process reengineering extracts knowledge for purposes of identifying business rules
at the domain layer. It requires knowledge from the documentation, data, control, proce-
dure and program concepts. Business Process Reengineering may impact the software
internal characteristics once decisions to modify the business have been made.

Redocumentation affects all layers of views, as documentation can be produced at
any layer for any vocabulary. Documentation, data, control, procedures and program con-
cepts are affected.

6.0 Conclusions and further research

We have analyzed several reengineering techniques to determine the type of knowl-
edge manipulated by each of them. During this process, we discovered the magnitude of
the problem, which involves knowledge serving different purposes: software knowledge
and domain knowledge. It also involves differences among environments with different
types of vocabulary or views (i.e., abstraction layers) and differences among representa-
tions within the same environment.

We have proposed an approach to identify the knowledge manipulated by different
reengineering techniques. The approach utilizes formal specifications of the environments,
starting at the implementation layer with the code, following by some intermediate view
using a different vocabulary, and eventually implementing again the software using
another technology. The formal specification model is based on the object-oriented
approach. This approach has the same advantages of current specifications techniques,
which permit formal analysis and understanding.

18



Our objective has been to determine what type of knowledge is required for each of
the views, from code to application domain. Reengineering techniques, together with for-
ward-engineering techniques offer a medium in which to analyze the type of concepts
manipulated at each layer of abstraction. We are in the process of studying several reengi-
neering techniques for purposes of classifying them according to our approach. This study
should indicate possible improvements in our model. We expect to contribute to a better
understanding of reengineering techniques in particular, and to software engineering prac-
tice in general.

By studying REs, it is possible to determine what knowledge is required and to
determine why it was not available in the first place. This understanding of REs should
provide important insights into the way new systems should be developed.

References

[A87] Abbott, R.J. ‘Knowledge Abstraction’, Communications of the ACM, Vol. 30, No.
8, August 1987, pp. 664-671.

[A93] Arnold, S.R. ‘Software Reengineering’, IEEE Computer Society Press, 1993.

[BST92] Boloix, G.; Sorenson, P.G.; Tremblay, J-P. ‘Transformations using a metasystem
approach to software development’, Software Engineering Journal, November 1992.

[G94] Goti, J.C. ‘Business Rules: Their use for Business Operational Analysis’, Technical
report TR 03.550, IBM, Software Solutions Division, Santa Teresa Laboratory, San Jose,
California, April 1994.

[HN90] Harandi, M.T.; Ning, J.Q. ‘Knowledge-Based Program Analysis’, IEEE Software,
January 1990, pp. 74-81.

[KR94] Kilov, H.; Ross, J. ‘Information Modeling, an object-oriented approach’, Prentice-
Hall, Inc., 1994.

[P92] Pressman, R.S. ‘Software Engineering: A Practitioners Approach’, McGraw-Hill,
third edition,1992. _

[Y75] Yourdon, E. ‘Techniques of Program Structure and Design’, Prentice-Hall, Inc.,
1975.

19



Software Knowledge

PRINCIPLES

DOMAIN

FUNCTION

DESIGN
RATIONALE - . LAYERS

B U
2
P
B
8
B R

REPOSITORY

TECHNOLOGY

Figure 1

20



Reengineering Transformations

Environments
- / Intermediate Target

COnSIStency and Completeness

SUpPpOit MEtrics
¢8e e L A A
High-Level
CODE Representations - CODE
XX, B e
Repository
Oracle

Figure 2

21



Restructuring Techniques

Writing
Style :
Y Data Restructuring
Documentatior, Data ~ Control Procedure Program
y
D
Programming —
Architecture
Coding Style Packages
Behavior
Function
Domain
Figure 3

22



Reengineering Techniques

Remodularization
Data Restructuring Restructuring Reverse
Engineering
Documentatio Data Control Procedure / Program

-

Programming %.—76

¢ \ | )
Architecture s

Y
/

/"7

Behavior
0 \\ /
Function é i A
e e
Domain 7&___‘_& \ I Cey }
Redoc/mentation (Pr oce:ss ' Design Reengineering
Reengineering) Recovery
Figure 4

23






