
Titre:
Title:

Metaheuristic Approach for the Facility Layout Problem in a Hospital

Auteur:
Author:

Mehran Mehri 

Date: 2021

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Mehri, M. (2021). Metaheuristic Approach for the Facility Layout Problem in a 
Hospital [Mémoire de maîtrise, Polytechnique Montréal]. PolyPublie. 
https://publications.polymtl.ca/10014/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/10014/

Directeurs de
recherche:

Advisors:
Jean-Marc Frayret, & Nadia Lahrichi 

Programme:
Program:

Maîtrise recherche en génie industriel

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/10014/
https://publications.polymtl.ca/10014/


POLYTECHNIQUE MONTRÉAL 

affiliée à l’Université de Montréal 

Metaheuristic Approach for the Facility Layout Problem in a Hospital 

MEHRAN MEHRI 

Département de mathématique et de génie industriel 

Mémoire présenté en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées 

Génie industriel 

Décembre 2021 

© Mehran Mehri, 2021. 



POLYTECHNIQUE MONTRÉAL 

affiliée à l’Université de Montréal 

Ce mémoire intitulé : 

Metaheuristic Approach for the Facility Layout Problem in a Hospital 

présenté par Mehran MEHRI  

en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées 

a été dûment accepté par le jury d’examen constitué de : 

Samira KEIVANPOUR, présidente 

Jean-Marc, FRAYRET membre et directeur de recherche 

Nadia, LAHRICHI membre et codirectrice de recherche 

Louis-Martin ROUSSEAU, membre 



iii 

DEDICATION 

To My first teacher in life, my devoted mother, who taught me to fight for my ambitions and never 

give up when faced with adversities. 



iv 

ACKNOWLEDGEMENTS 

I would like to take this opportunity to express my sincere gratefulness to my research director, Dr. 

Jean-Marc Frayret, for trusting me and allowing me to work on this project under his close 

supervision on a topic that I am passionate about. His knowledge, insightful advice, patience, and 

morals have not only aided in the successful completion of my Master's Degree but have also 

provided me with a great deal of professional and personal enrichment. 

I am grateful to my research co-director, Dr. Nadia Lahrichi, for the thoroughness she has shown 

toward me. Thanks to the extent of her knowledge and references, the exchange of ideas we had 

during the meeting and discussions was highly informative. Her encouragement was decisive in 

the accomplishment of this project. 

My great appreciation also goes to le Centre Intégré de Santé et de Service Sociaux de la 

Montérégie-Ouest et Projet Hôpital Vaudreuil-Soulanges for sponsoring this project. 

I am further indebted to my friend Benoît Forest, IT responsible at the Department of Mathematics 

and Industrial Engineering, for his patience, accountability, and generosity. His professional advice 

and technical assistance in keeping the servers up and running, as well as the remote desktop 

connection during the pandemic, have been critical to the computation part of my project. I could 

never imagine the project's progress to this point without him. 



v 

RÉSUMÉ 

Les impacts d'un aménagement sur la performance d'une organisation dans les différentes 

industries et secteurs de services sont indéniables. Par conséquent, le besoin d'un système d'aide à 

la décision parmi les décideurs dans la planification de l'aménagement des installations a amené 

les problèmes d'aménagement des installations (FLP) à l'épicentre des recherches dans le domaine 

de l'optimisation. En tant que première partie d'une approche en deux étapes de la planification de 

l'aménagement des installations, cette recherche vise à concevoir et à mettre en œuvre un cadre 

d'optimisation pour proposer la meilleure allocation des services aux bâtiments et aux étages d'un 

futur hôpital près de Montréal, au Québec. 

Pour cela, une approche de programmation mathématique et plus précisément des problèmes de 

semi-affectation quadratique (QSAP) est utilisée pour modéliser ce problème d'aménagement 

d'installations. Le modèle QSAP adopte les quatre types de contraintes : affectation unique des 

points de service aux étages, disponibilité de l'espace d'un étage, affectation restreinte d'un point 

de service aux étages, et la contiguïté et la proximité au sein des points de service. L'objectif de ce 

problème d'optimisation est de minimiser le flux entre les points de service, ce qui peut inclure les 

déplacements des patients et du personnel et la manutention du matériel. Le modèle QSAP a été 

reformulé comme un problème linéaire à nombres entiers mixtes pour s'appliquer à l'un des 

solveurs MIP existants. La complexité du problème, qui est attribuée à la nature des problèmes 

combinatoires, empêche l'optimisation du problème de fournir une solution optimale en un temps 

polynomial. Ce problème réaffirme le fait que, malgré les formidables avancées observées dans le 

domaine du calcul numérique, qu'il soit logiciel ou matériel, l'utilisation des méthodes exactes dans 

les problèmes d'optimisation en taille réelle est encore inefficace. 

La recherche est passée de l'utilisation d'une méthode exacte au développement d'un optimiseur 

méta heuristique basé sur l'algorithme génétique, qui peut proposer une solution presque optimale 

avec une qualité acceptable dans un délai raisonnable. L'optimiseur a été mis en œuvre à l'aide 

d'une architecture multicouche et dans un environnement de développement de avant-garde. Une 

analyse statistique descriptive approfondie des résultats des expériences démontre : 

• Avec quelle efficacité l'optimiseur converge vers une solution quasi optimale.
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• Comment le processus de recherche optimal et les solutions sont sensibles aux modifications des

paramètres de l'GA tels que la taille de la population, le taux de croisement, le taux de mutation, la 

taille du pool d'élite et la taille du tournoi. 

• Et avec quelle efficacité l'optimiseur applique les contraintes aux solutions.
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ABSTRACT 

The impacts of a layout on the performance of an organization in the different industries and service 

sectors are undeniable. Therefore, the need for a decision support system amongst decision-makers 

in the facility layout planning has brought the facility layout problems (FLPs) to the epicenter of 

the researches in the optimization arena. As the first part of a two-stage approach to facility layout 

planning, this research aims to design and implement an optimization framework to propose the 

best departments allocation to buildings and floors in a future hospital near Montreal, Quebec. 

For this purpose, an approach of mathematical programming and specifically quadratic semi-

assignment problems (QSAP) is used to model this facility layout problem. The QSAP model 

adopts the four types of constraints: unique assignment of service points to the floors, floor space 

availability, and restricted assignment of a service point to floors, and the adjacency and proximity 

within the service points. The objective of this optimization problem is to minimize the flow 

between the service points, which may include traveling of patients and personnel and material 

handling. The QSAP model was reformulated as a mixed-integer linear problem to apply to one of 

the existing MIP solvers. The complexity of the problem, which attributes to the nature of 

combinatorial problems, prevents optimizing the problem from providing an optimum solution in 

a polynomial-time. This problem reasserts the fact that, despite the tremendous breakthroughs 

observed in the field of digital computation, whether software or hardware, using the exact methods 

in real-size optimization problems is still inefficient. 

The research has shifted its focus from using an exact method to developing a metaheuristic 

optimizer based on the genetic algorithm, which can propose a near-optimal solution with 

acceptable quality in a reasonable time. The optimizer has been implemented using multi-layer 

architecture and in a state-of-art development environment. A thorough descriptive statistical 

analysis on the results of the experiments demonstrates: 

• How effectively the optimizer converges to a near-optimum solution.

• How the optimal search process and the solutions are sensitive to changes in GA parameters

such as population size, crossover rate, mutation rate, the size of the elite pool, and the

tournament size.

• And how effectively the optimizer applies the constraints to the solutions.
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INTRODUCTION 

1.1 General Context and Background 

Facility layout problems have long been an epicenter of researches in optimization. According to 

research on the production systems, as reported by (Heragu, 2016), material handling costs account 

for 30 percent to 75 percent of a product's cost (Sule, 1991). The estimated contribution of material 

handling-related workloads to a company's overall operating budget is 20%–50% (Tompkins & 

White, 1994). A proper facility arrangement may enhance the overall operational efficiency and 

cut the total functional expenses to 50% (Tompkins et al., 1996). The abovementioned facts may 

explain why organizations in many industries and service sectors are interested in finding the best 

facility planning in their new or existing businesses. 

Furthermore, effective facility planning may assist businesses to make the best use of limited 

resources, such as land and capital, when building new facilities or expanding an existing one. 

Most researchers attempted to propose optimum solutions for the FLPs through the approach of 

mathematical programming, such as Quadratic Assignment Problem (QAP) and  Mixed Integer 

Linear Problems (MIPS), but the complicated nature of this approaches left them with 

disappointment for not being feasible for real-size projects. As a result of this problem, a new age 

of heuristics and metaheuristics for addressing complicated optimization problems has emerged. 

Despite not guaranteeing the optimum solution, these new approaches have successfully proven 

their capability to propose near-optimal solutions. 

1.2 Problem 

The need of decision-makers for having an effective tool to assist them in discovering the best 

layout that helps minimize the travels between departments, including patients, personnel, and 

material at a future hospital near Montreal, QC, is the cornerstone of the definition of this project. 

Therefore, the definition of the problem entails the development of a decision-making support 

framework that is able to provide the best possible layout for a hospital. The hospital includes some 

multi-floor buildings, which each of the floors may provide different areas given the fact that the 

smaller floor places over the top of a larger one. An architectural plan that can provide the number 

of buildings, floors, and elevators that existed. Some of the floors are interconnected through a 
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bridge. Vertical movement, i.e., travel between floors in elevators, is avoided as much as possible. 

This framework must take into account considerations such as requiring or restricting various 

departments from being allocated to specific floors, as well as enforcing desired adjacency and 

proximity between departments. 

1.3 Purpose 

As part of a research project for obtaining a master’s degree, this thesis aims to develop an 

optimization framework that uses a metaheuristic approach to propose the best solution for the 

problem described in the section of the problem (1.2) in a reasonable time. The best solution 

represents a distribution of departments across the buildings and floors with the minimum overall 

interactions between the departments. This framework must effectively apply the considerations 

mentioned in the previous section (1.2) to the solution as the problem’s constraints. The framework 

also provides a convenient way to receive and modify the client-side data. 

1.4 Thesis Structure 

The second chapter covers the definitions, main concepts, and distinguishing aspects of facility 

layout planning (FLP), as well as several mathematical approaches for formulating an FLP. 

Following that, it addresses several heuristic and metaheuristic approaches and the reason for 

choosing the genetic algorithm (GA) in this optimization framework. Finally, it explains the 

principle concepts of the GA in more detail. 

The third chapter addresses the requirements and expectations raised by the project partner, as well 

as the expected data elements to construct the FLP model. Then it goes into detail on the multi-

layer methodology that is used in the development of the framework, which includes the front-end 

layer, the model constructor layer, and the optimizer layer. 

Chapter four provides some notions and definitions of hypotheses, decision variables, objective 

function, and constraints, as well as a mathematical representation of the problem using the 

approach of Quadratic semi-assignment problems (QSAP). Following that, it presents a linearized 

reformulation of the problem along with several techniques that may help lower the computation 
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efforts. Afterward, this chapter delves into details of how the model and the navigation network 

are implemented in the Julia programming environment. 

Chapter five describes the metaheuristic GA-based optimizer in great depth. It begins with 

definitions and then explains the GA representation of the project’s FLP problem. Then, it explains 

the implemented GA operators, including population, selection, elitism, coupling, crossover, 

mutation, as well as the process termination criteria. It also goes into detail on how the constraints 

are implemented and evaluated in this optimization framework. 

Chapter six provides the experiment scenarios and analyses of the sensitivity of the optimization 

process and the solution to the changes in the GA parameters such as initial and base population, 

mutation rate, elitism rate, crossover rate, and tournament size. This chapter also analyzes the 

process of convergence in great depth. Afterward, it digs into how applying the constraints affects 

the best solution. 

Chapter eight summarizes this research project along with the recommendations and looks forward 

to future research in this area. 
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LITERATURE REVIEW 

2.1 Introduction 

A facility layout is a plan that defines the arrangement of all requirements to manufacture products 

or provide services. The term facility refers to an entity that assists the performance of an operation, 

such as a machine tool, a work center, a manufacturing unit, a machine shop, a department, a 

warehouse, etc. (Heragu, 1997).  

2.2 Facility Layout Problem (FLP) 

The facility arrangement in a plant, commonly referred to as the "Facility Layout Problem", is 

recognized to influence production costs, work in progress, lead times, and productivity 

substantially (Drira et al., 2007). A proper facility arrangement may enhance the overall operational 

efficiency and cut the total functional expenses to 50%. (Tompkins et al., 1996). Koopmans and 

Beckmann (1957), who were among the pioneers to explore this category of problems, 

characterized them as a frequent industrial problem to locate facilities in a plant aiming at 

minimizing the transporting costs within them. According to (Meller et al., 1998a), the facility 

layout problem entails discovering a non-overlapping planar orthogonal arrangement of specific 

numbers of, e.g., n, rectangular facilities inside a given rectangular plan site minimize the distance-

based indicator. The facility layout is the allocation and the determination of the relative 

placements of a given number of facilities amongst the available area, as defined by (Azadivar & 

Wang, 2000). Another definition by Lee and Lee describes the Facility Layout Problem as the 

exploration of the placement of a certain number of facilities, say n, with distinct area sizes amongst 

a given total area, which may be restricted to the length or width of the plant area, with the objective 

of minimizing the sum of the material handling cost and the gap area costs. (Shayan & 

Chittilappilly, 2004) classify the facility layout problems under optimization problems, which 

attempt to enhance the efficiency of the layouts via focusing on numerous interactions between 

facilities, as well as material handling mechanisms while developing the layout. 
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2.3 What Makes the FLPs Distinguishable 

(Drira et al., 2007) lists the factors and design criteria that characterize a facility layout problem as 

production system specifications, namely product portfolio and volumes, the variety of the parts 

flow, number of floors that the facility may be allocated to, the dimensions of the facilities, 

locations of receiving and dispatching, mechanism, and equipment used in material handling.  

(Dilworth, 1996) asserts that layout plans rely on the variety and volume of the product and 

categorize it into four types: fixed product layout, process layout, product layout, and cellular 

layout. As described by(Drira et al., 2007), the cellular layout groups the facilities based on the 

families of parts they process. Finding the optimal layout of facilities within each cell is another 

FLP that should be addressed separately in this regard, according to (Proth, 1992) and (Hamann & 

Vernadat, 1993). The cellular layout looks to be a proper choice for representing an FLP in a 

hospital. 

In general, two distinctive shapes consist of regular, namely typically rectangular, and irregular, 

namely typically polygons including at least a 270-degree angle, depict the facility shapes in an 

FLP, as claimed by (Kim, J.-G. & Kim, 2000) and (Lee, G.-C. & Kim, 2000) respectively. (Chwif 

et al., 1998) assert that a fixed or rigid block with specific dimensions, as characterized by a fixed-

length (𝐿𝑖) and a fixed-width (𝑊𝑖), can portray a facility within an FLP. Plus, the same authors 

argue that a facility area can exhibit it in an FLP through its aspect ratio restricted by an upper and 

lower bound. Similarly, (Meller, Russell D. et al., 1998a) use the concept of representing a facility 

by its aspect ratio. 

(Tompkins et al., 1996) argue that proper placement of handling devices can cut the materials 

handling costs by 10% to 30%, which, in turn, expectantly account for 20% to 50% of the 

production costs. The utilization of the vertical dimension for plants with restrictions in horizontal 

space, such as those found in the urban areas, is crucial and may make the distribution of the 

facilities over multiple floors reasonable, as reported in (Drira et al., 2007). As a result, the flow 

can occur not only between facilities on the same floor (horizontal movement) but also between 

floors (vertical movement). The handling mechanism requires certain types of transportation 

devices, such as elevators, conveyors, or escalators, to facilitate vertical movements. Elevators are 

the most commonly mentioned handling equipment in scholarly papers for multi-floor FLPs (Lee, 
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K.-Y. et al., 2005). FLPs involving vertical movements must discover the appropriate floor and its 

location on the floor for each facility; hence, these types of problems are renowned as multi-floor 

layout problems, as suggested by (Kochhar, 1998). (Johnson, R. V., 1982) appears to be within the 

leaders to explore multi-floor FLPs tasking with determining the relative positions of the facilities 

in a multi-floor structure, as reported by (Drira et al., 2007). The FLP with vertical movement thus 

grabs the attention of the other researchers in this field, such as (Bozer et al., 1994; Meller, Russell 

D. & Bozer, 1997; Meller, Russell D & Bozer, 1996). (Lee, K.-Y. et al., 2005) consider the number

and placement of the elevators as given data, while (Matsuzaki et al., 1999) treat them as FLP 

decision variables and calculate them via an optimization process. Likewise, the number of floors 

can either be predetermined, as in (Lee, K.-Y. et al., 2005) or calculated based on the area provided 

by each floor and the space required by each facility, as in (Patsiatzis & Papageorgiou, 2002). 

2.4 Static FLP vs. Dynamic FLP 

The changes in demand, manufacturing volume, and products portfolio impact the material and 

parts flow, resulting in modifications in the layout plan (Drira et al., 2007). As reported in (Gupta 

& Seifoddini, 1990), one-third of manufacturing companies in the US experience a radical 

modification in their facility layout plan. The facts above have inspired researchers in FLP to 

introduce a new aspect in this field called Dynamic Facility Problems. This new approach divides 

the planning horizon into chunks such as weeks, months, or years. The flows between facilities 

probably change from a period to another; however, the flow within each different period stays 

unchanged. As a result, this new problem consists of a collection of FLPs, each of which ascribes 

a particular layout plan (Balakrishnan et al., 2003; Braglia et al., 2003; Kouvelis et al., 1992; Meng 

et al., 2004). Optimizing dynamic FLP pursues discovering a layout plan for each planning time 

unit, with the objective of minimization of the total material handling costs throughout planning 

duration plus the total costs of layout rearrangements that occurred within the periods, according 

to (Balakrishnan et al., 2003; Baykasoglu et al., 2006). (Baykasoğlu et al., 2001) also maintains 

that a dynamic FLP's objective function value must entail the costs incurred to all facility 

displacements that occur during layout rearrangements. 
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2.5 Different Approaches to the Mathematical Formulation of FLP 

In order to mathematically describe the complicated relationships within the various existing 

components of a facility layout problem, there are numerous ways to model both static and dynamic 

FLP. Many studies on mathematical modeling of facility layout problems aim at proposing such 

formulations that can be adopted into optimization problems with single or multiple objective 

functions. The problem formulation most likely results in Quadratic Assignment Problem (QAP) 

or Mixed Integer Programming (MIP) depending on which approach is adopted in FLP 

mathematical modeling, i.e., discrete or continuous. 

Newer methods such as graph theory (Kim, J. Y. & Kim, 1995; Leung, 1992; Proth, 1992) or neural 

networks (Tsuchiya et al., 1996) are adopted in FLP modeling and optimization to provide solutions 

to the layout problems. 

Furthermore, in instances where the needed data is not readily accessible, the approach of Fuzzy is 

more or less recommended to be employed in FLP formulation. 

2.5.1 Discrete Approach to the FLP Formulation 

The discrete approach splits the plant area into identically sized and shaped rectangular pieces. 

Then, it assigns the blocks to the facilities in sequence until each facility's area is full (Fruggiero et 

al., 2006). It is possible to assign various numbers of blocks to the facilities that are uneven in size 

(Wang et al., 2005). Henceforth, the following formulation, which is renowned as a mathematical 

representation for the quadratic assignment problems, may be used to identify the relative 

placements of the facilities that can assure minimizing the overall cost of material handling 

(Balakrishnan et al., 2003): 

min ∑ ∑ ∑ ∑ 𝑓𝑖𝑘𝑑𝑗𝑙𝑥𝑖𝑗𝑥𝑘𝑙

𝑁

𝑙=1

𝑁

𝑘=1

𝑁

𝑗=1

𝑁

𝑖=1

 

(2-1) This mathematical expression represents the 

objective function to calculate the sum of the 

pairwise cost of flow within the facilities. N is the 

quantity of facilities in the FLP. 𝑓𝑖𝑘 𝑎𝑛𝑑 𝑐𝑖𝑘 are the 

flow and cost of flow between the facilities 𝑖 and 𝑘 

respectively. Cost of flow is a weight factor and does 
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not necessarily associate with a monetary value. 

𝑑𝑗𝑙represents the distance within the positions j and 

l. 

𝑥𝑖𝑗 is 0 or 1 variable that indicates whether the 

facility 𝑖 is assigned to location 𝑗, when equals one 

or otherwise when equals 0. This variable is also 

renowned as the FLP decision variable. 

s.t.

∑ 𝑥𝑖𝑗 = 1

𝑁

𝑖=1

 

(2-2) This equation assures the unique assignment of each 

facility to available locations. 

∑ 𝑥𝑖𝑗 = 1

𝑁

𝑗=1

 

(2-3) This equation assures that each location uniquely 

contains one facility. 

Where we have n facility and m locations, n>m, a (Greenberg & Naval Postgraduate, 1969) suggest 

an updated version of The QAP named The Quadratic Semi Assignment Problem (QSAP), as 

pointed out by (Burkard et al., 1998). The only difference between QAP and QSAP is that the 

assignments of the facilities to the locations are not one-to-one mappings, allowing for the 

allocation of an arbitrary number of the facility to the same floor is permissible. Hence, the ascribed 

constraints, i.e. (2-3), which ensure one-to-one mapping of the facilities to the floors in the general 

formulation of QAP, are eliminated in QSAP formulation. Therefore, the QSAP may be a proper 

approach for the multi-stage FLPs, where the initial phase aims to allocate the facilities to floors 

with the objective of minimizing the overall handling costs within the facilities. 

Although the FLP formulation based on the discrete approach is most likely used to minimize the 

total material handling costs, it may be adapted to other scenarios with some modifications in the 

definition of the decision variable and the parameters accordingly. For example, (Kouvelis & 

Chiang, 1992) and (Braglia, 1996) proposes a discrete FLP formulation in designing a single-row 

layout with the objective of minimizing backtracking parts. Additionally, (Afentakis, 1989) adopts 

the same approach to suggest a loop layout with minimum traffic congestion. 
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The discrete formation of FLP is the most frequently used approach in dynamic FLP (Drira et al., 

2007). (Baykasoğlu et al., 2001; Lacksonen, T. A. & Enscore, 1993) uses the approach of discrete 

formulation in an FLP with the equal-size facilities to assure unique assignment of each facility to 

the available places in each period of the planning horizon, and then (Baykasoğlu et al., 2001; 

McKendall et al., 2006) enhances their FLP model to guarantee that each place uniquely 

accommodates one facility in each planning time unit with the benefit of this approach. 

Furthermore, (Balakrishnan et al., 1992; Baykasoglu et al., 2006) embeds the budget constraints 

ascribed to facility reconfigurations in dynamic FLP into their model using the discrete formulation 

of FLP. 

2.5.2 Discrete Approach to the FLP Formulation 

Many authors argue that using the continual approach to the formulation of the FLP (Drira et al., 

2007), which is commonly renowned as Mix Integer Programming (MIP) (Das, 1993), can replace 

the discrete approach when the FLP is meant to propose the exact location of facilities and the 

discrete formulation seems to lose its appropriateness. The centroids or the bottom-left corner of 

the facilities define where to be located in the layout. In a manufacturing plant, for example, an 

FLP formulation is meant to precisely locate the facilities over the plant with the objective of 

minimizing the total cost of the flow of parts within the facilities. A straight line from the buffering 

point succeeding facility 𝑖 to the feeding point preceding facility 𝑗 defines the distance traveled by 

each piece within the two facilities, calculated using the following formula (Chwif et al., 1998). 

𝑑𝑖𝑗 = |𝑥𝑗
𝐵 − 𝑥𝑖

𝐹| + |𝑦𝑗
𝐵 − 𝑦𝑖

𝐹| (2-4) Where 𝑥𝑖
𝐵, 𝑦𝑖

𝐵, 𝑥𝑗
𝐹 , and 𝑦𝑗

𝐹are the coordination

of buffering points and feeding points of the 

facilities  𝑖 and 𝑗 respectively. 

The limitation of available area defines constraints to ensure that the space provided by the plant 

meets the entire area required by the facilities. The area needed by each facility must entail all the 

spaces necessary for its proper functionality, such as buffers, toolboxes, and (Lacksonen, T. A. J. 

I. J. o. P. R., 1997). Depending on the nature of the facility layout problem, the total required area

may or may not include the empty space within the facilities (Braglia, 1996; Heragu & Kusiak, 

1988). The adoption of the constraints into the FLP formulation that prohibit any possible 
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overlapping between the facilities is very crucial, which is stated by (Welgama & Gibson, 1993) 

as two criteria below: 

(𝑥𝑗𝑡 − 𝑥𝑖𝑏)(𝑥𝑗𝑏 − 𝑥𝑖𝑡) ≥ 0 (2-5) t: top-left 

b: bottom-left 

𝑥𝑖𝑡, 𝑦𝑖𝑡, 𝑥𝑖𝑏 , 𝑦𝑖𝑏 , 𝑥𝑗𝑡 , 𝑦𝑗𝑡 , 𝑥𝑗𝑏 , and 𝑦𝑗𝑏 are the 

coordination of the upper corners on the left 

and bottom corner on the right of the facilities 𝑖 

and 𝑗 respectively. 

(𝑦𝑗𝑡 − 𝑦𝑖𝑏)(𝑦𝑗𝑏 − 𝑦𝑖𝑡) ≥ 0 (2-6) 

Defining 𝐴𝑖𝑗  as empty space within the facilities (Mir and Imam, 2001) formulates the constraints 

to prevent facility overlap. The representation of the FLP, thus, is as below: 

𝐴𝑖𝑗 = 𝜆𝑖𝑗(Δ𝑋𝑖𝑗)(Δ𝑌𝑖𝑗); 

Δ𝑋𝑖𝑗 = 𝜆𝑖𝑗 (
𝐿𝑖 + 𝐿𝑗

2
) − |𝑥𝑖 − 𝑥𝑗|;

Δ𝑌𝑖𝑗 = 𝜆𝑖𝑗 (
𝑊𝑖 + 𝑊𝑗

2
) − |𝑦𝑖 − 𝑦𝑗|;

𝑓(𝑥) = {
−1, 𝑓𝑜𝑟 Δ𝑋𝑖𝑗 ≤ 0 𝑎𝑛𝑑 Δ𝑌𝑖𝑗 ≤ 0

+1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2-7) 𝐿𝑖 , 𝐿𝑗 , 𝑊𝑖, 𝑎𝑛𝑑 𝑊𝑗 are the 

facilities 𝑖 and 𝑗’s length and 

width, respectively. 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑗 ,

𝑎𝑛𝑑 𝑦𝑗 are the facilities 𝑖 and 𝑗’s

coordination. 

N is the number of facilities and 

𝑓𝑖𝑗is the flow within the 

facilities 𝑖 and 𝑗. Depending on 

how a flow is defined, it may 

include staff, material, etc. 

min 𝐶 = ∑ ∑ 𝑓𝑖𝑗(|𝑥𝑗
𝐵 − 𝑥𝑖

𝐹| + |𝑦𝑗
𝐵 − 𝑦𝑖

𝐹|)

𝑁

𝑗=1

𝑁

𝑖=1
(2-8) 

2.5.3 Fuzzy Approach to the FLP Formulation 

The stochastic approaches, such as queuing networks (Meng et al., 2004), have been limitedly able 

to grab the consideration in real-size FLPs, which commonly suffer from ambiguous and 

insufficient data input. To deal with the FLPs that struggle with inaccuracy or incertitude (Evanst† 

et al., 1987; Grobelny, 1987; Raoot & Rakshit, 1991) suggest the concept of Fuzzy logic. (Evanst† 

et al., 1987) provides a fuzzy formulation for an FLP that aims at finding the arrangement of the 
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unequal-sized facilities on a site. This formulation defines Fuzzy pairwise relationships between 

the facilities and assigns a priority rating to each of them, indicating the importance of proximity 

within that pair of facilities. A heuristic method for solving this problem is then provided. 

(Grobelny, 1987) introduces a model for an FLP that involves allocating n facilities to n defined 

places with the objective of minimizing the overall cost of handling. This model considers the 

pairwise proximity and flows between the facilities as the fuzzy linguistic variables. A heuristic 

algorithm is then developed based on 0-1 Fuzzy relationships that aim at finding the most proper 

assignment of the facilities to the available locations. (Raoot & Rakshit, 1991) use the same fuzzy 

logic aspects in modeling an FLP that entails discovering the best placements of the facilities on a 

site relying on their correlations, which have a Fuzzy implication. (Gen et al., 1995) come up with 

a model for a multi-row FLP with multiple objectives that include unequal-sized facilities. The 

model treats the empty spaces within the facilities as a fuzzy factor because exact pre-determination 

is impossible. Similarly, the FLP model (Dweiri‡ & Meier, 1996), which tackles a layout problem 

using a discrete approach, considers the flow of work-in-process between the facilities, the flow of 

information, and the handling equipment circulating within the facilities as fuzzy agents. The 

Activity Relationship Chart (ARC), which indicates the priority of the relationships between the 

facilities based on domain experts' viewpoints, is provided to the CORELAP heuristic method to 

propose the most appropriate facility arrangement. 

2.5.4 Multi-Floor FLP Formulation 

The concept of multi-floor relates to the layout problem of locating the facilities vertically on the 

floors and horizontally across each floor with the objective of minimizing total handling costs 

within the facilities. Due to land constraints and high prices, multi-floor FLP applications are more 

popular and realistic in constructing industrial plant projects or service-provider businesses in an 

urban area, such as hospitals or office buildings. (Bernardi & Anjos, 2013). The extra constraints 

in multi-floor FLP, i.e., traveling across both horizontal and vertical directions and the use of 

vertical handling equipment or stairwells, raise the level of problem complexity. Except in minor 

cases of multi-floor FLP, exact optimization methods prove limited capacities in providing a global 

optimum solution due to the higher complexity (Hahn et al., 2010). Heuristic algorithms may be a 

significant facilitator in real-size problems with high complexity (Bernardi & Anjos, 2013). 
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Solving methods suggested for multi-floor FLPs adopt a variety of approaches that involves one or 

more phases. Some of these approaches, such as SPACECRAFT (Johnson, R. V., 1982), launch 

with a basic solution and strive to improve iteratively through interchange the facilities on the same 

floor or between the floors. This method has several drawbacks, such as limitations in terms of 

swapping facilities that occur across the improvement process, as well as the possibility of dividing 

a particular department across multiple floors. The adverse effect on a department's functionality 

may prohibit it from being divided over different floors. MULTIPLE (Bozer et al., 1994), which 

employs the same concepts of continuous improvement as SPACECRAFT, attempts to solve the 

problem in a single stage. It does, however, outperform SPACECRAFT in terms of raising the 

number of facility swaps in each loop and preventing department division across the floors. The 

global optimum in the heuristics mentioned above is most likely compromised with the local 

optimum since their algorithms seek the best viable facility swap in each iteration. Thus, the 

process relies on the optimization trajectory. 

(Liggett & Mitchell, 1981) and (Kaku et al., 1988) employ mathematical programming to formulate 

multi-floor FLPs, each of which bears certain conditions or drawbacks such as being limited to 

accommodating equal-sized facilities, providing a single lift position, and dividing the facilities 

between multiple floors, as also reported by (Bernardi & Anjos, 2013). 

Various methods, such as the one based on genetic algorithm, exist that prove their capabilities to 

support other aspects of a real-sized FLPs, i.e., accountability for the need for lifts (Matsuzaki et 

al., 1999), considering the interior structures like walls and passages (Lee, K.-Y. et al., 2005), or 

corridors (Chang et al., 2006). Furthermore, (Goetschalckx & Irohara, 2007) use mathematical 

programming to formulate a multi-floor FLP with elevators as the handling equipment amongst the 

floors from two approaches of using either full-service elevators (MFFLPE-A) or elevators that 

serve a contiguous set of floors (MFFLPE-B). These formulations consider the number and 

locations of the elevators as the decision variables. (Hahn et al., 2010) propose a mathematical 

formulation using quadratic assignment problem (QAP) for the multi-floor FLP that entails 

minimization of both total handlings costs and the costs ascribed to the building evacuation plan, 

resulting in the proper balance between the cost factors mentioned above. 

For instance, STAGES (Meller, Russell D. & Bozer, 1997) and FAF/TS (Abdinnour-Helm & 

Hadley, 2000) are amid the two-stage formulations that adopt mixed-integer linear programming 
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(MILP) to suggest the best distribution of the departments across the floors in their first phase, 

aiming at globally minimizing the total vertical travel costs within the departments. STAGES, 

afterward in its second phase, strive to discover the best placement of the departments individually 

on each floor using an updated version of SABLE, preventing the departments from being swapped 

between floors. FAF/TS, on the other hand, employs the Tabu Search algorithm in the second phase 

of the problem-solving process. The Tabu Search, like Simulating Annealing, attempts to 

outperform in terms of lowering the risk of slipping into a local optimum using the approach of 

placing the departments with a massive interaction on the same floor. In opposed to STAGES, 

other multi-stage methods, such as FLEX (Meller, Russell D. & Bozer, 1997), enable department 

swaps in the second phase (Bernardi & Anjos, 2013). The experimental data from benchmarking 

the FLEX over STAGES reveals that allowing the departments to be swapped over the second 

phase is not necessarily efficient since the rise in costs associated with vertical handling most likely 

outweigh the decrease in the costs ascribed with horizontal handling (Meller, Russell D. & Bozer, 

1997). 

Additionally, given the fact that STAGES outperforms the SABLE, (Bernardi) concludes that the 

approaches of multi-stage that do not allow departments swaps after assigning them to the floor in 

the first stage are a proper choice. Accordingly, the authors suggest a multi-stage methodology that 

employs the approach of mixed-integer linear programming for the first phase to allocate the 

departments to the floors with the aim of minimizing the vertical handling costs within the 

departments. Afterward, this method applies an approach that (Anjos & Vannelli, 2006) utilized 

for a single-floor FLP to tackle the problem of finding the optimal layout for each floor 

individually. (Ahmadi & Akbari Jokar, 2016) propose a multi-stage method to deal with multi-

floor FLPs consisting of three stages, each of which is based on the approach of mathematical 

programming. The initial phase of this methodology is accountable for assigning the departments 

to the floors while minimizing the total costs of vertical flow. The second phase, afterward, 

establishes the departments' relative locations. Finally, the third phase finds a detailed layout for 

each floor, including fixed or non-fixed elevators. 
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2.5.5 Linearization of QAP 

(Sherali & Alameddine, 1992) provide an approach of the reformulation for bilinear programming, 

which is claimed to be frequently applied in different fields such as location theory, dynamic 

assignment, economics and game theory, risk management, and so on. The purpose of this 

reformulation is to make relaxation in a problem, resulting in constructing tight linear programming 

that is imbeddable in a branch-and-bound algorithm. The new algorithm expectantly functions 

more efficiently in terms of computational complexity, while its convergence is theoretically 

proven as well. The optimum resulting from solving the linearized problem provides a rigid lower 

bound on the optimal value to the original problem. 

(Adams, W. & Johnson, 1994) are the first, using the concept of linearized reformulation of 

(Adams, W. P. & Sherali, 1986, 1990), propose a Boolean mixed-integer linear reformulation for 

QAP to enable the computation of the bounds and construction of cutting planes. (Adams, W. & 

Johnson, 1994) argue that the absence of efficient QAP solving algorithms prevents it from 

attracting further academic attention. The combinatorial character of the problem is to blame for 

this inefficiency. The authors claim that their reformulation of QAP, which is based on the 

approach of mixed 0-1 linear programming, theoretically outperforms all other known linear 

reformulations concerning the strength of the continuous relaxations, dual space construction, and 

lower bound computation. 

 (Rostami & Malucelli, 2014) suggest a revised linearized reformulation for the QAP, which is 

claimed to function very successfully concerning the tighter lower bound it produces to the original 

problem. The authors theoretically prove that the linearized formulation of the QAP is equivalent 

to the original problem as well. In addition, their computational experiments also maintain that 

their linearized reformulation of the QAP demonstrates a more efficient performance in terms of 

CPU time. 

(Billionnet & Elloumi, 2001) consider the following mixed integer linear reformulation of the 

QSAP as one of the strategies for establishing the dual space, computing QSAP lower bounds, and 

constructing cutting planes. 



15 

With the definition of a new variable as: 𝑦𝑖𝑘𝑗𝑙 = 𝑥𝑖𝑘 . 𝑥𝑗𝑙the linear reformulation is as below: 

QSAP01: 

min(∑ ∑ ∑ ∑ 𝑓𝑖𝑘𝑑𝑗𝑙𝑥𝑖𝑗𝑥𝑘𝑙

𝑀

𝑙=1

𝑀

𝑘=1

𝑁

𝑗=1

𝑁

𝑖=1

+ ∑ ∑ 𝑎𝑖𝑘𝑥𝑖𝑘

𝑀

𝑘=1

𝑁

𝑖=1

) 
(2-11) 𝑥 ∈ {0, 1} 

(𝑖 = 1, … , 𝑁, 𝑘 = 1, … , 𝑀) 

(𝑗 = 1, … , 𝑁, 𝑙 = 1, … , 𝑀) 

s.t.

∑ 𝑥𝑖𝑘 = 1

𝑀

𝑘=1

 (2-12) 

RLT01: 

min(∑ ∑ ∑ ∑ 𝑓𝑖𝑘𝑑𝑗𝑙𝑦𝑖𝑘𝑗𝑙

𝑀

𝑙=1

𝑀

𝑘=1

𝑁

𝑗=1

𝑁

𝑖=1

+ ∑ ∑ 𝑎𝑖𝑘𝑥𝑖𝑘

𝑀

𝑘=1

𝑁

𝑖=1

) 
(2-9) 𝑥, 𝑦 ∈ {0, 1} 

(𝑖 = 1, … , 𝑁, 𝑘 = 1, … , 𝑀) 

(𝑗 = 1, … , 𝑁, 𝑙 = 1, … , 𝑀) 

s.t.

∑ 𝑥𝑖𝑘 = 1

𝑀

𝑘=1

 

𝑦𝑖𝑘𝑗𝑙 ≤ 𝑥𝑖𝑘 

𝑦𝑖𝑘𝑗𝑙 ≤ 𝑥𝑗𝑙 

1 − 𝑥𝑖𝑘−𝑥𝑗𝑙 + 𝑦𝑖𝑘𝑗𝑙 ≥ 0 

𝑦𝑖𝑘𝑗𝑙 ≥ 0 

(2-10) 
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2.5.6 Symmetry Breaking 

Most of the various types of FLPs include symmetry effects in different forms, causing the 

optimization of the mixed-integer problem to be more complicated. The optimization of a 180-

degree rotated FLP with pairwise isomorphic flows, for instance, obviously results in the same 

solution (Anjos & Vieira, 2017).  

Various strategies are presented for breaking the symmetry effects and alleviating their impacts on 

the optimization complexity. (Meller, Russell D. et al., 1998b) use the technique position q, which 

is named by (Sherali et al., 2003), to fix departments to be located in a specific quarter of the facility 

using two constraints as 𝑥𝑞 ≤ 0.5𝑊𝑓 and 𝑦𝑞 ≤ 0.5𝐿𝑓 (where 𝑥𝑞and 𝑦𝑞 are the coordination of the 

department’s centroid, 𝑊𝑓 and 𝐿𝑓 are the facility's width and height, respectively, and the facility's 

corner at the left bottom is assumed as the origin point). In the initial phase of multi-stage FLP 

optimization methodologies, however, when the objective is to assign departments to the centroids 

of the floors, this technique loses its efficacy. Alternatively, (Sherali et al., 2003) propose position 

p-q as a more strict technique. This method chooses two prioritized departments, p, and q, either

with the highest flow in between or based on area, and forces the p's centroid to be located south 

and west of the q's centroid. The strategy for breaking the symmetry can be imposed to the problem 

either implicitly or explicitly via adding constraints. The strategies for breaking the symmetry can 

be imposed to the problem either implicitly through reformulation of the model (adding conditions) 

or explicitly via introducing constraints (Anjos & Vieira, 2017). In allocating departments to floors 

in the initial step of multi-stage FLPs, we have two isomorphic permutations as 𝑥𝑖𝑘𝑗𝑙 and 𝑥𝑗𝑙𝑖𝑘 when 

a pair of departments, 𝑖 and 𝑗, are assigned to two different floors, 𝑘 and 𝑖. The following 
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reformulation of the linearized QSAP, which is suggested as a reduced formulation of QSAP by 

(Billionnet & Elloumi, 2001), is expected to outperform in solving procedure. 

2.6 Different Approaches to Solving an FLP 

The enhancement that facility layout planning can bring to an organization from different aspects 

has motivated the researchers to propose a myriad number of methodologies to solve a facility 

layout optimization problem. While these methodologies use diverse approaches, they all strive for 

a common goal of either discovering the optimum, whether global or local or finding the best 

solution that meets the given constraints. A solving method may fall into the categories of 

optimization algorithms (exact methods) or heuristic-based search algorithms (approximated 

RLT02: 

min(∑ ∑ ∑ ∑ 𝑓𝑖𝑘𝑑𝑗𝑙𝑦𝑖𝑘𝑗𝑙

𝑀

𝑙=1

𝑀

𝑘=1

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

+ ∑ ∑ 𝑎𝑖𝑘𝑥𝑖𝑘

𝑀

𝑘=1

𝑁

𝑖=1

) 

(2-13) 

s.t.

∑ 𝑥𝑖𝑘 = 1

𝑀

𝑘=1

𝑦𝑖𝑘𝑗𝑙 ≤ 𝑥𝑖𝑘

𝑦𝑖𝑘𝑗𝑙 ≤ 𝑥𝑗𝑙

1 − 𝑥𝑖𝑘−𝑥𝑗𝑙 + 𝑦𝑖𝑘𝑗𝑙 ≥ 0

𝑦𝑖𝑘𝑗𝑙 ≥ 0

(2-14) 

𝑥, 𝑦 ∈ {0, 1} 

(𝑖 = 1, … , 𝑁 − 1, 𝑘 = 1, … , 𝑀) 

(𝑗 = 𝑖 + 1, … , 𝑁, 𝑙 = 1, … , 𝑀) 
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methods), as well as the new methodologies based on data science-related approaches such as 

machine learning or AI (Artificial Intelligence). 

(Kouvelis & Kim, 1992) developed a branch and bound algorithm for working efficiently in 

medium-sized problems in designing mono-directional loop network layout problems in automated 

manufacturing systems, which is claimed to be enhanced by establishing dominance criteria for 

recognizing local optimum solutions. (Meller, Russell D. et al., 1998a) use the branch-and-bound 

technique offered by CPLEX to solve a reformulation of FLPs modeled after Montreuil's MIP 

approach. However, due to the complexity of the problem, this approach is accused of being 

inefficient in real-sized FLPs. (Kim, J. G. & Kim, 1999) suggest an algorithm with a branch-and-

bound scheme to find the optimal location of the receiving and delivery points attributed to each 

department in a given layout with the objective of minimizing the total distance traveled by material 

flow within the receiving/delivery points. (Fischer et al., 2019) propose an enumerative method for 

solving the space-free multi-row FLP (MRFLP) that adopts a branch-and-cut scheme as an exact 

approach. This method is claimed to solve three situations in a reasonable computational cost: two 

rows each row 16 departments, three rows each row 15 departments, and four and five rows each 

row, 13 departments. 

The fact that FLP's combinatorial nature causes the exact methods to lose their effectiveness in 

real-size FLPs has prompted a multitude of academic studies to lead to the development of heuristic 

and metaheuristic algorithms. (Kusiak & Heragu, 1987) name these approaches suboptimal 

algorithms and categorize them as construction algorithms, improvement algorithms, hybrid 

algorithms, and algorithms based on graph theory. The construction-based algorithms considered 

the oldest and the most straightforward algorithm in heuristic-based FLP solvers, begin generating 

a layout from scratch. Improvement type of approaches starts with an initial solution and 

progressively improves it by developing a new solution through a random or systematic swap of 

the facilities. The generated solutions are evaluated in each improvement iteration. The best one is 

maintained, and then the process continues until no further improvement can be made to the current 

best solution. The construction-based approaches are blamed for generating solutions lower than 

expected. The quality of solution produced by improvement-based approaches is very reliant on 

the initial solution (Singh & Sharma, 2006). Among the more prominent algorithms based on the 

construction approach are HC66 (Hillier and Connos, 1966), ALDEP (Seehof and Evans, 1967), 
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CORELAP (Lee and Moore, 1967),  RMA Com I (Muther and McPherson, 1970), MAT (Edwards 

et al., 1970), PLANET (Deisenroth and Apple, 1972), Lsp (Zoller and Adendorff, 1972), Linear 

placement algorithm (Neghabat, 1974), FATE (Block, 1978), INLAYT (O'Brien and Abdel Barr, 

1980), and FLAT (Heragu and Kusiak), as pointed out by (Kusiak & Heragu, 1987). On the other 

hand, the eight most well-known improvement-based algorithms, according to (Kusiak, 1997) are 

CRAFT (Buffa, 1963) and (Buffa et al., 1964), H63 (Hillier, 1963), H63-66 (Hillier, 1966), COL 

(Vollman et al., 1968), Sampling algorithms (Nugent et al., 1968), FRAT (Khalil, 1973), COFAD 

(Tomplins and Reed, 1976), and Revised Hillier algorithm (Picone and Wilhelm, 1984).  

The exact approaches are unable to provide the optimal solutions for real-size FLPs in a polynomial 

time. On the other side, among the suboptimal methods, the solutions offered by construction-based 

approaches have lower quality than expected. Additionally, the improvement-based approaches are 

blamed for being overly reliant on the quality of the initial solution. Accordingly, several academic 

efforts have concentrated on developing the methods that combine schemes of the optimal and 

suboptimal approaches, dubbed Hybrid Algorithms by (Bazaraa and Kirca, 1983). 

2.7 Optimization Metaheuristics 

Optimal approaches have yet to make substantial achievements in dealing with real-size 

optimization issues, despite tremendous breakthroughs in digital computation, whether hardware 

or software. Furthermore, suboptimal approaches fail to retain reliability due to pitfalls such as 

creating lower-than-expected quality solutions and being overly reliant on the quality of the initial 

solution. While they offer a ray of optimism, hybrid approaches have not been able to fill the gaps 

as well adequately. Therefore, the high demand for reliable optimal or near-optimal solutions in 

the decision-making process has prompted academic studies to invent a new optimization era 

dubbed metaheuristics. The prefix “Meta,” which comes from the Greek language, implies that 

these approaches are beyond the former optimization algorithms from different aspects. Their logic 

is designed in such a way, enabling them to tackle the problems that are suffering from inadequate 

data inputs or limited computational resources. Most of the Metaheuristics commonly adopt some 

scheme of stochastic optimization that finding optimal or near-optimal solutions entails using 

random variables.  
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Massive breakthroughs in digital processing, whether hardware or software, have boosted 

metaheuristics' capacity to develop near-optimal solutions for exceedingly complex decision-

making problems in a wide range of industries and service sectors, which had previously remained 

unsolvable. 

A metaheuristic can provide a high-quality solution to a given optimization problem, provided that 

it can strike a balance between diversification and intensification. In concept, diversification means 

exploring the search area to discover the regions containing high-quality solutions effectively, and 

intensification represent exploiting the agglomerated search experience (Birattari et al., 2001). 

2.7.1 Classification of Metaheuristics 

(Birattari et al., 2001) classifies the metaheuristics based on the criteria consisting trajectory-based 

vs. discontinuous, population-based vs. single-point, memory usage vs. memoryless, single vs. 

multiple neighborhood structures, dynamic vs. static objective function, and nature-inspired vs. 

non-nature inspired. 

Trajectory-based vs. discontinuous algorithms: Trajectory-based metaheuristics pursue one 

single solution instance that corresponds to a closed walk-on or larger jumps in the neighborhood 

graph. Typical examples of trajectory-based metaheuristics include Tabu Search (TS) and 

Simulating Annealing (SA). On the other hand, discontinuous methods entail a multitude of local 

searches, each of which begins with a starting point, i.e., solution construction, and continues with 

making modifications to formerly encountered local optimum and performing randomized greedy-

construction heuristics. Ant Colony Optimization (ACO), Genetic Algorithm (GA), and GRASP 

fell into this class of metaheuristics. 

Population-based vs. uni-point search: The significant difference between population-based and 

single-point metaheuristics is whether their rationale is based on adopting a large number of search 

points within a population or a single point. The optimization algorithm of single-point 

metaheuristics, such as SA, TS, ILS, and GRASP, processes just one instance of solution in each 

iteration. In population-based metaheuristics like ACO and GA, the search region is described by 

a population of generated solutions, whether called ant or genotype. 
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Memory use vs. memory-less: In the memory usage algorithm, the registered search history may 

impact the direction of future searches. Short-term memory is used to prevent cycling over 

previously encountered solutions, while long-term memory is used to diversify the searching. 

Population-based metaheuristics, such as ACO and GA, use the registered experience of formerly 

encountered solutions in constructing new solutions. SA and GRASP are two metaheuristics that 

do not employ memory in their algorithm logic. 

Single vs. multiple neighborhoods: In ILS and ACO, for instance, a kick-move transfers the 

search to a secondary neighborhood when the search in the former neighborhood reaches optimal. 

The mutation as a GA operator mostly functions in a similar way. Another GA operator, crossover, 

may be explained as movements in hyper-neighborhoods (Vaessens et al. 1995), in which a bundle 

of solutions, in GA the size of this bundle has the size of two, is accountable for the construction 

of a new solution. The ACL and GRASP do not use a particular structure such as a neighborhood 

for constructing new solutions. 

Static vs. dynamic objective function: While the majority of metaheuristics employ a single 

method of evaluating search state across the solving optimization problem, known as the static 

objective function, a handful of them use multiple methods, known as dynamic objective functions. 

The TS method may be classified as a dynamic objective function in which specific spots in the 

search area are avoided due to the extremely large value of the objective function value. The other 

metaheuristics, such as SA, ILS, GA, and GRASP, employ a static objective function. 

2.7.2 Simulated Annealing (SA) 

SA is a robust uni-solution metaheuristic approach proposed by (Kirkpatrick, 1984).and (Černý, 

1985) to address complex optimization problems. It functions efficiently in avoiding local minima 

through consecutive changes of neighborhoods, i.e., transitioning to a state with higher energy until 

the best solution is reached in the search area (Kesavan et al., 2020). Emulating a thermodynamic 

phenomenon, i.e., simulated annealing approach starts at a very high temperature and attempts to 

find the minima at the lowest energy state at the end cooling process. Setting the initial temperature 

to a high value ensures a vast feasible area with a large number of solutions. The iterative algorithm 

then progressively decreases the temperature as it approaches the minima, forcing the process to 

converge (Gogna & Tayal, 2013). The impact of cooling schedules on the process entropy drives 



22 

the development of various strategies in SA, including exponential, linear, logarithmic, prolonged 

decrease, non-monotonic, and adaptive (Nourani et al., 1998). 

(Gomes, 2000) propose an SA-based algorithm to address the facility layout problems in 

manufacturing plants that involve four necessary parameters: initial temperature, final temperature, 

the parameter of temperature, and cooling rate. The algorithm launches with generating a random 

solution that includes n facilities. The search comprises two loops: an inner loop that self-iterates 

at a set temperature and an outer loop that gradually decreases the temperature by the cooling rate 

until it reaches the final temperature. The inner loop manipulates the current solution through an 

exchange of facility 𝑖 with 𝑗, when 𝑖, 𝑗 ranging from 1 to 𝑛 − 1 and from 𝑖 to 𝑛, respectively. The 

algorithm terminates when all the neighborhoods that existed in the neighboring set are traversed 

and analyzed by the aforementioned nested loops. In addition, the most recent best solution has to 

be maintained separately. The generated new solution, at the end of the inner loop, replaces the 

current best solution if it outperforms the best solution of the current neighborhood, as shown 

below: 

The expression (2-15) is to assure that the solution with minimum cost is retained. Alternatively, 

the expression (2-16) avoids premature convergence and slips into local minimal. 

if 𝑓(𝑅𝑚𝑖𝑛) < 𝑓(𝑅𝑘) then

𝑅𝑏 = 𝑅𝑚𝑖𝑛

else 

𝑅𝑏 = 𝑅𝑚𝑎𝑥

2-15

2-16

Where: 

𝑅𝑏: final best solution;

𝑅𝑘: the most recent solution at the 𝑘th iteration

𝑅𝑚𝑖𝑛: the solution with lowest cost in the

neighborhood that includes that includes 𝑅𝑘;

𝑅𝑚𝑎𝑥: the solution with highest cost in the

neighborhood that includes that includes 𝑅𝑘;

𝑅𝑘: the most recent solution at the 𝑘th iteration

𝑓(𝑅𝑚𝑖𝑛): The lowest cost found in the

neighborhood that includes 𝑅𝑘;

𝑓(𝑅𝑚𝑎𝑥): the highest cost found in the

neighborhood that includes that includes 𝑅𝑘.
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(Matai et al., 2013) argue that their enhanced version of SA is able to effectively solve multi-

objective FLPs with more than 30 facilities. (Johnson, D. S. et al., 1989, 1991) investigate SA's 

performance on four NP-hard problems: the traveling salesman problem (TSP), graph partitioning 

problem (GPP), graph coloring problem (GCP), and number partitioning problem (NPP). 

According to the findings, judging the SA's performance is a mixed bag. In terms of computing 

time, the SA beat the other algorithms in TSP. However, in the other three examples, it was unable 

to demonstrate its superiority over the others due to higher computing costs or the provision of a 

low-quality solution. (Aarts & van Laarhoven, 1987) uses SA in graph partitioning problem with 

three different cooling rates and observe that the solution quality may differ by 10 percent. 

(Bertsimas & Tsitsiklis, 1993) report that literature accuses the SA approach of excessive 

computation time in some application cases and in general when the cooling rate is very small. 

(Bertsimas & Tsitsiklis, 1993) also maintains that SA is an easy-to-implement probabilistic 

approximation algorithm applicable to a wide range of problems and can propose proper solutions 

for complex optimization problems. (Gogna & Tayal, 2013) shed light on some considerations SA 

approach:  

i. Setting the starting temperature to a sufficiently high degree, a too low temperature leads

the algorithm to fall into local minima. At the same time, a too high temperature makes

reaching the optimal solution exceedingly difficult for the algorithm.

ii. An appropriate cooling schedule, i.e., a sufficiently progressive decline in temperature, is

required to provide a more stable mechanism.

iii. SA appears to be an appropriate approach for an optimization problem that has an oscillated

path toward the global optimal, i.e., the presence of a large number of local minima.

However, making the same choice for the problems with a steady path while approaching

global minimum, i.e., the presence of a small number of local minimums, looks irrational

and causes an excessively delayed process convergence.

2.7.3 Genetic Algorithm 

GA approach is referred, to name a few: (Boussaïd et al., 2013; Dao et al., 2017; Kesavan et al., 

2020; Nordin & Lee, 2016; Wong & Ming, 2019), to be the first nature-inspired heuristic 



24 

extensively applied for a wide range of purposes, such as industries, financial sectors, as so on, to 

provide as expected quality solutions to highly complicated decision-making problems in a 

reasonable time. (Misevičius & Verenė, 2021) propose a hybrid Genetic-Hierarchical algorithm for 

QAP, which is claimed to outperform the other metaheuristics in their literature using an improved 

crossover operator. The results are expected to be more promising if the algorithm's parameters are 

rigorously adjusted. 

Despite all the advances made to the GA approach since its inception in 1975, it still consists of 

four core components: chromosomal encoding, selection, crossover, mutation, and fitness 

evaluation (Dao et al., 2017). 

Fitness function is a set of performance measures ascribed to a particular chromosome, which are 

meant to be optimized. When the fitness function is evaluated, it provides a numerical value, also 

referred to as "fitness," or "the figure of merit," that is assumed to be proportionate to the "utility" 

or "ability" of the solution embedded into that chromosome (Beasley et al., 1993). 

2.7.3.1 Selection 

Among the literature, (Beasley et al., 1993) provide a very insightful and concise analysis of parent 

selection methods and classify them into two main classes of explicit or implicit fitness remapping.  

Fitness scaling, fitness windowing, and fitness ranking are the three subclasses of explicit fitness 

remapping. The optimal search may suffer from over-compression induced by a single extreme 

fitness value, either the best or worse, in both fitness scaling and fitness windowing techniques, 

especially in the face of unusually extreme fitness. Over-compression is also blamed on fitness 

rankings, even though distributing forcing power from a single instance to a group of best-fit 

individuals might relieve the problem. 

The tournament selection method falls into the class of implicit parent selection methods. Due to 

proven efficiency, the binary tournament selection technique, known as the simplest and most 

frequently used method, randomly chooses two individuals and adds the better-fit one to the mating 

pool. This technique conceptually has an elitism effect on the optimization process. In general, 

although the tournament size is allowed to be set to more than two instances, the larger size 

reinforces the selection pressure, resulting in deterioration in the balance between intensification 

and diversification and higher risk for the search process to converge to a local-optima (Beasley et 
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al., 1993). The implementation of the tournament method is easy. It may need significantly less 

computational time since it is easy-to-implement in multi-threads and parallel processing 

development architecture (Goldberg & Deb, 1991). 

2.7.3.2 Crossover 

The algorithm adopted to implement a crossover operator undeniably impacts the process 

convergence and the GA efficacy in the search for optimality. The three primary crossover types 

are standard, binary, and real/tree crossovers. Crossover the parent genes to generate a better 

offspring (so-called a gene or a solution) is the keystone of the optimal searching in a GA. The 

algorithm adopted to implement a crossover operator has an undeniable impact on process 

convergence and the GA efficacy in the search for optimality. The application categorizes different 

crossovers into three main groups: standard, binary, and real/tree crossovers. Standard, binary, and 

real/tree (application dependent) crossings are the three primary categories, each of which is further 

broken into subcategories (for more information, refer to A). Depending on the application, the 

literature on GA mostly recommends using a crossover rate from 0.6 to 1.0. Although raising the 

crossover rate improves the possibility of crossing genes, it may reduce the likelihood of obtaining 

a favorable outcome. 

While addressing any optimization problem using the GA approach, it is recommended to study 

the search space through the lens of modality extremes and analyze the stability in the performance 

of the existing crossover operator, subsequently investigating the need for selection or creation of 

a new crossover (via a combination of existed ones) 

2.7.3.3 Mutation 

If a GA solely uses a crossover operator as the new offspring generator, the good characteristics of 

the parents implicitly have more likelihood to be transmitted over the generations, resulting in 

deterioration in population diversity, a rise in the probability of premature convergence search 

process to a local-optima. (Hassanat et al., 2019). The literature recommends using mutation 

operators to alleviate this problem. Adopting mutation operators in a GA is an effective measure 

to prevent a wide range of genes from being either lost or unexplored over the generation transition, 

resulting in an enhancement or preservation of the GA search area and improved GA performance. 
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A mutation entails modifying the value of one or more bits of a single chromosome (Korejo et al., 

2013). When a GA optimal search process becomes stuck in a local-optima, the more iterations the 

mutation has, the more likely it is to assist the process move away from the local-optima by 

reproducing in other neighborhoods and expanding the search area. Although a mutation delays 

the learning process, it compensates by preventing the GA search process from convergent to a 

local optimum. The implementation of the mutations has long time been in one of the forms as 

point, frameshift, translocation, ell of which entail exchanging, flipping, or switching binary bits 

when the chromosome is binary-coded. Furthermore, a random value from a range bounded to a 

lower and upper value replaces a gene in a chromosome in random mutations (Kanwal et al., 2013). 

2.7.3.4 Elitism 

Elitism in GA is a sub-function of the selection that aims to retain a diverse set of best-fit solutions, 

so-called high-quality individuals, from previous generations in a container known as elite pool 

and pass them to the next (Jaradat et al., 2016). In a GA mechanism, the elite pool functions as an 

adaptive memory, accumulating the data about the global optimum (Jaradat et al., 2016), boosting 

the learning process in GA optimal search to more effectively approach the global optimum. The 

adoption of the elite pool reinforces the aspect of exploitation in GA metaheuristics. Therefore, the 

size elite pool plays a crucial role in maintaining the balance between intensification and 

diversification, i.e. exploitation and exploration. Rising the elite pool size strengthens the power of 

exploitation, resulting in elite pressure, which may expedite the process convergence to a local-

optima. 

Conversely, decreasing the elite pool size deteriorates the learning process, leading to a delayed 

process convergence. Therefore, the size elite pool plays a crucial role in maintaining the balance 

between intensification and diversification, i.e., exploitation and exploration, respectively. Rising 

the elite pool size strengthens the power of exploitation, resulting in elite pressure, which may 

expedite convergence to a local-optima. Conversely, reducing the elite pool size degrades the 

learning process, leading to a delayed process convergence. 
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2.7.3.5 Microbial Crossover 

The natural reproduction process of microbes inspired the development of this type of crossover 

approach in a GA heuristic. The GA procedure uses this notion to randomly choose two genotypes 

from the candidate pool and evaluate them based on their fitness values to identify the winner and 

loser. Afterward, the winner part infects the loser part by replacing some of the loser's genes with 

its genes. Finally, the winner part and infected genotype return to the candidate pool (Beasley et 

al., 1993). Although the crossover rate can be any value from 0 to 100%, a rate of 50% is 

recommended by the literature. 

2.7.4 Genetic Algorithm vs. Simulated Annealing 

Simulated annealing, tabu search, and genetic algorithms are, without a doubt, amongst the most 

reputable heuristic methods (Reeves, 1996). The Genetic Algorithm is a population-based 

metaheuristic approach that has grabbed researchers' interest owing to its remarkable ability to 

provide near-optimal solutions to even the most complicated problems. Amongst the single-point 

search heuristic methods, Simulated Annealing has gained the attention of academics in solving 

optimization problems. GA and Genetic Algorithm appear 147 times among 1662 titles in a search 

for the most popular subject in the field of OR (Operations Research), compared to 11 times for 

simulated annealing (Chambers, 1998). 

Population-based metaheuristics are robust searching algorithms because they can reproduce a new 

solution, perhaps a better-fit, through recombining the existing solutions (Jaradat et al., 2016). This 

is the characteristic that mainly contributes to exploitation, resulting in intensifying the optimal 

search. The use of a diverse elite pool as a memory to retain valuable data when searching for 

global optima provides the search process with the capability to more efficiently exploit the 

information in optimal search (Jaradat et al., 2016). Compared with single-point search heuristics, 

population-based heuristics, which use sets of solutions rather than a single solution to reproduce 

a better-fit solution, offer a significant advantage in dealing with QAP (Misevičius & Verenė, 

2021). Furthermore, (Misevičius & Verenė, 2021) consider genetic algorithms the most potent 

population-based metaheuristics in providing the solution to QAP and other related problems. 
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SA is a single-point neighborhood search heuristic, which adopts a memory-less algorithm with 

the capability to escape local optima and hence avoid premature convergence (Gogna & Tayal, 

2013). (Goldberg & Deb, 1991) addresses two problems linking to simulated annealing: lack of 

population and inability to reproduce new solutions through recombining exited ones. These 

problems are likely to lead to weakness in exploitation. 
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CONTEXT OF THE STUDY AND THE METHODOLOGY 

The main rationale for defining this project is to offer an optimal facility layout plan for a future 

hospital near Montreal, QC. The initial studies in the project led to generalizing the main idea into 

developing an optimization framework specially designed for providing the optimum solutions for 

the problems in facility layout planning. This framework assists decision-makers in finding the best 

distribution of departments among floors and buildings, minimizing the travel costs under different 

conditions and configurations for future projects or existing facilities (for the purpose of continuous 

improvement) in a reasonable time. 

The following sections shed light on the facility layout optimization problem in a hospital, which 

is the focus of this research project, from several perspectives including, client expectations and 

requirements, the client data, and an analysis of the adopted methodology and technologies to 

develop an optimization framework. 

3.1 Client’s Requirements and Expectations 

The project's stakeholders expect a solution that adopts quantitative optimization methods to offer 

an optimal Facility Layout Plan for a future hospital, which promise an improvement of the 

efficiency in service delivery (as the main KPI of the optimization problem) considering the 

following constraints: 

i. Bounding a specific department to one or more floors.

ii. Preventing a specific department from being allocated to one or more floors.

iii. Increasing or forcing the adjacencies among the departments with interdependencies, such

as functional and shared resource dependencies.

iv. Decreasing or avoiding the adjacencies between the departments with deleterious or

unfavorable impacts on each other's performance.

3.2 Client Data 

Even a very sophisticated quantitative model must be backed by relevant data in order to prove its 

efficacy. Therefore, modeling a problem mainly relies on the existing data, or their availability is 
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manageable, forasmuch as data provisioning is time-consuming and requires considerable 

infrastructure. An initial architectural plan has already been drafted, provides the geospatial data 

and the area available per floor for this project. Additionally, an analysis of facility planning using 

a qualitative methodology (namely, the Systematic Layout Planning approach - SLP) reflects a 

relational matrix containing the pairwise flow of patients, personnel, and materials between 

departments or service points, as well as weight factors that prioritize the flows. 

The optimization framework was mocked up using a model based on a CAD file pertinent to an 

emergency hospital from the internet to avoid the expected challenges in data gathering and 

accelerate the development process. The flow between service points and the weight factors are 

estimated accordingly. The friendly user design of the framework’s data feeding allows the users 

to feed their data into the FLP model afterward and obtain their expected solutions. 

The following sections will render the primary physical mock-up model data in detail, i.e., the 

general specifications and geospatial data extracted from the CAD file found on the internet and 

the estimated data for the flow and weight factors. 

3.2.1 General Specifications 

The physical base model for FLP modeling consists of two principal buildings located in north and 

south wings. The two buildings are linked through a functional area on the ground floor, and, 

likewise, a bridge interconnects two wings on the first floor. Inside the bridge is a non-functional 

Table 3-1   General physical specifications of the Emergency Hospital 

Buildings Floors 
Area Available Space 

(m2) (m2) 

North Building Basement 680 550 

Ground Floor 680 535 

First Floor 900 780 

South Building Basement 670 650 

Ground Floor 1024 980 

First Floor 900 760 

Connecting area on the ground floor Ground Floor 600 550 

The area inside the bridge First Floor 150 110 
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area that only accommodates the elevators and stairs. Table 3-1 shows the general specifications 

of this hospital. In addition to this, Appendix 1 provides drawings of each side of the floors in the 

buildings. 

3.2.2 Physical Model’s Geospatial Data 

The Emergency Hospital’s CAD file analysis using AutoCAD software allowed us to extract all 

detailed geospatial data of the buildings, floors, departments, and service points. Table 3-2 contains 

the coordinates of the floors’ centroids. 

Table A- 1, list of departments and service points and their space requirements 

Departments Service Points 

Description Code ID Description Code ID 
Area 
(Min) 

Area 
(Max) 

Surgery Clinic D00117 SG011 Operating room for major surgeries D00021 SG001 34 37 

Operating room for minor surgeries D00022 SG002 34 36 

Preparation & anesthesia room for major 
surgery D00023 SG003 21 23 

Preparation & anesthesia room for minor 
surgery D00024 SG004 21 23 

Sterilization room for operating room D00025 SG005 17 20 

Recovery room D00026 SG006 17 20 

Post-anesthesia care unit 1 D00027 SG007 12 14.5 

Post-anesthesia care unit 2 D00028 SG008 12 14.5 

Table 3-2, the coordinates of the floors' centroids. 

Building Floor 
Centroid’s Coordinates 

X (m) Y (m) Z (m) 

North Building Basement -460.5985 60.2028 -3.0808

Ground Floor -570.5838 59.8999 0.0000 

First Floor -561.3982 -5.8805 4.4865 

South Building Basement -468.9259 43.4499 -4.0808

Ground Floor -578.3015 33.8161 0.0000 

First Floor -574.6514 -29.8383 4.4865 

Connecting area on the ground floor Ground Floor -569.2917 47.7948 0.0000 

The area inside the bridge First Floor -564.3508 -14.495 4.4865 
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Departments Service Points 

Description Code ID Description Code ID 
Area 
(Min) 

Area 
(Max) 

Post-anesthesia care unit 3 D00029 SG009 12 14.5 

Post-anesthesia care unit 4 D00030 SG010 12 14.5 

Outpatient 
Clinic 

D00116 OC007 Doctors' office 1 D00036 AD004 20 22 

Waiting room D00037 GS015 10 12 

Staff lounge in the outpatient clinic D00038 AD005 12 14 

Inpatient emergency caring room D00039 OC001 45 49 

Outpatient clinic room 1 D00040 OC002 14 16 

Outpatient clinic room 2 D00041 OC003 14 16 

Admission office D00043 OC005` 7 9.5 

Waiting room (outpatient clinic) D00044 GS016 10 11 

Stretchers room D00045 OC006 10 11 

Medical 
Imaging Test 
clinic 

D00118 DC009 Echocardiography D00046 MI001 20 23 

X-Ray D00047 MI002 25 31 

The waiting room for the MI department D00048 MI003 35 37 

Doctor's office in MI department D00049 MI004 15 18 

Staff lounge D00050 MI005 10 11 

Reception office in MI department D00051 MI006 20 23 

MRI D00145 MI007 30 33.5 

Specialized 
Clinic 

D00119 SC012 Registration & admission office D00058 AD010 12 15 

Outpatient surgery room 1 D00059 SC001 16 19 

Outpatient surgery room 2 D00060 SC002 16 19 

Waiting room 1 at SC D00061 SC003 15 17 

Waiting room 2 at SC D00062 SC004 15 17 

Gynecology & obstetrics doctor office 1 D00063 SC005 15 17 

Gynecology & obstetrics doctor office 2 D00064 SC006 15 17 

Orthopedic doctor office D00065 SC007 15 17 

Neurology doctor office D00066 SC008 15 17 

Cardiology doctor office D00067 SC009 15 17 

Hematology doctor office D00068 SC010 15 17 

Continued next page 

Table A- 2 in Appendix A includes a list of departments and service points and their space 

requirements. The following two chapters, Mathematical Modeling and Development of a GA 

Based Heuristic Optimizer, explain how this optimization tool uses the extracted data to instantiate 

an instant of the model to pass into the optimizer. 

3.2.3 Flow Matrix 

As indicated in Client Data, the primary key indicator in searching for an optimum solution in this 

optimization framework, based on the client’s expectations, is the improvement in total service 
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delivery efficiency obtained by a solution (3.2). Minimizing the non-value-added activities in the 

service delivery process, in some aspects, may reflect improvement in total service delivery 

efficiency. The displacements between service points by the patients, personnel, and materials are 

an explicit example of non-value-added activities. Hence, minimizing the total distance traveled 

by the agents mentioned above leads to improving the efficiency in service delivery time. In facility 

layout planning methodologies, the flow between two service points refers to the frequency of trips 

performed by each of the agents described above in between in a given period of time. Thus, the 

total distance traveled is calculated by summing the product of flow between a pair of service points 

and the corresponding distance as explained by the following formula: 

∑ 𝑓𝑖𝑗 . 𝑑𝑖𝑗

𝑖,𝑗

 
(3-1) 𝑖 ≠ 𝑗 

Where 𝑖 and 𝑗 each of which refers to a service 

point.  

This optimization framework assumes that the quantitative analysis phase of facility layout 

planning establishes how to aggregate three types of flows that correspond to patients, personnel, 

and materials. The optimization algorithm uses the aggregated flows value in a matrix structure as 

an input. The flow matrix is a square matrix that maintains all of the facilities in rows and columns 

correspondingly. It contains the flow between each pair of facilities at their cross point in the form 

of from origin to destination. 
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The estimation of flow matrix bases its calculations on an emergency hospital with 1000 visits a 

day which is distributed amongst the departments as in Table 3-3 

In addition, visitors are expected to select one of the three hospital entrances on the basis of the 

probability, as seen in Table 3-4. Forty percent of visitors refer to the operating division via the 

information service desk. 

Since the navigation network in this project is undirected, the flow between each pair of service 

points in both directions is integrated into one value. Therefore, the flow matrix is an upper 

triangular matrix, as seen in Table A- 4 in Appendix A (Client Data). 

3.2.4 Travel Cost Unit 

Displacements in both horizontal and vertical directions are not equally desired, forasmuch as 

particular bottlenecks along the routes, such as elevators, significantly increase vertical travel time, 

thus leading to a delay in service delivery time. Adopting a weight factor aids in the development 

Table 3-3, the admission capacity of the functional divisions based on 1000 visits a day. 

Departments 
Admission 

Capacity (%) Daily Visits 

Outpatient clinic 20% 200 

Surgery Clinic 5% 50 

Medical Imaging Test Center 15% 150 

Specialized Clinic 10% 100 

Physiotherapy Clinic 10% 100 

Nephrology & Hemodialysis Clinic 5% 50 

Medical Test Lab (Blood & Pathology) 15% 150 

General Clinic 20% 200 

Table 3-4, the likelihoods for visitors to enter the hospital from each entrance. 

Hospital Entrances Probability of Use 

Main Entrance 60% 

North Entrance 30% 

East Entrance 10% 
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of a notion of travel costs, which individually correspond to each direction of travel. This weight 

factor, or more exact, travel cost unit, may not necessarily refer to any monetary value. 

3.2.5 Relationship Chart 

In order to give whether more or less importance to a flow between a pair of service points, e.g., to 

apply proximity preferences, a weight factor is defined to act as coefficients for the corresponding 

flow. The qualitative facility layout planning methodologies, such as SLP, have specific tools to 

prioritize the flows between service points as a relationship chart. Chapter 5, on page 105, 

elaborates how this optimization framework may use a relationship chart to apply FUZZY 

adjacency constraints. 

3.3 Methodology 

This optimization framework enjoys a multi-layer architecture design as below: 

i. Front-End

ii. Model Constructor

iii. Optimizer

The following sections explain each layer in detail. 

3.3.1 Front-End Layer 

The frontend layer, including GUIs and data tables, is implemented in Microsoft Excel using the 

VBA programming environment. This layer is responsible for gathering data from the client-side, 

managing data (i.e., CRUD and data validation), translating data into a data structure that can be 

interpretable by the model construction layer in Julia, and retrieving post-execution data. 

Forasmuch as Microsoft Excel is the most widely used spreadsheet software with a very easy-to-

use built-in programming environment, i.e.,VBA, is the main reason for choosing the software as 

the platform for data manipulation. Besides, a mid-level Excel user can draw up different reports 

from output data in the desirable formats using existing powerful features. 
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3.3.2 Model Constructor Layer: 

This layer is in charge of constructing the FLP model based on either MILP or GA. The result of 

optimizing the generated model in this phase may be an optimal or near-optimal solution, which 

contains the best possible distribution of the service points among the buildings and floors. The 

optimization framework injects the GA model into the embedded GA-based optimizer as it injects 

the MILP into the external solver, e.g., Gurobi or CPLEX, via a plugin in Julia. The following 

sections elaborate the procedure of generating the FLP model in both MILP and GA aspects, which 

basically includes common steps with specific differences according to the concept of the 

methodology. 

i. Data streaming: Both aspects of model construction begin with this step, allowing for the

transfer of user data from the front-end layer into the constructor layer and the return of the

optimization result and log data from the back-end to the front at the conclusion of the

process.

ii. Flow Matrix: This step, which establishes the flow matrix between the service points, is

shared by both FLP modeling approaches. Later on, the flow matrix contributes to the

development of the model’s objective function.

iii. Navigation Network: Both aspects of FLP modeling adopted by this optimization

framework require establishing the navigation network that contains the routes between the

centers of the floors. The navigation network plays a crucial role in developing the model’s

objective function by calculating the shortest path between the centroids. Chapter 4, on page

49, describes how the optimization framework builds the navigation network in detail.

iv. Development of the objective function: The objective function represents the goal of the

optimization, which conducts the optimum search toward the optimality. Hence, the existence

of this step is necessary for each of the approaches described above, albeit with distinct

implementations. In MILP, the model constructor writes the objective function as a

mathematical expression and embeds it into the model object. Alternatively, in GA-based

FLP modeling, the objective function is a function that returns a single scalar value as it is

invoked. The model constructor incorporates a reference of this function into the GA model.
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v. Embedding the Constraints: This FLP optimization framework may enact certain

constraints in the model construction stage, resulting in a definite effect on the solutions.

These types of constraints are called construction level constraints or binary constraints. The

Unique Assignment Constraint (UAC) and Restricted Assignment Constraint (RAC) are from

these types of constraints. Alternatively, the framework can apply various types of constraints

throughout the optimization process via the concept of penalizing the objective function

value, with varying effects on the solutions. The Floor's Area Availability Constraints and

Adjacency Constraints can be implemented at the construction level or the process level. The

section Enactment of Constraints (5.3.2 on page 60) explains this concept in more detail.

Given the fact mentioned above, like the objective function step, both FLP modeling aspects

include this step but with distinct implementations. In MILP, the model constructor enacts

the constraints in the form of certain mathematical expressions and wraps them up in the

model object. In place, in GA modeling, the constructor applies the construction level

constraints to the base chromosome. (For definition of the chromosome, refer to 5.1)

vi. Development of the base chromosome: This step exclusively exists in GA modeling. The

model constructor generates a base chromosome, which represents the assignment pattern, to

determine how the service points relate to the floors. Base chromosome also includes the

construction level constraints, such as UACs, and serves as a template for solution

reproduction across the optimization process.

3.3.3 Optimizer Layer 

This layer encompasses two different concepts of implementations, depending on the type of model 

it receives. When the model is a mathematical model constructed by the JuMP library, this layer is 

responsible for passing the model to an external solver by injecting it into that solver's plugin. 

Conversely, if the model is a GA-type object, the solver layer will pass it to the built-in GA solver. 

Chapter 6, Experimentation and Analysis of Results, represents all post-execution data and 

analysis.  
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3.3.3.1 MILP Solver 

The optimizer layer may use specific external solvers that are well-known to be leaders in the 

context of mathematical optimization, namely: Gurobi and CPLEX. Indeed, this has been possible 

thanks to the dedication from their developer companies to the academic community via granting 

their academic licenses to the research activities. Chapter 4, Mathematical Optimization, and 

chapter 6, Experimentation and Analysis; demonstrate the developed mathematical models, the 

solution analysis for developed models under some defined conditions.  

3.3.3.2 GA-Based Optimizer 

This project has developed a heuristic optimizer based on the Genetic Algorithm to find the optimal 

or near-optimal solution for optimization problems in facility planning with the non-linear 

objective function. Optimization based on a genetic concept uses an iterative, evolutionary 

metaheuristic. The GA optimizer embedded in this optimization framework begins with receiving 

the GA model generated by the model constructor layer and establishes an initial population. Then, 

it approaches the optimality through generation transition using the operators, namely selection, 

crossover, and mutation, taking the concept of elitism. Chapter 5, Development of a Genetic 

Algorithm Based Heuristic Optimizer, elaborates on implementing the built-in GA optimizer in 

detail. Furthermore, Chapter 6, Experimentations and Analysis of Results, analyzes the GA 

optimizer's performance and process using a descriptive statistics approach to demonstrate its 

effectiveness. Further, it evaluates the efficacy of the optimization framework in enacting the 

constraints in practice. 

3.4 Development Environment and Programming Technology 

The use of Julia programming technology and ecosystem is one of the distinctive aspects of this 

optimization tool. The main reasons for choosing Julia programming technology in the 

development of this optimization tool are as follows: 

i. A high-level programming language with lightning-fast speed

ii. A feature-rich programming language in mathematical programming and graph theory

iii. Feature-packed in linear algebra operations
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iv. One-of-the-kind in data manipulation and data science

v. Powerful in functional programming with the capability to implement the aspects of object-

oriented programming (OOP)
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MATHEMATICAL OPTIMIZATION IN FLP 

This chapter offers a detailed explanation of how the designed framework adopts mathematical 

optimization methodologies, also referred to as the quantitative optimization methods, in 

developing an FLP optimization model. 

4.1 The Approach of Integrating Qualitative Methods into the 

Quantitative Methodology 

Although quantitative methods presumably prove to be more accurate in searching for optimal in 

an optimization problem, their need for a mathematical model that accurately represents all the 

hypotheses and considerations of the problem should not be overlooked. Even though a model 

elaborately developed using the most sophisticated techniques has been adopted, it could still have 

difficulties grasping all aspects of a real-world problem. This chapter, in what comes next, 

describes how this FLP optimization framework uses the outcomes of the FLP qualitative analysis, 

i.e., the matrix of relations and the matrix of flows between service points (as seen in Table A- 4)

which contain weight factor and flow of patients/personnel/materials respectively, as the translator 

of the requirements of a real problem and map them into the parameters of the optimization model. 

4.2 Mathematical Modeling 

As previously stated, using the mathematical methods in optimizing facility layout was determined 

as the best fit for the FLP in the current project. Mathematical optimization has broadly been 

applied to facility layout planning for a long time. The very first step in mathematical optimization 

is modeling, but beforehand, the following section focuses on defining terms and concepts we need 

to select and develop an appropriate model. 

4.2.1 Definitions 

Service point: The smallest indivisible business unit provides a value-added service as part of 

the whole process in a department. 
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Department: An integration of the service points which are grouped based upon providing a 

unique value-added service. A department may be physically divisible amongst different 

locations in the plant. 

Horizontal Distance: The distance horizontal distance is all distances traveled by patients, 

staff, or materials along the X or Y Cartesian axes within the origin and the destination. 

Vertical Distance: The distance horizontal distance is all distances traveled by patients, staff, 

or materials along the Z Cartesian axis within the origin and the destination. 

Travel Cost: The travel cost is a metric that aims to prioritize travel in one direction over 

another. This factor does not necessarily associate with any monetary value. In this project, 

transport cost includes horizontal and vertical transport costs that, as their names imply, are 

related to horizontal and vertical travel. 

Architectural Consideration: The requirements and conditions are taken into effect in the 

facility layout based upon the architectural or applicable standards and are not influenced by 

the optimization process.  

4.2.2 Analysis of Hypotheses 

1) During the first stage of the decision process, the locations of the service points on each floor

are not decision variables.

2) The location of elevators is a design consideration and is determined in the architectural plan.

3) Negative rejection relationships between service points and departments are not allowed. If

rejection or incompatibility is present, it will be modeled as a constraint.

4) Building floors do not necessarily need to be equal, but the projection of higher floors on the

ground falls inside or on top of the projection of lower floors.

5) During the 1st stage of the decision process, the travel distance is computed as the weighted

centroid-to-centroid between the floors in both horizontal and vertical directions.

6) Travel in the vertical direction between the floors can only occur through elevators. All

elevators are full-service and move bi-directionally. The modeling does not involve the

capacity of the elevators.
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7) The architectural plan gives the shape and area for each floor in each building.

8) The architectural plan gives the maximum number of buildings and the maximum number

of floors in each building.

4.2.3  Representation of the Mathematical Model 

Chapter 2 sufficiently explains that the Quadratic Assignment Problem is the longstanding model 

employed in FLP aiming at finding the optimal allocation of n service points to n distinct places 

while minimizing the total travel cost. Given that the first stage of FLP in this project would account 

for assigning N service points to the centroid of K floors, the following QSAP (Quadratic Semi-

Assignment Problem) model, i.e., the equation 4-1 to 4-3, is the best fit formulation this project’s 

FLP. In what comes next, this section explains how this model represents all aspects of the FLP in 

detail. 

𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝑤𝑖𝑗. 𝑓𝑖𝑗. (𝑐ℎ . 𝑑𝑘𝑙
ℎ + 𝑐𝑣 . 𝑑𝑘𝑙

𝑣 ). 𝑥𝑖𝑘 . 𝑥𝑗𝑙

𝑀

𝑙=1

𝑀

𝑘=1

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

𝑠. 𝑡. 

4-1

∑ 𝑥𝑖𝑘 = 1

𝑀

𝑘=1

∑ 𝑎𝑖𝑥𝑖𝑘 ≤ 𝐴𝑘

𝑁

𝑖=1

 

4-2

4-3

𝑖 = 1, … , 𝑁 

𝑘 = 1, … , 𝑀 

𝑥𝑖𝑘 , 𝑥𝑗𝑙 , 𝑧𝑖𝑘𝑗𝑙 ∈ {0, 1},    𝑖, 𝑗 = 1, … , 𝑁, 𝑘, 𝑙 = 1, … , 𝑀 

𝒇𝒊𝒋: flow between service points 𝑖 and 𝑗

𝒘𝒊𝒋: weight factor to prioritize the relation between service points 𝑖 and 𝑗

𝒄𝒉, 𝒄𝒗: horizontal and vertical travel cost correspondingly

𝒅𝒌𝒍
𝒉 , 𝒅𝒌𝒍

𝒗 : horinzontal and vertical distance between centroids of the floors 𝑘 and 𝑙. 

𝒙𝒊𝒌: Boolean decision variable and equals to either 1 when the service points 𝑖 is assigned to 

floors 𝑘 or 0 otherwise. 

𝒂𝒊: the area required by the service point 𝑖.

𝑨𝒌: available area provided by the floor 𝑘
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4.2.4 Decision Variable 

The objective function evaluation (4-1) must involve the service points effectively 

assigned to a floor rather than every presumable permutation of them. An 

implementation of this concept in a mathematical model involves the product of 

pairwise permutation of the binary decision variables, i.e. 𝑥𝑖𝑘 . 𝑥𝑗𝑙, by which each

variable determines the floor accommodates the corresponding service point. 

4.2.5 Objectives Analysis 

This section explains how the optimization model aims to achieve the project's general objective 

via translating them into the components that can be embedded into the mathematical model. 

i. Improving the efficiency of service delivery

The main objective is to have an optimum layout plan that can provide more efficient service 

delivery. Given that service efficiency connects explicitly with the efficiency of the delivery 

process, reduction in non-value-adding activities in the process leads to the enhancement in process 

efficiency. Hence, FLP optimization mainly focuses on minimizing total travel distance between 

service points since material handling and the transportation of patients and hospital personnel 

within a hospital are obvious examples of non-value-added activities. Additionally, it should be 

noted that the types of transports within the hospital are primarily identified as horizontal and 

vertical. Provided limit capacities of the lifts, commonly used to handle vertical travel, may prompt 

an incentive to avoid vertical travel as much as possible.  

In order to explicitly address this purpose in the model, distinct weighting factors, namely 𝑐ℎ and

𝑐𝑣, are devised to act as coefficients for the horizontal and vertical distances to calculate the travel

cost associated with each transportation type accordingly. For each pair of service points, the 

pairwise travel costs should be multiplied by the flow between those points. The flow between a 

pair of service points is quantified by the number of trips taken by patients, staff, or material 

between them within a given period, such as a day, week, month, or year.  
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ii. Pairwise Prioritization of the Adjacencies between Service Points

Functional dependencies or resource-shared dependencies can stimulate the tendency to prioritize 

the adjacency between two service points via reducing the distance between them as much as 

possible. The optimization model can incorporate this strategy through more emphasizing the role 

of flow coefficient in the model. This means that the product of the matrix of relations, which is 

the outcome of the qualitative methods and includes weighting factors for rank assessment of the 

links between the service points, with flow matrix will yield a new flow matrix that more effectively 

represents the importance of interrelations between service points. The following mathematical 

expression states the new strategy: 

The facts described above reveal that, from minimizing the travel cost viewpoint, the optimization 

process must seek the minimum value of total travel cost, which is evaluated by the function below 

to reach the optimal solution: 

∑ ∑ 𝑤𝑖𝑗 × 𝑓𝑖𝑗 × (𝑐ℎ × 𝑑𝑖𝑗
ℎ + 𝑐𝑣 × 𝑑𝑖𝑗

𝑣 )

𝑁

𝑗=1

𝑁−1

𝑖=1

(4-4) 

4.2.6 Constraints Analysis 

Four categories of constraints may be incorporated into the mathematical model described in 4.2.3 

(page42) for this project's FLP optimization framework. This section explains each type in detail. 

i. Unique Assignment Constraints (UQAC)

As a result of the definition of the service point and its distinction from a department, a service 

point locates exclusively on a floor, whereas a department can be divisible within several floors. 

In order to enforce all the feasible solutions to commit to respecting this policy, the model embeds 

equation 4-2. 

ii. Floor Area Availability Constraints (FAAC)

In the FLP, the floor areas are the Capacity Constrained Resources (CCR), meaning that the service 

points located on a specific floor are constrained by the available space associated with that floor. 
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Adopting inequality 4-3 into the model ensures that the viable solutions fulfill the floor area 

restrictions. 

iii. Restricted Assignment Constraints (RAC)

An elaborately developed FLP needs to exert restrictions on assigning service points to floors 

depending upon the functional requirements or architectural considerations. Integration of the 

following equation to the model applies restricted allocation policy to the problem’s feasible area: 

Likewise, equation (4-5) can formulate the rule when the model must prevent a service point from 

locating on a particular floor by providing the complement set comprising the allowed floors 

assigned. 

iv. Adjacency Constraints

The 1st-stage model (i.e., assignment model) adopts this category of constraints either to force the 

placement of multiple specific service points on the common floor or to prevent them from sharing 

the same floor. The adjacency policies are integrable in the FLP model using the following 

equations: 

a) Shared floor adjacency constraints

b) Distinct-Floors Adjacency Constraints

∑ 𝑥𝑖𝑘 = 1

𝑘∈𝔻

 
(4-5) • 𝔻 = {∀ 𝑓𝑖 ∈ 𝔻, 𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ 𝑁|𝑑1, 𝑑2, … , 𝑑10, … , 𝑑𝑛}

• 𝔻 represents the set including the available floors to

which a certain service point can be assigned.

∑ 𝑥𝑖𝑘 = 𝑚𝑦𝑘

𝑖∈𝕊

 

∑ 𝑦𝑘 = 1

𝑘∈𝔽

 

(4-6) • 𝕊 = {∀ 𝑠𝑖 ∈ 𝕊, 𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ 𝑁|𝑠1, 𝑠2, … , 𝑠10, … , 𝑠𝑛}

• 𝕊 represents the set including the service points to share the

floor.

• 𝔻 = {∀ 𝑓𝑖 ∈ 𝔻, 𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ 𝑁|𝑑1, 𝑑2, … , 𝑑10, … , 𝑑𝑛}

• 𝔽 represents the set including the available floors to

which a certain service point can be assigned. 

• 𝑚 is the number of elements of 𝕊

• 𝑘 is the index number of the floor to be shared

∑ 𝑥𝑖𝑘 ≤ 1

𝑖∈𝕊

 
(4-7) • 𝕊 = {∀ 𝑠𝑖 ∈ 𝕊, 𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ 𝑁|𝑠1, 𝑠2, … , 𝑠10, … , 𝑠𝑛}

• 𝕊 represents the set including the service points to share

the floor. 

• 𝑘 is the index number of the floor to be shared 
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4.2.7 Integer Cut 

Flow network graph in an FLP is undirected when the flow directions within the service points are 

not meaningful in analyzing the network graph. In this case, an aggregated undirected flow 

represents the flows between two service points, and the flow amount is the accumulation of the 

flow values in both directions. Figure 4-1 illustrates this concept intuitively. 

In an undirected flow network graph, the flow matrix is an upper triangular matrix. On the other 

hand, the affinity between the service points 𝑖 and 𝑗, i.e., products of permutation of 𝑖 and 𝑗 that are 

denoted as (𝑓𝑖𝑗 + 𝑓𝑗𝑖). 𝑥𝑖𝑜 . 𝑥𝑗𝑑 and (𝑓𝑖𝑗 + 𝑓𝑗𝑖). 𝑥𝑗𝑑 . 𝑥𝑖𝑜, are identical. The phenomenon mentioned 

above causes a symmetric effect in the objective function, resulting in more nodes in the solving 

algorithm and a longer solution time. (Billionnet & Elloumi, 2001) suggest including the condition 

of 𝑖 < 𝑗 in a QSAP model, which is represented in 4.2.3, to alleviate the symmetric effect. 

4.2.8 Adding Valid Inequalities 

The integration of valid inequalities into mathematical optimization models boosts their 

performance up in terms of solving time, according to (Anjos & Vieira, 2017). Devising an 

Figure 4-1, Directed and undirected flow network graph. 

Figure 4-2, Valid Inequality. 

𝑥𝑖𝑘 + 𝑥𝑗𝑙 − 𝑧𝑖𝑘𝑗𝑙 ≤ 1 (4-8)

𝑥𝑖𝑘 , 𝑥𝑗𝑙 , 𝑧𝑖𝑘𝑗𝑙 ∈ {0, 1},    𝑖, 𝑗 = 1, … , 𝑁., 𝑘, 𝑙 = 1, … , 𝑀 
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initiative to reduce the number of branches while the optimization process runs can yield a dramatic 

enhancement in total performance. A study (Ejeh et al., 2018) suggests defining a binary variable, 

namely 𝑧𝑖𝑘𝑗𝑘, to flag whether or not each pair of service points, namely: 𝑖 and 𝑗, share the same 

floor. Then, the rule to assign the two service points to distinct floors when they are not located at 

the same floors, must forced through embedding the following inequality into the model: 

Section 0 also uses this technic as a part of the QSAP model linearization. 

4.2.9 Linearization of the QSAP Model 

The QSAP model falls into the Mixed Integer Non-Linear Programming (MINLP) category due to 

its non-linear objective function. Even though some of the available solvers can find global optimal 

in a less-than real-size MINLP, a scrutiny of the solving algorithm reveals that they rely on 

piecewise linearization to use the known MILP algorithms. Therefore a linearized reformulation 

of the QSAP model, suggested by (Billionnet & Elloumi, 2001), is used to linearize the QSAP 

model in the first phase of FLP in this project. The new reformulation, from (4-9) to (4-14), 

represents a MILP model, which is now applicable to MILP optimization algorithms via different 

available solvers such as Gurobi and IBM CIPLEX. When needed, the restricted assignment 

constraints or adjacency constraints may be added to this model. 
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MILP Model for the 1st Stage of the FLP Model. 

𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝑓𝑖𝑗
𝑤. (𝑐ℎ. 𝑑𝑘𝑙

ℎ + 𝑐𝑣 . 𝑑𝑘𝑙
𝑣 ). 𝑧𝑖𝑘𝑗𝑙

𝑀

𝑙=1

𝑀

𝑘=1

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

𝑠. 𝑡. 

(4-9) 

∑ 𝑥𝑖𝑘 = 1

𝑀

𝑘=1

∑ 𝑎𝑖𝑥𝑖𝑘 ≤ 𝐴𝑘

𝑁

𝑖=1

 

𝑧𝑖𝑘𝑗𝑙 ≤ 𝑥𝑖𝑘

𝑧𝑖𝑘𝑗𝑙 ≤ 𝑥𝑗𝑙

𝑧𝑖𝑘𝑗𝑙 ≥ 𝑥𝑖𝑘 + 𝑥𝑗𝑙 − 1

(4-10) 

(4-11) 

(4-12) 

(4-13) 

(4-14) 

𝑖 = 1, … , 𝑁 

𝑘 = 1, … , 𝑀 

𝑥𝑖𝑘 , 𝑥𝑗𝑙 , 𝑧𝑖𝑘𝑗𝑙 ∈ {0, 1},    𝑖, 𝑗 = 1, … , 𝑁, 𝑘, 𝑙 = 1, … , 𝑀 

𝒇𝒊𝒋
𝒘: prioritized flow between service points

𝒄𝒉, 𝒄𝒗: horizontal and vertical transport const correspondingly

𝒅𝒌𝒍
𝒉 , 𝒅𝒌𝒍

𝒗 : horinzontal and vertical distance between centroids of the floors 𝑘 and 𝑙. 

𝒛𝒊𝒌𝒋𝒍: Boolean integration variable equivalent to 𝑥𝑖𝑘 . 𝑥𝑗𝑙 and equals to either 1 when the 

service points 𝑖 and 𝑗 are assigned to floors 𝑘, 𝑙 correspondingly or 0 otherwise.  

𝒙𝒊𝒌: Boolean decision variable and equals to either 1 when the service points 𝑖 is assigned to 

floors 𝑘 or 0 otherwise. 

𝒂𝒊: the area required by the service point 𝑖.

𝑨𝒌: available area provided by the floor 𝑘
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4.2.10 Analysis of Solving Method 

4.2.10.1 Implementation of the FLP Model 

4.2.10.1.1 The flow of Patients, Staff, and Material within the Service Points 

The matrix of the flow of patients, staff, and material is one of the crucial parameters involved in 

evaluating the objective function. The FLP qualitative analysis methods yield flow matrix and often 

relations weights matrix. Users enter the flow data via the GUIs developed in the Excel 

environment. The XLSX library in Julia facilitates streaming flow data from Excel to the model 

layer. The model layer constructs a flow matrix that contributes to the construction of the 

navigation network graph, as well as the objective function. Next section deals with the navigation 

network graph in detail. 

As discussed in chapter 3, an estimated flow matrix is drawn up for this project, as shown in Table 

A- 4 in Appendix A.

4.2.10.1.2 The Internal Navigation Network Graph 

The distance, the direct path between the service points that the flows must navigate in each 

journey, is another key parameter to consider when evaluating the objective function. In order to 

calculate the distances, this framework establishes a navigation network graph comprising origin 

and destination points and navigation routes in between. A set of connection points and connecting 

lines, which link the points together, made up a navigation path. Since in this phase, the service 

points are generally assigned to the floors centroids, in each navigation path, a pair of floor 

centroids take the place of origin and destination points correspondingly. The navigation routes 

conduct the flow from an origin to the destination via the connecting lines that straightly extend 

along with one of the Cartesian axes and join consecutively together at connecting points. 

Likewise, the flow data, the adopted GUIs using VBA in Excel enable the users to enter the 

coordinates of the centroids and connecting points and the configuration of the navigation network. 

The network configuration deals with defining the routes by determining the order of connecting 

points included. The model layer receives the data by streaming it from the Excel workbook and 

passing it to the graph builder function. 



50 

This framework uses the libraries 𝐿𝑖𝑔ℎ𝑡𝐺𝑟𝑎𝑝ℎ𝑠 and 𝑀𝑒𝑡𝑎𝐺𝑟𝑎𝑝ℎ𝑠 from the Julia ecosystem to 

implement the navigation described above network. Firstly a simple graph is created that accounts 

for providing interrelations within the navigation routes and the composition of connecting points 

in each one. Each graph encompasses nodes and edges to represent the connection points and 

connecting lines correspondingly. Then the graph builder function calls the 𝑀𝑒𝑡𝑎𝐺𝑟𝑎𝑝ℎ𝑠 to enrich 

the created light graph type object with metadata that includes attaching the coordination of the 

connection points to the nodes and adding the weights, notably the flow amount and the travel 

costs, to the edges. The edges extended along either the X or Y axis receive the horizontal travel 

cost as opposed to the edges extending along the Z-axis that incur the vertical travel cost. The graph 

builder function returns a 𝑀𝑒𝑡𝑎𝐺𝑟𝑎𝑝ℎ𝑠 type objects that are responsible for calculating the total 

travel costs associated with each pair of service points as shown below: 

 Supposing that more than one route is possible between a pair of service points, the graph object 

applies the shortest path algorithm to find an optimal route and calculate the pertinent travel cost 

to return. 

4.2.10.1.3 FLP Model 

As discussed in chapter 3, a library from the Julia ecosystem, namely JuMP, allows us to establish 

a MILP model and inject it into several solvers as easily as possible. The key advantage of using 

JuMP, aside from its robust features, is integrating the Julia’s strength points, notably in working 

with matrix and linear algebra operations and the exceptional performance, with the versatility of 

choosing from a vast range of available MLIP and MNLIP solvers. 

After creating the data model, the Model Layer instantiates a JuMP type model object and proceeds 

with adding the variables and constraints, which have been encoded in interpretable scripts, to the 

model. Then, it creates the objective function and embeds it into the model object. It finally injects 

the model object to the solver using its plugin in Julia and calls the optimization procedure to search 

for the optimal solution. 

𝑓𝑖𝑗
𝑤. (𝑐ℎ. 𝑑𝑖𝑗

ℎ + 𝑐𝑣. 𝑑𝑖𝑗
𝑣 ) (4-15) 
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4.2.10.1.4 Optimal Solution 

When the optimization process concludes with an optimal solution, apart from the report provided 

by the solver, which is interpreted according to the guidance can be found at the developer’s 

website, such as Gurobi or IBM CIPLEX, all post-execution results are accessible via the model 

object. The result data will be streamed back to the Excel environment by writing a workbook using 

the XLSX library. Microsoft Excel provides appropriate tools to analyze and visualize the data. 

Chapter 6 provides examples of the analysis and visualization of the results.  

4.2.11 Analysis of Result 

As previously mentioned, the FLP in this project is split into two stages, the first of which aims to 

find an optimal solution for the assignment of the service points to the floors. This stage, therefore, 

delivers an assignment plan that promises to minimize the total cost of transport within the service 

points while meeting the constraints. 
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DEVELOPMENT OF A GENETIC ALGORITHM BASED 

HEURISTIC OPTIMIZER 

As mentioned in chapter 3, due to the challenges in solving the QSAP model developed for the first 

stage of the problem in real scale on account of being a case of NP-hard problem, project’s B.O.K 

decided to place the development of a GA-based heuristic solver in project’s plan. This chapter 

unfolds the detail of the development process of this heuristic solver. Figure 5-1 illustrates the 

process roadmap of the optimizer development. 

And subsequent sections explain the concept design and detailed design of the development process 

in more detail. 

5.1 Definitions 

This section provides detailed and accurate definitions for all GA-related terms and structural 

components necessary to understand the developed algorithms for this optimization framework 

deeply. 

1. Bitflag

A data structure that refers to one bit and maintains a Boolean value of TRUE/FALSE. This 

solution architecture uses a bitflag to address a decision variable (𝑥𝑖𝑗), which determines whether 

or not a specific service point is on a particular floor. 

2. Bitarray

An array type data structure that comprises a set of bitflag. The array indices, namely n and m, 

refer to the number of floors and service points, respectively. This solution architecture uses a 

bitarray of 𝑛 × 1 to address the location of a specific service point on the floors and a bitarray of  

𝑛 × 𝑚 to represent a complete layout solution. 

Figure 5-1. GA-based heuristic optimizer development process roadmap. 

Concentp Design Detail Design Implementation
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3. Phenotype

In biological definition, Phenotype is a realistic and tangible set of visible traits that are uniquely 

associated with an individual, such as eye color, hair color, physical shape, and the like. Each 

feasible layout assignment plan corresponds to an individual if we intend to define such an 

architecture in our solution architecture. Subsequently, a phenotype would represent an 

arrangement of departments on floors and in buildings, subject to architectural essentials and 

functional requirements. Phenotype is a structure out of the scope of this solution architecture, and 

the reason for defining it is for information and understanding how genotype links with phenotype. 

4. DNA

DNA is the smallest and most basic data element (a bit size) to encode a trait in heredity. In this 

solution architecture, the Boolean data type of True or False contained in a DNA specifies whether 

or not a particular service point has located on a specific floor. The order of bits in DNA is essential 

since the index number of each bit in the gene vector, which is equivalent to the row index in the 

matrix structure, correlates to a floor number. 

5. Gene

In biological concepts, a gene is a segment composed of a set of DNA that encodes a trait of an 

individual. Maintaining the same approach in this architecture, a gene is a set of DNA, i.e., a vector 

of n (i.e., the number of floors) bits, depicts the unique assignment (given that multiple-allocations 

of a service point is not allowed in this architecture) of a particular service point to a floor. This 

definition confirms that all the bit values contained in the gene vector are allowed to store Boolean 

value False except for one of them at a time. This would sufficiently satisfy the constraint of the 

Figure 5-2, the structure of a chromosome in GA representation of FLP. 
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unique assignment of service points to floors. A gene has a one-to-one relationship with a service 

point. Figure 5-2 shows the gene structure and its relationship with the chromosome and the service 

points. 

6. Allele

An allele is multiple forms of a particular gene. Each gene has two alleles passed down from the 

offspring’s parents. Depending upon the crossover results and mutation on these alleles, a new 

version of the gene is replicated to locate the offspring’s genotype. The existence of alleles causes 

diversity in the genotype. An example of an evolutionary optimization algorithm based on 

biological concepts may help to clarify the definition. While reproducing a new genotype from 

parents A and B, given that a particular gene may determine which floor a specific service point is 

allocated to, there are two alleles from offspring’s parents to reproduce a new version of the gene 

that performs the same function in the new genotype. Indeed, these two alleles are two distinct 

versions of the same gene, each indicating that the same service point is located on a different floor. 

The crossover and mutation algorithms will now be in charge of determining how a new gene may 

be generated from alleles A and B. 

From the development point of view, the allele is a vector of n bits (i.e., a collection of DNA) 

integrated into a gene to allow a service point to be allocated to a floor (as illustrated in Figure 5-3). 

The DNA number in an allele is equal to the numbers of DNA in a gene, which is a fixed integer 

depending on the floor count of the FLP. This explanation suggests that, in order to shift a service 

point from one floor to another, the affiliated gene must swap its contents with another different 

allele. 

7. Chromosome

There are two approaches to identifying a chromosome: basically, a chromosome is a sequence of 

DNA, and from another viewpoint, a chromosome is an encompassing collection of genes. In other 

words, the meanings above convey that a chromosome is a segmented form of DNA, that each 

segment is a specific gene (as seen in Figure 5-2). 

In the data model, the chromosome is a data type, composed of a bitarray of order 𝑛 ×  𝑚 (which 

n and m are the number of floors and service points correspondingly and represent a segmented 

form of DNA by rows and columns) and some information fields which indicate the generation 
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number, corresponding fitness value, a numerical field that indicates whether the chromosome 

generated by a crossover or a mutation, and the number of iterations used to reproduce the 

chromosome. Each bit in the bitarray specifies whether or not a specific floor accommodates a 

particular service point by its row and column indices. 

The sequence of genes in a chromosome is meaningful. The index of a gene corresponding to the 

column number in the matrix structure is the primary key to interrelate it to its affiliated service 

point.  

8. Genotype

A genotype is the ordered sequence of alleles. One may say, from another perspective, that a 

genotype is an instance of a chromosome filled in by alleles. Thus, each genotype suggests an FLP 

feasible solution in this architecture, including a service point assignment plan throughout the 

floors. 

9. Chromosome vs. Genotype

Both are a representation of a set of DNAs from two aspects. A chromosome is a structural 

rendering for DNA, i.e., a segmented form of DNA, to depict which gene is accountable for what 

trait. On the other side, a genotype is an instant of DNA structurally instantiated based on the 

chromosome and filled in with alleles. Therefore, one can say that the chromosome functions as a 

Figure 5-3, the schema that describes how the genotypes are constructed. 
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template for the instantiation of the genotype. Figure 5-2 and Figure 5-3 have an intuitive 

explanation for their difference in definition and the relationship in between. 

10. Diploid

An object type that contains a couple of genotypes. 

11. Genome

An object type that contains a collection of n genes. This solution architecture uses the genomes to 

represent the population or the yields of crossover or mutation operations.  

12. Fitness Value

The optimization process resembles a race in which genotypes compete for survival over 

generations. The fitness value is the key indicator for each genotype to prove its competence to 

win the competition against the others, whether selected randomly or rule-based. The fitness value 

for each genotype is the outcome of evaluating the objective function of the FLP model with the 

solution contained in the genotype. The genotype embeds a numerical field to maintain the fitness 

value, calculated at the instantiation time in the data model. 

Figure 5-4, schematic view from a Bitarray that is embedded in a genotype and contains an FLP 

solution. 
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5.2 GA Representation of the FLP Problem 

 As explained in chapter 4, the decision variable in the FLP mathematical model formulation has 

two dimensions of 𝑖 and 𝑗 that correspondingly associate with the service points and the floors. 

Given that we have decided to develop a heuristic optimizer based on a Genetic Algorithm, the 

first step is to reformulate the FLP model as though being applicable in the GA algorithm. 

Depending on how the decision variable is associated with the DNA and how the segments of DNA 

make up the gene structure, there are two general approaches to formulate the FLP model, as 

illustrated in Figure 5-5. 

Development considerations have motivated the implementation phase to use the first approach of 

representation of the FLP model. (as seen in Figure 5-5). Except for one, all of the bitflags in a 

Figure 5-5 The approaches to GA representation of the FLP model. 
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gene vector would be set to False to satisfy the constraint of the unique assignment of the service 

points to the floors. This feature of the first representation approach allows the implementation 

phase to integrate the evaluation of unique assignment constraints with the instantiation of Allele. 

Using this initiative improves the efficiency optimization process during the execution. 

5.3 Detail Design 

This optimization process is an evolutionary mechanism that approaches the optimal solution by 

adopting a biologically inspired logic, namely genetic inheritance, via generation transition. The 

process begins with the initial population, conducts an iterative optimum searching process, and 

meets the termination criteria. The application of developed GA operators, including Selection, 

Elitism, Coupling, Crossover, and Mutation, contributes to maintaining convergence and 

evolutionary amelioration during the searching process. Figure 5-6 illustrates a GA-based 

procedure adopted by this optimization framework to find the closest best-fit solution to the 

optimum. This routine can undergo modifications during the deployment step to enhance process 

efficiency by adding functionality to the operators, adding new operators, or using interoperability 

between the operators. This section describes the process in detail. 
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5.3.1 Initial Population 

This is the starting point of the GA optimization process that launches with streaming the data from 

the Excel workbook and establishing the data structure in the model layer after validating data 

coherence, i.e., the consistency among the constraints and just-in-case data type conversion in case. 

Figure 5-6, GA flow process chart. 
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It continues with iteratively producing feasible genotypes on a random-based algorithm. This 

module delivers the initial population in a genome, a data collection type containing N (number of 

initial population) feasible solution to the optimizer layer to lunch the iterative optimization sub-

procedure. Figure B- 1, in Appendix B, illustrates the initial population process intuitively in detail. 

The following section explains the detail of how the initial population module validates the 

feasibility of the genotypes. 

5.3.2 Enactment of Constraints 

In the optimization framework, although the GA-based optimizer adopts and evaluates the 

constraints that differ from the mathematical programming, both approaches support the same 

types of constraints and provide a common definition.  

This optimization framework consistently evaluates the constraints adopted to the GA model to 

verify how the solutions embedded in the genotypes respect the constraints. There are two distinct 

approaches to the constraints evaluation: explicit or implicit, depending upon when, construction 

level or process-oriented, and how, definitive or partially, the framework conducts the evaluations. 

The following subsections explain these two approaches in detail. 

5.3.2.1 Explicit Evaluation of Constraints: 

In this approach, the optimization framework strictly validates DNA, corresponding to an FLP 

solution, against all constraints set as explicitly evaluated at the construction step before 

incorporating it into genotype instantiation. This aspect of constraint evaluation is also referred to 

as binary evaluated constraint since it has a double-edged definite outcome, indicating whether or 

not the examined solution violates any of the constraints. When the explicit evaluation finds no 

evidence of a violation of any of the explicitly evaluated constraints by the examined solution, it 

returns it as a feasible solution to be contained by a genotype object. Otherwise, the function 

discards the evaluated solution returns an empty object (i.e., empty value).  

This architecture employs this approach to evaluate the constraint types, including the unique 

assignment of service points to the floors (UQAS), the assignment of the service points to a limited 

number of floors (RAC), and the enforcement adjacency of the service points (AJC).  
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5.3.2.2 Implicit Evaluation of Constraints: 

In some cases of FLP problems, the constraints narrow the feasible area to the extent that the 

optimization run-time extends extremely owing to the extensive number of iterations needed to 

instantiate a genotype with an assured feasible solution. This optimization architecture introduces 

the approach of implicit evaluation of constraints to alleviate this problem. In this way, the 

constraints evaluation function relaxes any constraint set as implicitly evaluated from the GA 

model and overlooks the construction level evaluation for that constraint. In place of construction 

level evaluation, the optimization framework penalizes the solution’s fitness value for each 

constraint violation via the fitness function. Given that the elitism aspect of the GA-based 

optimization algorithm consistently maintains the better-fit solutions in each optimal searching 

iteration to suggest at optimization completion, the best-fit solutions with a lower penalty have a 

better probability of becoming the candidate for the closest-to-optimal solution. This aspect of the 

constraints evaluation implies that evaluating a solution's accordance with an implicitly evaluated 

constraint is process-oriented. The optimization process suggests the best-fit solution with the 

minor penalty ascribed to constraint violations at the end of the optimum searching process. 

Additionally, the evaluation result of a solution against an implicitly evaluated constraint is non-

definite. When the penalty corresponding to the violation of a constraint in the solution's fitness 

value is zero, the solution maintains maximum respect to the constraint, which is progressively and 

differentially attained throughout the optimization process. This framework also refers to these 

restrictions as FUZZY-evaluated constraints from this standpoint. The floor area constraints and 

the adjacency constraints can be either set as implicitly or explicitly evaluated constraints, and the 

result of the optimization, obviously, would not be the same. Chapter 6 intuitively demonstrates 

this fact using an optimization designed experiment. 

This measure gives the initiative to the decision-maker to determine an over-assignment allowance 

rate for each floor to let the optimizer assign the service points to a floor more than its accessible 

area. As you change this strategy to explicit feasibility validation by letting the over-assignment 

allowance rate to zero, you can relax a constraint of this type for a floor by setting the over-

assignment allowance rate to a relatively big value. One may perhaps encounter the ambiguity of 

whether the presence of infeasible solutions among the feasible area would not be harmful to the 

optimization process. The solution architecture responds to this question by embedding the over-
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assignment cost to the fitness function and letting the user set the over-assignment cost per unit. In 

this way, adding the over-assignment cost to the fitness value of an over-assigned solution increases 

its chance of being discarded by the selection operator at the beginning of each round of 

optimization. 

5.3.3 Explicitly Evaluation versus Implicitly Evaluation 

Explicit or implicit evaluation: which is better? When both are viable while adopting the constraints 

into a GA model, this is an essential topic to consider. To provide a compelling answer to this 

question, this section compares these two approaches from different angles as below: 

i. In explicit evaluation, the framework assures the effectiveness of a constraint over the feasible

area via validating all solutions against it. In contrast, in implicit evaluation, the optimization

process is responsible for maximizing the adherence of the best-fit solution to an explicitly

evaluated constraint (FUZZY-evaluated constraint) through minimizing the corresponding

penalty as a part of minimization of the solution’s fitness value. Therefore, in this approach, the

framework exempts every generated solution from being evaluated against the explicitly

evaluated constraints, resulting in a significant decline in computational time.

ii. GA optimum searching algorithm is an evolutionary optimization based on minimizing pairwise

travel costs between service points. In such a paradigm, the more distinct permutations of service

points exposed to the GA operators in each search iteration, such as crossover and mutation, the

higher the optimization efficacy may be expected. There is a considerable risk of overlooking

some of the permutations of service points in each optimization iteration in explicit evaluation.

The feasible area is restricted to the solutions with no clue of any constraint violation, resulting

in an adverse effect on the optimization efficiency.

iii. In some GA optimization experiments, the feasible area is insufficient to provide any feasible

solution, e.g., a lack of convergence. With some constraints set to implicit evaluation, when

possible, the optimization mechanism can provide the best-fit solution with the maximum

adherence to the constraints, i.e., the minor penalty for violation of the constraints in fitness

value.
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iv. The optimization process efficacy may directly impact the extent to which the best-fit solution

adheres to an implicitly assessed constraint, given that the implicit evaluation is process-

oriented. When, for example, the optimal searching method fails to introduce a global best-fit

solution, e.g., due to being trapped in an immature convergence, the confidence in the best-fit

solution's maximum adherence to the constraint is likely jeopardized.

5.3.4 GA Operator: Selection 

Even though the selection step seems to be undervalued in the evolutionary GA-based optimization 

process, it has been demonstrated to be crucial to the convergence time and the efficiency of the 

optimization process. Adopting an appropriate selection algorithm can ensure that the optimization 

process avoids premature convergence. Numerous studies characterize the tournament selection 

method by its merits over other selection strategies, most notably, low complexity in computational 

time, the potentiality of being multi-threadable and parallelizable in implementation, more 

resistance to the predominance of dominant individuals, no need for integrating computationally-

intensive or resource-demanding algorithms for sorting or scaling the fitness values(Shukla et al., 

2015). The abovementioned advantages are sufficiently persuasive to opt for the tournament 

selection method in implementing the GA selection operator. 

Although binary tournament selection can minimize the selective pressure as an effective initiative 

to prevent early convergence, the tournament size in the developed selection operator is 

configurable, which allows the user to conduct an n-ary tournament selection in the optimization 

process. 

5.3.5 GA Operator: Elitism 

Due to the random and stochastic nature of GA-based heuristic optimization, there would be a 

substantial probability of losing the best solutions if the optimization algorithm did not include any 

reassurances to maintain the best solutions in successive generation transitions. The Elitism 

operator in this architecture secures the presence of the best solutions from former generations in 

each optimization rounds. The Elitism Rate parameter of this operator sets the percentage of best-

fit genotypes to survive in the next generation. Finding optimal values for this parameter is an 

empirical task requiring close attention. A high rate of elitism presumably leads the optimization 
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track to an immature convergence. Chapter 6, Experimentations and Analysis of Results, 

investigates the effect of this parameter on a GA-based heuristic optimization in the FLP problem. 

5.3.6 GA Operator: Coupling 

Once the selection operator provides a population to participate in the GA-based optimization 

process, the optimizer needs instruction on forming the mating pool. The operator Coupling 

dictates your strategies for coupling the parents. Although the most basic one is random coupling, 

the optimizer can feature one or more rule-based coupling strategies that are well-fitted to the 

problem and make the optimization process functions more efficiently according to your 

experiments, too. 

This optimization framework provides two operators comprising one random-based and one rule-

based named Best-Worst. The random-based coupling operator pairs the parent genotypes 

randomly with no replacement. Meanwhile, as its name suggests, the Best-Worst operator is 

responsible for no-replacement coupling the best-fit genotypes sequentially from the top with the 

worst ones from an ordered population based on their fitness values. 

This operator receives the population in a Genome data type and returns the mating pool in a 

Diploids data type object. 

5.3.7  GA Operator: Crossover 

This is the main GA operator that enables the inheritance of traits from parents to their children by 

selecting and dispatching a particular number of genes from each parent side to instantiate 

offspring's genotype. Like the other operator, the design and development of crossover operators 

can follow two different approaches: random-based and rule-based operators. This optimization 

architecture incorporates a configurable random-based Crossover operator that receives a Diploid 

as input and returns a Genome containing the parents (at least one of the parents) and their 

offspring. The concept used in the development of this operator combines the impression of 

partially-mapped crossover and cycle crossover, as outlined underneath. In Appendix B, Figure B- 

2 illustrates the crossover flow process. 
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5.3.7.1 Design of concept 

A blend of ideas that shape up the partially-mapped and cycle-mapped crossovers, which 

(Umbarkar & Sheth, 2015) has briefly explained in their review on the different types of crossovers, 

was a reasonable ground to base the development of a new crossover operator that well-fitted to 

the FLP problem in this project. Initially, this Crossover operator receives a Diploid containing two 

genotypes, e.g., F and M, and the Crossover Rate, i.e., the percentage of the genes available to take 

part in the crossover, say R, and randomly marks a locus on the genotype F as a start point (i.e., P1 

in Figure 5-7). According to the logic of partially-mapped crossover, this operator has to 

count ⌊𝑅 × 𝑛𝑔⌋, ng is the total number of genes in base chromosome, genes from the start point 

and marks there a locus as the endpoint (i.e.: P2 in Figure 5-7), and then maps the alleles contained 

in this range of genes to a new instance of DNA (i.e., a base chromosome that contains a solution 

template). Forasmuch as the evaluation of constraints probably prevents mapping some of the 

alleles to a new base chromosome, determination of endpoint is impossible. Hence, alternatively, 

Figure 5-7, schematic view of the Crossover procedure. 
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the mapping of alleles has to trigger from the start point and iteratively continue till the N is 

reached. Figure 5-7 illustrates a crossover operation with ⌊R×ng⌋=3 as an example. The schematic 

view elaborates on mapping the alleles from chromosome M to the base chromosome, i.e., N; the 

second iteration fails due to a violation in the evaluation of construction constraints. Hence, the 

mapping alleles continue for one more iteration, and the endpoint advances to the P3.  

In some cases, the start point is located somewhere in the genotype where the endpoint is reached 

before letting the mapping process fulfill the N iterations. To handle such situations, the crossover 

logic supposes the DNA as a circled sequence of genes that mapping process can cycle back to the 

beginning of the DNA to complete the N iterations. Once the mapping of alleles from genotype F 

to the new solution is over, the operator puts the seal on the new DNA by filling the remaining 

empty genes with the alleles contained in the corresponding genes in genotype M and dispatches it 

to the instantiation of a new genotype, namely child's genotype, after being validated against the 

capacity constraint, i.e., the constraint of maximum available area for each floor. Should the DNA 

fail to prove its compliance with the constraint, the operator discards it as flawed DNA and retries 

to randomly reproduce flawless DNA. The iterations for reproducing flawless DNA continue until 

the parameter of MAX_ATTEMPTS_TO_FLOWLESS_DNA is reached. This reproduction process 

loops again by swapping the parent genotypes at the positions F and M if the value of parameter 

Mode would be dbl. 

5.3.7.2 Microbial Crossover 

This operator features a crossover based on the Microbial Crossover concept, which (Harvey, 2011) 

claims for its better efficiency in GA-based optimization. Microbial Crossover receives a diploid, 

ranks the contained genotypes in the order of Winner and Loser according to their fitness values. 

The winner genotype has the better fitness value, given whether the fitness function objective is 

minimization or maximization (in this project the .less fitness value due to the minimization fitness 

function). After ranking the parent genotypes, the crossover algorithm proceeds with reproduction 

offspring complying with the routine described in except two latest steps as firstly, in microbial 

crossover logic, looping again with swapping the winner and loser genotypes is not rational, and 

secondly, the operator nullifies the loser genotype rather than embedding it in the returning 

Genome. Provided that microbial crossover could prove its competencies to improve the 
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performance of the GA-based optimization in total, it can justify the claim for being more efficient 

owing to two coherent reasons as firstly, having less iteration in its routine, and secondly, 

combining the concept of elitism in the crossover algorithm, that reduce noticeably the execution 

load in each optimization round.  

5.3.7.3 Random Crossover Rate 

To generate a new DNA, as mentioned in 5.3.7.1, the crossover operator needs a required 

parameter, namely Crossover Rate that is limited to the interval bounded between zero and one, to 

calculate the number of candidate service points that must be involved in the mapping iterations. 

Having Crossover Rate set to a single value, e.g., 0.7, probably demonstrates an acceptable 

efficiency during the starting optimization rounds. The solutions need more changes by making 

genes crossover among the genotypes. In the meantime, the more the optimization process 

progresses towards the optima, the fewer changes the solutions need to occur in the assignment 

plan. Indeed, while the optimum searching process gets closer to the optimal point, a high crossover 

rate gradually may lose its efficiency. To mitigate this inefficiency, the crossover operator is geared 

to accept an interval of 0 to 1 as the crossover rate and picks a random value per each function call. 

Chapter 6, Experimentations and Analysis of Results, presents an analysis of the GA-based 

optimization for the FLP problem in this project under the conditions described in the sections 

above. 

5.3.8 GA Operator: Mutation 

Unlike the crossover operator that attempts to propagate the well-fitted traits among the population 

through heredity, the mutation operator is mainly responsible for maintaining the population 

diversity via modification of one genotype. Nevertheless, the mutation operator can randomly 

reproduce a better-fitted genotype, which implies a better solution. A well-designed mutation 

algorithm that functions efficiently could diminish the risk of immature convergence and prevent 

the optimization process from being trapped in a local optimum. The following sections explore 

the detail of the developed mutation operators and their algorithms. 
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1. Mutation Operator: Floor Swap

This operator receives a genotype and randomly picks two genes, i.e., two service points, up from 

the ones available to mutation. Then, it simply checks out the possibility of swapping the floors 

that both service points are currently located on via evaluating the validity of the constraints against 

this mutation. If the mutation is valid, it instantiates a DNA type based on the initial genotype's 

DNA and swaps the alleles in those genes to put the floors swap in practice. Otherwise, the program 

execution control keeps the first chosen gene, randomly picks another gene amongst the remaining 

genes in the genotype, and repeats the same process described above. Finally, supposing the 

operator could generate a flawless instance of DNA, it dispatches it to the instantiation of a 

genotype and returns the new genotype to the new generation pool. Otherwise, the operator returns 

an empty object type (i.e., empty value). 

2. Mutation Operator: Near-or-Away

The steps that make up the procedure of this operator are exactly in common with the previous 

operator, as described above, except for the mutation logic. When the operator receives a genotype, 

there are two scenarios, depending on which floors the randomly chosen service points are located 

on, as: 

i. , if both service points are on the same floor, the operator attempts to reallocate the second

service point randomly to another floor via changing the allele contained in the

corresponding gene in the genotype;

ii. Otherwise, the operator tries to reassign the second service point to the same floor as the

first service point is located.

5.3.9 GA Operator: Screening 

In practice, there is a significant risk that the optimization trajectory encounters a situation in which 

the population is classified between two groups of elite individuals and a massive population with 

fitness value very far from the optimum point and the vast gap in between. In such circumstances, 

the most efficient decision would be to terminate optimization iterations even when the optimal 

has not yet been achieved. This heuristic optimization tool incorporates a measure referred to as 

population screening makes the algorithm less vulnerable to the aforesaid unintended condition. 
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By first applying unity-based normalization, also termed Min-Max Feature Scaling, the screening 

operator maps the fitness values of the population into the range of [0,1] using the following 

function (where 𝐹𝑉min  and 𝐹𝑉𝑚𝑎𝑥 are the minimum fitness value and maximum fitness values of 

the population): 

𝐹𝑉𝑠
′ =

𝐹𝑉𝑠 − 𝐹𝑉min

𝐹𝑉max − 𝐹𝑉𝑚𝑖𝑛

Then, the screening routine proceeds with classifying the normalized range of values based on the 

range of [0.0, 0.25, 0.5, 0.75, 1.0]. The final step involves conducting random filtering on each 

class according to the filtering rate for each class and provided by the user. Integrating this operator 

in the optimization process promises a population with a more balanced distribution while 

maintaining diversity. 

5.3.10 Optimization Process Termination Criteria 

Figure 5-6 shows that the GA-based optimization mechanism needs criteria to terminate the 

iterative optimal searching when it reaches the closest best-fit solution to the optimum and cannot 

introduce any better solution. According to this optimization framework, for termination to occur, 

the following must be true: 

i. ⌊𝑈𝑄𝑅𝑒𝑙𝑖𝑡𝑒𝑠 × 𝑃𝑒𝑙𝑖𝑡𝑒𝑠⌋ = 1, where 𝑈𝑄𝑅𝑒𝑙𝑖𝑡𝑒𝑠is uniqueness rate of elites population, and

𝑃𝑒𝑙𝑖𝑡𝑒 is the population of elites

ii. 𝑈𝑄𝑅𝑝 ≤ 10%, where 𝑈𝑄𝑅𝑝is diversity percentage of candidate pool’s population

iii. No better-fit solution after five consecutive iterations.

The logic behind the criteria above suggests that when the first condition occurs, convergence has 

taken place, while the diversity of the pool of candidates, according to the second condition, is 

insufficient to introduce a better solution. After five straight optimization rounds that satisfy these 

two conditions, the termination occurs. 
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5.3.11 Optimization Round Report 

The GA-based heuristic optimizer provides a detailed and informative report for each optimization 

round, which helps track the optimization path in each iteration. This report, as illustrated in Figure 

5-8, focuses on four main sections as below:

1) This section provides statistics about each population category, including base population,

elites, selected population, candidates pool, and Diploids at the beginning of each

optimization round. The 𝐹𝑇𝑉 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 and the 𝐷𝑖𝑣. 𝑅𝑎𝑡𝑒 of each category are

the crucial data elements in this section since they provide an estimation of how diversified

is the population participated in the optimization with a reasonably light computational

burden. The computational complexity would make it too time-consuming to analyze the

diversity of the population in depth. The FTV Uniqueness Rate explains how the fitness

values that appear in the population are varied, whereas the 𝐷𝑖𝑣. 𝑅𝑎𝑡𝑒 indicates how many

distinct genotypes existed since they have been reproduced in various rounds and by

different operators. These measures can also indicate how efficient the GA operators have

been, especially when it comes to Initial Population, Selection, and Screening.

2) This is the most intuitive visualization provided for assessing the balanced distribution of

individuals within a population. It uses the Min-Max Feature Scaling, explained in 5.3.9,

to depict the classified scattering of the fitness values that appear in the population.

3) Statistical information in this part of the report and the lines under the Stat. info are other

aspects of monitoring the progress of optimization processes via quantitative indicators. As

seen in Figure 5-8, the report segments include the data related to the top three best-fit

individuals, two worst cases, and statistics for the whole population to demonstrate local

improvement within a round and to track the global improvement compared with the initial

round. The fitness value is also categorized into travel cost and over-assignment cost. The

presence of a data field named 𝐴𝑡𝑡𝑒𝑚𝑝𝑡. 𝑁𝑜.  (i.e. attempt number) would be significant

when you figure out which operators could confirm their effectiveness by reproducing the

best-fit genotypes. In practice, 𝐴𝑡𝑡𝑒𝑚𝑝𝑡. 𝑁𝑜 for a genotype is zero when the genotype is

reproduced exclusively by mutations but otherwise by crossovers. When the 𝐴𝑡𝑡𝑒𝑚𝑝𝑡. 𝑁𝑜.

is non-zero, a greater 𝐴𝑡𝑡𝑒𝑚𝑝𝑡. 𝑁𝑜. denotes that more iterations have been required to
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generate the genotype. This could indicate constraints pressure on the feasible area or 

inconsistencies among the adjacency constraints. Reconsideration of the constraints is 

advised in cases of extremely frequent genotypes with high Attempt No. values. 

4) This segment of the report, likewise the second part, visualizes the balance of population

distribution at the end of each optimization round.

5.3.11.1 The History Log 

The statistical and performance information presented in the optimization round report, which is 

sufficiently explained in the previous section, is registered in a collection datatype and would be 

streamed back to the Excel environment for more detailed post-execution analysis. 

5.3.11.2 Optimization Outcome 

The solution embedded in the best-fit genotype found will be streamed back to Excel for more 

analysis at the optimization process conclusion. Chapter 6, Experimentations and Analysis of 

Results, shows the analysis of results in several experimentation
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Figure 5-8, Optimization round report. 
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EXPERIMENTATIONS AND ANALYSIS OF RESULTS 

This chapter presents the result of the FLP optimization experiments designed using the models 

provided in Chapters 4 and 5 in two main parts: The first part conducts a preliminary study on 

solving the FLP MILP model using a MIP solver, namely Gurobi, and shows its performance in a 

real-size problem; the second part addresses a thorough analysis of the developed GA-based 

optimizer's performance from three perspectives: 

i. Analysis of convergence in optimization process using descriptive statistical approach.

ii. Analysis of sensitivity of the GA optimization process to changes in the GA parameters

such as initial and base population size, mutation rate, crossover rate, elite pool size,

tournament size.

iii. Applying different types of constraints to investigate how they affect the best-fit solutions.

6.1 The Objective of the Experiments and Methodology 

6.1.1 Objectives 

As mentioned in chapter 2, GA-based optimization heuristics begins with a randomly constructed 

population and approaches the optimality through an iterative search process. The intensification 

of the search and diversification of the searching area plays a crucial role in GA optimization. 

Hence, striking a balance between intensification and diversification, or equivalently exploitation 

and exploration, is critical to boosting the search process towards the global optimum. When search 

intensification surpasses diversification, the optimization is compromised, resulting in a premature 

convergence to a local-optima. 

In GA, the selection operator forms the new generation amongst the survivors from the previous 

generation. Since it provides the search process with the opportunities to revisit the search spots of 

earlier iterations, it contributes to the exploitation. Likewise, the elitism operator, which functions 

such as an adaptive memory, retains the best-fit genotypes in generation transition. Therefore, a 

diverse elite pool facilitates more effective exploitation. Furthermore, the crossover rate, which 

represents the likelihood of the genes crossing in genotypes mating, impacts the exploitation or 

intensification process. On the other hand, the number of mutation operators and mutation rate 
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contribute to process diversification by widening and breeding the search area, resulting in more 

efficient exploration. 

The facts mentioned above show the importance of balance between intensification and 

diversification and how GA operators can affect this balance. Therefore, conducting an insightful 

sensitivity analysis that can rationalize the impacts of GA operators on the optimization process is 

vital first to ensure the effectiveness of the devised algorithm and second, to find out the most 

effective parameter configuration to obtain the best result from the optimizer. 

Furthermore, several experiments are designed to ensure the optimizer's performance in applying 

the constraints to the FLP and analyze its effects on the best-fit solution. 

6.1.2 Methodology 

A GA metaheuristic optimization algorithm's random intrinsic basis provides unique experiences 

for each optimization. Therefore, analyzing the empirical data at a micro-level is complicated. In 

place, adopting a macro-perspective approach using descriptive statistical metrics can facilitate 

having a holistic sensitivity analysis. 

i. Demographic diversity analysis chart

This is a chart with three-axis: the primary vertical axis represents the fitness value, the

secondary vertical axis represents the population diversity, and the horizontal axis represents the

optimization process timeline. This chart studies the trends in the best-fit genotype’s fitness

value and concerning population diversity.

ii. Process convergence analysis

This is a chart with three-axis: the primary vertical axis represents fitness value, the secondary

vertical axis represents the variance of fitness values in each generation, and the horizontal axis

represents the optimization process timeline. This chart studies the trends in the fitness value for

best-fit genotype, worst-fit genotype, and mean of the fitness values along with the variance of

fitness values. Observing this chart combined with the demographic diversity analysis chart can

illustrate how the GA optimization converges to either local-optima or a global near-optimum

solution.
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iii. Demographic composition heat map table

This is an 8-column table. The first column shows the iteration number of optimization.

Columns 2-9 shows the distribution of genotypes in the ranges of μ±σ, μ±2σ, μ±3σ, greater than

μ+3σ, and less than μ-3σ, based on their fitness values. These columns have meshed with yellow

to red gradient colors, in which light yellow represents a low-dense area, and the solid red

represents a high-dense area. The 10th and 11th  columns contain the excess kurtosis and

skewness for the corresponding iteration to their row. This is an efficient statistical analysis tool

to monitor population diversification and assess the process exploration effectiveness. This tool

can also show deterioration in demographic composition affects optimization effectiveness in

approaching optimality.

iv. Analysis of demographic fitness to normal distribution

This analysis tool contains ten charts representing the fitness of genotypes fitness values

corresponding to one specific iteration to the normal distribution curve across the optimization

with the interval of ten. The fitness values in each chart are fitted to a standard normal curve

using the mean value and standard deviation of the base population pertinent to one specific

optimization iteration. This analysis tool intuitively illustrates that base population fitness may

relate to process intensification, diversification, and convergence.

6.1.3  Design of Experiment 

6.1.3.1 The creation of an instance of FLP 

A real-life project needs actual and up-to-date data to provide a practical solution. Real data 

collection is a time-consuming process requiring sufficient infrastructure, and it does not fit into 

the project's timeline. The FLP for conducting the experiments in this section was mocked up 

using an architectural plan pertinent to an emergency hospital to avoid the data collection 

challenge. The file containing the CAD format of this architectural plan is obtained from the 

internet. Despite the size of this project falling into the small to medium FLPs, it adequately 

meets the optimizer's validation requirements. Furthermore, the computation efforts to optimize 

a project of this size allow us to carry out a planned number of experiments in the project's time 

frame. Table 3-1 presents the general specifications extracted from the CAD file mentioned 
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above, as well as Table 3-2 and Table A- 1, list of departments and service points and their space 

requirements 

Departments Service Points 

Description Code ID Description Code ID 
Area 
(Min) 

Area 
(Max) 

Surgery Clinic D00117 SG011 Operating room for major surgeries D00021 SG001 34 37 

Operating room for minor surgeries D00022 SG002 34 36 

Preparation & anesthesia room for major 
surgery D00023 SG003 21 23 

Preparation & anesthesia room for minor 
surgery D00024 SG004 21 23 

Sterilization room for operating room D00025 SG005 17 20 

Recovery room D00026 SG006 17 20 

Post-anesthesia care unit 1 D00027 SG007 12 14.5 

Post-anesthesia care unit 2 D00028 SG008 12 14.5 

Post-anesthesia care unit 3 D00029 SG009 12 14.5 

Post-anesthesia care unit 4 D00030 SG010 12 14.5 

Outpatient 
Clinic 

D00116 OC007 Doctors' office 1 D00036 AD004 20 22 

Waiting room D00037 GS015 10 12 

Staff lounge in the outpatient clinic D00038 AD005 12 14 

Inpatient emergency caring room D00039 OC001 45 49 

Outpatient clinic room 1 D00040 OC002 14 16 

Outpatient clinic room 2 D00041 OC003 14 16 

Admission office D00043 OC005` 7 9.5 

Waiting room (outpatient clinic) D00044 GS016 10 11 

Stretchers room D00045 OC006 10 11 

Medical 
Imaging Test 
clinic 

D00118 DC009 Echocardiography D00046 MI001 20 23 

X-Ray D00047 MI002 25 31 

The waiting room for the MI department D00048 MI003 35 37 

Doctor's office in MI department D00049 MI004 15 18 

Staff lounge D00050 MI005 10 11 

Reception office in MI department D00051 MI006 20 23 

MRI D00145 MI007 30 33.5 

Specialized 
Clinic 

D00119 SC012 Registration & admission office D00058 AD010 12 15 

Outpatient surgery room 1 D00059 SC001 16 19 

Outpatient surgery room 2 D00060 SC002 16 19 

Waiting room 1 at SC D00061 SC003 15 17 

Waiting room 2 at SC D00062 SC004 15 17 

Gynecology & obstetrics doctor office 1 D00063 SC005 15 17 

Gynecology & obstetrics doctor office 2 D00064 SC006 15 17 

Orthopedic doctor office D00065 SC007 15 17 

Neurology doctor office D00066 SC008 15 17 

Cardiology doctor office D00067 SC009 15 17 

Hematology doctor office D00068 SC010 15 17 

Continued next page 
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Table A- 2, which provide geospatial data for the FLP model. 

6.1.3.2 Design of experiments planning and implementation 

This phase of the project, namely the design of experiments, plans 17 different experiments to 

conduct a thorough sensitivity of analysis of GA-based optimization and investigate whether the 

optimizer effectively applies all type constraints to the best-fit solutions. Table 6-2 presents a 

summary of planned experiments and the results in brief. The following sections in this chapter 

provide a detailed analysis of each experiment. 

In a nutshell, the analysis of results of the experiments reveals the following facts about the 

developed GA-based optimizer, which all of them are in accordance with the literature: 

i. The GA operators, including selection, elitism, and crossover, contribute to the exploitation

aspect of the GA-based optimal search process, which boosts search intensification.

ii. The mutation operator contributes to the exploration aspect of the GA-based optimal search

process, which impacts the diversification of the search area.

iii. The balance between search intensification and diversification of the search area is crucial

in the optimizer’s performance.

iv. The developed GA-based optimization algorithm's performance may not be adequate to

balance the intensification and diversification throughout the optimization process,

resulting in a tendency to prematurely converge to a local-optima.

v. The optimizer successfully applies all types of constraints to the best-fit solution.

This study begins carrying out the first experiment, i.e., BSE-3000-2000, with the following 

conditions and parameters configuration: 

i. The unique assignment constraints and the floor area availability constraints are the only

constraints used in the GA optimization. The remaining constraints, including the restricted

assignment and adjacency constraints, are relaxed for this step.
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The service points involved in this optimum search are as listed in Table A- 1, list of departments 

and service points and their space requirements 

Departments Service Points 

Description Code ID Description Code ID 
Area 
(Min) 

Area 
(Max) 

Surgery Clinic D00117 SG011 Operating room for major surgeries D00021 SG001 34 37 

Operating room for minor surgeries D00022 SG002 34 36 

Preparation & anesthesia room for major 
surgery D00023 SG003 21 23 

Preparation & anesthesia room for minor 
surgery D00024 SG004 21 23 

Sterilization room for operating room D00025 SG005 17 20 

Recovery room D00026 SG006 17 20 

Post-anesthesia care unit 1 D00027 SG007 12 14.5 

Post-anesthesia care unit 2 D00028 SG008 12 14.5 

Post-anesthesia care unit 3 D00029 SG009 12 14.5 

Post-anesthesia care unit 4 D00030 SG010 12 14.5 

Outpatient 
Clinic 

D00116 OC007 Doctors' office 1 D00036 AD004 20 22 

Waiting room D00037 GS015 10 12 

Staff lounge in the outpatient clinic D00038 AD005 12 14 

Inpatient emergency caring room D00039 OC001 45 49 

Outpatient clinic room 1 D00040 OC002 14 16 

Outpatient clinic room 2 D00041 OC003 14 16 

Admission office D00043 OC005` 7 9.5 

Waiting room (outpatient clinic) D00044 GS016 10 11 

Stretchers room D00045 OC006 10 11 

Medical 
Imaging Test 
clinic 

D00118 DC009 Echocardiography D00046 MI001 20 23 

X-Ray D00047 MI002 25 31 

The waiting room for the MI department D00048 MI003 35 37 

Doctor's office in MI department D00049 MI004 15 18 

Staff lounge D00050 MI005 10 11 

Reception office in MI department D00051 MI006 20 23 

MRI D00145 MI007 30 33.5 

Specialized 
Clinic 

D00119 SC012 Registration & admission office D00058 AD010 12 15 

Outpatient surgery room 1 D00059 SC001 16 19 

Outpatient surgery room 2 D00060 SC002 16 19 

Waiting room 1 at SC D00061 SC003 15 17 

Waiting room 2 at SC D00062 SC004 15 17 

Gynecology & obstetrics doctor office 1 D00063 SC005 15 17 

Gynecology & obstetrics doctor office 2 D00064 SC006 15 17 

Orthopedic doctor office D00065 SC007 15 17 

Neurology doctor office D00066 SC008 15 17 

Cardiology doctor office D00067 SC009 15 17 

Hematology doctor office D00068 SC010 15 17 

Continued next page 
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ii. Table A- 2and the flows between the service points are as demonstrated in Table A- 4.

iii. Table 6-1 shows the configuration of the GA parameters for the optimizer in this

optimization performance:

iv. Figure 5-6 illustrates the GA-based algorithm adopted by this optimization framework to

use in the experiments designed for this chapter.

After termination of the optimization process, the validity of the result is verified by evaluating the 

optimal or near-optimal solution against the constraints. Then options to enhance the process 

efficiency are explored via analyzing the log data, reconfiguring the GA parameters, or modifying 

the algorithm by adding GA operators or changing the order in which the GA operators are applied. 

In each experiment the changes according to the experiment plan are made to the conditions and 

configuration described above, considered as the base experiment, and is applied to optimization 

case accordingly.  

Table 6-1, optimizer parameters configuration table. 

Parameter Name Value Description 

Experiment ID= BSE-3000-2000 

Number of service points 60 

Number of floors 8 

Over-assignment allowed FALSE 

Strategy for departments area Min Area 

Strategy for floor area availability Min Area 

Horizontal transport cost 1 unit 

Vertical transport cost 10 unit 

Initial population 3000 

Genotype max attempts 5 Maximum attempts to generate a feasible genotype. 

Selected population in each round 2000 

Max. round to create initial population 5000 Maximum round to generate the initial population 

Tournament size 2 

Elite rate 0.01 1% of base population in each round 

Crossover rate 0.6 60% of first parent DNA with 40% of second parent 

DNA Mutation rate 0.3 30% of candidate population are mutated each round

Crossover mode Double 

Population screening rates N.A. The population screening operator does not apply to 

the optimization process. 

Floor over-assignment rates N.A. 
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6.1.3.3 Definitions 

• Initial population: the set of individuals randomly generated by population operator at the

beginning of the GA optimization. Initial population occurs exclusively in first iteration of

optimization.

• Base population: a set of individual, i.e., genotypes, which are selected by select operator

and are maintained in candidate pool.

• Optimization round/optimization iteration: each search iteration that leads to forming a

new generation that acts as initial population for next optimization iteration.

• Empirical rule (68,-95-99 rule): this statistical rule states that: 99.7% of the observations

obtained from an experiment that follows normal distribution fall into the area of μ±3σ;

95% of the observations are distributed across the area within μ±2σ; and 68% of the

observations fall into the area within μ±σ. (source)

https://www.investopedia.com/terms/e/empirical-rule.asp
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Table 6-2, design of experimentations summary report. 

No. Experiment ID Objective Change Num. 
of Itr. 

1 PPL-3000-2000 • Ensure effective applying of constraints

• Analysis of convergence

• Analysis of GA operators effectiveness

Base configuration 100 

Results : 
• Optimizer effective apply the constraints UQAC and FAAC to the solution

• The search process converges to a near-optimum solution

• Crossover generates 58 better-fit genotype

• Mutation generates four better-fit genotype

• Optimization suffers from a lack of population diversity and intensification seems to surpass 
diversification

2 PPL-1000-6000 Analysis of increase in the initial and base 
population 

Initial ppl = 10000 
Base ppl = 6000 

100 

Results : 
• Proposes a new better-fit genotype with 7.61% improvement in fitness value

• No observations of any notable improvement search process behaviors 

3 MTN60-3000-2000 Analysis of increase in mutation rate Mtn rate = 0.60 100 

Results : 
• Proposes a new better-fit genotype with 15,23% improvement in fitness value

• Improves the population diversity

4 MTN100-3000-2000 Analysis of increase in mutation rate Mtn rate = 1.00 100 

Results : 
• Proposes a new better-fit genotype with 18,20% improvement in fitness value

• Improves the population diversity compared to both base experiment and MTN60-3000-2000

5 ELT05-3000-2000 Analysis of increase in elitism rate Elite rate=0,005 100 

Results : 
• Proposes a new better-fit genotype with 5.55% improvement in fitness value

• The optimization algorithm is more resistant to population diversity degradation

6 ELT20-3000-2000 Analysis of increase in elitism rate Elite rate=0,02 100 

Results : 
• Proposes a new better-fit genotype with 12.31% improvement in fitness value

• The optimization algorithm is more resistant to population diversity degradation compared to

the base experiment

7 ELT30-3000-2000 Analysis of increase in elitism rate Elite rate=0,03 100 

Results : 
• Proposes a new better-fit genotype with 3.75% improvement in fitness value compared to the 

base experiment, but worse than two experiments: ELT05-3000-2000 and ELT30-3000-2000. 

• The worst population diversity compared to all previous experiments and the optimization 

most likely converges to local optima.

8 CSO50-3000-2000 Analysis of decrease in crossover rate Crossover rate=0.5 100 

Results : 
• Proposes a new better-fit genotype with a 7.00% improvement in fitness value compared to

the base experiment

• The optimization becomes very resistant to population diversity degradation

• Improvement in the balance between intensification and diversification

Continued on next page. 
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Continued from previous page. 

No. Experiment ID Objective Change Num. 
of Itr. 

9 CSO70-3000-2000 Analysis of increase in crossover rate Crossover rate=0.7 100 

Results : 
• Proposes a new better-fit genotype with a 10.29% improvement in fitness value compared to

the base experiment

• No witness of improved population diversity

10 CSORDM-3000-2000 Analysis of using random crossover Crossover rate=[0.5-0.7] 100 

Results : 
• Proposes a new better-fit genotype with a 2,68% improvement in fitness value compared to

the base experiment

• The optimization becomes more resistant to population diversity compared to base experiment

and CSO70-3000-2000, but less than CSO50-3000-2000.

11 TNS01-3000-2000 Analysis of decrease in tournament size TRN size=1 100 

Results : 
• Proposes a best-fit solution with a fitness value 32.42% worse than the base experiment

• More diverse population

• The search process approaches optimality at a significantly slower pace

12 TNS03-3000-2000 Analysis of increase in tournament size TRN size=3 100 
Results : 

• Proposes a best-fit solution with a fitness value 7.68% better than the base experiment

• Slightly more resistant to population diversity degradation

• The search process approaches optimality at a significantly faster pace

13 RAC-3000-2000 Effectively applying RAC constraints -- 50 

Results : 
• Investigating the assignment table resulted by best-fit solution shows that RACs effectively applied. 

14 AJC01-3000-2000 Effectively applying binary adjacency 
constraints 

-- 

Results : 

• Investigating the assignment table resulted by best-fit solution shows that defined binary adjacency 
constraints are effectively applied.

15 AJC02-3000-2000 Effectively applying fuzzy adjacency 
constraints to enforce the proximities. 

-- 

Results : 

• Investigating the assignment table resulted by best-fit solution shows that defined fuzzy adjacency 
constraints are effectively applied.

16 OVAS01-3000-
2000 

Effectively applying the relaxation of LAC 
constraints. 

-- 

Results : 

• Investigating the assignment table resulted by best-fit solution shows that the relaxation of floors’
limited available area constraints are effectively applied.

17 OVAS02-3000-
2000 

To demonstrate the improvement in 
optimization performance caused by 
relaxation of LACs. 

-- 

Results : 

• The relaxation of the LACs are effectively applied to optimization and make the initial population 
generation 28 times faster, as well as 201 sec reduction in each optimization iteration.
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6.2 Mixed Integer Linear Programming 

This section presents the result of solving the linearized FLP model for the current project 

demonstrated in 4.2.9 using Gurobi solver. In this first experience with the MILP optimization, the 

model is not subjected to any supplementary constraints, including restricted assignment 

constraints and adjacency constraints. The optimization run was intentionally interrupted after 48 

hours, and the gap size of 68.9. It is important to note that the subject of this experiment is an FLP 

with 60 service points and eight floors. In this problem, the run-time exponentially escalates with 

every slight increase in the number of service points or floors. The result confirms that an FLP 

QSAP model is an np-hard problem and consequently does not yield an optimal solution in 

polynomial time despite linearization and the use of a MILP solver. 

6.3 Genetic Evolutionary Algorithm-Based Heuristic Optimization 

6.3.1 Verification of the Effectiveness of the Constraints 

The efficacy of the optimizer in maintaining the constraints is verified through evaluating them 

against the best solutions exported to an Excel workbook at the optimization process termination 

time. Table 6-3 explains that the floor available area constraints are well-respected, and none of 

the floors are over-assigned. The analysis of the best-fit assignment table demonstrates that the 

unique assignment constraints have been effectively applied once 100 rounds of optimization have 

been completed. In each of the two best solutions, the optimizer has successfully assigned each 

service points to only one floor at a time, as seen in the last column of each table accordingly. 
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Table 6-3, Unique assignment constraints verification for the first best solution after 120 

rounds of optimization 

First best solution after 100th optimization round. 

Code ID Description Min Area 
Min Area 
Assigned Over-Assigned? 

F01 NBBS Basement, the north building 550 230 FALSE 

F02 NBGF Ground floor, north building 535 530 FALSE 

F06 SBFF First floor, south building 760 650 FALSE 

F03 NBFF First floor, north building 780 700 FALSE 

F04 SBBS Basement, south building 600 532 FALSE 

F05 SBGF Ground floor, south building 980 966 FALSE 

F07 MBGF Ground floor, middle building 550 543 FALSE 

F08 MBFF First floor, the middle building 110 103 FALSE 
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6.3.2 Analysis of Optimization Report 

Figure C- 1 and Figure C- 2 depict the round summary report (RSR) for the first and last rounds of 

the experiment BSE-3000-2000 with the data and parameter configuration described in the 

previous section. The optimizer spent about 688 minutes completing 100 rounds of optimization. 

The first RSR (Figure C- 1) indicates that the initial population operator has successfully 

established a base population. According to the pre-execution statistical data in this report, other 

GA operators, namely Elite, Selection, and Coupling operators, proved their expected performance 

in terms of generating elite class population, candidate pool, and diploids, respectively. The 

scattering chart also illustrates a relative balance within the fitness values in the candidate pool. 

Therefore everything appears to be in place to start the optimization process. 

The last round’s RSR (Figure C- 2) included in this analysis suggests that the termination criteria 

has come true because: 

i. 𝐷𝑖𝑣𝑒𝑙𝑖𝑡𝑒𝑠 × 𝑝𝑒𝑙𝑖𝑡𝑒𝑠 = 59 × 0.0169 ≅ 1, means that the convergence has occurred;

ii. 𝐷𝑖𝑣𝑝 ≤ 10%

iii. More than five rounds without a better-fit solution, which, along with the previous

condition, indicates that the diversity of the candidate pool is inadequate to propose a new

better-fit solution.

The scatter chart of the base population demonstrates that a significant number of 1121 solutions 

maintains the same fitness, value equal to the minimum fitness value, which signifies the 

convergence in the optimization process.  
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6.3.3 Analysis of the Efficacy of the GA Operators 

The purpose of this subsection is to analyze the GA operators as their performance data in the 

optimization experiment BSE-3000-2000 is illustrated in Figure 6-1. As previously mentioned, the 

optimizer adopts two types of GA operators, namely Crossover and Mutation operators, to generate 

new genotypes to form a new generation. Even though randomness is an intrinsic part of the 

algorithm of these operators and therefore would cause them not to behave the same way in each 

optimization experiment, the algorithms adopted into these operators and the parameter 

configuration have a significant impact on their efficacy. This analysis of the results indicates that 

the optimization procedure has yielded a better-fitting solution in 64 rounds out of 100 rounds 

across the optimization. The crossover operator generated 58 better-fit solutions with minimum 

fitness values compared to the six best solutions from the mutation operator. These data support 

the expected roles of crossover and mutation in the GA optimization framework, which address the 

intensification and diversification, respectively.  

Figure 6-1, Analysis of efficacy of GA operators (BSE-3000-2000). 
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6.3.4 Convergence Analysis of Optimization Process 

Figure 6-2 shows the correlation between demographic diversity and optimization effectiveness in 

finding better-fit genotypes, splits the optimization path into two different zones: effective and 

ineffective. The effective zone, which begins with the 10th iteration and bounds to the 60th, is the 

range of path that the optimizer aggressively approaches the optimality via demonstrating its 

capability in proposing better-fit solutions with lower fitness values. From the 5th iteration 

onwards, the demographic diversity, namely uniqueness in fitness values, increases and peaks at 

the end of the effective zone. In contrast, the optimizer appears to lose its capability to bring a 

significant improvement in fitness value in the ineffective zone, which is defined as the range of 

iterations from 61 to the last. Across the ineffective zone, demographic diversity deteriorates with 

a steep and abrupt drop that continues until the termination of optimization, which seems to 

correspond to the inefficacy of the optimizer. 

Figure 6-3 illustrates that the statistical measures, i.e., minimum, mean, maximum, and variance, 

decline at a constant proportional rate until the 40th iteration when the mean value and minimum 

value begin to converge, resulting in a confluence in the 60th optimization round. The minimum 

and mean values confluence indicates a high density of the fitness values around the minimum 

point, which happens at the beginning of the ineffective zone. This is an implication of convergence 

occurrence in the optimization process. Meanwhile, the variance value, along with the maximum 

value, ends declination at around the 45th round and begins a steady transient until the termination 

of the 100th round, which may denote the presence of a sparse number of scattered points far from 

the mean value.
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Figure 6-2, analysis of correlation between demographic diversity and optimization efficacy. 
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Figure 6-3, process convergence analysis. 
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Table 6-4 depicts the demographic distribution of the candidate pool across the optimization 

experiment (BSE-3000-2000) with an interval of ten rounds. The first 50 cycles suggest a normal 

distribution with a high population density around the mean value, corresponding to the empirical 

rule (68-95-99 rule). This optimization experience refers to this time slice as the “effective zone” 

given its mass contribution to most of the gains made while identifying the current best-fit 

genotype. During the 60s rounds, the population distribution seems to maintain fitting to the normal 

distribution skewed to the right half of the bell. Henceforth it departs this fitness and roughly 

resembles a Skew-t distribution. This heat map analysis unveils that the optimal searching 

algorithm fails to retain the demographic composition and reaches an over-density in the (μ ± σ) 

region from the 70s round to the last one, which is deemed an ineffective time zone this experience 

case. The transition in demographic composition as demonstrated in Table 6-4 highlights the idea 

the crossover operator may increase the risk of immature convergence occurrence when receiving 

a couple of genotypes from the same class, i.e., the demographic class attributed to each of the 

distances as μ±σ, μ±2σ, and μ±3σ. In such a case, the alleles contained by both genotypes are not 

sufficiently distinctive, and the offspring would most likely be identical. 

Figure 6-4 and Figure 6-5, which plot the fitness values collected from the candidate pool in the 

iterations indicated in Table 6-4, provide a more intuitive understanding of the cause for the 

emergence of the ineffective zone from the other approach. (For better scalability, the data is 

visualized in two graphs). Excess Kurtosis values calculated for the data in each round, as shown 

in Table 6-4, allow for the division of entire of the optimization trajectory into three phases, 

including the rounds with Excess Kurtosis as 𝐸𝑥𝑐. 𝐾𝑢𝑟𝑡. < 0, 0 ≤ 𝐸𝑥𝑐. 𝐾𝑢𝑟𝑡. ≤ 1, and 

𝐸𝑥𝑐. 𝐾𝑢𝑟𝑡. > 1. 

The first phase, when excess kurtosis is less than zero, shows a 𝑃𝑙𝑎𝑡𝑦𝑘𝑢𝑟𝑡𝑖𝑐 type of distribution, 

suggesting a scarcity of data on the tail and thus a low probability of identifying extreme values. 

This appears to be the primary reason why the first ten iterations of the searching algorithm fell 

short of producing any better-fit value (according to Figure 6-2 and Figure 6-3), which is expected 

in the area smaller than (µ - 3σ). All observations, provided by Figure 6-2 to 6-5, and Table 6-4, 

supports the fact that the selection operator carries out its part by densifying the candidate pool's 

population around the mean value, resulting in a decrease in the value of σ and, as well as in the 

narrowing the distances of μ±σ, μ±2σ, and μ±3σ. This may intensify optimal search by giving the 
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crossover operator more probability to reproduce better-fit genotypes given that the extreme value 

in μ-3σ is now more accessible  

 In the 2nd phase, beginning with the 10th round, the data distribution tends to follow the 

𝑀𝑒𝑠𝑜𝑘𝑢𝑟𝑡𝑖𝑐 kind of distribution closest to the normal distribution, indicating a higher level of data 

density in the curve’s tail and the region of (µ ± 2σ). This observation also reinforces the concept 

that the selection operator has been fulfilling out its part by densifying the candidate pool's 

population around the mean value, resulting in a steep decline in the population candidate pool’s 

variance as demonstrated by Figure 6-3, as well as in the narrowing the distances of μ±σ, μ±2σ, 

and μ±3σ. The selection operator's proper performance also contributes to optimal search 

intensification via enabling the crossover operator to reproduce better-fit genotypes holding fitness 

values between the left extreme values, i.e., μ-3σ, which is now more accessible than the first phase. 

According to Figure 6-2 the optimization algorithm was able to diversify the population in the 

candidate pool. Additionally, the skewness of the data in Table 6-4 explains that data distributions 

on both sides of the bell curve are reasonably symmetrical due to the skewness of the data. The 

confluence of the factors cited seems to be the driving force behind the GA searching algorithm's 

high effectiveness in approaching the optimum with a relatively fast pace throughout this phase 

bound to the 40th round. 

As shown in Table 6-4, the Excess Kurtosis value exceeds one after the 40th round and thus denotes 

that the data distribution, henceforth, conforms to a Leptokurtic distribution. As a result, the tail 

spikes to an extreme peak, indicating a massive number of outliers and anomalous data points. 

During this stage, while Figure 6-2 depicts the population diversity is suffering an outsized decline, 

variance value falls to its lowest point at the 51st round and after that begins to follow a roughly 

steady trend until the completion of the 100th round (as can be seen in Figure 6-3). The concurrence 

of these two observations implies that the data agglomeration occurs at numerous points in the tail 

portion of the curve rather than expected convergence exclusively around the optimum or mean 

value. Additionally, the considerable abrupt increase in the skewness beginning with the 60th 

round, as shown in Table 6-4, denotes a deterioration in the demographic composition and tendency 

of right-side skewness in the curve. Combining the observations mentioned above leads to a 

reduction in the probability of detection nearer-to-optimal point in the area of less than (µ - 2σ). 

Consequently, it underlies the emergence of the ineffective zone. 
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In a nutshell, the preceding analysis supports the conclusion that although the optimal searching 

process proves the convergence in its evolutionary transition approaching optimality, it has a great 

tendency to slip into a premature convergence and lose the efficacy in searching for better-fit 

genotypes (solutions). It also introduces the sudden steep declination in demographic diversity of 

the candidate pool and the deterioration of its composition as the primary driving force behind this 

tendency. The following sections explore remedial measures to apply to the algorithm to alleviate 

the drag of premature convergence: 1) increasing the size of the initial and the base population and 

2) manipulating the parameters of the crossover, mutation, elitism, and selection operators. Results

of each applied measure would be analyzed to validate their effectiveness. The coupling operator 

may adopt an enhanced algorithm that facilitates the coupling of genotypes from the distinct 

demographic classes to slow down the pace of convergence occurrence as a proposal for future 

development in the optimization framework. 
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Table 6-4, heat map to illustrate the demographic distribution of the candidate pool (BSE-3000-2000). 
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Figure 6-4, the transition in demographic composition across the rounds 1 to 50. 

Figure 6-5, the transition in demographic composition across the rounds 60 to 100. 
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6.3.5 Analysis of Increase in Initial and Base Populations 

This section presents an analysis of the findings from a new optimization experiment conducted 

with the following parameter setups to study the effect of an increase in the initial and the base 

populations on the convergence of the optimization process: 

Figure C- 3 shows the fit of the candidate pool’s population distribution with the normal curves for 

the ten selected rounds as specified in the heading of each graph. This collection of graphs, along 

with the demographic heat map, as shown in Table C- 1, exhibit the same behavior in the search 

process as seen in the base experiment regarding the deterioration in the population diversity and 

process convergence to a local-optima. In other words, a larger base population (candidate pool) 

does not address any noteworthy improvement in population diversity, which could promise a 

better balance between intensification and diversification, according to Figure C- 4 and Table C- 2. 

6.3.6 Analysis of the Impact of Increasing the Mutation Rate 

According to the convergence study (6.3.4), the degradation of demographic diversity is one 

contributing factor to premature convergence in the optimization process and, as a result, 

Table 6-5, the parameter setups for experiments PPL 10000-6000. 

Parameter Name Value 

Experiment ID PPL 10000-6000 

Base population 10000 

Selected population in each round 6000 

• The rest of parameters are the same as PPL 2500-1500 mentioned in Table 6-1

Table 6-6, the parameter setups for the experiments used in the mutation rate analysis. 

Parameter Name Value 

Experiment ID MTN60 3000-2000 MTN100 3000-2000 

Mutation rate 0.60 1.00 

• The rest of parameters are the same as PPL 3000-2000 mentioned in Table 6-1
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inefficiency in the optimal searching algorithm. Essentially, this assertion emphasizes the role of 

the mutation operator, whose primary job in a GA algorithm is to preserve population diversity. 

Thus, this section investigates whether raising the mutation rate can better balance intensification 

and diversification. In other words, whether more mutations through raising the mutation rate could 

prevent the candidate pool population’s diversity from being degraded. To this end, the optimizer 

runs two new experiment cases with the following settings and returns the results for detailed 

examination.  

Results reveal that raising the mutation rate impacts the optimal searching trajectory from different 

viewpoints. Overall, it significantly enhances the algorithm's ability to find better-fit genotypes. 

Figure C- 6, a series of graphs illustrating the candidate pool’s population's good fit into the normal 

bell curve, explains how the demographic composition transforms across the searching iterations. 

Both experience instances begin with a roughly same 𝑀𝑒𝑠𝑜𝑘𝑢𝑟𝑡𝑖𝑐 distribution (or more precise to 

say 𝑃𝑙𝑎𝑡𝑦𝑘𝑢𝑟𝑡𝑖𝑐 with a slightly negative excess kurtosis in the first round) and retain this shape 

until the 40th iterations. The case with a mutation rate of 1.0 has a stronger tendency to transform 

into a Leptokurtic distribution type. This tendency may be related to the fact that the mutation 

operator with the rate of 1.0 functions like seeding pointlessly rather than fertilizing the desired 

region of (μ ± 2σ). The higher the mutation rate, the more resistant the optimization algorithm is to 

population diversity degradation, based on Table C- 5. More specifically, increasing the mutation 

rate can contribute to a better balance between intensification and diversification. 

6.3.7 Analysis of the Impact of Modification of the Elitism Rate 

 Elitism is primarily concerned with conducting evolutionary searches toward optimality, but it 

also works in tandem with the crossover and select operators to achieve the process convergence. 

Table 6-7, the parameter setups for the experiments used in the elitism rate analysis. 

Parameter Name Value 

Experiment ID ELT05 3000-2000 ELT20 3000-2000 ELT30 3000-2000 

Elitism rate 0.005 0.02 0.03 

• The rest of parameters are the same as BSE 3000-2000 mentioned in Table 6-1
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Elite pool in GA optimization acts as an adaptive memory to retain the best-fit genotypes over 

generation transition. The larger the size of the elite population set in the optimization 

configuration, the more substantial elite pressure drives the searching process forward. Finding an 

efficient elitism rate in the optimization process is critical since an excessively large elite 

population size increases the risk of being trapped in a premature convergence. In contrast, an 

insufficient elite population size helps to reduce the effectiveness of the optimum searching 

procedure. This section studies the effect of changing elitism on the optimal searching procedure 

through analyzing the findings of running three instances of the FLP with the configuration as 

shown in Table 6-7 in the optimizer: 

As shown in s Figure C- 8, Figure C- 9, and Figure C- 10 and Table C- 6, Table C- 7, and Table C- 8, 

findings reveal that the experiment with an elitism rate of 0.005 (equivalent to 0.5% of the base 

population) shows a slight performance improvement compared to BSE-3000-2000. Still, both of 

them have roughly the same behaviors regarding the deterioration in the demographic composition. 

On the plus side, the experiment ELT20-3000-2000 with an elitism rate of 0.02 (equivalent to 2% 

of the base population) proves a noteworthy enhancement in maintaining its relatively good 

demographic composition until the 50th iteration and henceforth, resists against the deterioration 

in the composition to the 70th round. Afterward, it undergoes distortion in population composition. 

As seen in Table C- 9, the performance benchmark also asserts the same fact with reflecting a 

12.31% reduction in fitness value of the best-fit found solution and a 14.46% increase in the overall 

improvement across the 100 optimization iterations. The third experiment (ELT30-3000-2000 with 

elitism rate of 0.03), on the other hand, may preserve acceptable demographic composition for no 

more than 30 iterations of the optimal searching procedure before the candidate population deforms 

dramatically. In other words, the synergy of elitism pressure with the selection pressure and the 

process intensification becomes so powerful that the resistance to deformation is ineffective, 

causing the search process to converge to a local-optima. Figure C- 11 illustrates the influence of 

population diversity on the mechanism’s efficacy, supports the conclusions mentioned above. 
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6.3.8 Analysis of the Effects of Changes in the Crossover Rate 

The crossover operator is the main GA component contributing to process convergence. 

Essentially, the higher the crossover rate provided in the configuration of an instance of the GA 

optimization model, the faster the predicted convergence occurs, whether immature or mature, 

throughout the searching iterations. The purpose of this section is to investigate the impacts of 

modifying the crossover rate through establishing three optimization instances with the setups seen 

in Table 6-8. The findings of this study assist in choosing an effective crossover rate to optimize 

the deployed GA-based optimization algorithm to its maximum potential. 

According to Figure C- 12 the population scattering of the candidate pool conforms to a Platykertic 

type of distribution with a very modest negative excess Kurtosis, according to Table C- 10, 

throughout the early rounds of the experiment CSO50-3000-2000 (means very close to Mesokutic 

distribution). The excess kurtosis values in Table C- 10 indicate that the candidate pool 

demographics maintain to fit a Mesokurtic distribution until the rounds 50s. Furthermore, the 

optimal searching procedure provides considerable resistance to transforming to a Leptokurtic 

distribution by drawing back from a peak in rounds 40 and 60. Additionally, the values listed in 

the last column of Table C- 10 explain that the demographics’ skewness, either to the right or left 

of the curve, is relatively ignorable until the 70th round, and the population distribution is nearly 

symmetric. More specifically, in Figure C- 15, the upper red line signifies that the population 

diversity remains relatively stable until the 80th iteration and then begins to decline progressively 

to a value of 40% at the termination round. The lower redline asserts that the effective zone of the 

better-fit searching mechanism extends from the very initial iteration to approximately the final 

rounds. The aforementioned shear of evidence supports the fact that setting the crossover rate to a 

Table 6-8, the parameter setups for the experiments used in the crossover rate analysis. 

Parameter Name Value 

Experiment ID CSO50 3000-2000 CSO70 3000-2000 CSORDM 3000-2000 

Crossover rate 0.5 0.7 Randomly from the range 

of (0.5, 0.7) 

• The rest of parameters are the same as BSE 3000-2000 mentioned in Table 6-1



99 

value of 0.5 allows the searching algorithm to retain the population diversity at an effective level 

via applying a more balanced force behind the process convergence. Figure C- 12, on the other hand, 

unveils the emergence of outliers from the 20th round that extensively increases up to the ending 

of the searching iterations. From the 80th round on, the population largely agglomerates at the 

curve's tail and around the mean value, with the rest appearing as outliers. This phenomenon 

indicates the deterioration of the demographic composition to such an extension that it impacts the 

process efficacy. 

The same lines of reasoning also conclude that the population’s good fitness into the normal 

distribution in the experiment CSO70-3000-2000 exhibits the same behavior as in the former 

experiment over the first to 50th iterations of the optimal search (according to Figure C- 13). 

However, there are some noteworthy differences in the successive iterations that will be discussed 

in detail later. Compared to the preceding experiment, CSO70-3000-2000 appears less resilient to 

demographic deformation, as evidenced by the rapid transformation to Leptokurtic distribution 

from the 60s round. The cause of this may be the raising of the crossover rate, which reinforces 

process convergence by increasing the crossover operator's involvement. As shown in Table C- 11, 

the demographic composition deteriorates, with the region μ-σ being empties, the population 

mostly agglomerating in the region of µ-σ, and a few individuals appearing in the area greater than 

µ+3σ as outliers, along with a notable increase in excess kurtosis and skewness values. In Figure 

C- 15, the upper blue line depicts that after the 50th iteration of the case CSO70-3000-2000, the

candidate pool’s population diversity begins to degrade. At the same time, the blue bottom line 

indicates that the optimal searching mechanism concurrently enters the non-effective zone by 

falling short of efficacy and failing to find a better-fit solution. The shreds of evidence mentioned 

above support the fact that increasing the crossover rate causes this operator to contribute more to 

the intensification in the optimal search process, forcing the process to converge to a local-optima. 

This premature convergence occurs due to an immense agglomeration population around the mean 

value and over the regions of μ ± σ. 

In the experiment case of CSORDM-3000-2000, the good fit of the population into the normal 

curve, as depicted in Figure C- 14, across the first 40 iterations looks much like preceding trials.  

From the 50th round onwards, the demographic shifts to Leptokurtic skewed to the right. As 

illustrated via the upper green line in Figure C- 15, the demographic deformation pace and the 
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population diversity degradation trend indicate that the driving force of process convergence is 

more than CSO50-3000-2000 but less than CSO70-3000-2000. A noteworthy fact, in this case, is 

that the optimum searching cycles enter the ineffective zone sooner than both precedents as a result 

of a lack of efficacy in generating any better-fit genotype. 

6.3.9 Analysis of the Effects of Changes in the Tournament Size 

According to the academic review performed in chapter two, several algorithms have been 

proposed to adopt the Selection operator. One of them may be picked depending on the 

optimization problem circumstances. The GA-based algorithm developed here uses the 

Tournament Selection algorithm as the core mechanism to establish the candidate pool population. 

The tournament selection algorithm has a parameter, namely tournament size, affecting the 

convergence’s pace. This section aims to examine how the optimization process is sensitive to the 

change in the tournament size. The literature suggests that a larger tournament size may lead to a 

premature convergence in the optimal search process. The following reasoning explains the 

rationale that supports this claim. Tournament selection integrates the concept of elitism into its 

algorithm. This indicates that a larger tournament size boosts the selection pressure, causing the 

balance between intensification and diversification, or equivalently exploitation and exploration, 

to deteriorate. Consequently, this may cause the optimal search to converge to a local-optima, also 

known as premature convergence. The analysis of the experiments aims to validate this theatrical 

hypothesis. 

 To this end, it provides a detailed analysis of the results of two new instances of the GA algorithm 

executed by the optimizer with the parameters listed in Table 6-9 and benchmark them against the 

base experiment of PPL-2000-3000, which holds a tournament size of 2. 
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Theoretically, the larger the tournament size, the more likely the better-fit, more frequent genotypes 

being a member of the candidate pool. Therefore, a larger tournament size reinforces driving forces 

behind the process convergence, perhaps leading to an immature convergence. Conversely, the 

optimum search algorithm is less aggressive with a smaller tournament, resulting in a possible 

delayed convergence. Following is a detailed analysis of how the execution outputs support the 

abovementioned facts. 

The data obtained from the observations from running the two optimization instances defined for 

this section confirm the theoretical hypothesis. The good fit of the candidate pool’s population into 

the normal curve, as illustrated in Figure C- 16, shows that the fit distribution has been transformed 

from a Mesokutic to a Leptokurtic at a slower pace than the base experiment case throughout the 

first 100 optimal searching iterations. The heat map table, Table C- 14 illustrates that the 

demographic composition has degraded less than the basic optimization scenario during the same 

number of search cycles, supporting the theoretical hypothesis. The excess kurtosis values also 

imply that the fit distribution is Mesokurtic (or, more precisely, Leptokurtic with very low excess 

kurtosis), which is approximate. The population diversity of the candidate pool remains steady at 

the peak during the optimal searching trajectory, as shown in Figure C- 18. While all of the 

evidence suggests that finding the best-fit genotype will be highly effective, the blue bottom line 

in Figure C- 18 shows a discouraging trend in finding the best-fit genotype in each iteration until 

the last round, which is equivalent to the fitness value achieved in the base experiment's 25th round. 

The sparsely populated regions of µ-3σ and µ-2σ are most likely the main reason for this lack of 

effectiveness, which is the result of smaller tournament size and consequently reduced likelihood 

of less frequent better-fit genotypes being included in the candidate pool. Degradation of the 

population dispersed to the regions of µ-3σ and µ-2σ makes the better-fit genotypes generation 

Table 6-9, the parameter setups for the experiments used in the tournament size analysis. 

Parameter Name Value 

Experiment ID TNS01 3000-2000 TNS03 3000-2000 

Tournament Size 1 3 

• The rest of parameters are the same as BSE-3000-2000 mentioned in Table 6-1
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process less fertile. A sharp drop in the efficacy of the crossover operator also supports this 

viewpoint, according to Table C- 16. 

In the experiment case of TNS03-3000-2000 with a tournament size of 3, the optimization 

trajectory is approximately analogous to the base experiment during the first 40 optimal search 

iterations; subsequently, the good-fit distribution transformation (from Mesokurtic to Leptokurtic), 

as well as the deterioration of the demographic composition and a subsequent immature 

convergence occurs rapidly. The degradation of population diversity of the candidate pool looks 

roughly like the base experiment with a partial improvement in the searching process efficacy, 

according to the red bottom line in Figure C- 18. 

The detailed analysis above maintains the theoretical hypothesis that increasing the tournament 

size raises the probability in the selection operator to include more frequent better-fit genotypes in 

the candidate pool and have more population in the area to the left of the µ-σ. In this way, the 

crossover operator is expected to show a better performance through reproducing better-fit 

genotypes by amalgamating a genotype with fitness value less than µ-σ with one that holds fitness 

value greater than µ-σ. This partially improves optimal search process efficacy, but it also speeds 

up premature convergence. 

6.3.10 Representation of the Best Found Solution 

The optimization framework represents the best solution embedded in the best-fit genotype in an 

assignment table once the optimal search algorithm fulfills the termination criteria. The assignment 

table determines the service points each floor accommodates. 

Table C- 17 demonstrates the best solution discovered in the optimization experiment case 

MTN100-3000-2000 in an assignment table. There are many illogical assignments in this solution, 

e.g., the assignment of the indoor parking to the first floor and the like. This is because this

optimization experiment has assigned the service points to the floors exclusively based on the 

pairwise flow between the service points and has not taken the constraints, such as functionality 

constraints, limitation in shared resources, architectural considerations, and so on, into account. 

The following sections will showcase the optimizer features to define the constraints in the GA 
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optimization problem and its capabilities in finding the optimal solution that respects all the 

adopted constraints. 

6.3.11 Applying Restricted Assignment Constraints (RACs) 

During the model’s definition stage, the implemented evolutionary heuristic optimization 

framework provides a straightforward definition of restricted assignment constraints in an 

optimization model through a specially designed GUI that allows storing the RACs in an Excel 

spreadsheet template file. 

Table C- 18 presents a list of the RAC constraints established for the problem instance considered 

here project, representing the structure most similar to how the framework stores the constraints 

data in an Excel file. The first column of the list contains the identification number of the 

constraints, followed by the second column, which holds a list of IDs of the constraints involved 

in the corresponding constraint. When TRUE, the Boolean value placed in the third column 

indicates that the department implicated in the constraint must be allocated exclusively to the floors 

mentioned in Floor(s) ID column or must be prevented from being assigned to other floors. The 

Boolean value in the last column implies whether or not the relevant constraint should be included 

in the GA model when constructed in the Julia environment. The optimizer executes the GA-based 

optimization model using the configuration shown in Table C- 19 and finds the best feasible 

solution, presented in Table C- 20. Figure C- 19 illustrates the summary reports corresponding to 

optimal search iterations' first and last labs. 

Figure C- 19 depicts the starting point of the optimization path as well as the destination. As the 

termination criteria have been met, i.e., the uniqueness of the fitness values corresponding to the 

elites and the candidate pool has fallen below 1.0 and 10.0, respectively. The optimum search 

algorithm has been unable to introduce any better-fit solution for more than the last five iterations; 

the best feasible solution discovered in the 50th round is assumed to be the closest to optimal. 

The assignment table, which represents the best feasible solution in this optimization experiment, 

ensures that all the RACs adopted to the GA model have been strictly respected. It also projects 

how the pairwise flow between the service points affects the optimization algorithm in allocating 

the service points to the floors. For instance, forasmuch as the GA model adopts a RAC to restrict 
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the allocation of Warehouse Office to one of the floors F01 and F04 when the optimizer determines 

that the assignment of Warehouse Office to F01 is the most optimum choice for the best-fit solution 

of the round, it assigns the warehouses, i.e., the service points WH001 to WH008, to the same floor 

as well, as a consequence of minimizing the objective function value. The flow between the service 

points contributes to the value of the objective function as a coefficient in the calculation of the 

transportation cost. Even though the value of flow between two service points may encourage the 

optimization algorithm to locate the two service points reasonably near each other, it may not be 

sufficient to allow them to share the floor when it is strictly required. In such cases, the optimizer 

provides a feature to define the adjacency constraints. The following section explains how to define 

these constraint types their effects on the final best solution discovered by the optimum search 

algorithm. 

6.3.12 Applying Binary Adjacency Constraints 

Some facility layout model needs to locate some of the service points or departments on the same 

floor due to several reasons such as functional dependencies, the use of shared resources, and so 

on. On the contrary, some service points, in some cases, may adversely affect each other’s proper 

functionality that stimulating the tendency to prevent them from locating on the same floor. The 

developed GA-based optimizer allows the users to embed these types of constraints in the model 

by defining the Adjacency Constraints (AJCs) via a particular GUI in the Excel Spreadsheet 

template file. This feature enables the user to adopt the rules into the model in order to either 

enforce or prevent the allocation of multiple service points to the same floor. This section 

demonstrates how applying the AJCs on the FLP model affects the best solution discovered by the 

optimizer via defining a new optimization experiment labeled as AJC01-3000-2000 with the same 

parameter configuration detailed in Table C- 19 and adopting the AJCs listed in Table C- 21. 

The result of the optimization process on the case AJC01-3000-2000 is as illustrated in Table C- 

22. This table maintains that all types of adopted constraints to the model, including UQAC, FAAC,

RAC, and AJC, have been fully respected. 

A thorough investigation of the above assignment table reveals the need for additional constraints, 

as explained in the following. For Warehouse 7, D00020, the flow effect seems insufficient to 

group it into the warehouses in the Basement of the North Building. Furthermore, due to the same 
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reason, the current solution locates Warehouse 8 on floor F08, whereas the desired location would 

be next to the Pharmacy. On the other hand, we may prefer not to locate the Surgery Clinic, 

D00117, and Medical Test Lab, D00122, on the same floor due to toxic interactions they 

predictably have on their proper functioning. In order to resolve the issues mentioned above, the 

constraints outlined in Table C- 23 are added to the model. 

The result of the optimization process on the case AJC02-3000-2000 is as illustrated in Table C- 

24. The Warehouse Office and Warehouses 1-7 are visibly clustered together in the Basement of

the North Building, as seen in this table. Warehouse 8 is on the ground floor of the South Building 

next to the Pharmacy. In contrast, the Medical Test Lab (Blood & Pathology) does not share the 

same floor as the Surgical Clinic to fulfill the negative adjacency constraint and avoid the 

unfavorable interplay. It is noteworthy that the effect of travel cost ascribed to the interdepartmental 

interactions drives the optimization process to maintain these two departments nearby as much as 

possible by placing them on the same floor but in two separate buildings. Given indoor connecting 

ways between the same floors in different buildings, this new assignment ensures the shortest 

feasible distance while avoiding significant vertical travel costs. 

6.3.13 Applying FUZZY Adjacency Constraints 

FUZZY adjacency constraints (FAC) engage in model construction when the GA model aims to 

decide the proximity or distance of two or more service points based on the significance of their 

mutual connections and correlations with one another. Unlike the binary adjacency constraints, 

which intervene when the intention is to adopt a rule of whether or not two or more service points 

must share a particular floor, FACs integrate a measure into the model to determine how nearby or 

distant two services have to be. In order to demonstrate the result of the application of FACs in the 

FLP best solution, a new optimization case is designed where a weight factor comes into play as a 

coefficient of the travel cost between two service points in the objective function to prioritize their 

mutual interactions. 

This section presents the results of the optimization experiment AJC02-3000-2000, which shows 

the impact of FACs on the FLP best solution. In this scenario, two service points, namely the 

General Clinic and the Specialized Clinic, are targeted to prioritize contiguity. Conversely, two 

other service points, namely the Surgical Clinic and the Outpatient Clinic, are intended to have a 
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minimum priority of contiguity. Therefore, weighting factors of 10 and 0.1 are assigned to the 

interactions between them, respectively. The priority of pairwise interactions between the rest of 

the service points remains unchanged and is equal to one. 

Table C- 25 shows the assignment table drawn up based on the optimization scenario AJC02-3000-

2000. The result shows that the algorithm maintains a reasonable performance when enacting the 

FUZZY constraints. The proximity of the General Clinic and the Specialized Clinic on the Ground 

Floor of two buildings, i.e., the South Building and the Middle Building respectively, given that a 

passageway exists between the buildings, seems logical. It implies the optimizer has made a near-

optimal trade-off decision in terms of correlations between these departments and others to 

maximize their continuity while avoiding the vertical distance. On the other hand, the allocation of 

the Outpatients Clinic and the Surgery Division to different floors in separate buildings, i.e., the 

Ground Floor in the North Building and the First Floor in the South Building, respectively, fulfills 

the intention of distancing them by increasing the horizontal and vertical distance between them. 

6.3.14 Relaxation of Limited Available Area Constraints 

As explained in Enactment of Constraints (5.3.2), this optimization framework facilitates defining 

specific types of constraints, such as FAACs, either as Binary Constrains (construction level 

constraints) or FUZZY constraints (process-oriented constraints). This section discusses the effect 

of defining the FAACs as FUZZY constraints on the result of the optimization case OVAS01-

3000-2000. 

The relaxation of a FAAC, either partially or entirely, transfers the load of evaluation of the 

constraint from the construction level to the process level. For this purpose, the user allows the 

floors individually to be over-allocated by setting the ascribed over-assignment rate to an arbitrary 

non-zero percentage. Additionally, selecting the option With-OVAS in framework configuration to 

TRUE is necessary to activate over-assignment in the optimization process. The over-assignment 

rates set for the floors in OVAS01-3000-2000 are as indicated in Table 6-10. The rest of the 

configurations and the defined constraints are as in the optimization experiment AJC02-3000-2000. 
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Table C- 26 shows the assignment table based on the best-fit solution found by OVAS01-3000-

2000. The assignment table suggests that the best-found solution respects all the adopted 

constraints in the GA model. The optimizer proves the ability to conduct the optimal search at 

boundary conditions. The final best-fit state does not suffer from over-allocation since the available 

floor area meets the needs of the service points. Compared to the last experiment, i.e., AJC02-

3000-2000, Table 6-11 shows the additional efficiencies this approach provides to the optimization 

process. 

 Another optimization experiment, designed for when the available floor area does not fulfill the 

demands of the service points, demonstrates the capacity of this approach to enable the framework 

to find the best-fit solution with the least over-assignment for each of the floors. The floor available 

Table 6-11, advantages of the approach of relaxation of FAACs optimization performance. 

Table 6-10, the over-assignment rates of the floors in optimization case OVAS01-3000-2000. 

Building Floor
Available Area

OVAS Rate

North Building Basement 550 20%

Ground Floor 535 20%

First Floor 780 10%

South Building Basement 650 20%

Ground Floor 980 20%

First Floor 760 10%

Middle Building Ground Floor 550 20%

First Floor 110 10%
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space is reduced by 30% in this optimization scenario, OVAS02-3000-2000. Alternatively, an 

over-assignment rate has been determined separately for each floor to compensate for the reduction 

in area availability and the defined over-assignment allowance as indicated in Table 6-10. As a 

result, Table 6-12 shows the revised area availability and over-assignment budgets for floors. 

The analysis of the results suggests that the optimization algorithm proves a notable performance 

via a search for optimum at boundaries. In detail, Table C- 27 shows the assignment table, which 

represents the best-found solution in optimization scenario OVAS02-3000-2000. Table 6-13, 

which consolidates the data regarding the area availability of the floors, offers a comprehensive 

view to evaluate the performance of the optimization algorithm under the conditions of relaxing 

the FAACs. The analysis of the results suggests that the optimization algorithm proves a notable 

performance via a search for optimum at boundaries. The best-found solution's objective function 

value bears a total travel cost of 1.185602674165823e7, according to the summary report (Figure 

C- 20, which is reasonably comparable with the total travel costs in the optimization without

relaxation of FAACs, i.e., 1.1901456803617027e7 in AJC02-3000-2000. 

Meanwhile, Table 6-13 supports the fact that the optimum searching algorithm is highly effective 

in avoiding floor over-assignment via preventing the over-allocation of the service points to the 

floors close to the navigation network's center, where travel costs are presumably the lowest. In 

contrast, it does not encourage the excessive dispersing of service points over more distant floors, 

Table 6-12, the revised space availability and over-assignment rates of the floors in 

optimization case OVAS02-3000-2000. (OVAS: Over-Assignment) 
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i.e., basements and first floors. However, it is allowed to the extent of their space over-assignment

budget, as indicated in Table 6-13. 

Table 6-13, the revised space availability and over-assignment rates of the floors in 

optimization case OVAS02-3000-2000. (OVAS: Over-Assignment) 
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CONCLUSIONAND RECOMMENDATIONS 

7.1 Review of Project’s Objectives 

The main objective of this research project is to design and implement a decision-making support 

tool that assists facility layout planners in the field of healthcare to: 

• Find the best assignment of the departments or service points to buildings and floors in a

future or existing hospital while ensuring the most efficient use of limited resources such

as land and capital; it also meets the constraints: unique assignment of the service points to

the floors, floor's area availability constraint, restricted assignment of the departments or

service points to a floor or floors and adjacency constraints, and adjacency constraints.

• Modify the existing layout plans to improve and be adaptive to the changes in services

continuously.

7.2 Conclusions of the Research Project 

7.2.1 Mathematical Optimization Approach to FLP 

A mathematical model based on the QSAP approach has been developed that accounts for the 

allocation of all the service points to the buildings and floors with the objective of minimizing the 

costs of traveling and material handling within the service points. This model ensures meeting the 

four types of constraints mentioned in 7.1 as well. In order to use the existed MILP solvers, such 

as CPLEX and Gurobi, the QSAP model has been linearized using the best technic found in the 

literature. Then, the linearized model was implemented in the Julia programming ecosystem using 

JuMP and JuliaOpt libraries 

7.2.2 Metaheuristics Approach to FLP 

An optimization framework with a metaheuristic approach based on the genetic algorithm was 

devised and implemented to make this FLP optimizer a tool that works effectively in a real-size 

facility planning project. This framework has been implemented in three layers: the frontend, data 

layer, and optimizer layer. In order to receive user data in a standard format, an Excel file 
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containing VBA-developed GUIs has been established. The optimizer layer streams, and after 

constructing the data layer, provides the best solution, i.e., near-optimal solution, via running a 

GA-based optimization algorithm. The GA optimizer encompasses six configurable operators, 

namely population, selection, elitism, coupling, crossover, and mutation, developed in the Julia 

development ecosystem. The GA optimizer contains five configurable operators, namely 

population, selection, elitism, diploid, crossover, and mutation, developed in the Julia development 

ecosystem. The population operator uses a random-based technique to build the initial population, 

which is only used before going through the optimization rounds, then delivers it to the selection 

operator to construct the base population. The optimizer provides two types of Crossover operators 

that use the stochastic regular double-side and microbial algorithms, respectively. It also supplies 

two types of Mutation operators, which are established based on two point–to–point stochastic 

algorithms. Once meeting the termination criteria, the optimization process terminates and delivers 

the three best solutions. 

The optimizer delivers the best solution back to the client-side in an Excel workbook. 

7.3 Experimentations and Sensitivity Analysis 

As the optimization process terminates, the optimizer delivers the best solutions along with the 

metadata back to the client-side in an Excel workbook. The analysis of the solutions proves that all 

of them effectively meet all the applied constraints. Furthermore, the result of analyzing the 

sensitivity of the optimization process to changes in the parameters using descriptive statistical 

analysis in PowerBI and Excel are as follow: 

• The analysis of the demographic composition of the base population proves its inextricable

link with optimization efficacy. The optimizer is projected to perform well when the base

population is well fitted to a normal distribution and a type of Mesokurtic (6.3.3).

• Although the experiment case of an increase in the initial and base population shows a slight

improvement in finding a better-fit solution, the statistical analysis of the process does not

observe a substantial improvement in the optimization effectiveness zone (6.3.5).

• An increase in mutation rate addresses a more resistant optimization to degradation of

diversity in the base population, according to the analysis of change in mutation rate (6.3.6).
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• The statistical analysis does not address any noteworthy changes in process behavior in

case of a decrease in elitism rate, i.e., from 0.1 to 0.05. Meanwhile, a rise in the elitism rate

affects the optimization process in two different ways. Increasing the elitism rate from 0.01

to 0.02 improves optimization performance significantly, while the increase to 0.03 makes

the optimal search too greedy, leading to the risk of falling into an immature convergence

(6.3.7).

• Changes in crossover rate also affect the optimization process in different ways. The

optimum search algorithm can more efficiently preserve population diversity by lowering

the crossover rate from 0.6 to 0.5, resulting in an enhancement in the effectiveness zone.

This fact supports a better balance within the search intensification and population

diversification. Raising the crossover to 0.7, on the other hand, boosts the driving force

behind the process convergence, resulting in deterioration in the balance between the search

intensification and diversification and the occurrence of immature convergence.

Meanwhile, in the case of using a crossover operator with a random rate ranging from 0.5

to 0.7, the analysis reveals that the pace of process convergence expectantly is more than

the rate of 0.5 and less than 0.7. Applying a random crossover rate narrows the effectiveness

zone (6.3.8).

• Setting the tournament size to 1 has an adverse effect on optimization efficacy, compared

to tournament size 2 in the base experiment, due to a deterioration in search intensification.

However, the tournament size of 3expedite significantly the occurrence of convergence

(6.3.9).

• The optimizer effectively applies all types of constraints, including limited assignment

constraints, binary adjacency constraints, and FUZZY adjacency constraints, using both

implicit and explicit approaches, according to the analysis of constraints (6.3.11, 6.3.12,

and 6.3.13).

7.4 Recommendations 

The analysis of experimentations supports the fact that striking a balance between search 

intensification and population diversification plays a crucial role in optimization efficacy. 
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Therefore, to have the best performance of the optimizer in proposing the nearest-optimal solution 

and lowering the risk of premature convergence, the same sensitivity analysis using descriptive 

statistical analysis can help determine the most efficient configuration of the parameters. 

7.5 Future Research 

Further research is recommended in the following four areas: 

1. The current project is the first stage of developing an optimizer framework to provide the

best solution to an FLP of a future hospital. The second stage, which is to find the optimum

or near optimum facility layout for each floor, is an interesting subject for further research.

The QAP mathematical approach is suggested in the literature for small-size single floor

FLP when the number of service points is less than 30 on each floor. Adopting the same

genetic algorithm approach for a large number of service points on each floor is likely to

be a more feasible proposal.

2. Literature suggests using adaptive GA improves the optimization performance in providing

higher quality solutions. Adaptive GA is able to re-launch its search process based on

adaptive conditions to escape out of local-optima when it is trapped by a premature

convergence (Dao et al., 2017). Using an adaptive crossover assists the optimization

process in balancing exploitation and exploration, improving the optimization performance

(Neri & Tirronen, 2010). Devising an adaptive GA using the statistical technique used in

the sensitivity analysis, explained in detail in chapter 6, to the current framework could be

a fascinating proposal for further research.

3. Hybridization of an evolutionary algorithm, such as GA, with local search heuristics, such

as simulated annealing or hill climbing, may improve the performance of the GA

optimization (Kesavan et al., 2020). Therefore, hybridization of the current developed GA-

based optimizer or devising a hybrid crossover operator is also another exciting ground for

future research.

4. (Cappart et al., 2020) opens a new era to combinatorial optimization combining a data

science-related approach, namely reinforcement learning, with constraints programming.

In this regard, (Chalumeau et al., 2021) introduce a Julia-based library for constraints
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programming solvers using the concept of reinforcement learning. Since the FLP in the 

current project is an instance of combinatorial optimization, conducting research on using 

this breakthrough in solving FLP could be intriguing for future research. 
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APPENDIX A   CLIENTS DATA 

Table A- 1, list of departments and service points and their space requirements 

Departments Service Points 

Description Code ID Description Code ID 
Area 
(Min) 

Area 
(Max) 

Surgery Clinic D00117 SG011 Operating room for major surgeries D00021 SG001 34 37 

Operating room for minor surgeries D00022 SG002 34 36 

Preparation & anesthesia room for major 
surgery D00023 SG003 21 23 

Preparation & anesthesia room for minor 
surgery D00024 SG004 21 23 

Sterilization room for operating room D00025 SG005 17 20 

Recovery room D00026 SG006 17 20 

Post-anesthesia care unit 1 D00027 SG007 12 14.5 

Post-anesthesia care unit 2 D00028 SG008 12 14.5 

Post-anesthesia care unit 3 D00029 SG009 12 14.5 

Post-anesthesia care unit 4 D00030 SG010 12 14.5 

Outpatient 
Clinic 

D00116 OC007 Doctors' office 1 D00036 AD004 20 22 

Waiting room D00037 GS015 10 12 

Staff lounge in the outpatient clinic D00038 AD005 12 14 

Inpatient emergency caring room D00039 OC001 45 49 

Outpatient clinic room 1 D00040 OC002 14 16 

Outpatient clinic room 2 D00041 OC003 14 16 

Admission office D00043 OC005` 7 9.5 

Waiting room (outpatient clinic) D00044 GS016 10 11 

Stretchers room D00045 OC006 10 11 

Medical 
Imaging Test 
clinic 

D00118 DC009 Echocardiography D00046 MI001 20 23 

X-Ray D00047 MI002 25 31 

The waiting room for the MI department D00048 MI003 35 37 

Doctor's office in MI department D00049 MI004 15 18 

Staff lounge D00050 MI005 10 11 

Reception office in MI department D00051 MI006 20 23 

MRI D00145 MI007 30 33.5 

Specialized 
Clinic 

D00119 SC012 Registration & admission office D00058 AD010 12 15 

Outpatient surgery room 1 D00059 SC001 16 19 

Outpatient surgery room 2 D00060 SC002 16 19 

Waiting room 1 at SC D00061 SC003 15 17 

Waiting room 2 at SC D00062 SC004 15 17 

Gynecology & obstetrics doctor office 1 D00063 SC005 15 17 

Gynecology & obstetrics doctor office 2 D00064 SC006 15 17 

Orthopedic doctor office D00065 SC007 15 17 

Neurology doctor office D00066 SC008 15 17 

Cardiology doctor office D00067 SC009 15 17 

Hematology doctor office D00068 SC010 15 17 

Continued next page 

Table A- 2, list of departments and service points and their space requirements

Departments Service Points

Description Code ID Description Code ID
Area 
(Min)

Area 
(Max)

Surgery Clinic D00117 SG011 Operating room for major surgeries D00021 SG001 34 37

Operating room for minor surgeries D00022 SG002 34 36
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Table A- 1, list of departments and service points and their space requirements 

Departments Service Points 

Description Code ID Description Code ID 
Area 
(Min) 

Area 
(Max) 

Surgery Clinic D00117 SG011 Operating room for major surgeries D00021 SG001 34 37 

Operating room for minor surgeries D00022 SG002 34 36 

Preparation & anesthesia room for major 
surgery D00023 SG003 21 23 

Preparation & anesthesia room for minor 
surgery D00024 SG004 21 23 

Sterilization room for operating room D00025 SG005 17 20 

Recovery room D00026 SG006 17 20 

Post-anesthesia care unit 1 D00027 SG007 12 14.5 

Post-anesthesia care unit 2 D00028 SG008 12 14.5 

Post-anesthesia care unit 3 D00029 SG009 12 14.5 

Post-anesthesia care unit 4 D00030 SG010 12 14.5 

Outpatient 
Clinic 

D00116 OC007 Doctors' office 1 D00036 AD004 20 22 

Waiting room D00037 GS015 10 12 

Staff lounge in the outpatient clinic D00038 AD005 12 14 

Inpatient emergency caring room D00039 OC001 45 49 

Outpatient clinic room 1 D00040 OC002 14 16 

Outpatient clinic room 2 D00041 OC003 14 16 

Admission office D00043 OC005` 7 9.5 

Waiting room (outpatient clinic) D00044 GS016 10 11 

Stretchers room D00045 OC006 10 11 

Medical 
Imaging Test 
clinic 

D00118 DC009 Echocardiography D00046 MI001 20 23 

X-Ray D00047 MI002 25 31 

The waiting room for the MI department D00048 MI003 35 37 

Doctor's office in MI department D00049 MI004 15 18 

Staff lounge D00050 MI005 10 11 

Reception office in MI department D00051 MI006 20 23 

MRI D00145 MI007 30 33.5 

Specialized 
Clinic 

D00119 SC012 Registration & admission office D00058 AD010 12 15 

Outpatient surgery room 1 D00059 SC001 16 19 

Outpatient surgery room 2 D00060 SC002 16 19 

Waiting room 1 at SC D00061 SC003 15 17 

Waiting room 2 at SC D00062 SC004 15 17 

Gynecology & obstetrics doctor office 1 D00063 SC005 15 17 

Gynecology & obstetrics doctor office 2 D00064 SC006 15 17 

Orthopedic doctor office D00065 SC007 15 17 

Neurology doctor office D00066 SC008 15 17 

Cardiology doctor office D00067 SC009 15 17 

Hematology doctor office D00068 SC010 15 17 

Continued next page 

Table A- 2, list of departments and service points and their space requirements (cont’d)

Service Points

Description Code ID Description Code ID
Area 
(Min)

Area 
(Max)

Physiotherapy
Clinic

D00120 PH009 Gym Salon D00072 PH001 92 100

Massage Therapy Salon 1 D00073 PH002 45 55

Massage Therapy Salon 2 D00074 PH003 65 73
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Table A- 1, list of departments and service points and their space requirements 

Departments Service Points 

Description Code ID Description Code ID 
Area 
(Min) 

Area 
(Max) 

Surgery Clinic D00117 SG011 Operating room for major surgeries D00021 SG001 34 37 

Operating room for minor surgeries D00022 SG002 34 36 

Preparation & anesthesia room for major 
surgery D00023 SG003 21 23 

Preparation & anesthesia room for minor 
surgery D00024 SG004 21 23 

Sterilization room for operating room D00025 SG005 17 20 

Recovery room D00026 SG006 17 20 

Post-anesthesia care unit 1 D00027 SG007 12 14.5 

Post-anesthesia care unit 2 D00028 SG008 12 14.5 

Post-anesthesia care unit 3 D00029 SG009 12 14.5 

Post-anesthesia care unit 4 D00030 SG010 12 14.5 

Outpatient 
Clinic 

D00116 OC007 Doctors' office 1 D00036 AD004 20 22 

Waiting room D00037 GS015 10 12 

Staff lounge in the outpatient clinic D00038 AD005 12 14 

Inpatient emergency caring room D00039 OC001 45 49 

Outpatient clinic room 1 D00040 OC002 14 16 

Outpatient clinic room 2 D00041 OC003 14 16 

Admission office D00043 OC005` 7 9.5 

Waiting room (outpatient clinic) D00044 GS016 10 11 

Stretchers room D00045 OC006 10 11 

Medical 
Imaging Test 
clinic 

D00118 DC009 Echocardiography D00046 MI001 20 23 

X-Ray D00047 MI002 25 31 

The waiting room for the MI department D00048 MI003 35 37 

Doctor's office in MI department D00049 MI004 15 18 

Staff lounge D00050 MI005 10 11 

Reception office in MI department D00051 MI006 20 23 

MRI D00145 MI007 30 33.5 

Specialized 
Clinic 

D00119 SC012 Registration & admission office D00058 AD010 12 15 

Outpatient surgery room 1 D00059 SC001 16 19 

Outpatient surgery room 2 D00060 SC002 16 19 

Waiting room 1 at SC D00061 SC003 15 17 

Waiting room 2 at SC D00062 SC004 15 17 

Gynecology & obstetrics doctor office 1 D00063 SC005 15 17 

Gynecology & obstetrics doctor office 2 D00064 SC006 15 17 

Orthopedic doctor office D00065 SC007 15 17 

Neurology doctor office D00066 SC008 15 17 

Cardiology doctor office D00067 SC009 15 17 

Hematology doctor office D00068 SC010 15 17 

Continued next page 

Table A- 2, list of departments and service points and their space requirements (cont’d)

Departments Service Points

Description Code ID Description Code ID
Area 
(Min)

Area 
(Max)

Administration Residences supervisory room D00031 AD001 17 20

Shift rotation room D00033 AD002 22 25

General Manager's office D00035 AD003 20 25
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Table A- 1, list of departments and service points and their space requirements 

Departments Service Points 

Description Code ID Description Code ID 
Area 
(Min) 

Area 
(Max) 

Surgery Clinic D00117 SG011 Operating room for major surgeries D00021 SG001 34 37 

Operating room for minor surgeries D00022 SG002 34 36 

Preparation & anesthesia room for major 
surgery D00023 SG003 21 23 

Preparation & anesthesia room for minor 
surgery D00024 SG004 21 23 

Sterilization room for operating room D00025 SG005 17 20 

Recovery room D00026 SG006 17 20 

Post-anesthesia care unit 1 D00027 SG007 12 14.5 

Post-anesthesia care unit 2 D00028 SG008 12 14.5 

Post-anesthesia care unit 3 D00029 SG009 12 14.5 

Post-anesthesia care unit 4 D00030 SG010 12 14.5 

Outpatient 
Clinic 

D00116 OC007 Doctors' office 1 D00036 AD004 20 22 

Waiting room D00037 GS015 10 12 

Staff lounge in the outpatient clinic D00038 AD005 12 14 

Inpatient emergency caring room D00039 OC001 45 49 

Outpatient clinic room 1 D00040 OC002 14 16 

Outpatient clinic room 2 D00041 OC003 14 16 

Admission office D00043 OC005` 7 9.5 

Waiting room (outpatient clinic) D00044 GS016 10 11 

Stretchers room D00045 OC006 10 11 

Medical 
Imaging Test 
clinic 

D00118 DC009 Echocardiography D00046 MI001 20 23 

X-Ray D00047 MI002 25 31 

The waiting room for the MI department D00048 MI003 35 37 

Doctor's office in MI department D00049 MI004 15 18 

Staff lounge D00050 MI005 10 11 

Reception office in MI department D00051 MI006 20 23 

MRI D00145 MI007 30 33.5 

Specialized 
Clinic 

D00119 SC012 Registration & admission office D00058 AD010 12 15 

Outpatient surgery room 1 D00059 SC001 16 19 

Outpatient surgery room 2 D00060 SC002 16 19 

Waiting room 1 at SC D00061 SC003 15 17 

Waiting room 2 at SC D00062 SC004 15 17 

Gynecology & obstetrics doctor office 1 D00063 SC005 15 17 

Gynecology & obstetrics doctor office 2 D00064 SC006 15 17 

Orthopedic doctor office D00065 SC007 15 17 

Neurology doctor office D00066 SC008 15 17 

Cardiology doctor office D00067 SC009 15 17 

Hematology doctor office D00068 SC010 15 17 

Continued next page 

Table A- 2, list of departments and service points and their space requirements (cont’d and end) 

Departments Service Points

Description Code ID Description Code ID
Area 
(Min)

Area 
(Max)

Architectural
Considerations

Service Lobby 1 on the basement, north
building D00011 GS011 22 24

Elevators on basement D00012 GS012 0 0
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Table A- 4, the matrix of flow between service points 
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APPENDIX B   GA-BASED HEURISTIC OPTIMIZER 
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k (Chromosome Base)

Create the available floors 
vector
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Space   Max Area × OVAS 

Rate

Create the not-assinged Src-
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Create an Allele

Set the bitflag corresponding to the 
nominated floor in Allele to TRUE

Integrate the Allele into the 
Chromosome Base at indice 

associated to the nominated Src-Pt

Apply the constraints

Are the constraints consistent?

Evaluation of the constraints 
consistency

NO

YES

Constracting the model is 
impossible

End

Evaluation of the constraints 
with the solution contained in 

the bitarray.

Is any of consistent violated?

YES

NO

Filter out the nominated 
floor

Update the available 
floors vector

Is the available floors vector 
empty?

NO

Discard the Chromosome 
Base 

YES

Is Iteration UpBound 
reached?

NO

End

Filter out the nominated Src-Pt

Update the not-assinged Src-
Pts vector

Is the not-assigned Src-Pt vector 
empty?

Instantiate a Genotype with 
Chromosome Base

Add the Genotype to Genome

Is Max Number of Genotypes or 
Iteration Upbound reached?

NO

NO

YES

End

YES

OVAS: Over-Assignment
Src-Pt: Service Point

Figure B- 1, Genetic Algorithm, initial population flow process chart 
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Figure B- 2, Genetic Algorithm, crossover flow process chart 
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APPENDIX C   RESULT AND DATA OF THE EMPIRICAL STUDY ON THE GA OPTIMIZER 

Figure C- 1, BSE-3000-2000 first optimization round summary reports. 
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Figure C- 2, BSE-3000-2000 100th optimization round summary reports. 
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Figure C- 3, the candidate pool’s population's good fit into the normal bell curve for PPL 
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Table C- 1, candidate pool's demographic heat map for the PPL-10000-6000. 

Figure C- 4, effect of demographic diversity on process effectiveness. 

Table C- 2, performance benchmark with the base experiment (BSE-3000-2000). 
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Figure C- 5, the candidate pool’s population's good fit into the normal bell curve for MTN60-3000-2000 
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Figure C- 6, the candidate pool’s population's good fit into the normal bell curve for MTN100-3000-2000. 
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Table C- 4, candidate pool demographic heat map table for MTN60-3000-2000 

Table C- 5, candidate pool demographic heat map table for MTN100-3000-2000 

Table C- 3, performance benchmark with the base experiment (BSE-3000-2000). 
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Figure C- 7, the impact of population diversity on optimization's effectiveness. 



138 

Figure C- 8, the candidate pool’s population's good fit into the normal bell curve for ELT05-3000-2000. 
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Figure C- 9, the candidate pool’s population's good fit into the normal bell curve for ELT20-3000-2000. 
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Figure C- 10, the candidate pool’s population's good fit into the normal bell curve for ELT30-3000-2000. 
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Table C- 6, candidate pool demographic heat map table for ELT05-3000-2000. 

Table C- 7, candidate pool demographic heat map table for ELT20-3000-2000. 

Table C- 8, candidate pool demographic heat map table for ELT30-3000-2000. 
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Table C- 9, performance benchmark with the base experiment (BSE-3000-2000). 

Figure C- 11, effect of population diversity on optimization effectiveness. 
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Figure C- 12, the candidate pool’s population's good fit into the normal curve for CSO50-3000-2000. 
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Figure C- 13, the candidate pool’s population's good fit into the normal curve for CSO70-3000-2000. 
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Figure C- 14, the candidate pool’s population's good fit into the normal curve for CSORDM-3000-2000. 
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Table C- 10, candidate pool demographic heat map table for CSO50-3000-2000. 

Table C- 11, candidate pool demographic heat map table for CSO70-3000-2000. 

Table C- 12, candidate pool demographic heat map table for CSORDM-3000-2000. 
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Table C- 13, performance benchmark with the base experiment (BSE-3000-2000). 

Figure C- 15, effect of population diversity on optimization effectiveness. 
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Figure C- 16, the candidate pool’s population's good fit into the normal curve for TNS01-3000-2000. 
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Figure C- 17, the candidate pool’s population's good fit into the normal curve for TNS03-3000-2000. 
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Table C- 14, candidate pool demographic heat map table for TNS01-3000-2000. 

Table C- 15, candidate pool demographic heat map table for TNS03-3000-2000. 

Table C- 16, performance benchmark with the base experiment (BSE-3000-2000). 
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Figure C- 18, the impact of population diversity on optimization's effectiveness. 
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Table C- 17, assignment table presenting the solution with no constraints. 

Continued on next page 
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Table C- 17, assignment table presenting the solution with no constraints (continued and end) 



154 

Table C- 18, list of the restricted assignment constraints (RAC List) 
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Table C- 19, optimizer parameters configuration table 

Parameter Name Value Description 

Number of service points 60 

Number of floors 8 

Over-assignment allowed FALSE 

Strategy for departments area Min Area 

Strategy for floor area availability Min Area 

Horizontal transport cost   1 unit 

Vertical transport cost 10 unit 

Initial population 3000 

Genotype max attempts 8 Maximum attempts to generate a feasible genotype. 

Selected population in each round 2000 

Max. round to create initial population 25000 Maximum round to generate the initial population 

Tournament size 2 

Elite rate 0.01 1% of base population in each round 

Crossover rate 0.5 60% of first parent DNA with 40% of second parent DNA 

Mutation rate 1.0 30% of candidate population are mutated each round 

Crossover mode Double 

Population screening rates N.A. The population screening operator does not apply to the 

optimization process. 

Floor over-assignment rates N.A. 
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Figure C- 19, summary reports of the first and last labs after applying RACs 
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Table C- 20, assignment table presenting the best solution after applying RACs 

Continued on next page 
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Table C- 20Table C- 20, assignment table presenting the best solution after applying RACs 

(continued and end) 
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Table C- 21, list of the adjacency constraints (AJC List) 
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Table C- 22, assignment table presenting the best solution after applying AJCs (AJC01-3000-2000) 

Continued on next page 
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Table C- 22, , assignment table presenting the best solution after applying AJCs  (continued and end) 
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Table C- 23, list of the adjacency constraints (AJC List) 
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Table C- 24, assignment table presenting the best solution with after applying AJCs outlined 

in  Table C- 23. (AJC02-3000-2000) 

Continued on next page 
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Table C- 24, assignment table presenting the best solution with after applying AJCs 

(Continued and end) 
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Table C- 25, assignment table presenting the best solution after applying AJCs explained in Applying 

FUZZY Adjacency Constraints (6.3.13) AJC-3000-2000. 

Continued on next page 
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Table C- 25, , assignment table presenting the best solution after applying AJCs 

(Continued and end) 
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Table C- 26, assignment table presenting the best solution found by OVAS01-3000-2000 

Continued on next page
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Table C- 26, assignment table presenting the best solution found by OVAS01-3000-2000 

(Continued and end) 
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Table C- 27, assignment table presenting the best solution found by OVAS02-3000-2000 

Continued on next page 
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Table C- 27, assignment table presenting the best solution found by OVAS02-3000-2000 

(Continued and end) 
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Figure C- 20, summary reports of one of the optimization round in case OVAS02-3000-2000 




