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The Jacobian Matrix for a Flexible Manipulator

Jean-Claude Piedbœuf"

July 30, 1993

Abstract

This paper develops the exact first order endpoint Jacobian matrbc for a général

n degrees of freedom tree-like robot with flexible links. The Jacobian is developed in
terms of the joint axis, the link déformations and the relative position vectois using
cross products. To have the correct first order endpoint Jacobian matruc, the second

order kinematics is used to describe a flexible link. Using two local Jacobian matrices
permits one to write the endpoint Jacobian sub-matrbc associated to a flexible link which
is similar to the column ofthe Jacobian associated to a joint. An example with a one
link flexible arm rotating in a vertical plane illustrâtes the uséfulness of the endpoint
Jacobian in calculating the torque required to apply an endpoint force and the link
déformation resulting from this force. An expérimental vérification proves the validity
of the developed Jacobian and suggests that the use ofonly the first order kinematics,
results in serious errors in the prediction of the beam's curvatures and déformations.

l Introduction

In robotics the Jacobian matrix relates the motions or the forces of the cartesian space

to the robot space. For example, for a rigid robot, the Jacobian matrix gives the end-

effector velocities for a given set of joint velocities, or permits computation of the joint

forces and torques required to obtain a desired force and torque at the end-efFector. The

Jacobian is implemented in some controllers like the resolved rate or the force control

(Orin and Schrader 1984). For flexible robots, the Jacobian matrix is used to write the
équations of motion using Jourdain's principle (Bremer 1987, PfeifFer and Bremer 1990,
Lieh 1992) and Lagrange's form of d'Alembert's principle (Weng and Greenwood 1992), or
to add the constraints to the dynamic équations (Ider and Amirouche 1989, PfeifFer et al.

1990). When controlling flexible robots, the Jacobian matrix is employed to compute the
inverse kinematics (WiUiams and Turcic 1992), to analyze the dynamic stability of a force
controUed flexible manipulator (Chiou and Shahinpoor 1990) and to obtain a torque/force
relationship and kinematics représentation (Kozel et al. 1991).

In the case of rigid manipulators, différent possibilities exist for computing the Jacobian
matrix and thèse have been the focus ofmany published papers (see Orin and Schrader 1984
for a discussion about the efRciency of some of thèse approaches). The first and simplest
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2 l INTRODUCTION

way to compute the Jacobian is to take the partial derivatives ofthe velocities with respect

to the generalized velocities. A second and more computer-oriented way is to calculate

the Jacobian recursively starting from the base. This method requires the computation

of n Jacobians for a n degrees of freedom manipulator and is not practical when only the

endpoint Jacobian is needed. However it is very efficient if the intermediate Jacobians are

required as in Jourdain's principle. A third approach consists of writing the coefficients of

the endpoint Jacobian matrix in terms of the joint axis and relative position vectors using

cross products. This last approach is the foundation ofmany efficient methods to compute

the endpoint Jacobian.

Relative to a rigid manipulator a flexible manipulator possesses additional degrees of

freedom. However, while rigid motion is considered to be arbitrarily large, the motion

resulting from the flexibility is assumed to be smaU. This small déformation assumption

is common in nearly aU research work concerning flexible mEinipulators. This assumption

implies that the terms of second order or higher, involving generalized coordinates associ-

ated with the flexibility, are negligible in the équations of motion. Thèse équations are then

exact to the first order. It is now recognized that the équations of motion exact to the first

order must include the so-called géométrie stiffening terms (Hodges et al. 1980, Simo and

Vu Quoc 1987, Padilla and von Flotow 1992, Sharf 1993). It is also accepted that thèse
stiffening terms are related to the foreshortening of the flexible link (Kaza and Kvaternik
1977) and are introduced into the équations through the nonlinear strain-displacement re-

lationships. The foreshortening is the fact that a beam élément at position x along the

neutral axis in the undeformed state is no longer at position x in the deformed state. How-

ever, it is not widely recognized that for the Jacobian matrix of a flexible manipulator to

be exact to the first order, the kinematics must be developed up to the second order. Also,

the géométrie stiffening is often regarded as being caused by the angular speed (Padilla and
von Flotow 1992). They are however, essential for considering high angular velocities, high

accélérations and large endpoint forces. As shown in this paper, neglecting thèse terms,

even for a static case, results in serions errors.

Some research bas already been done on the Jacobian matrix for flexible manipulators.

Probably the oldest and most complète work originates from the Technical University of

Mlunich (Bremer 1983, Bremer 1985, Johanni 1985, Johanni 1986, PfeifFer and Bremer
1990, Bremer and PfeifFer 1992) . A first order Jacobian matrix was developed for a

général manipulator with flexible links using second order kinematics with the curvatures

and the twist as generalized coordinates. The Jacobian is calculated recursively starting

from the base as in the aforementioned second approach. In another work, Chiou and

Shahinpoor (1990) developed the endpoint Jacobian for a two-link flexible manipulator
moving in the horizontal plane considering only the smaU déformations within the plane.

They kept the rotation angle of a beam section as an argument of the sine and the cosine

without taking a first order expansion as usual with the small déformation assumption

(e.g. sinff w 0). StiU they did not consider the foreshortening of the beam, therefore
their Jacobian is not exact to the first order. Chang and Hamilton (1991) developed a

generalized Jacobian, a Jacobian matrix which includes the efFects of the flexible links for a
général robot. They considered one longitudinal and two bending déformations as well as

the torsion around the longitudinal axis. However, they did not include the rotations of a

beam section due to the bending displacements. For a Euler-Bernoulli beam, thèse rotations



are equal to the first derivative of the déformations with respect to a;, the variable along the

longitudinal axis. Furthermore, they did not consider the foreshortening. Therefore, their

Jacobian is incorrect. By applying the third approach discussed for a rigid robot, Kozel et

al. (1991) developed a général endpoint pseudo Jacobian for any flexible manipulator. They
used homogeneous transformations and Euler-BernouUi beam theory. They assumed two

bending déformations and one torsion plus the two rotations due to the bending, adding up

to five possible motions. In their approach, a column of the endpoint Jacobian is computed

independently for each of the five possible motions. They pointed out that the Jacobian

obtained through partial derivatives of the velocities is inexact since cas <f>(x) = l with a

small angle assumption and 9cos4>(x)/9x ^ 9Çî)/9x. StiU, they did not state that all
the kinematics must be exact to the second order and their Jacobian is not correct to the

first order. However, through an expérimental validation they show that they can predict

the joint torque for a one link flexible arm. As shown in this paper, using only first order

kinematics does not afFect significantly the joint torque but afFects the endpoint position
and curvature values.

The main contribution of this paper is the development of an endpoint Jacobian matrix
exact to the first order for a général flexible manipulator. The second order kinematics

is based on the use of the curvatures and the twist as generalized coordinates (Johanni

1986). We wiU write the Jacobian in terms of the joint axis,.the link déformations and

the relative position vectors using cross products. Contrarily to Kozel et ai. (1991) , all

the columns of the endpoint Jacobian matrix related to a flexible link are calculated in one

step. In Section 2, we discuss the différent assmnptions, we establish a général form for the

Jacobian matrix and we introduce the Jacobian column associated with a joint. Further, we

présent thoroughly the kinematics of a flexible beam, write two local Jacobian matrices and

obtain the Jacobian sub-matrix corresponding to a flexible link. In Section 3, we develop

an example using a one-link flexible arm rotating in a vertical plane. Finally, in Section 4,

we compare the expérimental and the simulation results and discuss the contributions of

the terms originating from the second order kinematics.

2 The Jacobian

2.1 Général Formulation of the Jacobian

This section develops the général form of the Jacobian for a n degrees of freedom flexible

robot. First, the generalized coordinates are described and the contributions of the joints

and those ofthe flexible bodies are considered. Later, the différent frames used are presented

and the Jacobian for a rigid body is briefly discussed. The main emphasis of this section
concerns the analytical development of the Jacobian for a flexible link.

Let us consider a robot with rir joints and n/;, flexible links. The foUowing assumptions

are made in this paper:

Al) The links are considered as Euler-BernouUi beams, implying that:

a) beam section's shear efFect and inertia of rotation are ignored;

b) beam sections stay plane and perpendicular to the neutral axis.
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A2) One torsional and two bending déformations are considered. The warping ofthe beam

is neglected.

A3) The neutral axis is non-extensible. Hence, the longitudinal déformation is ignored.

A4) The assumed mode method is used to discretize a flexible link. Therefore, n^ gen-

eralized coordinates are associated with the flexible link i. The total number of

generalized coordinates associated with the flexible links is: n j = Y^'1^ n/,.

A5) The déformations are small (max deflection < 10 % of the length, or 15° max for the
rotation) and only first order terms related to the coordinates dssociated with the

flexibility are retained in the final équations of motion.

A6) Joint motions are arbitrarily large and consequently, the coordinates associated with

rigid body motion are considérée! to be large (or zéro order).

A7) The system is completely described by the vector of generalized coordinates: q =

[çir i9/T where the dimension ofgis n = nr+ n/.

The following notation is used throughout this paper: a normal italic font for a scalar

- s, a boldface Italie for a vector - v, and an upper-case boldface italic for a matrix - M.

We denote the partial derivative with respect to time by () and the partial derivative with
respect to space by () . The generalized coordinates associated with the rigid body motion

are called rigid coordinates while the ones associated with the flexible links are called

flexible coordinates. Unless otherwise specified, the vectors and matrices are expressed in

the inertial référence frame.

The endpoint Jacobian relates the endpoint velocity to the generalized velocities:

0),
(l)

where J y e and Jj; e a-re respectively the endpoint Jacobians of translation and of rotation.

The Jacobian reflects the influence of the infinitesimal displacement of the generalized

coordinates on the endpoint infinitesimal motion.

The endpoint Jacobian is separated according to the generalized coordinates' division

into rigid and flexible coordinates.

(JT,e}h ••• (JT.^"r' ÇJT'e)A '" (JT.e)/"/b ] (2)
J \ ..=

(JR,e)ji ••• (JR,e)j^, {JR,e)fi ••• (^R,e)./n fb

. joints flexible bodies

(JT,e),,,(Jfi,e),,,€ ^, (JT,e)/,,(^,e)/, € 3t3'n/'

where J T and JR represent the Jacobian matrices of translation and of rotation. There are

HT columns for the tir joints and njb sub-matrices for the ra/fc flexible links. The sub-matrix

associated to the flexible body i comprises n/, columns, which is the number of degrees of

freedom associated to the flexible link i.

Figure l shows a général robot with its frames, and Figure 2 gives the détails of a

flexible Unk i. Joint i has an associated frame T^i (Fig. l), and flexible body i has frame

Tî,i attachée! to its extremity (Fig. 2).
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ç,a,

joint t prismatic link l flexible

Figure l : A général n degree of freedom robot

®i/|-1 (K-<>Ky,K;

Figure 2: The flexible link i and its frames
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2.2 Joints

The endpoint Jacobian for a joint is the same as the one for a rigid robot and is developed

in many robotic textbooks (Orin and Schrader 1984, Asada and Slotine 1986. The following
équation expresses the endpoint Jacobian directly in terms of the robot parameters:

(JT.e)ji | _ | a. X î-e/.^' + a.(l - ^t) | ^ s(?6
el3< ~\ n^\. \~ \ ^.^.

(^,e),. a, (T,

l if joint i ïs revolute
1 0 if joint i is prismatic

In (3), re/, is the position of the robot endpoint with respect to the origin of frame 7?.,
located at joint i (Fig. l), and ai is the motion axis of joint i. Since ai ïs constant in the
frame Tii, we use the following transformation:

a, = A° 'a; (4)

where R^ represents the rotation matrix from the moving frame TS, to the inertial frame

Tio. The superscript i in ta, denotes that o, is expressed in Tir Equation (3) signifies

that for a prismatic joint, the endpoint displacement is only in translation and directly
corresponds to joint motion. On the other hand, a revolute joint générâtes both an angular

displacement of the endpoint frame equal to the joint rotation and a linear displacement.

2.3 Flexible Body

When a flexible link deforms, its motion afFects aU the bodies situated after that link and

therefore the robot endpoint. The endpoint Jacobian sub-matrix (Je)/, (2) represents the

influence of the movement of the flexible link i extremity on the robot endpoint. Flexible-

body motion is more complex than joint motion since a link s extremity has both a trans-

lation movement r,/î_i and a rotation movement a?,y,_i with respect to its root (Fig. 2).

The translation can be associated to a prismatic joint, and the rotation to a revolute joint.

In contrast to a joint, motions are not restricted to one axis and occur simultaneously. The

endpoint velocities (•"e)/, and (we)/, (Fig- l) due to the flexible body i motion are defined
as follows:

(Ve')f, = (JT,e)f.q/, = r./,-1 + ^./.-l X Te/i (5)

(O?e)/, = (JR,e)f,Clf, = ^i/i-1 (6)

where rg/, is the position vector of the robot endpoint with respect to flexible link i endpoint
(Fig. l). The middle terms of (5) simply apply the définition of the Jacobian while the
right hand terms express the endpoint velocity due to flexible link i motion as a function

of velocity r;/,_i and angular speed a?,yt_i.

2.3.1 Linear and angular velocities for a flexible link

Référence trames To obtain Ti/i-i and Wi/i-i, we use three différent référence frames

for flexible link i (Fig. 2):
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s,

s,,

Figure 3: A flexible arm with v and w as coordinates

l) A frame »S,_i is attached to the link root. The a;-axis of this frame is tangent to the

link neutral axis. A constant transformation couples this frame to the frame T^t-i

attached to joint i - l. To simplify the présentation, without loss of generality , we

assume that frames <$,_i and 7i,-i are superimposed at the link root (at x = 0).

2) A frame <$, is attached to a beam section at position x along the link. This frame is

superimposed on <î;_i at the link root. Assumption Alb is équivalent to stating that

the a;-axis of Si is tangent to the neutral axis.

3) A frame Tï.i is attached to the link extremity. This frame coincides with frame Si

when x = li.

Finding ri/,_i and a),y,_i is now équivalent to developing the transformation between 'Ri,

and T^i'-i. As a step towards that goal, we first obtain the rotation matrix and the position

vector between 5, and <S,_i.

Rotation matrix We need a set of coordinates to détermine the relationship between the

two frames <*?, and <?;-i. Since second order terms are retained in the kinematics, the choice

of coordinates to represent the rotations becomes more délicate (Hodges et al. 1980). By

using a set of angles, such as Euler angles, the resulting rotation matrix wiU vary depending

upon the order in which thèse angles are considered.

For example, Figure 3 shows a flexible arm with the widely used coordinates v and w.

Using cLssumption Al, we define v as a rotation around z and —w as a rotation around y.

Considering first a rotation v followed by a rotation -w , and developing to the first and

to the second order, results in the foUowing expression for the rotation matrix iî^. from

Si to <<>t'-i:

(RÎ'~1Y'WI 011)
'4?t

l
/
u'

-V'

l
0

-w'

0
l

0(2)
l - t(^2 ^ ^ _„/

l. ,12

w
ï-^v

0

—w
—v'w

l - \w1'1
(7)

Since we work with velocity, a constant transformation does not make a différence.
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Now reversing the order of rotation, -w before v , produces the following rotation matrices

to the first and second order:

(Rssi.~lr'v' 0(1)
l -V' -W'

w'

l
0

0
l

0(2)
l - ^ + w'2)

w

-V'

i - y
-V W

-w'

0
l- lw ,2

(8)

There is no différence between (7) and (8) for the first order rotation matrix (0(1)) however
the second order matrices (0(2)) are différent (permutation ofthe éléments (2,3) and (3,2)).
This result is disturbing since, for a flexible link, the rotations around the différent axes

take place simultaneously, independently of the order of the kinematics.

In order to avoid this discrepancy, we use the rate of twist Ky: and the local bending

curvatures Ky and Kz as coordinates. This approach has been proposed by Johanni (1985)

and is described in Bremer and PfeifFer (1992) . The vector K, represents the derivative of

the angles with respect to the space variable x as defined by the following équation:

A0
n = lim -—

A:E->o Aa;
(9)

The same kind of relation exists between the rotation matrix Rg (from <$, to <î,_i) and

K as between the rotation matrix and the angular velocity vector w. As demonstrated in

Appendix A, this relation leads to the foUowing differential équation:

S'K=

-K,

KZ Ky

0 -K^

^ 0

=RS:~
dR',5,-i

•SL
's'-1 dx

dRs',~

dx
Rs:'-lsik

•i (10)

where x is the distance along the neutral axis (Fig. 2). Superscript <?, in 'K, denotes that K,

is defined in frame Si, and the tilde symbol~indicates that K is the skew-symmetric matrix

formed with the éléments of n.

The rotation matrix can now be found by solving the differential équation (10). This is
Â-lachieved by first developping the rotation matrix lî-g. up to the second order:

RS. = -RO + -RI + RÎ (11)

where Ry is the identity matrix. Then, using assumption A5, we conclude that <S'K, being

the flexible coordinates, comprises only first order terms. We replace (10) by the following
differential équation:

d^+d^ =^+R^+R^ (12)
^ ^ 0(1) °(2) °(3)

Let us integrate separately the same order terms of (12) to obtain the following expressions

for Jîi and R-i:
"X

(13)Ri = l s-kd^
'0

Rî = l Ris'kdç
,0

(14)
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since -Ri(O) and Rî{Q) are null matrices (>S, corresponds to <?;_i for a; = 0). The solutions

of (13) and (14) in terms of K are in Appendix B. We will now use the following définitions
to simplify the notation:

•r /-f _ rx tf. . rx

v = l l K^dr]dç w = - / / Kydr]d^ a = / K^C^ (15)
'0 JO JQ JO ~ JO

where v and w represent pure bending deflections while o: represents a pure torsion angle.

Explicit calculation of the right hand side of (13) and (14) in conjunction with (11) and

(15) gives the following expression for the rotation matrix R'^~ :

J^-1 =
>i

\-^v'2+w12} -v'- l a'w'd^ -w'+l a'v'dç
r. ' ^Jo ~ ^

v'- l aw"d^ î-^(v'2+a2) -a-/ v'w" dç
Jorx ' "^ ' Jo

w'+ l av"d^ a-l v"w'd^ l - ^(w12 + a2)
fo Jo

(16)

Position vector To obtain the position vector rs,_i,s, from the orîgin of frame >$;_i

to the origin of frame S,, we use the assumptions Alb and A3. Thèse assumptions are

mathematically formalized as follows:

•s-lr'c. . <.
'i-l i"i n'-'i-l

^ —=tts\ and |r'| = l (17)

Using r(0) = 0 and the rotation matrix (16), aUows us to solve ordinary difFerential équation
(17) for Ts,_i,s, to obtain (Appendix B contains the solution in terms of K):

s'-lr^^ = i~ i^-1
0

dç=

x-^ l'(vl2+w'2)dç
'0
"X ff,

v - / w"a dî] d^
'o Jo

rx

w + / / va dr) dç
'0 JQ J

(18)

Velocities From the rotation matrix and the position vector, it is possible to détermine

the angular and the linear velocities of the frame attached to the link extremity with respect
to the frame attached to the joint on which the link is fixed. The angular velocity a?,y,_i of

frame Tï, with respect to frame %,-i is expressed in terms of rotation matrix R} (which

is obtained from Rg. (16) with x = /,)2 using the following équation:

-^/.-l =

0 -^ ^
^

-u>i

^
0 -^
^ 0

>t-l
S- (Tfi-ï\T'^-WY (19)

2If 5,_i and Tii-i do not have the same orientation, a constant rotation ma.trix is added: R~ =

^^;-1(^.).
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where the tilde ~ has the same signification as previously mentionned. Neglecting terms

of order higher than two in (19) and rearranging to show the skew-symmetricalness, we

obtain:

t-1.'a?i/i-ï =

f,

à;, + / {v'w" - w'v")dx
10

"'i

-w'i. - l (di)" — v'a }dx
'• Jo

•l,

v'l, ^~ / {wlal ~ aw )dx
0

(20)

The linear velocity r,/i_i is calculated by difFerentiating (18) with respect to time (using
x = /;) and gives the foUowing result:

r'.
(v'il' + w'w'^dx

l, /-X

rt/t-l = vl, ~ \ w"a + w àd^dx
'0 .JQ

•f, fX

w;, + / / v"a + v"àdçdx
Jo Jo J

(21)

Discretization The deflections v and w, as well as the torsion a, dépend on the space x

and on the time t. To express v, w and a in terms of q^, the set of discrète coordinates

for the flexible link î, we use the assumed mode method (Meirovitch 1967) as follows:

v<t>T{x,) 0 0

0 W^T(xi) 0
o o a4>T(xi)

V,

w,

a,

(Xi,
ila't»

••{xi,

<)
f)
<)

= ^i(xi )9/,=
W)
wmW
W)

(22)

v^,vr)i € ^v- , w^,wr}i € %l/u). , ^,°î?. e ^a- , ç/. e %"/.

with n f, = Vy, + Vw, +Va,

Local Jacobian matrices It is now possible to find two local Jacobian matrices which

relate the link extremity to its root. The local Jacobian matrix of rotation is calculated

from (20) as follows:
Qi-l^i/i-i

t-]
'H.i/i-Ï =

^f,
(23)

- wriT ^ UIWTdx vr,T ;„'• VWlTdx ^ "<

- ^T ;o'- a^Tdx -W^T vnr ;o- VWTdx

XT - arir ^ aWr^ wriT ^ WWrdx J

And the local Jacobian matrix of translation is calculated from (21) to give the following
expression:

9i-ÏTi/i-l
t-1

'T,i/i-1 =
9<lfi

- vnT ;o'- WTdx - wnT Jo'i WWTdx

(24)

:^
L^'-^wr^

0
T r'. çxw^na^T,- ^f fo' SS aWlTdiidx - w^ ^ SS WWfdHd.

^f, vnT^!,xv^a<t>Td^dx
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Since the local Jacobian matrices are dépendent upon the flexible generalized coordinates'

vector, a numerical implementation of (23) and (24) is not pratical. In Appendix C, the
space and time dépendent terms are separated, enabling an offline computation of thèse

matrices.

We transform the local Jacobian matrices of translation JT,i/i-ï and rotation JR^/i-i

from Tî-i-i to the inertial frame 7?.o using the following équation:

JT,i/,-ï = -Rf-l JT,i/i-l
?0 t-17-.',.

' R,i/i-l = -"-i-1 ' ~JR,i/i-l

Jacobian sub-matrix for a flexible link Replacing r,/t_i = «^T,t/t-i9/, an(i wi/i-ï =

JR,i/i-iQf, in (5) and (6), and eliminating the generalized velocities yields the foUowing
expression for the endpoint Jacobian sub-matrix of a flexible link:

(^T,e)/,
/e)fi = [ {JR,e)f,

Jrr,.y.-i - Tel, x Jjî,,/,_i ç ^6,n/; ^g^

JR.i/i-l

Both the Jacobian column for a joint (3) and the Jacobian sub-matrix for a flexible link

(26) have a similar form. Computation of the Jacobian sub-matrix for a flexible Unk is donc
in one step once the local Jacobian matrices have been computed.

The position vector rg/, and the rotation matrix R^ can be computed recursively as

follows:

R°, = RO^Bti~l (27)

^e/i = Te/i+1 + ri+ï/i (28)

For a flexible link, the rotation matrix is given by (16) and the position vector by (18).
When the frame fixed at the root of the flexible link, Si--i does not coincide with the joint
frame 7^,_i, a constant rotation and a constant translation must be added.

2.4 Conclusions of the Theoretical Part

The column of the Jacobian corresponding to a joint and the sub-matrix of the Jacobian

corresponding to a flexible link were obtained in a compact form using the robot param-

eters. For a joint, only the joint axis and the position vector between the joint and the

robot endpoint are needed. For a flexible link, both the position vector between the link
extremity and the robot endpoint, and the local Jacobian matrices of translation and ro-

tation are required. The method developed is completely général for robots with flexible

links characterized by the Euler-BernouUi model plus a torsional déformation.

Apart from obtalning the endpoint velocities as described by (l) the endpoint Jacobian
is useful in determining the generalized force vector Q due to endpoint force and torque f

as given by the following relation:

Q = JTefe (29)
\T

where fe = \ fx fy fz ^x iny fnz \ . The generalized force vector has the same

meaning as in Lagrange's équations. For a revolute motor with the angle of rotation taken

as a generalized coordinate, the generalized force corresponds to the motor torque.
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Figure 4: One-link flexible robot

3 Example

We wiU now illustrate the development of the endpoint Jacobian using an example with a

one-link flexible robot. The theoretical results generated by this example will be verified

experimentaUy in Section 4.

3.1 The Kinematics

The one-link flexible robot used in this example is shown in Figure 4. The robot consists

of a single flexible link rotating in a vertical plane. The base of the link is clamped in a
hub rotating in the (xo,yo) plane around the ZQ axis. A tool with an eccentric mass center

is attached to the end. This example is similar to the one given by Kozel et al. (1991) , the
main différence being that our link ratâtes in a vertical plane implying that gravity must

be taken into account. Because the motion is planar, only the bending within the plane

v(x,t) is retained.

First, we calculate the rotation matrices. From Figure 4, we see that the motor ratâtes

around the ko axis which gives the following rotation matrix:

(30)

Since Tî,\ and S\ are parallel, the rotation matrix between thèse two frames is the identity

matrix E. Using the rotation matrix for a flexible link (16), the rotation matrix between

R°,=

cas 6

sin(?

0

— sinO

COS0

0

0
0
l
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»?2 and T^i is written as:

R^ =
l - \va

V'

0

-V

\-\vn 0 (31)

The rotation matrix between 72.2 and Tî,\ is deduced from R^ by setting x = l in (31).
The différent position vectors are now needed. We define the position vector of the tool

extremity e with respect to the link extremity (Fig. 4) as:

^e/2 = b^î + hy32 a-nd r^ = SS^r^^ (32)

The tool extremity with respect to the motor axis is then:

î-e/1 = T-e/2 + -RÎ(1Î-2/5, + lr^/l) (33)

where:

^Si/i = h^ï

The position of the link extremity with respect to its base is deduced from the position

vector for a flexible link (18) by taking x = l, which gives the foUowing result:

"2/Si =

-p2^
vi

0

where -u; = v{l,t}.

3.2 Discretization

The assumed-mode method is used to discretize the continuous coordinate v(x, t) as foUows:

v(x,t)=^Tr, (34)

Then the vector of generalized coordinates for the system is composed of the motor rotation

and of the time dépendent part of the déformation:

9=
e
•n

(35)

3.3 The Jacobian

The Jacobian can now be computed. For the motor, we apply the Jacobian column for a

joint (3) to obtain:

w, = al x re/l l ...:^i. _ l.e/l l with ai = lai =
ai

0
0
l

(36)
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For the flexible link, we use the Jacobian sub-matrix for a flexible link (26):

w/, =
rT,2/l - re/2 X •7R,2/1

JR,2/1
(37)

where:

JT,2/1 =

-r,f^'_<f>'Tdx

w and JT,Î/Ï = -Rï^r,2/i

JR,2/Ï =

</>
iT

and JR^/I = R\ JR,2/i

The application of (36) and (37), while neglecting terms oforder higher than one, results in
the endpoint Jacobian expressed in Tio. However, to have a more compact form, we write

the Jacobian in 1Î,\ as follows:

ÏJe=

-h, - (h^lT + <A;)î? -h,<t>IT + (h^'T^ + ;o' <f>'T<f>'dx) ^

l^+l+ h. - h,ci>fri <f>T+h^'T - l^W
0 0
0 0
0 0
l ^iT

(38)

and:

Je = RI Je

The underiined term in (38) is a term which will be missing if only the first order terms
are kept in the kinematics.

3.4 Model of the Static Déformation

To simulate the System and compare it with expérimental results, we need a model of

the déformation. That model will estimate the torque required by the motor to obtain

a desired endpoint force and predict the shape of déformation of the beam. We obtain

this model using Jourdain's principle (Jourdcun 1909) which is often refered to as Kane's

method (Piedbœuf 1993). For our static case, Jourdain's principle is essentiaUy the same

as d Alembert's principle. The équation for the force equilibrium given an endpoint force

y e is obtained using the Jacobian (29), and results in the foUowing:

/ = Jî,efe (39)

The vector f corresponds to the équation of force equilibrium without an endpoint force

and is obtained using the foUowing équation:

f = -JT^M^ - ^ Jî^(pg)dx - J^(m<g) + (^-~) (40)

where:
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Mm = îm^i is the torque applied by the motor;

g = —gjo is the gravity vector;

Vf = f^ EI^v"2dx is the elastic potential energy of the flexible link with EI^ the rigidity;

p is the linear density of the link;

m< is the mass of the tool.

The Jacobian matrices required in (40) can be computed using the général équations for

the Jacobian developed previously (eqs (3) and (26)). To reach this goal, we use the fact
thât the motion of body i dépends only on the motion of the bodies l to i — l and is not
afFected by the bodies coming after in the chain (this is true only for an open loop chain).
In other words, ifwe want the Jacobian at a given point, we employ that point as the robot

extremity. Hence, we define the three Jacobian matrices required in (40) as follows:

JR,m is the Jacobian of rotation defined by setting the motor as the endpoint, then e —» l;

Jr,dm is the Jacobian of translation defined by setting the position of an élément dm (it is

equal to the position of S^} as the endpoint, then e —>• >?2;

JT,C is the Jacobian of translation defined by setting the position of the center of mass of

the tool as the endpoint, then e —r e. The position of the center of mass of the tool

ls: 2rc/2=^2+lcy32-

After some manipulations made using the symbolic computation software AIAPLE, we

obtain the équations (4l) and (42) for the force equilibrmm. To simplify, we split / in two;
fm is a scalar corresponding to the motor and /; is a vector corresponding to the flexible

link. To be consistent with assumption A5, we only retain terms of zéro and first order.

For fmi we have:

fm = -Tm+pgClU+^P9Cl2-mtg(Sl^+C{l^+l+l^))

- mtg{Clc,<f>'T - Sl^lr - mtgS<f>T - pgS j <^ dx 77 (4l)

where S = sinO and C = cosff. For /;, we have:

/; = pgC 1~ <f>dx + rmg (Cl^\ - Sl^(j>\ + C<f>,) + | -pgS / ' /~ 0''(f>'T 'dçdx
'0 " l JQ JO

-rmg ( Clc,<f>WT + .^<^T + S J ^'^dx ) + El, j <f>"<t>"Tdx T) (42)

The underlined terms in (42) affect the stifFness and will be missing if only the first order
kinematics is used. They are related to the gravity forces, which means that a beam rotating

in a horizontal plane wiU not have thèse terms.

For a given endpoint force f applied for a known motor angle, the unknowns in (39) are

the motor torque Tm and the n/ generalized coordinates associated with the flexible Unk.

Since the vectorial équation (39) gives l + n/ scalar équations and since thèse équations
are linear in Tm and r), the solution is easily found.
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3.5 Shape functions

To compute the vector / and the endpoint Jacobian Je, we need to select a set ofshape func-

tions. When dealing with static déformations, it is known that for linear strain-displacement

relationships, the shape of the beam is described by a polynomial of fourth order (Gère

and Timoshenko 1990). In our case, the shape function is the solution of the following

differential équation:

EI,d-4xl+pgcos0=0 (43)

with four boundary conditions reflecting the embedding in the base and the force and

torque at the endpoint. However, by including the second order terms in the kinematics,

the solution becomes more complex and a fourth order polynomial is not sufRcient (see

e.g. Gère and Timoshenko 1990, sect. 7.12 ). Therefore, five shape functions are used each

consisting of a simple polynomiaJ of the form:

<^(a;)=a;î+l withi=l,.-.,5 (44)

The first polynomial is x2 because the boundary conditions at x = 0 imply that <f>i(0) =
<^(0) = 0. To verify, we compare the results for the first order kinematics using three

assumed modes with the exact solution obtained by solving the differential équation (43)

with its boundary conditions. The two models agrée perfectly. After ensuring that the

contribution of the higher modes is small, we choose to stop at five modes for the second

order kinematics.

4 Expérimental Apparatus

The expérimental apparatus used to validate the model developed in the example is shown

in figure 5. It consists of a small DC motor onto which a torque sensor is mounted. The

flexible arm is fixed on the torque sensor, and at the end of the flexible arm is the tool.

The force is applied at the end of the tool using différent masses. The parameters of the

expérimental apparatus are displayed in Table l. Since the flexible arm rotates in the

vertical plane, the endpoint force is always along the Jg axls an<l the components along ÎQ

and ko are zéro.

4.1 Expérimental Procédures

We validate the model developed in the previous section by varying the endpoint force fe

from 0 to -6 N and the motor angle Om from -90° to 90° by 30° increments (except for the

last force where 15° increments are used from 0° to 90°). The vector of the expérimental

values for the endpoint force is shown in Table l. We use a PID controller to maintain

the motor at a desired angle, and for each angle we measure the motor torque as given by

the torque sensor and the beam curvatures using the three strain gauges. We caUbrate the

strain gauges using the 0° position (Fig.4) with zéro endpoint force. We then take aU the

curvature measurements with respect to the calibration position.
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Figure 5: Expérimental setup

Hub:
Link:

Tool:

Stmin gauges:

Endpoint force:

f^= 0 -0.61

radius

length
stiffness
linear density

mass

endpoini

mass center

position

.1.22 -1.8-1

h^
/=

El.

p_

m;

^
^
^
1^
xgi

X3î

X93

= 0.0365 m

0.7845 m

; = 13.4 A'77!2

0.650 kg/m
= 0.1608 kg
= 0.0115 m

= -0.3159 m

=0.0115 m

= -0.158 ?7î

=0.0191 m

= 0.3985 m

== 0.5889 m

2.46 -4.19 -5.4 Ar

Table l: Parameters of the expérimental a.pparatus
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Motor torque: expérimental (o) and simuiatlon (-}
10

E
z

- Ton -60 -40 -20

Om(deg)
20

Figure 6: Torque required by the motor in function of fey and 6m using Model 0(2) and
comparison with expérimental values

4.2 Simulation and Expérimental Results

In this section, we demonstrate that our model, using second order kinematics is doser to

the expérimental results than models neglecting it. We also show the différences between

the models. To simplify, we use 0(2) for the model including the second order terms in the

kinematics, 0(1) for the model excluding it, and 0(0) for the model neglecting the flexibility
of the link (assuming a rigid link). On each of the graphs, the curves are numbered from l

to 7 corresponding to the seven différent endpoint forces defined in Table l: curve number

i correponds to fe,,[i]- As we will see later, the last two endpoint forces result in endpoint

déformations that are outside of the 10% limit defined in assumption A5. We stiU keep
them to see how well the models behave outside the limit.

The graph in Figure 6 shows the torque required by the motor as predicted by the model

including the second order terms. It also shows the expérimental results measured using

the torque sensor. Model 0(Ï) closely approximates the expérimental results even for the

curves 6 and 7 which are outside the 10% limit. The next two graphs, in Figure 7 and

Figure 8, concern the motor torque and iUustrate the diiference between the second order

kinematics model and the first and zéro order kinematics models. There is no significant

différence between the models 0(2) and 0(1): less than 1% for Curve 5 and less than
2% for Curve 7 (which is outside the models limit). However, if the rigid model ( 0(0)) is
used, the error is greater than 8% for Curve 5 and 12% for Curve 7.

The graph of Figure 9 shows the curvature of the first strain gauge as obtained from the

simulation of Model 0(2) compared with the expérimental curvatures. In Figure 10, we

compare the same expérimental curvatures to Model 0(1). Model 0(2) closely approxi-

mates the expérimental curvatures even for forces 6 and 7. This is certainly not the case for

JModel 0(1) which shows significant diiferences even for forces resulting in déformations
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Molor torque: c_02-c_01

-0.06

Figure 7: Torque required by the motor in function of fey and Om'- différence between

models 0(2) and 0(1)

0.8

0.6

0.4

'E 0.2

E
h-

Ï 0

-0.2

.0.4

-0.6

Molor lorque: c_02-r

J—l—l—l—l_L

T'~"""""""""" """""""" l"—•—"""""• • T

J-....._ l—— , L

-100 -80 -60 -40 .20 0 20 40 60 80 100
Om(deg)

Figure 8: Torque required by the motor in function of fey and 6^'- différence between

models 0(2) and 0(0)



20 4 EXPERIMENTAL APPARATUS

Curvature #1 : expérimental (o) and simulation (•)

~-'Too -40 -20 0 20
Om (deg)

Figure 9: Curvature of the first strain gauge in function of /ey and 6m for Model 0(2) and

comparison with expérimental values

inside the model limit.

Figure 11 shows the simulated endpoint déformation for Model 0{Ï). The maximum
deflection in Figure 11 is almost -12 cm at 45°. As aforementioned, with a link length of

approximatively 0.8 m, —12 cm is more than 1.5 times the maximum permissible deforma-

tion while working under the 10% limit ofassumption A5. StiU, as noted previously, torque

and curvatures predicted by Model 0(2} well agrée with the expérimental results for aU

the endpoint forces. Figure 12 illustrâtes the différence between the endpoint déformation

predicted by models 0(2) and 0(1). This différence is more than 5 mm for Curve 5 and
more than 13 mm for Curve 7. Such a différence is important for robotic applications where

a précision of less than one millimeter is not unusual.

From the comparison of the différent models with the expérimental results, we reach

the foUowing conclusions:

l) There is no major différence between the torque predicted by the models using first

and second order kinematics. However signiiicant errors result when the rigid model

is employed.

2) The curvature is well predicted by the second order kinematics model but large errors

occur when only first order kinematics is used.

3) The différence between the endpoint position as predicted by the second order kine-

matics and the first order kinematics models, is significant enough to conclude that

the model using only the first order kinematics is misleading.

4) The second order kinematics model well predict the expérimental results even outside

the 10% déformation limit.
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Curvature #1: expérimental (o) and simulation c01 (-)

00 .80 -60 -40 -20 0 20 40 60 80 100

Figure 10: Curvature of the first strain gauge in function of f e and Om for Mlodel 0{ï) and
comparison with expérimental values

0.04

0.02

Endpolnt déformation: c_02

oh

-0.02 h

r-o.04

.0.06

.0.08 h

-0.1

1 1% llmlt

-100 -80 .60 -40 -20 0 20 40 60 80 100
Om(deg)

Figure 11: Endpoint déformation in function of /e,, and 6m. for Model 0(2)
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x 10- Endpolnl delormatlon: c_02-c_01

Figure 12: Endpoint déformation in function of fey and 6m- différence between models

0(2) and 0(1)

As a général remark, we thinlî that discussing the géométrie stifFening effect only in terms

of angular speed is insufRcient with the exception, perhaps, of the cases of one-link flexible

beams rotating in the horizontal plane without endpoint force. The term stiffening effect

is in itself misleading since some of the efFects resulting from the inclusion of the second

order kinematics, are softening ones.

5 Conclusion

In this paper, we developed the endpoint Jacobian exact to the first order for a général

tree-like manipulator with flexible links, using second order kinematics. Similarly to rigid

robot methods, we wrote the Jacobian in terms of the joint axis, the link déformations

and the relative position vectors using cross products. A column of the Jacobian matrix

correspondes to each joint, and a sub-matrix to each flexible link. To override the problem

of choosing an order of rotation for the section of a flexible link, we chose the curvatures

and the twist as generalized coordinates. Then, we defined two local Jacobian matrices

relating the extremity of a flexible link to its root. Using thèse matrices, we determined

the endpoint Jacobian sub-matrix using the same formulation as we used for a joint. With

an example and expérimental results, we conclude that our Jacobian matrix is valid. And

finally, in order to closely match expérimental results, we have shown that models must

include the second order kinematics.
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A Local Curvatures and Rotation Matrix

In this Appendix, we develop the relation between the local curvatures and the rotation

matrix. Assume a vector r fixed in a frame 'R,\ that is rotated by a, small angle vector A0

with respect to frame TÎ,Q. Then TCOr, the vector expressed in Tio, is written in terms of lr

as (Meirovitch 1970):

TC°r = TCir+^Ar (45)

= Rwr (46)
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l
0
0

0
l
0

0
0
l

+
0

A6>,

-A0,

-A0,

0
A(?^

A0,
-A0,

0

Tîi, (47)

Equations (45) and (47) give TClAr in terms of the rotation angles. Considering that the
small rotation occurs because of a smaU translation Aa; of the référence frame and taking

Aa; —> 0, we dérive:

^' = TClKTClr (48)

where TCIK is defined in (10). This relationship is similar to the one between the angular
speed and the rotation matrix for a rotating frame.

Consider now:

s'-lrW_, = H§rls'rs./^

Differentiation of (49) with respect to x gives:

5-^,/.,_, = (^-1)'5^,-. +<-1^.^_,

Using (48), the derivative of (49) with respect to x is also expressed as:

s'-'irL ,„ = <s—lf;5—lr^ ,<. -t- f5'-l']
"5,/5,-i = 'lï ~''<?,7<?,-i f ^ ' "l'SifS.-i)

(49)

(50)

(51)

where (s'~lTs,/s,^y = ^is,~ls'r's,/Si-.i ls t^le derivative in the frame Si. Equality of (50)

and (51) gives:

s'-liïs'-ïrs,/^ = (Rss,-l)'sirs,/s^ (52)

From (52), we can write:

-^;-1^,/^ = (^;-l)'^./5._,5-1.. (53)

Equation (53) gives a, relationship between the curvature expressed in frame Si-i and the

rotation matrix:

s^kB^1 = (iîg_J (54)

To obtain the curvature in frame 5,, we start again from équation (52) and write:

^'. (^-l)TAt^,/.._, = (^;-1)/^./.._, (55)

Simplification of (55) yields:

^;-l^=(^:-ly (se)
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B Rotation Matrix and Position Vector

In this Appendix, we write the rotation matrix and position vector directly in. terms of the

curvature. The solutions of (13) and (14) in terms of the curvatures are the foiïowing:

jRi =:

"X _ [X

0 -, K^dç l Kyd^
,. Jo ~ ' Jo,.'

^ 0 - l K^dÇ
Jor. r. Jo

Kydç f K^dç
'0 ' JO

(57)

Rî=

n^df,

f'0
f,0

^
Kj:dT]

,0

^
K,j;dr]

,0

0

•X \ ï fX ( ff,
Kydf, ) / | / Kydî] | n^dç,

/o \Jo

Kydç - ^ ^ ^di) - e (^ ^d^
rx ( ^

K,d^ f ( / Kydr] ) K^dç
/o \Jo

f'0
f,0

re
K^dri

,0

^
n^dî]

,0

•KM'

KxdÇ

KydÇ

'-î CM"

The position vector (18) written in terms of the curvatures is expressed as follows:

(58)

T-5,_i,5, =

x~ix{12{/^^) +i(rK^) |^
[ (/;»A) .( + f {/; (/;^c) ,.,*,} «

f y -»,„) df + f {/^ (/; ,.d() «.«,} .(

(59)

C Local Jacobian Matrices

The local Jacobian matrices can be separated into zéro and first order components as

shown in this Appendix. This renders computer implementation easier. Because we divide

the space-dependent from the time-dependent variables, main parts of the local Jacobian

matrices can be computed in advance.

JR,i/i-l = (t~ JR,i/i-l)o+{t~ J R,i/i-l)l

t-1

oth order ist order

'«'-IT_ ... '>- l /'«-l

JT,i/i-l = ( JT,;/t-l)o+( Jr,t/t-l)l

(60)

(61)
oth order lst order
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«-1
•^T.i'/t-l» JR,i/i-ï € SR /1

where ()o refers to a zéro order term and ()i to a first order term. The définitions of the

local Jacobian matrices of rotation of zéro and first order are:

'1-1 T . \ ^
R,i/i-t)0 =

0(0) 9i~ÎWi/i-i/'-l _

9qj,

o o a<f>T
0 -w<f)'T 0

^T 0
( JR,i/i-l)l =

with:

q],JRx,i

<liJRy,i

qlf,JRz,i

(62)

0 ^(-^.A-i).
">* — ~oT— l —oT— l —"• ôq^\ ôg/,

9 (Q(ï-^m-^
î.y,i = ~^~ | —^T- — | =ny'1 ~ 9qf, \ Og/,

9 W-^./.-i)^
JRz,i = -^

»'/<-1^ \ _

9qf, \ 9q^

0 Sl,VW!Tdx 0
-^•WW!Tdx 0 0
0 00

0 0 Sl,WTdx
000

-f^aWTdx 0 0

00 0
0 ^ 0 ;o'-WWTdx

LO -^aWTdx 0

(63)

where ({ ]u? ,,1-1)2; means the x component of lu,/i_i (similarly for y and .2'). Define in

the same manner, the local Jacobian matrices of translation are:

fi-1'Î-IT_ . ^- "^
'T,i/i-l)0 =

0(0) ôt-lr,7<-i

^f,

000
V4>T o o

0 w<f)T 0
rljT,i/i-i)i =

<I^.JTx,i

<îÏ,JTy,i

<ÎJf,JTz,i

(64)

with:

9 ^e-lr;/,_i),N
'Tx,i = -S— l —ï-— ) =

9<lf, \ Q<1 fi

, _ _9_ f9^r,)y\ _
JT'- = w,. [-aST) =

9 ^C-lr.A-i).

^•VWTdx

0
0

0 0
-^•w^'Tdx 0

0 0

0
0

LO -f,if,XV^Tdi,dx

0
-5l,5SW<t>I^Td^x

Jïz.i = -a7
i/i-\)z

9(lf, \ Q<ifi

0
0

F', fxa^v^nT

0

0 ^SS^^d^dx
0 0

(65)

[5^SWÎTd^dx 0 0

As indicated by (62) and (64), zero-order local Jacobians {JT,i/i-i)o a'nd [JR,i/i-i)o are
constant when defined in the 7Si_i frame. This is not true for first-order local Jacobians

(•^T,t'/t-i)i an^ (•^fi,i/t'-i)i» which dépend upon the flexible coordinates vector g^, which

is defined as follows:
vrii

9/,= wr)i

arii

(66)




