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MULTIPLE-PATH SERUENTIAL DECODING

FOR INTERSYMBOL INTERFERENCE

by

Samir KALLEL and David HACCOUN

ABSTRACT

In the high-speed transmission of digital data over
handlimited channele an efficient detection technigue must
take into consideration both the presence of the channel
noise and  that of the intersymbol interference (IS
between neighboring pulses. By medelling the I81 as a
convoluticnal encoding of the data the optimum Viterbi
decoding can be applied to the ISI problem. However since
the computational effort grows exponentially with the
memory of the channel, Viterbi decoding becomes impractical
when the channel memory exceeds a few symbols. In this
paper we present the application of the stack algorithm of
sequential decoding and some of its multiple-path variants
to the 151 problem, especially over long memory channels.
Computer simulation with channels having memory lenths up
to 9 symbols show that the achieved error performances fall
within the theoretical upper and lower bounds of an optimal
decoder at only & sesmall Fraction of the computational
effort of an optimal decoder. As for the computational
variability it Can be totally circumvented by
gimaltansously extending a sufficient number of paths.
Finally with a simplified multiple path seugential decoder
all the drawbacks of seguential decoding may be avoided at
a cost of a very slight error performance degradation,
making the technigue very athtractive to combat ISI over
long memory channels.



I INTRODUCTION

In the high-speed transmission of digital data over
hardlimited channels, one of the principal impairment is
the intersymbol interference (IS5I1) between neighboring
pulses due to an  insufficient channel bandwidth. Over
relatively narrow-band channels the transmitted symbols
tend to spread in time, and by spilling over adjacent‘
symbols time intervals they interfere with these adjacent
symbols and cause detection errors. Therefore a good
detection techrnigue must take into consideration both the
presence of the channel noise and that of the I8I.

Many effective technigues to minimize the effects of
181 by channel egualization, that is by adjustments of the
pul se shapes, have been developed. However these techniques
are not optimal and often lead to very compled receiver
structures 11 -~ [33. Also, by considering I8I as a
convalutional encoding of the data, where the memory of the
channel is associated with the memory of the convolutional
encoder, optimum or quasi-optimum decoding tehcnigques using
the Viterbi decoding algorithm (as for convolutional codes)
have been proposed [31 - [8]1. Unfortunately because the
computational complexity of the Viterbi decoding algorithm
grows sponentially with the memory of the channel, its

application becomes impractical when the channel memory



exceads 3 or 4 symbols.

For channels with longer memory, the edxcessive amount
of computations of Viterbi decoding has led to consider the
powerful subopt i muam decoding  technigue of seqguential
decoding, in particular the stack algorithm and some of its
variants [93 -~ (111, Contrary to Viterbi decoding where all
the possibly transmitted sequences (or transmitted paths)
are erxhaustively examined, in sequential decoding only a
amal l fraction of these sequences are considered by the
decodsr. Az  a conseguence, the computational effort is on
the average very small, but also, unfortunately variable.
However the substantial advantage of sequential decoding is
that the = computational complexity is practically
independent of the memory of the convolutional code (or
that of the channel). Hence sequential decoding can be
applied to the ISI problem especially over arbitrarily long
memory channels. As for the computational variability, it
has been shown  that this drawback can be circumvented by

variants aof the stack algorithm called multiple-path

sequential decoding [121. In these variants the decoder

simultaneously edplores some number M, of'the most likely
paths, instead of the single most likely path of the usual
sequential decoding. With such M-path algorithms it has
been shown +that the computational variability may be
drastically reduced at & cost of a modest increase of the

average decoding effort C121.



In this paper we present the application of sequential
decoding to the I8I problem, in particular the stack
algorithm and its multiple-path variants.

Computer gimulation results with channels having
mamory  lengths up to 92 symbols show that the error
performances of the multiple-path seqguential decoding fall
within the theoretical upper and lower bounds of an optimal
decoder, with the advantage of reguiring an average
computational effort only & small fraction of that of an
optimal Viterbi decoder. Furthermore by properly choosing
the number of . extended paths M, the computational
variability may be practically eliminated, making this
technigue especially attractive for long memory channels

with severe ISI1.

We assume the reader familiar with the elements of a
baseband digital communication system. Figure 1 shows the
discrete time white npoise channel model that will be used
in this . paper [21, [41., The symbols of a transmitted
sequence {Ik} may take eqgually likely values *h, *3h,
Toeatig-1th, where g is the alphabet sire of the elements
representing the symbols, and where 2h is the distance
between successive amplitude symbol levels. The
transmitter sends the discrete-time symbols at a rate 1/T

symbole/s s that a channel of memory W corresponds to a

discrete~time transversal filter that spans a time interval



of WP seconds. The tap cosfficients {fi} represent the
amount of interference caused by neighboring symbols on a
given received symbol. The passage of the input seguence
{Ik} into the discrete channel model resulits in the output

SECLEree {yp} whers each output symbol can be expressed by

Y. F Zk + LIV Eo= 0,1,2... (1)
where Z,, is given bys
W
Z, = X oot ()
PP B S

and where N is the noise sample, considered to be Gaussian

~

and white with zefa mean and variance ¢°.

Evamination of Figure 1 shows that this channel model
may be regarded as a special convolutional encoder of
constraint length K = (W+1),where the usual modulo-¥ adders
have been replaced by a single arithmetic adder connected
to the ahift register stages through real number
multipliers. Al though the analogy with convolutional
gricoding does not entail a coding rate or a bandwidth
eHpansion.

Using the channel model of Figure 1 Maximum Likelihood
Sequence Estimation is presented in the next section
together with an  introduction to Viterbi decoding and
sequential decoding. 0Only the stack algorithm (and its
M-path variant) of sequential decoding is considered in

this paper. The particular sequential decoding likelihood



function {or metric) to use for the 181 problem is derived
arnc  discussed in section III and results +from wtensive
computer simulations are ggiven in section IV. Trade-—offs
betwesn error probability, computational effort and choice
of metricse are provided for channels having memory 4,6 and
9 symbols.

Finally a simplified multiple-path sequential decoding
algorithm suitable for 180 is presented in section V. With
this simplified algorithm all the computational variability
aof seguential decoding is eliminated at hardly any error
performance degradation, making it & very attractive

alternative for 181 aover long memory channels.

I MAXIMUM LIKELIHOOD SEGUENCE ESTIMATION

Using the tree and trellis structures of the
transmitted sequences, max i mum likelihood sequence
estimation is presented together with the optimal trellis
search of Viterbi decoding and suboptimal tree search of

sequential detmding.

Let SP be the state of the channel defined as the W

most recent inputs preceding the current input IP'

Sk = (I"::""'l’]:l-::""g’-'-I‘::""W)".::ml,.‘;’.' ¢3)
where I, = O for kw0
A sequence of input symbols can then be represented by a
W

succession of possible states. There are g distinct



states, and from one state we can transit to g new states,
with each transition corresponding to a distinct element of
the alphabet. ALl possible state sequences may be
represented by a tree,  where each node corresponds to a
state of the channel, and where g branches emerge from each
node. The root node of the tree is the initial state of the
charmel , and each new input symbol in the channel causes a
corresponding  transition in the tree. An input sequence of

L symbols traces a particular path of L branches in the

tree and therefore, there are qL possible transmitted
sequences of langfh L. (see Figuwre 2.

Examination of the tree shows that at any tree depth
Q,Q}N, there are g tree nodes but only qN distinct channel
states. Thus, at depth Q there are more tree nodes than
distinct states, and hence,several nodes must correspond to
the same channel state: these nodes are identical and
generate identical subtrees. Therefore the tree contains a
Muige redundancy which can be eliminated by merging
together, at any same tree depth bevond W, all nodes
corresponding  to  the same channel state. The redrawing of
the +tree with merging paths and redundancy eliminated is

called a trellis (see Figure 3).

The objective of a maximum likelihood decoder is to

determine the path in the tree (or in the trellis) that

-



corresponds  to  the most likely transmitted sequence given

the received sequence.

L.et XI = (yﬁ,yt,uu yLMl) bhe the received sequance,

where the received symbols Yy, are given by (1). The decoder

observes XL and chooses the L - branch sequence l;m) for

which the likelihood function P(XLllL) is maximum over all
distinct paths, that is,

i/
!
™ s pry 1 25™ 3, méEm (4)

FLY, 1L A E)

L
Since the noise is white and the channel has memory

W, then for any input seguence we can write,

L—1
PLY, 1L, 1 mpiﬂ IR TS SRRPIERR S (%)
O 4
L1 L-1
PEZL 2y 1 =pzn F EykIZH] = pZn F (ykwtk) (&)

where Pn(.) is given by:

i ~ 5

exp - (&5/2¢%) , —~wSu<o (7)

pn(m) = 27 G

Taking the logarithm (&) becomes:

L.~—1 i (YP"ZP)'“
F'[_Y_L 'E'L. 1] = 5 log m’"T‘fW - --—--——-»«;;--—-— ()
k=0 = 26

Eliminating constant terms from (8), maximizing PEXLII 1

=\
corresponds to maximizing the total metric PL defined as:

L~1 "

PL =Piﬁ m(yk WZH) {(9)



or equivalently,

L1 -
o= R~ dn (1o

- b= k
Where dP is the Euclidian distance between the recelved ch
symbol Y and the kth brarnch symbol ZP on the tree path of

interest. Defining the branch metric for the kth symbol
Ao
¥, o= -dl (11)

the total metric is thens

L1

FL = I ¥k ‘ (1)

szxl)

An optimum seguence decoder will therefore attempt to
find that information seguence for which the total metric
is  maximum, wamples of such decoders  that are both
powerful  and practical are Viterbi decoder and seqguential

decoder. They are briefly described next.

Viterbli decoding

The Viterbi decoding algorithm is an optimum decoding
procedure  which determines the path having the largest
cumulative metric of all possible distinct paths in the
trellis. At each trellis depth, only the best (i.e. most
likely) path - terminating at each of the qW distinct
states is retained. At each decoding step, these qN

remaining  or  "surviving" paths are extended into their g

10



single branch extensions and their metrics are computed.
Then, for sach group of g paths merging at each state, only
the path having the largest total metric is retained. The

other {(g-1) paths are discarded and the procedure is

repeated anew., With this proceduwre clearly, none of the
discarded path can ever be the most likely, that is the
decoding is optimum D131 ~ L1513,

The computational complexity and  amount of memory
required by this algorithm both grow with the number of
states, that is they grow exponentially with the memory of
the channel . Practical abplicatimnﬁ of Viterbi decoding is
therefore limited to channels with memory not longer than a
few symbols.

The error probability of Viterbi decoding decreases
gxponentially with the memory of the encoder [131. For ISI,
Forney [41 has shown that Ffor FPAM signaling the symbol

error probability F(€) is bounded bys:

o . : d .
con(=-TE0 e ey <l 0 (—miD =
L1c< g ) S PE) MLEQ( oy ) (13
whelr e dmin is the minimum Euclidian distance between any

two paths in the tree or in the trellis, where kl and

k., are constants with the same order of magnitude, and

3
ail

where G(.) is defined as:
0., ’
—
J 42 4y (14)

08

Q) = e

11



Sequential decoding

Sequential decoding is & very efficient tree search
algorithm that explores, éne or a few paths at a time, only
the most likely part of the tree. Hence this techrnique is
suboptimum. Starting from the origin of the tree, the path
selected to be sesrched one step further into its g branch
extensions is  the path that has the largest accumul ated
metric  among  those already examined. Hence, by extending
only the path thalt appears to be the most likely, most of
the computations necessary for an optimum decoding can be
avaoided. The idea is common to various sequential decoding
algorithms, with the specific method of searching and
selecting the path to be extended depending on the
particular algorithms [133 - [1é61.

Az the decoding proceeds the decoder occasionnally
retreats in  the tree and explores earlier and possibly
incorrect paths. This backing up and extension of unlikely
paths is minimized by biasing the metric in such a way that
on  the average it increases along the caorrect path and
decreases along all incorrect paths [161 ~ [17].

With this decoding procedure the computational effort
is on the average very small, but also highly variable with

an  asymptotic Fareto distribution, that is, a distribution

12



whiose tail decreases orly  algebraically L[i81. This
variability of the computational effort is one of the
principal crawbacks o f sequential decoding, and in
analvsing sequential decoding both the error performance
and computational effort must be examined.

There are two main sequential decoding algorithms: the
Fano algorithm (161 and the Zigangirov-Jdelinek or I-J
algorithm L1917, In this paper only the I-Jd or stack
algorithm and some of its variants are considered.

In the I-J, or stack algorithm, all the examined paths

are stored in decregasing order of their metric values in a
stack. The top of the stack has the largest acouwmulated
metric and will be extended one level further along the g
branches emerging from its end node. The operations of the
stack decodsr are thus the finding of the top node, the
=wtension and storage of its successors, and the proper
reordering of the stack. As a node is extended, it is
removed from the stack.
The algorithm is then:
1) Compute the metrics of the successors of the top node of
the gﬁack and enter then in their proper in the stack.
2) Remove from the stack the node that was just extended.
) Find the new top node. If it is the final node, Stop.
Otherwise go to 1.
The information sequence is divided in blocks of L

aymbols (L varies from 500 to 2000 symbols) and each block

13



is  terminated by a tail of W known symbols. Thus, at the
begining of a new block the decoder is resynchronised to
the initial channel state. When the top node of the stack
is  a terminal node of the tree, decoding of the block is
complete and the algorithm recovers the decoded path and
delivers it bto the user. A sequence decoding error ocouws
whenever that terminal node is not the terminal node of the
correct path.

SQince the number of computations needed to decode &
given block of information is variable, an input buffer is
reguired to store the incoming data waiting to be decoded.
An output buffer is  also used to smooth dut the rate of
delivery of the decoded blocks. A simplified block diagram
of  a seqgquential decoder using the stack is given in Figure
4.

In order to alleviate the computational variability of

sequential decoding, & multiple path stack algorithm has

been developed [121. In this algorithm the M (rather than
the single) most likely paths are simultaneously extended.
Moreover, remergers may be exploited as in the Viterbi
algorithm in order to eliminate redundant and useless paths
from the stack, and thus help reduce the required stack
storage. With this algorithm, compared to the ordinary
stack algorithm, the computational variability is reduced
at & cost of a somewhat larger  average number  of

computations. Furthermore the error probability is also

14



improved since some  of the errors of the stack algorithm
are corrected by the M path algorithm. The M path algorithm
with remergers belongs to the class of the Generalized
Stack  Algorithms L1213 and fills the gap between the l-path
sequaential  decoding and the all-path Viterbi decoding. In

fact, here, whern the number M of the extended paths equals

qu this M-path algorithm becomes eguivalent to the optimum

Viterbi algorithm L1321,

I1T Sequential Decoding Metric for the 181 Froblem

Ae owe mentioned above, when &pplied to sequential
decoding, the braﬁch metric given by (11) must be biased in
suich  a way that on the average it increases along the
coarrect path  and decreases along all incorrect paths. The
metric normally wsed with sequential decoding is called the
Farno metric, and was developed for the decoding of
convolutional codes [1é61 - 0171, However, since here the
output of the channel are real numbers, and since also
there i no actual coding rate as for ordinary
convalutional codes, the Fano metric cannot be used as such
for the I8I problem [1031 —~ [111.

We now show that the branch metric to use should have

the following form:
¥, = o ~Rdp (15)

where o and @ are real numbers, and where dP ise the

Euclidian distance between the received symbol and the

15



corresponding svymbol being examined in the tree.
In order to help distinguwish the correct path from all
incaorrect paths, on the average, we want the branch metric

¥ to be positive on the correct path and negative on all

incorrect paths. Let ZP be the kth branch symbol of the

correct path  and et Yy be the ch received symbol. The

average value of the metric increment YP along the correct

path must be positive, and is given by:

ELY, 1 = E[e - iy, - Z)7
m Lo - Bnﬁ]
R - UE >0 (1é&)

~y

where ¢~ is the variance of the additive noise.

/
Now let ZP be the kth branch symbol on any incorrect
/s

path such that ZPWZ x€p¢0. The average value of the metric

must be negative, and is given by:

b
. ’ ’
increment YP al ong ZP

:
i

/ X
ECY, €, = € , € % 01 = E[e-B(y ~Z )" | € % 0]

-
"k &

]

ELo—f(y, ~Z +&)% | € * 0]

ol

ELo—fi(n +€)7 | € % 0]

]

-y )

o3 (CEHETY < 0 (17)

b

Thus we have two conditions to satisfy:

=
L R 0

2 .12 A
Clearly choosing & = B{T+E 7)Y, where €l ]€],

16



gsatisfies these two conditions. Substituting « i (15

vields:

Y, = BLET+E ) - .l
= N R[ﬂnﬁ+ﬁxﬁ Lo Logey (19)
o7 - N N kT
o
- NQ
where ¢ = = is  the variance of the additive white

.

Gaussian noise.

The term NOB i only a scaling factor that has no
effect on the decoding procedure and can thus be normalized
to l.

The choice of the value of €7 in (19) depends on the
particular incorrect branch examined. Therefore the metric
given by (19) is not practical since the decoder cannot

know  in  advance which branch is being cuwrrently examined.

However, 1t is possible to choose E/mééin such that
4 - - - .

j€ “le . 1y and where € is the smallest nonzero
min min min

Euclidian distance between any incorrect branch and the
corresponding  branch on the correct path. With such a
choice of value for . E/, the conditions (18) are always
satisfied. Moreover should €7 be too amall, then the metric
would +fall rapidly. As a conseguence, for small values of
¢/ and under noisy conditions, the metric drops of the
correct path are important. The decoder will therefore
edplore many incorrect paths before recovering the correct

path {(se@e Figwe 9. A large and variable computational

effort may be thus expected. In order to minimize the

17



computational effort, one moust choose relatively larger
values of €/9 and hence accept that conditions (18) may not
bhe satisfied Ffor some of the incorrect branches. However
when €7 is too large, the metric rises rapidly and drops
relatively slowly. As a consequence, the small metric drops
of the correct path will induce a smaller computational
effort, but under severe noise the incorrect path metrics
will also tend to rise guickly, possibly leading to more
mamerous  error events  and a degradation of  the error
performance.

Therefore a-  trade-off between the error probability
atel the computaticnal atfort - Hut  unavoidable.
Evamination of this trade-off and determination of the
proper range of values to choose ¢/ from has been conducted

using computer simulation described mext.

IV COMPUTER SIMULATIONS

Several I81 channels and several Qarianta of the
gequential decoding stack algorithm have been simulated on
a VAX-7590 Computer (101, The purpose of the simulation was
to samine Ffor different variants of the M-path algorithm
the trade-off relationships between the computational
gffort and the error performance as parameter €/ varies.
Computatiomnal distribution curves as well as error

perfaormance for different signal to noise ratios have also

heen obtained For different channels and different M-path

18
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algorithmns.
Threse worst case theoretical ISI channels having the
fallowing taps have been investigated [201,

~  channel 1, mamory 4,

i

.0 0,29, F, = 0,50, ., = 0.858, f, = 0.50, f 0.29

0 1 2 = 4

- channel 2, memory é&,

H

foo= 0,19, £, = 0,35, £, = 0.46, £, = 0.50, f 0. 46,

O i “ 4

Fo. = .55 om0, 19
f iy {\6

- channel =, memory 9,

f,0= 0012, £, = 0.23, f, = 0.38, fy = 0.39, f, = 0.42,

0 1 2 ) 4
2 = - : EERE o T : R : = {0y, AT . o f 3
fﬁ = 0,42, {& = 0, B9, {? = ), A3, fg = 0,23, +q = O, 12

The transmitted symbols are equally likely to be +1 or
~1. For each simulation, 100,000 symbols have been randomly
generated and divided in 200 blocks of 900 symbols each.
Each block is terminated by a tail of W known symbols -1,
corresponding the an initial channel state (~1,-1,...-1).

The signal to noise ratio is defined as:

E
SNR = ﬁg (20)
(=]

where E. is the received symbol signal energy and where

N k=
) e
e N is the variance of the noise. For convenience Eﬁ

has been normalized to 1 so that:

SNR = %~ (21)
Q

The M-path sequential decoding &lgorithm with M varying



from 1 (Z-J algorithm) +to M=40 has been used. A flow

diagram of the algorithm is shown in Figure é.

Simulation results

The results concern both the error performance and the
computational effort (mean value and distribution) as well

as how these performances are influenced by the parameter

/

)

Influence of €/

For aach -of the simdlated channels, the ervor
probabilities and the average decoding effort have been

/

obtained for different values of €7 as both M and SNR vary.

Faor convenience, results are given as a function of a

/

parameter A related to €7 by:

whet e 40 is the first tap value of the channel.

Moreover, in order to facilitate the comparisons
between the different algorithms, the average number of
computations to decode one symbol has been normalized to
indicate only that part,Cvar,mf the average decoding effort
due to the computational variability, that is:

C e (273)
vair av

where qu is the true average number of computations,and M
L

20



iw  the number of paths simultaneously edtended by the
algorithm, With this definition, clearly, regardless of M,

Cvar is also an indicator of the computational variability

since it is equal to zero if there were no computational
variabilitv.

For each of the three simulated channels, the error
probability P{€) and Bvarhave heen plotted as & function of
parameter A for different values of M. Results are given
for  two BNR valuwes for  each channel and are shown in

Figures 7 to 1Z.

Figures 7,8,9 and 11 show that the error probability
moriotonely increases and the computational effort decreases
with increasing values of A. However Figures 10 and 12 show
thatl breyornd SOME values aof A and for M=1, ‘the

computational effort tends to increases. This phenomenon
e/
may be explained as follows: when “— becomes large, that is

M
O

for relatively high signal to noise ratios and/or large

values of €7

y the metric rises rapidly and falls slowly. As
a consequence, when the metric of the correct path drops,
the decoder may have to follow many incorrect paths over
relatively long periods since their metrics also rise
rapidly and fall slowly., Therefore, the computational

effort may be expected to grow both in average value and

variability. Figure 15 illustrates this phenomenon.

21



Clearly as M gets larger, the correct path becomes extended
sooner  preventing  the svamination of a large number of
incorrect paths  and hence reducing  the computational

variability.This i well illustrated in Figures 10 and 12.

Morsover as M increases, in all cases, we can notice
that both the error probability and  the computational
affort  become relatively insensitive to the parameter Al
Alson as M increases, the error probability tends to
stabilize towards a minimum value (probably to that of the
ot mum Viterbi . decoder) , while the computational
variability becomes negligible. The value of M required to
atabilize the error probability to its minimum value and
also to allow negligible computational variability
increases with the channel memory. Furthermore, for each
channel , as the SNR increases, the negligible computational
variability is reached for a Eoméwhat amal ler value of M.
However this required value of M, whiéh then becomes
pratically equxl to Cav’ ig still very small compared to
the average number of computations qN of the Viterbi
algorithm. Clearly, in this latter case, since the branch

metric does not have to be biased, the error probability is

independent of the parameter A, and Cvar is strictly zero.

22



Ereor Farformances and Computational Effort

In performing the simulations to obtain the error
performance and computational effort as a function of the
SNR, parameter &7 was chosen as to minimize the error

probability. Whenever the ervor probability is insensitive

teo €7, then €7 is chosen to minimize © "
i v ar

The M~path‘ gequential decoding performances are
compared, for  channel 1 and 2, to both Viterbi decoding
performance® and the theoretical performance bounds given
by (135, For channel 3 (memory 9), because of the
considerable amount of computations reguired by the Viterbi

algorithm, only the theoretical performance bounds are

considered. The results are given in Figwes 14 to lé.

Figures 14 and 1% show that when M23%, the error
performances of the M-path segquential decoding approches
considerably the error performance of Viterbi decoding. As

for  the computational effort, at P(€)$10m4, for channel 1,

# The Viterbi error performance curves have been obtained

by simulations using the simplified M-path algorithm that

will be described in the next section with M mqw

23



a Z-path  sequential decoder requires less than 204 of the
computational  effort of  the optimum Viterbi decoder (see
Figuwre 17), whereas Hfor channel 2, a 3-path sequential
decoder reguires an  even smaller fraction, a mere 574 of
the computatimnal'e¥Furt of the Viterbili decoder (see Figure
1890 .

For channel 3, Figwe 16 shows theat the error
performance very slightly overshoots the theoretical upper
bound at  the relatively small values of B8NR. However for
Mzi10  the ioprovement of the error probability becomes
negligible, suggesting that the best performance (l.e.
Viterbi decoding) is pratically reached. But when comparing
the average decoding efforts, a Viterbi decoder requires

393513 computations per decoded symbol, whereas the 1O-path

algorithm has reguired approximatively 10 computations per
decoded symbol, & mere 24 of Viterbi decoding (see Figwe
20 .

The observed distributions of the number of
computations per decoded symbol are shown in Figures 17 to
22, As mpected, the variability always decreases as M or
SNR increases. For an error performance P(€){10~4, this
variability is shown to become negligible for very modest
values of M, of the same order of magnitude as the channel
length.

As a consequence of the absence of any computational

24



variability, a considerably simplified decoder structure
CAan by cornsidered., Such a decoder stends M paths
gimultansously as the ordinary M-path sequential decoder.
However, this simplified decoder never backs-—up in the
tree, and  thus eliminates the main drawback of sequential
decoding, that is the computational variability, while
preserving  both its good error performance and its small
average decoding effort. This decoder called "simplified

maltiple path sequential decoder" is discussed and

evaluated in the next section.

V Simplified multiple path sequential decoder

The simplified M-path algorithm is a tree search
algorithm that retains &t any tree depth only the M-most
likely paths. At each decoding step, each of the M
remaining  or  "surviving" paths is edtended into its g
single branch extensions. The metrics are then computed and
from these oM resultant paths only the M paths with the
largest metrics are retained. All the other paths are
discarded. The extended paths are all at the same tree
depths and there is no backing-up in the tree. The average
number of computations per decoded symbol is thus constant
and  eqgual to M, and the computational variability is

completely eliminated. Furthermore in order to insure that
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all suwrviving paths have distinct channel states, remergers
are edploited a&s in  the Viterbi decoding algorithm. The
gimplified M-path algorithm is easily implemented using a
stack structure, and is another particuwlar case of the

Beneralized BStack Algorithmn [121. Clearly, whenever M is

equal  to the total number of states qu this simplified
algorithm becomss equivalent to the Viterbi Algorithm.
Furthermore, R o Viterbi decoding, all ’the
"msurviving" pathe do not stay distinct over their entire
length, hut have a tendency to stem from a single node
meveral branches earlier. Hence, as illustrated in Figure
2%, it is  not necessary to wait until the unigue decoded
path has been obtained before starting to deliver the
decoded  svmbols. After a delay of & branches (or &
symbols) , the decoder may deliver, at each decoding step,
the oldest symbol From any one of the “"surviving'" paths.
However, in order to minimize the error events, it may be
preferable to deliver the oldest symbol of the surviving
path having the highest metric since this path is currently
the most likely. Therefore, with this procedwe, the

decoder needs to store the path history of the surviving

> ¢

paths over only the past § symbols. M registers each §
symbols long are used for this purpose. As shown in Figure
24, at each decoding step, the M surviving paths stored in

M registers are extended. From the oM resulting paths the M
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rew  surviving paths are selected and stored in M other
registers with the oldest symbol of the surviving path
having the highest metric delivered to the user. The value
of  the path history length & that should be retained for
each channel and for each algorithm,has been estimated
using computer simulations. The results are given next.

Fath history length &

For each of the three simuwlated channel, different
values of & have been tested. A simulation consists of
10,000 symbols chosen to be equaly likely +1 or —~1. A&t each
gimulation we count the number of times NC where the M
suwrviving paths  do not stem from a single node & branches
garlier. The M suwviving paths are igssued from a single
node & branches earlier if at that depth they all have the
same identical state. The number NE of symbols decoded in
error  are also counted. The results obtained from these
gimulations are given in Tables 1,2 and %, where each Table
corresponds to one of the three simulated channels.

We notice +rom Tables 1,2 and 3 that the number NC
tends to sero and NE stabilires to some values as the value
of & increases. Clearly, regardless of M, one should select
that value of & which corresponds to NC=0. Hence, from
Tables 1,2, and 3 we can see that the value of & that
showld be chosen gets larger as both M and the channel

memory  incregase. AN upper bound on b is  however readily

provided by the corresponding path history length of
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Viterbi decoding (the so-called memory of the decoder),
since then all  the possible distinct paths rather than M
paths are extended by the decoder. In all cases it appears
that & should be equal to 4 to & times the memory of the
channel.

Error Ferformance of the simplified algorithm

This simplified seguential decoder has been simulated
in order to compare its performance to  those of both
sequential decoding and Viterbi decoding. A simulation run
consists  of 100,000 symbols divided in 10 blocks of 10,000
symboles each, and §& is chosen to be equal to & times the
length  of +the simulated channel. The obtained results are
given in Figures 25, 26 and 27.

Figures 25, 26 and 27 show that Cas expected the
performances of the simplified M-path sequential decoding
are very close to those of both Viterbi and seguential
decoding. As  for the computational effort, the simplified
decoder requires only a very modest number M of
computations per decoded symbol, with M of the same order
of  magnitude as  the channel length, (MaW+1), whereas the
number of computations required by the Viterbi decoder is

qW, Naturally neither algorithm suffers from any

computational variability.

Table 4 compares the average number of computations

per  decoded symbols and the error probability of the
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Viterbi, multiple-path and simplified decoders. Table 4
shows  that the M-path seguential decoder can achieve the
error  performance of a Viterbi decoder but &t a very small
fraction of the average decoding effort. Compared to the
sequential  decoders the simplified M-paht decoders show a
very  alight ercor performance degradation but as shown in
Table 4 this degradation ‘may be circumvented by a small
increase of the number of extended paths M. However this
glight increase ot M presents & minimal practical
conseguences on the complexity of the decoder and is more
than compensated by the total absence of any computationsl

variability.

Finally from & practical point view the actual metric
computation could be simplified and speeded-up if an
integer metric were used instead of the real number metric
defined by (11). Matwrally the harder the metric
gquantization, the larger the error performance degradation.
Using computer simulation it has been observed that by
guantizing the entire range of exact metric values into 10
to S50 levels (i.e. less than & bits) the ensuing
degradation is but insignitiant, as illustrated in Figures
28 to 30, With this wmetric guantization the squaring
wperation in (19) is eleminated and hence the decoder may
he very @asily implemented using sisole logic circuits and

small memory storege. This simpl. "ied sequential decoder
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may therefore become & very attractive alternative to
Viterbi decoding to combat 181 over relatively long memory

channels.

VI CONGLUSION

In this paper we have presented the application of
segquential decading, in particular »the multiple—-path
variant of the stack algorithm, to the intersymbol
interference problem. The likelihood function or metric to
use  in IS8T has been investigated. This metric departs
somewhat from  the traditional Fano metric of sequential
decoding but maintains the usual overall dynamic behaviour
that helps the decoder discriminate the correct path from
all incorrect paths. Using computer simulation we have
examined the effect of this metric on both the error
performance and computational variability as the number of

extended paths M varies.

From extensive computer simulation with chaﬁnelﬁ of
memory 4, & and 9, we show that the error performance of a
multiple—path sequential decoder falls within the
theoretical wupper and lower bound of an optimal decoder,

but at an average decoding effort of only a very small
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fraction of that of an optimal decoder. As for the
computational variability it can be practically eliminated
by properly choosing the number of simultaneously extended

paths M.

Fimally we have presented a simplified multiple-path
sequential  decoder  that offers a constant (and small)
AVE A e conputational effort with no  compuhtational
variability. This computational effort is of the same order
of magnitude as the channel memory, whereas for Viterbi
decoding it is exponentially increasing with the channel
MEMDEY . In addition both decoders allow a real-time
aoperation with the same constant delay. Compared to either
Viterbi o seguential decoders the simplified decoder
provides an error performance only very slightly degraded,
put its structure and storage memory requirements are
considerably simpler and smaller than either decoders. By
its simplicity and good performances this decoder appears
an extremely attractive alternative to Viterbi decoding for
181 over long memory channels. Moreover it may also find
applications in other problems of trellis decoding, as for

example in multilevel phase signals decoding [Z211.
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Figure 25: Comparisons of the observed error Performances of

the M-Path simplified and Viterbi decoders (channel 1)
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the M-Path, simplified and Viterbi decoders (channel 2)
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Effect of the metric quantization on the error
performance of the simplified M-~Path decoder
(channel 1)
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Es ."Nc (dB)
i1 13 17
M b NE NC NE NC NE NC NE NC
15 2462 99 47 37 0 i1 0 16
3 20 265 14 48 0 0 0 O )
25 265 -0 43 0 0 D] ] 0
30 - - - - - - - -
{5 110 572 B! 218 0 113 0 52
5 20 114 145 i1 16 0 5 0 0
25 118 44 il 0 0 0 0 O
40 {146 0 i1 O Q O 0 0
20 a3 248 b 89 { 39 0 23
7 25 82 48 & 9 0 0 0 0
33 82 ) & 0 0 0 0 Q
40 B2 0 & 0 0 0 0 0

Table 1: Effects of the path history length on survival

paths (channel 1).
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Es /No (dB)

13 17 19
M 5 NE NC NE NC NE NC NE NC
13 878 190 250 231 18 tle 0 54
3 20 589 64 246 37 18 21 0 0
25 g69 ] 245 8 18 0 0 0
30 863 o | 246 0 18 b 0 "
20 339 738 29 343 0 1Qa 0 44
5 2% 327 291 28 84 0 3 0 0
30 JZ0 108 28 38 ¢ 0 i 0
45 314 7 28 0 ) 0 0 G
25 194 973 22 213 0 &7 0 16
7 30 178 248 22 36 0 7 y 0
33 173 97 22 17 0 0 0 0
30 171 0 22 0 0 0 0 0
Table 2: Effects of the path history length on survival

paths (channel 2).
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Eg/No {(dE)
15 17 19
) b NE NC NE NC NE NC NE NC
20 2583 1E6 13560 131 167 246 0 85
3730 2579 22 1556 0 348 12 0 0
40 2589 0 1556 0 348 0 0 ¢
50 o - - - - - - 0
20 1698 371 483 379 13 2535 0 1o
5 49 1489 84 482 87 2 24 0 U
S0 1692 0 482 16 12 0 0 0
60 1692 v 482 0 2 0 0 0
40 1457 224 246 221 4 74 0 0
7 50 1461 18 240 39 -4 30 0 0
60 1461 0 240 11 4 11 D 0
70 1461 0 2490 0 4 0 0 0
50 909 163 124 93 4 30 0 0
10 &0 909 37 123 28 4 11 0 0
70 909 0 122 11 4 0 0 0
80 09 0} 122 0 q 0 0 0
Table 3: Effects of the path history length on survival

paths (channel 3).
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Simplified M-Path
H-Path L =H
av
i
P . jc /. P
e ay av vit e

Channel 1 1 L36x10° | 1,01 | 6.9 —
Hemory 4
E/N =13 dB
=0 -4 -3
Viterbis P = sagt | 5 | 7-ex0 | 3.00 [ 1871 273210

e

cvit*= 14 5 2.0t | e |z 5, 1x10"
Channel 2 1| Laadt | nor |em —
Memory &
E/N, =17 db 3 | 6ox1d® | 299 | 468 1.58510°
Viterbi: P = 5x10° | o | 0nd® |48 | 7.7 ax10"

Git =% L 7 | e0ud® | 697 | 10.92 9.0x10°
Channel 3 | 2.3018° | 1.25 | 0.281 —
Hesory 9
E/M =19 dB 5 | et |49 ] 097 4.28010°
Viterbi: Po= == 10 Laondt | 993 | Lom 5.2x10"

it *912 1ao | amtd l3o.es | 779 —_—

¥ cvit‘ Average nusber of computations of Viterbi Algoritha.

Table 4: Performance comparisons between Viterbi, M-path
Sequential and Simplified M-path decoders.






