
Titre:
Title:

Practical experiences with static metrics

Auteurs:
Authors:

Pierre N. Robillard

Date: 1994

Type: Rapport / Report

Référence:
Citation:

Robillard, P. N. (1994). Practical experiences with static metrics. (Rapport
technique n° EPM-RT-94-12). https://publications.polymtl.ca/10081/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/10081/

Version: Version officielle de l'éditeur / Published version

Conditions d’utilisation:
Terms of Use:

Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Institution: École Polytechnique de Montréal

Numéro de rapport:
Report number:

EPM-RT-94-12

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/10081/
https://publications.polymtl.ca/10081/

EPM/RT-94/1 2

Practical Expériences with Static Metrics

Pierre N. Robillard

Département de génie électrique
et génie informatique

École Polytechnique de Montréal
Mars 1994

0 7 AVR. 1994

Tous droits réservés. On ne peut reproduire ni diffuser aucune partie du présent ouvrage,
sous quelque forme que ce soit, sans avoir obtenu au préalable l'autorisation de l'auteur,

OU des auteurs

Dépôt légal, novembre 1993
Bibliothèque nationale du Québec
Bibliothèque nationale du Canada

Pour se procurer une copie de ce document, s'adresser:

Les Editions de l'Ecole Polytechnique
Ecole Polytechnique de Montréal
Case postale 6079, succ. Centre-ville
Montréal, (Québec) H3C 3A7
Téléphone: (514) 340-4473
Télécopie: (514) 340-3734

Compter 0.10 $ par page et ajouter 3,00 $ pour la couverture, les frais de poste et la
manutention. Régler en dollars canadiens par chèque ou mandat-poste au nom de l'Ecole
Polytechnique de Montréal.

Nous n'honorerons que les commandes accompagnées d'un paiement, sauf s'il y a eu entente

préalable dans le cas d'établissements d'enseignement, de sociétés ou d'organismes canadiens.

Practical Expériences with Static Metrics

Pierre-N. Robillard, Ph.D.

Laboratoire de Recherche en Génie Logiciel

Ecole Polytechnique de Montréal
C.P. 6079, Succ. Centreville,

Montréal, Qc. H3C 3A7
Tel. 514-340-4238 Fax 514-340-3240

E-mail robillard@rgl.polymd.ca

Abstract

This paper présents the various applications of stade metrics. The expected
benefits and the difficulties and limitations are descnbed for each application

and the research avenues are explored. The applications are static
measurement, statistical analysis, architectural visualization, metric

représentation, quality profile, software analyzability, control flow
représentation and restructuring. Each approach is defined and described

using a typical example taken from an industrial project. This paper for the
most part présents an integrated view of the application of static metrics and
outlines some promising research avenues.

1. Introduction

The stade measurement of source code was initially associated with the measurement of program
complexity. The pioneering work of McCabe and Halstead has had a strong influence on the perception

and usefulness of static metrics. Static analyzers have evolved and there is a wide spectrum of tools
available on the market today, as a result of which source code parsing can be donc at various levels of

accuracy. The first génération of tools detects key words related to the control flow, such as IF, DO,
FOR. The second génération of tools parses every word and provides some information on the data flow
or data structures. The upcoming third génération of tools is based on formai représentation of the source
code and can provide data based on information theory.

This paper gives an overview of the various applications of static metrics, providing the reader with a
comprehensive understanding of the state of the art and showing the benefits and limitations of the first-

and second-generation tools. All the results presented have been obtained from industrial projects. Any
ofthe practices présentée could be readily implemented, which shows that static analysis has more to offer

that just complexity measurement. However, not all aspects of metric applications not covered here.
Tests and path coverage have intentionally been left aside.

We présent metrics as a way to diagnose or evaluate software quality. Past expérience with metrics has
shown that the successful use of metrics is based on careful considération of existing measurements and
their assessment. Experts need to look at a project and détermine the level of measurement nœded. Some

parts of a project are trivial and do not need to be measured, and others are so complex that static analyses

are of the utmost importance, mosûy because of the visualization they provide of complexity. Otherwise,

the software would be unduly difficult to understand. Static metrics are helpful in deciding on

maintenance tasks, redesigning, re-engineering and restructuring. This overview shows the potential of
stade software metrics.

The aim of step l is to provide a comprehensive static source code measurement set. In step 2 extensive
statistical analysis can be performed to extract metric behavior or define a project profile(l). In step 3,
experts use thèse measures and various outputs from display tools to obtain a multi-view picture of the
software. This information is provided at various levels of détail. It can be a graphical executive summary

or a spécifie programming statement. In step 4 thèse data are used to diagnose the program from various
points of view: maintenance, re-engineering, establishing a development guide, improving the process
and controlling quality.

Static analysis could also be used in conjunction with other tools to improve the software product or its

documentation. For example, structural information could be extracted from a program and fed to a

restructuring tool which would automatically restructure existing programs and outline any existing
schémas. Schémas are used to understand program plans and also make functions much easier to
understand.(2)

The examples and results presented in this paper are based on the static analyzer DATRDî™. Datrix is a

third-generation tool. The data presented in this paper are essentially based on the capacity of first- and
second-generation tools and are not spécifie to a given tool. However, control flow représentation needs a
third-generation tool which is spécifie to Datrix. This tool records more than fifty metrics. The data can
be exported to various software tools for analysis, display and environment intégration. For example, The

powerful statistical package, SAS™, can be used to dérive ANOVA, and factor or discriminant analysis

of metric values. A spreadsheet (LOTUS 1-2-3™) can be used to display distributions of metric values.

Various viewpoints can be studied by selecting the appropriate set ofdata.(3)

Such studies will target the metrics most needed to meet project objectives. Usually, a dozen or so of the
fifty metrics are kept for général analysis, and the number of metrics is often increased when a spécifie
problem needs to be solved.

The approach described in this paper has been tested over the past three years and intégrâtes the content
of various papers already published on the subject. Thèse projects are the result of successfùl
collaborations of the following organizations: BELL CANADA INC. the NATIONAL RESEARCH COUNCIL OF
CANADA, SCHEMACODE INTERNATIONAL INC. And the SOFTWARE ENGINEERING LABORATORY AT the ÉCOLE
POLYTECHNIQUE DE MONTRÉAL.

2. Statistical analysis of static metrics

Practitioners should be aware that basic statistical studies ought to be conducted before any interprétation

is donc on the data. Practitioners should also know that statistical methods such as factor analysis ought to
be carried out on any set of metrics before spending time trying to find the meaning of a particular
metric. A great deal of work is irrelevant because it is not statistically sound. Statistical analysis also
présents a systematic approach for deriving the information content of metrics. Static source code metrics
constitute one of the techniques available for evaluating the various aspects of software attributes.

Research in software engineering has shown the importance of software metrics. For the most part, static

metrics are derived fi-om source code token counting and graph control flow charactensdcs. Research
carried oui on thèse classic metncs has generated so many metrics that it is difficult to choose among

them. Actually there is no consensus on the use of any particular metric. The objective of this section is to
discuss the basic statistical analysis needed before attempting any interprétation of the metric results.

Many metrics are used and various opérations are performed on metric values. For example, the metric
values of a collection of routines associated with a project can be summed up and averaged. This average
value can then be used as an indicator of this metric value for the whole project. Also, the average values
of various metrics can be mixed together to form an indicator of overall project complexity or quality.

Such opérations on metric values assume that their distributions are known and ideally normal. Studies
are needed to verify this hypothesis. Since normality is rarely found, transformation techniques must be
tested in order to fit metric distributions into normality. Factor analysis could be employed on metrics to
indicate the dimensions that are, in fact, measured. We usually fînd one dominant dimension and one or
two weaker dimensions.

The goal of factor analysis is to détermine how metrics are correlated and how many différent dimensions
are measured by a set of variables. Factor analysis is a field of statistical analysis that deals with
multidimensional observations. It transposes observations measured in an N-dimensional space into a
reduced space in which interprétation is facilitated. Using the factor model with extraction by the

principal components method, the first axis represents the maximum variance between observations. The
second axis is found under the constraint of maximizing the remaining variance, and similarly forth for

the other axes. We call thèse axes factors. There is no corrélation between factors, which means that each
axis has a unique information content and is orthogonal to the other axes.

The results of factor analysis show that more than 60% of the variabUity in the measurement of classical

metrics is represented by only one factor in the projects analyzed. This factor has been identified with size

because every volume metric has a big projection on it. In fact, few dimensions of complexity are
measured since only four factors are extracted per project. In addition, the last two factors contributed less
than 10%. It is observed that thèse factors could be considered a topological indicator since at one end we
find the number of statements, while at the other end the metrics related to the nesting and number of

knots is projected.

Despite the fact that factor analysis is a linear model, we have found that many of the metrics that have

been proposed by software engineers measure the same aspects of software quality. Il is shown that size
(or volume) is the principal feature measured by thèse metrics. Considering this, practitioners should be
careful to try to find différent meanings in metrics that have the same dominant factor. It may be of no

value, for example, to work with a set of metrics that all have the same factor, meaning that their
variability wiiï nearly always behave in the same way.

The discriminant analysis shows that metrics could be used to extract some characteristics of the

programming environment, and allows séparation criteria, which are in turn used to rcclassify the data. A
very good reclassification indicates that the data is well identified by the projects, the programming

languages and the programmers. Both parametric and non-parametric methods exist to complète the
discriminant analysis. Because the data are usually not distnbuted according to known distributions, only

non-parametric methods can be used. Two methods used are the kemel method, which uses différent
techniques to estimate the density, and the nearest-points method, which classifies the observations
according to their surroundings. The discriminant analysis also shows that it is possible to find signatures

to differentiate routines according to the various projects, programmers and programming languages
involved.

The goal in the development of new metrics will be to explain aspects of software that are not cun-ently
being measured. A subset of independent metrics will be more useful than a number of différent metrics

that all measure the same aspects of software quality. The use of multidimensional statistical methods may
prove very useful in this search for new metrics or in the validation of the information aspect of others.

3. Architectural visualization

Static metrics could be used to dérive the calling tree of a software program, fan-in and fan-out could be

measured, the link between all the software units could be derived and product integrity could be assessed.

Also, the structure of the tree could be characterized: number of branches, modes, scope and span.
Although few indirect metrics try to qualify call graph structure, this information is most useful in call

graph visualization.

This could be part of the tool, or the information could be exported to other tools for documentadon

reverse-engineering purpose. The project call graph obtained from DATRDC™ could be sent to the

Software through Pictures™ tool (STP) for intégration into the existing environment. The STP structured

editor can be used to display and access any call-graph module.

The System architecture can be visualized to détermine the module links. Three-dimensional graphs (Fig.
l) show a global view of the interaction between routines. The horizontal axes represent the number of
calls made to the (X) and from the (Y) software units. The vertical axis represents the number of software
units. Highly interlocked roudnes are easily identifiable. Simulation can be performed to see the impact of
architecture modification.

Figure l. Architectural visualization from 3-D graph.

Research in this area is needed to find metrics that describe the architecture of the System. Such metrics

could be the measure of the organization of the modules or some metric related to entropy. It would be
interesting to validate the implemented architecture with the spécification or the design. Metrics that
predict the maintainability of an architecture would be most helpful.

4. Metrics représentation

This section shows examples of metric-based documents used by experts to evaluate software projects.

Metric programs need not be extensive, in fact very often, a few metrics can provide helpful information
about a project's structural quality. Static metrics provide information for various tasks: modifying System
architecture, improving documentation, redesigning modules and integrating a new environment. Experts
need to look at project measurement metrics to détermine where most of the work is needed and establish

priorities within budget constraints.

4.1 Metrics distributions
Commercial spreadsheet software générales metrics distributions based on DATRK™ measurements.

Figure 2 shows the project distribution for the number ofpaths per module. On the horizontal axis are the
functions in decreasing order of the metric's value from the left-hand side. On the vertical axis are the
metric's values for each function. The distributions show the full range of the metrics' values for the

project. Experts can then work out the usual range of values for a project and identify any functions that
have out-of-range values. In this example, functions with more than 10,000 paths are immédiate
candidates for inspection since they have traditfonally proved difficult to understand and test. The usual
range is determined for each metric's distribution.

Max=10000

20 30 40 50 60 70 80 90 <%)

Figure 2. Number-of-paths distribution.

4.2 Profile définition
A percentile profile for a project shows the number of functions that fall within the selected range of
metric values. AU the functions that have unusual metric values are identified and listed.

Figure 3 shows the percentile profiles for 15 selected metrics. Percentile profiles consist of two-color

columns. The black in each column represents the percentage of unusual functions. Thèse are below or
above the usual range of values. Black in the upper part corresponds to the percentage of functions
exceeding the range's upper bound. Black in the lower part corresponds to the percentage of functions

below the range's lower bound. The darker the profile, the more unusual the project.

ffl 1

_nbo iw__ nçn nrt ni _np nr

Figure 3. Percentile profile.

The grouping of the various metrics may provide infonnation on a quality factor. Typical quality factors
could be testability, analyzability, maintainability, portability, correctness, etc. Research and controlled
experiments are needed to validate the relationship between the metrics' values and the quality factors. A

well-designed quality and measurement program can provide indicators for process improvement.

5. Software analyzability

This section describes the use of static metrics to détermine the analyzabUity of a software module. This

example illustrâtes one of the many applications of software metrics.

The analyzability of software modules varies widely within a project. The simplest module might be
quickly understood by someone unfamiliar with the application, while others are so complex that even
experienced software engineers can spend a significant amount of time trying to understand them.
Experts use a rule-based System to define the analyzability level of a module prior to its modification. The
measurement is also taken after modification to evaluate the 'complexity gain' of the process.

We identify five analyzability levels. There are no clear-cut boundahes between thèse analyzability levels,
but rather they fonn a continuum from one level to another. The following defines the typical modules in

increasing order of complexity:

Level l: Basic Utility Modules
Thèse are the simplest modules. They are usually small and have very few conditional constructs. Their
tasks are simple and self-evident. They do not call many modules and are at the bottom of the call
graph. The number ofpaths is very small.

Level 2: Spécifie Subtask Modules
Subtask modules are more complex than basic utility modules. They use some conditional constructs
and sometimes call other modules. The number of paths is limited, but nontrivial. Thèse modules are
often refinements of more important tasks.

Level 3: Switching Modules
Switching modules use many conditional constructs in an organized way. The organization is mostly

sequential or nested, but rarely mixed. The number of paths could be considérable. Thèse modules are
used to select from among many tasks based on some control variable or calculated condition. The
selected modules could be of any level of complexity.

Level 4: Decisional Modules

Decisional modules use many conditional constructs in a muced way. The task implemented is often part

of a more complex algorithm. The goal is usually to compute data based on numerous Boolean
expressions.

Level 5: Algorithmic Modules.

Algorithmic modules are the more complex ones. There are many mixed constructs: sequential, nested,
conditional and looped. The number of paths is large.

Modules are automatically associated with an appropriate complexity level by a classification table based
on four metrics.

NCN Number of conditional constructs.
TCT Total number of calls to other modules.

NL Number of looping constructs.
NP Number of independent paths.

A team of experienced software engineers bas defined and validated the following classification table:

level l
level 2

level 3

level 4

level 5

NCN
0 or l
0 or l
2to5
2to5
GT5

GT. 5
2-5

2-5

GT5
GT 5
2-5

GT5
GT5

TCT
o or l
GT.l
*

*

*

*

*

*

*

*

*

*

*

NL
*

*

LE2
LE 2
EQO

1-3
LE2
GT2
1-3

GT3
GT2
1-3

GT3

NP
*

*

201-400
l to 200
LT0.2*NCN**20R
0.2*NCN**2-0.8NCN**2

1-400

GT 400
1-500

401 -1000
l -1000
GT 500
GT 1000
GT1000

Table l. Metrics classification table for the 5 levels

The following table présents preliminary results obtained from the classification table. The level-5
modules represent only 17.9% of the modules, but they received 58.7% of the modifications

Level

5
4
3
2
l

Total

Number of

modules

117
45
332
65
93

652

Percentage of

modules

17.9%
6.9%

50.9%
10.0%
14.3%
iœ%

Number of
modifications

64
3

37
2
3

109

Percentage of
modification

58.7%
2.8%

33.9%
1.8%

2.8%

100%
Table 2. Preliminary results obtained from the classification table.

The data illustrate the following points:

The 4 selected static metrics are weakly correlated (less than .65) and can be taken as
independent variables for the décision tree.

The module's complexity levels taken from each project have been validated by groups of

software engineers, 5 modules firom each level (a total of 25) were given to a team of software developers.
Team members had to rate each module according to the narrative module's complexity définition.

Metric values were not available to them.

Module complexity is strongly correlated to the maintenance effort for existing projects and to

the development effort for new projects.

Thèse results are helpful in planning the effort required for the maintenance of highly complex modules.

This information is also useful during the implementation phase, since programmers are now aware of the
type of module on which they are working. Inspections and walk-throughs could be planned and focused

on the type of module level.

Figure 4 illustrâtes a typical level distribution. The Y axis contains the number of software units per level.

With such a graph, re-engineering, redesigning and maintenance efforts can be more precisely evaluated.

One component of complexity that is not explored by this classification table is module data coupling.

Research is currendy under way on the data-flow aspects of the complexity of a module, and preliminary

results are promising.

Figure 4. Analyzability level classifications

6. Control-flow représentation.
Control-flow représentation is a basic tool for visualizing and understanding program structure. This

section présents a new control-flow représentation that provides the following advantages: il is easy to
visualize, it outlines the breaches of structure and it is programming-language-independent. (4)

There is some évidence that the visualization of control flow can provide a better understanding of the
programming process. It can improve testing and validation by making a formai link between algorithm
implementation and spécifications, It can reduce maintenance by showing the complexity of the control
flow. It can help to establish norms and standards in quality control programs and to define testing

methods. It can provide a better understanding and définition of the cohésion and coupling of software

units.(5)

Despite growing interest in software metncs, control flow représentation is still empirical(6). An overview

of some existing control flow représentations illustrâtes the need for a more formai représentation. Most

carrent control graph représentations do not precisely link graph features to spécifie source code
statements. Some visual représentations may be clumsy, and may become confiised when programs get
bigger, when, in fact, they are most needed. Figures 5 and 6 show typical examples of such control graphs.

Figure 5: Example of control flow représentation (7a)

Figure 6: Example of control flow représentation (7b).

Mathematical descriptions of program control flow are based on nodes and arcs. A node can be a predicate

node, which represents a décision point, or a procédure node, which represents sequential statements.
Thèse approaches define construction mles working on an arbitrary set of primitives. Some authors are
particularly concemed about the generalization of the structuredness notion. Others use such a
mathematical model to study metncs' sensitivity using atomic modifications (8). This work leads to the
problem of exact software control flow modeling: "As is well known, directed graphs have often been used

to model control flow in sequential programs. The modeling process itself is a non-tnvial task and has

usually been underestimated (9).

Récent work on control flow modeling présents a formalization of the control flow représentation (4).
Programs are décomposed into basic blocks. Each basic block is represented by spécifie icons. Icons are
assembled according to redefined rules. The process kœps all control-related information as il appears in

the source code. The goal is to represent control flow as it is and not as it should be. The icons provide a
visual représentation that is independent of the size or complexity of the control flow. Some graphical

features are:

discrimination between forward and backward flow,
identification of breaches of structure,

exact matching of the source code.

A study of automated diagram drawing gives some rules for good graphical représentation (10). The
authors state that "the lower the visual complexity is, the casier the diagram is to understand."

They suggest thèse two considérations: (l) Straight lines are easier to follow than curves. The origin and

destination of a straight line are more direct than those of curves, and (2) consistency increases
readability. Consistency means that aU objects that have the same connectivity, semantics and geometrical

structure are drawn in the same way. For example, each edge of one kind in a diagram should be of the
same shape and thickness. Différent kinds of edges in the same diagram should be of différent shapes and

thickness.

6.1 Basic block représentation

Icons are used to represent a program's basic block. A basic block is a séquence of consécutive statements
in which the flow of control enters at the beginning and leaves at the end without halting, or the
possibility of branching, except at the end (l l). It is impossible to jump into a block or out of a block. The
représentation of the relationships among the basic blocks fonns the control flow graph.

A basic block is represented by a vertical line with an entry and an exit connector. There are four kinds of
connectors: sequential, terminal, label and branching. A node, represented by a horizontal line, identifies

connectors with programming language statements.

The following describes the various types of connectors applied to the basic blocks, and the resulting

icons. Sequential connectors are represented by empty circles. Figure 7A shows a basic block terminated

by sequential connectors.

Figures 7B and 7C show blocks with terminal connectors that define the beginning or the ending program

nodes. A label connector is représentée by an arrow-tail at the beginning of a basic block. Figure 7D
shows a basic block inputted by a label and outputted by a sequential connector. A branching connector is

represented by an arrow-head at the end of the block. Figure 7E shows a sequential block with a
branching end connector.

A node is needed when block ends have more than one connector. For example, a block that can be

entered by a sequential or a label connector, or a block that can be exited by a sequential or a branching or

10

multibranching connector. Figure 7F shows a block that can be entered by a label or a sequential flow.
Figure 7G shows a block that contains a conditional statement, so that it is terminated by two branchings.

A backward branching is a basic block that reverses the normal top-down sequential flow. Figure 7H
shows the représentation of a backward branching block with a sequential node and a double vertical line

terminated by a branching.

A) Sequential

B) Beginning

C) Ending

D) Inputed label

E) Brânching

F) Node with sequential
and label

G) Node with two branchings

H) Backward branching

î
~1

J
l
!
T
_Lv

0

_v

v

j

Figure 7: Basic block icons

The following association rules are used to group the resulting icons of a program together to represent
the complète control flow.

l) Resuldng icons are ordered according to the expression line-up. This is to maintain

correspondence between the source code and the control flow).
2) Corresponding numbered branching or label connectors are joined together by extending or
stretching connecting lines.
3) Vertical Unes are moved horizontally to respect the following conditions:

Lines must be to the right of the main axis to maintain half-plane representation,-
Unes must not overlap,-

The farthest target destination is the farthest from the main axis,

Lines are kept as close as possible to the axis,
Unes are moved horizontally or vertically by defined space increments.

Figure 8 shows all the basic blocks linked together according to the above rules.

11

Figure 8: Association as applied in the example.

6.2 Applications

Figure 7 illustrâtes this new control-flow représentation. The graph nodes are either branch instmctions or

branching addresses. The only exceptions are the program entry node, a dummy node inserted beforc the
first nondeclarative statement (at the end of the déclaration section, if there is one) and the main exit

node.

Directed arcs link origin nodes to destination nodes. An arc may be of the sequential or branch type. A
forward arc follows the normal flow of exécution (drawn as a single line). A backward arc follows the

reverse flow, as in the retum arc of a loop (drawn as a double line). The weight of an arc is the number of
executable statements associated with the arc. The node number is a pointer to the line statement in the
source code.

Information can be added to emphasize the relationship of the graph to the source code. Hohzontal arrows

differentiate entry and exit nodes from pending nodes. Arcs are named according to their control flow

type. Une numbers corresponding to source code statements can be associated with each node. Figure 9
shows the final représentation. A weight can be associated with each arc in order to represent the number
of sequential statements (basic block S) included in it.

Half-plane représentation allows the identification of arc crossings (12). The crossings that violate the

raies of structured programming are called breaches of structure, and are shown by square dots in the final

représentation.

This graphical représentation of the control flow corresponds to the général interprétation of graph theory

(13). Arcs contain statements from the source code. Nodes are the logical states of a program where arcs

go from one node to another.

12

En+ry Node1

Forward Arc

ExitNode.

Crossing

<4< 2 Breaches

Backward Arc

Figure 9: Final représentation of the control graph.

Figure 10 présents the iconic control flow graph équivalent to the représentation shown in Figure 6. It is
easy to see that the program is well structured and that there is an exit statement in the code (Une 11).
Figure 10 provides added infonnation by indicating a weak control flow somewhere between lines 22 and

27. Thèse two parts of the program are linked by a single basic block. Detailed data flow analysis may
indicate two independent functionalities. This may be indicative of low functional cohésion. Thèse

characteristics are not obvious from Figure 6. The iconic control flow graph represents the real control
flow of the source code as it is written, and is not an interprétation of it.

Figure 10: Control graph équivalent of Figure 6.

Control graph construction is straightforward and easy to apply to small programs. Larger programs need
a software tool to compute and draw the control graph. DATRK™ is used to evaluate millions of lines

of code of large projects undergoing code inspection, testing, production approval and maintenance. The

13

objective of the tool is to provide understandable measurement and lucid visual information. This tool

enables the user to toggle back and forth between the control graph and the source code. It also computes
a set of metrics related to a software unit's syntax, control flow and organization.(14). Figure 11 shows
an example of a control flow graph computed by DATIUX7M. The line organization on the graph is kept
constant and is independent of the size or "complexity" of the control flow.

Such work was needed for various reasons. Control flow visualization is useful in helping programmers
develop and maintain their programs. A great deal of work is being donc on the transformation of control

flow (8,9) in re-engineering, restructuring, documentation, optimization, etc. The solution presented is a
simple one, and can be applied to any procédural programming language. A software tool has been

implemented and the power of the approach demonstrated. The most useful metrics computed on the
représentation are the number of independent paths, the number of décision summits, the nesting levels
and the number ofbreaches of structure.

Figure 11: Extended DATRDÎ™ control flow représentation

14

7.Restructuring modules

This section shows how the control ûow constructed from static analysis of the source code could be used
to restructure a module. Considering previous évaluations, modules that need to be restructured are
identified. The restructuring transformation involves either the introduction of predicate ïïags or code
duplication or both. The détection of unstructuredness is based on the six basic fonns of unstructuredness

proposed by Oulsnam (15)

The following figures (l 1,12 and 13) présent the source code ofan unstructured flowgraph, followed by its

original and structured flowgraphs. The example presented is a small search function in a sorted array.

int lookup(int item, int table[], int *finish) {
intstart= l;

mt l, ret;
label a:

i = (start+ *fuùsh)/2;
if(item == table[i]) goto label_b;
if(table[i]<item) start=i+l;
if(table[i]>item) *fmish=i-l;
if((*fmish-start)>l) goto label_a;
if(table[start]=item) goto label_b;
if(table[*finish]===item) goto label_b;
ret=0;

goto label_c;

labeLb:
ret=l;

label_c:

retum ret;}

Figure 11. Source code example

Figure 12. Unstructured flowgraph.

15

Figure 13. Resttuctured flowgraph.

8. Concluding remarks

This paper présents examples of various applications of static metrics. Areas where more research is
needed are outlined.

Metrics are computed from the static analysis of source code. Statistical analysis is performed to identify

the information content of the metrics selected. AU, or a subset, of the metrics are selected to perform the
assessment. Metrics' distributions are studied to détermine the usual ranges of values, and out-of-range

functions are identified. Percentile profiles give a project overview of the percentage of out-of-range
functions. Quality factors are defined by grouping metrics. A normality profile gives the percentage of

success for every quality factor. Finally, function coupling is evaluated fi-om the 3-D call graph
représentation.

The iconic control flow représentation helps to precisely visualize the control Qow of a program. This
visualization is rigorous and always présents the same information density. The iconic control flow
représentation could be a reliable and efficient way to manage control flow complexity. The most usefiil

metrics computed on the représentation are the number of independent paths, the number of décision
summits, the nesting level and the number of breaches of structure.

Such work was needed for various reasons. Control flow visualization is useful in helping programmers
develop and maintain their programs. A great deal of work is being done on the transformation of control
flow in re-engineering, restructuring, documentation, optimization, etc.. Also metric measurement
needed a more rigorous framework. New implementation paradigms needed to be evaluated. Hopefiilly
this goal will be reached by third génération static analyzer tools.

Research is currently under way to identify new metrics and to increase the information content of the
control graph. The formai basis of control flow représentation enables research on control flow
optimization, automated reverse engineering and the automated évaluation of control flow based on

algorithm spécifications.

16

This work deals strictly with the internai control flow of a software unit, which consdtutes only a part of
the information contained in the source code. Other information, such as software unit calls and data flow,

can be studied in a similar way.

This approach, based on graphs and profile, is visual and as a result many différent types of people are
afforded immédiate access to information. Function profiles can be modified at will to explore spécifie

aspects of program quality, and profile simulations can evaluate the impact of function redesign on project

quality. The programmer can obtain immédiate feedback on any implemented function.

The versality of this approach makes it conducive to exploratory study and to the development of custom
assessment programs. The metrics based on infomiation theory can be integrated into exiting metrics.
This approach is also of interest in the maintenance and testing area where an inside picture of the

software can provide insightful dues as to where further the development effort should be concentrated.
We feel that merely introducing this tool into the development process at an earlier stage may result in

increased productivity

The problem of metric validation remains. This could be solved by an extensive study of the relationship

between the me&ics presented and data on error rates, development costs and reliability indicators. Such a
study could be viewed as the next step toward the validation of this model. The neural network is a
promising new tool for metric validation, and object-oriented approaches offer new applications for stade
metrics. We believe that the formai modeling of source code is a prerequisite for any breakthrough in the

understanding of static metrics.

Acknowledgements

We thank members of our group who have worked on thèse projects, and offer spécial thanks to André

Beaucage, Jean Mayrand, Frederick Chouinard and Martin Leclerc. Support for this work was provided
in part by Bell Canada, the National Research Council of Canada (under grant A0141), Schemacode

International inc., and the various organizations that apply thèse approaches and provide us with
meaningful feedback.

Références

l. D. Coupai and P. N. Robillard, "Factor Analysis of Source Code Metrics," Journal of Systems and

Software, Vol. 12, No. 3, pp. 263-269, July 1990.

2. Robillard, P. N., "Schematic Pseudocode for program constructs and ils computer automation by
SCHEMACODE", Communications ofthe ACM, Nov. 1986, Vol 29, no 11, pp 1072-1089.

3. J. C. Munson and T. Khoshgoftaar, "The Dimensionality of Program Complexity," Proceedings of

the H ^International Conférence on Software Engineering, Pittsburgh, pp. 245-253, May 1989.

4. Robillard, P.N., Simoneau, M., "A New Control Row Représentation", 15th Annual Int'l Computer

Software and Application Conf. (COMPSAC91), Tokyo, Japan, Sept. 1991.

5 Robillard, P.N., Coallier, F., "Practical Expériences With Source-Based Measurement", International

Conférence on Applications of Software Measurement, pp. 43-47, Nov. 12-15, 1990, San Diego.

6 Tripp, L. L. "Bibliography on Graphical Program Notations," ACM SIGSOFT, Vol. 14, No. 6,

pp. 56-57, 1989.

7a Verilog, Logiscope Général Presentadon, Verilog U.S.A., Alexandria, Virginia, October 1988, p2,4.

7b McCabe & Associâtes, The Analysis of Complexity Tool, McCabe & Associâtes Inc., Columbia,
Maryland.

17

8 Zuse, H. Software Complexity - Measures and Methods, Walter de Gruyter & Co., Berlin, 1991.

9 Fenton, N. E. and Mole, P. D. A. "A Note on the use of Z to specify flowgraph décomposition",
Journal of Information and SoftwareTtechnology, 30(7), pp. 432-437, 1988..

10 Ding, C., Mateti, P. "A Framework for the Automated Drawing of Data Structure Diagrams", IEEE
Transactions on Software Engineering, SE-16(5), pp. 543-557, 1990.

11 Aho, A. V., Sethi, R., Ullman, J. D., Compilers: Principles, Techniques, and Tools, Addison-Wesley
Publishing Company, 1988

12 Woodward, M. R., Hennell M. A. and Hedley, D. "A Measure of Control Flow Complexity in
Program Text",/£££' Transactions on Software Engineering, SE-5(1), pp. 45-50, 1979.

13 Berge, C. Graphs, North-Holland Mathematical Library, North-Holland, 1985.

14 Robillard, P. , Coupai, D. and Coallier, F. "Profîling Software through the Use of Metrics", Software

- Practice and Expérience, 21(5), pp. 507-518, May 1991.

15-Oulsnam, G. "Unravelling Unstructured Programs", The Computer Journal, Vol. 25, No. 3, 1982.

DATRDÎ™ is a registered trademark of Bell Canada.

Software Through Pictures™ is a registered trademark of Interactive Development Envmmments

Lotus 1-2-3 ™ is a registered trademark of Lotus Development Corporation

SAS™ is a registered brademark of the SAS Institute Inc.

18

ÉCOLE POLYTECHNIQUE DE MONTREAL

3 9334 OÔi

