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RESUME 

Le capteur d‟images est la partie principale de tout système d‟acquisition d‟images, 

quelle que soit son application. Jusqu‟à la fin des années 1990, les capteurs de type CCD 

ont dominé le marché en raison de leur qualité d‟image exceptionnelle. À l‟opposé des 

capteurs CCD, les capteurs CMOS offrent des possibilités intéressantes d‟intégrer les 

circuits de traitement de signal sur un même substrat en vue d‟obtenir une caméra sur 

puce. Entant que ces capteurs opèrent avec des tensions d‟alimentations plus faibles que 

celles requise par les capteurs CCD, elles possèdent une faible consommation de 

puissance. De plus, les coûts associés à la fabrication des capteurs CMOS sont plus 

faibles que ceux engendrés par les capteurs CCD. Ces caractéristiques font en sorte que 

les capteurs d‟images CMOS se prêtent à un plus grand nombre d‟application que leurs 

équivalents CCD.  

 

Dans ce projet, l‟objectif principal est de concevoir un capteur d‟images ayant une plage 

dynamique élevée. Il possède l‟avantage de deux modes d‟opération,  linéaire et 

logarithmique, ainsi qu‟une lecture en mode courant afin d‟augmenter sa plage 

dynamique. Les tensions d‟alimentation des technologies CMOS diminue de plus en 

plus, et de ce fait la plage dynamique du pixel. En fonctionnant en mode courant, on 

arrive à atténuer cet effet. Le projet consiste à concevoir des circuits : convoyeur de 

courant, „delta-reset-sampling‟ et un comparateur de courant qui sont efficaces pour les 

modes d‟opération linéaire et logarithmique du pixel et permettent de détecter dans quels 

des deux modes se situe le pixel de façon à réaliser, à l‟étage subséquent, une conversion 

analogique-numérique adéquate. Le pixel à trois transistors fonctionnant en mode courant 

utilise un transistor PMOS dans la région linéaire  pour la lecture et un transistor PMOS 

de reset qui permet une réponse linéaire-logarithmique combinée. L'une des contributions 

à la non-linéarité de la réponse provient de l'effet provoqué par la résistance 

„on‟  du transistor „select‟. Pour éliminer cet effet, nous appliquons une fonction de 

linéarisation qui est effectuée dans le domaine numérique. Le mode d‟opération du 

pixel est déterminé dans le circuit de lecture de colonne et un signal est envoyé à l'unité 

de traitement numérique comme indicateur de mode. 
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Un prototype  a été conçu et fabriqué  en CMOS 0.35µm standard, 3.3V. Les résultats 

expérimentaux sont concluants et montrent une plage dynamique intrascènede 100 dB. 
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ABSTRACT 

Digital cameras are rapidly becoming a dominant image capture devices. They are 

enabling many new applications. Charge-coupled devices (CCDs) have been the basis for 

solid state imaging since the 1970s. However, during the last decade, interest in CMOS 

imagers has increased significantly since they are capable of offering System-on-Chip 

(SoC) functionality. This can greatly reduce camera cost, power consumption, and size. 

Furthermore, by integrating innovative circuits on the same chip, the performance of 

CMOS image sensors could be extended beyond the capabilities of CCDs. Dynamic 

range is an important performance criterion for all image sensors. 

This thesis presents a current-mode CMOS image sensor operating in linear-logarithmic 

response. The objective of this design is to improve the dynamic range of the image 

sensor, and to provide a method for mode detection of the image sensor response. One of 

the motivations of using current-mode has been the shrinking feature size of CMOS 

devices. This leads to the reduction of supply voltage which causes the degradation of 

circuit performance in term of dynamic range. Such problem can be alleviated by 

operating in current-mode. The column readout circuits are designed in current-mode in 

order to be compatible with the image sensor. The readout circuit is composed of a first-

generation current conveyor, an improved current memory is employed as a delta reset 

sampling unit, a differential amplifier as an integrator and a dynamic comparator. The 

current-mode three-transistor active pixel sensor uses a PMOS readout transistor in the 

linear region of operation and a PMOS reset transistor that allows for a linear-logarithmic 

response. One of the non-linearity contributions is the effect caused by the „on‟ resistance 

of the select transistor. To eliminate this effect, we apply a linearization function that can 

be performed in the digital domain. The pixel response operation is determined in the 

column readout circuit and a signal is sent to the digital processing unit as an indicator. 

These circuits were implemented using a standard CMOS technology with no process 

modification. A prototype has been designed and fabricated in a standard AMS 2P4M, 

3.3V, CMOS 0.35μm process from Austrian Microsystem. The experimental results 
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demonstrate the functionality of the circuits and a intrascene dynamic range of more than 

100 dB. 
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INTRODUCTION 

 

Image sensors have become a significant silicon technology driver due to the high 

demand from different applications. Charge-Coupled Device (CCD) and Complementary 

Metal-Oxide Semiconductor (CMOS) image sensors are two different technologies for 

capturing images digitally. Both types of imagers are implemented in silicon and convert 

light into electric charge and process it into electronic signals.   

 

The CCD reported in the early 70‟s has been for a long time the technology of choice in 

high quality image sensing. However, it has some functional limitations. The CCD 

fabrication process does not allow cost-efficient integration of on-chip ancillary circuits 

such as signal processors, and Analog-to-Digital Converters (ADCs). As a result, a CCD-

based camera system requires not one image sensor chip, but a set of chips, which 

increases power consumption and hampers miniaturization of cameras [1-2]. 

 

In recent years, CMOS image sensors have attracted the attention in the field of 

electronic imaging. The major reason for the growing interest in CMOS image sensors is 

customer demand for miniaturized, more integration (more functions on the chip), low-

power, and cost effective imaging systems [3]. The quality of an image sensor is largely 

defined by its dynamic range. As it increases, the sensor can detect a wider range of 

illuminations and consequently produce images of greater detail and quality. The 

logarithmic response CMOS image sensor provides a wide dynamic range using the 

subthreshold region of operation of a transistor. However, at low-illumination levels, 

their sensitivity is reduced. To alleviate this problem, pixels that combine a logarithmic 

response at high-illumination with a linear response at low-illumination levels have been 

designed [4]. Thus, a wide dynamic range is achieved using combined linear-logarithmic 

response Active Pixel Sensor (APS). 
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The vast majority of the reported image sensors are implemented in voltage-mode, 

examples can be found in [3,5–8]. The shrinking feature size of CMOS devices 

necessitates the reduction of supply voltage to reduce the power dissipation. However, 

the reduction of supply voltage leads to degrade circuit performance in terms of signal to 

noise ratio and dynamic range [9-10]. Such drawbacks can be alleviated by operating in 

the current domain. Current mode operation of various analog circuits is known to offer 

several advantages, including lower supply voltage, increased dynamic range, smaller 

area and broad design techniques such as translinear and switched-current circuits. In 

addition, operations such as addition and subtraction can be more easily implemented in 

current mode [11-12]. However, current mode imaging structures have suffered from 

high Fixed Pattern Noise (FPN) due to device parameter variation [10,13-14]. These 

variations can be removed at the column readout level. 

 

This chapter introduces the motivation and objective of the thesis. It presents the 

principle of the CMOS image sensors.  First, the general structure and the functionality of 

the basic CMOS image sensors are explained. Then, it summarizes the performance of 

the wide dynamic range image sensors. Finally, an overview of the current mode and 

linear-logarithmic image sensors are presented. The chapter concludes with an outline of 

the thesis. 

 

Motivation 

 

The motivation of this work is to design a wide dynamic range active pixel sensor. The 

wide dynamic range allows images to represent more accurately the range of intensity 

levels found in real scenes with little loss of contrast information. Feature size of CMOS 

technologies is shrinking allowing more functionality at lower cost, however, supply 

voltages are reduced which causes degradation of signal to noise ratio and dynamic range 

of imagers. Current-mode pixel allows wide dynamic range at low supply voltage while 



3 
 

improving the signal to noise ratio [9-10]. The linear response of the pixel is also 

responsible for a high signal to noise ratio. 

 

Objective 

 

The objective of this thesis is to design a wide dynamic range pixel of an image sensor 

with analog detection of the operating mode of the linear-logarithmic pixel and a delta 

reset sampling circuit. It demonstrates the implementation and the operation of a mode 

indicator column circuit which is designed and fabricated in a standard CMOS process. 

The process technology used for this work is Austrian Micro System (AMS) CMOS 0.35 

μm. In this design, the image lag created by the dependence of the reset photosite voltage 

on the light intensity also affects the image quality. Thus, an offset removal circuit in the 

column level is required.  
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CHAPTER 1 

IMAGE SENSOR ARCHITECTURE 

 

1.1 Basic Structure of the CMOS Image Sensors and Pixels 

 

The basic structure of a CMOS image sensor is shown in Figure 1.1. As seen, it contains 

a two dimensional array of pixels and peripheral circuits. Converting the image into 

electrical signals is performed by a group of pixels that are arranged in a structure of a 

rectangular form called array. The number of pixels in an array depends on the 

complexity and the quality of the sensor. To process signals coming from the pixels, one 

or more pixels are selected depending on a scanning mechanism. The Y-addressing 

circuit outputs row control the signal to a row to be selected. The X-addressing circuit 

scans the sampled signals during the horizontal scanning period [2,15-16]. The pixels in 

the same column share an output bus into the column in order to reduce the number of 

connections within the matrix. 

 

Figure 1. 1 General structure of a CMOS image sensor 
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Since the array of pixels largely determines the imaging quality of a CMOS sensor [17], 

it is important to detail the internal structure.  

The pixel structure used can be categorized into three types:  

 Passive Pixel Sensor (PPS) 

 Digital Pixel Sensor (DPS) 

 Active Pixel Sensor (APS)  

 

The structure of a passive pixel is very simple. It is composed of a photodiode connected 

to the integration node, PD, and a select transistor, as shown in Figure 1.2. Signal 

amplifier is placed in the column level. The main advantage of PPS is its small pixel size 

with a large Fill Factor (FF), the ratio of the photodiode area to the pixel area. However, 

noise injected onto the column readout contributes to noise in the output signal. This 

Signal to Noise Ratio (SNR) issues halted its development [2,15,17]. 

 

Figure 1. 2 Passive pixel 

 

A digital pixel consists of an ADC in addition to the items in PPS. The idea of 

performing analog-to-digital conversion at pixel level, which led to what was called 

digital-pixel-sensor, was first introduced by Boyd Fowler [18] in 1994. It offers several 

advantages. The elimination of column readout noise increases signal to noise ratio. 

Since the analog-to-digital conversion is performed within each pixel rather than in 

column or on the chip level, then the conversion error due to device mismatch is reduced. 
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Another advantage of this pixel sensor is low power consumption. Since the pixel level 

ADC can work at very low frequency compared to chip level ADC, the total power 

consumption can be greatly reduced even with each pixel having its own ADC.  The 

main drawbacks of this kind of pixel are a large pixel size and a low fill factor. The 

integration of analog-to-digital conversion in pixel level increases the number of 

transistors of each pixel block. High fixed pattern noise is due to threshold voltage 

variation of pixel level transistors [2,19-20].  

 

A popular implementation of a CMOS image sensor is based on APS. Figure 1.3 shows a 

basic active pixel structure. In this concept, a photogenerated charge is amplified in a 

pixel. As shown in Figure 1.3, a typical three-transistor (3T) APS includes a photodiode, 

a reset transistor, MRS, a source follower transistor, MSF, as a buffer amplifier to isolate 

the integration node, PD, from the column bus and a row select transistor, MSEL. The 

source follower is a voltage buffer, which has a current amplification capability. The 

advantages of the APS because of the added source follower are the increase of speed 

and the reduction of noise in the signal readout path [2,15-16]. As a result, the APS 

improves the image quality compared to the PPS. 

 

Figure 1. 3 Voltage mode N-type active pixel architecture 

 

Generally, an APS operation is divided into two main stages, reset and integration. 

During the reset stage, MRS is turned on and the integration node is reset. Then, MRS is 

turned off and the integration stage starts. During this stage, the photodiode junction 
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capacitance is charged at a constant integration time. The voltage of the PD decreases 

according to the input light intensity and the integration time. This voltage is readout in 

the column output line by enabling MSEL. When the readout process is finished, MSEL is 

turned off and MRS is turned on again to repeat the process [16-17]. 

 

1.2 Fill Factor 

 

In order to maximize the quantity of the light absorbed by the pixel, it is important that 

the circuitry in the pixel takes up as little space as possible. The photodetector should 

ideally occupy the majority of the pixel area. This is particularly relevant to the sensors 

that are optimized for high image quality, such as those used in digital still camera 

applications [15-16]. The fill factor of a pixel is defined as the ratio of the photosensitive 

area to the total pixel area. The higher the fill factor, the more sensitive the sensor is. The 

passive pixels have a large fill factor because there is only one transistor in the pixel, 

while the fill factor of active pixels varies up to about 70% [16-17]. Finally, the digital 

pixels have the lowest fill factor because of additional transistors required for analog to 

digital convertor [15-17]. 

 

1.3 Image Sensor Characteristics and Performance 

 

There are several characteristics that qualify the performance of a CMOS image sensor. 

In this section, the principal performance indicators related to the image sensor circuits 

are introduced.  

 

1.3.1 Dark Current 

 

Dark current is one of the important parameters to characterize the performance of an 

image sensor. Its behaviour is composed of several contributions. The dark current 

produced by a photodiode in absence of the light is dominant, especially with long 
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exposure time [21]. Spatially uniform dark current can be cancelled by subtraction from 

optical black pixels. However, dark current varies from pixel to pixel and thus the 

variation reduces the uniformity of the image for low illumination. In order to have the 

best image quality, the dark current should be extremely low. Dark current is strongly 

dependent on the temperature and should be taken into account [15]. Dark current also 

presents a fundamental limit on sensor dynamic range by reducing the signal swing.  

 

1.3.2 Resolution 

 

One of the important aspects of image sensor performance is its resolution. An image 

sensor is a spatial and temporal sampling device [2]. The resolution of an image sensor is 

defined as the number of pixels in the array. Assuming a fixed array size, to increase the 

resolution, the area occupied by a pixel should be reduced. For this purpose we can 

optimize the layout design, reduce the number of transistors in the pixel and reduce the 

size of transistors used.  Although the spatial resolution increases with the number of 

pixels in the array, it depends also on the geometry of the pixels and the optical systems 

used. 

 

1.3.3 Dynamic Range 

  

The dynamic range of a sensor quantifies its ability to acquire scenes with a wide range 

of illumination. It is usually less than the dynamic range of a scene. The dynamic range 

of a sensor is particularly limited by the fabrication technology. It is defined by a pixel‟s 

largest non-saturating photocurrent that it can generate divided by its smallest detectable 

photocurrent [2,17]. The dynamic range can be simply expressed as: 

 

min

maxlog20
i

i
DR   ,        (1.1) 

 

where imax is the maximum non-saturating photocurrent and imin is the minimum 

detectable photocurrent.  
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 It is important to note that dynamic range is not the same as signal to noise ratio (SNR). 

The SNR is measured as the ratio between the signal and the noise for a given light 

intensity, whereas the dynamic range is the ratio between two light intensities. Good 

dynamic range is necessary to image a scene with the required details and contrast which 

can be obtained by design optimizations [22]. The human eye has a dynamic range of 

about 90 dB, however most of the sensors have a dynamic range of about 65-75 dB 

which is not sufficient for some applications [16-17]. Two methods for dynamic range 

improvement are considered. One is to reduce the dark current and expand the dynamic 

range toward darker scenes. The other is to increase the saturation level of the signal and 

improve the dynamic range toward brighter scenes [23]. Each of them can be achieved by 

optimizing the electronic circuits.  The smallest signal range depends on the noise. So, 

the dynamic range is indirectly influenced by the noise. It is impossible to increase the 

dynamic range by increasing the integration time, because the dark current is integrated 

in the same way [2].  

 

In addition, although using the smaller CMOS technology will increase the fill factor, the 

lowest supply voltage reduces the dynamic range. Such drawbacks can be alleviated by 

operating in the current domain. Early circuit design principles and techniques for 

current-mode processing are becoming powerful tools for the development of high 

performance analogue circuits and systems. The performance features of current-mode 

techniques include increased dynamic range and improved linearity, resulting in optimum 

design [9]. The pixel working in current-mode will be explained later. 

 

The low dynamic range performance of voltage-mode image sensor cannot meet the 

requirement of many applications. It is desired to have high dynamic range image sensor 

to distinguish low contrast signal from high background illumination. In order to increase 

the dynamic range of the standard image sensor, various solutions and methods have 

been proposed [16,24-28], using a long integration time, a variable integration time and 

multiple exposures. However, most result in increased pixel area or integration time, 

decreased resolution, sensitivity or frame rate. One of the solutions to extend the dynamic 
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range is to compress the response using a logarithmic sensor. Various designs of 

logarithmic response image sensor have been developed [29-33]. The basic architecture 

and functionality of this pixel will be explained in the next section.  

 

1.4 Linear Active Pixel Sensor 

 

One of the main components of the sensors is the pixel linear response. Linear operation 

of the sensor can achieve large output signals and thus a high signal to noise ratio [34]. 

Figure 1.3 shows the architecture of a general three transistor APS including pixel reset, 

MRS, source follower amplifier, MSF and row select, MSEL. The pixel is reset by activating 

φRS, which charges the capacitance of the node PD to voltage near VDD. After switching 

off the reset transistor, during which the photodiode is exposed to the light, the diode 

voltage variation, VPD, is linearly dependent on the light intensity. After passing a certain 

integration time, the charge on the photodiode node, PD, is readout through MSF by 

switching on MSEL. The pixel output voltage is proportional to the light intensity and the 

integration time. Then, the pixel is reset again for a new cycle.  

 

The dynamic range of a linear region CMOS pixel sensor is limited; for levels of 

illumination above a certain limit the capacitance completely discharges during the 

integration phase. Thus, it is not possible to distinguish differences in the input 

illumination above this limit, as the output voltage saturates to zero. This results in loss 

of details in brighter regions. Several techniques have been proposed to improve the 

dynamic range in [35- 38,61]; however this can be achieved by increasing the number of 

bits per pixel used to represent the image and multiple sampling techniques, which 

significantly adds to the cost of the final imager [39]. One of the solutions to increase the 

dynamic range is to design sensors with a non-linear response that compress the dynamic 

range of the input signal, which is usually achieved by using pixel operating in 

logarithmic response as explained in the next section. 
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1.5 Logarithmic Active Pixel Sensor 

 

The logarithmic (log) APS, introduced around 1983 [40], is essentially a nonlinear 

readout technique. Its function is a result of the subthreshold operation of a diode-

connected MOS transistor, added in series to the photodiode [23]. Pixels in logarithmic 

mode operate continuously and convert the logarithm of the photocurrent into a 

corresponding voltage without integration process.  

 

Figure 1.4 shows the basic architecture of a logarithmic APS. This three transistor pixel 

continuously converts incident light into a voltage that is proportional to the logarithm of 

the light intensity [41]. This pixel does not require reset and operates continuously. The 

photocurrent, Iph, is small enough to cause the load transistor, M1, to operate in the 

subthreshold region. So, the photocurrent, Iph, is equal to the subthreshold current. The 

VPD is logarithmically dependent on the light intensity, due to the subthreshold operation 

of M1 [16,23].    

 

Figure 1. 4 Basic logarithmic pixel architecture 

 

The photodiode output voltage is given by the following equation 

 

th

D

ph

DDPD V
I

I

q

nKT
VV 












0

ln  ,        (1.2) 
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where KT/q represents a thermal voltage depending on the temperature in volt, ID0 is the 

current at Vth=VGS, and Iph is the photocurrent. n denotes the slope factor given by 

 

ox

D

C

C
n 1   ,            (1.3) 

 

where CD is the capacitance of depletion layer and Cox is the capacitance of the oxide 

layer. 

 

Any variation in photocurrent will be logarithmically compressed. Then, the dynamic 

range of the photocurrent will be increased without having to substantially increase the 

output voltage swing. 

 

Light levels can range from 10
-3 

lux at night to 10
5
 lux in bright sunlight with the direct 

viewing of the light source [16]. The advantage of the logarithmic sensors is a simple 

pixel structure, which has the same number of transistor as a three-transistor APS, while 

the dynamic range is exponentially increased. In this sensor, ten bits of resolution are 

sufficient to scene illumination with one percent accuracy for over five decades of 

luminance. However, to have the same accuracy with a linear sensor, 23 bits are 

necessary which is not suitable for high speed imaging, data transmission and data 

storage [22,41]. Another advantage of this technique is to allow for continuous 

photodiode operation. The photocurrent can be readout anytime and there is no 

integration involved. 

 

While the logarithmic sensor has the above-mentioned advantages, it suffers from 

drawbacks such as temperature dependence and low swing of the output, and high fixed 

pattern noise [16]. The problem of fixed pattern noise is due to the high sensitivity of the 

MOS subthreshold characteristic to the process variation [23, 41-42]. Also, this form of 

compression leads to low contrast and loss of details. The response of the logarithmic 

pixels is light dependent. This means that at low illumination levels, the readout time 

would be very slow, depending also on the photodiode capacitance, to be able to detect 

the small currents. Then, in a constant time, the photodiode capacitance is not capable of 
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being fully depleted. This can lead to image lag and low sensitivity [43]. To alleviate the 

problem of low light detection, pixels have been designed to operate in combined linear 

and logarithmic response at low-illumination and high-illumination level respectively. 

The operating of these combined response pixels will be described in the following 

sections. 

 

1.6 Image Sensor with Combined Linear-Logarithmic Response  

 

As described in the previous sections, logarithmic response pixels have been used in 

order to wider dynamic range [23,41]. However, a drawback of these pixels is their 

limited sensitivity at low light levels [42]. To overcome this disadvantage, the pixels with 

combined linear and logarithmic response have been proposed [4]. A linear-logarithmic 

sensor behaves linearly at low light and logarithmically in bright light. A CMOS imager 

with combined linear-logarithmic operation has been proposed by [43], as shown in 

Figure 1.5. The operation is explained as follows [42]. The photodiode resets to a voltage 

Vbias that is higher than VDD so that when φRS is high, VPD is biased to a voltage which is 

less than the voltage required for sub-threshold conduction across the transistor M1. 

Photocurrent produced across the diode will cause to decrease VPD linearly until it 

reaches to point where sub-threshold conduction occurs. Beyond that point, VPD will vary 

logarithmically. If the illumination is low, the VPD will not saturate within the integration 

time. Then the pixel output will response like a three-transistor APS, so called linear 

operation. However, if the illumination is high, the photodiode will soon become 

saturated and the VPD will put M1 into sub-threshold region, operating the pixel in 

logarithmic mode response. Linear integration mode operation of the sensor can achieve 

large output signals and thus a high signal to noise ratio. On the other hand, the 

logarithmic mode of the pixel operation allows a wide dynamic range [34]. 
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Figure 1. 5 Schematic of a linear-logarithmic pixel 

 

The linear range is adjustable through Vbias so that the larger the offset between VDD and 

Vbias, the greater the width of the linear region. This method combines the advantages of 

linear and logarithmic pixels with a smooth transition between the two modes of 

response. Then, a dynamic range of over 100dB can be obtained [44-46,62]. 

 

1.7 Current-Mode Response Image Sensor 

 

The majority of the reported image sensors are implemented in voltage-mode [3,5-8]. As 

technology scales down, it necessitates the reduction of supply voltage to reduce the 

power dissipation. However, the reduction of supply voltage leads to a degraded circuit 

performance in terms of signal swing, signal to noise ratio and dynamic range [9-10].   

 

In current-mode image sensors, the signal swing is not affected by such trends. Also, they 

need less silicon area and have higher operation speed [47]. A current-mode APS 

provides an alternative to the traditional voltage mode.   
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Figure 1. 6 Current-mode image sensor 

 

Figure 1.6 shows the architecture of a current-mode image sensor. It is composed of a 

photodiode, a reset transistor M1, an active device M2, and a row select transistor, M3. In 

current-mode pixels, the output voltage in the column bus is fixed. So, it prevents from 

charging and discharging the column capacitance during readout to maximise the 

operating speed [10-11,46]. 

 

Many current-mode imaging structures have suffered from high Fixed Pattern Noise 

(FPN) due to device parameter variation and have nonlinear transfer characteristics 

which have limited the effectiveness of noise suppression circuitry [10-11,13-14]. Active 

device transistor, M2, operates in the triode region to convert the photovoltage, VPD, to an 

output current, Ipixelout, linearly. For pixel operating in current mode, the column readout 

circuits work in the current domain.  

 

1.8 Conclusion 

 

In this chapter, we had an overview on the basic CMOS image sensors. The various 

possible structure of pixels used in sensors was presented. In order to characterize the 
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CMOS image sensor performance, we introduced its performance indicators. Then, we 

explained about the current-mode technique and its advantages.  

 

In this thesis a linear-logarithmic active pixel sensor operating in current mode is 

designed. A high dynamic range is achieved by pixel in both linear and logarithmic 

modes of operation. If the pixel in the linear image saturates, it is replaced by a 

corresponding logarithmic operation without the need for a frame memory. In addition, in 

current-mode pixels, the column bus voltage is fixed. So, a change in the current level 

through a node is not necessarily accompanied by a change in the voltage level at that 

node. Hence, parasitic capacitance would not degrade the operating speed. Also, using 

current-mode have reduces the power consumption because even if the power supply 

voltage is low, the required dynamic range is achieved. Based on these advantages, we 

can conclude that it is useful to design our image sensor in linear-logarithmic operation 

using the CMOS current-mode technology. Next, chapter 2 presents the architecture of a 

linear-logarithmic APS having a current-mode output. 
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CHAPTER 2 

DESIGN OF IMAGE SENSOR AND READOUT CIRCUIT 

 

2.1 Introduction and Design 

 

Chapter 1 introduced the physical structure of image sensors and their functionality. 

Based on these concepts, this chapter describes the design steps of the image sensor and 

readout circuit in detail. The objective of designing the image sensor is to increase the 

dynamic range. As mentioned in Chapter 1, using current-mode because of the reduction 

of supply voltage in the shrink size CMOS devices has the advantage of high dynamic 

range. In addition, the image sensors operating in the combine mode of linear-logarithmic 

has improved dynamic range compare to the sensors operating in a single mode. Then, in 

this design, we use the current-mode linear-logarithmic image sensor to have the 

operating response with high dynamic range. Accordingly, all the circuit in the column 

are designed in current-mode which is compatible with the image sensor. 
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Figure 2.1 shows the block diagram of the proposed imaging system, working on current 

mode. 

 

Figure 2. 1 Current-mode imaging system architecture 

 

As mentioned in chapter 1, the designed pixel operates in current-mode with linear-

logarithmic response. At the end of the integration time of the pixel, two successive pixel 

output currents are sampled by the Delta Reset Sampling (DRS) to determine the 

operating mode response of the pixel. Two roughly similar samples indicate that the pixel 

is in the logarithmic mode. The response mode is detected by the comparator, CMP. 

After the reset phase, another sample is sent to the DRS to reduce the FPN and the image 

lag effect. The current mode DRS sends an offset free current to the current mode analog 

to digital convertor. The corrected output current is independent of the voltage threshold 

variations of the pixel read out transistor [13]. The comparator Mode Indicator flag (MI) 

indicates to the Digital Processing Unit (DPU) when the pixel is operating in the 

logarithmic mode so that the ADC digital output is converted accordingly. 
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In the following sections, we will describe the architecture and functionality of the 

designed pixel sensor and then the related readout circuits. We will discuss about the 

causes of non-linear output current transfer characteristic and develop an analytical 

solution that can be implemented in the digital domain. 

 

2.2 Pixel Architecture and Operation 

 

The proposed three-transistor pixel architecture is shown in Figure 2.2.  

 

Figure 2. 2 Proposed pixel architecture  

 

The pixel consists of a photodiode, a diode connected transistor M1p, transistor M2p 

operating in the linear region and a row select switch M3p to connect the pixel to the 

column bus. The integration voltage, VPD, is converted to an output current, Ipixelout, by 

transistor M2p, acting as a transconductance amplifier. In order to increase the dynamic 

range, the active pixel has been designed in current-mode with a linear-logarithmic 

response. In current mode pixels, the fixed output voltage Vref   prevents from charging 

and discharging the column capacitance during readout to maximise the operating speed 

[10]. The drain voltage of M2p should not be far from VDD to ensure that M2p is in the 

linear region. Under the assumption that Vref is constant, the drain voltage of M2p is 
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approximately equal to Vref. So, Vref must be close to VDD. The transconductance Gpix, 

given by (2.1), is approximately linear; 
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Select switch M3p connects pixel to the output bus. Ideally, M3p has zero on-resistance; 

meaning that the voltage drop across is 0V. This approximation seen in (2.1) becomes 

less valid at low supply voltages. The finite on-resistance of M3p produces non-linear 

effects. The analytical solution for this effect is provided in the next section. 

 

The bias voltage, VS, determines through transistor M1p the pixel reset-integration phase. 

The VSL and VSH indicate the low and high level of the bias voltage, VS, respectively. 

VSH is chosen to ensure that the gate voltage of M2p is enough to remain „on‟ during the 

reset phase. VSL is selected to set the photodiode current at which the pixel operating 

mode changes from linear to logarithmic, during the integration time. So, to ensure that 

M2p is always above threshold: 

 

thpDDS VVV   .        (2.2) 

The pixel shown in Figure 2.2 operates as follows. At the end of the reset, after charging 

up the node capacitance CPD through the reset transistor M1p, the photodiode is exposed 

to the incident light during integration time. It generates the photocurrent Iph that 

discharges CPD. Then, the photodiode voltage VPD decreases proportionally to the light 

intensity and the integration time tint. 

 

In the case where the light intensity is not sufficiently strong to decrease VPD 

substantially, M1p remains in the cut off region. So, the voltage of the photodiode VPD is 

linearly dependent on the light intensity. It is given by 
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int
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V  .        (2.3) 

 

For high intensity incident light, VPD becomes logarithmically dependent on the light 

intensity, due to the subthreshold operation of the diode connected, M1p, transistor. It is 

expressed as the equation (1.2), explained in Chapter 1. 

   

The transistor M2p being in linear mode of operation will output a current, Ipixelout, linearly 

proportional to VPD, as described by the following equation:  
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where µ2p is the hole mobility, Cox is the oxide capacitance, Vth is the threshold voltage, 

W2p and L2p are the transistor‟s width and length and VGS is VPD-VDD. 

This linearity allows for easy suppression of the variations, appearing as fixed pattern 

noise, using a current mode delta reset on the column circuit. 

 

Figure 1.A, in Appendix, shows the layout view of the pixel with the labelling of the 

transistors and inputs. In this design, we have chosen traditional n-well/p-substrate 

photodiode as photo-detector. This kind of photodiode has relatively good performance 

compared to other traditional photodiode implementations. Also, it has much lower 

leakage current and higher sensitivity to visible light compare to n+/p-substrate 

photodiode. In this layout, the light sensitive area is 53.28μm
2
 in which the total area of 

the pixel is 144 μm
2
. So, the fill factor calculated as the percentage of the ratio of these 

two values is 37%. 

 

Table 2.1 shows the design parameters and characteristics of the pixel. For all the three 

transistors, the minimum channel length is used. The VSL and VSH are determined as 

mentioned above. Also, the column reference voltage, Vref, is set up to the value to keep 

the transistor M2p in linear region as explained before. 

Pixel 

Pixel 
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Table 2. 1 Characteristics and design parameters of the pixel 

Channel  Length 0.35 µm 

Channel  Width M1p=0.8, M2p=0.95, M3p=0.45 µm 

VS (control 

voltage) 

VSL(integration)=2.35V,  

VSH(reset)=2.7 V 

Vref (output 

voltage) 
3.1 V 

Pixel Size 12×12 µm
2
 

Fill Factor 37% 

 

 

2.2.1 Pixel Non-linearitiy Analysis  

 

Figure 2.3 shows the output current as a function of time for the linear operating response 

of the pixel. As it is shown, the different curves are for different widths of the transistor 

M3p. It can be noticed that the output is not completely linear. The simulation proves that 

increasing its width even as high as ten times does not solve the linearity problem while 

increasing dramatically the pixel area. 

 

A first degree contribution to this nonlinearity is the „‟on‟‟ resistance of the select 

transistor, M3p, which exhibits an increasing drain-source voltage drop as the output 

current increases. To eliminate the effect caused by M3p „on‟ resistance, Ron, we rely on 

the digital domain after ADC conversion to apply a linearization function. 
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 Figure 2. 3 Simulated linear current response for different width of M3p 

 

Another non-linearity effect comes from the variation of the photodiode voltage as a 

function of time, as shown in Figure 2.4. Since the technology used for chip design does 

not offer photodiode model, the schematic level simulation have to be carried out using a 

simplified photodiode model that was approximated as a capacitor in parallel with an 

ideal current source to discharge the diode capacitance. It is suspected that the slight 

nonlinearity comes from the photodiode capacitance variation as a function of VPD. 

 

Another cause of non-linearity is the hole mobility degradation of transistor M2p as a 

function of VGS. It has also been recognized as an important source of non-linearity for 

current-mode active pixel [10,13,48]. 
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Figure 2. 4 Simulated photodiode voltage variations as a function of time 

 

2.2.2 Analytical Solution  

 

To remove the non-linearity effect coming from the Ron, we use an analytical solution 

that can be implemented in the digital domain [46]. The transistor M2p works in the linear 

region, so the relationship between its output current and its gate voltage, VPD is linear as 

shown in equation (2.4). The square term is neglected as 
pMDSV

2,  has a small value. From 

Figure 2.2, we have: 

 

pixeloutonMDSrefDD IRVVV
p


2,  .      (2.5) 

 

In ideal case, assuming that the pixel output current is linear and there is no voltage drop 

over Ron, 
pMDSV

2, is equal to 0.2V. According to the equation (2.4) we have: 
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in which the last term of the equation is neglected. 

 

Deducing 
pMDSV

2,  from both of the equation (2.4) and (2.5), and replacing VDD-Vref by 

0.2V, we have the following equation 
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Using the last two equations results in the linearization function for a non-negligible Ron 

as in the following 
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This correction can be performed numerically by the digital processing unit. Also, we can 

use the geometric series to obtain approximately the same result as the fractional form. It 

is therefore easier to implement in digital circuit than the fractional form. The geometric 

series of the equation (2.8) will be as the following 
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The condition will be satisfied since the Ron is on the order of ohms and Ipixelout is on the 

order of micro-ampere. 

 

Before digitizing the analog current Ipixelout, a current memory performing a Delta Reset is 

employed to remove the FPN due to variations of transistors M1p and M2p threshold 
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voltage [28]. Therefore the output current converted by the current mode ADC is Iout-

Ireset. In the context of an ASIC CMOS sensor with on-chip ADC and digital processing, 

the linearization function (2.8) must be realized effectively with an easy to implement 

arithmetic logic unit.  

 

 

Figure 2. 5 Experimental results of the linearized pixel output current 

 

Figure 2.5 shows the linearized experimental results with both fractional equation (2.8) 

with a residue of 0.9902, and its geometric series, equation (2.9). A geometric series of 

16 terms must be used to obtain approximately the same result as the fractional form. 

However for an ADC of up to 10 bits, a lookup table could also be used with the 

advantage of a higher conversion rate. This result obtained when VSL set to zero. Then, 

the pixel operates in the linear mode response and depending the light intensity it 

saturates after passing time. 

 

According to the Figure 2.2, when the light intensity increases, the photodiode voltage, 

VPD, decreases. The maximum pixel output current, Ipixelout, is obtained when the 

forwarding bias current of the photodiode is equal to Iph, according to the photodiode 
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characteristic. After that VPD remains constant and the Ipixelout is constant as well. In the 

Figure 2.5, it is seen that Ipixelout is starting to decrease. This behaviour comes from the 

threshold voltage temperature dependence of M1p and M2p which affects directly the 

output current [49]. This part of the output characteristics cannot be linearized using our 

simple mathematical solution. 

 

2.3 Current-Mode Column Readout Circuits 

 

This section describes the design of the column readout circuit for a current-mode linear-

logarithmic pixel. The design includes the circuits required to copy the output current of 

the pixel into the column, to remove the offset and to determine the operating mode of 

the pixel. After photocurrent integration in the pixel, readout is performed by transferring 

the pixel output current to the column circuit. One of the important circuits in the column 

is a delta reset sampling used to cancel device parameter variations. A current conveyor 

is used to fix the pixel output voltage and provide a copy of the pixel output current [10]. 

 

2.3.1 Current Conveyor 

 

The first part of readout circuitry in current-mode pixels is a current conveyor circuit. 

The concept of current conveyor is the current conveyed between two ports at different 

impedance levels [50]. It was initially proposed by Smith and Sedra in 1968 [51-52]. The 

current conveyor offers several advantages over the conventional opamp. It can provide a 

higher voltage gain over a larger signal bandwidth under small or large signal conditions 

[9]. 

 

Figure 2.6 represents a block box of current conveyor. If one of the input terminals is 

connected to a voltage, an equal voltage will appear on the other input terminal. In a dual 

manner, if a current is applied through one input, an equal current will flow through 

another input and the same current is conveyed through output terminal. Its operation is 
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explained in [9,50]. The potential of X, vX, being set by vY is independent of the current 

being forced into port X. Similarly, the current through input Y, iY, being fixed by iX is 

independent of the voltage applied at Y. 

 

 

 

 

 

 

Figure 2. 6 Basic block diagram of a current conveyor 

 

Current conveyor can be applied in a variety of analog circuits. It can be used to have a 

fixed voltage node and to copy the input signal as shown in Figure 2.7 for the first 

generation Current Conveyor (CCI). Assuming that transistors M3-M5 are matched, it can 

be shown that the currents through them are equal. This forces transistors M1 and M2 to 

have equal currents and thus equal VGS drops. Thus X and Y track each other in both 

voltage and current. 

 

 

Figure 2. 7 CMOS implementation of CCI 
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Figure 2. 8 Current conveyor 

 

In this design, we use the cascoded current conveyor, adding the transistors M6-M8, as 

shown in Figure 2.8. This architecture reduces the channel length modulation, and the 

output current is more precise. We connect the first branch, Y, into an external biasing 

voltage as Vref. The next branch, X, is connected to the pixel output. Then, the voltage of 

the column bus will be the same as Vref. Accordingly, the pixel output current will be 

copied in the branch Z by adjusting the transistors dimensions as in Table 2.2, so that IZ 

is equal to Ipixelout. 

 

Table 2. 2 Parameters values of the current conveyor circuit 

Parameter Value 

Vref 3.1V 

WM1,M2 2μm 

WM3,M4,M5,M6,M7,M8 1μm 

L (all transistors) 3μm 



30 
 

2.3.2 Current-Mode Offset Cancellation Circuit 

 

A common approach used in voltage mode active pixel sensors is to eliminate offset 

caused by random variations in the threshold voltage of the pixel transistors with 

Correlated Double Sampling (CDS). The CDS circuit, usually located at the bottom of 

each column, subtracts the reset value from the signal pixel value [16]. In current mode 

active pixel sensors a DRS circuit is used as an offset suppression circuitry. It is 

implemented in a switched-current memory cell shown in Figure 2.9. 

 

Figure 2. 9 Basic two-step sampling current memory cell 

 

Error cancellation is achieved by switches through a non-overlapping two-step sampling 

process. In this so-called S
2
I memory cell [53], the signal is sampled by the NMOS 

memory, Mn, during the first (coarse) step, φ1a. When the cell has settled, all of the signal 

current together with the bias current, J, flows into the coarse memory. Then, during the 

second (fine) step, φ1b, the error is sampled and stored in the PMOS memory, Mp, while 

the bias current flows through the transistors. On the output phase, the subtraction of 

these two signals appears at the output which is also free of the bias current.  

 

The applications for switched-current systems will be much the same as for switched-

capacitors. Linear floating capacitors are not needed in switched-current circuits. In 

principle, voltage swings need not to be large as signals are represented by currents [9].  
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Figure 2. 10 a) Proposed switched-current memory cell (DRS) b) Clock waveforms 

 

Figure 2.10 a) shows the modified current memory cell working as delta reset sampling 

circuit, different from the basic one. It is connected to the designed current conveyor, 

node Z of the Figure 2.8, in which the pixel output current passes. The incoming current 

of the DRS, Ipixelout, is controlled by SEL switch which is in the pixel, Figure 2.2. 

 

In this design, M11 operates as the coarse memory while M22, which is cascoded with M21 

to reduce the effect of channel length modulation, works as the fine memory. The error of 

channel length modulation created by M11 will be removed from fine memory in 

subtraction cycle. Then, we only use the cascode version for the fine part. The width of 

cascode transistor M21 is adjusted to minimise the drain-source voltage of M22, while 

adjusting Vbias to ensure that the transistor is saturated in the range of the input current. 

The clock waveforms are shown in Figure 2.10 b). The select switch transistor located in 

the pixel, Figure 2.2, acts as the input switch for the DRS circuit. While the select signal 

is low, the two sampling of coarse and fine memory are done respectively.  

 

In our work, the design procedure was adopted for optimizing the cell performance as 

shown in Table 2.3. In memory cell design, transistor sizing is a very important 

procedure to get behaviour close to optimum performance. 
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Table 2. 3 Parameters designed values 

Parameter Value 

WM11 3.2μm 

WM21 2.0μm 

WM22 1.0μm 

L (all transistors) 9.0μm 

 

 

2.4 Mode Indicator Circuits 

 

In order to determine the operating mode of the pixel, we need a circuit block to detect 

the pixel output current and recognize its operating mode. For this purpose a current 

comparator circuit is needed to compare two successive currents. If these two currents are 

similar, then the pixel is in the logarithmic mode of operation. Otherwise, it is in the 

linear operating mode. However, these sampled current must be kept in order to be 

compared. Consequently, we introduce an integrator with capacitive feedbacks before the 

comparator circuit. The functionality of each circuit is explained in the following 

sections. 

 

2.4.1 Integrator  

 

This block consists of a simple one stage fully differential amplifier with Common Mode 

Feedback (CMFB). A differential feedback loop with high loop gain is used to control 

the common mode output voltage [54]. Figure 2.11 shows the schematic of the circuit. 
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Figure 2. 11 One stage fully differential amplifier with CMFB 

 

The simple fully differential amplifier consists of a differential pair MN1-MN2, active 

loads MP3 and MP4, and tail current sources MN3 and MN4. For the op-amp, an ideal 

operating point biases MN1-MN4 and MP3-MP4 in the active region and sets the DC 

common mode (CM) output voltage, VOC, to the value that maximizes the swing at the 

op-amp outputs for which all transistors operate in the active region. However, VOC is 

very sensitive to mismatch and component parameter variations, so that accurately setting 

it to a desired voltage is impossible in practice. To set VOC to a desired DC voltage that 

biases all transistors in the active region and maximizes the output voltage swing, either 

Vbiasp or VGS-MN3 must be adjusted. Adjusting VGS-MN3 to force VOC=VCM requires the use 

of feedback in practice which will be referred to as the common-mode feedback (CMFB).  

A straightforward way to detect the common-mode (CM) output is to use two equal 

resistors [54], R0 and R1, as shown in Figure 2.11. This CMFB uses resistive divider and 

a modified CM sense amplifier that injects currents into the opamp to control the opamp 

CM output voltage. The voltage between the two resistors is  
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This modified CM-sense amplifier directly injects currents to control the opamp CM 

output. The dimensions of the transistors are shown in Table 2.4. The current injected by 

MP0 and MP1 into either output is  
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Transistors MN3,MN4, MP3 and MP4 act as current sources. The CMFB loop will adjust 

Icms so that: 

 

4343 2 MNDMNDcmsMPDMPD IIIII    .     (2.12) 

 

If Voc=VCM, MP0, MP1, and MP2 give 2Icms=IMP5/2. Therefore, IMP5 should be chosen so 

that: 

 

43
5

43
2

MNDMND
MP

MPDMPD II
I

II    ,     (2.13) 

 

when all devices are active. Accordingly, in the CM-sense circuit, 

(W/L)MP0=(W/L)MP1=0.5(W/L)MP2. Table 2.4 shows the design parameters and transistors 

dimensions in order to operate the differential amplifier with common-mode feedback 

properly. 
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Table 2. 4 Transistor‟s parameter values of the differential amplifier with CMFB 

Parameter Value Parameter Value 

WMP3,4 5.0μm WMP5 11.2μm 

LMP3,4 0.7μm LMP5 3.0μm 

WMN1,2 6.4μm WMP0,1 4.0μm 

LMN1,2,3,4 2.0μm LMP0,1,2 2.0μm 

WMN3,4 11.4μm WMP2 8.0μm 

Vbiasp 2.3V R0,1 200KΩ 

Vbiasn 0.7V 

 

 

Capacitors are then introduced between the inputs and outputs to sample the current 

coming from the DRS circuit. Figure 2.12 shows the integrator.   

 

Figure 2. 12 Differential integrator 

 

In this circuit, we used two switches, Fo1 and Fo2, in order to transfer the sampled current 

coming from DRS circuit. During each phase of input Fo1 or Fo2, one is connected to the 

IoDRS, while the other input is connected to the common mode voltage, VCM. The current 

sampled creates voltages across capacitors C1 and C2. The switches P1 and P2 reset the 

capacitors before starting the output phases, so the inputs and outputs of the integrator are 

on a common mode voltage level. 

 

First, switches P1 and P2 are closed and the capacitors are reset. Then, we open them and 

the first sample charges up C1 during Fo1. During this time, C2 charges at the same rate as 
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C1. Due to the CMFB, while O1 is decreases, O2 increases, so the average output remains 

VCM. During Fo2, the second current sampled discharges C2 and C1. If the second sample 

is larger than the first one, the slope of the discharge will be greater. In this case, the 

pixel operates in linear mode response. Otherwise, the second sample is similar to or 

smaller than the first one when the pixel is in the logarithmic response.  

 

 

a) 

 

 

b) 

Figure 2. 13 Integrator output for the pixel operating in a) linear operating mode and b) 

logarithmic operating mode 
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Figure 2.13 a) and b) shows the simulation results of these two conditions, respectively. 

As seen, in the linear operating mode of the pixel, at the end of the stage Fo2, O1 is greater 

than O2 while in the logarithmic response O1 is smaller than O2. The constant output 

values appearing before Fo1 pulse and after Fo2 pulse are fixed by the CMFB at 1.65V. 

The maximum and minimum values of output voltage at the end of a current sampling 

are limited by the op-amp dynamic range which is approximately 1.3V. 

 

Figure 2.14 shows the output swing of the differential amplifier with CMFB. One of the 

inputs sets to 1.65V while the other sweeps from 0V to 3.3V. The differential output 

varies from 1.074V to 2.375V. 

 

 

Figure 2. 14 Output swing of the differential amplifier 

 

Figure 2.A, in Appendix, shows the layout view of the integrator. We use inter-

digitization finger technique to improve transistor matching in the differential pair and 

the CM amplifier, and also common centroid structures to improve matching between 

components in the layout. The resistors are implemented by n-well layer. 
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2.4.2 Comparator 

  

Comparators are widely used in many analog circuits. The low power comparator 

operation is based on a positive feedback loop of two back-to-back inverters in order to 

convert a small input-voltage difference to a full scale digital level in a short time. Its 

operation is controlled by clock signal pulses. When the clock is low (reset phase), the 

output node is reset to VDD. During the reset phase of the comparator and after it has 

finished regeneration, there is no supply current [55-56].  

 

There is a large variety of CMOS latched comparators. One of them is static latched 

comparator in which the regeneration is done by two class A cross-coupled inverters. 

These comparators are always consuming current even after regeneration therefore; it is 

not attractive for low power operation [57]. Another type of comparators are more power 

efficient than the static comparators [58]. However, there is still supply current in the 

reset phase and after the comparator has finished regeneration. In the dynamic latched 

comparators, there is only current flowing during the regeneration [58-59]. Figure 2.15 

shows the schematic diagram of a dynamic latched comparator. 

 

The differential pair transistors, MN11 and MN12, are input transistors. MN14/MP12 and 

MN15/MP11 compose a latch structure. MN13 is used for power reduction and the other 

transistors are used for reset. The comparator is controlled by a single clock phase. 

During the reset phase, when clock is low, transistors MP13/MP14 and MP17/MP16 reset the 

output nodes and drains of the MN11/MN12 to VDD. MN13 is off and no supply current 

exists. When the clock goes high, the reset transistors are opened and the current starts 

flowing in MN13 and in the differential pair. Depending on the input voltage, one of the 

cross-coupled inverter that makes the regeneration, MN14/MP12 or MN15/MP11, receives 

more current and determines the final output state. After regeneration is completed, one 

of the output nodes is at VDD, and the other output and both drains of the differential pair 

are at 0V. In this situation, there is no supply current, which maximizes the power 

efficiency [58-59]. 
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Figure 2. 15 Dynamic latched comparator 

 

According to the pixel response, when it is in linear operating mode, the two successive 

currents are different and the first one is smaller than the second one. So, the comparator 

output should be “1”.  However, in the logarithmic mode of operation, these currents are 

sometimes equal or the second current sampled is smaller than the first one. In this state, 

the comparator output changes to “0”. These normal operating states of the comparator 

can be altered by the mismatch resulting from variations of the fabrication process, which 

deteriorates the accuracy of the comparator. 

 



40 
 

The copied output currents, IoDRS, are integrated into the capacitors C1 and C2 which 

determine O1 and O2. The charging and discharging of capacitors C1 and C2 of the 

integrator during a given time, ∆t, is expressed as the following equation.  

 

111 VCtI       ,    222 VCtI   .      (2.14) 

 

Table 2.5 shows the possible comparator output cases. The unwanted output states 

marked with an “X” must be avoided in order to prevent a wrong conversion at the DPU 

level [62]. 

 

Table 2. 5 Comparator output for different input cases 

CASE IoDRS 
Input 

voltages 
out 

1 I1=I2 
O1<O2 “0” 

O1>O2 X 

2 I1>I2 
O1<O2 “0” 

O1>O2 X 

3 I1<I2 
O1<O2 X 

O1>O2 “1” 

 

 

Corner analysis simulations have been done in order to solve the problem of the 

unwanted output states of case 1 and case 2. According to the simulation results, we 

deduced that a capacitor ratio, C2/C1, of 1.12 is required to overcome the mismatch effect 

responsible for those unwanted output states. In the linear operating mode of the pixel, 

the case “3” unwanted output state may happen for small currents. However, this 

problem can be controlled by increasing the integration time to ensure that O1 is larger 

than O2. 

 

The capacitor value is calculated using  
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LWCC ox   ,         (2.15) 

 

where Cox is the capacitance of the oxide layer per unit area. Its value in AMS 0.35μm 

process is 0.86 fF/μm
2
, L and W are length and width of capacitor, respectively. The 

parallel plate capacitors are implemented using two poly layers. The two layers act as the 

parallel plates. We use W=L so that a square capacitor implementation is possible. 

Values of W = L calculated using the equation mentioned above is an approximate value.  

In this design, using common centroid method and the equation (2.15) for W=L, we split 

each capacitor into 12 alternate components. For each component, we have 

W1=L1=7.5μm and W2=L2=7.9μm. Then, C1 and C2 are approximately 580.5fF and 

644.1fF respectively. 

 

2.5 Conclusion 

 

In this chapter, the implementation of CMOS pixel and the column circuits are presented. 

In this design, the current-mode pixel has the combined linear-logarithmic operating 

response with the advantages of a high dynamic range. The output current suffers from 

image lag and the offset created by the voltage threshold variation of the pixel readout 

transistor. In order to reduce these effects, we used a DRS circuit which sends a corrected 

output current to the current-mode ADC. The pixel output current should be linearly 

proportional to the photodiode voltage for easy suppression of the variation. Then, an 

analytical solution is presented to overcome the nonlinearity coming from the „‟on‟‟ 

resistance of the select transistor is introduced. 

 

The DRS is also used to determine the operating mode of the pixel response in order to 

be converted properly by the DPU. In addition, to determine the pixel operating mode, 

we used an integrator and a comparator circuit in the column level. In the next chapter, 

the experimental results of the fabricated prototype will be presented. 
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CHAPTER 3 

EXPERIMENTAL RESULTS 

 

This chapter presents the experimental results obtained on the response of the pixel over 

light illumination, the delta reset sampling function, and the comparator operation. The 

chip is fabricated in a two-poly, four-metal CMOS 0.35 μm process from AMS accessed 

through the Canadian Microelectronics Corporation (CMC). The device is then enclosed 

with a 68-pin DIP package.  

 

The principal objective is to verify the operating mode of the pixel and the functionality 

of the surrounding circuits. Besides, some of the theoretical concepts of Chapter 2 are 

validated. The prototype contains a 3x3 pixel array, a current conveyor, a DRS circuit, a 

differential amplifier with CMFB, and a CMP. It is noted that only the pixel in the 

middle of the array is functional. The others are used as dummy to obtain the same 

mechanical stress around a pixel as it would be found in a pixel array. The standard MOS 

transistor models for circuit simulation does not include any stress effects. Therefore, it 

cannot correctly predict the circuit performance under variable applied mechanical stress, 

leading to imprecise simulations. 
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3.1 Test Requirements 

 

For the purpose of the test, the chip was mounted on a Board. The instruments utilized 

are the Agilent E3631A and the Xantrex LXQ 20-3 DC Power Supply for bias, supply 

and ground voltages, the Tektronix MSO 3012 16 CH and the Hewlett Packard 54645D 

Mixed Signal Oscilloscope for measurement of the pixel response and column circuit 

outputs, the Tektronix AFG 3021B Single Channel Arbitrary Function Generator and the 

Agilent 33220A Arbitrary Waveform Generator for square-wave generation using an 

external clock to trigger, the Tektronix TLA715 Logic Analyzer to generate the digital 

waveforms. The TLA Pattern Generator Module generates the digital synchronization 

signals.  

 

 

Figure 3. 1 Test bench used to characterise the pixel and the column circuits 
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Figure 3.1 shows the photo of the test bench used to characterise the pixel and the 

column circuits. A light source provides an illumination onto the image sensor IC to 

stimulate photo detectors.  The chip mounted on a bread board is connected to power 

supplies, the pattern generator and the oscilloscope for measurements. A DC power 

supply of 3.3V is used. The test results show that the expected functionality was achieved 

for the pixel and the column circuits. 

 

3.2 Pixel Results 

 

The fabricated prototype includes a pixel, a current conveyor, delta reset sampling, a 

differential operational amplifier and comparator. The pixel consists of a photodiode, a 

diode connected transistor M1p, transistor M2p operating in the linear region and a row 

select switch M3p to connect the pixel to the column bus as shown in Figure 2.2. The bias 

voltage, VS, determines through transistor M1p the pixel reset and integration phase. 

Since the output of the pixel is current, it is necessary to have an external circuit, shown 

in Figure 3.2, in order to display and measure on the oscilloscope. Therefore, the external 

circuit includes a transimpedance amplifier with a resistor of 1-2 MΩ in the negative 

feedback to convert the output current into a voltage.  

 

Figure 3. 2 The schematic of the external testing circuit 

 

A large resistor is used in order to detect low currents. The input reference voltage, Vr, is 

set to a fixed voltage.  
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3.2.1 Pixel Output Measurements without DRS 

 

In order to verify the functionality of the pixel, according to the Figures 2.10 a) and 2.12, 

we keep the switches F2, Fo1 and Fo2 open. Also, the biasing voltage of the transistor M21 

must be removed. So, it is set to zero. F1 and Fo3 are kept closed. The Vref of the current 

conveyor circuit, Figure 2.8, determines the pixel output voltage. To keep M2p in the 

linear region, Vref is set to 3.1V. Also, the input voltage of the external transimpedance 

amplifier is set to 3.1V, the same as Vref, to keep the transistor M11 in cut off region. 

Therefore, the DRS circuit is completely disabled and only the pixel output current is 

sent to the output. The oscilloscope probe is connected to the output of the 

transimpedance amplifier, Vout. 

 

As seen in Figure 3.3, we measure different output levels of the pixel response for 

different light intensities. Also, at the end of the reset time, the voltage values are not the 

same for different light levels. According to the Figure 2.2, when the transistor M1p acts 

as a reset transistor for the pixel, the current passing through, charges the node 

capacitance of PD. Depending on the photonic current, Iph, hence, light intensities, 

different reset values of VPD are reached which create different pixel reset output 

currents. This effect appears as image lag, as seen in Figure 3.3 b) and Figure 3.4, which 

is increased by increasing the light intensity. Also, as light intensity increases, depending 

on VS, the pixel eventually enters into the logarithmic mode and consequently the output 

current saturates. 

 

Adjusting the high and low levels of VS, VSH and VSL, depends on the threshold voltage 

of M2p and at which level of illumination the logarithmic mode is required, respectively. 

We set VSH so that M2p works in linear mode from the beginning of the integration time. 

In this case it is set to 2.7V. If VSL is set to zero, the pixel always works in linear region 

since the diode connected transistor, M1p, is always cut off. So, for high light intensities 

the pixel saturates while it is in linear region and the current will not change by 
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increasing the illumination level. Therefore, we adjust VSL to 2.35V in order to have the 

pixel operating in logarithmic mode for high level of illumination. 

 

a) 

 

b) 

Figure 3. 3 Pixel responses for a) low and b) high light intensity 
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The white light source is a lamp equipped with a detachable filter centered at 525nm with 

a 50 nm bandwidth. However, the available light source with the filter has insufficient 

intensity to achieve five order of illumination intensity. Since, the stronger light source 

with λ=525nm is not available for the experiments, the practicable solution is to remove 

the filter for the highest light intensities. 

 

Figure 3. 4 Experimental results of the pixel output currents 

 

Figure 3.4 also shows the response of the pixel with varying light intensities. We 

measured the power of the light with the wattmeter and then transform it into Lux, the 

unit of illumination, with the following equation: 

 

)(862.0)/(685 LuxXWattLumens
S

P
  ,     (3.1) 

 

where P is the power measured and S is the wattmeter sensor area of 0.5025x10
-4 

m
2
. The 

standard factor of 685 is in Lumens per Watt (LPW), which corresponds to the maximum 

luminous efficiency of the standard observer. Calculating LPW requires using the simple 

mathematical formula. The constant value of 0.862 is the photonic factor (V(λ)) which is 

the wavelength dependant attenuation.   
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According to the Figure 3.4, as the light intensity increases, the pixel reaches the 

logarithmic mode of operation (saturated output current) earlier. In the linear operating 

mode (before saturation) of the pixel, the output is not entirely linear. The non-linearity 

comes mainly from the hole mobility degradation of transistor M2p as a function of VGS 

and the „‟on‟‟ resistance of the select transistor M3p which exhibits an increasing drain-

source voltage drop as the output current increases. A solution for the non-linearity 

imposed by the transistor M3p „on‟ resistance has been explained in the previous chapter, 

using a digital correction method. 

 

3.2.2 Dark Current Measurement 

 

In the absence of light, in dark condition, there is a small current affecting the pixel 

output called the dark current. It is one of the important parameters that characterizes the 

performance of an image sensor. Various factors contribute to the dark current. One of 

them is the current coming from the depletion region of the photodiode touching the 

oxide layer [21]. The dark current is usually represented as the pixel output function of 

the integration time. 

 

Figure 3.5 shows the pixel response in dark condition. To measure the dark current, we 

apply a square wave of the function generator as VS with the SEL switch “on”. The DRS 

circuit is disabled by removing Vbias, opening F2, closing F1 and setting Vr of the external 

transimpedance amplifier to 3.1 V. Then, we measure the slope of the output curve which 

is ∆Vout,m/∆t. In this case, we have ∆Vout,m=16.8 mV and ∆t=3.93s. 

 

In the simulation of the pixel we consider the circuit shown in Figure 3.6. In order to 

have, in this circuit, the value of the measured photodiode voltage, ∆VPD,m, in dark 

condition, we replace the photodiode and the transistor M1p, shown in Figure 2.2, by a 

voltage source. Then, we sweep the voltage VPD while measuring Vout. 

 



49 
 

 

Figure 3. 5 Pixel response in the dark condition 

 

Figure 3. 6 Modified pixel schematic to measure the ratio of ∆VPD/∆Vout 
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Figure 3. 7 Simulation results of the pixel response 

 

Figure 3.7 shows the simulation result. A slope of (∆VPD/∆Vout)measured of 5.94 is 

measured. From the measurements and the simulation result, we deduce the measured 

photodiode voltage variation which is determined by the equation below: 

 

mout

simulatedout

PD
mPD V

V

V
V ,, 












  .      (3.2) 

 

Therefore, we have ∆VPD,m equal to 99.8 mV. 

 

Now, we measure the capacitance of the “PD” node, according to the DC simulation 

result of the pixel in the reset mode, we obtained 60.56fF. Consequently, using the 

following equation, the dark current is deduced; 
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tIVC darkmPD  ,  .        (3.3) 

 

So, we find Idark = 1.538fA. 

 

3.3 Performance of the DRS Circuit 

 

A delta reset sampling circuit is a current memory cell, capable of memorizing the 

current. The circuit is a sample/hold cell that samples a current by storing the gate 

voltage of a MOS transistor according to the current flowing through. It is used in each 

column to remove the offset voltage variations [60]. The DRS scheme is composed of a 

coarse and a fine sub memory cells. It is performed in two steps. Initially, the sample 

current is memorized in the coarse memory cell (M11) during the first step. Then, in the 

second step, the error signal is memorized in the fine memory cell (M22). During the 

output phase, the subtraction of these two signals appears at the output. M21 is used to 

reduce the effect of channel length modulation on M22. In this project we use it for two 

purposes, as explained in the following.  

 

One of the functionality of the DRS circuit is the offset removal circuit. In a simple 3T 

pixel structure, image lag created by the dependence of the reset photosite voltage on the 

light intensity affects the image quality. For this purpose, the DRS circuit samples the 

current at the end of the integration time and subtracts it from the reset value. Therefore, 

the DRS output current is free of image lag. 

 

Another functionality of the DRS circuit is to sample two successive output currents, 

Ipixelout, at the end of the integration time. They are subtracted and the result is transferred 

to the next stage in order to determine the operating mode of the pixel. Two roughly 

similar samples indicate that the pixel is in the logarithmic mode. It will be explained in 

the next sections. 
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Figure 3. 8 Experimental result of DRS functionality  

 

Figure 3.8 shows the DRS as an offset removal circuit. If the light intensity increases, the 

current pulse amplitude, IoDRS, increases. The timing diagrams of the control signals and 

the readout signal are shown. The current sampling is done at the end of the integration 

time by changing the state of F1 and F2. Then the pixel is reset by changing the Vs level 

from low to high. At this time, Fo3 is closed and the reset-phase output current is 

subtracted from the previously memorized uncorrected output current. So, the final 

output current is independent of charge injection errors and image lag. The DRS input 

current is controlled by the switch SEL in the pixel. The output current is converting to a 

voltage by a transimpedance amplifier, as shown in Figure 3.2, in order to be displayed 

and measured on the oscilloscope.  

 

Figure 3.9 a) and b) shows the pixel output current which sampled by DRS during 

integration time for linear and linear-logarithmic operating mode, respectively. As seen, 

for low level of the light intensity, the curve is not linear due mainly to the select 

transistor “on” resistance and the carrier mobility dependence on the gate voltage. At 

high illumination, the pixel output current reaches saturation when the logarithmic mode 

is in effect. 
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a) 

 

b) 

Figure 3. 9 Sampled DRS output during integration for a) linear b) linear-logarithmic 

operating mode 
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3.3.1 Pixel Output Measurements with DRS 

 

In order to include the delta reset sampling circuit in the response measurement, the 

switches F1, F2 and Fo3 are activated. Also, according to the schematic in the Figure 

2.10a), the biasing voltage of the NMOS transistor in the fine branch, M21, is set to 2V. 

Therefore, we have the pixel response in the presence of the DRS and the output current 

is offset free.  

 

A light source is used to illuminate the pixel. In order to measure the power of the light 

intensity, the light source is driven from a DC voltage source. The power value of the 

light intensity is measured for regular increment of the driving voltage. In this case, the 

maximum value of the voltage source for the light is 5V. For each luminance power 

value, we measure the pixel output current.  

 

Table 3.1 shows the pixel output current, in the linear-logarithmic mode of operation as a 

function of the luminance power. Since the light intensity changes along the spectrum, 

we used a green light filter to pass only the wavelengths in the green light range. 

Therefore, spectral content of the light beam is constant. However, in order to obtain 

more light intensity, the filter is removed for the two most intense illumination levels. In 

order to detect a wide range of light intensities, we enable the logarithmic mode of 

operation by adjusting the low level of Vs. It is set to a value so that the pixel can detect 

high level light intensities, as mentioned in the section 3.2.1. Increasing the low level of 

Vs, enable the pixel to enter sooner in the logarithmic mode operation. For the results of 

Table 3.1, we set the low level of Vs to 2.35V while the high level of Vs, for the reset 

phase, is set to 2.7V. Also, the integration time is set to 133 ms in order to that the pixel 

be able to detect the lowest level of illumination.  
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Table 3. 1 Pixel output current versus the variation of the light power 

 

 

Voltage Source (V) 

 

 

Light Power (mW) 

Pixel Output 

Current (μA) for 

tint=133 (ms) 

With the filter to 

pass only the green 

light (λ=525 (nm)) 

 

0.268 

 

0.005 

 

0.077 

0.331 0.0123 0.317 

0.340 0.0132 0.395 

0.350 0.0148 0.581 

0.360 

 

0.0163 0.666 

0.367 0.0175 0.706 

0.375 0.0189 0.796 

0.380 0.0198 0.891 

0.390 0.0217 0.941 

0.400 0.0239 0.951 

0.406 0.0252 0.961 

0.459 0.040 1.031 

0.565 0.080 1.071 

0.699 0.160 1.106 

0.871 0.320 1.131 

0.800 0.358 1.141 

0.950 0.424 1.151 

1.010 0.513 1.166 

1.091 0.640 1.181 

1.360 1.28 1.186 

1.702 2.56 1.196 

2.120 5.12 1.216 

2.650 10.24 1.226 

3.333 20.48 1.246 

4.311 40.96 1.251 

5.000 62.3 1.271 

Without the filter 

for high light 

intensities 

2.510 122.15 1.281 

3.510 294.41 1.291 

5.000 445.66 1.296 
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The integration time, tint, is fixed so that the pixel can detect low-light intensity. It should 

be noted that, it is impossible to measure the dark current of the pixel in the presence of 

the delta reset sampling circuit. The reason is the effect of feed-through coming from the 

output switch, Fo3. Figure 3.10 shows the offset as a result of the feed-through.  

 

 

Figure 3. 10 Offset output current 

 

As shown on Figure 3.10, a 38 mV offset voltage due to feed-through, should be divided 

into the resistance in the feedback of the external transimpedance amplifier, 2MΩ, to 

obtain the output current. As a result, it is 19 nA as an offset of the output current created 

by the Fo3. We remove this offset value from every measured output currents of the pixel, 

as calculated in Table 3.1.  

 

Figure 3.11 shows the pixel output current as a function of the power light intensity per 

photosensitive area. As seen, the output current variation is reduced when the pixel enters 

into the logarithmic mode of operation, around 255 lux for VSL=2.35 V. The light 

intensity varies over five orders of magnitude. Therefore, the pixel dynamic range is 

about 100dB. 
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Figure 3. 11 Pixel output current as a function of light intensity for different VSL 

 

In addition to the curve obtained from the values in Table 3.1, two other curves are 

shown in Figure 3.11 in which the values are measured for VSL=2.3 V and VSL=2.4 V, in 

order to see the VSL effect on the pixel operating mode. As shown, the pixel enters to the 

logarithmic mode of operation later for the smaller VSL. Therefore, the portion of the 

linear region in pixel operation is greater and also the maximum current reached is larger. 

 

Applying the equation (2.8) into the pixel output current of the Figure 3.11, we obtain the 

Figure 3.12. The Ron-M3 in this equation is 17.3kΩ, which is obtained in simulation results 

from transistor parameters. The linearization transfer is done with a residue of 0.9981 for 

the linearized function, and is shown only for the linear part of the pixel response. The 

residue shows that other causes of non-linearity are in effect, as explained in chapter 2. 
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Figure 3. 12 Linearized pixel output current 

 

3.4 The Mode Indicator Column Circuits  

 

3.4.1 Integrator  

 

It is made of one stage fully differential amplifier with common mode feedback. The 

design and functionality of the circuit were explained in Chapter 2. As shown in Figure 

2.13, the integrator is connected to the DRS circuit using the switches Fo1 and Fo2 in 

order to memorize two sampled current of IoDRS. The two outputs of the integrator, O1 

and O2 resulting from the integration of IoDRS, feed the comparator (CMP). They 

determine the output of the CMP which is the pixel mode indicator (MI). Experimental 

results will be shown in the following section in the presence of the comparator circuit. 
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3.4.2 Dynamic Comparator 

  

In this state, we will measure the comparator output in order to determine the pixel mode 

response. We use the Pattern Generator to create the synchronization clocks for the 

switches. We set the maximum voltage of these synchronizations to 3.3V and the 

minimum to zero. To generate the VS signal, a function generator is used in burst mode 

and it is synchronized with the pattern generator. The adjusted parameters of the function 

generator are listed in the Table 3.2. 

 

Table 3. 2 Function generator parameters to create VS 

Run mode Burst 

Function Pulse 

Clock External 

 

 

Figure 3.13 a) and b) show the timing diagrams and the differential integrator outputs, O1 

and O2, and the comparator output, OUT. The comparator has two outputs that changes 

according to Figure 2.15. If the current in the left branch is more than the current in the 

right branch, out1 decreases faster than out2. When out1 is less than the threshold voltage 

of MN15, MN15 is turned off. At the end of the regeneration time, out2 increases to VDD 

while out1 decreases to zero.  

 

In Figure 3.13 a), since the light intensity is low,  the pixel works in linear mode. 

Therefore, after DRS, the first sampled current is smaller than the second one. According 

to the equation (2.14), when I1 is smaller than I2, for a given time, the voltage variation of 

∆V2 is larger than ∆V1. So, at the end of a sampling period, when the CLK signal turns 

high, O1 is larger than O2. At the end of the regeneration phase, the comparator output 

(OUT in Figure 3.13), is “1” considering the comparator output, out2, which increases to 

VDD in this condition.  
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a)  

 

 

b) 

Figure 3. 13 Experimental results obtained from the integrator and the dynamic 

comparator  for a) the linear and b) the logarithmic mode of the pixel response 
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Figure 3.13 b) shows the results in high light level in which the pixel operates in 

logarithmic mode. Therefore, when the CLK signal is high, during the regeneration phase 

of the comparator, MN14 is turned off and the comparator output turns to “0” since O1 is 

smaller than O2. 

3.5 Results Comparison 

 

The results of the proposed pixel and the existed CMOS APS pixels are compared in 

Table 3. 3.  

Table 3. 3 Pixel performance comparison 

Reference 

Pixel 

operating 

Mode 

Pixel 

response 

CMOS 

Technology 
 

Pixel type and 

Architecture 
Dynamic Range 

(intrascene) 

[14] 

Voltage-

Mode 

Linear- 

Logarithmic 

0.35 μm 

2P4M, 3.3V 
 5Tr - APS 

112 dB 

[29] Logarithmic 

0.35 μm 

1P5M, 3.3V 
 

5Tr with 

comparator-A PS 

 

137 dB 

with variable 

integration time 

[30] Logarithmic 0.25 μm 4Tr - APS 137 dB 

[31] 
Logarithmic 0.25 μm 

5Tr combining the 

lateral PNP - APS 
120 dB 

[32] Logarithmic 0.5 μm 5T - APS 120 dB 

[61] Linear 
0.18 μm 

2P3M 
6 Tr- APS 

94 dB 

with two exposure 

[10] 
 

 

Current-

Mode 

Linear 
0.35 μm 

2P4M, 3.3V 
3Tr - APS 64 dB 

[33] Linear 
 

0.25 μm    

,2.5 V 

1.5Tr - APS 
63 dB 

3Tr - APS 58.3 dB 

This work   Linear- 

Logarithmic 

0.35 μm 

2P4M, 3.3V 
3Tr - APS 

100dB 
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In this work, the pixel circuit uses a linear-logarithmic response to provide a high 

dynamic range in current-mode operation from a simple 3T APS architecture. As shown 

in Table 3. 3, the voltage-mode APS presents a higher the dynamic range, at the expense 

of a more complex architecture, taking up a larger area. It is seen that in current-mode 

APS, the dynamic ranges are low since  the simple pixel architecture is working only in 

the linear region. Compared to the other pixels of Table 3. 3, the proposed pixel works in 

current-mode and shows a fairly high dynamic range due to the combined linear-

logarithmic pixel response. 

 

3.6 Conclusion 

 

Test of the prototype has demonstrated the functionality of the circuit described in 

Chapter 2. The current mode combined linear-logarithmic response pixel provides a high 

dynamic range of 100dB. In order to determine the operating mode of the pixel, a fully 

differential amplifier acting as an integrator and a dynamic comparator circuit is used. 

The purpose of the common mode feedback used of the integrator is to keep the output 

average of O1 and O2, (O1+O2)/2, to VCM.  The comparator mode indicator flag indicates 

to the digital processing unit when the pixel is operating in the logarithmic mode so the 

ADC digital output is converted accordingly. 
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CONCLUSION AND FUTURE WORK 

 

As the imaging market continues to expand with new emerging applications, CMOS 

image systems have become a major research topic because it allows a high level of 

integration of on- chip logic, memory and signal processing functionalities. One of the 

major challenge facing CMOS image sensors is the limitation of the dynamic range, as 

CMOS scaling process advanced and the supply voltage decreases. To increase the 

dynamic range, some solutions and methods have been proposed in standard image 

sensors. However, most of them result in an increased pixel area or integration time at the 

expense of reduced resolution, sensitivity and frame rate. Contributions of this thesis 

have been made to develop a methodology to design a CMOS image sensor with high 

dynamic range capability. In addition, we have also designed circuit blocks needed for 

extracting and interpreting the analog signal produces by the pixel. A prototype chip was 

fabricated using the 0.35 μm AMS CMOS processing technology.  

 

The design of this CMOS image sensor includes many analog circuit blocks such as the 

current conveyor, the current memory cell, the fully differential integrator and the 

comparator. Based on our analyses, we have proposed some new idea to improve the 

circuits. 

 

In this dissertation several new ideas/contributions have been proposed: 

 

- A current-mode pixel is proposed which alleviate the drawbacks of small CMOS 

technologies by improving the dynamic range. 

- A 3T linear-logarithmic pixel is proposed to achieve a high dynamic range in 

order to distinguish from low contrast signal to high background illumination. In 

this architecture, the diode connected transistor is also used as the reset transistor 

by varying its source voltage. Therefore, the pixel area is reduced compare to the 

architecture using four transistors per pixel. 

- The proposed image architecture has pixel operating mode detection capability. 

The circuits introduced in column level, determines that the pixel works in linear 
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or logarithmic mode. For this purpose, we used a differential operational 

amplifier with a dynamic comparator.  

- A digital linearization method is used. One of the non-linearity effects comes 

from the „on‟ resistance of the select transistor in the pixel. This non-linearity is 

removed by a simple analytical solution using the output current as feedback.   

- An Improved current memory precision is used to remove the offset and image 

lag as well as to sample two successive current in order to determine the pixel 

mode operation. Using a cascode architecture reduces the channel length 

modulation and consequently increases the accuracy of the copied current. 

 

We have also presented a literature review of various CMOS image sensors and 

introduced the principles of operations in Chapter 1. Based on this introduction, Chapter 

2 explained the overall architecture adopted for the image sensor. 

More specifically, a new 3T architecture active pixel designed has the advantages of both 

current-mode and linear-logarithmic architectures. The dynamic range obtained is over 

five order of magnitude of illumination. The current conveyor circuit is used in order to 

fix the column voltage as well as to copy the pixel output current. The performance of 

our image sensor is depended on the accuracy of the current memory cell. We have 

chosen a fully differential amplifier with a dynamic comparator to determine in which 

mode the pixel works. The result is sent to digital processing unit so that ADC digital 

output is converted accordingly. 

 

In Chapter 3 we presented the experimental results obtained from the fabricated 

prototype.  It is measured on a single active pixel sensor with a light sensitive area of 

53.28μm
2
. First, we deactivated the DRS to characterize the pixel. The image lag effect 

was observed. We also determined the dark current of the pixel by measuring the pixel 

output in the absence of light. Then, we activate the DRS and measured the pixel output 

current sampled by this circuit with offset removal. Finally, two successive current 

sampled by DRS sent to the comparator and its output indicated the pixel operating 

mode.  
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Our work focused on the design of a high dynamic range pixel and circuit blocks 

compatible for this architecture. Future work should be conducted in the following areas: 

 

- We have designed a single active pixel and its reading circuit used in the current-

mode linear-logarithmic CMOS image sensors. It will be necessary to complete 

the design of the full array. 

- The performance of the switching must be improved. One may need to 

experiment with more effective techniques to reduce the feed-through effect to 

improve the performance of these critical circuits so as to improve the overall 

system performance.   

- The pixel output current dynamic range should be improved. Possible future 

exploration includes the improvement of the performance and resolution of the 

DRS circuit and switches at the column level.  
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APPENDIX 

 

 

Figure 1.A Layout view of the pixel architecture 
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Figure 2.A Layout view of the integrator block 


