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SIMULATION 0F THE STACK ALGORITHM

OVER CHANNELS WITH MEMORY:

A COMPARISON WITH THE THEORY

by

Marie-José Montpetit and David Haccoun

ABSTRACT

A bound on the average number of computations of the stack algorithm in a slowly varying

channel has been found in by applying the theory of branching processes in random environ-

ments (BPRE). This bound must now be œnfronted with simulation results to assess its validity.

This paper présents the results obtained when comparing simulation results ofthe average

number of œmputations with the theoretical bounds when the conditions forthe theory to remain

valid throughout the simulation are verified.



SIMULATION DE L'ALGORITHME A PILE DANS UN CANAL A MEMOIRE:

COMPARAISON AVEC LA THEORIE

par

Marie-José Montpetit et David Haccoun

RESUME

Une borne sur le nombre moyen de calculs de l'algorithme à pile dans un canal à mémoire

peut être dérivée en utilisant la théorie des processus de ramification en environnement aléatoire

(BPRE). Cette borne doit cependant être œmparée aux résultats de simulation de l'algorithme à

pile dans le même canal afin d'en démontrer la validité. Ce document présente la comparaison

des résultats de simulation et des résultats théoriques quand tous les paramètres importants afin

que la théorie reste valide au long de la simulation sont vérifiés.

il



iii

TABLE 0F CONTENTS

1 INTRODUCTION ....................................................... l

2 INTRODUCTION TO BRANCHING PROCESSES AND SEQUENTIAL DEÇQDING ....... 2

2.1 Sequential decoding in a varying channel............................ 2

2.2 Theoretical results .............................................. 3

3 SIMULATION RESULTS ................................................. 8

3.1 Side-information of the channel state ............................... 9

3.2 Transfer between states ......................................... 9

3.3 Influence of the supercritical blocks ................................ 10

3.4 Influence of the stack size on expérimental results .................... n

3.5 Discussion .................................................... n

4 CONCLUSION ........................................................ 13

REFERENCES .......................................................... 14

List of tables .......................................................... 15

List of figures .......................................................... 22



1 INTRODUCTION

One ofthe major drawbacks of sequential decoding is the variability of its decoding effort.

Bursts of channel noise can cause the decoderto behave erratically and the decoding effort to

grow exponentially. It is known that the number of œmputations necessary to decode one bit is

a random variable with an asymptotic Pareto distribution. In a binary symmetrical channel (BSC),

a simple branching process mode! has given closed-form bounds on the average number of

computation Cav [2]. This approach provides better results than the traditional asymptotic analy-

sis using Chernoff bounding over the ensemble of codes [3].

Because in a channel with memory the simple BSC model could not be applied, a new

branching process model has been developed [l] in orderto understand the behaviourofthe

stack algorithm of sequential decoding in a channel with memory. The channel used in this

paper is a variation on the Gilbert-Elliot channel [4], [5] and it forms the random environment for

which the theory of branching processes in random environments (BPRE) [6] has been used.

The BPRE analysis gives new closed-form expressions forthe bounds on Cav in channels with

memory [l]. The average number of computations is formulated in terms of the branch metrics

and their probability assignments, as used by the actual decoder. Thèse theoretical results must

now be compared to simulation results of the stack algorithm in a similar channel to assess their

validity. But in comparing theoretical results to actual performances, the conditions forthe theory

to be applicable must be satisfied and the characteristics of the actual channel must correspond

to the model.

This paper présents the results obtained when simulating the stack algorithm of sequential

decoding in a slowly varying channel with memory under the same œnditions as those used for

the theoretical évaluation. In section 2, the channel model is introduced and the sequential

decoding opérations that are modeled bythe branching processes in random environment

(BPRE) are présentée! togetherwith a review ofthe theoretical model. In section 3, the simula-

tion of the stack algorithm with side-information on the channel state is presented. It is shown
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that underthe same conditions, the theoretical results give a good bound on the actual perfor-

mances of the algorithm.

2 INTRODUCTION TO BRANCHING PROCESSES AND SEQUENTIAL DECODING

In this section we define sequential decoding in avarying channel and its relationship to

branching processes in random environment.

2.1 Sequential decoding in a varying channel

Sequential decoding bythe stackalgorithm is a metho-first, sub-optimal procédure forthe

decoding of œnvolutional codes [7]. The exploration of the code tree is performed one branch at

atime using the integer-valued Fano branch metric. Overa path of length Lthe cumulative

metric uL is:

L L
HL=.s8i=s s log, P(yiilxij)/P(yij) - R (l)

i=l ' i=l j

Consider decoding over a channel with memory. This channel is a slowly varying channel

[4],[5] having two distinct states or environments To and T,, binary symmetrical channels (BSC)

with crossover probability eo and ei»£o respectively. Assuming a coding rate equal to 1/2, the

only possible branch metric increments Sj are +80, -bo, and -Co in state T, and +a,,.-bi, and -e, in

state T,. As shown in Figure l, the System may be regarded as a two-state, To and T,, Markov

chain with transition probability P and Q, P<Q. The markovian relationship between channel

states satisfies the conditions forthe theory of branching processes in random environments to

be applicable [6].

In sequential decoding the decoder always extends the path with the highest metric among

all the examinée! paths, only a fraction ofthe code tree is explored and the path reaching first

the end of the tree is acceptée! as the decoded path. When the channel behaves normally, that

is, in our model, stays in state T,,, on the average, the total metric is increasing on the correct
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path. However, oœasionally a burst of channel noise causes the metric to fall rapidly. The metric

dip Dk is the différence between the metric m< of a node on the correct path at depth k and its

smallest succeeding value (see Figure 2). When D\ç=o, node k is called a "breakout node" and

will be decoded by a single computation. When Dk > 0, node k is non-breakout and becomes

the root of a tree of incorrect nodes, which will be explored by the decoder. As the size of the

dip D[< increases the amount of œmputation required to deœde one branch grows exponentially

[8]. Due to the markovian relationship between the metric dips Dk this behaviour can be

modeled bythe BPRE model [l] [2] (see Figure 3) resulting in obtaining closed-form expres-

sions for the average number of computation performed by the stack algorithm [l].

2.2 Theoretical results

To compute theoretical of Cav values a rate l/2 convolutional code is used. Probability e,, of

the BSC in channel state Tg is identical to the one in [2], £„= 0.044, and probability £1 is fixed

successivelyto 0.65,0.75 or 0.85. Thèse probabilities give fairly dense bursts of noise [l]. The

set of Fano metrics corresponding to e, is the same as if e, were equal to (l-e,). In the equi-

valent BSC channel, given here forcomparison purposes, the transition probability is équivalent

to the total number of errors over all received bits, slightly above Rcomp for all probabilities. AU the

metric sets are shown in Table l. In orderto limit the size ofthe branching process absorbing

barriers are set at metric dip value, or height, o and H (see Figure 3). If H is high enough thèse

absorbing barriers will not distort the results.

Once the channel probabilities and the absorbing barrier are known, the stationary probabili-

ties n; of the metric dip states can be computed. AU computations were performed on a 386-

based microœmputerwith mathematicat co-processor for more aœuracy. An iterative algorithm,

where solutions are found within an interval of confidence, is used. In ourchannel the deter-

mination of thèse stationary probabilities involves using some results form the theory of BPRE

[l]. The stationary probability for state i, nj = P[D[<=i], i > o, dépends on the transition probabilities

between states, the Fano metric sets and their probability assignments in each state [l] as seen
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in Table l. With P=o.ooi and Q==o.05, overall the amount of time spent in state T, corresponds to

less than 2% ofthe time. Using the algorithm developed forthe computation of the stationary

probabilities, over ourtime-varying channel the stationary probabilities ofthe metric dips should

be the same as over a memoryless channel. Simulations with other values of P and Q show, as

seen in Table 2 for £i==o.75, that ifthe channel is overall most of the time in state T;, i= o or l, on

the average, the stationary probabilities ofthe channel tend towards the stationary probabilities

of state Tj. As forthe case when the channel is about 50% of the time in each channel, simula-

fions have shown that the results are very unstable and lie between the two solutions for T(, and

T,. As can be seen in Table 2, when the code rate is much largerthan the Rcomp. ofthe equi-

valent BSC channel, the distance between breakout nodes, the inverse of stationary probability

îto and a measure of the efficiency of the decoding, becomes very large. In the actual decoder,

this indicates that the average number of computations becomes unbounded, a typical situation

when decoding in avery noisy channel: the numberof incorrect nodes to be explored grows

exponentially.

This tast situation must be avoided to yield a bounded decoding effort. In terms of the

branching process theory, the branching process initiated in the incorrect trees must become

extinct with certainty. As we see below, we then get closed-form expressions for Cav.

Let us define matrix Bk= N Pk of dimensions HxH. For a rate 1/2 random tree code where

the branch symbols are chosen at random, N the number of extensions per node, is equal to 2.

Let Pk be the matrix of the unconditional transition probabilities between metric states:

Pk = P<Pk?P..Pk(T,) (2)

where P^, and P,i are the transition probability matrices between metric states in channel state T()

and T, respectively; they are also of dimensions HxH. Probability pk(Tj) is the probability of being

in channel state T| at génération k. Here, with only two possible channel states To and T, we can

write [l]:

[PkWk(T,)]'=GoGk (3)
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where Gn is the 2xl vector of initial channel states and G is the 2x2 transition matrix between

channel states. The symbol " ' " denotes matrix transpose.

Let CR(L) be the vector of the expected number of computations performed by the stack

algorithm in extending up to length L all incorrect paths issued from a root node at depth k in

environment e|< that is T() or ii. Çk(l) = l is the all-one vector.

Using a recursive relationship, the expected number of computations over a length L for the

process initiated at depth k is shown to be [l]. [2]:

Çk(L)<l+BkCk+i(L-l) (4)

L>2

Recursively we obtain:

Çk(L) < l + Bk l + BkBk+i l + ... + Bk.-.Bk+L-l l (5)

where:

CR(L) = (Cki(L), ... ,.CkH(L))', (6)

L>2

and B|< was defined as 2Pk.

Ck(L) <( 3 + Bk+ BkBk+i + ... + Bk.-.Bk+L-i) l (7)

where 3 is the identity matrix.

If on the average, all matrices B|< have eigenvalues smaller than l, then the branching

processes initiated bythe incorrect trees eventuallywill be extinguished with certainty [l], [6].

Underthis œndition, the average number of computation by state œnverges to C., as the length

of the path goes to infinity. However, as all matrices B[< are différent, since they they dépend on

the varying channel, we must use an approximation to the convergence matrix, matrix M, of

dimensions HxH, with eigenvalues smallerthan l but such as its éléments are largerthan the

éléments of Bk. With matrix M, €„ may be upper-bounded by [l]:

Ç. < (3-M)-1 l (8)
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where 3 is the HxH identity matrix and where l is the all-one vector of length H. Once the initiai

conditions and the channel transition probabilities matrices are known the derivation of M and Ç.

is straightforward.

Using n, the vector of the stationary probabilities of the metric dips, then the average number

of computations Cav is [l],[2]:

Cav < "o + ( (N-D/N ) K . C^, (9)

where n = (îCi,it,...îiH-i)' (10)

and ". " denotes a scalar product.

The bound on Cav given by (9) can cleariy be improved by the addition of spécifie information

on the code actually used [l]. We now extend the bound to semi-random l, 2 and 3 codes. With

a semi-random t code, the N extensions of the tth génération at depth k are deterministic and all

the following générations are random. We expect the bound to become tighter and tighter as t

increases.

Forsemi-random l codes, following the method described in [l] and [2], from génération k

to génération k+l we have:

C,<"(l) < l + P(l,îj) Ck+i(L-l), L>2,i=oon (il)

thevector équation fortheaverage numberofcomputationsoveralength L for the process

initiated at depth k, assuming a tirst extension in channel state TJ. Matrix P(I,T|) is the transition

probability matrix between metric states forthe first branch extension in state TJ, i=o,l [i],[2]. It

dépends on the channel state. In the simulation, when e, > 0.5 bits are inverted, so that P(i,ïi)

wiil be computed with (l-e,). Beyond génération k+l, random coding is used, with Çk+i(L-i)

expressed by (7).

We force œnvergence to obtain a closed-form expression of Coo(l)(l) the average number of

computations for a tirst extension in state i as L goes to infinity:

Coo(l)(l) < l + P(I,T|) Ç», i= 0 or l (12)



7

where (l) denotes a semi-random l œde and €„ is the random œding expression given by (10).

Finally the average number of computations assuming a first extension in state i is [l],[2]:

CJ"(1) < re, + re Coo(l)(l) (13)

Forthe bounds on semi-random 2 and 3 œdes, additional assumptions are made to simplify

the expressions which can get very complicated with two channel states. First, since the channel

is slowly varying, we assume there is no channel transition on the first 3 extensions. This

hypothesis is used for both semi-random 2 and semi-random 3 codes. Second, all incorrect

paths of length 3 branches lie at the minimum Hamming distance from the correct path. This

further simplifies the expressions for semi-random 3 codes.

The expressions for semi-random 2 codes are, following [l] and [2]:

Coo("(2)< l + P(1,T|)1 + 2 P(l,Tj) P(2,Tj) Ç, (14)

where i= 0 or l and where Ç^ is the random coding expression; all matrices dépend on the

channel state. Again to take into acœunt the bit inversion, P(2,Ti), the transition probability matrix

between metric states for the second branch extension, will be computed with (i-e,).

The average number of computations assuming a first extension in state i is [l]:

C,,("(2) < îto + TC Coo(l)(2) (15)

For semi-random 3, again following [l],[2]:

Coo(l>(3)< l + P(1,T|)1 + 2 P(l,Tj) P(2,Tj) l

+ 4 P(l,Tj) P(2,Tj) P(3,T|) C^ (16)

Matrices P(i,ïj) and P(2,ïj) have already been defined and matrix P(3,Tj) is the transition probabi-

lity matrix between metric states forthe second and third branch extensions in state T;, 1=0,1 [l],

[2]. They all dépend on the channel state. Finally, in each channel state we have [l]:

C,v(l>(3) <n,+n Coo("(3) (17)



C^(i) is a combi nation of Cjl"(i) and Cj1)(i), i= 1,2, 3 for each semi-random codes,

depènding on the overall contribution of each channel state to the first incorrect extension.

Considering that a metric dip is caused by channel errors, the overall probabilities p(0) of being

in channel state To, and p(l) to be in channel state T, (p(l)= l-p(0)) at the tirst branch extension,

can be calculated using the stationary probabilities of the two channel states [l].

Consequently:

C.v(i) < Cjo)(i)p(0) + Cj1)(i)p(l) (18)

for i= l, 2, 3.

With thèse results and the values obtained for n, the bounds on Cav> the average number of

computations, can be computed for £„= 0.04 and e,= 0.65, 0.75 and 0.85. They are iisted below in

Table 3 for random and semi-random coding l, 2 and 3. To estimate the validity of thèse theo-

retical results they must be compared with actual performances. Before this discussion, the

simulation of sequential decoding underthe same channel and coding conditions is now con-

sidered.

3 SIMULATION RESULTS

. We use a rate 1/2 convolutional code of constraint length of 24 [il]. The simulations are

organized in blocks of 500 information bits and the number of blocks per simulation is 100. The

transmission of the all-zero séquence is assumed. The basis of our simulation program is the

stack algorithm [12] with stack sizes ranging from 5000 to 25000. AU simulation parameters (initial

metric, metric bin spacing etc.) have been taken from [12]. The simulations were performed on

an IBM mainframe computerwith statistics computed on the same 386-based micro-computer

used for determining the stationary probabilities and the bounds on Cav.

The varying channel model as defined forthe branching process analysis is also integrated

throughout the simulations. The transitions in the channel model, P=o.ooi and Q=o.05 are the



9

same. Otherchannels, as found in [3], have also been investigated but will not be présentée!

here. Our modified algorithm, which is described below, was verified for a single channel to

assess if any modifications was hindering the decoding process. For e= 0.044, the results were

identical to those found in [2].

3.1 Side-information of the channel state

In the analysis, knowledge ofthe channel states and of matrices Bk, allows us to compute

the bounds appropriately. In orderto match thèse conditions in the simulation, some information

about the channel state must extracted from the incoming symbols to be decoded. The

information about the channel states sets the choice of branch metrics to be used.

The branch metrics corresponding to the incoming symbols are computed in a sub-program

prier to the decoding itself. In this sub-program, errors in the incoming data are looked for and

the channel state inferred accordingly. In the state T,, with £1 > 0.5, the bits are inverted. A

computation is also made on the incoming séquence to décide if it is corresponding to an un-

bounded branching process, also called supercritical [l]. Thèse opérations will now be examined.

3.2 Transfer between states

To inferthe current channel state, the information présent in the incoming symbols must be

interprétée!. The numberT of error-free symbols necessary for transitions from state T, to state To

is déterminée! as to minimize the probability of error on the state [13]. This means that the

probability of receiving T consécutive error-free symbols and staying in the T, state must be

smaller than the probability of transferring to the To state, staying in that state (T-i) error-free

steps and transferring backto the T, state. T is the minimum numbersatisfying the inequality:

(l-Q)T(l-e,)T < PQ (l-P)T-l(l-e,)T-1 (19)

Depending on the value of e,, 0.65,0.75 and 0.85, T was found to be 9, 7 and 5 respectively.
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For the transition from states To to T,, a similar computation was performed yielding:

(l-P)Te,T < PQ (l-Q)T-leT-l (20)

In our case, T was found to be 3 for all three probabilities.

The validity of T was verified by computer simulations. The criteria used were the agree-

ment with channel probabilities as computed in the noise generator and the number of blocks

decoded. This is shown in Table 4 for the transition ïg to ^ for e,= 0.75. The agreement was best

forthe computed T values using (20). It is important to stress out that the value T=l, as used in

the Gilbert channel [3], [13] was rejected as it is more realistic to assume that even in state -To

errors can occur.

3.3 Influence of the supercritical blocks

The conditions for matrix M of (8) to have eigenvalues smallerthan l must be satisfied for

the branching process initiated in the incorrect tree to become extinct. This means that if too

many incoming bits were to come fromstate Ti, then the process would beœme unbounded, or

supercritical, and decoding would be impossible since the numberof nodes in the incorrect trees

becomes unbounded. The ratio of symbols from x, to symbols from T, that is acceptable is

computed with the eigenvalues corresponding to the matrices NP^, and NP,,, the HxH matrices of

the average number of descendants per metric dip states in channel states To and T,. Thèse

matrices were introduced in (2) and with a rate 1/2 random code N=2. On the average the

overall eigenvalue must be smallerthan one [l],[6]. The computation was performed for all £1

probabilities and the ratio of symbols œming from state T<) to symbols œming from state T, was

found to be 10:1, 9:1 and 8:1 for 0.65, 0.75 and 0.85 respectively.

In the simulation, a large number of overflowing blocks even at a stack size of 25000 entries

is associated to unbounded branching processes. Under thèse conditions, blocks would overflow

even with an intinite stack. By taking thèse blocks out, the average number of computations
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drops and should agrée more closely to the theoretical bounds. Table 5 shows the différence in

the average number of œmputations when the supercritical blocks (SCB) are left in the decoding

and when they are removed.

Although the élimination of thèse SCB can be seen as a bias in the simulation results, in the

theoretical computations the supercritical cases are not considered since they give a useless

infinite bound on the number of œmputations. By comparing the theoretical results of Table 3 to

values in Table 5 we see that some of the bounds are high enough to accept even the

supercritical cases. In the following, both simulation values will be considered.

3.4 Influence of the stack size on expérimental results

In the algorithm, we must give a finite dimension to the stack, whereas in the analysis the

stack is considérée! infinite. Stack overflow, the effects of a limited stack size, must be pre-

vented in orderto keep the events corresponding to the T, state. Table 6 shows the effects of

the stack size on the channel parameters P, Q, e,, and 61.

As the stack size increases, the average number of computations also increases since the

algorithm stores more data in the stack, consequently allowing itselfto do more searching in the

code tree. The result is the higher number of computations per node. The channel parameters

also vary with the stack size as more events corresponding to the real channel behaviour are

kept. The best agreement between theoretical and expérimental parametens is found when more

blocks are decoded.

3.5 Discussion

By comparing simulation results of Table 5 and the theoretical bounds of Table 3, we can

see that some values ofthe bound lie below the simulation results. This is because the tme

value of the upper bound is reached asymptotically for large values ofthe absorbing barrier H.
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Although theoretical bounds have been computed for H largerthan 100, it was found that the

value at H=60 gave a good comparison value.

Forsemi-random 3 œdes, the assumptions made on the behaviourofthe channel introduce

too much bias and the bounds do not agrée well with the simulations. It is true that since T, the

number of erroneous symbols necessary for the transfer from Tg to Ti, is equal to 3, it is not

realistic to hypothesize that no state transition takes place on the third branch. Forthis reason

the theoretical bounds obtained for the semi-random 3 code cannot be validated by the

simulation.

Forsemi-random l codes, the agreement between simulation results and the theoretical

bounds is not the best. It is known [2] that the tirst branch extension is very significant on the

computational behaviour. lnourtwo-statechannel,thefactofconsidering randomnessatthe

second branch introduces a bias. If we consider a first extension in the Xy state, the random

code at branch two is inflating results. However, if the first extension is in the T, state, the

random code is a lower estimate. For thèse reasons the results for semi-random l codes are

not as good as those for semi-random 2 codes.

The semi-random 2 codes give the best agreement between theoretical bounds and

simulation results. The simulation results confirm our hypothesis that overtwo branches there

are few channel state transfère and the two first branch extensions are significant enough forthe

decoding not to be influencée! bythe randomness at branch extension 3. Considering the

variations in the channel, this bound is very tight and confirms the usefulness of the analysis.

Finally, one can see that the overall random code is an upper bound on ait results as

predicted by the theory. It is worthwhile to note that while the simulation results were obtained

from lengthy simulation runs on an IBM mainframe, the bounds were calculated in just a few

minutes by mathematical packages available on the 386 micro-computer.
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4 CONCLUSION

We have présentée! the simulation results of the stack algorithm over a slowly varying

channel with memory. Our purpose was to compare ourtheoretical bound on the average

number of computations of the stack algorithm in a slowly varying channel with simulation results

and assess its validity. AU simulation parameters were set to agrée with the analysis and insure

that the conditions of the theory remained valid throughout the simulation. Under thèse condi-

tiens, most of the simulation results agrée with the theoretical bounds and the discrepancies can

be explained within our model. The BPRE model therefore gives a new method for determining

an upper bound on the average number of computations performed by the stack algorithm over

a slowly time-varying channel without the need for lengthy simulations.
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ÊO

0.044

0.044

0.044

£i

0.

0.

0.

65

75

85

e.

0.052

0.054

0.056

[l

[l

[l

£o

-4

-4

-4

Fano metrics
£i e,

-9]

-9]

-9]

[0-1

[0-1

[1-2

-2]

-3]

-5]

[l

[l

[l

-3

_3

-3

-7]

-7]

-7]

e, is the error on the équivalent BSC.

Table l: Metric sets.
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Q % time in Fl>Rcomp. do
state TI

0

l

.001

.4

.5

l

0

.05

.6

.5

0

100

2

60

50

no

yes

slightly

yes

yes

1.53

unbounded

1.53

11.19

2290

^comp* is computed using the équivalent BSC error probability.

Table 2: Average distance between breakout nodes with eo= 0.04 and ei= 0.75.
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£i= 0.65

8i= 0.75

EI= 0.85

H

10
20
30
40
50
60

10
20
30
40
50
60

10
20
30
40
50
60

random

1.7312
3.6678
6.0519
8.7370

11.7969
15.2095

1.7184
3.5846
5.8021
8.2111

10.8624
13.7176

1.6899
3.4597
5.4941
7.6257
9.8860

12.2299

l

1.3971
2.2003
3.1803
4.2728
5.5373
6.9534

1.3436
2.0472
2.8747
3.7630
4.7588
5.8367

1.1859
1.6395
2.1552
2.6868
3.2646
3.8681

semi-random
2

1.5926
16015
3.8309
5.1992
6.7875
8.5673

1.4752
2.3156
3.3037
4.3623
5.5533
6.8429

1.1862
1.6173
2.1082
2.6132
3.1634
3.7384

3

1.9769
3.6848
5.7783
8.1019

10.8117
13.8498

1.8248
3.3261
5.1025
7.0018
9.1460

11.4676

1.3777
2.3932
3.5625
4.7677
6.0798
7.4481

Table 3: Theoretical results.
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% of
decoded
blocks

70

72

65

The stack size is 7500, the theoretical value of 81 is 0.75 and the
computed value of T is 3.

Table 4: Channel probabilities vs T.

T, # errors
for state
transition

2

3

4

p

.002

.001

.000

.10

.09

.07

£o

.04

.04

.04

El

.72

.81

.88
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Ci stack size average number of computations
with SCB without SCB

0.65

0.65

0.65

0.65

0.75

0.75

0.75

0.75

0.85

0.85

0.85

0.85

5000

10000

15000

20000

5000

10000

15000

20000

5000

10000

15000

20000

3.27

4.87

6.29

7.77

2.87

4.05

5.06

6.07

2.00

2.48

2.88

3.23

2.89

4.09

5.15

6.23

2.49

3.30

3.92

4.52

1.72

1.85

1.95

2.05

Table 5: Influence of the supercritical blocks.
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el
th.

.65

.75

.85

Average
number of
computations
w/o
SCB

2.89
3.49
4.09
4.61
5.15
6.23
7.30

2.49
2.94
3.30
3.62
3.92
4.52
5.10

1.72
1.79
1.85
1.90
1.95
2.05
2.16

with
SCB

3.27
4.07
4.87
5.57
6.29
7.77
9.00

2.87
3.47
4.05
4.57
5.06
6.07
7.04

2.00
2.25
2.48
2.69
2.88
3.23
3.57

Stack
Size

5000
7500

10000
12500
15000
20000
25000

5000
7500

10000
12500
15000
20000
25000

5000
7500

10000
12500
15000
20000
25000

Q EQ e; decoded
blocks
(%)

.0006 .101 .043 .727 69

.0006 .094 .043 .727 71

.0006 .094 .043 .727 71

.0006 .089 .043 .715 73

.0006 .089 .043 .715 73

.0006 .089 .043 .715 73

.0006 .089 .043 .715 73

.0007 .087 .043 .800 75

.0007 .087 .043 .800 75

.0008 .080 .043 .800 78

.0008 .080 .044 .802 80

.0008 .080 .044 .800 81

.0008 .079 .044 .800 81

.0008 .079 .044 .791 82

.0009 .067 .044 .870 90

.0009 .065 .044 .870 91

.0009 .065 .044 .870 91

.0009 .065 .044 .870 91

.0009 .065 .044 .870 91

.0009 .065 .044 .870 91

.0009 .065 .044 .870 91

Table 6: Influence of the stack size on the average number of computations.
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Figure l: Model of the channel with memory.
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Figure 2: Metric dips on the correct path.
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Figure 3: Branching processes in random environments.
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