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SIMULATION OF THE STACK ALGORITHM
OVER CHANNELS WITH MEMORY:
A COMPARISON WITH THE THEORY

by

Marie—José Montpetit and David Haccoun

ABSTRACT

A bound on the average number of computations of the stack algorithm in a slowly varying
channel has been found in by applying the theory of branching processes in random environ-
ments (BPRE). This bound must now be confronted with simulation results to assess its validity. -
This paper presents the results obtained when comparing simulation results of the average
number of computations with the theoretical bounds when the conditions for the theory to remain
valid throughout the simulation are verified.



SIMULATION DE L’ALGORITHME A PILE DANS UN CANAL A MEMOIRE:
COMPARAISON AVEC LA THEORIE

par

Marie-José Montpetit et David Haccoun

RESUME

Une borne sur le nombre moyen de calculs de I'algorithme a pile dans un canal a mémoire
peut étre dérivée en utilisant la théorie des processus de ramification en environnement aléatoire
(BPRE). Cette borne doit cependant étre comparée aux résultats de simulation de I'algorithme a
pile dans le méme canal afin d'en démontrer la validité. Ce document présente la comparaison
des résultats de simulation et des résultats théoriques quand tous les paramétres importants afin

que la théorie reste valide au long de la simulation sont vérifiés.
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1 INTRODUCTION

One of the major drawbacks of sequential decoding is the variability of its decoding effort.
Bursts of channel noise can cause the decoder to behave erratically and the decoding effort to
grow exponentially. It is known that the number of computations necessary to decode one bit is
a random variable with an asymptotic Pareto distribution. In a bi'nary symmetrical channel (BSC),
a simple branching process model has given closed-form bounds on the average number of
computation Cgy [2]. This approach provides better results than the traditional asymptotic analy-
sis using Chernoff bounding over the ensemble of codes [3].

Because in a channel with memory the simple BSC model could not be applied, a new
branching process model has been developed [1] in order to understand the behaviour of the
stack algorithm of sequential decoding in a channel with memory. The channel used in this
paper is a variation on the Gilbert-Elliot channel [4], [5] and it forms the random environment for
which the theory of branching processes in random environments (BPRE) [6] has been used.
The BPRE analysis gives new closed-form expressions for the bounds on Cgy in channels with
memoty [1]. The average number of computations is formulated in terms of the branch mettics

“and their probability assignments, as used by the actual decoder. These theoretical results must
now be compared to simulation results of the stack algorithm in a similar channel to assess their
validity. But in comparing theoretical results to actual performances, the conditions for the theory
to be applicable must be satisfied and the characteristics of the actual channel must correspond
to the model.

This paper presents the results obtained when simulating the stack algorithm of sequential
decoding in a slowly varying channel with memory under the same conditions as those used for
the theoretical evaluation. In section 2, the channel model is introduced and the sequential
decoding operations that are modeléd by the branching processes in random environment
(BPRE) are Apresented together with a review of the theoretical model. In section 3, the simula-
tion of the stack algorithm with side-information on the channel state is presented. It is shown
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that under the same conditions, the theoretical results give a good bound on the actual perfor-
mances of the algorithm. ‘

2 INTRODUCTION TO BRANCHING PROCESSES AND SEQUENTIAL DECODING

In this section we define sequential decoding in a varying channel and its relationship to

branching processes in random environment.
2.1 Sequential decoding in a varying channel
- Sequential decoding by the stack algorithm is a metricfirst, sub—optimal procedure for the

decoding of convolutional codes [7]. The exploration of the code tree is performed one branch at
atime using the integer-valued Fano branch metric. Over a path of length L the cumulative

metric pL is:
L L
HL=Z i =2 JZ log, PryijixiprPeyip - R 6

Consider decoding over a channel with memory. This channel is a slowly varying channel
[41,[5] having two distinct states or environments <, and 1,, binary symmetrical channels (BSC)
with crossover probability e, and ¢,>>¢, respectively. Assuming a coding rate equal to 1/2, the
only possible branch metric increments §; are +a,, -b,, and —c, in state t, and +a,,-b,, and -, in
state 1. As shown in Figure 1, the system may be regarded as a two-state, t, and t,, Markov
chain with transition probability P and Q, P<Q. The markovian relationship between channel
states satisfies the conditions for the theory of branching processes in random environments to
be applicable [6]. ‘

In sequential decoding the decoder always extends the path with the highest metric among
all the examined paths, only a fraction of the code tree is explored and the path reaching first
the end of the tree is accepted as the decoded path. When the channel behaves normally, that
is, in our model, stays in state t,, on the average, the total metric is increasing on the correct
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path. However, occasionally a burst of channel noise causes the metric to fall rapidly. The metric
dip Dk is the difference between the metric yuk of a node on the correct path at depth kandits
smallest succeeding value (see Figure 2). When Dk=0, node k is called a "breakout node" and
will be decoded by a single computation. When Dk >0, node k is non-breakout and becomes
the root of a tree of incorrect nodes, which will be explored by the decoder. As the size of the
dip Dk increases the amount of computation required to decode one branch grows exponentially
[8]. Due to the markovian relationship between the metric dips Dk this behaviour can be
modeled by the BPRE model [1] [2] (see Figure 3) resulting in obtaining closed-form expres—
sions for the average number of computation performed by the stack algorithm [1].

2.2 Theoretical results

To compute theoretical of Cay values a rate 1/2 convolutional code is used. Probability €, of
the BSC in channel state 1, is identical to the one in [2], e= 0.044, and probability ¢, is fixed
successivelyto 0.65,0.75 or 0.85. These probabilities give fairly dense bursts of noise [1]. The
set of Fano metrics corresponding to ¢, is the same as if ¢, were equal to (1-¢,). In the equi-
valent BSC channel, given here for comparison purposes, the transition probability is equivalent
to the total nufnber of errors over all received bits, slightly above Reomp for all probabilities. All the
metric sets are shown in Table 1. In order to limit the size of the branching process absorbing
barriers are set at metric dip value, or height, 0 and H (see Figure 3). If His high enough these
absorbing barriers will not distort the results.

Once the channel probabilities and the absorbing bartier are known, the stationary probabili-
ties nj of the metric dip states can be computed. All computations were performed on a 386-
based microcomputer with mathematical co—processor for more accuracy. An iterative algorithm,
where solutions are found within an interval of confidence, is used. In our channel the deter—
mination of these stationary probabilities involves using some results form the theory of BPRE
[1]. The stationary probability for state i, nj = P[Dk=i], i > 0, depends on the transition probabilities
between states, the Fano metric sets and their probability assignments in each state [1] as seen
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in Table 1. With P=0.001 and Q=0.05, overall the amount of time spent in state 1, corresponds to
less than 2% of the time. Using the algorithm developed for the computation of the stationary
probabilities, over ourtimé~varying channel the stationary probabilities of the metric dips should
be the same as over a memotyless channel. Simulations with other values of P and Q show, as
seen in Table 2 fore=0.75, that if the channel is overall most of the time in state 1j,i=00or 1, on
the average, the stationary probabilities of the channel tend towards the stationary probabilities
of state 1j. As for the case when the channel is about 50% of the time in each channel, simula—
tions have shown that the results are very unstable and lie between the two solutions for t, and
7. As can be seen in Table 2, when the code rate is much larger than the Reomp. of the equi-
valent BSC channel, the distance between bréakout nodes, the inverse of stationary probability
n, and a measure of the efficiency of the decoding, becomes very large. In the actual decoder,
this indicates that the average number of computations becomes unbounded, a typical situation
when decoding in a very noisy channel: the number of incorrect nodes to be explored grows
exponentially.

This last situation must be avoided to yield a bounded decoding effort. In terms of the
branching process theory, the branching process initiated in the incorrect trees must become
extinct with certainty. As we see below, we then get closed-form expressions for Cay.

Let us define matrix Bk = N Pk of dimensions HxH. For a rate 1,2 random tree code where
the branch symbols are chosen at random, N the number of extensions per node, is equal to 2.
Let Pk be the matrix of the unconditional transition probabilities between metric states:

Pk = Popk(t)+P.,Pk(t) @
where P, and P, are the transition probability matrices between metrié states in channel state 1,
and 1, respectively; they are also of dimensions HxH. Probability pk(i) is the probability of being
in channel state 1j at generation k. Here, with only two possible channel states 1, and 1, we can
write [1]:

[Pk PR = G, G G



S
where G, is the 2x1 vector of initial channel states and G is the 2x2 transition matrix between
- channel states. The symbol "’ " denotes matrix transpose.

Let Ck(L) be the vector of the expected number of computations performed by the stack
algorithm in extending up to length L all incorrect paths issued from a root node at depth kin
environment ek that is t, or 1. Ck(1) = 1 is the all-one vector.

Using a recursive relationship, the expected number of computations over a length L for the
process initiated at depth k is shown to be [1]. [2]: |

Ck(L) < 1 + Bk Ck+1(L-1) @

L>2 |

Recursively we obtain:

Ck) <1 +Bk L+ BgBksr L+ ... + Bi..Biel—1 1 (5)
where:

CkL = CraL), . . CkHLY | | ©)

L>2

and Bk was defined as 2Pk.
Ck(L) < (3 + Bk + BiBk+1 + ... + Bi..Bk+L-1) 1 )
where g is the identity matrix.

If on the average, all matrices Bk have eigenvalues smaller than 1, then the branching
processes initiated by the incorrect trees eventually will be extinguished with certainty [1], [6].
Under this condition, the average number of computation by state converges to C_ as the length
of the path goes to infinity. However, as all matrices B are different, since they they depend on
the varying channel, we must use an approximation to the convergence matrix, matrix M, of
dimensions HxH, with eigenvalues smaller than 1 but such as its elements are larger than the
elements of Bk. With matrix M, C_ may be upper-bounded by [1]:

C.<3-M'1 ®)
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where 3 is the HxH identity matrix and where 1 is the all-one vector of length H. Once the initial

~conditions and the channel transition probabilities matrices are known the derivation of Mand C,
is straightforward.

Using &, the vector of the stationary probabilities of the metric dips, then the average number
of computations Cgy is [11,[2]:

Cav<m+((N-yN)=x.C, ©)
where = (n,x,..tH-1)’ (10)
and " . " denotes a scalar product.

The bound on Cgy given by (9) can clearly be improved by the addition of specific information
on the code actually used [1]. We now extend the bound to semi-random 1, 2 and 3 codes. With
a semi-random t code, the N extensions of the ¢h generation at depth k are deterministic and all
. the following generations are random. We expect the bound to become tighter and tighter as t

increases.

For semi-random 1 codes, following the method described in [1] and [2], from generation k
to generation k+1 we have:

Cl1) <1+ P Crs1(k-1), L22,i=00r1 €3]
the vector equation for the-average number of computations over a length L for the process
initiated at depth k, assufning afirst extension in channel state tj. Matrix P(1,7)) is the transition
probability matrix between metric states for the first branch extension in state 1, i=0,1 [1],[2). It
depends on the channel state. In the simulation, when ¢, > 0.5 bits are inverted, so that Pa,r)
will be computed with (1-¢,). Beyond generation k+1, random coding is used, with Ck . 1(L-1)
expressed by (7). '

We force convergence to obtain a closed-form expression of C.o(1) the average number of
computations for a first extension in state i as L goes to infinity:
ClM) <1 +P) C.,i=00r1 (12)
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where (1) denotes a semi-random 1 code and C. is the random coding expression given by (10).

Finally the average number of computations assuming a first extension in state i is [11,[21:
Cul(1) < 7 + 1 Coa(1) 13

For the bounds on semi-random 2 and 3 codes, additional assumptions are made to simplify
the expressions which can get very complicated with two channel states. First, since the channel
is slowly varying, we assume there is no channel transition on the first 3 extensions. This
hypothesis is used for both semi-random 2 and semi-random 3 codes. Second, all incorrect
paths of length 3 branches lie at the minimum Hamming distance from the correct path. This
further simplifies the expressions for semi-random 3 codes.

The expressions for semi-random 2 codes are, following [1] and [2]:

Coo"2)< 1 + P71 + 2 P(1,5) P2,7j) C. (14)
_ where i=00or1andwhere C,_ is the random coding expression; all matrices depend on the
channel state. Again to take into account the bit inversion, P(2,1,), the transition probability matrix
between metric states for the second branch extension, will be computed with (1-¢,).

The average number of computations assuming a first extension in state i is [1}:
C¥2) < 7+ 7 Co(2) 13

For semi-random 3, again following [1],[2]:
Coa"(3)< 1+ P(1,1))L + 2 P(1,mj) P21) 1
+ 4 P(1,7) P@2,%) P@3,1) C. (16)
Matrices P(1,7) and P(2,1j) have already been defined and matrix P(3,1j) is the transition probabi-
lity matrix between metric states for the second and third branch extensions in state «j, i=0,1 [1],
[21. They all depend on the channel state. Finally, in each channel state we have [1]:
C."(3) < + 1 Coa"(3) (17)
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C..() is a combination of () and C, (), i= 1, 2, 3 for each semi-random codes,

depending on the overall contribution of each channel state to the first incorrect extension.

Considering that a metric dip is caused by channel errors, the overall probabilities p(0) of being

in channel state 1,, and p(1) to be in channel state 1, (p(1)= 1-p(0)) at the first branch extension,
can be calculated using the stationary probabilities of the two’channel states [1].

Consequently:
C..() < C,p©) + €, Mi)p(1) 18)
fori=1, 2, 3.

With these results and the values obtained for x, the bounds on Cgy, the average number of
computations, can be computed for g=0.04 and ;= 0.65, 0.75 and 0.85. They are listed below in
Table 3 for random and semi-random coding 1, 2 and 3. To estimate the validity of these theo-
retical results they must be compared with actual performances. Before this discussion, the
simulation of sequential decoding under the same channel and coding conditions is now con—
sidered.

3 SIMULATION RESULTS

. We use a rate 1/2 convolutional code of constraint length of 24 [11]. The simulations are
organized in blocks of 500 information bits and the number of blocks per simulation is 100. The
transmission of the all-zero sequence is assumed. The basis of our simulation program is the
stack algorithm [12] with stack sizes ranging from 5000 to 25000. All simulation parameters (initial
metric, metric biﬁ spacing etc.) have been taken from [12]. The simulations were performed on
an IBM mainframe computer with statistics computed on the same 386-based micro—computer
used for determining the stationary probabilities and the bounds on Cgy.

The varying channel model as defined for the branching process analysis is also integrated
throughout the simulations. The transitions in the channel model, P=0.001 and Q=0.05 are the
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same. Other channels, as found in [3], have also been investigated but will not be presented
here. Our modified algorithm, which is described below, was verified for a single channel to
assess if any modifications was hindering the decoding process. For e=0.044, the results were
identical to those found in [2].

3.1 Side-information of the channel state

In the analysis, knowledge of the channel states and of mattices By, allows us to compute
the bounds appropriately. In order to match these conditions in the simulation, some information
about the channel state must extracted from the incoming symbols to be decoded. The
information about the channel states sets the choice of branch metrics to be used.

The branch metrics corresponding to the incoming symbols are computed in a sub-program
prior to the decoding itself. In this sub-program, errors in the incoming data are looked for and
the channel state inferred accordingly. In the state 1,, with ¢, > 0.5, the bits are inverted. A
computation is also made on the incoming sequence to decide if it is corresponding to an un-
bounded branching process, also called supercritical [1]. These operations will now be examined.

3.2 Transfer between states

To infer the current channel state, the information present in the incoming symbols must be
interpreted. The number T of error-free symbols necessary for transitions from state 1, to state ,
is determined as to minimize the probability of error on the state [13]. This means that the
probability of receiving T consecutive error-free symbols and staying in the 1, state must be
smaller than the probability of transferring to the <, state, staying in that state (T-1) error—free
steps and transferring back to the 1, state. T is the minimum number satisfying the inequality:

(1-Q) T (1-¢) T < PQ (1=P) -L(1¢) -1 (19)
Depending on the value of ¢, 0.65, 0.75 and 0.85, T was found to be 9, 7 and 5 respectively.
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For the transition from states 1, to 1, a similar computation was performed yielding:
1-P)Te, T < PQ (1-Q) 1g, T-1 20)
In our case, T was found to be 3 for all three probabilities.

The validity of T was verified by computer simulations. The criteria used were the agree-
ment with channel probabilities as computed in the noise generator and the number of blocks
decoded. This is shown in Table 4 for the transition =, to 1, for ¢ =0.75. The agreement was best
for the computed T values using (20). It is important to stress out that the value T=1, as used in
the Gilbert channel [3], [13] was rejected as it is more realistic to assume that even in state «,

errors can occur.
3.3 Influence of the supercritical blocks

The conditions for matrix M of (8) to have eigenvalues smaller than 1 must be satisfied for
the branching process initiated in the incorrect tree to become extinct. This means that if too
many incoming bits were to come from state 1,, then the process would become unbounded, or
supercritical, and decoding would be impossible since the number of nodes in the incorrect trees
becomes unbounded. The ratio of symbols from z, to symbols from 1, that is acceptable is
computed with the eigenvalues corresponding to the matrices NP, and NP_, the HxH mattices of
the average number of descendants per metric dip states in channel states t,and 1. These
matrices were introduced in (2) and with a rate 1/2 random code N=2. On the average the
overall eigenvaluevmust be smaller than one [1],[6]. The computation was performed for all ¢,
probabilities and the ratio of symbols coming from state 1, to symbols coming from state 1, was
found to be 10:1, 9:1 and 8:1 for 0.65, 0.75 and 0.85 respectively.

In the simulation, a large number of overflowing blocks even at a stack size of 25000 entries
is associated to unbounded branching processes. Under these conditions, blocks would overflow
even with an infinite stack. By taking these blocks out, the average number of computations
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drops and should agree more closely to the theoretical bounds. Table 5 shows the difference in
the average number of computations when the supercritical blocks (SCB) are left in the decoding
and when they are removed.

Although the elimination of these SCB can be seen as a bias in the simulation results, in the
theoretical computations the superctitical cases are not considered since they give a useless
infinite bound on the number of computations. By comparing the theoretical results of Table 3 to
values in Table 5 we see that some of the bounds are high enough to accept even the

- supercritical éases. In the following, both simulation values will be considered.

3.4 Influence of the stack size on experimental results

In the algorithm, we must give a finite dimension to the stack, whereas in the analysis the
stack is considered infinite. Stack overflow, the effects of a limited stack size, must be pre-
vented in order to keep the events corresponding to the =, state. Table 6 shows the effects of
the stack size on the channel parameters P, Q, ¢, and «,.

As the stack size increases, the average number of computations also increases since the
algorithm stores more data in the stack, consequently allowing itself to do more searching in the
code tree. The result is the higher number of computations per node. The channel parameters
also vary with the stack size as more events corresponding to the real channel behaviour are
kept. The best agreement between theoretical and experimental parameters is found when more
blocks are decoded.

3.5 Discussion
By comparing simulation results of Table 5 and the theoretical bounds of Table 3, we can

see that some values of the bound lie below the simulation results. This is because the true
value of the upper bound is reached asymptotically for large values of the absorbing barrier H.
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Although theoretical bounds have been computed for H larger than 100, it was found that the
value at H=60 gave a good comparison value.

For semi-random 3 codes, the assumptions made on the behaviour of the channel introduce
too much bias and the bounds do not agree well with the simulations. It is true that since T, the
number of erroneous symbols necessary for the transfer from 1, to ,, is equal to 3, it is not
realistic to hypothesize that no state transition takes place on the third branch. For this reason
the theoretical bounds obtained for the semi-random 3 code cannot be validated by the

simulation.

For semi-random 1 codes, the agreement between simulation results and the theoretical
bounds is not the best. It is known [2] that the first branch extension is very significant on the
computational behaviour. In our two-state channel, the fact of considering randomness at the
second branch introduces a bias. If we consider a first extension in the 1, state, the random
code at branch two is inflating results. However, if the first extension is in the 1, state, the
random code is a lower estimate. For these reasons the results for semi-random 1 codes are
not as good as those for semi-random 2 codes.

The semi-random 2 codes give the best agreement between theoretical bounds and
simulation results. The simulation results confirm our hypothesis that over two branches there
are few channel state transfers and the two first branch extensions are significant enough for the
decoding not to be influenced by the randomness at branch extension 3. Considering the
variations in the channel, this bound is very tight and confirms the usefulness of the analysis.

Finally, one can see that the overall random code is an upper bound on all resuits as
predicted by the theory. It is worthwhile to note that while the simulation results were obtained
from lengthy simulation runs on an IBM mainframe, the bounds were calculated in just a few
minutes by mathematical packages available on the 386 micro—-computer.
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4 CONCLUSION

We have presented the simulation results of the stack algorithm over a slowly varying
channel with memory. Our purpose was to compare our theoretical bound on the average -
number of computations of the stack algorithm in a slowly varying channel with simulation results
and assess its validity. All simulation parameters were set to agree with the analysis and insure
that the conditions of the theory remained valid throughout the simulation. Under these condi-
tions, most of the simulation results agree with the theoretical bounds and the discrepancies can
be explained within our model. The BPRE model therefore gives a new method for determining
an upper bound on the average number of computations performed by the stack algorithm over
a slowly time-varying channel without the need for lengthy simulations.
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80 81
0.044 0.65
0.044 0.75
0.044 0.85

&,

0.052
0.054
0.056

Fano metrics
€ £, €,

1 —4-91[0 -1 2] [1 -3 -7]

[1 -4 -9][0 -1 3] [1 -3 -7]
[l -4 -9][1 =2 =51 [1 -3 -7]

g, is the error on the equivalent BSC.

Table 1: Metric sets.



P Q % time in R>Rcomp, do

state 1,
0 1 0 no 1.53
1 0 100 yes unbounded
001 .05 2 slightly 1.53
4 6 60 yes 11.19
5 S 50 yes 2290

Rcomp. is computed using the equivalent BSC error probability.

Table 2: Average distance between breakout nodes with ¢= 0.04 and e= 0.75.

17



H random

e=065 10 1.7312
, 20 3.6678

30 6.0519

40 8.7370

50 11.7969

60 15.2095

=075 10 1.7184
20 3.5846

30 5.8021

40 8.2111

50 10.8624

60 13.7176

e=085 10 1.6899
20 3.4597

30 5.4941

40 7.6257

50 9.8860

60 12.2299

1.3971
2.2003
3.1803
4.2728
5.5373
6.9534

1.3436
2.0472
2.8747
3.7630
4.7588
5.8367

1.1859
1.6395
2.1552

2.6868 -

3.2646
3.8681

semi-random

2 3
1.5926 1.9769
2.6015 3.6848
3.8309 5.7783
5.1992 8.1019
6.7875 10.8117
8.5673 13.8498
1.4752 1.8248
2.3156 33261
33037 5.1025
43623 7.0018
5.5533 9.1460
6.8429 11.4676
1.1862 1.3777

16173 23932
2.1082 3.5625
2.6132 4.7677
3.1634 6.0798
3.7384 7.4481

Table 3: Theoretical results.
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T, # errors P Q g & % of
for state decoded
transition blocks
2 002 10 .04 .72 70

3 001 09 04 .81 72

4 , 000 .07 .04 .88 65

The stack size is 7500, the theoretical value of ¢, is 0.75 and the

computed value of T is 3.

Table 4: Channel probabilities vs T.
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g, stack size average number of computations
with SCB without SCB

0.65 5000 3.27 2.89
0.65 10000 4.87 4.09
0.65 15000 6.29 5.15
0.65 20000 7.77 6.23
0.75 5000 2.87 2.49
0.75 10000 4.05 3.30
0.75 15000 5.06 3.92
0.75 20000 6.07 4.52
0.85 5000 2.00 1.72
0.85 10000 2.48 1.85
0.85 15000 2.88 1.95

0.85 20000 3.23 2.05

Table 5: Influence of the supercritical blocks.



g, Average Stack P Q g g decoded

th. number of Size blocks
computations (%)
w/o  with
SCB SCB

.65 2.89 3.27 5000 0006 .101 .043 .727 69
3.49 4.07 7500 .0006 .094 .043 .727 71

4.09 4.87 10000 0006 .094 .043 .727 71
4.61 5.57 12500 .0006 .089 .043 .715 73
5.15 6.29 15000 .0006 .089 .043 .715 73
6.23 7.77 20000 .0006 .089 .043 .715 73
7.30 9.00 25000 .0006 .089 .043 .715 73

75 249 287 5000 .0007 .087 .043 .800 75
2.94 347 7500 .0007 .087 .043 .800 75
3.30 4.05 10000 .0008 .080 .043 .800 78
3.62 4.57 12500 .0008 .080 .044 .802 80

3.92 5.06 15000 .0008 .080 .044 .800 81
452 6.07 20000 .0008 .079 .044 .800 81
5.10 7.04 25000 0008 .079 .044 .791 82
85 1.72 2.00 5000 0009 .067 .044 .870 90
1.79 2.25 7500 0009 .065 .044 .870 91
1.85 2.48 10000 0009 .065 .044 .870 91
1.90 2.69 12500 .0009 .065 .044 .870 91
1.95 2.88 15000 .0009 .065 .044 .870 91

2.05 3.23 20000 0009 .065 .044 .870 91
2.16 3.57 25000 0009 .065 .044 .870 91

Table 6: Influence of the stack size on the average number of computations.
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Figure 1: Model of the channel with memory.
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Figure 2: Metric dips on the correct path.
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Figure 3: Branching processes in random environments.






