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MULTIPLE-PftTH SEQUENTIftL DECODING

FOR INTERSYMBOL INTERFERENCE

by

Sarnir KALLEL and David HACCOUN

ABSTRACT

In the high-speed transmission o-f digital data over

bandl irnitod channels an e+ficieînfc détection techni(que must
take into considération both the présence o+ the channel
noisie and that of the intersymbol inter+erence (ISI)

betwee'n neighboring puises. By modelling the ISI as a
canyolutional encoding o-f the data the optimum 'v'iterbi
decoding can be âpplied to the ISI problem. However since

the computational effort grows ei-iponential l y wi+:h the
memory o-f the channel, Viterbi decoding becomes impractical

when the channel memory e;-;ceeds a -few symbols. In this
paper we> présent the application oi the stack algorithm of
sequential docading and some o-f its multiple-path variants

to t h e l S l problem, especially over long memory channels.
Camputer simulation with channels having memory lenths up
to 9 symbole show that the achieved error performances -f al l
within the theoretical upper and lower bounds of an optimal
decoder at on l y a small fraction of t h e computational
effort of an optimal decoder. As for the computatianal
variability it can be total l y circumvented by
simultaneausly e;-;tending a isu-f+icient number of paths.
Final ly with a simoli-fied multiple path seuqential decoder
all the drawbacks of sequential decoding may be avoided at

a cost of a very slight error performance dégradation,
making the technique very attractive ta combat ISI over

long memory channels.



l IN'mûDUCTÏON

In the? higi"i--spe?ed transmission of digital data over

bandlimited channels, ono of the principal impairment is

the- intersymbol interference (ISI) between neighboring

puises due ta an insuf+icient channel bandwidth. Over

re'latively narrow-band channels the transmitted symbols

tend ta sproad in time, and by spilling over adjaceînt

symbole time intervals they inter+ere with thèses adjacent

isymbols and cause dc-îtection errars. There-fare a gaod

détection technique must take into considération both the

présence of the channel noise and that of the ISI.

Many e-ffective» techniques ta minimise the effects of

ISI by channel equalization, that is by adjustments of the

puise shapes, have been developed. However thèse techniques

are not optimal <and often lead ta very comple;-; receiver

structures 113 - C33. Al sa, by considering ISI as a

convolutional encoding of the data, where the memary of the

channe'l is associated with the memory o-f the convolutional

encoder, opfcimum or quasi-optimum decoding tehcniques using

the Viterbi decoding algorithm <as for canvolutional codes)

have been proposed C33 - ES]. Un-fortunately because the

computational complei-iity a+ the Viterbi decoding algorithm

grows e>;ponentia.l l y wifch ths memory of the channel, its

application becomes impractical when the channel memory



fâ;-;ceeds 3 or 4 symbols.

For channe'ls with longer memory, the &>>!cessive amount

of computations of VitEsrbi deîcoding has led ta cansider fche

power+ul suboptimum decading technique of sequential

deccîding, in particular fche stack algorithm and some of its

varirants [93 -~ C 11 3. Contrary to Viterbi decoding where al l

tho possibly transmitted séquences (or transmitted paths)

are e'Khaustively e>>;amine'd, in sequential decoding only a

small fraction at thèse? séquences are considered by the

discoder. As a conséquence, the computational ef-Fort iss on

the? average very small, but al sa, unfortunately variable.

However the substantial advantage o-f sequential decoding is

thafc the computational camplfâ;-;:lty is practically

independent 0+ the memory of the convolutional code (or

thafc uf the channe.1 )• Hence sequential decoding can be

applied ta the ISI problem especially over arbitrarily long

memory channels. As for the computational variabilifcy, it

has been shown that this drawback can be circumvented by

variants o-f the stack algarithm cal l ed îiy.LÎ:lÊ^-ZP-.^Jl

s.eflye.nîÂ.al........J?JÊCO.^..l.n.!9.. E 123 • In thèse variants the decoder

simultaneously explores same number M, o-f the most likely

paths, instead o-f the single moist likely path of the usual

sequential decoding. With such M-path algorithms it has

been shown that the computational variability may be

drastically reduced at a cost of a modest increase o+ the

average decocling effort C 123.



In this paper we présent the application of sequential

decoding ta the l SI problem, in particular the stack

algorithm and itsî multiple-path variants»

Compufcer simulation résulte with channels having

memory lengths up to 9 symbols show that the error

performances of the mulfciple-path sequential decoding f al l

within the theoretical upper and l oweîr- bounds o-f an optimal

decoder, wifch +;he advantage a+ requiring an average

computational effort only a small -fraction o+ that o-f an

optimal Viterbi decader. Furthermore by properly choosing

the number of . e;-;tended paths M, the computational

vari abi l ity inay be practi cal l y el .imina+.ed , making this

technique especially attractive -for long memory channels

with sévère l SI.

We assume the reader familiar with the éléments o-f a

baseband digital communication system. Figure l shows the

discrète time white noise channel model that wi11 be used

in this paper C23, C43. The symbols of a transmitted

séquence -CI,,3- may take equally likely values ±h, ±3h,

±...±(q-l)h, where q is the alphabet sise of the éléments

representing the symbols, and where 2h is the distance

between successive amplitude symbol levels. The

transmitter sends the discrete-time symbols at a rate 1/T

symbols/s so that a channel of memory W corresponds to a

discrete-time transversal filter that spans a time interval



of WT seconds. The tap coe-fficients <'f;ï represent the

amount of interfîîrence caused by neighbaring symbols on a

given received symbol» The passage o-f the input séquence

•CI,.> into the disîcrete channel model results in the oufcput

séquence •£y,.î whfôrfô each output symbol can be e;-;pressed by

y,. = z,, + n,. , k == 0,1,2... (l)

wh ère Z,. is given b y s

w
Z,. - E -f . I,. , (2)
'k f:o lj 'k~J

and where n,, is the nuise <3ample, considered to be Gaussian

^
<and white with zéro mean and variance or".

E>; ami nation o-f Figure l shows that this channel model

may be regardod as a speci^^l convolutional encoder o+

constraint length K :~-: <W+l),where the usual modulo-2 adders

have been replacée! by a single arithmetic adder cannected

ta the shi-ft register stages through real number

multipliers. Although the analogy with convolutional

encoding does not entail a coding rate or a bandwidth

e;-; pans ion.

Using the channel model of Figure l Ma;-;imum Likelihood

Séquence Estimation is présentée! in the ne;-; t section

together with an introduction to Viterbi decoding and

sequential decoding. Only the stack algorithm (and its

M-path variant) of sequential decoding is considered in

this paper. Thfâ particular sequential decoding likelihood



•function (or metric) ta use for the ISI problem is derived

and discusised in section III and resiults from e;-;tensive

camputer simulations are givc?n in section IV. Trade-offs

botween error probability, computational effort and chaice

of metrics are provided for channels having memory 4,6 and

9 symbols.

Finally a simpli+ied multiple-path sequential decoding

algorithm suitable ior l S l is presonted in section V. Wifch

this simplified algorithm all the computational variability

of sequential decoding i cî eliminated at hardly any error

performance dégradation, making it a very attractive

-al ternafcive •for ISI over long memary channels.

11 MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION

Using the tree and trellis structures of the

transmitted séquences, ma;-;imum likelihood séquence

estimation is présentée! together with the optimal trellis

search of ^iterbi decoding and subaptimal tree search of

sequential decoding.

Let S, be the state of the channel défined as the W

most récent inputs preceding the current input I,..

l." != 1 '"? / ~!
11.;; "° ^ i [;—^ ^ 1 j...;—2 ' " " " i t;:~W/ ' K~'i » -^ i ° ' '"-'

where I, ^ 0 for k<0
'•'.

A seque'nce o+ input symbols can then be représentée! by a

succession of possible states. There are q" distinct



states, ancl -from one state we can transit to q new states,

with each transition corrosponding ta a distinct élément a-f

the alphabet» Al l possible state sequence's may be

représentée! by a tree, where each node corresponds ta a

state of the channel, and where q branches émerge from e?ach

node. The roct node o-f fche tree is the initial state of the

channe?]. , and each new input symbol in the channel causes a

correspond ing transition in the treeî. An input séquence of

L symbols traces a particular path of L branches in the

tree and therefore, there are q"~ possible tr<ansmitted

séquences o-f length L. (see F'igure 2).

Examinât ion of the tree shows that at any tree depth

t ,
Ç.,(>.>W, there are? q très nodes but anly q distinct channel

states. Thus, at depth f there are more tree nodes than

distinct states, and hence,several nodes must correspond ta

the same channel state's thèse nodes are identical and

generate identical subtrees. Therefore the tree contains a

huge redundancy which can be eliminated by merging

together, at any same très depth beyond W, al l nodes

correspond!ng to the same channel state. The redrawing of

the tree with merging paths and redundancy eliminated is

called a trellis (see Figure 3) «

The objective a f a maximum likelihooct decoder is to

détermine the path in the tree (or in the trellis) that



corresponds ta the mosst. likely transmitted séquence giveîn

t h e received séquence»

Let Y, == (y^iY^,-. y, < > be the received séquence,

where the received symbol's y,. are given by (l). The decoder

observes Y, and chooses the L -~ branch séquence I,'"" +or

which fche likelihood functian P(Y, II, ) is ma;-;imum over al l

distinct paths, that is,

F:'CY, II, J ^ PCY, II, 3, m^rn (4)

Since the noise is white and the channel has memory

W, fchen for any input séquence we can write,

pcyL'IL 3 ^ p[^IIk'Ik-l--Ik-W3 <5>

or ,

L-1 L--1

PCY, II, 3 = TT P Cy,.IZ,.3 = IT P^ (y^Z^.) (6)
-L '^L ~ k=o ' ~'k '~k~ ^=0 ' n "-k ~k'

where P <.) is given bysn - - - -'

p^(&:) == ^ ^. e;.;p - (o.:2/2o- ) , -ooso.:<oo (7)

Taking the logarithm (6) becomes;

L:1 . l (Yk~zk^
PCY, II, 3 = S log T^-:- - —— (8)

1^-'" y '->,--:::
k:==o '~~ 2<

Eliminating constant terms from (8), ma;-iimi2ing PCY, IL 3

corresponds ta ma;-;imising the total metric P, defined as;

PL '..L ~(yk ~zk>'~ <9)
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or équivalent l y,
L.-l ,.,

P, == E ~ d" (10)

k==0

Where d, is the Eue lidian disstance bfâfcween the received k

symbol y,, and the k'"" branch symbol 2',. an the tr'ee p)ath o-f
•*.

interest. Defining the branch metric for the k~" symbol

ass

T,. == -df: (11)

the- total metric is thens

L-l

P, == E ï,. (12)
L k-0 'k

An optirnum séquence decoder wi 11 fchere-fore attempt ta

•find that information séquence for which the ta'bal metric

is ma;-;imum. E;-; amples o+ sue h decoders t h at are bat h

powerful and practical are Viterbi decoder and sequential

decoder. They are briefly described ne;-;t.

vit_^r.bL.AecodA.n-s-

The Viterbi decoding algorithm is an optimum decoding

procédure which détermines the path having the largest

cumulative metr'ic ot al l possible distinct paths in the

trellis. At each trellis depth, only the best (i.e. most

w
likely) pafch terminating at each of the q" distinct

M
states is retainecL At each decoding step, thèse q'

remaining or "surviving" paths are e>;tended into their q
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single branch e;-;tensi ans and their- metrics are computed.

Then,, for each group a'f q paths mercing at each state, only

the path having the largest total metric is retained. ïhe

ather <q-l) pafchs are discarded and the procédure is

repeated anew» With this procédure clearly, none of the

discar-ded path can ever be fche most likely, that is the

decoding l s optimum L 13] -~ C153.

The camputational c:ompl£î;-;ity and amount of mernory

required by this algorithm both grow with the number oi

states, that is they grow eî-iponential l y with the memory of

th© channel. Practical applications oi Vite'rbi decoding is

therefare limitfôd to channels with memory not longer than a

few siymbals.

ïhe error probability o-f- Viterbi decoding decreases

e;-;pc3nential l y with the memor-y of the encoder Cl 33. For l S l ,

Forney C43 has shown that -for F'AM signaling the symbol

error probability P(€) is bounded bys

d_._ d_.
k^1(-sln-) < P(€) <k^Q(-rîln-) < 13)

^ .;;(

where ct_, _ is the minimum Euclidian distance between any
min

two paths in the tree or in the trellis, where k< and

k,-, are constants with the same order of magnitude, and

where Q(.) is de^ined as;

P00 2
-u."" /2
e" "~ du (14)

"oc

Q(a) - -^
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sfâ.&yMi.y.al...Afâj?-o^..in5..

Sequential clecoding is a very e-fficient tree search

algarithm that e;-; p.l or es, one or a few paths at a fcime, on l y

the most likely part o-f: the très. Hence this technique is

suboptimum. Starting fr-om the arigin of the tree, the path

selected to be searched one step -further into its q branch

e>; tensions is-s the> path that has the largest accumulated

metric among thosse already eî-iami ned. Hence, by e>;tending

only fche pafch thafc appears to be fche rnost likely, most of

the computations necessary for an optimum decoding can be

avoided. The idea is cammon ta varions sequential decoding

algorithme, with the spécifie method of searching and

selecting the path ta be e;-;tended depending on the

particular algorithms Cl 53 - Cl 63.

As the decoding proceeds the decader occasionnaily

retreats in the tree and e;-;plores earlier and possibly

incorrect paths. This backing up and extension of unlikely

paths is minimised by biasing the metric in such a way that

on the average it increases along the correct path and

decreases along al l incorrect paths C163 ~ C173.

With this decading procédure the computational effort

is on the average very small, but also highly variable with

an asymptotic Pareta distribution, that is, a distribution
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whose tail decreases only algebraically C18:l. This

variabi l ity of the computati.onal effort is one of the

principal drawbacks of sequential decoding, and in

analysing sîequential decoding both the error performance

an d computational effort must be e;-; ami n éd.

There are two main sequential decoding algorithms; the

Fano algorithm C16] and the Zigangirov-Jelinek or Z~J

algor-ifchm C 19] n In this paper anly fchs? Z-J or stack

algorithm and some o-f it<5 variants are ccansidered.

In t h e Z::J..i......pJl.J^LaclL.£]A^ al 1 the? examine d pat-h s

are stored in decreasing order o-f their metric values in a

•stack. The top of the stack has the large'st accumulated

metric and wi 11 be e>;tended ane level further along the q

branches effierging from its end nade. The opérations o-f the

stack decader are fchus the finding of the top node, the

e;-; tension and storage of its successors, and the proper

reordering of the <stack. As a node is extended, it is

removed -from t h e stack.

The algorithm is thens

l) Compute the? metrics o-f the successors of the top node of

the stack and enter then in their proper in the stack.

2) Remove from the stack the node that was just e;-;tended.

3) Find the new top node. If it is the •final node, Stap.

Otherwise go to l.

ïhe information séquence is divided in blocks of L

symbols (L, varies from 500 ta 2000 symbols) and each block
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j. s> terminated by a tail of W known symbols. Thus, at the

begining of a new block the decode?r is resynchroni sed ta

the initial channel state. When the top node of the stack

is a terminai node o-f the tree, docoding of the block is

complète and the algorithm recovers the decoded path and

delivers it ta the user » A séquence decoding error occurs

wheneve'r that terminal node is not the terminal nocle of the

car-recfc pafch.

Since the number o-f computations needed to decocie a

gi von block of in-formation is variable, an input. bu+fer is

require'd ta store the incoming data waiting ta be decoded.

An output bu-f-fer is al sa used to smaoth ont the rate of

delivery o-f the decoded blocks. A simpli+ied block diagram

af a îîequeîntial decader using the stack is given in Figure

4.

In order to alleviate the computational variability D+

sequential decocling, a îlulJ-Âi31^£il.Ï.b...-...EÈ?S...^L......rllâor.Â^ *~1 a s

been cleveîloped 1:123» In this algorithm the M (rather than

the single) most likely paths are simultaneously e;-;tended.

Moreover, remergers (nay be e;-;ploited as in the Viterbi

algorithm in order to eliminate redundant and useless paths

from the stack, and thus help reduce the required stack

storage. With this algorithm, compared ta the ordinary

stack algorifchm, the computational variability is reduced

at a cost o+ a somewhat larger average number o-f

computations. Furthermore the error prabability is al sa
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improved sincs some of the errors of the stack algorithm

are corre'cted by the M pïath algorithm. The M path algorithm

wifch rem&rgers belongs ta the class of the Généralized

Stack Algorithms C12.1 and fi Ils the gap between the l-pcith

sequential decading and the all-p<ath Vifcerbi decading. In

•fact, h&'re, when the numbfâr M o-f the> e;-;tended paths equals

w
q", this M-path algorithm becomes équivalent to the optimum

Viterbi algorithm E: 123.

11 ï s®ayênMâl......P.ec.o^D5.-J¥[©trA..ç......fof.-....^^^

As we mentioned above, when applied ta sequential

decoding, the branch metric given by (11) must be biased .in

such a way that on the average it increassesî along the

correct path and decreases along al l incorrect pafchs» The

metric normal l y used with sequential decoding is cal led the

Fano met-ric, and was developed for the decading a-f

convolutional codes C163 - E 17]. However, since here the

output of the channel are r'eal numbers, and since al sa

there is no actual coding rate as -for ordinary

convalutional codes, the Fano metric cannât be used as such

for the ISI problem C103 - L 11 3 .

We now show that the branch metric to use should have

thfô following -form;

Y = »: -pd^ (15)

where »: and R are real numbers, and where di. is the

Eue lidian distance between fche received symbal and the
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corresponding symbol being e;-!amined in the tree.

In order ta belp distingulsh the correct path -from al l

incorrect paths, on the average, we want the branch mefcric

Y to be pos3j.tive on the correct path and négative on al l

incorrect paths. Let Z,. be fche k'~" branch symbol of fche

correct path and l et y,. be the k'~" receivsd symbol. The

average value of the metric. increment 'ï',. along the correct
••.

pat h must bc positive, an d is given by s

ECY,J = ECK - f:! (y,. - Z,.)"-3

- E r. « -- (3n^3

(K - (3 y" > 0 (16)

where (/'" is the variance o-f the additive noise.

/ . th
Now l et Zi. be the k"" branch symbol on any incorrect

/
path such that Z,,-Z,.:=€i.4:0. The average value of the metric

/ /
increment Y,, along Z,^ must be négative, and is given by;

Et\. )€,. ==€ , € 4= 03 - ELo.:-R(y,.-Z^.)2 l € + 03

= ECc<-rj(y,.-Z,.+€) l € + 03

ELw.-B(n +€)" l € 4: 03

K-p ((/•"+€") < 0 (17)

Thus we have two conditions ta satis-fys

o:-R V4- > 0

o:-R (o-^+e^) < o (18)

2 .-/ 2. . -f.
Clearly choosing o: == (3 ((?•"+€ ") , where |€|<|€|,
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satis+ies thèse two conditions» Substituting w in (15)

yieldss

*? / T.' ':.'•

'^',. ••= (31: ((/-~+€ "•) - d^3

- N^co.s^e'2 ^- - ^d^3 (19)
0 0

Nr
where (?'"" ^ ?~- is the variance of the additive white

^—

Oaussian noise.

The term M_f3 is only a scaling fac.tor that has no

ef-f-ect on the decoding procédure and can thus be normalizect

ta l.

The choice of the value of € in (19) dépends on the

particular incorrect branch e!-;<amined. Therefore the metric

given by (19) is not practical since the decoder cannât

know in advance which branch is being currently e;'iamined»

However, it is possible ta choose € ==€^ _ such that
min

)€_'_ |< |€_.._ l, and where €_,_ is the smallest nonzera
min ' ' min • ' "min

Euclidian distance between any incorrect branch and the

corresponding branch on the correct path« With such a

choice? of value for. € , the conditions (18) are always

satisfied. Moreover shauld € be too small, then the metric

wauld -f al l rapidly. As a conséquence, -for smal l values o+

€' and under noisy conditions, the metric drops of the

correct path are important. The decoder wi11 therefore

e;-;plore many incorrect paths before recovering the correct

path (seo Figure 5). A large and variable computational

ef-fort may be thus» e;-;pec:ted. In order to minimize the
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computational effort, one (nust chaose relatively larger

values o-f € , and hence accept that conditions (18) may not

bo safcisfied far some of the incorrect branchoia. However

when € is too large, the metric rises rapidly and drops

re-îlatively slowly. As a conséquence, the small metric drops

o-f the correct path wi11 induce a smaller computational

effort, but under sovere nois>e fche incarrect path mcîfcrics

wi11 also tend ta rise quickly, possibly leading to more

numerous error event'3 and a dégradation of the error

performance;.

Thereîfore a trcîde'-o-f:-f beîtween the er-ror probability

and +:he computatianal effort is but unavoidable.

E;-; ami nation o-f this trade-o+f and détermination of the

proper range of values ta chooseî € -fram has been canducteîd

using computer simulation described ne;-;t.

lV ÇOMPUTER S lMULATlONS

Several ISI channels and several variants of the?

sequential decoding stack algorithm have been simulated on

a VAX-750 Computer E 103. The purpose of the simulation was

to e;-;amine for différent variants o-f the M-path algorithm

the trade-off relationships between the computational

effort and the error performance as parameter € varies.

Computational distribution curves as well as error

per-formance for différent signal to naise ratios have also

been obtained -for différent channels and différent M~path
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alciorithms.

Three- worst case theor'etical IC3I channels havinq the

•following taps have been investigated E:203,

channel l, memory 4,

f == 0.29, f = 0.50, f == 0.58, f = 0.50, f = 0.29

- e h an n el 2, meîmory 6,

f == 0.19, f == 0.35, f = 0.46, f == 0.50, -f == 0.46,

+^ == O»35, {• , == 0. 19
e

channel 3, memory 9,

9.. -f =s (").7:~r,. -f == (~).^;9. -f s; O.^.ç. -ir == 0.42^, 1} ï ^ ""' \,/ U rf— <-.* ç l ^ "" 'l-' n •-.* rf:,. q l ",. •"' ^t R •«* / t^ l ^ — l..'' n '"*' •*" ç

^* 0

f^. = 0.42, f^ = 0.39, -f.., == 0.32, -f,., - 0.23, +.3 =:: 0.12
^

The transmittect symbols are equally likely to be +1 or

•l. For each simulation, 100,000 symbols have been randomly

generated and divided in 200 blocks of 500 symbols each.

Each block is terminated by a tail of W known symbols -l,

corresponding the» an initial channel state ("l,~1,...-l)•

The signal ta noise ratio is de+ined as;

E.

SNR == jqs (20)
0

where E_ is the received symbol signal energy and where
N ^s

0 '-?

— =: y*" 3. s the variance o-f the noise. For convenience E
A—

has been normalized to l so that;

SNR == ^- (21)
0

The M~path sequential decoding algorithm with M varying
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fr-om l (Z~J algarithm) ta M=40 has boen used. A -flow

diagram of the algorithm is shown in Figure 6.

Simulation reisult®

The résulte concem both the error performance and the

computational effort (mean value and distribution) as; well

as how thèse pe;r-formanc.es are influenced by the? parameter

€ /.

Influfânce of €

For each - of the simulated channels, the error

probabi l ities and the aver-age decading effort have been

obtained for différent values at € as both M and SNR vary.

For convenience, results are givon as a function of a

parameter À related to €/ bys

À == (j-) (22)
0

where f,., is the first tap value of the channel»

Moreover, in order to -facilitate the comparisons

between the différent algorithms, the average number o+

computations ta decode one symbol has been normalised to

indicate only that part ,C.._._ ,of the average decoding effort

due ta the computational variability, that iss

C.._._ ^ C_..-M (23)
var av

where C_ is the true average number o-f computations,and M
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is the number of paths simultaneousl y e;-;tended by the

algorithm. With thiîi» définition, clearly, regard less of M,

C i s al sa an indicator of the computational variabili
var

since it is equal ta zéro it there weîre no computational

variabilit y.

For each of the three simulated channels, the error

probability P(€)and C.._._.have been plotted as a function of•var""' ' ~~

paramoter \ for différent values of M. Results are given

for fcwo SMR value-îs for each channel and are shown in

Figureîs 7 ta 12»

Figures 7,8,, 9 and 11 show that the e'rror pr'obability

monotanoly increase<s> and the computational effort decreases

with increasing values of À. However Figures 10 and 12 show

that beyond some values of À and for M==l, the

computational e-ffort tends to increases. This phenomenon

<-:/
may be e;-;plained as f al l ows; when ^— becomes large, that is

0
for relatively high signal to noise ratios and/or large

values o-f € , the metric rises rapidly and falls slowly. As

a conséquence, when the metric of the correct path drops,

the decoder may have ta -f al low many incorrect paths over

rslatively long periods since their mefcrics also rise

rapidly and -fall slowly. There-fore, the compufcational

effort may be e;-;pected to grow both in average value and

variability. Figure 13 illustrâtes this phenomenon.
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Clearly as M gets larger, the correct path becomes e;-;tended

soonfôr preventing the e;-; ami nat j. on of a large number o+

incorrect, paths and hence reducing the compufcational

variabili.ty.This i s wel l iUustratecl in Figures 10 and 12.

Moreover as M increases, in al l cases, we can notice

that both the error probabillty and the computational

c-î-K-ort bocome relatively j.n<5&>nsitive ta the paramoter À.

Also as M increases, the error probability tends to

stabilize towards a minimum value (probably ta that o-f the

optimum Viterbi decoder), while? the computational

variability becomes negligible» The value o+ M required ta

stabilize the error probability to its minimum value and

aliso ta allow nc-îgligible comput.ational variability

increasesi with the channel memory» Furthermore, for each

channel, as the SNR increases, the negligible computational

variability is reached for a somewhat smaller value of M.

However t his required value of M, which t h en bec ornes

pratically equal to C^_, is still very small comparée! ta

w
the average number o-f computations q" of the Viterbi

algorithm. Clearly, in this latter case, since the branch

metric does not have ta be biased, the error probability is

indépendant of the parameter -\, and C._._ is strictly zéro.
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Efr.or.......Efârjj3r..^anjç®.%....â.n,^.._.ç.^

In per-forming the simulations ta obtain the error

performance and computational ef-fort as a function of the

SiMR, parameter € was chosen as ta minimise the error

probability» Whenever the error probability is insensitive

ta € , then € is chasen ta mi ni mize C .._._•
var

The M-path SEîquential decoding performances are

comparée!, -for channel l and 2, to both Viterbi decoding

performance^- and the theoretical performance bounds giveîn

by (13)» For channel 3 (memory 9), because of the

considérable amount of computations required by the Viterbi

algorithm, only the theoretical per-formance bounds are

considérée!,. The results are given in Figures 14 to 16.

Figures 14 and 15 show that when M>3, the error

performances of the N-path sequential decoding approches

considerably the error performance of ^iterbi decoding. As

•for the computational effort, at P(€)<10 ', -for channel l,

* The Viterbi e'rror performance curves have been obtained

by simulations using the simpli-fied M~path algori-thm that

w
will be described in the ne;-;t section with N ==q'
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a 3-path sequential decoder re'quires less than 207. o-f the

computational effort af the optimum Viterbi decoder (see

Figure 17), whereas for channel 2, a 3-path sequential

deccîdc-îr requires an even smaller fraction, a misr<s 57» of

the computational effort of the Viterbi decader (see Figure

18) .

For channel 3, Figure 16 shows that the error

performance very slightly avershoots the theoretical upper

bound at the relatively small values ai SNR. However for

M>10 fche? improvement at the error probability becomes

negligible, suggesting that the be'st performance (i.e.

Viterbi decoding) is pratically reached. But when comparing

the average decoding ef-forts, a Viterbi decoder requires

,9
2'==512 computations per decoded symbol , whereas the lO-path

algorithm has required approî-iimati vely 10 computations por

decoded symbol, a mère 27. ai Viterbi decoding (see Figure

21).

The observed distributions of the number o-f

computations per decoded symbol are shown in Figures 17 ta

22. As e;-;pected, the variability always decreases as M or

-4
SNR increases. For an error per-for-mance P(€)<10 ', this

variability is shown ta become negligible for very modest

values of M, of the same order o-f magnitude as the channel

length.

As a conséquence o+ the absence of any computational
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variability, a considerably simplified decoder structure

can be? cor.side're;d. Such a decoder e;-;tends M paths

simultaneously a<3 the ordinary M-path sequential decader.

However, this simpl i-H ed dec-oder never backsâ-up in the

très, ancl thus elimin<ates the main drawback of sequential

decodinç), that is the computational variability, while

preserving both its good error pîîrformance and its small

average decoding effort. This decoder cal l ed " s.i.m.gJ..J..fA.e.É

mLLLÎLl£l..e-......-.-...,E..aJ:lL-....-.....seSMe^^^ l s c^1 scussed and

evaluated in the ne;-;t section.

v slm.EliJA.®.d-...ffMLtiBl.e..-PAth

The simplifiée! M-path algorithm is a tree search

algorithm that retains at any tree depth only the M~most

likely paths» At each decoding step, each of the M

remaining or "surviving" paths is e;-;tended into its q

single branch es-îtensions. The metrics are then computed and

from thèse qM résultant paths only the M paths with the

largest metrics are re-tained. Al l the other paths are

discarded. The e>;tended paths are al l at the same tree

depths and there is na backing-up in the tree. The average

number of computations per decoded symbol is thus constant

and equal ta M, and the computational variability is

completely eliminated. Furthermare in order ta insure that
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al l surviving paths have distinct channel states, remerger's

are eî-ipl oitecl as in the Viterbi decoding algorithm» The

simpli+ied M-path algorithm is easily implemented usîing a

stack structure, and is another particular case of the

Général izod Stack Algorithm C 12:1. Cleîarly, whenever M is

equal fco the total number- of stafcess q", this simpli+ied

algorithm becomes équivalent to the Viterbi Algorithm.

Fur t hermore, as for Viterbi decoding, al l the

"surviving" paths do not stay distinct over their entire

length, but. havo a fcendency to stem from a single node

several branches earlier. Hence, as illustrated in Figure

2.3, it is not necessary ta wait until the unique decoded

path has been obtained before starting to deliver the

decoded symbol<5. At ter a delay of S branches (or S

symbols), the decoder may deliver, at each decoding step,

the oldest symbol from any one of the "surviving" paths»

However, in order to minimise the error events, it may be

préférable ta deliver the oldest symbol of the surviving

path having the highest metric since this path is currently

the most likely» Therefore, with this procédure, the

decoder needs to store the path history o-f the surviving

paths over only the past S symbols. M registers each S

symbols long are used for this pur pose. As shown in Figure

24, at each decoding step, the M surviving paths stored in

M reîgisters are e>;tended. From the qM resulting paths the M
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new siurviving paths are selected and stored in M other

registers with the oldest. symbol of the surviving path

having t-he highest metric delivered ta the user. The value

ai the path history length S that should be retained for

oach channol and -for each algorithm,has been estimated

us in g corfiputer simulations. The résulte are given n e;-; t»

Path histor^^^^l

For each o-f the three simulated channel, différent

values of S have been tested. A simulation consiste of

10,000 symbols chosen to be equaly likely +1 or -l. At each

simulation we count the? number of times NC where the M

surviving paths do not ste'm •from a single- node S branches

earlier. The M surviving paths are issued from a single

node S branches earlier if at that depth theîy al l have the

same i.dentical state. The number NE o+ symbols decoded in

error are? a Iso counted» The results obtained from thèse

simulations are given in Tables 1,2 and 3, where each Table

corres>ponds ta one> o-f the three simulated channels.

Me notice irom Tables 1,2 and 3 that the number NC

tends ta zéro and NE stabilises to some values as the value

of S increases» Clearly, regard less of M, one should select

that value o-f S which corresponds ta NC==0. Hence, -from

Tables 1,2, and 3 we can see that the value of S that

should be chosen gets larger as both M and the channel

memory increase. An upper bound on S is however readily

provided by the carre-sponding path history length of
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Viterbi docoding (the so-called memory o-f the decoder),

siince then al l the possible; distinct paths rather than M

paths are e;-;tended by fche decacter. In al l cases it appears

that S should be equal ta 4 ta 6 times the memory o-f the

channel.

ELC^c....j-'.®ri-orjAan£.®.....Pi......t^^^^

This simpli+ied sequential decoder has been simulated

in arder ta compare its performance to thosîe of both

sequential decoding and Viterbi decoding» A simulation run

consiste ai 100,000 symbols divided in 10 blocks o+ 10,000

symbols each, and S is chosen ta be equal to à times the

.length of the simulated channel. The obtained results are

given in Figures 25, 26 an d 27.

Figures 25, 26 and 27 show that as e;.;pected the

performances of the simplified M-path sequential decoding

are very close ta those of both Viterbi and sequential

decoding. As for the computational e-ffort, the simplified

decoder requires only a very modest number M o-f

computations per decoded symbol, with M o-f the same order

o-f magnifcude as the channel length, (M%W+1), whereas the

number of computations required by the Viterbi decoder is

IfJ
q". Naturally neither algorithm suffers -from any

computafcional variability»

Table 4 compares the average number of computations

per decoded symbols and the error probability o+ the
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Viter-bi, multipl e-path ancl simplified decodersîu Table 4

shows that the M-path sequential decoder can achieve fche

ër-ror per-formance of a Viter-bi decoder but at a very smal l

fraction of fche average decoding effort. Compared to the

sequential decoders the simplified M-paht decoders show a

very slight srror- performance dégradation but as shown in

Table 4 this dégradation may be circumvented by a small

incr'ease of the number of e;-;tende'd paths M. However this

slight increase of M présents a minimal practical

conséquences on the compleî-iity of the decoder and is more

than compensated ,by the- total absence of any computcitional

variabilit y.

Final ly -from a practical point view the actual metric

computatian could be simpli-fied and speeded-up i+ an

integer metric were used instead o4: the real number metric

de-fined by (11). Nafcurally fche harder the metric

quantisation, the larger the error performance dégradation.

Using computer simulation it has been observed that by

quantizing the entire range of e;-;act metric values into 10

ta 50 levels d.e. less than 6 bits) the ensuing

dégradation is but insigni'fiant, as illustrated in Figures

28 ta 30. With this metric quanfcisation the squaring

opération in (19) is eleminated anct hence the decoder may

be very oasily implemented using si;,,)le logic circuits and

small memory storage. This simpl. ''ied sequential decoder
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may 'hherefor'e become a very attractive alternative to

Viterbi decoding to combat ISÏ over relativfôly long mefnory

channels»

VI CONCLUSION

In this paper we have pre'sented the? application o-f

sequential decoding, in particular the multiple-pafch

variant of the stack algorithm, ta the intersymbol

interference problem» The l i kel i hood -Function or metric fco

use in ISI has been investigated. This metric départs

samewhat fram the1 fcraditional Fano metric of sequential

decoding but maintains the usual overall dynamlc behaviour

t-hat helps the decoder discriminate the correct path from

al l incorrect paths» Using computer simulation we have

e;-;aminfâd the effect a-f this metric on both the error

performance and computational variability as the number of

e;-; t en d ed p at h s M varies.

From e;-;tensive computer simulation with channels o-f

memory 4, 6 and 9, we show that the error per-farmance of a

multiple-path sequential decoder -f alls within the

theoretical upper ancl lower bound of an optimal decoder,

but at an average decoding ef-fort o-f- only a very smal l



31

fraction of that of an optimal decoder» As for the

c.oinpu.tatianal vari abi l ity it can be' practically eliminated

by properly choosing tho number af simultaneously e;-;tendc-3d

paths M.

Final l y we have presented a simplified multiple-path

sequenfcial decoder that: o-f-fors a constant (and small)

average computational effort with no computational

variability. This computat.ional ef-f art is ai the same arder

of magnitude as the channel memor'y, whe'reas for Viterbi

decoding ik ii3 e;-;ponential ly increasing with fche channel

memory. In addition both decaders allow a real-time

opération wifch +:he same? constant delay. Compared to either

Viterbi or- sequential decoders the simplified decoder

provides an err-or performance only very slightly degraded,

but its structure and storage memory requirements are

considérât:) l y si mp 1er and smaller than either decoders. By

its simplicity and good performances this decoder appears

an Ë3!-;tremely attractive alternative ta Viterbi decoding for

l S l over long memory channels. Moreover it may al sa find

applications in ather problems of trellis decoding, as for

e>;ample in multilevel phase signais decading C213.



32

REFERENCES

11 3 R.W. Lucky, J. Sais a n d E.J» Weldon, " PrilIlE.Lç.t.Ê.S......0!..

Data Commun i cat i ons " , llcGraw Hi 11 , New Yor k, l 968,

Chap.6»

C 2 3 J .G. F'roakis, ''DiJaL^...î.aJ--.^-o"lmynl.£a^^^ McGraw H i 11,

New Yor k, l 983 , Ch ap. ù.

C-3J J.G. F'roakis, "Advances in Equalisafcion for

Intersymbol Interference", in "Communication Systems

and Randam Procesîse Theîory" J. Skwirzynski éd., NATO

Advanced Studies Institute Séries, Darlington, U»K.,

Aug» 1978.

C 43 G. D. Forney, "Ma;-;imum Likelihood Séquence Estimation

o-f Digital Séquences in the Présence of Intersymbol

Interference" , IEEE Trans. , In-form. Theory, ^ol . IT-18,

pp. 363-378, May 1972.

C53 F.R. Magee and J.G. Proakis, "Adaptive Maî-iimum

Likelihood Séquence Estimation far Digital Signaling

in the Présence of Intersymbol Interference", IEEE

Trans. on Inform. Theory, Vol. IT-19, pp. 120-124,

Jan. 1973.



33

C63 J.F. Hayes, "The Viterbi Algorithm Applied ta Digital

Data Transmission", ÎEEE Comm. Magasine, Vol. 13, pp.

15-20, Marc: h 1975.

C73 6. Ungerboeck, "Adaptive Ma>;imum Likelihood Fi;eceiver

for Carrier-Modulated Data Transmissîion Systems", IEEE

Trans, Commun., Vol. COM-22, pp. 624-63&, May 1974.

C 8 J S. Cro:-:.ier, H. W:l l son, W» Mareland, J. Camelon, P.

McLane, "Micro F'rocessor E<ased Implementation and

Teisfcing of a Eaimple Viterbi Detector", Canadian

Electr. Engin. Joun., Vol. 6, pp.3--8, Jan« 198l»

C9:l D» Haccoun, P. Haurie,, "Application o-f Multiple-Path

Sequential Decoding ta the Intersymbal Inter-(:erence

Problem", Book of Abstracts, IEEE Intern. Symp. on

Inform. Theory, Les Arcs, France, June 1982.

C103 S. Kallel, "Résolution de l'interférence entre

symboles par décodage séquentiel", M.Se.A» Thesis,

Départ. Elect. Eng-, Ecole Polytechnique de Montréal,

Montréal, Canada, Dec. 1984.

E 113 S» Kallel, D. Haccoun, "Multiple Path Sequential

Decoding for the Intersymbol Inter-ference Problem",

Twel-fth Biennial Symposium on Communications,



34

Kingston, Ontario, Canada, June 1984.

L'123 D. Haccoun and M.J. Ferguson, "Général izc-îd Stack

Algorithms for the Decoding of Convolutional Codes",

IEËE Tr-ans. Inform. Theory, Vol. IT-21, pp. 638-651,

Nov. 1975.

C133 A.J. Viterbi, "Convolutional Code<3 and their

Performance in Commun icaticîn Systems", IEEE Trans» on

Commun, Tech. , Vol. COM-19, pp., 751--772, Oct. 1971.

C143 G.D. Forney, "The Viterbi Algorithm", Proc. IEEE, Vol.

61 pp. 268-178, March 1973.

C 153 V.K. Bharcjava, D. Haccoun, R» Matyas, P. Nuspl,

' ' DJ-^..têl--^ç.mffLurl.l£atlSÛS^ "' John Wiley, New

York, 1981.

C163 R.M. Fano, "A Heuristic Discussion of Probabilistic

Decading", IEEE Trans. Inform. Theory, Vol. IT~9, pp.

64-74, Apr. 1963.

C173 J.L. Massey, "Variable-Length Codes and the Fano

Metric", IEEE Trans. Inf. Theory, Vol. IT-18,

pp.196-198, Jan. 1972.



35

L'183 I.M. Jacobs and E»R. Berlekamp", A Lower Bound ta the

Distribution of Computation -fQr Sequential Decoding",

IEEE ïrans. Inform. Theory, Vol. ï"t"~13, pp. 167-174,

Apr. 1967.

C 19 3 F. Jeslinek, "A Fast Sequential Decoding Algorithm

Usiing a Stack", IBM Joun. Res. Develop., Vol. 13, pp.

675-685, Nov. 1969.

C203 F.F;;. Mageîe and J.G» F'roakis, "An Estimate of the Upper

Bound on Er-ror- Probability for Ma>;imum Likelihood

Estimation on Channels having a F'ini te Duration Puise

F:\'esponse" , IEEE "t"ran<3. Inf. Theory, Vol. IT-19, pp.

699-702, Sept. 1973.

t: 21 3 G. Ungerboeck, "Channel Coding With Multilevel/Phase

Signais", IEEE Trans. on Inform. Theory, Vol. IT-28,

pp. 55-67, Jan. 1982.



36

LIST 0F FIGURES

Figure l; Discrète channel model»

Figure 2; Binary tree corresponding ta the channel;

f ^0.5, f, =1.0, f 3-0.5.

Figure 3s Binary trellis corresponding to the channel;

f ==0. 5, f ==0. 5, f ^==0 „ 5.

Figure? 4s Block cliagram of a stack algorithm.

Figure 5s Influence af a small €' value on the path

metric behaviour.

Figure 6; Flaw char t. at the simulated M-path algorifchm.

'5

€
Figure 7; Influence a-f À =s (f—) on P^ and C^.^, channel l,

'0 e var

E_/N_ = 11 dB
S 0

?
ç ' *~

Figure 8; In-fluence? of À == (f--) on ?•„ and C,,_, channel l,
e var

E_/N_. = 13 dB
S 0

.€'2
Figure 9; Influence of À == (—) on P_ and C.,_ ,channel 2,

'0 e var

E_/N_ = 15 dB
'S 0

.€'2
Figure 10; Influence of À = (;—) on ?„ and C._^ ,channel 2,

'0 e

E_/N_ = 17 dB
S 0

.€/2
Figure 11; Influence of \ = <f~) on F'_ and C\__ ,channel 3,f,..' "" ' e '"""" "var ''-••"••••-* -''

E_/N_ = 17 dB
"S 0



37

Figure 12s InfluencEî of À =: (—) on P and C ,channel 3'-f.-.' *""' 'e '"'""" '"var »'-••"•••"-" •-»

E_/N_. -•= 19 dB
S 0

Figure 13; Effect of a too large? €' value on the path

mefcric: behaviour.

Figure 14s Comparisans of t h e observed Error

Performances -for the M-Path and Viterbi

decoders (channel l).

Figure 15: Comparisons o'f the obser-ved Error

Performances for fche M-F'ath and Viterbi

decoders (channel 2).

Figure 16; Comparisons of the observed F-rror

Performances -for the M-F'ath decoders (channel

3).

Figure 17s Computational distributions for M==l,3 and 4

paths, channel l, E_/N^::=15 dB«' '~S' '''0

Figure 18s Computational distributions for Ms=l and 3

paths, channel l, E^/N_==17 dB.' ""s' '"a

Figure 19; Computational distributions for N:=:l,3 and 5

paths, channel 2, E /N =17 dB.

Figure 20s Computational distributions for Ms:sl and 3

paths, channel 2, E_/N_=19 dB.' '~5' '''0 * ' "*""



38

Figure 21; Computational d.i stribut ions for M==l, 3, 10 and

20 paths, channel 3, E._/N_==19 dB.,..,, ,..,,^,,,,.-... .-,, •-^'"•o •t ' '•"-•••

Figure 22s Computafcional distributions for M==l , 3, 5 and

10 paths, channel 3, E_/N_=21 dB.""' '•••""••'"-- •-' -s'"'a '" "*"""

Figure 23s Illustration o-f fche tree £•?;•;? l orat ion of the

3~path simplified algorithm»

Figure 24s Concept-ual structure of the simplified

sequential decoder.

igure 25s Comparisons of the observed error

Performances of the* M-F'ath, Simplified and

Viterbi decoders (channel l).

Figure 2ôs Comparisons of the observed errar

Performances of the M-F'ath, Simplified and

Viterbi decoders (channel 2).

Figure 27s Comparisons of the obseîrved error

Performances oi the M-Path, Simplifiée) and

Viterbi decoders (channel 3).

Figure 28; Effect of the metric quantisation on the

error performance of the? simplified M-path

decoder (channel l).

Figure 29; Effect of the metric quantizafcion on the

error performance o-f the simplifiée) M-path

decoder (channel 2).

Figure 30; Effect of the metric quantisation on the

error performance of .e simplified N-path

decoder (channel 3).



{y^}

Figure l: Discrète channel model

00
U3



40

-2
( -1 -1 )

-2
.( -1 -D

-1

-2

( -1 -1 )

(1-1)

( -n )

-1 -1
( 1 -1 )

11)

( -1 -1)1

l -1

-T (-1-1)

•( -n )

( 1 -1 )

-1
( 1 -1 >

(-11)

(11)

( n )

Figure 2: Binary tree corresponding to the channel;

fo = °-5' fl = l'°' f2 = °-5



4l

Sa (-1-1)

S,(1-1)

s,C-ii)

SsCll)

FIGURE 3: Binary trell.is corresponding to th.e channel:

/(T 0.5, /i= 1.0, ,2° 0.5



INPUT BUFFER
-^.

STRACK

STORAGE

^
l

l

f

<

PROCESSOR

/

-Sh.

^
OUTPUT BUFFER

Figure 4: Block diagram of a stack algorithim

-t».

ts)



• ; ëxplored nodes

metric dip of the correct path

depth

Figure 5: Influence of a small e value on the path metric behaviour

.&.

LM



44

l
Find best M

node in stack

best node a terminal
node?

extract from stack

non terminal nodes

extend thèse nodes

insert node extension
in stack

Figure 6: Flow chart of the simulated M-path algorithm



u»

-< <M

l.

t)
Q-

Irt

ry (V4

Irt-i

en ~-j
l,

0 s M
A s M

X s M

l Peth
3 Paths
5 Paths

.0 T7 T7-

( ). }

rr

45

e—®

l 1_1 l l III l"

».o 4.o

» l Psth
Paths

:hs

( ). }

. 2
Figure 7: Influence of À =f^ on P and C

e
0

Channel l, E_/N = 11 dB
S 0

var



46

CM

a
0-

(0

=r
l,

t0-l

<M-j

'"-]

(M-J

ir» J

<v-l

3.0
l II «

[.0
T-TT1111 l 1111)11 l II II II

;.o 3.0 4.0

( ). )

(M
w1

•

0 —

00
0

•

0 _
t.
(0
>
u

3*

0
•

0 -J

1.0

0 s M = l Path
A ; Ma 3 Paths

X ; M » 5 Paths

.i 2

8: Influence of À =1—il on P and Cf' "" "e """ "var*
0

Channel l, E_/N, = 13 dB
S 0



47

R=»

in

^ ~^
•o

0
CL

CM

m

?-1

(V-j

U>-1

<M-)

0 TT T-T-T

Î.O

( >. )

"l-11111111

i.o 4.0

0m
•

0 _

0
ru

N

o -l

t.
<0
>
u

0 J
»"-< J

• «J

o -l
0
A
+
x

: M

: M

: M
î M

» l

3
" 5

« 7

Path
Paths
Psths
Psths

.. 2

Figure 9: Influence of X =(i-) on P and C
>var

Channel 2, E_/N = 15 dB
S" 0



48

Ul3

<M ft,^
'0

tf>3

m (V-l
® (0
Q- — -J

m3

^1
m3

ln mJ
'0

A
4.

x

s M

s M

.• M

s M

» l

3
» 5

= 7

Psfch
Paths
Psths
Paths

A. Ar

îfâtose- xx x -^é- -«- -^-

Û.O Y.o ïy
( > }

-«- -3K- -X

Zï ^.0

>
u

0
••"«

a

0 _

CD
0

•

0 -H

(û
0
0 -l

3«

0
•

0 -j

eu
0

•

0 _|

0
0

0 s M
A ; M

+ î M

X s M

l Path
3 Psths
5 Psths
7 Paths

-r^^^F^F*
û.o \\Q ^ YV^ l l l /T^

LO 4.0

( > )

-, 2

Figure 10: Influence of À =(^—) on P and C , _,
f ' ~" -e ~*~ ~var;

0

Channel 2, E_/N = 17 dB
S 0



49

a»
a.

m.

ni

'0
<—<

0
A
+

x
x

; M

; M

s M

s M
î M

» l

= 3

= 5

» 7

" l

Path
Paths
Paths
Paths

0 Psths

Ut-]

D.O

0
in

00

t.
»
>
0

0m
•

0 -J

0

li'.b1 b'.b'

( X l

b.b u

0
A
+

x
x

; M

: M

s M

; M

s M

= l

- 3

= 5

= 7

= l

Path
Paths
Paths
Paths

0 Paths

( > }

.. 2

Figure 11: Influence of À =(|—) on P_ and C___,

0

Channel 3, E_/N_ = 17 dB
S 0



50

u»^

(M-j

ir» ^

" <y m,
0 '0
&. —J

u»3

eo ^
'0

y* 3

? tV-1
'0

©
À
+

x

s M
t M
s M
s M

• l

" 3

» 5

= 7

P»th
Peths
Psths
Paths

û.o

M - 10 Psths

\':0 'b'.b'

( ). )

11111*111

1.0 4.0

0
in

a

0 -,

0
3"

»

0 _|

0
^ m
t.
m
>
u

0 _|

0
(^

•

0 —l

0 —j

00

0
A
+

x
x

: M
; M

: M

; M
s M

= l

» 3

» 5

= 7

• l

Peth
Peths
Paths
Paths

0 Paths

TT<frrrTTS^-TTTiii i T7Î^TTTrrrrRfe=î
û.o T. s: 0 T" TTTTt 0

( ). )

.. 2

Figure 12: Influence of À =(£-) on P and C __,
f_/ "" *e """ "var;

0

Channel 3, E_/N_ = 19 dB
S' 0



correct path

incorrect paths

Figure 13: Effect of too large e"value on the path metric behaviour



52

®
a-

!/1-|

(M-l

Ifl-j

CM
<M-i

w4

n*-J
co
l,

l»-l

<M.[
a*

•o

m

<M-
in

1<

0 ; Theoretlcal bounds

A ; M = l Path

+ î M =3 Paths

<& : M =5 Paths

X î Vlterbl

12

( Es/No ) îdB)

15 18

Figure 14: Comparisons of the observed Error Performances
for the M-Path and Viterbi decoders (channel l)



53

in

(U-j

tf>-j

(V-j
OJ
'0

in

<D
Q-

(M-l
fO
l,

in ^

t\t-J

t"-J

(M-l
in
l,

0

A

+

x

0

?î

: Theore

! M

î M

! M

: M

s Vi

l

3

5

= 7

terb

Ucal bounds

Path

Paths

Path®

Paths

l

T—T
12 15 18 21

C Es/No ) (dB)

Figure 15: Comparisons of the observed Error Performances

for the M-Path and Viterbi decoders (channel 2)



54

®
a-

u>4

(M J

w4

eu
'0

(M-j

10-1

u»

ir»
l,

ni

<M
[H
•o

^-1

in

m
a«

'0

w

0

A

+

x

0

•

x

Theorçtlcal bounds

M = l Path

M = 3 Paths

M = 5 Paths

M = 10 Paths

M = 20 Paths

M = 40 Paths

(ll.llll)II l1« II)

8 12 16 20 24

( Es/No ) ÏdB)

Figure 16: Comparisons of the observed Error Performances
for the M-Path decoders (ehannel 3)



55

u
A

0

Q î M = l Path

Cav = 1.0264

A ; H = 3 Paths

Câv = 2.9941

s M = y PaEhs

Csv = 3.9901

Vlterbl ( Cav = 16 J

( C )

Figure 17: Computational distributions for M = l, 3 and 4 paths,

channel l, E_/N_ = 15 dB•' "s'"o



56

(-)

A

0
v—y

û-

© s M = l Path

CQV = 1.0024

A ; M = 3 Paths

Cav = 2.9940

VLterbl ( Cav = 16 )

Figure 18: Computational distributions for M = l and 3 paths,

channel l, E_/N_ = 17 dB'* "s'"o



57

D
A

0

û-

© s M = l Path

Cav = 1.0693

A ; M = 3 Paths

Cav = 2.9959

X s M =5 Paths

Cav = 4.9842

Vlterbl ( Cav = 64 )

Figure 19: Computational distributions for M = l, 3 and 5 paths,

channel 2, E_/N_ = 17 dB
S' 0



58

q^

CJ

A

0

Q-

in

(M

•o
wt

Ut

ni
CM
•o

w-a

Ut

ni
CD
'0
»-<

in

ni
3"

'0
»-<

in

(M

m
•o
fl-<

-&-

® s M =

C@v

A ; M =

Cav

Vlterbl

t ~" l l l < B

l Path

1.0099

3 Paths

2.9941

( Csv = 64 )

Il 1111

5

( C ï

50

Figure 20: Computational distributions for M = l and 3 paths,
channel 2, E /N = 19 dB

S 0



59

u
A

0

û-

© s M = l Path

Câv = 1.2534

: M = 3 Paths

Cav = 3.0250

^ ; M = 10 Paths

Cav = 9.9513

s M = 20 Paths

Cav = 19.8644

Vlterbl S Cav = 512 )

S '10 Sa'"'100' ' '' 500

( C ï

Figure 21: Computational distributions for M = l, 3, 10 and
20 paths, channel 3, E /N = 19 dB

S 0



60

•5Ç-»

m

<M-1

U»J

<M-!

Ut-|

3«

'0

n»-l

in

u->

'0

(M^

•\

u
A

0

Q-

CM
•o

Uî
*

«

ni.

m
'0 0 : M »

Cav

l
n

Path

1.0583

A : M =3 Paths

Cav " 2.9951

X : M = 5 Paths

Cav » 4,9843

X s M s 10 Paths

Cav » 9.9509

Vlterbl l Cav » 512 )

0 50

î C î

Figure 22: Computational distributions for M = l, 3, 5 and

10 paths, channel 3, E_/N_ = 21 dB



-^-: explored nodes

Figure 23: Illustrations of the tree exploration of the 3 - Path simplified algorithm



M

Path registers

k(ï

Select

the M

new

survival

paths

f

Path registers

M

Figure 24: Conceptual structure of the simplified sequential decoder

CT\
N)



63

<=b

<D
û-

w4

ni-l

lfl-1

(M
•o

(M4

UîJ

cr»
IM

in

n»

u>

ni
in
l,

0 ; Theoretlcal bounds

A ; M = 3 Psths

+ i M = 3 Paths (Slmpl)

X ; M = 5 Paths (Slfflpl)

•H, '. Vlterbl (Cav = 16)

~ï —T -I—T
12

î Es/No ï (d8)

15 18

Figure 25: Comparisons of the observed error Performances of
the M-Path simplified and Viterbi decoders (channel l)



64

cb

m-1

m-I

Ift-i

«M-l
(M
'0

u>-l

©
û-

(M «l
cr>

in

N

in

(\1
in

0 ; Theoretlcal bounds

A ; M = 5 Paths

+ ; M =5 Paths (Slmplî

X ; M = 7 Paths (Slmplï

X : Viterbl (Cav = 61)

-T-T (l l l l
6 9

r-1 • i "

12 15 18 21

( Es/No î ÏdB)

Figure 26: Comparisons of the observed error performances of
the M-Path, simplified and Viterbi decoders (channel 2)



65

<D
a.

<=fo

in

(\l-j

•o

10-1

CM
fti

y*

m
l,

ni-]

in
l,

in J

(M-,

"l-j

(M-l

0

0 : Theoretlcal bounds

A : M = lOPaths

X : M = 10 Paths (Slmpî)

Vtterbl (Cav = 512)

8 12 16

î Es/No ) (dB)

20 24

Figure 27: Comparisons of the observed error performances of the
M-Path and the simplified decoders (channel 3)



66

<=b

<D
Q-

ifl4

ni 4

Ut-j

ru
'0

ru-j

tft

m
(M-j

in-l

«\»4
a«
l.

in-l

<M-1
in
'0

® : Theoretlcal bounds

A ; M =5 Paths (Slmpl)

+ ; M =5 Paths (SlmpH

(10-levels raeErl.c quant.)

X ; Vlterbl (Cav = 16)

12

( Es/No l (d8)

15 18

Figure 28: EfÊect of the metric quantization on the error

performance of the simplifiée! M-Path decoder
(channel l)



67

cb

Ut-1

(V-l

u»-l

(M
'0

(M-l

«n-j

®
Q_

ff»
'0

(M-^

in-j

r\t-|

Ul-j

<M-J
in
l,

0 : Theoret

A ; M =

+ : M =

(50-leve

V. '. Vlterbl

.cal

Paths (Slmp

Paths (Slmpl:

1s rseÈrLc quant

(Csv = 64)

12 15 î8 21

( Es/No î ÏdBï

Figure 29: Effect of the metric quantization on the error
performance of the simplified M-Path decoder
(channel 2)



68

Rs

(D
û-

m

n»

'0
v-1

y»

«V
t\l
'0
»-•

Uî

CM,

m
'0
*-•

m

(M
=r
'0

Ul

ni
ir»
*0

«—8

0

A

+

VI.

; Theoretlca

s M =

; M =

(50-

terbL

l bounds

10 Paths (SlpmU

10 Patl

levels

(Cav =

~T~^

hs (Simpl)

metrlc quant.)

5I2Ï

l • • • l • ''f —l—'-T-^

8 12 16 20 24

î Es/No ï (dB)

Figure 30; Effect of the metric quantization on the error
performance of the simplified M-Path decoder

(channel 3)



69

LISr 0F TABLES

Table l s Effects o-f fche path hiîîtory length on survival

pathiïi (channel l ) .

Table 2s Effects of the path history length on survival

paths (channel 2)„

Table 3s Effects of the? path histor-y length on sur vi val

paths (channel 3)•

Table 4; Per-fcîr-mance comparisons between Vitîîrbi, M~path

Sequential anct Simplified M-path de'coders.



70

H

3

5

7

&

1.5

20
25
30

15
20
25
40

20
25
35
40

NE

262
265
2o5

110
114
lia
116

33
92
82
82

11

NC

99
14

0

572
145

44
0

248
48

5
0

NE

47
43
48

Il
11
Il
11

6
6
à
À

ts

13

NC

37
0
0

218
16

0
0

8?
9
l)

t)

/ No

NE

y
l)

0

0
0
0
0

l)

0
0
0

(dB)

15

N C

11
0
0

113
5
û
0

39
0
0
l)

NE

0
0
0

0
0
0
0

0
0
0
0

t 7

N C

lu
0
0

52
u
ù
0

23
0
0
0

Table l: Effects of the path history length on survival
paths (channel l).



71

M

3

5

7

8

15
20
25
30

20
25
30
45

25
30
35
50

NE

878
S65
8o5
663

3.3?

327
320
314

194
178
17.3

171

13

NC

390
64
15

0

738
291
109

7

573
248

97
0

NE

250
246
245
246

29
28
23
23

22
22
22
22

tj

15

NC

231
37

8
0

343
84
38

0

213
56
17

0

/ No

NE

18
18
18
1B

0
0
0
0

0
0
0
0

(dB)

17

NC

116
21

u

0

106
3
0
0

67
7
0
0

NE

0
0
0
'.'

'J

0
0
0

l't

y

0
0

19

NI:

54
1:1

l'I

44
0
f)

0

lu
0
0
0

Table 2: Effects of the path history length on survival
paths (channel 2).



72

M

3

5

7

10

E.

20
30
40
50

30
4Û
50
60

40
50
60
70

50
&0
70
80

NE

2583
Î579
2580

lù93
i689
1692
1692

1457
.461

1461
1461

909
909
909
909

13

NC

156
22

0

371
36

0
0

224
18

0
0

163
37

0
0

15

NE

1560
1.556
1556

483
482
482
482

246
240
240
240

124
123
122
122

"-^
J

E;

NC

151
0
0

379
87
16
0

221
39
11
0

93
28
Il
0

^No <dB»

17

NE

367
3&8
3û8

13
12
12
12

4
4
4
4

4
4
4
4

NC

246
32

0

255
24

0
0

76
30
Il

0

30
11

0
0

19

NE

0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

N C

o5
0
0
0

10
0
0
0

0
0
0
0

0
0
0
0

Table 3: Effects of the path history length on survival
paths (channel 3).



73

Channel l

Heinory 4

E./N. = 13 dB
"50

Viterbi: P_ = 5x10
e

C... = 16'vit

Channel 2
Heaory &
E_/N_ = 17 dB
5 0

Viterbi; P_ = 5xl05
e

C... = 64'vit

Channel 3
Henory 9

E./N. = 19 dB
-5 0

Viterbi: P_ =
e

C... = 512'vit

H

l

3

5

l

3

5

7

l

5

10

40

H-Path

p_
e

1.36x10

7.6xl04

7.5)!l04

1.4xl04

6.0xl05

6.0x10

6.0x10

4.38x10

9.4xl04

8. îs 10

8.7x10

e.
av

1.01

3.00

4.98

1.07

2,99

4.98

6.97

1.25

4.99

9.93

S9.66

C.../C,,'av"'vit

6.9X

18.7X

31. n

1.&72

4.68X

7.78X

lo. n

0.24X

0.97X

i.m

7.742

Sinplified H-Path
C..= M

av

p_
e

2.73x10

5.1x10

1.58x10

1.4x10

9-OxlO5

4.28xl03

5.2x10

» C..^: ftverage nueber of conputations of Viterbi ftlgoriths.

Table 4: Performance comparisons between Viterbi, M-path

fequential and Simplified M-path decoders.




