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Abstract

The closure model of a passage-averaged vorticity-potential formulation of

the governing équations for simulation of viscous flow in a rotor-stator stage of

a turbomachine is présentée!. In the passage-averaged équations, the présence

of the blades is accounted for by force terms whose values are deduced from the

three-dimensional flow fields. This procédure requires some iterations between

the passage-averaged solutions and the three-dimensional solutions to achieve

a convergent flow field. To demonstrate their capability to predict complex

turbomachinery flows, comparison of the numerical results with expérimental

data for a mixed-flow pump are presented.
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l Introduction

The numerical simulation of the fluid dynamics in turbomachines is a difRcult

subject due to complex three-dimensional viscous eflTects, further complicated

by rotor-stator flow interactions. Because the flow field is unsteady, spatiaUy

aperiodic and highly rotational. The coupling between the stator and rotor flows

in a turbomachine is an extremely difRcult problem for which direct simulation

of viscous fiow is still not practical within current computational capabilities.

Thus a réduction of the complexity, based on a simplification of the governing set

of équations by appropriate modelling and approximations, is a sensible strategy.

In an effort to model the rotor-stator interaction, the through-flow approx-

imation has played an important rôle. In simulating flows in multistage turbo-

machines, there are in général two types of through-flow approximations. The

first one is the streamsurface technique and the second is the passage-averaged

technique.

The development of the streamsurface technique can be traced back to the

work of Wu [l] in which the conservation équations are expressed directly on

the volume enclosed between two streamsurfaces with a given circumferential

thickness. Both the streamsurface and the thickness are flow dépendent and

have to be determined by blade-to-blade calculations. Three-dimensional cal-

culations is performed by iteratively computing the two families of intersecting

streamsurfaces ([2] and [3]). In the quasi-three-dimensional approximation, it is

assumed that the blade-to-blade Si surfaces are surfaces of révolution and only

one hub-to-shroud S-i surface is used ([3] and [4])

The passage-averaged représentation is obtained by integrating the flow

équations in the circumferential direction of the blade row. This means that

the passage-averaged flow properties are defined on the méridional cross-section

of the turbomachine. If the flow is assumed to be periodic from one blade



passage to another, the passage-averaged flow properties can be represented by

intégration from the pressure side to suction side of the blade. In the derived

formulations, a tangential blockage parameter, which is a geometrical factor, is

introduced to replace the flow dépendent streamsheet thickness in the stream-

surface formulations.

In this class of approximation the blade-to-blade efFects are replaced by ex-

ternal forces which are coupled to the through-flow governing équations. To

evaluate thèse external forces, a closure model must be developed. This ap-

proach was initially proposed by [5] for applications in through-flow calculations

and subsequently used by [6] and [4].

Most of thèse methods have been used efFectively to deal with the invis-

cid flow through turbomachines and can be credited with many interesting re-

sults to both analysis and design problems. A more complète three-dimensional

average-passage équation System has been developed by [7], especially derived

for analyzing viscous flows in multistage turbomachines. Its applications include

the calculation of the inviscid flow through a counterrotating propeller [8,9] and

the simulation of the viscous flow in an axial flow turbine [10].

The objectives of this paper are, taking advantage of the passage-averaged

through-flow approximation and the vorticity-potential représentation of the

Navier-Stokes équations, to develop a numerical algorithm for the prediction of

a rotor-stator flow interaction.

The closure model in obtalned by passage-averaging the vorticity-potential

formulation of the Navier-Stokes équations and the resulting external forces

are calculated from three-dimensional solutions within blade rows instead of an

approximate blade-to-blade solutions or corrélations. Furthermore an algorithm

has been developed to solve the passage-averaged équations and an implicit

algorithm has been developed for the three-dimensional predictions within blade



rows.

2 Governing Equations

Vorticity-Potential Equations (3D)

The main difficulties related to the computation of incompressible flows is that

the momentum équations must be solved subject to the continuity constraint.

In two dimensions the vorticity-stream function method [14] is frequently used

to overcome this difficulty. In such a formulation, the pressure is eliminated

by cross differentiation over the momentum équations which yields a vorticity

transport équation.

In three dimensions, the pressure is also removed by cross difFerentiation of

the momentum équations, but the introduction of the stream function is not

straightforward. One approach is to replace the velocity by the vorticity and

vector potentials. The reduced équations then involve three vorticity transport

équations and three équations governing the vector potential components (see

[15])

The basic principle behind the scalar-vector potential method is the split-

ting of the velocity field V = (vr, v6 \ vz), where (r, 0, .?) is the cylindrical

coordinates, into its rotational and irrotational parts based on Helmholtz s de-

composition theorem, i.e.

V = -V^+VxA (l)

where <^> is a scalar potential field satisfying the Laplace équation and A =

(Ar, Ae, Az) is a solenoidal(or divergence free) vector potential field.

Cleariy, équation (l) ensures that the continuity équation is automaticaUy

satisfied. Then the complète set of the three-dimensional governing équations



(3DGE) can be written as follows

(V.V)W - (W . V)V = -^-V2W (2)

V2<^ = 0 (3)

V2A = -W (4)

V = -V^+VxA (5)

where W = (wr, we, w2) is the vorticity field and Re ïs the Reynolds

number.

Passage-Averaging Operator

Assuming a periodic flow field within a blade row, the passage-averaged operator

for any quantity q is defined as

q = | . <?^ (6)
e

where 6 = 0s — 9p within a single blade passage. Here 0p and 0s are simply the

équations of the pressure and suction surfaces, respectively, of the blade passage

defined by the foUowing représentations

\,(r,0,z) = e-0^r,2)=0 (7)

Xp(r,0,z) = 0-0p(r,z)=0 (8)

\.(r,e,z) = 0-0^r,z)=0 (9)

where 0c is the équation of the camber surface.

The gradients of the pressure surface and the suction surfaces are related to

the gradient of the camber surface by the following équations

VA, = VÀc-|v5 (10)

VÀp = VÀ.+JV5 (11)



where k = 2v/N is the maximum angular aperture of a blade-passage, in which

N represents the blade number, and B is the ratio of the ax;tual angular aperture

to k, i.e.

B = [ (12)

With the help of thèse définitions and Leibniz' rule, one can show that the

passage-averaged form of the derivative of a function q ïs given by

Jl=L9W1^1^9h^A
9x~i = B~9^~ + ~S[qsW ~ qpy

From which it is possible to dérive the following formulas

Vç = lv(5g) + JfcVÀ, - gpVÀp] (14)

V-V == ^V.(5V)+i[V,.VÀ,-Vp.VÀp] (15)

V7V = ^V x (5V) + i[VÀ, x V, - VÀp xVp] (16)

needed to arrive at the passage-averaged équations described in the foUowing

section. Where subscripts "5" and "p" represent the values of the variables on

the suction surface and pressure surface respectively.

Passage-Averaged Equations

The three-dimensional équations (2-5) are passage-averaged and the resulting

set of équations are written as foUows

(V. V)(BW) - (BW • V)V = -^-V2(5W) + Fiv (17)

VW) = ^ (18)

V2(5A) = -BW+FA (19)

BV = -V(5^) + V x (5A) + Fv (20)

Thèse équations have been obtained using équation (14-16) and the fact that

the Laplacian of the velocity field can be written as the product of the divergence

of the velocity field and the rotational of the vorticity.



In thèse équations, external force terms appear as a result of the passage-

averaging operator. For completeness, they are

Fw = Wk{ [v(wa • VÀa) -v(wp •VÀP)]

- [V x (VA, xW.) - V x (VÀp x Wp)]

- [VA, x (V x W), - VÀp x (V x W)p]}

- ^{ V[W,. VA, - Wp .VÀp]

+ [VA, x (W x Vn), - VÀp x (W x Vn)p]}

- [V x (5W x V)+W(V5-V)] (21)

Fv = -^,VÀ,-^VÀp] (22)

i^ = V.Fv (23)

FA = -V(A, .VA. - Ap . VÀp)

- ^[VÀ, x (V x A). - VÀp x (V x A)p] (24)

where the tilde " ~ " represents their perturbation from their average value.

Thèse perturbation terms are not necessarily small, and indeed they are not

assumed to be small in this development.

Modifiée! Passage-Averaged Equations

In the passage-averaged équations, Ar and Az components of the vector po-

tential, and, wr and wz components of the vorticity are used to compute the

circumferential velocity ve. However, thèse four variables are unnecessary if

we introduce ve passage-averaged momentum équation. Then, the modified

passage-averaged governing équations (MPAGE) are

-ri^e) + ^(^)-^)-^(iW)

= À<^Il^rM')l+â(?<»+^ <25'



^l^W)] + ^W).F, (26)

^[^(^)] + ^BÀe)=-BWe+Fi (27)

vr^(Bve) + y^{B.e)+^(Bv9)

= t^^BV'^^BV^+^ f28)

where

-= -^-^^
w - -^^^^ (»)

and F^, F^, F^, F^ F^, and F^ are external forces detailed in Appendix. Equa-

tions (25-27, 29-30) are obtalned directly from the passage-averaged équations

(17-20), and équations (28) is the passage-averaged momentum équation for v9.

3 Boundary Conditions

Boundary Conditions for 3DGE

There is an inhérent difRculty in determining correct boundary conditions for

the potentials in the vorticity-potential formulation. Any specified velocity on

the boundaries does not imply unique scalar and vector potentials. A set of

compatible restrictions on the potentials must be imposed. A discussion about

the admissible boundary conditions for the potentials can be found in the work

of [11,12] and [13].

The boundary conditions used for the 3DGE are summarîzed in Table l in

which v^, v^ are the mean normal inlet and outlet velocities and E is a vector

defined on the inlet surface 5' that satisfies

E.ti=0, E.t2=0, n.[(V,x(V,xE)]=n.V-< (31)

In thèse équations, {n,ti,ti} is a local orthogonal coordinate system.
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A

w

SoUd Wall

Ê-»

A = 0

V.A = 0

W = (V X V)wall

Inlet

^ - „.~9Ï=vh

A == Vsx£

V-A = 0

W=(VxV)Met

Outlet

9Ê.-,ft
9n=vn

^=»
9s'

T=°

Table l: Boundary Conditions for 3DGE

Boundary Conditions for MPAGE

The boundary conditions for the modified passage-averaged équations (25-28)

are summarized in Table 2 in which v^ and v^ are the average normal inlet and

outlet velocities respectively.

4 Solution Procédure

The simulation of the rotor-stator flow interaction within a turbomachine con-

sists oftwo sets of équations; the three-dimensional governing équations (3DGE)

and the modified passage-averaged governing équations (MPAGE). The 3DGE

are used within each bladc région to provide the three-dimensional flow fields,

while the MPAGE are used to Unk thèse flow fields in an average sense. The

coupling between thèse two sets of équations and the data flow from each other

will be described.
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À9

we

Ve

Solid Wall

^so

A"=0

^e _ 9(BvT) _ 9(Bvz)
~9T~~~9r~

Ve = (^)wall

Bwe

Inlet

^=.i9n=vn

Àe=0

9{Bvr)
9z

Ve = vf

9{Bvz}
or

Outlet

l^'s

^BÀI) -

hBW')-

i^ =

0

0

0

Table 2: Boundary Conditions for MPAGE

Data Flow from the 3DGE to the MPAGE

The passage-averaged équations (25-30) have the same form as the axisymmetric

flow équations with the addition of external force terms which model the three-

dimensional effects into the MPAGE.

Outside the blade passages, the flow is taken to be axisymmetric and thèse

external force terms are zéro. Within the blade passages, they are computed

from. the 3DGE solutions. Most of thèse terms use only the values of the 3DGE

solutions on the pressure and suction surfaces, while some terms, like W x V

require intégration of the 3DGE solutions across the blade passage. AU thèse

terms can be computed expUcitly and the calculations can be performed outside

the 3DGE and MPAGE solvers. The input data are the geometry parameters

and the 3DGE solutions. The output data are the external force terms which

are needed for solving the MPAGE.
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Data Flow from the MPAGE to the 3DGE

From the formulation of the 3DGE, it is clear that in order to solve thèse equa-

tions, the only required information is the inlet velocity distribution.

To specify an accurate three-dimensional inlet velocity profile is very diflRcult

and even impossible for a général configuration. However, in the présent study,

since the flow is taken to be axisymmetric outside the blade rows, the inflow

conditions at the entrance ofeach blade row are also axisymmetric. The passage-

averaged velocity can be used as inlet velocity profile. Thèse inlet velocities are

updated by the MPAGE solutions.

The data flow from the 3DGE to the MPAGE and vice versa is repeated

until convergence is achieved.

5 Results

Description of the NEL Pump

The NEL pump is a mixed-flow machine with a five blades rotor and a nine

blades stator. Détails of the physical dimensions of the blades and a général

description of the pump are given in [16].

The measurements reported by [17] were performed in an air model of the

machine at a shaft speed 1200 r.p.m. of the rotor. The expérimental data for

aU velocities are normalized by the blade velocity at the rotor tralling edge mid-

point, which is Uf = 27m/s, corresponding to a Reynolds number ofRe=1.5xlO.

However, since the présent study is for laminar flow, the Reynolds number for

the numerical computation, run at the best efHciency point of the pump, was

set to 1500.

The méridional computational domain is shown in Figure l, and is divided

into five régions. The rotor is located from s = l to s =2 and the stator from

11



s = 3 to 5 = 4. The inlet is at station 5=0 and the outlet at s = 5. It is noted

that in the numerical simulation, the rotor tip clearance was not considered.

A grid of 13x59 was used for the MPAGE computation with 13 points in the

radiai direction. There were 15 points spaced uniformly in the circumferential

direction for the rotor and 13 points for the stator.

Rotor Three-Dimensional Results

For comparison of the numerical predictions with the expérimental measure-

ments of [17], the results are presented in terms of the velocity component par-

allel to the streamwise grid Une, Vp, the tangential velocity component in the

relative rotating frame of référence, Wf and the velocity component normal to

the streamwise grid Une, Vn.

Figures 2 to 4 show the blade-to-blade velocity variations from the suction

side "SS" to the pressure side "PS" and from hub-to-shroud. Also to show, in

thèse figures, the streamwise évolution of the velocity components within the

rotor, the blade-to-blade variations are given near the rotor inlet (s= 1.07), at

mid-chord (s=1.5) and near the rotor outlet (s=1.87). On thèse figures, the

blade-to-blade graphs are numbered from 3 to 12 corresponding to the normal-

ized hub-to-shroud distance R=0.167, 0.333, 0.5, 0.667, 0.833 and 0.917 and

detailed in [17].

Due to the change of the rotor geometry, the velocity component Vp (Figure

2) is accelerated near the blade suction surface in the mainstream flow région (R

< 0.833). In the same région, the relative tangential component Wf (Figure 3) is

decelerated near the suction surface and accelerated near the pressure surface.

Thèse observations agrée weU with the expérimental data except at the edge

of the blade surface boundary layers where the velocities are relatively higher

than the measured ones. This is as expected since the Reynolds number for the

12



computation is a thousand times lower than the expérimental one. Consequently,

a thicker boundary layer on the blade surface is observed which induces higher

velocities at the edge of the boundary layer.

In the near shroud région, 0.833 < R < 1.0, complex turbomachinery flow

phenomena are encountered. The blade boundary layers, the shroud boundary

layer, the effects of the relative motion of the shroud and the associated sec-

ondary flow interacts to generate rapid changes in the flow pattern. It is évident

that there is a discrepancy between the predictions and the measurements for

velocity components Vp and Wf shown in Figs. 2 and 3.

The main reason for such a discrepancy is probably the absence of the blade-

tip gap in the présent numerical modeling. When the flow proceeds downstream,

the tip leakage flow meet and interact with blade and shroud boundary layers,

giving rise to a mixing région. Without the tip leakage flow, the shroud boundary

layer will play an important and more dominant rôle in the outer annular région.

Indeed, the numerical predictions in Figs. 2 and 3 show that, the flow close to

the suction surface is decelerated, while near the pressure surface, the flow is

accelerated by the moving shroud.

MPAGE Results without Stator

It is interesting to conduct a test to isolate the effect of the stator. This can be

done by imposing all the external force terms to zéro within the stator passage

while keeping them within the rotor passage. In other words, the présence of

the stator is totally neglected. For this pump, the function of the stator is to

couvert kinetic energy into pressure. Since the flow is incompressible, this energy

is taken from the swiri component, Wt, of the velocity field generated by the

rotor. In the absence of the stator, Wt, at the exit, is expected to be larger

than with the stator. Indeed, this result is supported by the présent numerical

13



prediction shown in Figure 5. It is observed that the velocity component Vp

has no significant change (since the flow must conserve the mass across the

blade section), while the velocity component Wt is dramatically decreased by

the présence of the stator as the flow develops downstream.

6 Conclusions

A mathematical model for rotor-stator flow interaction simulation has been pro-

posed. This model is based upon the passage-averaged vorticity-potential formu-

lation to link the three-dimensional flow fields within the rotor and stator pas-

sages. In the passage-averaged équations, the présence of the blades is accounted

for by force terms whose values are deduced from the three-dimensional flow

fields. This procédure requires some iterations between the passage-averaged

solutions and the three-dimensional solutions to achieve a convergent flow field.

With regard to computer resources, this approach has many advantages:

(i) It avoids a fuU three-dimensional time dépendent computation through a

complète turbomachine.

(ii) It does not require the interpolation between the rotor moving grid and

the stator stationary grid.

(iii) The external forces from the three-dimensional computations are more

accurate than the forces from an approximate blade-to-blade computation.

(iv) It links the three-dimensional flow fields of the rotor and stator in an

averaged sense.

The proposée! model has been applied successfuUy to a mixed-flow pump and

the predicted solutions were compared with the expérimental data. Considering

the absence of a proper turbulence model, the numerical results are reasonable

and correctly represent the complex three-dimensional flow.

14
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Appendix

The External forces for the modified passage-averaged équations are

Fi = sh I^.-w.-Ww,)]
9 ,î^9\s ...z 9\p ^^ /^s...e 9Xp s,

- \.'^':^~»û"ws ~ ~atv}î>) ~ <.~flû~w< - ~»Û'WP'?^rv 96 ws „. 00 "'p/ . \^ "'' .^ wp}

,9X,_y Q^p^e^ l,9xs...r 9xp
'-r^w9'- i^)- yw< - wvf
9X^1 ôwz ~9w\ 9\r,,l9wz '9w9.ij| f -*• l/ U/ L/U/ ^ l//^p

9z'-r 90 9z)s Qz^r 96 Qz )p'

,9X^1^ 9we l9w\
1h^~r ~~97~~r~99')s

_^fl^-^_l^- -ô7^w' ~ ~9r~ ~ ~T~W)p)

^ %0[VÀ,.W,-VÀp.Wp] (32)

9\s ^ 9\p ^ , ,9\a ...r ^p...r';^-^^)+(^<-^;)
9 ,^—K— ^——3\ 9

^-{Bwevz - Bwzv6) - -^-(Bwrv9 - Bwevr)

__s,9B_, , 9B_,- we^vr + y}

ABve) ^ l ^ _ r^^ _ ^i^
+ [:^~+ ÏBVV :.T(if ~S)V~9^

^9(Bve) ^_ n^c^ _ ^^^
9z. ' A v 9? 9z n 9r

+rl^^l - ^)(1^)T^ ~ ~9T){~rv'
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n

Fe
v

l
k

[^(VÀ, .A, - VA, .

.^1-
Qz /.+ [(^(^

Ap)]
9\

Qz^r 96
,9X^1 ,g 9A9

~[~9^{~rA ~~97

9X^1 ,g 9Ae
- y;A - -Q,-

r9\^,9v\

Re k

's Qz

19AT.

r 99 ',

l-ôë)}
r ôff 'p

p,l9AZ
~r 90

QA\
9z \

9\,^9ve,
[^(& --f)-^((^-) --Î)]9r vv or 9r vv or

Ir^A _^A
TV99V96), 90 v 90 V

.r^A _ÔÀ£A
[~ô7{~^). ~ ~97{~9^^

Q ,9\, 9\^ 9\9\,
+ra;[i7(ïi-ï?)-è(ï?

9\,
9z )]

'-Bvrv6 + ^-(Bvrve) + ^{Bvzv6}
T or

,9B_ ^ , QB _„^r _L " — -^
"f- Ve['—VT + '—^\ + BD,

9r 9z

(33)

(34)

^ =

Fr.
v

" —

-^V.(^VA,-^VÀp)

L9X1^ _9XP,
~ÏC~9^<f>s~:W<f>p)

.1^/A _^/~~k(:w(f>s ~ ^

(35)

(36)

(37)

with

^ = 2-Al^+^iJv = Re[9r{~r~97)'r~9^~

-^rvrve)+t^+^ (38)
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