
Titre:
Title:

Performance of the adaptive viterbi algorithm: error probability and
computational effort

Auteurs:
Authors:

François Chan, & David Haccoun

Date: 1996

Type: Rapport / Report

Référence:
Citation:

Chan, F., & Haccoun, D. (1996). Performance of the adaptive viterbi algorithm:
error probability and computational effort (Rapport technique n° EPM-RT-96-14).
https://publications.polymtl.ca/10051/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/10051/

Version: Version officielle de l'éditeur / Published version

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Institution: École Polytechnique de Montréal

Numéro de rapport:
Report number:

EPM-RT-96-14

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/10051/
https://publications.polymtl.ca/10051/

'? i.:1 — r,;T :;•; 'r ;, ••• ? ';..'"', .:,•'• '"'.• -<-

îif^U' ^ <„ S' Y L i t :L. ;-..' !' 1' » '^ i •>.• *J ;'- BJBUOÎHEOOS 0 7 NOV. 1996

PERFORMANCE 0F THE ADAPTFVE VITERBI ALGORITHM:
ERROR PROBABILITY AND COMPUTATIONAL EFFORT

François Chan and David Haccoun

Ecole Polytechnique de Montréal

Juin 1996

Tous droits réservés. On ne peut reproduire ni diffuser aucune partie du présent ouvrage, sous quelque
forme ou par quelque procédé que ce soit, sans avoir obtenu au préalable l'autorisation écrite des auteurs.

Dépôt légal, Juin 1996
Bibliothèque nationale du Québec
Bibliothèque nationale du Canada

Performance of the adaptive viterbi algorithm:
error probability and computational effort

François Chan et David Haccoun
Département de Génie Électrique et
de Génie Informatique

Pour se procurer une œpie de ce document, s'adresser au:

Service des Éditions
École Polytechnique de Montréal
Case postale 6079, Suœursale Centre-Ville
Montréal (Québec) H3C 3A7
Téléphone: (514) 340-4473
Téléœpie: (514) 340-3734

Compter 0,10$ par page et ajouter 3,œ$ pour la couverture, les frais de poste et la manutention. Régler
en dollars canadiens par chèque ou mandat-poste au nom de l'École Polytechnique de Montréal.

Nous n'honorerons que les commandes accompagnées d'un paiement, sauf s'il y a eu entente préalable
dans le cas (rétablissements d'enseignement, de sociétés ou d'organismes canadiens.

PERFORMANCE 0F THE ADAPTIVE VITERBI ALGORITHM:
ERROR PROBABimY AND COMPUTATIONAL EFFORT*

François Chan and David Haccoun

Département de génie électrique et de génie informatique

Ecole Polytechnique de Montréal

C.P. 6079, succ. Centre-ViUe, Montréal, H3C 3A7

Abstract — In this paper an adaptive decoding algorithm for convolutional codes, which

is a modification of the Viterbi algorithm (VA) is presented. For a given code, the pro-

posed algorithm yields nearly the same error performance as the VA while requiring a

substantially smaller average number of computations. Unlike most of the other subopti-

mum algorithms, this algorithm is self-synchronizing: if the transmitted path is discarded,

the AVA can recover the state corresponding to the transmitted path after a few trellis

depths. Using computer simulations over hard and soft 3-bit quantized Additive White

Gaussian Noise channels, it is shown that codes with a constraint length K up to 11 can

be used to improve the bit error performance over the VA with K=7 while maintaining a

similar average number of computations. AIthough a small variability of the computational

effort is présent with our algorithm, this variability is exponentially distributed, leading to

a modest size of the input buffer and hence, a small probability of overflow.

This research bas been supported in part by the Natural Sciences and Engineering Research Council of Canada, the Fonds pour la formation
des Chercheurs et l'Aide à la Recherche (FCAR) du Québec and by the Canadian Institute for Télécommunications Research under the NCE

program of the Govemment of Canada.

I. INTRODUCTION

The use of convolutional codes with probabilistic decoding can significantly improve the

error performance of a communications System [l], [2]. The Viterbi algorithm (VA) [1]-[3],

which is one of the most widely used decoding algorithms is optimal but its complexity in both

number of computations and memory requirement increases exponentially with the constraint

length K of the code, limitmg it in practice to codes with K <, 9. Hence, when codes with

a longer constraint length are required in order to achieve a lower error probability, decoding

algorithms whose complexity does not dépend on K become especially attractive.

Several multiple-path, breadth-first, decoding algorithms, such as the M-algorithm and

Simmons's algorithm have been proposed as alternatives to the VA [4]-[8]. Unfortunately with

thèse algorithms, should the correct path be lost, then its recovery is rather difficult, leading

to very long error-events. The error propagation is usually contained by organizing the data in

frames or blocks with a known starting state or by using some spécial recovery scheme [9].

Although thèse algorithms may achieve a low error-event probability, the bit error probability is

rather poor in the absence of a good recovery scheme. In the algorithm proposed here, which is

a modification of the VA, this shortcoming may be easUy circumvented.

In the proposed algonthm, called Adaptive Viterbi Algorithm (AVA), instead of keeping all

the 2K-Ï states at each trellis level, only some of the best or most likely states are kept. For any

trellis level, should the state corresponding to fhe correct path be discarded, then unlike most

of the other suboptimum algorithms, the AVA can automatically recover the correct state after

a few trellis levels. Hence, catastrophic error propagation is avoided without requùing the data

to be separated in blocks with a tail of known bits. As a conséquence, not only can the AVA

achieve a good error-event probability, but also a good bit error probability. In addition, since

for a given code the number of sundvors is smaller than with the VA, then a longer and more

powerful code can be used while requiring a smaller average number of survivors.

The paper is organized as follows. In Section H, the Adaptive Viterbi Algorithm is described

and compared to other decoding algonthms. The error performance of this algorithm is then

investigated in Section ffl. Simulations results on the performance ofthe proposed algorithm over

Additive White Gaussian Noise channels are provided in Section IV and compared with those of

the Viterbi algorithm. For a given code the AVA can achieve an error performance similar to that

of the VA while requiring a much smaller average number of survivors. In Section V decoding

dynamics and the distribution of computadon are investigated. Simulations results indicate that

the probability of input buffer overflow can be made as small as desired.

H. DESCRIPTION 0F THE PROPOSED ALGORITHM

The Viterbi algorithm (VA) examines all possible distinct paths in the trellis and détermines

the most likely one [1]-[3]. In order to reduce the complexity of the VA, defined as the number of

survivors, and hence be able to use more powerful codes, the number of survivors at each trellis

level must be reduced by discarding some of the least likely paths. In the proposed algorithm,

instead of keeping all the states at each trellis level, only a number of the most likely states are

kept and all the others are discarded. The sélection is based on the likelihood or metric value

of the paths, which for the VA over a binary symmetric channel is the Hamming distance. The

number of survivors is not constant but varies according to the needs imposed by channel noise.

We call this algonthm Adaptive Viterbi Algorithm (AVA).

In the AVA, every surviving path at trellis level (/-l) is extended and its successors at

level / are kept if their Hamming distances are smaller or equal to {dm + T), where T is a

discarding threshold selected by the user and where dm is the mùùmum Hamming distance of

all su-vivors at level (/-l), that is, dm is the Hamming distance of the most likely path at level

(/-l). Furthermore, for reasons of practicality the total number of survivors is not allowed to

exceed some number Nmax, selected by the user. Therefore, a successor is kept only if the

number of survivors does not exceed Nmax- Using the minùnum distance at the previous level

(/-l) instead ofthe minimum distance at the current level / allows to décide immediately whether

a path should be kept or not without waiting for all path distances at level / to be computed, i.e.,

without knowledge of the minimum distance at the current level. As in the VA, path remergers

are considered. However, to simplify the implementation, when a path merges to a given state

with a smaller distance than a previous path, that previous path is not eliminated immediately.

Instead, a large number is added to its distance so that at next trellis level, the distance will not

satisfy the threshold and hence, the path will be discarded. Clearly, the value of the discarding

threshold T directly influences the number of survivors and the probability of error. Determining

appropriate values for T is discussed in Section ffl.

Since at any treUis depth the niunber of survivors is limited to Nmax, then clearly, only the

Nmax most likely among all possible survivors satisfymg the threshold must be extended. To

that effect a simple sorting opération is used. The states satisfying the threshold rule are sorted

using a number of (T+l) bins: state i with Hamming distance di is stored in binj if di ^ dm +j,

0 <i j <: T. At the next trellis level, paths stored in bin 0 are extended first, followed by those

in bin l and s o on until no more path remains or until the number of survivors exceeds Nma.x •

This very simple sorting method ensures that when the number of paths satisfying the discarding

threshold exceeds Nmax, the paths extended are more likely than the ones not extended. The

effect of Nmax on the performance is analyzed below.

In order to illustrate how the AVA opérâtes, an example using a rate R= 1/2, constraint length

K=3 code is given in Fig. l where the received séquence Y=(01,10,00,01,00,11), including a

tail of 2 zéros, is decoded with the AVA. The threshold T is set equal to l. Le., a path is rejected

if its distance from the received séquence Y is larger than {dm + l). As expected, it can be seen

from Fig. l that the number of sundvors with the AVA is smaller than with the VA which has

2K-1 or 4 survivors at each trellis level. The decoded path, shown in heavy Une, would be the

same if the VA had been used in this example.

When there is no channel error, the Hamming distance spread of the extended paths is large,

leading to a small number of survivors. When the channel is very noisy, the distance of the

transmitted path may not satisfy the threshold anymore. Hence, the transmitted path may be

discarded, leading to erroneous decoding. In this case, the distance spread is small because all

the extended paths tend to have approximately the same Hamming distance on the average and

thus, the number of survivors tends to increase. If the maximum number of survivors Nma.x is

chosen to be equal to 2K~1 and if the threshold value is large enough, after a few trellis depths

the number of survivors increases to 2K~Ï which corresponds to the number of survivors of the

VA. Since the total number of distinct states in the trelUs is equal to 2K-Ï, then clearly, the

correct state must be one of the survivors. It should be noted that the correct path has been

discarded for a few branches but the correct state can be recovered and therefore, the decoded

path can remerge with the transmitted one. Erroneous decoding does not last until the end of the

information séquence, but is limited to the time period during which the correct path has been

lost. By recovering the correct state, catastrophic error propagation is avoided, thus preventing

a high bit error probability. For example, it has been observed from our simuladons that with a

threshold T=4, the correct state is recovered within one constraint length on the average with a

K=7 code and within two constraint lengths with a K= 10 code.

We now détermine the probability Prec that the correct state is recovered. It has been

mentioned above that when the channel is noisy and the correct path is lost, the distances of

extended paths tend to be close to each other. Let the number of paths satisfying the threshold

at a given trellis level be larger than Nmax- The recovery probability Prec or the probability

of selecting at that trellis level the correct state among the Nmax smvivors is the ratio of the

favorable to the total number of outcomes and may be written as

-2^-1 _ l •

max —
î1

,Nma.,

This problem is équivalent to that of obtaining a spécifie card when Nmax cards are drawn from

a deck of 2K~1 cards. The numerator is the number of favorable outcomes, that is, the number

of groups containing the correct state: the correct state is selected and then the Nmax - l other

states are chosen among the (2K~1 - l) remaming states. Thus, it is equal to (^ 1).
'max

The denominator represents the number of différent groups of Nmax states that can be chosen

from a set of 2K~1 states. After some manipulations, (l) becomes

_ Nmax
rec " ~^K^Ï

Hence, the probability of recovering the correct state Prec is equal to l if and only if Nmax =

2A 1 and the threshold, which is analyzed in Section m, is large enough so that Nmax can

rec — —/oAT-l

be reached. In all other cases, Prec < l and resynchronization or recovery of the correct state

once it is lost is not guaranteed. As a conséquence, Nmax is selected to be equal to 2K~1 in

all our simulations.

In summary, this algorithm is similar to the VA except for the sélection and the number of

swvivors which is not constant. The AVA decoder adapts its computational effort to the current

quality of the channel. We now descnbe what distinguishes the AVA from other well-known

decoding algorithms.

Comparison of the AVA with other decoding algorithms

Let us first consider the VA. Being optimal, for a given code with a constraint length K,

the VA provides the best possible error performance. However, it requires a very large number

of survivors, 2K-1 per trellis level. The advantage of the AVA over the VA is that on average

the number of survivors is reduced at the expense of a small computational variabUity. Just like

the VA, the AVA can resynchronize automatically without requiring a taU of known bits at the

end of the frames. Hence, the AVA can be used in the same applications as the VA, provided

a modest input buffer is available. It will be shown that the error-event probability and the bit

error probability of the two algorithms for a given code can both be very close with the choice of

appropriate parameters values for the AVA. Compared to the VA, for a given error performance,

the average number of survivors of the AVA is smaller, or for a given average decoding effort,

the error performance of the AVA is superior.

Next, sequendal decoding is considered. The major shortcoming of sequential decoding [l]

is the large, Pareto-type variability of the computational load [10], [11]. Compared to sequential

decoding, the average computational load of the AVA is larger but far less variable. Therefore,

for a given buffer size, the typical input buffer overflow probability is much smaller for the AVA

than it is for sequential decoding. To summarize, the decoding effort of sequential decoding

is very small but very variable, leading to a high buffer overflow probability, while with the

AVA, the number of survivors is larger on average but far less variable, resulting in a very small

overflow probability.

Turning to the M-algorithm [6], [9], the main différence between the AVA and the M-

algorithm is resynchronization, one of the M-algorithm's biggest disadvantage. Since the M-

algorithm cannot easily recover the lost transmitted path, frames with a tail of known bits are

required, which reduces slightly the effective data throughput. Furthermore, when the correct

path is lost, the bit error probability of the M-algorithm is quite large due to error propagation.

On the other hand, since the AVA can recover the correct state as mentioned previously, it can

achieve both a small error-event probability and a smaU bit error probability. For a given error

performance, the AVA requires a smaller average number of survivors at the expense of a small

variability and modest input buffer. Using an input buffer, the AVA can take advantage of the

smaller average computational load by operating at a higher data rate without increasing the

clock frequency. Pinally, it should also be noted that the sélection of M among 2M paths is

much more complex than a simple comparison to a threshold.

The AVA présents some similanties with Simmons's algorithm (SA) [8]. They both use

a threshold to select surviving paths, like many other adaptive algorithms [4], [12]. There

is, however, a major différence between the AVA and the SA: the AVA can resynchronize

automatically whereas the SA cannot. Hence, the bit error probability of the AVA can be

very close to that of the VA, whereas with the SA, only the error-event probability has been

considered [8].

Several other différences between thèse two algorithms can be observed. First, the AVA

considers the minimum distance at the previous trellis level. The SA uses the minimum distance

of the current level to select the survivors and hence, requù'es two steps to process the extended

paths: the minimum distance must first be determined and then, the paths not satisfying the

threshold are rejected. Another différence between the AVA and the SA is sorting. The SA does

not sort the selected paths, while the sorting in the AVA is very simple and avoids the "iterative

reprocessing with tightened thresholds" proposed by Simmons when the number of survivors

exceeds the allowed maximum number. In addition, the SA does not consider path remergers.

In summary, when comparing the five steps of the SA as described by Simmons [8], only

the first one, which consists in extending the surviving paths and computing their new metncs,

is common to both algonthms. Since the SA, just like the M-algorithm, cannot recover the

lost transmitted path, a tail is still required at the end of each frame and hence, the bit error

probability may be quite high due to error propagation.

m. ELEMENTS 0F ERROR PERFORMANCE ANALYSIS

In this section, we show that the error performance of the AVA can be very close to that

of the VA if the algorithm's parameters (especially the threshold and the maximum number of

survivors) are properly set. Error events of the AVA can be classified into two catégories:

l) Errors caused by a burst of noise exceeding the error-correcting capability t of the code.

Thèse errors are due to the limitations of the code and occur even with an optimum algorithm,

such as the VA.

2) Errors resulting from the discarding of the correct path even though the error-correcting

capability t of the code is not exceeded. Thèse errors, due to the limitations of the decoding

algonthm, could have been avoided if the VA had been used.

The two catégories above are mutually exclusive because of the condition in 2) specifying

that the number of channel errors does not exceed t. An error-event occurring with both the AVA

and the VA belongs to category l because category 2 comprises only error-events that can be

avoided with the VA. Hence, a given error-event belongs either to category l or to category 2.

Likewise, bursts of noise can be classified into two catégories: category l corresponds to

bursts causing a Viterbi-type behavior, category 2 to bursts causing a suboptimum-type behavior

with loss of the correct path and erroneous decoding, but no error with the VA. A given burst of

noise belongs either to category l or category 2. Thèse two catégories are mutually exclusive

and represent aU possible cases. Fig. 2 (a) illustrâtes the classification of the bursts of noise in

the two catégories. A burst of noise can cause no error-event, which corresponds to subset A of

category l, or it can cause an error-event with the AVA but not with the VA (subset B of category

2). It can also cause an error-event with any algorithm, including the VA (subset C of category

l). The number of channel transitions or symbol errors that a burst of noise must cause in order

' For a convolutional code, with a free distance dfree, the error-conecting capability is defined ast = dITtcï , where \x\ is the integer

part of x, when we consider an information séquence with a length greater than the length required to obtain dfree-

to belong to subsets A, B or C cannot be specified m advance since it dépends on the position of

thèse transitions, but may be determined by computer simulations as explained later. As shown

in Fig. 2 (b), a burst of noise may have more than t transitions but still belong to subset B if thèse

transitions can be decoded without error by the VA. Similarly, CT+1) non-successive transidons

do not necessarily lead to a correct path loss and hence, the burst may belong to subset A.

An error-event can occur with a category 2 burst (subset B in Pig. 2 (a)) or with a category

l burst (subset C). Prom the theorem on total probability, the probabiïity of error-event is thus

given by

P(E) = P(E/V)Py + P(E/L)PL (3)

where

JV=Probability that the burst of noise belongs to category l

P(-E'/y)=Probability of an error-event given the burst of noise belongs to category l

Pl,=Probability that the burst of noise belongs to category 2 (correct path lost and no error

with VA)

P(-B/Jr/)=Probability of an error-event given the burst of noise belongs to category 2.

P{E/V) is the error probability of an optimum decoding algorithm, such as the VA. Let

P(E/V) = P {E} t. Bounds on P(E)opt are well known [1]-[3].

Since the two catégories are disjoint we have

PV+PL=Ï (4)

Using (4), (3) becomes

P(E) -- P{E)^(1 - PL) + P(E/L)PL

= PW^ + PL (P{EIL} - P{E\^ (5)

But

P(E/L) = l (6)

9

since an error-event will occur with certainty if the correct path is lost. Furthermore, for Eb/No

large enough we can write

P{E)^ « l (7)

Hence, (5) can be written as

P(E) ^ P(E)^ + PL (8)

where P{E}^ is due to the code and PL is due to the decoding algorithm.

From (8), P^ represents the dégradation of the performance of the AVA with respect to the

VA. Determinmg analytically the exact performance dégradation due to the suboptimality of a

decoding algorithm is a complex problem, which remains open. The approach proposed here is

not a rigorous and complète analysis but an approximation examining for which values of T, P^

may be neglected. We recall that PL is the probability of discarding the correct path without

exceeding the error-correcdng capability of the code, that is, PL is the probability of losing the

correct path and not making any error if the VA had been used. Let Pigys be the probability of

correct path loss with the AVA and Pcorrect/ioss the probability that the VA is correct given the

discarding of the correct path by the AVA. Then, PL is the product of thèse two probabilities

correct /loss'rloss

Assuming the maximum number of survivors Nmax is equal to 2K~1 we now détermine Pioss for

a Binary Symmetnc Channel (BSC). The correct path is discarded or lost if the BSC is affected

by more than (T+l) consécutive transitions where T is the discarding threshold value. However,

if the n received symbols are affected by ; non-consecutive transitions, T+Ki^n, the number

a^n of combinations of i transitions provoking the discarding of the correct path must first be

determined by computer search. This search is performed as follows. First, n is set to its initial

value, i; the (" } possible combinations of / transitions in n symbols are generated and the

number 0.1^ of combinations causing the loss of the correct state is determined, ai,n <, ('" |.
1

The value of n is incremented and the process is repeated until Q;;,n = 0, i.e., the i transidons

10

are so distant that they do not cause a loss of the correct path. Let n; be the last value of n for

which a.in is nonzero. It is conjectured that if n is increased beyond /!„ we still have a^n = 0

and thus, it is unnecessary to increment n further. Hence, over a BSC with channel transition

probability p, the probability of path loss due to ; transitions is given by

Pz-^wl(i-p}}-1 (io)

]=t

In a good channel with a small transition probability p, (ï-pV'1 can be approximated by l.

Therefore, (10) becomes
">

P^j^a^pl^aipi (11)
]=l

n,
v"^

where a, = ^ a, j.
J=î

Pcorrectiiossls the probability that the VA can correct the chaimel transitions having caused the

loss of the correct path with the AVA. The 0'; previous distinct séquences of channel transitions

are generated again and the number of séquences among them that can be decoded without error

by the VA is denoted /3;. For ; transitions

'z

correct/tossi —
di

Using (9) the dégradation caused by ; transitions is

PL. = PzPcorrect/ïoss, ^ M)^ ^ A?i (13)
a,

Since the number of transitions we have to consider may vary from (T+l) to oo, the total

dégradation is given by
00 00

PL = ^ PL, ^ S W (14)
t=r+l i=T+Ï

However, the number ^; of sequenœs affected by ; transitions that the VA can correct tends

towards 0 as ; increases because if t is the error-con-ecting capability of the code, the probability

that the VA can correct (t+k) transitions, k=l, 2, ... , decreases rapidly with k. Hence, since /3i

tends towards 0 when i>t+l, we can write

t+Ï

PL ^ Y, ^ (15)
i=T+l

11

Therefore, the dégradation PL is practically zéro with T>t. If the threshold value T is equal to

t, we obtain from (15)

PL w pwpt+1 (16)

If p is smaU, we can set Pt+i = l and thus,

PL^Pt+l (17)

Substituting in (8) gives

P(E) ^ P{E}^ + pt+l (18)

In conclusion, both the AVA and the VA offer approximately the same error performance if the

threshold T is set to a value equal to the error-correcting capability t of the code: the dégradation

PL, in the order of pt+l, where p is the transition probability of the BSC, is negligible. As an

example, in a ESC with a signal-to-noise ratio Eb/No=5 dB, the transition probability p is equal

to 3.768 x 10-2. If the threshold value T is equal to 4, the dégradation PL « p5 is approximately

equal to 7.6 x 10~8 indicating that the AVA is quasi-optimum with a threshold value T equal to

t. Computer simulations présentée in Section IV will confirm this result.

IV. SIMULATION RESULTS

The performance of the AVA over Additive White Gaussian Noise channels has been

simulated on Sun workstations. Bit error probability and complexity, defined as the average

number of survivors per decoded bit are first considered over a Binary Symmetnc Channel

(BSC) and then, over a 3-bit quantized channel. The optimal free distance, rate 1/2 convolutional

codes [l], [2] with a constraint length K, 7^K^12, are used. Randomly generated information

bits are not divided into blocks. The length of the information séquence dépends on the expected

decoded error probability and can reach 250 million bits for the K=ll code at a signal-to-noise

ratio Eb/No=4.0 dB over a 3-bit quantized channel. The decoding depth or path memory L

[l]-[3] in all our simulations is selected to be six times the constraint length K of the code, as

12

in the VA [13] and almost no improvement is gained by increasing further the value of L. The

maximum number of survivors Nmax ls set equal to 2K~1 for all codes.

Binary Symmetric Channel

Fig. 3 shows the bit error probability P{B) as a function of Eb/No for the VA and AVA

over a BSC as the constraint length K varies from 7 to 10. Fig. 3 shows that with T=4, the AVA

yields nearly the same bit error probability as the VA with the K=7 and K=8 codes which have

an error-correcting capability t=4. This confirms that the performance of the AVA is similar to

that of the VA if T=t. For codes having consb-aint lengths K=9 and K=10, keeping T=4, the

performance of the AVA is slightly inferior to that of the VA because the threshold is lower than

the error-correcting capability, which is equal to 5 for thèse codes. However, as indicated in

Pig. 3, thèse codes provide a better error performance with the AVA than the K=7 code with

the VA while requiring a lower average computational load.

In Fig. 4, the bit error probability at a signal-to-noise ratio Eb/No=5.5 dB is plotted as a

function of the average number of survivors. For example, we can see from Fig. 4 that the

average number of survivors is approximately 30 with T=4 and that this number varies only

slightly with K. For K=8, the AVA requires on the average about one quarter of the number of

survivors (26.0 instead of 128) while achieving the same probability of error as the VA. The

improvement is even more important when the AVA is used with K=10: its error performance

is slightly superior to that of the VA with K=9; the average number of survivors is, however,

only 29.5 instead of 256 for the VA. This figure illustrâtes the advantage of the AVA: for the

same bit error probability the AVA requires a smaller average number of survivors than the VA.

Furthermore, because of the adaptive nature of the AVA, this algorithm is even more efficient

when the channel is good. As the signal-to-noise ratio increases, the AVA's average number of

swvivors decreases whereas for the VA, the number remains constant. As a conséquence, the

higher the signal-to-noise ratio, the more advantageous it is to use the AVA instead of the VA.

Since the computational effort is affected mostly by the threshold value and only slighdy

by the constraint length of the code, Fig. 5 indicates which code should be used for a given

threshold or a given computational effort. With T=4, the K=10 code gives the best probability of

13

error. Using the more powerful K=12 code with the same threshold results in a worse bit error

performance since the threshold is now too low for this code. Hence, for a given threshold value,

there is an optimum code choice and a code with a longer constraint length does not improve

the bit error probabUity: if the threshold is too low, the resynchronization time is longer and

an error-event may contain more bit errors.

Fig. 5 also allows the détermination of the threshold value required in order to achieve a

given bit error probability at a given Eb/No value. Suppose a bit error probabUity P(B) f»

2 x 10-5 is to be achieved at Eb/No=5.5 dB. In addition to the VA with K=9, Fig. 5 indicates

two possible choices: the AVA with K=10 and T=4 or the AVA with K=9 and T=5. In the first

case, the average number of survivors per decoded bit is 29.5, whereas in the second one, it is

62.8. Clearly then, the K=10 code with T=4 is the code to choose.

Soft-quantized channels

3-bit (8-level) soft quantization of the channel is performed to provide approximately a 2 dB

gain in Eb/No over hard quantization [13]. Integer code symbol metrics are used instead of the

log-likelihood metrics [13], [3] and the smallest metric is considered the maximum likelihood

metric. For the sake of simplicity, the number of bins is not equal to (T+l) and the sorting is not

exact. Simulations showed that the error performance is not affected by the number of bins when

the maximum number of survivors is not limited. However, with the path remerger procédure

described in Section H, a single bin increases slightly the average number of survivors. Hence,

the number of bins has been arbitrarHy selected to be equal to 6. State i with metric J, is stored

in bin j if [j^ x (rf, - c4n)J = J , 0 < j < 5, where [a;J is the integer part of x, dm is the

maximum likelihood metric at level l-î and T is the value of the discarding threshold.

The appropnate value of the discarding threshold for a 3-bit quantized channel is determined

by computer simulations. Fig. 6 shows the bit error probability of two différent codes under two

différent Eb/No values as a fonction of the threshold value T. As for hard décision, there is one

value of the threshold beyond which the error performance is not improved anymore even if the

threshold were increased further as shown in Fig. 6; the optimum performance achieved by the

14

AVA is then very close to that of the VA as illustrated in Fig. 6 where the performance of the VA

is représentée by two points, corresponding to K=l l and K=7. As expected from our previous

results with hard quantization, the threshold values should be larger for a longer constraint length

code. For the K=l l code the performance of the AVA with 24^T^26 is already very close to

that of the VA and therefore, a threshold value between 24 and 26 may constitute an adéquate

choice depending on the desired error performance and decoding complexity. Incrementing T

by one yields approximately a 20% increase in the average number of survivors.

Fig. 7 compares the bit error rates of the AVA and the VA as a function of Eb/No for codes

varying from K=7 to K=ll. It is seen that for the K=7 code, the AVA with a threshold value

T=24 gives ahnost the same error performance as the VA, demonstrating that, as expected, the

AVA can approach the optimum error performance while requiring a much smaller number of

survivors. As an example, at 3.5 dB, the AVA requires an average number of 29.5 sm-vivors for

the K=7 code while the VA requires 64. For the K=ll code and a threshold T=26 the AVA, with

a lower average number of survivors (41.6 at 4 dB), can achieve a gain of IdB approximately

over the VA with a K=7 code at P(B) = 10~6; increasing the value of T by one from 24 to 26

for the K=ll code has résultée in an improvement in Eb/No of 0.1 dB approximately.

Considering the probability of error-event, the gain is slightly larger and can reach about

1.1 dB at P(E)=10-6, as shown in Fig. 8. The improvement of the gain with the error-event

probability over that with the bit error probability can be explained as follows. When using a

code with a longer constraint length for the same threshold and Eb/No values, the number of

error-events is reduced, resulting in a lower error-event probability. However, the number of

erroneous bits in an error-event increases with K in général. Furthermore, with the AVA an

error-event caused by a correct path loss may contain many erroneous bits due to the recovery

time, which for a given threshold is longer as K increases, leading to a larger bit error probability.

As an example, Table l shows some simulations results for spécifie values of K, Eb/No and T.

It can be seen that at Eb/No=3.5 dB and 4.0 dB the K=12 code achieves a lower error-event

probability but a higher bit error probability than the K=ll code. We also notice the decrease in

the average number of survivors as Eb/No improves. Through extensive simulations, it has been

15

observed that for a given threshold, error-event probability improves with the constraint length

K of the code, while the bit error probability improves with K up to a maximum value of K

and then dégrades as K is increased further. In applications such as hybrid ARQ Systems, where

the error-event probability is more important than the bit error performance, a lower error-event

probability can be achieved by increasing K.

Comparing the performance of the AVA with soft and hard quantizations, we notice that

soft quantization provides more flexibility and more alternatives for the discarding threshold,

allowing a somewhat "finer tuning". As an example, with hard quantization and a K=10 code,

increasing the threshold value from 4 to 5 involves more than a doubling of the average number

of survivors. On the other hand, with 3-bit quandzation and a K=ll code, increasing the

threshold value from 24 to 25 improves the bit error probability, whiïe increasing only slightly

the average number of survivors. Consequendy, a larger gain over the VA can be achieved

using soft instead of hard quantization. It is shown in Section V that the required buffer is

modest, confirming that the threshold value T=25 can be used with an AVA decoder performing

64 computations per decoded bit.

In conclusion, we have shown in this section that the AVA can offer practically the same

error performance as the VA while requiring on the average a much smaller number of survivors.

Hence, for a given average number of survivors, a longer code can be used with the AVA. The

average number of survivors gives a good idea about the overaU decoding effort. However, since

this number varies during the decoding, input buffer requirements must now be examined.

V. COMPUTATIONAL VARIABILnT

Since the number of survivors required to decode one bit with the AVA may vary, a buffer

is required at the input of the decoder. Let p, be the decoder speed factor, that is, the number of

computations which the decoder can perform in the interarrival time ofthe information bits. If the

current number of survivors that must be extended is larger than p,, then a newly received branch

must be stored in an input buffer until the decoder bas the time to process it. However, unlike

sequential decoding, the computational variability of the AVA does not come from backing up in

16

the trellis but from extending a varying number of paths, all of the same length. It is therefore

far less sévère than for sequential decoding.

Before considering the required size of the input buffer, first the distribution of computation

has to be determmed. It is known that sequential decoding has a Pareto distribution of

computation due to the combined result of two opposing effects [10], [11]: the probability

of a burst of noise of length n in a memoryless channel decreases exponentially with n, whereas

the number of computations required by the decoder due to such a burst increases exponentially

with n.

By a similar argument, we show that over a memoryless channel the distribution of the

computadonal effort of the AVA is exponential. For such a channel, the probability of a channel

burst of length n decreases exponentially with n. However, the number of computations caused

by that burst does not increase exponentially since backtracking is not allowed by the algorithm

and the number of survivors is limited to a finite value Nmax, Nmax < ÎK~1. The combined

effect of thèse two behaviors results in an exponential distribution as confirmed by computer

simulations.

Fig. 9 shows simulations results of the computational distribution P(C^N) for K=8 over a

B S C, where C is the required number of computations to decode one bit and N, a given number.

The curve is plotted on semi-log axes and we see that P(C^N) can be approximated by a straight

line, corresponding to an exponential distribution.

The distribution of computation being exponential, we now relate it to the distribution of the

size of the queue in the input buffer P(ç/ ^ s;), where qi is the queue size in the buffer at trellis

level /, that is, the number of received branches stored in the buffer when the decoder is at trellis

level / and si, a given value. Code symbols are assumed to an-ive periodically firom the channel

at a constant rate and processed according to a First-Come First-Served (PCFS) rule. The size

of the queue in the buffer is measured periodically at the instant of arrivai of each new branch

from the channel. The queue size at trellis level / dépends on the number of computations CQ

required by the first branch in the buffer. If the buffer is empty at level /, CQ is, of course, the

number of computations required by the current branch. If CQ > fi, where ^ is the decoder speed

17

factor, then it is clear that the queue size increases by one received branch. Hence, we have

P(qi ^ ^) = P{CQ ^ N) (19)

where N is a number which dépends on p, and si. Since the distribution of computation is

exponential, the distribution of the size of the queue in the input buffer is also exponential.

The probabiUty of buffer overflow is now considered. To simplify the analysis, it is assumed

that the buffer is empty at treUis level /. Let B be the buffer size, CQ the number of computations

required to decode the received branch at level /, which is the first branch in the buffer and p, the

decoder speed factor. Then, the probabiUty of buffer overflow caused by branch / is given by

Poverfhw = P[CQ > BfJ, + fi)
(20)

=P{Co>^B+l))

Thus, if CQ > p,(B + l), overflow occurs at level (l+B). From (20), the probabUity of overflow

decreases exponentially with fi and B since CQ is exponentially distributed; hence, unlike a Pareto

distribution [10], [11], it can be made as small as desired by increasing // or B. Furthermore,

since Co decreases rapidly with the noise, the probability of buffer overflow also decreases in

the same fashion with the noise. Therefore, unlike sequential decoding, overflows should not

présent a problem with the AVA, as verified by computer simulations discussed below.

In our simulations, in addition to the probability of error and the number of survivors, the

size of the queue in the input buffer is examined at each trellis level. When an information

bit is generated, the queue size is incremented by one branch at the time of arrivai of the new

branch. We assume that /<=64, i.e., the decoder can process 64 survivors at each trellis level like

a K=7 Viterbi decoder. If the first branch in the buffer requires C computations, C>//, then at

the next trellis level the queue size is incremented but the received branch is not processed until

the cun-ent branch is decoded. If, on the other hand, C<^, then the queue size is decremented by

one branch and the decoder processes the next branch in the buffer. If this branch requires fewer

than Ç/ji-C) computations, the queue size is again decremented, and so on. Computer simulations

results over the BSC shown in Table 2 indicate that for K=10, when decoding 100 millions

bits at Eb/No == 5.5 dB, the maximum queue size of the buffer is only 456 branches. For the

18

K=ll code the queue reached a maximum size of 2049 branches and hence, a larger buffer is

required. However, Fig. 5 showed that this code does not provide a better error probability

than the K=10 code. Therefore, this code should not be used with the AVA and T=4, not only

because of the required input buffer but also because of the error performance. For a given

threshold value, which détermines the decoding complexity, the code sélection is governed by

error performance and not by buffer size.

From the queue size at each treUis level, the queue size distribution P(q>s) has been

determined by simulations and is illustrated in Fig. 10 for the BSC and in Fig. 11 for a

soft quantized channel. First, we notice that the distribution is well approximated by a straight

Une on a semi-log graph, indicating an exponential distribution. The tail of the distribution,

which diverges from the straight Une, is unreUable and may be ignored since it corresponds to

a queue size for which insufficient data have been obtained. In Figs. 10 and l l différent codes

and parameters are used. It is seen that the slopes of the curves grow as Eb/No is increased. We

also notice from Fig. 11 the effect of the threshold value T on the queue size distribution: as T

increases, a larger buffer is required. It should be noted that for K=l l and T=26, which provides

a gain of l dB over the VA with K=7 at P(B)=10~6, the buffer requirements are really small:

the probability that the size of the queue exceeds 650 branches is about 10~5. By extending

this straight Une further, the probability would be 10-1° for 1500 branches, implying that the

probability of buffer overflow can be made as small as desired, as expected. From thèse results,

it can be concluded that an AVA decoder performing /u=64 computations per brellis level like a

K=7 Viterbi decoder can use a K=ll code and achieve at P(B)=10-6 a l dB improvement in

Eb/No over the Viterbi decoder: the number of survivors is variable but, since on the average

it is smaller than 64 and the variability is small, only a modest input buffer is required. Under

noisy channel conditions, the number of survivors increases and incoming branches may have

to be stored temporarily in the input buffer. However, except for periods of intense channel

noise, the required decoding effort is lower than the computational capability of the decoder and

thus, the decoder is able to process the branches accumulated in the buffer, quickly eliminating

any backlog.

19

VI. CONCLUSION

A reduced-complexity adaptive decoding algorithm for convolutional codes which can

inherently recover the lost correct state has been presented. With properly selected parameters

the bit error probability can match that of the VA but at a substantially smaller average number

of survivors. Thèse advantages are obtained at the expense of a modest decoding delay and

the reqmrement of a modest input buffer. Since the quality of a memoryless communications

channel is not constant, a decoding algonthm performing a variable number of computations

and adapting its effort to the quality of the channel may be more efficient than an algorithm

with a constant number of computations. The decoding effort spent by the latter algorithm will

be either too high when the channel is quiet or too low for a span of very heavy noise. For a

given complexity, the AVA offers a better performance than the VA both in terms of error rate

and decoding time if the channel is not too noisy as verifîed by our simulations under the same

conditions. The computational vanability is small and hence does not create an input buffer

overflow problem. Furthermore, simulations over Rayleigh fading channels have shown that the

AVA also provides advantages over the VA in this environment. At a bit error probability of

10~5 and with a normalized fading rate FDT=O.I, a gain of up to 2 dB can be achieved with

the AVA and a K=12 code without increasing the average number of survivors compared to the

VA with a K=7 code [14]. FinaUy, a VLSI implementation of an AVA decoder with parallel

processors has been proposed [14].

REFERENCES

[l] V. Bhargava, D. Haccoun, R. Matyas, and P. Nuspl, Digital Communications by Satellite.

New York: John Wiley, 1981.

[2] S. Un and D. J. Costello, Error Control Coding: Fundamentals and Applications. Englewood

Cliffs: Prentice-Hall, 1983.

[3] A. J. Viterbi, "Convolutional codes and their perfonnance in communication Systems," IEEE

Trans. Commun. Technol., vol. COM-19, pp. 751-772, Oct. 1971.

20

[4] D. Haccoun and M. Ferguson, "Generalized stack algorithms for the decoding of convolu-

tional codes," IEEE Trans. Inform. Theory, vol. TT-2Ï, pp. 638-651, Nov. 1975.

[5] T. Aulin, A New Trellis Decoding Algorithm — Analysis and Applications. Tech. report Nr.

2, Chahners Univ. of Technology, Gôteborg, Sweden, Dec. 1985.

[6] C. F. Un and J. B. Anderson, "M-algorithm decoding ofchannel convolutional codes," Proc.

Princeton Conférence on Information Science and Systems, pp. 362-366, Mar. 1986.

[7] J. B. Anderson, "Limited search trellis decoding of convolutional codes," IEEE Trans. Inform.

Theory, vol. FT-35, pp. 944-955, Sep. 1989.

[8] S. J. Simmons, "Breadth-first trellis decoding with adaptive effort," IEEE Trans. Commun.,

vol. 38, No. l, pp. 3-12, Jan. 1990.

[9] C. F. Un, A Truncated Viîerbi Algorithm Approach to Trellis Codes. PhD thesis, Rensselaer

Polytechnic Institute, Troy, NY, Sep. 1986.

[10] J. E. Savage, "The distribution of the sequential decoding computation time," IEEE Trans.

Inform. Theory, vol. TT-12, pp. 143-147, April 1966.

[11]I. M. Jacobs and E. R. Berlekamp, "A lower bound to the distnbution of computation for

sequential decoding," IEEE Trans. Inform. Theory, vol. FT-13, pp. 167-174, April 1967.

[12]D. Haccoun, "Décodage séquentiel des codes convolutionnels de taux de codage élevés,"

Traitement du Signal, vol. 4, n° 6, pp. 471-478, 1987.

[13] J. A. Heller and I. M. Jacobs, "Viterbi decoding for satellite and space communicadon,"

IEEE Trans. on Commun. Technology, vol. COM-19, pp. 835-848, Oct. 1971.

[14]F. Chan, Décodage simplifié: algorithme adaptatif pour codes convolutionnels et technique de

perforation pour modulation codée. PhD thesis. Ecole Polytechnique, Montréal, Nov. 1994.

21

K

7

8

11

11

11

12

12

Eb/No

3.5 dB

2.6 dB

1.6 SB

3.5 dB

4.0 dB

3.5 dB

4.0 dB

T

24

24

24

24

25

26

24

25

26

27

25

25

P(E)

(Number of error-

events)

3.75 x 10-5

(75)
1.82 x 10-4

(182)
4.40 x 10-5

(88)
1.48 x 10-6

(148)

1.25 x 10-6

(125)
1.16 x 10-6

(116)
2.80 x 10-7

(70)
2.20 x 10-7

(55)
1.76 x 10-7

(44)
1.52 x 10-7

(38)
8.70 x 10-7

(87)
2.12 x 10-7

(53)

P(B)

(Number of bit

errors)

1.86 x 10-4

(373)
1.13 x 10-3

(1127)
3.85 x 10-4

(771)
1.54 x 10-5

(1545)

1.10 x 10-5

(1098)
8.36 x 10-6

(836)
3.20 x 10-6

(801)
2.01 x 10-6

(503)
1.29 x 10-6

(323)
1.06 x 10-6

(264)
1.32 x 10-5

(1321)

4.45 x 10-6

(1112)

Avg. Number

of survivors

29.5

57.0

93.2

40.4

50.3

62.3

27.6

33.9

41.6

51.0

58.7

39.0

Table l Simulation results of the AVA at some différent

signal-to-noise ratios over a 3-bit quantized channel

22

K

8

9

10

11

Number of bits

decoded

4x 106

15 x 106

100 x 106

50 x 106

Size of queue in buffer

Avg. size

0.47

1.07

3.08

4.07

Max. size

46

143

456

2049

Table 2 Average size and maximum size of the queue in the input buffer with T=4, ,^=64 and

Eb/No=5.5 dB over a ESC — the queue size is given as the number of received branches

K

8

11

11

Eb/No

2.6 dB

3.5 dB

4.0 dB

T

24

24

25

26

24

25

26

27

Size of queue in buffer

Avg. size

32.7

16.7

48.2

641.8

2.6

5.5

12.7

36.3

Max. size

373

1576

1217

6191

1015

1245

864

1239

Table 3 Average size and maximum size of the queue in the input buffer with //=64 over a

3-bit quantized channel — the queue size is given as the number of received branches

23

Level

Received
séquence

Decoded

path

01 10 00 01

0 00 1 00 2 00 2 00

00 11

11 10 00 01 01 11

Fig. l. Decoding a séquence with the Adaptive Viterbi Algorithm

(AVA) and a discarding threshold T = l. X denotes a discarded

path. The last two branches correspond to the tail of the séquence.

24

Category l , Category 2
Viterbi decoding

Decodin^
error

No
error

Suboptimum decoding
(correct path lost)

B

(a)

No error

Cat.1

~s-

0 TT+1

AVA error

Cat.2

B

t

VA error

Cat.1

c »

Burst of noise

(Number of
transitions)

Fig. 2. (a) Classification of bursts of noise; (b) Example with T<t

25

0.1

0.01 h

0.001 h

@
G-<

0.0001 h

le-05 \-

le-06

\,
'X'

«^
^..'^

48.3N^\
ss\\
sv\\
«\\
^s.\«\ \<^\«A

^\,^•1

^•,.
^\ \,/\ '^

29.5 \\
\s.

l l

Viterbi, K=7
AVA, K=7

Viterbi, K=8
AVA, K=8

Viterbi, K=9
AVA, K=9

AVA, K=10

-vs
,\.

^21.0

23.7

l l

-+— •
-B-.

"X—
^-..

-s^--

3.5 4.5 5 5.5
Eb/No (dB)

6.5

Pig. 3. Comparison of the bit error probability over a BSC of the Viterbi algorithm and

)K-Ithe Adaptive Viterbi Algorithm (AVA) with maximum number of survivors Nmax= ÏK'

and threshold T = 4; average numbers of smvivors are indicated next to a few points

26

0.001

0.0001

&
Pl

le-05

le-06

QK=8 x:K=8

aK=9 \

qc.iof-9

?io

XK=11

50

Viterbi. K=4-9
AVA, K=7-8, T=3 -1--

AVA, K=7-10, T=4 -0-
AVA, K=8-ll, T=5 "X-

K=9

100 150 200
Average number of survivors

250 300

Fig. 4. Bit error performance versus complexity, defined

as average number of survivors — Eb/No = 5.5 dB, BSC

27

0.001^

0.0001

B
p-1

le-05

le-06

Viterbi, K=4-9
AVA, K=7-9, T=3 -+-

AVA, K=7-12, T=4 -X--
AVA, K=8-ll, T=5 --X--

..*

'•^---•---^•'

J- J- J-

789
Constraint length K of the code

10 11 12

Fig. 5. Bit error performance versas constraint length of the

code for the VA and the AVA over the BSC at Eb/No = 5.5 dB

28

0.1

0.01 I-

B 0.001
ft<

0.0001 I-

le-05

; 16.4

fc5.2

.35.3

.57.9

\L7,, 16.6
""""-x-î?7

J_L

TT

Viterbi - K= 11 - Eb/No=2.6 dB 0
AVA - K= 11 - Eb/No=2.6 dB
Viterbi - K=7 - Eb/No=4.0 dB D

AVA - K=7 - Eb/No=4.0 dB "X--- •

N(VA)=1024 -

93.2 \ -

-H^8_^_212.0 29.8.8 \'

116-4 175.6 ' ' 402.(

23.6 31.2 40.4 50.3
.....X.................X--..-.--X- --y

~\ .

N(VA)=64
1111

16 18 20 22 24
Threshold T

26 28 30 32

Fig. 6. Influence of T on the bit error probability of the AVA for two différent codes

over a 3-bit quantized channel — the average number of survivors of the AVA is

given next to each point and the number of survivors of the VA is indicated by N(VA)

29

0.01

0.001 h-

8 o.oooi
(^

le-05 h

le-06

-^
<t

x.

A \
•^\

*;,s\ '••..
*'\\ '"

"%

l

^

\ ^
x

\ \

^\
v.\\ '••..

\\Â '••.,

'•>K
<^>

l.\

40.4

J_

\tl\ x

\
\sQ X̂

\ '•• '»

"\ ••

\ \ \
\ \ \. \
< \ \ \ *,
\\ \.\
\\ s.\

-^.\w*. v\ \\
—'^. \\

\ %
*o\ Y--

62.3 \\ \
\

\
N

^\\̂
.v

E]

"^ ****

\ \
\ '•••

•V \.'x

\ ''S&,
'. N.

\ \

ïK
^

'0

l

Viterbi, K=7
AVA, K=7, T=24
AVA, K=8, T=24

AVA, K=10, T=24
AVA,K=11.T=24
AVA,K=11,T=25
AVA,K=11,T=26

<;<^

X28.3 ^

27.6

33.9

41.6

-l— 1
-B-- 1

--X-- 1

-A— J
-if--

-0--- ^

\
2.5 3.5 4

Eb/No (dB)
4.5

Fig. 7. Bit error probability of the AVA over a 3-bit quantized channel;

average numbers of survivors are indicated next to a few points

30

0.001

0.0001 I-

e le-05
Pl

le-06 |-

le-07

• Q

- x

•\\
• V

\

l

^

1^\ '\
s\

\
t

\

s.\\ "\\\\\̂ \
<\

'v\

s\

^̂

40.4

50.3"

E

x
t\

SA.:li^
62.3'

l

\

d

\
N \
*'\\

*'\\
'•A 'x"V

\s.\
\\Â

\x
0

28.3

27.i.6

33.9

4l..6

l l

Viterbi, K=7
AVA, K=7, T=24
AVA, K=8, T=24

AVA, K=10, T=24
AVA,K=11,T=24
AVA,K=11,T=25
AVA,K=11,T=26

\'^
\\\

l

-+— •
-E}-- -

"X— -

-A— .
-5K--

-0-. .

"

:

2.5 3.5
Eb/No (dB)

4.5 5.5

Fig. 8. Error-event probability of the AVA over a 3-bit quantized

channel; average numbers of survivors are indicated next to a few points

31

0.1 I-

l
0.01 h

0.001

l l l

'^
''^

';^\
\\ \^'

-̂s\ \\
'^. V

•\ \

IX -^
s\. "<

'. "<>„

\ \^--\ \''\
\ ''"'

>^;\
'~\\

s"\ \
\ \.\\VN

t\

"\
'<»

\ •>

\
\

J_l_L

l l

Eb/No=4.61dB
Eb/No=5.5dB —-
Eb/No=6.0dB

exp(-x/36)
exp(-x/24) —--

exp(-x/19.5) -•--

Eb/No=

4.61dB

-. ---_ ^
•^ 5.5dB

/

^~
x"^

';:•.. .A
\'\6.0dB \
\:-.T ^\
\4 \\^ V \ "V

\'*- \ \
\\ \ \\ '> ^

\ '> \
\ '. \

V. *.\ t

^\ \
*. \ l

\. l
\1

l
l
t

J_l '.
20 40 60 80 100 120 140

Number of survivors N

Fig. 9. Distribution of computation for the AVA using K=8

and T=4 over a BSC for Eb/No=4.61 dB, 5.5 dB and 6.0 dB

32

01&

0.1

0.01

0.001

0.0001

le-05

le-06

\
\

\
\
\

\
^

\

T

\
\
\
\

\
\

\
\

\
\
\
s
s

\
\

\
\

\

J-

\
\
v

\
\

\
s

\ 5.5dB
\

\
\
\l

vs
\
'^

\ 6.0dB

t

*is4/

J_L

\
\

\
\
\

\
\

s
\

\
^
l
l
l
l
l
l
l
l
l
t
l
(
l
l
t
l
l
l
l
l

J_L

~Il:

Eb/No=5.5dB -—
Eb/No=6.0dB -----

.

Eb/No=

4.61dB

J_l_L10 20 30 40 50
queue size s

60 70 80 90

Fig. 10. Distribution of queue size of the input buffer for the AVA using

K=8, T=4 and //=64 over a ESC for Eb/No=4.61 dB, 5.5 dB and 6.0 dB

33

0.1

0.01

0.001

ô< 0.0001
h'

le-05

le-06

le-07

le-08

T=26,3.5dB
T=25,3.5dB
T=27,4.0dB
T=26,4.0dB

T=26,3.5dB

T=26i

4.0dB

1000 2000 3000 4000
queue size s

5000 6000 7000

Fig. 11. Distribution of queue size of the input buffer for the

AVA using K=ll and ,^=64 over a 3-bit quantized channel

34

3 ^334 OODCn3bcl l

ll^^'i'SSSÎ
^

fiiti^NiipAMoffli^l
C.P. 6079, Succ. Centre-viUe

H3C3A7

