
Titre:
Title:

Transformation in reengineering techniques

Auteurs:
Authors:

Germinal Boloix, & Pierre N. Robillard 

Date: 1994

Type: Rapport / Report

Référence:
Citation:

Boloix, G., & Robillard, P. N. (1994). Transformation in reengineering techniques. 
(Rapport technique n° EPM-RT-94-25). https://publications.polymtl.ca/10151/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/10151/

Version: Version officielle de l'éditeur / Published version 

Conditions d’utilisation:
Terms of Use:

Tous droits réservés / All rights reserved 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Institution: École Polytechnique de Montréal

Numéro de rapport:
Report number:

EPM-RT-94-25

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/10151/
https://publications.polymtl.ca/10151/


2 2 MARS 1995

EPM/RT-94/25

Transformations in Reengineering Techniques

Germinal Boloix
Pierre N. Robillard

Département de génie électrique
et génie informatique

Ecole Polytechnique de Montréal
Novembre 1994



Tous droits réservés. On ne peut reproduire ni diffuser aucune partie du présent ouvrage, sous quelque
forme que ce soit, sans avoir obtenu au préalable l'autorisation de l'auteur,

OU des auteurs

Dépôt légal, novembre 1993
Bibliothèque nationale du Québec
Bibliothèque nationale du Canada

Pour se procurer une copie de ce document, s'adresser:

Les Editions de l'Ecole Polytechnique
Ecole Polytechnique de Montréal
Case postale 6079, succ. Centre-ville
Montréal, (Québec) H3C 3A7
Téléphone: (514) 340-4473
Télécopie: (514) 340-3734

Compter 0.10 $ par page et ajouter 3,00 $ pour la couverture, les frais de poste et la manutention.
Régler en dollars canadiens par chèque ou mandat-poste au nom de l'Ecole Polytechnique de Montréal.

Nous n'honorerons que les commandes accompagnées d'un paiement, sauf s'il y a eu entente préalable

dans le cas d'établissements d'enseignement, de sociétés ou d'organismes canadiens.



Transformations in Reengineering Techniques

Germinal Boloix, Pierre N. RobiIIard

3 November 1994

Ecole Polytechnique de Montréal

Département de Génie Electrique et de Génie Informatique

C.P. 6079 succ Centre Ville

Montréal, Québec H3C 3A7
Tel. (514) 340-4031,340-4238 - Fax. (514) 340-3240

boloix@rgl.polymtl.ca

pnr@rgl.polymtl.ca

Abstract

Reengineering techniques (REs) seek to understand Systems by extracting knowl-
edge from source code. This knowledge is represented by différent views and différent

layers of abstraction. By studying REs, it is possible to détermine what knowledge is
required and to détermine why it was not available in the first place. This understanding of

REs should provide important insights into the way new Systems should be developed.

In this paper we analyze several REs using a transformational approach for purposes

of identifying the characteristics of REs. By formally specifying the characteristics of
views (or environments) and the correspondance among thèse views at différent layers of

interprétation, it is possible to identify the knowledge manipulated by reengineering tech-
niques. Each environment (e.g., code, dataflow graph, structure chart) is formally repre-
sented using an object-oriented model to define the objects, its associations and the

opérations upon them. Correspondences among environments are defined using a transfor-

mational approach.



1.0 Introduction

Reengineering (RE) techniques (e. g., reengmeering, reverse engineering, restructur-
ing, remodularization) manipulate différent types of knowledge, abstracted from the

implementation, to generate higher-level views understandable to humans. From thèse
views, a forward-engineenng process may take place. S orne reengineering approaches
claim the system's functionality remains unchanged. Other approaches, like business-pro-

cess reengineering, may require a complète overhaul of the Systems to conform to new
models of the business.

The user's view of Systems is functional, and related to the applicadon domain. The

developer's view of Systems requires knowledge of both the application demain and soft-

ware techniques. Matching functionality to programming constructs aids during software

évolution activities. Corrections or enhancements are performed at the programming
level, but may impact the application domain. The goal is to define a formai mapping from

programming constructs to application domain functionality.

REs utilize différent approaches to generate software représentations. Composition,
décomposition and transformation are some mechanisms for managing software represen-
tadons. Composition is the process of assembling information by finding relevant compo-

nents and establishing their rclationships. Décomposition créâtes objects and relationships
derived from existing components. Transformation maps components among différent
représentations. Formalizing the reengineering process is a step towards understanding

precisely what type ofknowledge is required.

Our approach is to analyze several reengineering techniques to identify this knowl-

edge, from implementation to high-level représentations of Systems. Implementation con-

cepts are matched to layers concepts to establish the knowledge manipulated by each

reengineering technique. Each environment (e.g., code, abstract syntax trees, dataflow
graphs, structure charts) is formally rcpresented using an object-oriented model to define

the éléments, its relationships and the available opérations. Correspondences among envi-
ronments are defined to establish the transformations steps. This approach has ah-eady

been analyzed for forward-engineering activities [BST92], and intégrâtes common con-

cepts from reengineering and forward-engineering approaches.

We would like to idendfy what knowledge is required to understand a System or a
pièce of code. Some knowledge is présent in the source code, but hidden from the point of

view of understandability. Knowledge evolving during development or maintenance

which was not captured has to be captured with extemal assistance. Knowledge about the

programming language, the operating System, the problem domain, the solution space, the

évolution of the System, as well as an understanding of the différent types of software rep-
resentadons at high layers of abstraction, is required. The knowledge abstraction problem

[A87] consists in differentiating domain knowledge from implementation knowledge
through layers of abstraction.

The paper is organized as follows. Section 2 présents a summary of reengineering
techniques. Section 3 introduces formai représentations of envu-onments and their firans-



formations. Section 4 summanzes the knowledge captured from the implementadon and

the knowledge produced at différent abstraction layers. Section 5 présents the knowledge

required and produced by each reengineering technique. Finally, secdon 6 gives some con-
clusions and suggest future arcas ofresearch.

2.0 Reengineering Techniques

Reengineering techniques (REs) are oriented towards improving maintenance

through an understanding of exisdng source code and the génération of a better software.
The object of thèse efforts is to reduce maintenance costs and increase maintenance pro-

ductivity by improving software quality and reducing software complexity. The main
objectives of REs are to understand and improve software (Le., make it more adaptable to

change), and to capture, préserve, and extend knowledge about software. The process of

creating or rcconstructing software has to be considered together with the characterisdcs
of the software itself, if improvements of orders of magnitude are to be expected. Design

décisions and their rationale are documented to help understand the reasons behind the

alternatives. REs seek to express knowledge of programs and data structures in terms
doser to the problem demain, understandable by developers and maintainers, in order to

optimally manage System évolution.

2.1 Summary of reengineering techniques

A summary of reenginering technique définitions is presented which identifies its
main characteristics (more détail can be found in Amold [A93]). In most cases REs create
new Systems without changing their functionality; changes in functionality should be
made after the System bas been reengineered. Other RE techniques only crcate high-level

représentations of the System for purposes of understandability. Finally, business process

reengineering may have a major impact on software because the business itselfis affected.

Reengineering comprises reconstruction of software to adapt it to new environmen-

tal conditions. It changes the underlying technology of a System without affecting its over-

all function, basically updating the technology rather than improving functionality. It
requires uncovering the essential software requirements and the user's underiying model.

It examines and alters the System to reconstitute it in a new form, and to finally implement
the new form.

Examples of conversion approaches in reengmeering are:

• Assembler to third-generadon language

• Structured Cobol to open-system environment

• Cobol-74 to Cobol-85

• Fortran to Ada

• Ultra to Pascal

• Convert from old DBMS and file structures to new relational DBMS



• Conversion from Univac to IBM 370

Reverse engineering générâtes software représentations that help in understanding it

or facilitate its processing. It is a backward process from code to a high-level representa-
don similar to that of a design document. The process of reverse engineering analyzes a

System to idenrify the system's components and their interrelationships, and to create rep-
resentations of the System in another form at a higher layer of abstraction. This transfor-

mation goes from low-level technology considérations (Le., code) to high-level enterprise

model représentations (i.e., business raies).

Restructuring is the process of changing the source code control stmcture according
to the rules of structured programming without changing extemal functionality. This trans-

formation is done at the same abstraction layer, preserving the System's extemal behavior.
It implies modifying the software to make it casier to understand and to change, or make it

less susceptible to error when future changes are made. A major goal of software restruc-

turing is to préserve or increase software value (e.g., cost savings to users and more pro-
ductive maintenance activities). For large Systems, remodularization is necessary, in
addition to restructuring.

Reuse of software involves selecting exisdng components and adapting them to per-

form for différent environments. Besides code, there are several types of software assets

that can be reused: spécifications, designs, test data, software documentation and code

templates. Reusing a software component may imply concurrent reuse of other compo-
nents associated with it. Criteria for rcusability are the functional usefulness of compo-

nents, the cost to adapt components in a new System, their environmental independence,

and the degree of dependency among components. Expérience from past development and
maintenance activities can also be reused along with the components, provided that the

expérience is recorded.

Remodularization is the reorganization of the system's architecture. Similarity

among program or System parts is analyzed and a new structure is proposed. As in other

REs, the functionality of the System should not be altered. Modules should be logically
meaningful to facilitate their association with the application domain.

Design recovery is the process of identifying the high-level design abstractions
comprising the System, the domain knowledge and the reasoning behind décisions. The

design recovery process looks for large-scale organizational structures (Le., subsystems,

modules, data structures). A domain model of the System is built that captures the abstract

design components. Informai information from experts is also captured to document the

design. Recovered design abstractions include formai spécifications, module breakdown,

data abstractions, data flows, program designs (PDL) and informai knowledge about the
application and problem domains.

Data reengineering is a system-level process that normalizes data structures and
purifies data définitions and values. It provides meaningful, non-redundant data defini-

tions, and valid, consistent data values. It recognizes and éliminâtes dataflow anomalies.

The process can be partly automated. Data restructuring changes the underlying data



model. Users want to access data transparently and move applications across hardware

platforms.

Business process reengineering requires looking at the fundamental processes of the
business from a cross-functional perspecdve. The objecdve is to use information technol-

ogies to enable a new, more efficient business process, instead of maintaining existing

software. Quality, innovation and service may be more important than cost, growth and
control. Business process scope is interorganizadonal, interfunctional, and interpersonal

instead of localized. The business vision has to be defined along with the objectives of
each process. Some guidelines for improving business processes include capturing infor-

mation once, and, at the source, organizing around outcomes, not tasks, having those that

use the output of the process perform the process, putting décision points where the work
is perfbrmed, and freating geographically dispersed resources as though they were central-
ized.

Redocumenting is the process of creatmg a semantically équivalent représentation

within the same relative abstraction layer. Altemate views are intended for a human audi-

ence. Documentation helps in understanding code, in planning and performing modifica-

tions, and in performing testing. Source code documentation is upgraded with in-line,
expanded and accurate comments.

The traditional process of forward engineering develops high-level abstractions and

logical, implementation-independent designs, up to the physical implementation of a sys-

tem. It follows a séquence from requirements through design to implementation. Some

REs apply techniques of forward engineering once the architecture of the Systems has
been recovered.

Candidate Systems for reengineering arc those with code over seven years old, sys-

tems with an overiy complex structure, code written for a previous génération of hardware

and Systems implemented with very large modules and Systems using inflexible sti^ictures

(e.g., hard-coded parameters).

2.2 Knowledge in reengineering techniques

RE techniques require différent types of knowledge to understand the code and its
high-level représentations. Each représentation of software portrays some degree of

knowledge. This knowledge is présent in the form of éléments and their relationships. Dif-

ferent layers of abstraction are required for understanding at any représentation layerl. The

process being followed to rcengineer is also important for évolution activities, as well as

knowledge about the technology implementing the System. There is also the knowledge
about the principles goveming the optimal assembly of éléments and their relationships.

Finally, there exists the knowledge about the application domain, which may be embedded
in the software.

Global knowledse

Documentation (Understanding)



Legacy Systems normally lack documentadon because of their evolving history.

Thèse Systems require extemal and internai documentation to be understood. The process

of understanding a System requires support documentation in the fonn of manuals (e.g.,

user, opération, system) or mixed with the source code (e.g., comments). Diagrams show-
ing différent représentations of the System are additional sources of documentation. Docu-
mentation helps to understand code, plan and perform modifications, and perform testing.

Principles (Standards)

Principles goveming the optimum arrangement of éléments is required to improve

software engineering practices. Enforcing standards for Systems is also a way of achieving
consistency across applicadons. Maintainers benefit from consistency when working on

several Systems. Programming standards and style guidelines are used to improve soft-

warc quality.

Abstraction

Layers (Levels)

A conceptual model is a logical représentation of a System. This model is organized

by layers of abstraction. Thèse layers may not coincide with the existing system structure.
High-level représentations of Systems facilitate understanding of the underlying imple-
mentation model. From the information available at the implementation layer, higher-level

abstractions of the System are built using simplifying transformations. Ideally, the abstrac-

tion process tries to recover design and speciïication documentation to help maintainers

dunng software évolution.

Architecture (Structure)

Portraying the architecture of a System helps to understand its functionality. Systems

are partitioned into subsystems, modules, and routines. This partitioning facilitâtes identi-
fication of pièces of code that perform speciûc functions. Relating System structure to

user's funcdonality facilitâtes maintenance. The physical architecture of a System is differ-

ent from its logical architecture, representing the conceptual model of the System.

Views (Visualization)

Différent views of software (e.g., structure, data, control, behavior) are requrred to

gain a complète understanding of the System. Source code only provides a textual repre-
sentation of software, whercas call graphs, conti-ol graphs and dataflow graphs are exam-

ples of graphical aids. Thèse additional views provide maintainers with understandability.

Process

Design Rationale (Reasoning)



The évolution of a System involves several design décisions during development

and maintenance. Thèse décisions indicate the reason for a particular structure being cho-
sen. Having the rationale behind design décisions helps in understanding the System.

Measurement (Analysis)

Metncs to measure software properties are required to reengineer Systems. Through
analysis, it is possible to identify hard-to-maintain code that requires reengineering, and

choices are made to improve software quality.

Methods CTechniques)

Techniques to rcpresent software at high layers of abstraction are fundamental dur-

ing reengineering. Thèse methods or techniques are similar to forward-engineering meth-

ods.

Domain

Function (Application)

Knowledge about the application domain is a key issue in building better Systems,
supporting the rationale behind décisions and facilitating an understanding of the System.
Management and clerical rules put into Systems are a source ofknowledge about the appli-

cation domain that may be retneved from Systems for documentation purposes. Reengi-

neering business processes is an attempt to consider larger issues that impact the

effectiveness of the business rather than System performance only. Domain experts are a

valuable source in documentmg existing Systems.

Data (Information)

Data is a more stable resource than procédures. Reengineering the data is an impor-

tant objective in RE techniques. A good choice of data structure facilitâtes the évolution of
Systems. Data définition and data value problems abound within existing Systems. Data-

flow anomalies jeopardize System correctness.

Some data définition problems are cryptic, inconsistently named, use names that are
not descriptive, and have inconsistent field names. S orne data value problems contain

inconsistent default values, lack distinction between valid and missing values, and contain

most-significant digits that are truncated.

Technology

Tools (Facilities)

Knowledge about software technology is fundamental. Programming languages,

virtual machine environments and software tools are some examples of the knowledge

requùed to build, reengineer and maintain software.



Repository (Data Dictionary)

Development of Systems around a repository has been suggested as a way to keep
documentation updated. A data dictionary keeps track of software définitions, and can be

used to document différent représentations of the System, including application-domain

information.

Figure l shows a summary of important reengineenng knowledge, organized in four
dimensions. There is an overall type ofknowledge which involves documentation requù-e-

ments in each dimension and the principles to usefully produce software. One dimension
identifies the functionality and application domain of the software. Another dimension

identifies issues regarding the software reengineering process, the reengineering rationale

and the methods being utilized. The abstraction layers dimension identifies the importance
of various layers, différent views of the software and its architecture. Finally, the last

dimension identifies issues regarding the technology and tools used during reengineering
activities and to implement the System.

3.0 Formalizing Reengineering Techniques

Our objective is to identify what System knowledge is recovered by REs. Some of
this knowledge is présent in the source code, but hidden from the point of view of under-

standing. Other types ofknowledge which evolve during development or maintenance but

are not captured fonnally, have to be gathered with extemal assistance. We want to iden-

tify what knowledge is required to understand a System or a pièce of code. Knowledge

about the programming language, the operating System, the problem domain, the solution
space and the évolution of the System, as well as an understanding of the différent types of

software représentations at high layers of abstraction, is required.

Figure 2 présents the transformation approach from code to intermediate representa-

tion, and eventually back to code. The transformation process involves defining the corre-

spondences among différent environments. The original code is represented by the source

environment, at the code or implementation layer. Intermediate représentations are high-

level views, possibly derived from code, for purposes of understanding. Target environ-

ments are represented as code, a new language implementing the System. A repository

with all the knowledge of the System as well as the automatic support required to build
each environment consistently is rcquired if automatic tools are going to be developed.

Metric support contributes to improved software development by identifying complex
areas that should be reengineercd first.

It is important to mention that in all reengineering techniques human participation is
required. We represent this in the form of an oracle that provides the information required

to perform the correspondence from one environment to another. The figure of the oracle

can also be identified with the business process model that impacts the characteristics of
the System.



3.1 Object-oriented approach

REs are closely related to forward-engineering approaches. Both are integrated for
purposes of the development and maintenance of software. To idendfy the knowledge

manipulated by REs, an approach based on the spécification of REs is proposed. The
approach defines an environment as a rcpresentadon of software using the same vocabu-

lary. Defining transformations among différent environments [BST92] helps to idendfy
the correspondences among environments using the same or différent vocabulary.

An object-oriented approach defining environments (i.e., représentations of soft-

ware) is presented [KR94]. The objects to be manipulated, their associations and the oper-
ations upon them arc the éléments needed to establish correspondences among
environments. Other powerful characteristics of the object-oriented approach, such as

inheritance, are useful once common pattems of transformations are identifiée, for reuse

purposes.

Environment

An environment is the représentation of software using a spécifie vocabulary. Code

would be an environment at the implementation layer, structure charts would be an envi-
ronment at the architecture layer.

Objects

Objects are the basic building blocks for defining the environment vocabulary. Code
objects include operators and operands. Structure chart objects include modules, user
interfaces, parameters and files.

Associations

Objects in the envu-onments are not isolated, they maintain relationships with other

objects. Thèse relationahips are prespecified to define the interactions among objects. In

code, the locations of operators and operands are fixed by grammar mles, and some state-

ments have to be placed according to preestablished pattems. In structure charts, modules
are allowed to call other modules, but user interfaces are not associated with similar user

interface objects, for example. By establishing associations during the définition of an
environment, constraints on permitted relationships are automatically enforced.

Opérations

When creating envu-onments, additional constraints may be imposed on the charac-

teristics of objects and their associations (e.g., graphical location constraints). When trans-

forming envkonments from one abstraction layer to another, mapping opérations are
defined to relate objects from différent environments.

A contract-based approach is being proposed to specify thèse transformations. Spec-

ifying mappings among environments requires defining what must be true before perform-

ing the mapping (precondition), and what must be true after performing the mapping



(postcondition). Thèse conditions must be true relative to what must be true for all opera-

dons (invariants).

Aggregation

Aggregation is an important aspect of environment définitions as aggregation relates

to abstraction layer concepts. Aggregates may be composed of several objects and associ-
ations, by themselves represendng new objects.

3.2 Example of environments and transformations

An example of the steps required to visualize the correspondence between a code
environment, at the implementation layer, and a structure chart envu-onment, at the archi-

tectural layer, is described. Each environment is defined using the object-oriented

approach and the correspondence between one environment to the other is specified using
the same formalism.

3.2.1 Code-Iayer environment

At the code layer, language characteristics are a major concem. The Abstract Syntax

Tree (AST) is another type of envu-onment very close to code. Let us give a summary of

the objects and their associations required at the code layer.

Obiects:

• Operators (e.g., mathematic operators, boolean operators, etc.)

• Operands (e.g., variables, labels, etc.)

• Statements (aggregates of operators and operands)

• Blocks (aggregates of statements)

• Procédures (aggregates of statements and/or blocks)

• Programs (aggregates of procédures and/or blocks and/or statements)

Associations:

• language grammar orderings

• invoking procédures

Opérations:

• constraints on the language syntax (location of éléments)

3.2.2 Architectural-layer environment

At the architectural layer, structure charts define the structure of the System in terms

of modules and their interaction. Let us présent an example of an environment définition

for structure charts.

10



Obiects:

< Modules

• Parameters

• Interfaces

• Files

Associations:

• Communication with module (Interface, Module) /*rclationship with user*/

• Call Module (Module, Module) /*relationship between two modules*/

• Access (Module, File) /*reladonship with database*/

Opérations:

• Constraints on allowable connections among objects

3.2.3 Correspondance from code to architecture

Mapping rules from the source code environment to the architecture environment

are specified using contract-based opérations. Examples of correspondences or transfor-
mations are:

Description {Define Module}

Parameters {Procédure (Code environment); Module (Structure Chart environment)}

Invariant {Procédure exists}

Precondition {Module (corresponding to Procédure) does not exist}

Postcondition {Module (corrcsponding to Procédure) exists}

Description {Define Call}

Parameters {Procédure, Invoke (Code environment); Module (Structure Chart)]

Invariant {Modules exist; Procédures exist; Procédure is invoked}

Precondition {Module does not Call same Module}

Postcondition {Module Calls Module}

11



4.0 Implementation and Abstraction Layer Concepts

Identifying the main objects to be manipulated in différent environments, from the
implementation environment up to the application domain, would help in identifying the
différent types of knowledge required for each RE.

4.1 Implementation Concepts

Programs are textual représentations of data and logic expressed in a particular lan-

guage. Syntactically, a program is a séquence of text strings, but semandcally they contain

many types of concepts, including language and abstract concepts. Language concepts are
variables, déclarations, modules, statements, and so on, that are defined by the coding lan-

guage. Statements are formed by operators and operands. Constants, variables, labels, and

arithmetic and logical operators are some examples of operators and operands. Assign-
ments, calls, déclarations, comments and control statements are some examples of state-
ments.

A program can be understood at différent layers of abstraction. The lexical level pre-

sents the operators and operands. The syntactical level présents the statements and the

structures (e. g., data structures and control structures). The style level characterizes a pro-

gram according to similar pattems of coding such as structured programming. FinaUy, the
semantic level identifies pattems of computation such as counters, enumerators and algo-
rithms.

4.1.1 LexicaIIeveI

Language concepts are textual in nature and tend to be spécifie to a particular lan-

guage syntax.

operators

Différent types of opérations are permitted in a language. Through symbols or key

words, operators are defined in the language.

operands

The data being transformed in a program are represented by variables which idendfy
their current value. Some symbols represent constants that keep the same value over the

computations.

4.1.2 Syntactical level

Operators and aperands are arranged together in statements. A séries of statements is

associated in a structure or block.

12



statement

Several statements are available to build the logic of programs. Assignments, decla-
rations, comments, control statements and calls to subroutines are some examples.

structure

A structure is a séquence of statements. A structure is not a compilable unit in itself.

A structure has one entry point and one exit point.

procédure

A procédure is an élément that can be compiled, but its exécution only makes sense

within the context of a program. Procédures are aggregates of software éléments (i.e.,
statements, variables, structures). There are procédures that are developed anew for a sys-

tem or reused from another System or library. There are procédures that are called from

System libraries (e.g., sort, search).

program

A program is an élément that can also be compiled. Programs are also aggregates of
software éléments, as in the case of a procédure.

4.1.3 Style level

Programs can be written using différent pattems of arrangements. A program writ-
ten using go-to statements would be différent in style from one using only structured con-
structs like 'if-then' and 'do-until'.

4.1.4 Semantic level

The interprétation of the programming logic is defined by the algorithms and their
computation objectives.

4.1.5 Général Implementation Concepts

Analyzing several programming languages, it is possible to generalize a séries of

program concepts at the implementation layer.

Documentation and Data (lexical level)

There are différent mechanisms to document at the implementation layer. Com-

ments in the code are used for several purposes (e.g., domain knowledge or reasoning
about the logic in the program). Names of variables also offer a mechanism for documen-

tation ofprograms. Finally, extemal documentation (e.g., spécifications and System manu-

als) represents a useful source of documentation.

13



Control and Procédures (syntactical level)

Control considérations in programs are primarily associated with condidonal state-

ments and thetr corresponding control structures. Other types of statements like a group of
sequential statements or statements invoking procédures, are associated with control as

well.

A procédure represents a conceptual cohesive unit in a programming language. It
may be associated with a spécifie function. A module is usually associated with a proce-

dure or routine, but it may also be associated with an object in an object-oriented program-

ming language.

Program (semantical level)

A program represents a set of statements that implements a computation. It may be
associated with either an algorithm or a function.

4.2 Abstraction Layer Concepts

Program concepts are constructs of symbol séquences in a particular programming
language with a preestablished syntax. To understand a program, syntax and semantic

knowledge of the language is required. The process of understanding involves an abstrac-

don mechanism from low-level représentations to high-level représentations up to the
application domain.

Abstraction layer concepts represent language-independent ideas of computation

and problem solving methods. Abstraction layer concepts can be classified into program-

ming concepts, architectural concepts, behavioral concepts, funcdonal concepts and

demain concepts. Abstraction layer concepts may not be localized, and they do not neces-

sarily occupy consécutive sections of code.

Programming: Data structures, algorithms, strategy

Knowledge of programming language syntax is the first aspect to consider at this

layer. Programming concepts included at this layer are coding stratégies, data structures

and algorithms [HN90]. Stercotyped code pattems of common programming stratégies
can be recognized from the code (e. g., accumulators, enumerators, data movement).

data structures

Déclarations of constants, variables, records and their opérations are some examples

of data structures that can be abstracted away from the language. There are also dynamic

data structures, like stacks, queues and graphs, that can be recognized from the code.

strategy

Knowledge of stereotyped code pattems of common programming stratégies is

idendfied. Stratégies include accumulators, enumerators and data movement.

14



algorithms

Standard algonthms to solve common problems like mathematical computation,

searching and sorting, can be abstracted from the source code.

Examples of programming-level représentations, besides the code itself, are abstract

syntax trees and symbol tables of program tokens, dataflow graphs, control-flow graphs

and dependency graphs.

Architecture: Components, interrelations

The structural-level view abstracts a program's language-dependent détails to reveal
its structure from différent perspectives. The result is an explicit représentation of the

dependencies among program components. Examples of architecture layer views are

structure charts and data architectures.

System

A System is the highest représentation level of its components. The components
combine in a variety of ways to transform information. Presmann [P92] defines a System

as 'A set or arrangement of éléments that are organized to accomplish some method, pro-

cedure or control by processing information'. It is the applicadon software and its inter-

faces that we are describing, together with its databases. The application software is
composed of procédures that perform the functions of the System.

subsystem

Subsystems are the next hierarchical level représentation of the System. Functional-

ity is divided among subsystems. Each subsystem implements functionality by organizing
behavior into sets ofprograms.

programs

Programs are sets of procédures that accomplish a purpose. Programs are composed
of statements, variables, control structures, blocks, calls to routines and the logic of the

routines themselves. A program is a component that can be compiled and executed inde-

pendenûy.

Example of représentations at the architectural layer are structure charts and entity-

relationship diagrams.

Behavior: Events and transactions

Dynamic considérations during the exécution of the System are important at this

layer. The triggering of events in many software applications involves data or control
items that affect the functions performed by the software. Transaction flow is character-

ized by data moving along the incoming paths of the System and converted mto a transac-

tion. The transaction is evaluated and flow along many acdon paths is initiated.

15



Examples of such représentations are state transition diagrams and petri nets.

Function: Logic

The functional-level view relates pièces ofprograms to their functions to rcveal the
logical (as opposed to the syntacdcal or structural) relations among them. Each component

of the function-level view is an abstract layer représentation of a class of functionally

équivalent, but structurally différent, implementations.

Examples of such représentations are data flow diagrams (DFDs).

Demain: Business rules

The domain-level view further abstracts the function-level view by replacing its

algorithmic nature with concepts spécifie to the application demain. Business rules repre-

sent the view closest to the problem domain, reflecting the user's view of the System.

An example of such a représentation is the BIRTS model (Business, Information,
Rules, Transactions and Scénarios) [G94].

5.0 Knowledge manipulated by REs

The purpose of this secdon is to identify the type of knowledge manipulated by
reengineering techniques. Thèse techniques analyze the code, in a reverse-oriented

approach, using part of or all the programming concepts available, subsequently produc-
ing a new System using forward-engineering techniques.

We have analyzed some restructuring techniques and identified those concepts being

manipulated. Other reengineering techniques are analyzed in the same way and a sum-

mary of findings is produced.

5.1 Restructuring

'Software restructuring is the modification of software to make it casier to under-

stand and to change, or less susceptible to error when future changes are made.' [A93]

There are différent techniques associated with the term restructuring. We have analyzed

code-oriented techniques for purposes of identifying their knowledge manipulation.

Writing-style techniques

Writing-style techniques involve esthetic changes to the code for purposes of human

understanding. The format of the source program is improved without changing the func-
tionality of the program. Changes to variable names, the introduction of more comments
in the code are some addidonal concems in this type of restructuring.

• Pretty printing

• Code formatting

16



• Code standardization

Coding-style techniques

Control flow restructuring changes the stmcture of the program without affecdng its
extemal functionality. New statements are introduced, new variables are defined, and

additional comments may be neccessary. Several restructuring techniques have been pro-

posed [Y75].

• Goto-less approach (Bohm & Jacopini)

• State-variable approach (Ashcroft & Manna)

• Duplication-of-code approach (Yourdon)

• Boolean-flag approach (Yourdon)

• Case-statement approach (Linger & Mills)

• Graph-theory approach (Baker)

Packages/ReusabIe code

This technique replaces whole sections of code with new code, normally at a high-

level of program concepts such as new procédures or programs.

Data restructuring

Data restructuring affects basically the data aspect of programs, but may also
involve changes to current statements. Documentation has to be updated to reflect those

changes in data structure.

Figure 3 présents the association of abstract layer/ implementation concepts to iden-

tify each restructuring technique in this context.

5.2 Reengineering Techniques

Each reengineering technique manipulâtes différent types of knowledge. Figure 4
présents a classifying scheme according to the abstract layer/ implementation concepts.

Some reengineering techniques cover several abstraction layers (e.g., reverse engineering,

design recovery, redocumentation) whercas others apply at the same abstraction layer

(e.g., restructuring, remodularization).

As described in the last section, coding style techniques require knowledge related

to documentation, data and control. Thèse techniques analyze knowledge at the intramod-

ule level. It is possible to assert that thèse techniques manipulate knowledge only at the

programming layer, as extemal functionality is not affected.

Data restructuring affects data définition aspects, including documentation. Depend-

ing on the impact of data restructuring, some statements may need to be rewritten, possi-

17



bly affecdng the control aspect of the program. The layers involved are the programming
and the architecture layers, the latter conceming data architecture.

Reverse engineering manipulâtes knowledge of data, control, modules and program
to produce additional documentadon for the System in the form of diagrams showing the

program structure. This technique primarily impacts the architectural layer.

Remodularization générâtes new system architecture, normally changing statements

at the programming layer. The extemal function of the System should stay basically
untouched. The layer of knowledge manipulation corresponds to the programming and

architectural layers.

Reengineering is a technique that involves technology changes for the System

implemented. It may affect several implementation concepts: documentation, data, con-
trol,procedure and program. It involves the programming, architecture and behavior lay-

ers.

Design recovery is a technique that manipulâtes concepts at several layers: architec-
ture, behavior and function. This technique is similar to reverse engineering, but its scope

is broader.

Process reengineering extracts knowledge for purposes of identifying business rules

at the demain layer. It requires knowledge from the documentation, data, control, proce-

dure and program concepts. Business Process Reengineenng may impact the software
internai characteristics once décisions to modify the business have been made.

Redocumentation affects all layers of views, as documentation can be produced at

any layer for any vocabulary. Documentation, data, control, procédures and program con-

cepts are affected.

6.0 Conclusions and further research

We have analyzed several rcengineering techniques to détermine the type ofknowl-
edge manipulated by each of them. During this process, we discovered the magnitude of

the problem, which involves knowledge serving différent purposes: software knowledge
and domain knowledge. It also involves différences among environments with différent

types of vocabulary or views (i.e., abstraction layers) and différences among representa-
dons within the same environment.

We have proposed an approach to idendfy the knowledge manipulated by différent
reengineering techniques. The approach utilizes formai spécifications of the environments,

starting at the implementation layer with the code, following by some intermediate view
using a différent vocabulary, and eventually implementing again the software using
another technology. The formai spécification model is based on the object-oriented

approach. This approach has the same advantages of current spécifications techniques,

which permit formai analysis and understanding.

18



Our objective has been to détermine what type of knowledge is required for each of
the views, from code to application domain. Reengineering techniques, together with for-

ward-engineering techniques offer a medium in which to analyze the type of concepts
manipulated at each layer of abstraction. We are in the process of studying several reengi-

neering techniques for purposes of classifying them according to our approach. This study
should indicate possible improvements in our model. We expect to contnbute to a better
understanding ofreengineering techniques in pardcular, and to software engineering prac-

tice in général.

By studying REs, it is possible to détermine what knowledge is required and to
détermine why it was not available in the first place. This understanding of REs should
provide important insights into the way new Systems should be developed.

Références

[A87] Abbott, RJ. 'Knowledge Abstraction', Communications ofthe ACM, Vol. 30, No.

8, August 1987, pp. 664-671.

[A93] Amold, S.R. 'Software Reengineering', IEEE Computer Society Press, 1993.

[BST92] Boloix, G.; Sorcnson, P.G.; Tremblay, J-P. 'Transformations using a metasystem
approach to software development', Software Engineering Journal, November 1992.

[G94] Goti, J.C. 'Business Rules: Their use for Business Operational Analysis', Technical

report TR 03.550, E3M, Software Solutions Division, Santa Tercsa Laboratory, San José,
Califomia, April 1994.

[HN90] Harandi, M.T; Ning, J.Q. 'Knowledge-Based Program Analysis', IEEE Software,

January 1990, pp. 74-81.

[KR94] Kilov, H.; Ross, J. 'Informadon Modeling, an object-oriented approach', Prendce-

Hall, Inc., 1994.

[P92] Pressman, R.S. 'Software Engineering: A Practidoners Approach', McGraw-Hill,

third edition,1992.

[Y75] Yourdon, E. Techniques ofProgram Structure and Design', Prentice-Hall, Inc.,

1975.

19



Software Knowledge

DOCUMENTATION

DESIGN
RATIONALE

VîIl
e MEASUREMENT
f̂c

METHOD

DO]

DATA

PRINCIPLES

IAIN

FUNCTION

SYSTEM

TOOLS

TECH

l0
^

ARCHITECTURE

H

VIEWS

REPOSFTORY

^OLOGY

Ïfi
w
<

Figure l

20



Reengineering Transformations

Environments

Source Intermediate

(^onsistency ana L-ompieteness

SÏÏppôîfMietncs

• • •

CODE

• • •

High-Level
Représentations

Repository

Target

• • •

CODE

• • •

Oracle

Figure 2

21



Restructuring Techniques

Writmg
Style

Data Restructuring

Documentatioy Data / Control Procédure Program

Programmm^j
CD

Architecture

Behavior

Function

Domain

Codirig Style Packages

Figure 3

22



Reengineering Techniques

Remodularization
Data Restructuring Restructuring ^ Reverse

Engineering

Control IProcedure / Program

Redocùmentation (Process

Reengineering)
Design Reengineering

Recovery

Figure 4

23



ECOLE POLYTECHNIQUE DE MONTREAL


